

Delft University of Technology

Hybrid differential evolution algorithm for the resource constrained project scheduling
problem with a flexible project structure and consumption and production of resources

van der Beek, T.; Souravlias, D.; van Essen, J. T.; Pruyn, J.; Aardal, K.

DOI
10.1016/j.ejor.2023.07.043
Publication date
2023
Document Version
Final published version
Published in
European Journal of Operational Research

Citation (APA)
van der Beek, T., Souravlias, D., van Essen, J. T., Pruyn, J., & Aardal, K. (2023). Hybrid differential
evolution algorithm for the resource constrained project scheduling problem with a flexible project structure
and consumption and production of resources. European Journal of Operational Research, 313(1), 92-111.
https://doi.org/10.1016/j.ejor.2023.07.043
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ejor.2023.07.043
https://doi.org/10.1016/j.ejor.2023.07.043

European Journal of Operational Research 313 (2024) 92–111

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Hybrid differential evolution algorithm for the resource constrained

project scheduling problem with a flexible project structure and

consumption and production of resources

T. van der Beek

a , ∗, D. Souravlias c , J. T. van Essen

b , J. Pruyn

a , K. Aardal b

a Maritime and Transport Technology, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands
b Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, the Netherlands
c Digital & Information Technology Dept., Port of Rotterdam, World Port Center, Wilhelminakade 901, Rotterdam, 3072 AR, the Netherlands

a r t i c l e i n f o

Article history:

Received 19 May 2022

Accepted 31 July 2023

Available online 4 August 2023

Keywords:

Project scheduling

Metaheuristics

Resource constrained project scheduling

problem

Flexible project structure

a b s t r a c t

The resource constrained project scheduling problem with a flexible project structure and consumption

and production of resources, involves making a selection of activities and scheduling these activities in

order to minimize the makespan, subject to precedence and resource constraints. Since finding a feasi-

ble selection of activities is NP-hard, we introduce the concept of group graphs and restrict ourselves

to instances with an acyclic group graph. For these instances, which represent many practical cases, we

show how to make a feasible selection of activities in polynomial time and use this concept to schedule

the selected activities using a hybrid differential evolution algorithm. We compare this algorithm with

an algorithm from the literature on special cases of instances without consumption and production of re-

sources, and show that our algorithm creates solutions of higher quality. Furthermore, to compare general

instances, we develop an ant colony optimization algorithm that performs slightly better on special cases

than the algorithm from literature and show that the hybrid differential evolution algorithm outperforms

the ant colony optimization algorithm on general instances.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

i

m

d

b

W

2

s

t

i

d

c

t

D

v

t

r

s

w

2

s

a

q

q

s

w

p

t

t

t

t

h

0

. Introduction

The Resource Constrained Project Scheduling Problem (RCPSP)

s an extensively studied optimization problem with the goal of

inimizing the total execution time of a project, subject to prece-

ence and resource constraints. It is widely applicable and has

een used in many industries, such as shipbuilding (Hu, Zhang,

ang, Kao, & Ito, 2019), housing construction (Bezerra & Scheer,

021), employee scheduling (Bellenguez & Néron, 2005), etc. In the

tandard RCPSP, the list of activities is fixed and all activities have

o be scheduled while being constrained by renewable resources,

.e., resources that become fully available again after an activity is

one. Examples of renewable resources are workers, machines and

ranes.

However, in reality, these assumptions are not always valid due

o multiple reasons. First of all, in many construction projects,
∗ Corresponding author.

E-mail addresses: T.vanderBeek@tudelft.nl (T. van der Beek),

.Souravlias@portofrotterdam.com (D. Souravlias), J.T.vanEssen@tudelft.nl (J.T.

an Essen), J.F.J.Pruyn@tudelft.nl (J. Pruyn), K.I.Aardal@tudelft.nl (K. Aardal) .

p

q

r

&

ttps://doi.org/10.1016/j.ejor.2023.07.043

377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article
here are multiple ways of completing projects. Secondly, not all

esources are renewed automatically. An example is given from

hipbuilding, where assemblies can be produced beforehand in

orkshops, or directly on the ship (Fafandjel, Rubeša, & Mrakov ̌cic,

008). After production in a workshop, an assembly has to be in-

talled as a whole on the ship, requiring specialized resources such

s cranes. Conversely, direct production on the ship does not re-

uire this, although the less ideal working conditions might re-

uire better trained workers. Furthermore, when choosing to use

ub-assemblies, the resource ‘floor space’ is required for storage,

hich does not renew automatically. Instead, an activity ‘moving

roduct’ or ‘installing sub-assembly on ship’, with non-zero dura-

ion, has to be executed to free up floor space. Another applica-

ion of non-renewable resources is a limit on the amount of capi-

al tied up or used in a project (Neumann & Schwindt, 2003). Since

he capital use might vary based on the selected activities, certain

roject structures might be infeasible due to different resource re-

uirements. Therefore, it is important to consider these types of

esources when studying flexible resource structures (Kellenbrink

 Helber, 2015).
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2023.07.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.07.043&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:T.vanderBeek@tudelft.nl
mailto:D.Souravlias@portofrotterdam.com
mailto:J.T.vanEssen@tudelft.nl
mailto:J.F.J.Pruyn@tudelft.nl
mailto:K.I.Aardal@tudelft.nl
https://doi.org/10.1016/j.ejor.2023.07.043
http://creativecommons.org/licenses/by/4.0/

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

P

s

t

R

e

W

t

C

c

i

a

o

a

f

b

r

h

A

t

k

I

V

S

f

h

t

t

R

(

f

t

t

S

a

i

r

2

(

n

s

a

p

F

p

c

t

b

b

s

t

t

c

c

o

p

t

s

o

d

c

i

e

c

w

l

s

a

d

a

i

T

t

m

i

(

w

t

p

s

p

o

K

l

m

t

a

t

b

t

(

p

i

a

f

R

e

t

i

t

d

a

t

c

r

i

i

d

s

e

f

n

t

p

t

v

t

r

a

t

These additional aspects give rise to the Resource Constrained

roject Scheduling Problem with a flexible Project Structure and Con-

umption and Production of Resources (RCPSP-PS/CPR), a generaliza-

ion of the RCPSP with two extensions.

Firstly, we introduce the flexible project structure. The standard

CPSP answers the question: At what time should each activity be

xecuted? The flexible project structure adds another problem:

hich activities should be executed? This latter problem is called

he selection problem and was proven to be NP-hard by Barták,
ˇepek, & Surynek (2007) . Secondly, nonrenewable resources with

onsumption and production, called cumulative resources, are

ntroduced. As opposed to renewable resources, which are fully

vailable after use, cumulative resources are either consumed

r produced by an activity. This complicates the problem, since

n instance with cumulative resources does not always have a

easible solution. With renewable resources, activities can always

e delayed until enough resources are available. With cumulative

esources, this is not the case and determining if an instance

as a feasible solution is NP-hard (Neumann & Schwindt, 2003).

lthough both the flexible project structure and the cumula-

ive resources have been studied separately, to the best of our

nowledge, the RCPSP-PS/CPR has not been studied.

This paper has three contributions. Firstly, we adapt the Mixed

nteger Linear Programming (MILP) formulation of Van der Beek,

an Essen, Pruyn, & Aardal (2022) by adding cumulative resources.

econdly, group orderings are introduced; a fast method to find

easible solutions to the selection problem, to be used within

euristics. This method is only applicable to instances with cer-

ain characteristics, which are discussed in this paper. However,

hese characteristics are present in many practical instances of the

CPSP-PS/CPR. Finally, we present a Hybrid Differential Evolution

HDE) algorithm and evaluate its performance against special cases

rom the literature, optimal solutions and an Ant Colony Optimiza-

ion (ACO) benchmark algorithm.

In Section 2 , we present an overview of the literature related

o the RCPSP-PS/CPR. Subsequently, we formulate the problem in

ection 3 . Then, we present a method to create feasible selections

nd use this to create the HDE algorithm and the ACO algorithm

n Section 4 . This is followed by a comparison of computational

esults in Section 5 and conclusions in Section 6 .

. Literature review

The RCPSP is introduced by Pritsker, Watters, & Wolfe

1969) and proven to be NP-hard by Blazewicz, Lenstra, & Rin-

ooy Kan (1983) . In this section, we focus on the extensions con-

idered in this paper: consumption and production of resources

nd a flexible project structure. For these extensions, the main

oints of interest are modeling decisions and metaheuristics used.

or the general RCPSP, an overview of hybrid metaheuristic ap-

roaches is given by Pellerin, Perrier, & Berthaut (2019) . They

onclude that most algorithms are population-based. Furthermore,

hey conclude that local-search-based permutations and forward-

ackward improvements (Wang & Lui, 2017) are most used in the

est performing approaches.

We now provide a brief review on research that considers

cheduling with nonrenewable resources or scheduling with cumula-

ive resources . We use the term nonrenewable resources to denote

he case of a set of resources that are consumed and not automati-

ally renewed. However, in this paper, we consider scheduling with

umulative resources . Cumulative resources denote the case of a set

f nonrenewable resources that cannot only be consumed but also

roduced.

When considering scheduling with cumulative resources, two

ypes of closely related problems have to be studied: activity-based

cheduling and event-based scheduling. The general RCPSP consists
93
f activities to be planned that have a certain duration and prece-

ence relationships. Conversely, the Event Scheduling Problem (ESP)

onsists of events; tasks with zero duration and maximal and min-

mal time lags to other events, where time lag is the time differ-

nce between two events. Notice that every instance of the RCPSP

an be modeled as an instance of the ESP by replacing each task

ith a duration zero and prescribed maximal and minimal time

ags to other events, while the converse is not true; the basic ver-

ion of the RCPSP does not include maximum time lags between

ctivities. Therefore, the RCPSP is a special case of the ESP.

Event-based scheduling with inventory constraints is intro-

uced by Neumann & Schwindt (2003) . Here, resources have both

n upper and a lower bound; the inventory level cannot exceed

ts capacity and it is not allowed to drop below a certain level.

hey formulate the problem and answer some structural ques-

ions, e.g., the NP-completeness of the feasibility problem. Further-

ore, they present a branch-and-bound procedure and evaluate

ts performance. The problem introduced by Neumann & Schwindt

2003) has also been investigated in a paper by Laborie (2003) ,

ho applied a constraint programming approach with consistency

ests. Furthermore, Carlier, Moukrim, & Xu (2009) introduce the

roject scheduling problem with consumption and production of re-

ources (RCPSP/CPR), which uses an event-based approach. For this

roblem, they provide a scheduling algorithm that computes the

ptimal schedule by enumerating over all linear orders of events.

oné, Artigues, Lopez, & Mongeau (2013) also consider the prob-

em with cumulative resources. They provide a time-indexed MILP

odel for the discrete time RCPSP/CPR and a flow-based formula-

ion for the continuous-time RCPSP/CPR. Furthermore, they present

 formulation combining activities and events with continuous-

ime variables determining the occurrence times of the events and

inary variables determining whether an activity is executed at

he same time of an event. Similarly, Sahli, Carlier, & Moukrim

2016) present different models for the ESP with consumption and

roduction of resources. Like Koné et al. (2013) , they give a time-

ndexed and a flow-based formulation. Besides this, they also give

n event-partitioning-based formulation.

Most papers listed above investigate lower bounds and exact

ormulations. However, the research on heuristic methods for the

CPSP/CPR is limited. Carlier et al. (2009) shortly discuss how the

xact enumeration algorithm can be modified to obtain a heuris-

ic method. Furthermore, Shirzadeh Chaleshtarti, Shadrokh, Khak-

firooz, Fathi, & Pardalos (2020) present a genetic algorithm for

he RCPSP with nonrenewable resources. This consist of the stan-

ard version of the RCPSP, with a fixed amount of initially avail-

ble resources that can only be consumed and not produced. Since

here is no flexible project structure and resources can only be

onsumed, the amount of initial resources fully defines feasibility

egarding nonrenewable resources. Therefore, resource infeasibility

s not taken into account for this problem.

Besides cumulative resources, the second extension is the flex-

ble project structure. Although there are different variants under

ifferent names in the literature, the main concept of this exten-

ion is that only a subset of all activities have to be executed.

The flexible project structure is firstly introduced by Barták

t al. (2007) . However, they do not consider the RCPSP, but a dif-

erent scheduling problem: temporal networks where resources are

ot considered and the goal is to satisfy maximum and minimum

ime lags between activities. For this problem, they introduce the

roblem of a flexible structure and, amongst other things, show

hat the selection problem is NP-hard. One of the earliest RCPSP

ariants with a flexible project structure is the Extended RCPSP , in-

roduced by Kuster, Jannach, & Friedrich (2009) . They study a dis-

uption management problem, which they model as an RCPSP with

n initial activation state and substitution criteria. These substitu-

ion criteria define what changes are allowed to the initial state.

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Table 1

Overview of models with a flexible project structure.

Paper Separate scheduling

and selection

Independent

succession

Exclusivity criterion Nonrenewable

resources

Cumulative resources

Kuster et al. (2009) � �

Čapek et al. (2012) � �

Kellenbrink & Helber (2015) � � �

Tao & Dong (2017) � �

Servranckx & Vanhoucke (2019) � �

Van der Beek et al. (2022) � � �

This paper � � � � �

T

t

a

s

r

a

b

T

t

o

a

w

a

(

T

a

t

t

a

l

s

fi

o

t

F

w

o

v

e

c

i

i

V

i

l

a

c

m

a

b

r

s

a

m

w

m

t

S

D

p

t

e

F

l

m

3

g

r

l

t

m

t

t

c

3

s

i

T

t

i

t

c

p

s

c

R

s

d

r

p

P
a

E

s

g

s

g

r

g

e

i

s

p

c

t

hey give a custom evolutionary algorithm to heuristically solve

his problem. Furthermore, Čapek, Šcha, & Hanzálek (2012) study

 variant of the RCPSP with a flexible project structure, unary re-

ources, time-lags and sequence dependent setup times. They rep-

esent the branching structure by Petri nets and give both an MILP

nd a constructive heuristic algorithm. The RCPSP with a flexi-

le project structure is studied in Kellenbrink & Helber (2015) .

hey model this by distinguishing between mandatory and op-

ional activities, and introduce a set of choices to decide which

ptional activities have to be executed. They include nonrenew-

ble resources, but only with consumption of these resources and

ithout production. To heuristically solve this problem, they use

 genetic algorithm. Another formulation is given by Tao & Dong

2017) , who represent the problem by an AND-OR project network.

hey call this problem the RSPCP with alternative activity chains

nd give an extended simulated annealing algorithm to heuris-

ically solve it. Furthermore, in Tao & Dong (2018) , they extend

he problem by adding multiple modes of executing an activity

nd by considering multi-objective optimization. This new prob-

em is heuristically solved by a hybrid algorithm consisting of tabu

earch and a genetic algorithm. Servranckx & Vanhoucke (2019) de-

ne the RCPSP with alternative subgraphs. This problem consists

f branches, where each branch represents a subset of activities

hat can be executed. This is heuristically solved using tabu search.

urthermore, Van der Beek et al. (2022) introduce an MILP model

here the choices are based on selection-groups ; a group consisting

f an activator activity and a set of successor activities. If an acti-

ator activity is executed, exactly one successor activity has to be

xecuted. A solution method is given that uses cutting planes and

onstraint propagation for preprocessing, after which the problem

s solved to optimality by a commercial MILP solver.

We now compare the RCPSP-PS/CPR to the problems introduced

n this literature review. For this, we use three concepts from

an der Beek et al. (2022) . The first concept is separate schedul-

ng and selection. This means that the graph representing all se-

ection constraints can be separate from the graph representing

ll precedence constraints. The second concept is Independent Suc-

ession (IS). A model with IS allows for multiple activities to si-

ultaneously cause the execution of the same other activity. If

 model does not feature IS, each activity can only be executed

ased on at most one other activity. Finally, the Exclusivity Crite-

ion (EC) is introduced. If a model includes EC, choices are exclu-

ive ; only one alternative can be selected from a set of candidate

ctivities. As shown in Van der Beek et al. (2022) , is is possible to

odel ‘at-least-one’ constraints in models with EC, making models

ith EC the general case. With the introduced terms, the different

odels can be compared. This is done in Table 1 and shows that

he models of Kuster et al. (2009) , Kellenbrink & Helber (2015) ,

ervranckx & Vanhoucke (2019) , Van der Beek et al. (2022) , Tao &

ong (2017) are special cases of the RCPSP-PS/CPR. However, the

roblem considered in Čapek et al. (2012) contains additional ex-

ensions, and therefore, is not a special case of the RCPSP-PS/CPR.

In conclusion, although there is various research on the differ-

nt elements of the RCPSP-PS/CPR, this has not been combined yet.
{

94
urthermore, the research on heuristic methods considering cumu-

ative resources is limited. To the best of our knowledge, no imple-

entation of this exists.

. RCPSP-PS/CPR

In this section, a formal description of the RCPSP-PS/CPR is

iven. First, Section 3.1 describes the problem and introduces all

equired notation. Subsequently, Section 3.2 gives an MILP formu-

ation for the RCPSP-PS/CPR. This model is based on the model for

he RCPSP-PS from Van der Beek et al. (2022) . Like nearly all for-

ulations for the RCPSP with a flexible project structure, it uses a

ime-indexed formulation. Therefore, we use the constraints from

he time-indexed formulation of Sahli et al. (2016) to model the

umulative resources.

.1. Problem description

The RCPSP-PS/CPR consists of a set of activities N of which a

ubset has to be executed. The set N consists of the starting activ-

ty 1 and the final activity | N| and | N| − 2 non-dummy activities.

he starting activity 1 starts before all activities and the final ac-

ivity | N| starts after all activities have been finished. The objective

s to minimize the total time of the executed activities, also called

he makespan of the project. The activities are scheduled in dis-

rete time periods T . Each activity i ∈ N has a duration of d i time

eriods. These activities have to be scheduled while satisfying re-

ource, precedence and selection constraints.

There are two types of resources; renewable resources R r and

umulative resources R n . The set of all resources is denoted by

 = R r ∪ R c (R r ∩ R c = ∅). For each resource r ∈ R , activity i ∈ N con-

umes k −
ri

amount of resource r at the start of the activity and pro-

uces k +
ri

at the end of the activity. For each renewable resource

 ∈ R r , we have k −
ri

= k +
ri

. Furthermore, each resource has a total ca-

acity of λr .

The precedence relationships are defined by the set of tuples

. For each precedence relationship (i, j) ∈ P , it is required that

ctivity j does not start before the finishing time of activity i .

The flexible project structure is modeled by selection groups G .

ach selection group g ∈ G consists of an activator activity a g and a

et of successor activities S g , with | S g | > 0 . For each activator group

 ∈ G , it holds that if activator a g is executed, exactly one of the

uccessor activities S g has to be executed.

Finding a set of executed activities such that this holds for each

roup is called the selection problem , as given in Definition 1 . A

epresentation of the selection problem is given by the selection

raph . This graph consists of a node for each activity and an arc for

ach activator-successor relationship. When the selection graph is

llustrated, a circular arc is drawn to denote that multiple activator-

uccessor relationships belong to the same group. Figure 1 dis-

lays a selection graph with one selection group with multiple suc-

essors and four selection groups with one successor. The selec-

ion group with multiple successors has activator 1 and successors

 2 , 3 } .

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. 1. Example of a selection graph.

Table 2

Notation used in Constraint set (1).

a g Activator activity of selection group g ∈ G .
d i Duration of activity i ∈ N.

k +
ri

Production of resource r ∈ R for activity i ∈ N.

k −
ri

Consumption of resource r ∈ R for activity i ∈ N.

λr Capacity of resource r ∈ R .
G Set of selection groups.

M Sufficiently large number.

N Set of activities.

P Set of precedence pairs.

R Set of resources.

S g Set of successor activities of selection group g ∈ G .
T Set of time periods.

X it Binary variable which is 1 if activity i ∈ N is executed at time t ∈ T ,
zero otherwise.

D

o

t

e

N

i

i

h

g

3

e

t

t

a

w

c

T

i

l

v

F

(

s

i

(

t

t

C

I

A

4

i

u

d

s

f

p

c

i

i

g

A

4

t

p

d

l

t

G

s

i

b

o

i

i

P

i

A

1

1

1

a

efinition 1 (Selection problem) . The selection problem consists

f finding a set of executed activities N

′ ⊆ N with 1 , | N| ∈ N

′ , such

hat for each selection group g ∈ G it holds that if activator a g is

xecuted (a g ∈ N

′), there is exactly one executed successor: | S g ∩

′ | = 1 .

In order to consider all activities in the selection problem, it is

mposed that a valid project structure has a path from the start-

ng activity to each other activity. Furthermore, in order to always

ave the final activity executed, each maximal path in the selection

raph ends in the final activity.

.2. Problem formulation

The problem is modeled with binary decision variables X it for

ach activity i ∈ N and for each time t ∈ T . This variable is equal

o one if activity i is started at time t and zero otherwise. Objec-

ive function (1a) minimizes the starting time of final activity | N| ,
nd therefore, the time of the total project. The first activity is al-

ays executed due to Constraint (1b). Furthermore, each activity

an only be started once, as imposed by Constraints (1c).

The selection problem is captured by Constraints (1d) and (1e).

he former impose that if an activator a g of selection group g ∈ G

s executed, at least one successor activity i ∈ S g is executed. The

atter ensure that per selection group g ∈ G with executed acti-

ator a g , at most one successor activity i ∈ S g can be executed.

urthermore, the precedence relations are imposed by Constraints

1f) for each precedence relationship (i, j) ∈ P . Due to these con-

traints, activity i has to be finished before or at the start of activ-

ty j, if both are executed. Here, M is a sufficiently large number

 M ≥ | T | + max i ∈ N d i).
For each resource r ∈ R , Constraints (1g) ensure for each time

 ∈ T that the total consumption minus the total production up

o time t is smaller than the total resource capacity λr . Finally,

onstraints (1h) impose that decision variables X it are binary.

n Table 2 , all notation is given for the model. Furthermore, in

ppendix A , all notation used throughout this paper is listed.

min

∑

t∈ T
tX | N| t , (1a)

∑

t∈ T
X 1 t = 1 , (1b)
95
∑

t∈ T
X it ≤ 1 ∀ i ∈ N, (1c)

∑

t∈ T
X a g t ≤

∑

i ∈ S g

∑

t∈ T
X it ∀ g ∈ G, (1d)

∑

j∈ S g

∑

t∈ T
X jt ≤ | S g | −

(| S g | − 1

)∑

t∈ T
X a g t ∀ g ∈ G, (1e)

∑

t∈ T
(t + d i) X it ≤

∑

t∈ T
tX jt + M

(
1 −

∑

t∈ T
X jt

) ∀ (i, j) ∈ P, (1f)

∑

i ∈ N

(

t ∑

τ=1

k −
ri

X iτ −
t−d i ∑

τ=1

k +
ri

X iτ

)

≤ λr ∀ r ∈ R, t ∈ T , (1g)

X it ∈ { 0 , 1 } ∀ i ∈ N, t ∈ T . (1h)

. Solution method

In this section, a Hybrid Differential Evolution (HDE) algorithm

s presented to find feasible solutions for the RCPSP-PS/CPR. Nat-

rally, a search-based algorithm requires a fast way of exploring

ifferent solutions to the selection problem. This poses a challenge,

ince the selection problem is NP-hard (Barták et al., 2007). There-

ore, Section 4.1 gives a special case of the selection problem and a

olynomial-time algorithm to find feasible solutions to this special

ase. This algorithm is used within the HDE algorithm that is given

n Section 4.2 . Furthermore, since the RCPSP-PS/CPR is introduced

n this paper, there is no heuristic algorithm for comparison for

eneral instances. Therefore, in Section 4.3 , we briefly introduce an

nt Colony Optimization (ACO) algorithm for comparison purposes.

.1. Group orderings

As mentioned before, finding a feasible solution to the selec-

ion problem is NP-hard. However, it is often done manually by the

lanner in real-life cases. In this subsection, we determine the con-

itions for when it is possible to find feasible solutions to the se-

ection problem in polynomial time. This is done by the introduc-

ion of (feasible) group orderings : a sorted list containing a subset

′ ⊆ G . A group ordering is used to find feasible solutions for the

election problem by making sequential decisions for each group

n the group ordering, while keeping track of the selected and for-

idden activities. In this subsection, we first show how a group

rdering is used and give the definition of a feasible group order-

ng. With this, we introduce properties to identify if a group order-

ng is feasible. Finally, we introduce a special case of the RCPSP-

S/CPR and show how to obtain feasible group orderings for these

nstances in polynomial time.

By applying Algorithm 1 on a group ordering J, a selection of

lgorithm 1 Using a group ordering J.

1: N

e ← { 1 } � Executed activities

2: N

f ← ∅ � Forbidden activities

3: for g ∈ J do

4: if a g ∈ N

e then

5: N

c
g ← S g \ N

f � Candidate activities

6: if N

c
g = ∅ then

7: n ← Select from N

c
g

8: N

e ← N

e ∪ { n }
9: N

f ← N

f ∪ (S g \{ n })
0: end if

11: end if

2: end for

3: return N

e

ctivities is obtained. As it is explained below, this selection may or

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

m

a

o

d

i

b

s

t

i

p

s

t

A

g

l

i

a

o

t

fi

i

h

f

D

i

A

p

c

O

b

i

P

h

c

s

i

i

m

w

f

t

g

t

m

D

G

s

o

Fig. 2. Instances with corresponding group graphs.

D

i

g

i

T

g

T

g

P

i

l

n

fi

T

m

d

T

g

s

s

F

i
ay not be feasible, depending on certain instance properties. The

lgorithm keeps track of a list of executed activities N

e and a list

f forbidden activities N

f . Then, following the order of group or-

ering J, each selection group g ∈ J is evaluated. First, it is checked

f the activator a g is executed. If this is the case, a successor has to

e selected. The set of candidate activities N

c
g consists of the set of

uccessor activities S g , minus the set of forbidden activities. From

hese candidate activities, one activity n is selected. This selection

s based on the algorithm in which Algorithm 1 is used, as is ex-

lained in Sections 4.2 and 4.3 . Finally, activity n is added to the

et of executed activities and all other successors S g \{ n } are added

o the set of forbidden activities.

As stated in Definition 2 , a group ordering is feasible if

lgorithm 1 always results in a feasible selection of activities, re-

ardless of the selection made in line 7. From the selection prob-

em, as defined by Constraints (1d) and (1e), there are two ways

n which a selection can be infeasible for group g: the activator

 g is selected and either none of the successors in S g are selected,

r more than one successor is selected. Since Algorithm 1 keeps

rack of forbidden activities, the latter case will not happen. The

rst case can happen in two ways: The set of candidate activities

s empty, or an activator a g is selected for execution after group g

as been processed. Based on this, Observation 1 gives a condition

or feasibility of a group ordering.

efinition 2 (Feasible group ordering) . A feasible group order-

ng J is an ordered list of selection groups such that applying

lgorithm 1 always returns a feasible solution to the selection

roblem, regardless of the selection choice in line 7. If J does not

ontain all selection groups G , it is called a partial group ordering.

bservation 1. A (partial) group ordering J = [j 1 , · · · , j | J|] is feasi-

le (i.e., Algorithm 1 always returns a feasible activity selection) if

t satisfies the following properties:

Property 1. There exist no groups j a , j b ∈ J with a < b, such

that

a j a ∈ S j b . (2)

Property 2. There does not exist a group j a ∈ J such that

S j a ⊆
⋃

i ∈{ 1 , ··· ,a −1 }| S j i = S j a
S j i . (3)

roof. By Property 1, there will be no group g ∈ G where a decision

as to be made before all groups containing a g as a successor are

onsidered.

Furthermore, due to Property 2, for each group j a , there is a

uccessor activity j ∈ S j a \ ∪

a −1
i =1

S j i = ∅ that is not a successor activ-

ty of an earlier group and therefore can be chosen without caus-

ng a conflict. If any earlier group has exactly the same successors,

aking a choice here automatically results in no conflicts arising

hen making a choice for j a . Therefore, these can be excluded

rom the right-hand side of Eq. (3) . �

In order to know if a feasible group ordering exists, we in-

roduce the group graph ; a graph with a node for each selection

roup, and edges based on activator-successor relationships. For

his, we first introduce the property called strict successor contain-

ent .

efinition 3 (Strict successor containment) . A selection group g ∈

 has strict successor containment on selection group h ∈ G , if the

uccessors of selection group h are a strict subset of the successors

f selection group g; i.e., S h � S g .

Definition 4 states how to create a group graph.
96
efinition 4 (Group graph) . A group graph H is a mixed (contain-

ng directed and undirected edges) graph based on the selection

roups. It is created in the following way:

1. Create a node for each selection group g ∈ G .

2. Create a directed edge from group g ∈ G to group h ∈ G if the

activator of group h is a successor of group g; i.e., a h ∈ S g .

3. If two selection groups g ∈ G and h ∈ G have successor over-

lap (S g ∩ S h = ∅) and the size of at least one successor set is

larger than one (| S h | > 1 or | S g | > 1), create an undirected

edge between node g and h .

4. If group g ∈ G has strict successor containment on group h ∈

G ,(i.e., S h � S g), create a directed edge from node h to node

g.

If the group graph is acyclic, the corresponding RCPSP-PS/CPR

nstance has a feasible group ordering, as stated in Theorem 1 .

he intermediate theory, including the method to create a feasible

roup ordering from a group graph, is given in Appendix B .

heorem 1. If an instance of the RCPSP-PS/CPR has an acyclic group

raph, a feasible group ordering can be found in polynomial time.

roof. To obtain a feasible group ordering, we execute the follow-

ng steps:

1. Construct a group graph H, as described in Definition 4 .

2. Find a breadth-first ordering for each connected component

in H, as described in Lemma 2 .

3. Topologically sort the connected components, as described

in Lemma 3 .

Step 1 consists of 4 operations, described in Definition 4 . The

ast two of these 4 operations have the highest time complexity,

amely O (| G | 2 | N|) . Step 2 and 3 can both be solved by a breadth-

rst ordering algorithm, which has a time complexity of O (| G | 2) .
herefore, the combined time complexity is O (| G | 2 | N|) . Further-

ore, Lemma 3 shows that this group ordering is feasible. �

The heuristics introduced in this paper require a group or-

ering to create feasible solutions to the selection problem. As

heorem 1 states, this group ordering can be found if the group

raph is acyclic. An example is given in Fig. 2 . Here, Fig. 2 a

hows an instance with an acyclic group graph. Therefore, this in-

tance can be solved by the methods of this paper. Conversely,

ig. 2 b shows an instance with a cyclic group graph: groups

i → iii → i v → ii form a cycle. Therefore, we cannot use the

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

b

t

t

t

b

b

T

g

w

r

d

t

4

a

D

P

t

l

&

r

t

t

i

4

c

t

c

f

t

i

d

g

l

T

A

A

1

i

i

w

e

a

t

i

I

b

c

s

b

t

t

a

l

l

4

g

p

f

T

R

t

a

s

t

w

t

s

a

B

w

q

A

a

c

e

a

r

r

a

t

o

b

m

t

s

r

i

4

i

i

p

s

i

d

4

t

r

i

k

s

o

readth-first ordering to find a feasible group ordering. This means

hat Algorithm 1 is not guaranteed to find a feasible selection, and

hus, this instance cannot be solved by the methods proposed in

his paper. However, there is no guarantee that there is no feasi-

le group ordering. In the example in Fig. 2 b, [i, ii , iii , iv] is a feasi-

le group ordering that cannot be found by the proposed method.

he reason that this group ordering cannot be found with group

raphs, is because there are instances with the same group graph,

here this group ordering is not feasible. Indeed, if activity 9 is

emoved, the group graph remains unchanged. However, group or-

ering [i, ii , iii , iv] does not fulfill Property 2 from Theorem 1 , and

hus, is infeasible.

.2. Hybrid differential evolution algorithm

The algorithm introduced is a Hybrid Differential Evolution (HDE)

lgorithm with so-called Forward Backward Improvement (FBI). The

ifferential Evolution algorithm, originally introduced by Storn &

rice (1997) , was chosen based on multiple successful implemen-

ations in the literature (Quoc, The, Doan, & Thanh, 2020; Sal-

am, Chakrabortty, & Ryan, 2020; Zaman, Elsayed, Sarker, Essam,

 Coello Coello, 2021) for RCPSP variants and on good preliminary

esults.

First, we introduce the solution representation. Subsequently,

he main Differential Evolution (DE) algorithm is given, which forms

he core of the HDE algorithm. Finally, the complete HDE algorithm

ncluding FBI is presented.

.2.1. Solution representation

Since DE is an algorithm for continuous variables, a method to

onvert a DE solution into a schedule is required. Each agent in

he DE algorithm is represented by a 2 × | N| priority matrix A that

ontains two priorities (scalars) per activity. The selection priority

or activity i ∈ N is denoted by A 1 i . This is used to make a selec-

ion of executed activities. Furthermore, A 2 i is the scheduling prior-

ty , which is used to schedule the selected activities.

To convert a priority matrix A into a feasible schedule, we first

etermine the executed activities. This is done by using a feasible

roup ordering J and applying Algorithm 1 . In this algorithm, on

ine 7, the successor with the highest selection priority is selected.

his results in a set of executed activities N

e .

Next, these executed activities are scheduled according to

lgorithm 2 . Here, the activities are scheduled iteratively. In each

lgorithm 2 Scheduling activities N

e .

1: N

a = { 1 } � Available activities

2: N

s = ∅ � Scheduled activities

3: t = [0 for i ∈ N

e] � Time vector

4: while | N

a | > 0 do

5: n ← Select from N

a

6: N

s = N

s ∪ { n }
7: N

a = N

a ∪ { j : j ∈ N

e \ (N

a ∪ N

s) , P j ∩ N

e ⊆ N

s }\ { n }
8: t n ← earliest time possible for activity n

9: end while

0: return t

teration, at line 5, the available activity with the highest schedul-

ng priority A 2 i from all available activities is chosen. An activity

j ∈ N is available if all executed predecessors P j ∩ N

e are scheduled,

here P j is the set of time-based predecessors of activity j.

If an activity i ∈ N has to be scheduled, it will be at the earli-

st time possible. This is as soon as all predecessors are finished

nd the resource availability is sufficient. However, due to cumula-

ive resources not automatically regenerating, it might happen that

t is not possible to schedule activity i in a resource feasible way.
97
f this is the case, then activity i is scheduled at the first possi-

le time when all required renewable resources are available. This

auses resource infeasibility. To guide the search towards the fea-

ible solution region, we penalize the objective function. Let p rt

e the resource availability of cumulative resource r ∈ R c at time

of a solution. Then, the objective value used within the heuris-

ic algorithm is the makespan (which we want to minimize) plus

 penalty of M · ∑

r∈ R n
∑

t∈ T − min (0 , p rt) . Here, M is a sufficiently

arge number such that a larger resource deficit always results in a

arger objective value.

.2.2. Differential evolution

The core of the HDE algorithm is the differential evolution al-

orithm. Like many population-based algorithms, this method ex-

lores the search space by iteratively creating offspring solutions

rom the current population. Let γ be the size of the population A .

hen, based on various implementations in literature (Ali, Elsayed,

ay, & Sarker, 2016; Wu, Wang, & Zhou, 2014), we initialize A as

he set of γ 2 × | N| matrices containing random values between 0

nd 1.

After the initialization phase, the iterative improvement phase

tarts, which is part of a standard DE algorithm. It consists of mul-

iple generations . In each generation, the algorithm iterates over the

hole population. For each matrix A ∈ A , define A as the base ma-

rix . Secondly, we create a mutation matrix B . For this, we randomly

elect 3 matrices B 1 , B 2 , B 3 from A such that A , B 1 , B 2 and B 3 are

ll different. Then, we create the mutation matrix as

 = B

1 + w

(
B

2 − B

3
)
, (4)

here w is the algorithm parameter called weight factor . Subse-

uently, the mutation matrix B is combined with the base matrix

 to create a trial matrix T . For this, we define the crossover prob-

bility vector c = [c 1 , c 2] with values between 0 and 1 (both w and

 are set by parameter tuning, as is described later). Then, each

ntry T i j in the trial matrix gets the mutation value B i j with prob-

bility c i , and the base value A i j otherwise. Furthermore, for both

ows in T , one entry is picked randomly to be replaced by the cor-

esponding entry in the mutation matrix. This ensures that always

t least one entry is replaced.

This process creates a new priority matrix, the trial matrix T . If

he objective value of this solution is lower than or equal to the

bjective value of the base matrix A , the base matrix is replaced

y the trial matrix. This process repeats itself, until no improve-

ent of the best solution has been found for ω generations. Then,

he best-found solution is returned. Note that although the initial

olution matrices contain only values between 0 and 1, there is no

estriction on the range of B and thus on solutions further in the

terative process. The complete algorithm is shown in Algorithm 3 .

.2.3. Combine differential evolution with forward backward

mprovement

Finally, the DE algorithm is combined with a forward backward

mprovement (Valls, Ballestín, & Quintanilla, 2008). The complete

rocess in shown in Fig. 3 . After the DE algorithm terminates, each

olution is subjected to the forward-backward improvement. If this

mproves the best-found solution, the DE algorithm restarts. If it

oes not find a new best solution, the algorithm terminates.

.2.4. Example

We now show a small example to illustrate the solution presen-

ation. For this, we consider an instance with a single renewable

esource r with λr = 1 and where each non-dummy activity

 ∈ N\{ 1 , 7 } has a duration of d i = 1 and a resource requirement

 ri = 1 . Furthermore, the selection and scheduling graphs are

hown in Fig. 4 . Here, the groups are displayed as the numbers

utside of the activity nodes. Based on the selection graph, the

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Algorithm 3 Differential evolution.

1: A ← set of γ random matrices of size 2 × | N|
2: A

∗ ← arg min A ∈A (objective A)

3: θ ← 0

4: while θ < ω do

5: for A ∈ A do

6: B 1 , B 2 , B 3 ← Pick randomly without replacement from

A\ { A }
7: B ← B 1 + w (B 2 − B 3)

8: f = [random from { 1 , · · · , N} , random from { 1 , · · · , N}]
9: T i j ←

{

B i j with probability c i or if j = f i

A i j otherwise

10: if objective T ≤ objective A then

11: Replace A ∈ A by T

12: if objective T < objective A

∗ then

13: A

∗ ← T

14: θ ← −1

15: end if

16: end if

17: θ ← θ + 1

18: end for

19: end while

20: return A

∗

Fig. 3. Hybrid Differential Evolution algorithm.

g

b

c

N

n

l

A

a

p

a

e

2

g

a

t

a

e

t

h

t

t

e

t

−

4

P

(

g

A

(

s

s

s

a

c

t

e

p

p

s

o

s

p

k

w

r

p

s

i

s

b

a

t

p

roup graph can be created, which is also shown in Fig. 4 . It can

e seen that the group graph is acyclic, and by following the pro-

edure in Lemma 3 we obtain group ordering [i, ii , iii , iv , v , vi , vii] .

ote that this group ordering is constant for an instance and is

ot modified during the execution of the heuristic algorithm. We

et priority matrix A be

 =

[
0 . 8 0 . 4 0 . 9 0 . 5 0 . 4 0 . 3 0 . 4

0 . 4 0 . 6 0 . 2 0 . 8 1 . 1 1 . 6 0 . 4

]
(5)

nd show how to obtain a schedule.

We first consider the selection problem. This problem uses the

riorities given in the top row of A . Let N

e be the set of executed

ctivities and start by selecting the root node: N

e = { 1 } . Now, we
Fig. 4. Precedence, selection and grou

98
valuate the first group in the group ordering: g = i . Since activity

 is the only successor, it will be selected: N

e = { 1 , 2 } . Similarly,

roup g = ii selects activity 3.

Now, group g = iii is evaluated. The two candidate activities are

ctivity 4 and 5. Since A 14 > A 15 , we select activity 4 and add ac-

ivity 5 to the list of forbidden activities. This gives N

e = { 1 , 2 , 3 , 4 }
nd N

f = { 5 } . The next group, g = iv , also has 2 successors. How-

ver, since activity 5 is forbidden, only activity 6 remains and has

o be selected. Subsequently, the remaining selection groups only

ave one successor. Thus, this results in N

e = { 1 , 2 , 3 , 4 , 6 , 7 } .
Next, we schedule the set of executed activities N

e , starting at

he starting activity by putting t 1 = 0 . Let t be the vector of starting

imes. Based on the precedence constraints, we can now schedule

ither activity 2 or 3. Since A 22 > A 23 , we schedule activity 2 at

 2 = 0 . Proceeding, we obtain t = [0 , 0 , 2 , 1 , −1 , 3 , 5] , where we use

1 to indicate a non-executed activity.

.3. Ant colony optimization algorithm

Since optimal solutions for general instances of the RCPSP-

S/CPR are unknown, we also present an Ant Colony Optimization

ACO) algorithm for comparison purposes. The choice for this al-

orithm is made based on the following two points: Firstly, the

CO algorithm was successfully implemented for the classic RCPSP

 Merkle, Middendorf, & Schmeck, 2002). Secondly, due to con-

umption and production of resources, not every schedule is fea-

ible to the RCPSP-PS/CPR. The ACO algorithm allows for problem

pecific heuristic rules to find feasible solutions.

We now give a general description and pseudo code of the ACO

lgorithm for the RCPSP-PS/CPR. Since this algorithm is only for

omparison purposes on general instances that cannot be solved

o optimality, the details are given in Appendix C .

The ACO algorithm has a population of ants. At each iteration,

very ant creates a new solution and modifies a common set of

heromone trails based on the quality of the found solution. The

heromone trail then influences other ants while they create new

olutions in future iterations. We keep track of three different kind

f pheromones: selection , scheduling and cumulative selection . The

election and scheduling problems are solved by their respective

heromone trails and the cumulative selection pheromone trail

eeps track of how often a certain activity was selected.

We give a brief overview of the algorithm in Algorithm 4 . Here,

e use the population parameter γ and the iteration threshold pa-

ameter ω. Furthermore, we define p as the vector containing all

heromone trails and store the activity starting times of the best

chedule found under t ∗.

At each iteration, each ant creates a new set of executed activ-

ties N

e and schedules these activities to create a schedule, repre-

ented by the starting times t . If this schedule t is better than the

est schedule represented by t ∗, it is stored as new best solution

nd the iteration threshold counter θ is reset.

After all ants create their solution, the new pheromone con-

ribution p

′ is calculated based on the solutions found. The new

heromone trails are then determined by a convex combination of
p graph of an example instance.

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Algorithm 4 Ant Colony Optimization.

1: p ← 1

2: t ∗ ← ∞

3: θ ← 0

4: while θ < ω do

5: for i ∈ [1 , · · · , γ] do

6: N

e ← Executed activities

7: t ← Schedule executed activities N

e

8: if t | N| < t ∗| N| then

9: t ∗ ← t

10: θ ← −1

11: end if

12: end for

13: p

′ ← new pheromone contribution

14: p ← p (1 − ρ) + p

′ · ρ
15: θ ← θ + 1

16: end while

17: return t ∗

t

o

b

o

n

t

5

a

o

s

I

H

F

ρ

a

A

c

a

i

i

T

o

e

p

F

v

T

t

s

T

s

s

t

k

i

t

e

f

i

l

a

o

t

a

s

s

s

(

V

a

u

t

t

s

i

s

a

c

d

t

B

w

r

w

o

r

5

t

c

t

s

r

t

p

s

c

H

j

a

c

i

i

H

t

S

r

r

he old pheromone trails and the new contribution, where evap-

ration parameter ρ determines the influence of the new contri-

ution. Finally, the iteration treshold counter θ is incremented by

ne. If there has been an improvement in the last ω iterations, a

ew iteration starts. Otherwise, the algorithm terminates and re-

urns the best schedule found represented by t ∗.

. Computational results

In this section, we present the computational results to evalu-

te the HDE algorithm. This is done by running a series of tests

n instances, both from the literature and newly generated in-

tances. All tests were performed on a single core of a 3.0 GHz

ntel XEON CPU with 4 GB RAM. The parameters used for the

DE algorithm are γ = 300 , ω = 275 , c = [0 . 15 , 0 . 25] and w = 0 . 1 .

or the ACO algorithm, the parameters are γ = 300 , ω = 75 , q = 1 ,

= 0 . 35 , α = 0 . 18 , β = 0 . 6 , μ = 5 and η = 0 . 2 . These parameters

re the result of a parameter tuning process, which is presented in

ppendix D .

Servranckx & Vanhoucke (2019) present both an algorithm to

reate instances for the RCPSP-AS (without cumulative resources)

nd a tabu search algorithm for solving these. They model the flex-

ble project structure as networks with multiple stages . Each stage

s represented by an activity, and possibly one or more alternatives .

hen, the activities and alternatives across stages are linked to each

ther to create branches of activities that represent an option to

xecute a part of the project. The algorithm to create instances de-

ends on several parameters, as listed below:

• Linked parameter : This parameter ([0,1]) indicates the degree

to which different branches are connected to each other.
• Nested parameter : This parameter ([0,1]) indicates the de-

gree to which different branches split up further into sub-

branches.
• Flexibility parameter : This parameter ([0,1]) indicates the de-

gree of alternatives.

For an exact description, see Servranckx & Vanhoucke (2019) .

rom the authors of this paper, a set of instances and objective

alues was obtained. This was used to build three sets of instances.

he first one, named Servranckx & Vanhoucke (2019) , simply con-

ains all instances received from the authors, except for 25 in-

tances that are removed for use in the parameter tuning process.

hese therefore do not contain cumulative resources.

For further evaluation, two smaller, more uniformly distributed

ubsets are taken from the Servranckx & Vanhoucke (2019) in-

tance set. These sets are named Optimal and Non-optimal and con-
99
ain instances for which the optimal solutions are known and un-

nown, respectively. The optimal solutions were obtained accord-

ng to the methods presented in Van der Beek et al. (2022) .

These smaller instance sets are created by taking a subset of

he set Servranckx & Vanhoucke (2019) , such that they have an

qual number of instances for all possible combinations of values

or the properties linked , nested and flexibility . Furthermore, a new

nstance was created for each selected instance by adding cumu-

ative resources, as described in Van der Beek (2021) . Since there

re more instances without the optimal solution known, the Non-

ptimal instance set contains more instances (20 0 0) than the Op-

imal instance set (900). Furthermore, the number of activities of

ll instances is between 102 and 702, the number of renewable re-

ources is 5 and the number of cumulative resources is 2. The in-

tance sets are summarized in Table 3 and the complete instance

ets with all results are published in Van der Beek (2021) .

Thus, we have three instance sets: Servranckx & Vanhoucke

2019) , Optimal , and Non-optimal . The instance set Servranckx &

anhoucke (2019) is used to compare the HDE algorithm with the

lgorithm from that paper. Furthermore, the instance set Optimal is

sed to evaluate the performance of the HDE and the ACO against

he optimal solutions. Finally, the instance set Non-optimal is used

o evaluate the performance of the HDE algorithm on larger in-

tances, for which no optimal solutions are known. Since solutions

n Servranckx & Vanhoucke (2019) are only available for half of this

et (without cumulative resources), we compare the HDE algorithm

gainst the ACO algorithm to evaluate the HDE algorithm on the

omplete instance set.

To compare the performance on multiple instances, we intro-

uce the Bound Optimality Gap (BOG), which is a lower bound on

he optimality gap of the respective solution:

OG (ob j) =

ob j − ob j ∗

ob j ∗
· 100% , (6)

here ob j is the objective value obtained by the considered algo-

ithm and ob j ∗ is the best known objective value for the instance

ithin the considered instance set. Since an instance can be part

f multiple instance sets, we only consider the solutions within the

espective instance set.

.1. Instance set: Servranckx & Vanhoucke (2019)

First, we evaluate the instance set that was directly obtained by

he authors of Servranckx & Vanhoucke (2019) . This instance set

ontains 3207 instances without cumulative resources along with

he objective values from their Tabu Search (TS) algorithm. In this

ection, we compare the results from the TS algorithm to the algo-

ithms presented in that paper.

For the results in Servranckx & Vanhoucke (2019) , only objec-

ive values of a single run are available. Therefore, for a fair com-

arison, each algorithm is run once per instance. In Table 4 is

hown how each algorithm performs against the TS algorithm. It

an be seen here that in more than half of the cases, the ACO and

DE algorithms tie with the TS algorithm.

We obtain Fig. 5 by omitting all ties and plotting the relative ob-

ective ob j r = ob j / ob j T S , where ob j is the objective of the ACO/HDE

lgorithm and ob j T S is the objective of the TS algorithm. Here, it

an be seen that the boxes of the boxplot are completely below 1,

ndicating that both ACO and HDE perform better on most non-tied

nstances. Furthermore, the average relative objective of ACO and

DE is shown to be at 0.982 and 0.976, respectively. This shows

hat the HDE algorithm performs better than the algorithm from

ervranckx & Vanhoucke (2019) , and it suggests that the ACO is a

easonable algorithm for comparison purposes.

Secondly, we compare the BOG for the HDE and the algo-

ithm from Servranckx & Vanhoucke (2019) over the nested param-

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Table 3

Instance sets.

Name # of instances Cum. resources Optim. solutions

Servranckx & Vanhoucke (2019) 3207 No Mixed

Optimal 900 in 450 instances Known

Non-optimal 2000 in 1000 instances Unknown

Table 4

Comparison of ACO and HDE algorithms against the TS algorithm from Servranckx

& Vanhoucke (2019) .

Method ACO HDE

Better 1197 1335

Tied 1813 1858

Worse 197 14

Fig. 5. Comparison of relative makespan ob j r =

ob j
ob j T S of ACO and HDE algorithms,

omitting all ties.

e

m

i

a

B

t

b

V

S

t

5

s

s

S

a

(

d

i

c

r

Table 5

Number of runs (out of 4500 per category) resulting in the optimal value and num-

ber of instances (out of 450 per category) resulting in at least one optimal solution.

Method ACO HDE

Cumulative resources No Yes No Yes

Optimal runs 3883 3996 4376 4428

Optimal instances 421 432 444 446

t

l

i

s

v

t

e

o

b

n

i

T

f

t

a

g

f

i

c

b

t

f

i

H

t

f

t

F

p

5

c

ter. This parameter was chosen since it was found to have the

ost significant correlation with the performance. This is shown

n Fig. 6 . Here, for the HDE algorithm the outliers of the BOG show

 performance-wise decreasing trend for the HDE algoritm of the

OG with the nested parameter value. However, both the boxes and

he outliers show that the performance of the HDE algorithm is

etter than the performance of the algorithm from Servranckx &

anhoucke (2019) , even for the maximum nested parameter value.

ince less clear trends were found for the other instance parame-

ers, linked and f lexibility , these results are placed in Appendix E .

.2. Instance set: Optimal

The next set of instances is called Optimal and contains in-

tances for which the optimal solution is known. To create this

et, a new instance was created for each instance in the set

ervranckx & Vanhoucke (2019) by adding cumulative resources

ccording to Van der Beek (2021) . Subsequently, up to 5 instances

depending on how many optimal solutions are known) were ran-

omly selected for each combination of parameters (linked , flexibil-

ty , nested). This resulted in a set of 900 instances of which half

ontains both types of resources and the other half contains only

enewable resources.
100
For this instance set, both algorithms are run 10 times. Thus,

his resulted in 4500 runs per category (with and without cumu-

ative resources). In Table 5 , it is shown how many runs resulted

n optimality and how many instances have at least one optimal

olution in ten runs. It can be seen that in most runs, the optimal

alue was reached for both methods. Furthermore, it can be seen

hat the HDE obtains the optimal value at least once for nearly ev-

ry instance. When comparing between instances with and with-

ut cumulative resources, it is shown that both methods perform

etter for instances with cumulative resources. A possible expla-

ation is that the parameter tuning process contained challenging

nstances on the aspect of resource feasibility.

Next, we evaluate the optimality gaps for the HDE algorithm.

he optimality gap is defined as ob j−ob j ∗
ob j ∗ · 100% , where ob j is the

ound objective value and ob j ∗ the optimal objective value. The op-

imality gap indicates the difference between the found objective

nd the optimal objective. Since the HDE algorithm is the main al-

orithm of this paper, we further evaluate these optimality gaps

or this algorithm only. This is shown in Fig. I , where the optimal-

ty gaps are shown for different linked parameter values. Here, it

an be seen that in general the optimality gap is quite low (mostly

elow 2%). Additionally, an increasing trend can be seen of the op-

imality gap against the linked parameter. This indicates, especially

or the highest value, that the HDE algorithm has more difficulty

n finding the optimal solution as the linked parameter increases.

owever, since all boxes are reduced to lines of value zero, this

rend is only present in the outliers. Since less clear trends were

ound for the other instance parameters, nested and f l exibil ity ,

hese results are placed in Appendix E .

ig. I. Boxplots of optimality gaps for the HDE algorithm against the linked

arameter.

.3. Instance set: Non-optimal

Finally, we consider the instance set Non-optimal . This set is

reated similarly to the instance set Optimal , however, it contains

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. 6. BOG of HDE and algorithm from Servranckx & Vanhoucke (2019) against the nested parameter.

Table 6

For how many instances each algorithm performs better than the other, evaluated

on best out of 10 runs and on average of 10 runs.

Best Average

ACO 1 6

HDE 147 758

Tie 1852 1236

Table 7

Average values of BOGs, categorized on instances with and without cumulative re-

sources.

Algorithm: Cumulative resources:

No Yes

ACO 0.275% 0.641%

HDE 0.031% 0.015%

1

c

r

r

s

a

1

t

s

r

m

r

g

s

w

r

b

o

1

h

t

T

c

t

l

t

f

T

Fig. 7. Mean, 2.5 and 97.5 percentile for BOGs against the resource type for both

algorithms.

Fig. 8. Mean, 2.5 and 97.5 percentile for BOGs against the activities per instance

for both algorithms. Instances are grouped into bins. Each bin has a range of 100

activities.

b

t

t

n

u

(

r

o

S

f

t

t

s

g

0 instances per combination of parameter values and only in-

ludes instances for which the optimal value is not known. This

esults in a set of 20 0 0 instances, of which half contain cumulative

esources. Since we only have literature results for a part of the in-

tance set and no optimal solutions, the ACO is used as a baseline

lgorithm for comparison. For each instance, each algorithm is run

0 times.

For cumulative resources, not every activity list can be mapped

o a feasible solution. Therefore, it is possible to obtain infeasible

olutions from the algorithms. To mitigate this, both algorithms

estart if they converge to an infeasible solution, with a maxi-

um of 9 restarts per run. The HDE algorithm did not require any

estarts, since each run directly resulted in feasibility. The ACO al-

orithm required 21 restarts, spread out over 17 runs and 8 in-

tances. The maximum number of restarts required for any run

as equal to 2.

Furthermore, we compare the found objective values per algo-

ithm. In Table 6 , it is shown per algorithm how many times the

est value of all 10 runs is lower than the other algorithm and how

ften they are tied. Similarly, it compares the average values of all

0 runs and shows how often this value is lower for HDE, ACO and

ow often it is tied. It can be seen that HDE performs clearly better

han ACO, although the majority of instances result in a tie.

We also evaluate the BOGs. The average values are shown in

able 7 and the average values with spread are shown in Fig. 7 ,

ategorized by the presence of cumulative resources. It can be seen

hat ACO performs significantly worse for instances with cumu-

ative resources. Note that comparison on the BOGs show rela-

ive performance against other runs for the same instance. There-

ore, they might contradict the absolute performance, indicated in

able 5 . Furthermore, we evaluate the BOG compared to the num-
101
er of activities, as shown in Fig. 8 . It shows, not surprisingly, that

he difficulty of solving instances increases with the number of ac-

ivities. Additionally, it can be seen that for each bin of activity

umbers, HDE outperforms ACO on both spread and average value.

To evaluate the effects of cumulative resource availability, we

se the concept of resource strength from Neumann & Schwindt

2003) . There, a value of zero indicates that resource profiles of

esource-feasible schedules are constant over time and a value

f one indicates that the earliest start schedule (see Neumann &

chwindt, 2003) is feasible. However, this definition does not hold

or the RCPSP-PS/CPR, since not all activities are executed. Never-

heless, the resource strength can still be used as an indication of

he level of cumulative resource availability. In Fig. 9 , the BOGs are

hown against the values of the resource strength. In the ACO al-

orithm, a decreasing trend can be seen, indicating better perfor-

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. 9. Mean, 2.5 and 97.5 percentile for BOGs against the resource strength. Re-

source strength values are grouped into bins. Each bin has a range of 0.2.

Fig. 10. Durations against the activities per instance for both algorithms. Instances

are grouped into bins. Each bin has a range of 100 activities.

m

h

t

c

s

o

b

a

f

6

t

t

l

fi

p

a

s

p

u

i

i

(

s

i

F

r

w

r

c

g

m

t

m

m

T

i

f

i

m

t

n

s

i

p

o

A

p

c

a

w

c

A

ance for instances with a larger resource strength. For the HDE,

owever, no clear trend can be seen.

Finally, the computing times are shown in Fig. 10 . As expected,

he computing times increase with the number of activities. It also

an be seen that the computing times of the HDE algorithm are

ignificantly longer, even though the parameter tuning processes

f both algorithms had the same computing time penalty. A possi-

le explanation for this is the high value of ω = 275 for the HDE

lgorithm, which defines that after each improvement in objective

unction value, at least 275 iterations are executed.

. Conclusion

In this paper, a model is given for the RCPSP-PS/CPR by taking

he model from Van der Beek et al. (2022) and adding cumula-

ive resources. Finding a selection of activities that satisfies the se-

ection constraints of the RCPSP-PS/CPR is NP-hard, so in order to

nd feasible selections quickly in metaheuristics, we restricted the

roblem. This is done by introducing the concept of group graphs

nd feasible group orderings.

We showed that if the group graph is acyclic, there exists a fea-

ible group ordering that can be found according to the method

resented in this paper. This feasible group ordering can then be

sed to create feasible selections in polynomial time. This method

s used in a HDE algorithm for the RCPSP-PS/CPR. While evaluat-

ng this algorithm against solutions from Servranckx & Vanhoucke

2019) , it is shown that the HDE algorithm generally creates better

olutions. Furthermore, by comparing against optimal solutions, it

s shown that in most cases the HDE finds an optimal solution.

or instances where no optimal solution is known, the HDE algo-

ithm was compared against a baseline ACO algorithm. Although

e showed that this algorithm also performs better than the algo-
102
ithm from Servranckx & Vanhoucke (2019) on instances without

umulative resources, the HDE algorithm outperforms the ACO al-

orithm on nearly all metrics.

For future research, we recommend testing the developed

ethods on real-world instances. This will quantify the value of

hese algorithms in terms of reduced makespan and costs. Further-

ore, from a computational point of view, a decrease in perfor-

ance can be seen with increasing value of the nested parameter.

herefore, additional research can be performed on methods for

nstances with large values for this parameter. A possible direction

or performance improvement can be experimenting with various

nitialization methods for the DE population. Finally, the presented

ethods only work on instances with an acyclic group graph. Al-

hough this seems usable for many practical cases and we have

ot encountered any cases without this property, there might be

ome real-world exceptions where this is not the case. Therefore,

t would be interesting to see if feasible group orderings can be

roduced for a more general case, or to find alternative methods

f solving the selection problem.

cknowledgments

The authors would like to thank all partners of the NAVAIS

roject for assistance during this research. The project has re-

eived funding from the European Union’s Horizon 2020 research

nd innovation programme (Contract No.: 769419). Furthermore,

e would like to thank the anonymous referees for their useful

omments which helped to improve the paper.

ppendix A. Notation

Variables

X it 1 if activity i ∈ N is executed at time t ∈ T , zero otherwise.

Sets

G Selection groups.

N Activities.

P j Predecessors of activity j ∈ N in the precedence graph.

R Resources.

R r Renewable resources.

R c Cumulative resources.

S g Successor activities of selection group g ∈ G .
T Time periods.

P Time-based predecessor-successor pairs.

Parameters

a g Activating activity of selection group g ∈ G .
d i Duration of activity i ∈ N.

k ri Net resource production of resource r ∈ R for activity i ∈ N.

k +
ri

Production of resource r ∈ R for activity i ∈ N.

k −
ri

Consumption of resource r ∈ R for activity i ∈ N.

M Sufficiently large number.

q Parameter for ACO algorithm setting the number of

considered solutions.

w Weight factor HDE algorithm.

α ACO parameter indicating influence of selection pheromone

values.

β ACO parameter indicating influence of scheduling pheromone

values.

γ Population size in ACO and HDE algorithms.

η ACO parameter indication probability of adding heuristic

contribution.

λr Capacity of resource r ∈ R .
μ Resource tightness.

ρ Evaporation coefficient for ACO algorithm.

ω Threshold parameter for ACO and HDE algorithms.

Vectors

c Crossover probability for HDE algorithm.

p Pheromone trails.

p cs Cumulative selection pheromone trail.

p sc Scheduling pheromone trail.

(continued on next page)

http://dx.doi.org/10.13039/501100007601

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

A

c

L

g

T

P

n

w

t

s

{

s

a

E

o

L

c

d

t

P

r

n

[

e

g

c

w

f

t

a

T

F

w

o

w

i

1

u

l

Fig. B.1. A breadth-first ordering J on a connected component in the group graph.

This illustrates that for each group j a ∈ J, there can be only one group j c ∈ J with

c < a .

t

r

w

F

t

i

g

T

S

i

S

s

s

t

f

i

a

t

c

S

i

L

o

P

i

u

r

c

d

N

c

i

i

t

d

g

b

p se Selection pheromone trail.

Functions

er f (x) Gauss error function.

HC(N s , N c , i) Heuristic contribution when selecting activity i from

candidates N c ⊆ N, given the selection of activities N s ⊆ N.

NM(ob j) Normalized makespan.

PR sc (N s , N c , i) Scheduling probability in ACO for activity i from candidates

N c , given that activities N s are already scheduled.

PR se (N c g , i) Selection probability in ACO for activity i from candidates N c g

from group g ∈ G .
RS r (N c , i) Resource supply of resource r ∈ R of activity i from

candidates N c ⊆ N.

RT r (N s) Resource tightness of scheduled activities N s ⊆ N for

cumulative resource r ∈ R c .
SC(N c , i) Scheduling score when scheduling activity i from candidates

N c ⊆ N.

ppendix B. Group orderings

This sections provides the intermediate proofs of Section 4.1 to

reate Theorem 1 . We first introduce the following Lemma:

emma 1. If an instance of the selection problem has an acyclic

roup graph, every group g ∈ G with | S g | = 1 satisfies Property 2 in

heorem 1 for any (partial) group ordering.

roof. Let S g = { i } . Then, since the group graph is acyclic, there is

o group h ∈ G with i ∈ S h and | S h | > 1 . Otherwise, the group graph

ould contain an undirected edge between node g and node h due

o successor overlap and a directed edge from g to h due to strict

uccessor containment, which would result in a cycle.

Thus, if there is a group h ∈ G with i ∈ S h , it follows that S h =
 i } = S g . In this case, group h is not included in the right-hand

ide of Eq. (3) . Since there does not exist a group h ∈ G with i ∈ S h
nd S h = S g , the right-hand side will never include activity i and

q. (3) will never hold for j a = g. �

Subsequently, we show how to construct partial feasible group

rderings in Lemma 2 .

emma 2. Consider a group graph H that is acyclic. Then, for each

onnected component of undirected edges, a breadth-first search or-

ering starting in any node satisfies both properties in Theorem 1 and

hus is a partial feasible group ordering.

roof. By assumption, there are no cycles in H. Therefore, all undi-

ected edges form a forest. Now, consider a connected compo-

ent G

′ (which is a tree) of size n with breadth-first ordering J =
 j 1 , · · · , j n] . As given in the lemma, G

′ only consists of undirected

dges. We will show that J fulfills both properties of Theorem 1 .

To prove Property 1, we show that there are no two selection

roups g ∈ G

′ and h ∈ G

′ , with g < h , such that a g ∈ S h . Assume, as a

ontradiction, that there are two selection groups g ∈ G

′ and h ∈ G

′ ,
ith g < h , such that a g ∈ S h . Then, there is a directed edge in H

rom h to g. Since h and g are both in the connected component G

′ ,
here is also a path by undirected edges from g to h . This results in

 cycle and contradicts the assumption of an acyclic group graph.

herefore, Property 1 from Theorem 1 is always satisfied.

We now prove Property 2. For this, we introduce

 J (a) =

⋃

i ∈{ 1 , ··· ,a −1 }| S j i = S j a
S j i , (B.1)

hich is the right-hand side of Eq. (3) and where j i is the i th entry

f (partial) group ordering J. Furthermore, we consider group j a ∈ J

here a is the index of group j a in J. Now, Property 2 is satisfied

f for each j a ∈ J it holds that S j a � F J (a) .

Due to Lemma 1 , we know that Property 2 is satisfied if | S j a | =
 , thus we only need to consider the case that | S j a | > 1 . Since

ndirected edges are created between groups with successor over-

ap if at least one group has more than one successor, we know
103
hat if two groups in G

′ have successor overlap, there is an undi-

ected edge between them.

Since J is ordered breadth-first, there is at most one group j c ∈ J

ith successor overlap and c < a . An example of this is shown in

ig. B.1 . We now consider two cases: The case that S j a = S j c and

he case that S j a = S j c .

Consider the first case: S j a = S j c . We know that S j c is contained

n F J (a) (S j c ⊆ F J (a)). Furthermore, besides group j c , no other

roup ordered before j a in J has successor overlap with group j a .

herefore, we get

 j a ∩ F J (a) = S j a ∩ S j c . (B.2)

For contradiction to Property 2, assume that S j a ⊆ F J (a) . Then,

t follows that S j a ∩ F J (a) = S j a . Combining with Eq. (B.2) gives

 j a = S j a ∩ S j c , from which it follows that S j a ⊆ S j c . Since, by as-

umption, S j a = S j c , we get S j a � S j c . However, due to strict succes-

or containment, this means that there is a directed edge from j a
o j c . This edge forms a cycle with the undirected edge, and there-

ore contradicts the assumption of an acyclic group graph. Thus,

n the case of S j a = S j c , the assumption S j a ⊆ F J (a) cannot be true,

nd therefore, S j a ⊆ F J (a) . Thus, Property 2 holds.

In the other case, when S j a = S j c , group j c is not considered in

he union operator of F J (a) and no other group in F J (a) has suc-

essor overlap with S j a . Therefore, we get S j a ∩ F J (a) = ∅ , and thus,

 j a ⊆ F J (a) . This means that Property 2 is satisfied for all cases. �

Subsequently, we can combine all partial feasible group order-

ngs. This is stated in Lemma 3 .

emma 3. If a group graph H is acyclic, there is a feasible group

rdering.

roof. We can construct a feasible group ordering J by combin-

ng all partial group orderings from the connected components of

ndirected edges in Lemma 2 by topological sort ; if there is a di-

ected path from connected component of undirected edges G

′ to

onnected component of undirected edges H

′ , the partial group or-

ering of H

′ has to appear after the partial group ordering of G

′ .
ote that we define nodes without undirected edges as connected

omponents of size 1. By assumption of an acyclic group graph, it

s always possible to sort the partial group orderings topologically.

We now prove that J satisfies both properties of Theorem 1 by

nduction. Let C = [G

′
1
, · · · , G

′ |C|] be the topologically sorted collec-

ion of connected components and let J ′
i

be the partial group or-

ering of G

′
i
. Then, we denote J as the concatenation of all partial

roup orderings: J = (J ′
1
, · · · , J ′ |C|) .

As the base step for induction, Lemma 2 states that J ′ 1 satisfies

oth properties of Theorem 1 . For the induction step, we take the

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. B.2. Creating a feasible group ordering.

f

a

s

h

n

D

J

w

E

p

u

|

|

w

b

s

b

r

K

f

S

i

s

c

E

a

a

o

i

n

A

m

i

p

i

h

h

t

p

C

i

v

c

m

fi

f

s

t

t

t

c

u

p

d

p

H

t

i

s

i

T

a

l

(

T

t

p

t

t

p

I

t

p

s

F

i

c

easible partial group ordering J(n) = (J ′ 1 , · · · , J ′ n) with n < |C| and

ppend the partial group ordering J ′
n +1

to obtain J(n + 1) . We now

how that J(n + 1) satisfies the properties from Theorem 1 .

First, we show that for each combination of groups g ∈ J(n) and

 ∈ J ′
n +1

, Property 1 holds. Assume, for contradiction, that it does

ot hold, and thus, g is a successor of h (a g ∈ S h). Then, by Step 2 in

efinition 4 , there would also be a directed edge from component

′
n +1

to J(n) . This contradicts the topological sorting in combination

ith an acyclic group graph, and therefore, Property 1 is satisfied.

To prove Property 2, we consider group h ∈ J ′
n +1

and show that

q. (3) is never satisfied for h = j a . For this, we define K as the

receding part of the group ordering { j 1 , · · · , j a −1 } and split this

p into K 1 = { j 1 , · · · , j b } = J(n) and { j b+1 , · · · , j a −1 } = K 2 ⊂ J ′
n +1

.

First, we consider K 1 = J(n) . Since Property 2 is satisfied if

 S h | = 1 due to Lemma 1 , we only need to consider the case where

 S h | > 1 . For this case, we know that there is no group g ∈ J(n)

ith successor overlap between g and h . Otherwise, there would

e an undirected edge between g and h and they would be in the

ame connected component. This means that there is no overlap

etween all successors of J(n) and S h : (
⋃

g∈ J(n) | S g = S h S g) ∩ S h = ∅ .
Now, consider K 2 ⊂ J ′

n +1
. Property 2 holds by Lemma 2 , which

esults in S h �

⋃

g∈ K 2 | S g = S h S g . Combining this with the equation for

 1 gives S h �

⋃

g∈ K| S g = S h S g . This means that Property 2 is satisfied

or each h ∈ J n +1 .

In conclusion, if J(n) is a feasible group ordering, so is J(n + 1) .

ince J(1) is feasible, so is J = J(|C|) . �

An example of the process of obtaining a feasible group order-

ng can be seen in Fig. B.2 . First, the selection graph is given. Sub-

equently, in Step 2, the group graph is presented. The connected

omponents based on undirected edges are evaluated in Step 3.

ach connected component is ordered by breadth-first. In Step 4,

 final ordering is obtained, respecting both the topological sorting

nd the partial orderings of Step 3. It can be seen that this group

rdering satisfies both properties of Theorem 1 , and therefore, us-

ng Algorithm 1 always results in a feasible selection. With this, we

ow can state Theorem 1 .

ppendix C. Ant colony optimization algorithm

In this section, we give the full details of the Ant Colony Opti-

ization (ACO) algorithm. This algorithm has multiple ants creat-
104
ng new solutions at each iteration, and updating a common set of

heromone trails to influence how solutions are created in future

terations.

We first discuss the pheromone trails: what is the structure and

ow are they updated. Secondly, we explain the contribution of the

euristic rule. Subsequently, we explain how individual ants use

his information to create new solutions. Finally, we combine these

arts to give the full algorithm.

1. Pheromone trails

We keep track of three kind of pheromones: selection , schedul-

ng and cumulative selection . The selection pheromone p

se is a

ector containing an entry p se
i

for every activity i ∈ N and indi-

ates how often activities occur in high quality solutions. Further-

ore, the entries of the scheduling pheromone vector p

sc are de-

ned for every combination of activities, resulting in an entry p sc
i j

or every pair of activities i, j ∈ N. These pheromones are used to

chedule a selection. Finally, the vector p

cs contains the cumula-

ive selection pheromone values, indexed similarly to the selec-

ion pheromone vector: p cs
i

for every activity i ∈ N. The cumula-

ive selection pheromones are used to negate the effect of selection

hoices on the scheduling pheromone. Combing all pheromone val-

es gives the combined pheromone vector p .

At each iteration, after all ants created their solution, the

heromone trails are updated. This is done by the following up-

ate equation:

 := p (1 − ρ) + p

′ · ρ. (C.1)

ere, ρ is the evaporation coefficient (set between 0 and 1) and p

′
he new pheromone contribution. We can split up the entries of p

′
nto p

′ se , p

′ sc and p

′ cs , which are the pheromone contributions of

election, scheduling and cumulative selection, respectively.

Let A be the set of solutions found by all ants in the current

teration and let A

∗ be the best solution of all previous iterations.

hen, we take B as the best q solutions from A ∪ { A

∗} , where q is

n algorithm parameter. Thus, we have B = { B 1 , · · · , B q } . Each so-

ution B m

∈ B is then a priority matrix. Here, the top row contains

B m

) 1 i = 1 if activity i ∈ N is executed and (B m

) 1 i = 0 otherwise.

he bottom row contains a priority vector for all selected activi-

ies, as to be used in Algorithm 2 . Now, we calculate the selection

heromone contribution p

′ se . This is done by the following equa-

ion:

p ′ se
i =

q ∑

m =1

(B m

) 1 i
m

∀ i ∈ N. (C.2)

Thus, in Eq. (C.2) , the m th best solution gives a contribu-

ion of 1 /m to every activity that is executed. For the scheduling

heromone update, the following equation is used:

p ′ sc
i j =

q ∑

m =1

({
1 /m if (B m

) 2 i > (B m

) 2 j and i, j ∈ N

e

0 otherwise

)
∀ i, j ∈ N.

(C.3)

n this equation, the m th best solution gives a contribution of 1 /m

o every trail (i, j) , if i and j are both selected (i, j ∈ N

e) and i ap-

ears before j in the activity list. Finally, we update the cumulative

election pheromone as follows:

p ′ cs
i =

q ∑

m =1

(B m

) 1 i ∀ i ∈ N. (C.4)

or each node, a contribution of 1 is added if this node is executed

n the selected solution. Combining p

′ se , p

′ sc and p

′ cs gives p

′ that

an be used in Eq. (C.1) to calculate the new pheromone values.

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

C

n

e

i

i

i

N

a

n

k

c

o

p

a

u

i

i

p

g

l

R

T

o

t

t

o

G

2

a

λ
d

g

s

d

d

t

R

p

r

H

E

t

t

m

(

C

b

h

a

7

c

P

w

p

A

c

u

w

S

H

p

H

e

l

P

C

a

A

1

1

1

1

1

1

1

2

t

H

t

s

s

r

2. Heuristic rule

Pheromone trails are the most important part in order to create

ew solutions. However, these are not always sufficient in order to

nter the feasible region. Therefore, we implement a heuristic rule

n order to direct the algorithm to the feasible region.

As for HDE, the scheduling of a set of executed activities N

e

s done by Algorithm 2 . In each iteration of this algorithm, there

s a set of scheduled activities N

s and a set of candidate activities

c , where one candidate activity i ∈ N

c has to be selected to be

dded to the scheduled activities. Furthermore, we introduce the

et resource production of resource r ∈ R for activity i ∈ N as k ri =

+
ri

− k −
ri

.

A solution is infeasible when, at any time, there is a deficit of

umulative resources. Therefore, we use a heuristic rule consisting

f two parts: the Resource Tightness RT r (N

s) and the Resource Sup-

ly RS r (N

c , i) . The resource rightness RT r (N

s) estimates how close

 cumulative resource r ∈ R c is to depletion, based on the sched-

led activities N

s , and acts as an activation function; if a resource

s low, its corresponding resource tightness is high which results

n a higher priority of replenishing this resource. The resource sup-

ly RS r (N

c , i) represents the amount of cumulative resource r ∈ R c

enerated by candidate node i ∈ N

c , and thus, the preference of se-

ecting this activity.

The RT is then defined as follows:

T r (N

s) =

1

2

er f

(
2 − λr +

∑

j∈ N s k r j

μλr

)
∀ r ∈ R

c . (C.5)

he top side of the fraction in Eq. (C.5) represents the net amount

f resource r generated by all scheduled activities N

s plus the ini-

ial available amount of resource r. Thus, this is a measure for the

otal available amount of resource r divided by the initial amount

f resource r times the resource tightness parameter μ. Then, the

auss error function er f is used together with the constants 1
2 and

 to create Eq. (C.5) . This equation is close to zero when the avail-

ble amount of resource r is equal to or higher than μλr , where

r is the original resource availability. If the resource availability

ecreases, the RT increases, and thus, more priority is given to the

eneration of this resource.

Secondly, the resource supply RS r (N

c , i) represents the net re-

ource production, normalized to a [0,1] range. In order to prevent

ivision by zero, we define the Resource Supply to be 0 if all candi-

ate activities N

c have the same net resource generation. This gives

he following equation:

S r (N

c , i) =

{

k ri −min j∈ N c k r j

max j∈ N c k r j −min j∈ N c k r j
, if min j∈ N c k r j < max j∈ N c k r j

0 , otherwise.

(C.6)

Finally, we get the heuristic contribution by averaging over the

roduct of the resource tightness and the resource supply for each

esource:

C(N

s , N

c , i) =

1

| R

c |
∑

r∈ R c
RT r (N

s) · RS r (N

c , i) . (C.7)

ach term in the sum of Eq. (C.7) consists of the resource tightness

imes the resource supply. This means that the heuristic contribu-

ion for activity i ∈ N

c is increased the most, if it generates a cu-

ulative resource (high resource supply) that is near to depletion

high resource tightness).

3. Creating solutions

Each ant creates a new solution at each iteration. This is done

y combining the information from the pheromone trails with the
105
euristic contribution. First, the ant creates a selection of executed

ctivities N

e . This is done by executing Algorithm 1 . Here, at line

, the next activity i from selection group g ∈ G is selected from all

andidates N

c
g with probability P R se (N

c
g , i) :

 R

se (N

c
g , i) =

(p se
i
) α∑

j∈ N c g
(p se

j
) α

, (C.8)

here α is a parameter indicating the influence of higher

heromone trail values.

Subsequently, the executed activities are scheduled according to

lgorithm 2 . On line 5, candidate activity i ∈ N

c is selected from

andidates N

c ⊆ N, given that activities in set N

s are already sched-

led, with probability P R sc (N

s , N

c , i) . To calculate this probability,

e first calculate the Scheduling Score SC(N

c , i) :

C(N

c , i) =

(∑

j∈ N c \{ i } p sc
i j

| N

e |
)β

· 1

p cs
i

. (C.9)

ere, β is a parameter indicating the influence of higher

heromone trail values. We then add the heuristic contribution

C(N

s , N

c , i) with probability η, where η is an algorithm param-

ter, and normalize the scores to a 0–1 range. This gives the fol-

owing expression for the scheduling probabilities:

 R

sc (N

s , N

c , i) =

{

SC (N c ,i)+ HC (N s ,N c ,i) ∑

j∈ N c SC (N c , j)+ HC (N s ,N c , j)
with probability η

SC(N c ,i) ∑

j∈ N c SC(N c , j)
otherwise.

(C.10)

4. Full algorithm

Finally, we combine the above to present the ACO algorithm,

s given in Algorithm C.1 . For this algorithm, we use the popula-

lgorithm C.1 Ant Colony Optimization

1: p ← 1

2: t ∗ ← ∞

3: θ ← 0

4: while θ < ω do

5: for i ∈ [1 , · · · , γ] do

6: N

e ← Executed activities by Algorithm 1 and Equation 16

7: t ← Schedule by Algorithm 2 and Equation 18

8: if t | N| < t ∗| N| then

9: t ∗ ← t

0: θ ← −1

11: end if

2: end for

3: p

′ se ← by Equation 10

4: p

′ sc ← by Equation 11

5: p

′ cs ← by Equation 12

6: p

′ = [p

′ se , p

′ sc , p

′ cs]

17: p := p (1 − ρ) + p

′ · ρ
18: θ ← θ + 1

9: end while

0: return t ∗

ion parameter γ and the iteration threshold parameter ω from the

DE algorithm. The algorithm initializes by setting all pheromone

rail values to 1.

At each iteration, each ant creates a new schedule by first

electing activities according to Algorithm 1 and subsequently

cheduling these according to Algorithm 2 . If this new schedule

epresented by t is better than the best solution represented by t ∗,

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

t

t

u

A

s

a

s

r

a

l

t

c

m

t

s

e

r

[

ω

F

a

r

N

t

p

t

i

 is stored as best solution. After all ants have created a new solu-

ion, the pheromone values are updated. This process is repeated

ntil there has not been an improvement for ω iterations.

ppendix D. Parameter tuning

This section describes the parameter tuning process, which con-

ists of a local-search algorithm. This algorithm iteratively varies

 single parameter across a range of values. For each value, the

cheduling algorithm is executed on a set of 50 instances, half with

enewable resources and half without. The tuning algorithm selects

 parameter, varies this parameter, and selects the value with the

owest mean objective function value. Then, the same is done for

he next parameter. This is repeated until the parameters have not

hanged in a full iteration of all parameters, thus assuring a local

inimum.
Fig. D.1. Average makespan plus resource penalties for the

106
In order to equalize the running times, a maximum running

ime of 15 minutes is used. A penalty of 10 is added for every

econd above this. Furthermore, a penalty of 10 is added for ev-

ry unit of cumulative resource unavailability. For the HDE algo-

ithm, this resulted in parameters γ = 300 , ω = 275 , w = 0 . 1 , c =
0 . 15 , 0 . 25] . For the ACO algorithm, the parameters are γ = 300 ,

 = 75 , q = 1 , ρ = 0 . 35 , α = 0 . 18 , β = 0 . 6 , μ = 5 and η = 0 . 2 . In

igs. D.1 and D.2 , the average makespan plus resource penalties

nd the average computing times are shown for the HDE algo-

ithm. In Figs. D.3 and D.4 , this is shown for the ACO algorithm.

ote that for some parameters, the influence of the computing

ime prevents the lowest objective value (makespan plus resource

enalty) to be picked. For example, parameter q has its best objec-

ive value at q = 5 , but q = 1 is selected due to its shorter comput-

ng time.
 final iteration of the HDE parameter tuning process.

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. D.2. Average computing times for the final iteration of the HDE parameter tuning process.
107

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. D.3. Average makespan plus resource penalties for the final iteration of the ACO parameter tuning process.
108

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. D.4. Average computing times for the final iteration of the ACO parameter tuning process.

A
ppendix E. Additional computational results

Additional computational results are given in Figures E.1–E.4 .
109

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

Fig. E.1. BOG of HDE and Servranckx & Vanhoucke (2019) algorithm against the

linked parameter.

Fig. E.2. BOG of HDE and algorithm from Servranckx & Vanhoucke (2019) against

the flexibility parameter.

Fig. E.3. Boxplots of optimality gaps for the HDE algorithm against the nested pa-

rameter.

Fig. E.4. Boxplots of optimality gaps for the HDE algorithm against the flexibility

parameter.

R

A

B

B

B

B

C

C

F

H

K

K

K

L

M

N

P

P

Q

S

S

S

S

S

T

T

V

110
eferences

li, I. M., Elsayed, S. M., Ray, T., & Sarker, R. A. (2016). A differential evolution algo-

rithm for solving resource constrained project scheduling problems. In Lecture

notes in computer science (including subseries lecture notes in artificial intelligence
and lecture notes in bioinformatics): vol. 9592 (pp. 209–220) .

arták, R., Čepek, O., & Surynek, P. (2007). Modelling alternatives in temporal net-
works. In Proceedings of the 2007 IEEE symposium on computational intelligence

in scheduling, CI-Sched 2007 .
ellenguez, O., & Néron, E. (2005). Lower bounds for the multi-skill project schedul-

ing problem with hierarchical levels of skills. In Lecture notes in computer science

(including subseries lecture notes in artificial intelligence and lecture notes in bioin-
formatics), LNCS: Vol. 3616 (pp. 229–243) .

ezerra, P., & Scheer, S. (2021). A metaheuristic procedure combined with 4D simula-
tion as an alternative for the scheduling process of housing complexes : 98. Springer

International Publishing .
lazewicz, J., Lenstra, J., & Rinnooy Kan, A. (1983). Scheduling subject to resource

constraints: Classification and complexity. Discrete Applied Mathematics, 5 (1),
11–24 .

ˇapek, R., Šcha, P., & Hanzálek, Z. (2012). Production scheduling with alternative

process plans. European Journal of Operational Research, 217 (2), 300–311 .
arlier, J., Moukrim, A., & Xu, H. (2009). The project scheduling problem with pro-

duction and consumption of resources: A list-scheduling based algorithm. Dis-
crete Applied Mathematics, 157 (17), 3631–3642 .

afandjel, N., Rubeša, R., & Mrakov ̌cic, T. (2008). Procedure for measuring shipbuild-
ing process optimisation results after using modular outfitting concept. Stro-

jarstvo, 50 (3), 141–150 .

u, S., Zhang, Z., Wang, S., Kao, Y., & Ito, T. (2019). A project scheduling problem
with spatial resource constraints and a corresponding guided local search algo-

rithm. Journal of the Operational Research Society, 70 (8), 1349–1361 .
ellenbrink, C., & Helber, S. (2015). Scheduling resource-constrained projects with

a flexible project structure. European Journal of Operational Research, 246 (2),
379–391 .

oné, O., Artigues, C., Lopez, P., & Mongeau, M. (2013). Comparison of mixed inte-

ger linear programming models for the resource-constrained project scheduling
problem with consumption and production of resources. Flexible Services and

Manufacturing Journal, 25 (1-2), 25–47 .
uster, J., Jannach, D., & Friedrich, G. (2009). Extending the RCPSP for modeling and

solving disruption management problems. Applied Intelligence, 31 (3), 234–253 .
aborie, P. (2003). Algorithms for propagating resource constraints in AI plan-

ning and scheduling: Existing approaches and new results. Artificial Intelligence,

143 (2), 151–188 .
erkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for re-

source-constrained project scheduling. IEEE Transactions on Evolutionary Compu-
tation, 6 (4), 333–346 .

eumann, K., & Schwindt, C. (2003). Project scheduling with inventory constraints.
Mathematical Methods of Operations Research, 56 (3), 513–533 .

ellerin, R., Perrier, N., & Berthaut, F. (2019). A survey of hybrid metaheuristics for

the resource-constrained project scheduling problem. European Journal of Oper-
ational Research, 175 (2), 707–721 .

ritsker, A. A. B., Watters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling
with limited resources: A zero-one programming approach. Management Sci-

ence, 16 (1), 93–108 .
uoc, H. D., The, L. N., Doan, C. N., & Thanh, T. P. (2020). New effective differ-

ential evolution algorithm for the project scheduling problem. In 2020 2nd

International conference on computer communication and the internet (ICCCI)
(pp. 150–157). IEEE .

ahli, A., Carlier, J., & Moukrim, A. (2016). Comparison of mixed integer linear pro-
gramming models for the event scheduling problem with consumption and pro-

duction of resources. IFAC-PapersOnLine, 49 (12), 1044–1049 .
allam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2020). A two-stage multi-oper-

ator differential evolution algorithm for solving resource constrained project
scheduling problems. Future Generation Computer Systems, 108 , 432–4 4 4 .

ervranckx, T., & Vanhoucke, M. (2019). A tabu search procedure for the resource–

constrained project scheduling problem with alternative subgraphs. European
Journal of Operational Research, 273 (3), 841–860 .

hirzadeh Chaleshtarti, A., Shadrokh, S., Khakifirooz, M., Fathi, M., & Parda-
los, P. M. (2020). A hybrid genetic and lagrangian relaxation algorithm for re-

source-constrained project scheduling under nonrenewable resources. Applied
Soft Computing Journal, 94 , 106482 .

torn, R., & Price, K. (1997). Differential evolution - a simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization,
11 (4), 341–359 .

ao, S., & Dong, Z. S. (2017). Scheduling resource-constrained project problem with
alternative activity chains. Computers and Industrial Engineering, 114 , 288–296 .

September
ao, S., & Dong, Z. S. (2018). Multi-mode resource-constrained project scheduling

problem with alternative project structures. Computers and Industrial Engineer-

ing, 125 , 333–347 . (November 2017)
alls, V., Ballestín, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the re-

source-constrained project scheduling problem. European Journal of Operational
Research, 185 (2), 495–508 .

http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0015
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0017
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0021
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0022
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0026

T. van der Beek, D. Souravlias, J.T. van Essen et al. European Journal of Operational Research 313 (2024) 92–111

V

V

W

W

Z
an der Beek, T., Van Essen, J.T., Pruyn, J., & Aardal, K. (2022). Exact solution meth-
ods for the resource constrained project scheduling problem with a flexible

project structure. https://optimization-online.org/?p=18944 .
an der Beek, T. (2021). Instances, file format, generator script and results for the

resource constrained project scheduling problem with a flexible project struc-
ture and consumption and production of resources. doi: 10.4121/16764205 .

ang, J.-c., & Lui, W.-r. (2017). Forward-backward improvement for genetic al-
gorithm based optimization of resource constrained scheduling problem. In

DEStech transactions on computer science and engineering (pp. 349–356) .
111
u, L., Wang, Y., & Zhou, S. (2014). Improved differential evolution algorithm for
resource-constrained project scheduling problem. Journal of Systems Engineering

and Electronics, 21 (5), 798–805 .
aman, F., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2021). An evo-

lutionary approach for resource constrained project scheduling with uncertain
changes. Computers & Operations Research, 125 .

https://optimization-online.org/?p=18944
https://doi.org/10.4121/16764205
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0027
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00602-1/sbref0029

	Hybrid differential evolution algorithm for the resource constrained project scheduling problem with a flexible project structure and consumption and production of resources
	1 Introduction
	2 Literature review
	3 RCPSP-PS/CPR
	3.1 Problem description
	3.2 Problem formulation

	4 Solution method
	4.1 Group orderings
	4.2 Hybrid differential evolution algorithm
	4.2.1 Solution representation
	4.2.2 Differential evolution
	4.2.3 Combine differential evolution with forward backward improvement
	4.2.4 Example

	4.3 Ant colony optimization algorithm

	5 Computational results
	5.1 Instance set: Servranckx & Vanhoucke (2019)
	5.2 Instance set: Optimal
	5.3 Instance set: Non-optimal

	6 Conclusion
	Acknowledgments
	Appendix A Notation
	Appendix B Group orderings
	Appendix C Ant colony optimization algorithm
	C1 Pheromone trails
	C2 Heuristic rule
	C3 Creating solutions
	C4 Full algorithm

	Appendix D Parameter tuning
	Appendix E Additional computational results
	References

