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ABSTRACT

The world faces an increasing energy problem, forcing people to search for sustainable energy sources. Off-
shore wind energy has shown great potential to financially compete with traditional energy sources. Recent
developments like the slip-joint connection increase this potential. However, for further optimization of the
design of a slip-joint, the location of the contact areas between the two cones must be known. Previous at-
tempts to detect these contact areas based on techniques such as heat transfer or ultrasonic measurements
have proven insufficient. A possible new way of detecting contact areas, is through the behaviour of Energy
Flux. Energy Flux methods have shown great potential as a damping identification tool in other applications.
Therefore, in this study the relation between Energy Flux behaviour and the presence of a contact point in
the time-, frequency- and time-frequency-domain is studied. To this end, a numerical analysis of a vibrating
simply supported Euler Bernoulli beam is conducted, simulating a contact area with a point load. The anal-
ysis in the frequency-domain showed the most promising results. Presence of a contact point (i) introduces
peaks at twice the first and twice the second eigenfrequencies, and (ii) increases peak height at the location
of the contact point. The pressure of the simulated contact point increased these effects. In the time-domain
the presence of a contact point increased the amplitude of the cumulative energy flux. This change was most
significant at the antinode of the first eigenmode. The location of the contact point was of little influence on
this effect. These results show that the presence of a contact area influences the behaviour of the energy flux.
The results are encouraging for a later implementation of the energy flux method for the detection of contact
areas in a slip-joint. As a validation of these results, an experiment has been proposed. After execution of this
experiment, further research is needed in (i) the behaviour of Energy Flux in a conical shape, and (ii) Energy
Flux measurements of higher frequencies.
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1
INTRODUCTION

1.1. RESEARCH MOTIVATION
The global population is rapidly increasing, leading to a growth in energy demand. Nowadays, a serious en-
ergy crisis and environmental pollution have forced humankind to look for sustainable alternative sources
of energy. Wind and solar energy are the most available sources of renewable energy. Wind power is con-
sidered the most promising, because of its low complexity in installation and maintenance and the highest
production of overall energy (Yuryevich and Wong, 1999).

For these reasons, wind power has been the fastest growing form of renewable energy over the last years.
Renewable energy could contribute 80% of global energy supply by 2050, according to a report from the In-
tergovernmental Panel on Climate Change (IPCC) (Edenhofer et al., 2011) Wind energy will most likely play a
significant role in electricity supply in 2050. The development of offshore wind farms becomes increasingly
important, because land availability onshore is restricted (Sun et al., 2012). Figure 1.1 shows the annual on-
shore and offshore wind installations in Europe from the last ten years. The figure shows that offshore wind
energy becomes more and more popular.

Figure 1.1: Rapid growth in offshore wind farm installations in Europe. The offshore capacity is expected to grow further. Acquired from
Komušanac (2020).

A wind energy converter consists of a wind turbine installed on top of a support structure and foundation. The
support structures and foundations that are currently employed by industry are presented in Figure 1.2. The
monopile structure is the most popular foundation concept, because of its cheapness and constructability
(Yoon et al., 2014). The installation of a monopile consists of several steps. First of all, a monopile is driven
into the seabed. Then a transition piece is put on top of this, followed by the tower, and nacelle and rotor

1



2 1. INTRODUCTION

blades. By reducing both the number of steps, the installation time and weather sensitivity of each step,
significant cost savings could be achieved.

Figure 1.2: Typical foundation concepts and their market shares in commercial projects as of 2012. (a) Gravity-based foundation (16%),
(b) Monopile foundation (74%), (c) Caisson foundation (0%), (d) Multipile foundation (5%), (e) Multi caisson foundation (0%) and (f)
Jacket foundation (5%). Acquired from EWEA (European Wind Energy Association) (2013).

One of the steps that is being improved is the monopile-turbine interface. The most common connection
in European offshore wind farm foundations between the monopile and the transition piece is a concrete
(grout) connection (Figure 1.3 A). An ultra-high strength grout material is then used to fill in the gap between
a transition piece and the monopile. Although grouted connections have been proven successful, the indus-
try has started using bolted connections (Figure 1.3 B). This is a flanged connection, in which the two parts
are bolted together. Over the last years, Delft Offshore Turbine (DOT) further developed a new transition
piece for the monopile, known a the slip-joint (Figure 1.3 C ). The slip-joint is a mechanical, friction-based
connection that consists of two conical sections, one attached to the top of the foundation pile and the other
to the bottom of the transition piece. Such a slip-joint connection provides many advantages over a grouted
or flanged connection. A slip-joint enables higher loads, reduces maintenance costs and enables a rapid in-
stallation. However, for the slip-joint to be accurately designed and to have its performance guaranteed, it is
necessary to know the contact behaviour within the slip-joint.

Figure 1.3: Evolution of the monopile-turbine interface. The slip-joint connection, developed by DOT, offers multiple advantages over
the grouted and bolted connection. Acquired from (Kamphuis, 2016a)
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1.2. CURRENT METHODS AND LIMITATIONS
After the installation of a monopile using a slip-joint connection, it is currently unknown what the stress
distribution and contact area within the joint are. Because the behaviour of the contact areas is unknown, the
construction has to be over-dimensioned to fulfill safety requirements. Several techniques, like heat transfer
(Atkinson, 2018) and ultrasonic measurements (Kamphuis, 2016b), have been used to measure the slip-joint
contact area. However, these techniques did not work, or had major drawbacks.

Energy Flux (EF) could be a promising technique to detect contact areas between transition pieces and monopiles
on wind turbine foundations. Currently, the Energy Flux method has been successfully used in the identifi-
cation of damage in connections of high-rise buildings (Sanchez Gomez, 2019).

1.3. RESEARCH QUESTIONS
The analysis of Energy Flux may reveal information about the contact areas between a transition piece and the
monopile. The aim of this study is to develop a numerical and experimental methodology that uses Energy
Flux to detect contact areas in a simplified wind turbine, represented as a 1D steel beam. To strive for a better
understanding of Energy Flux in a vibrating beam, the following research question was formulated:

How can the Energy Flux method be used to detect contact areas in a vibrating steel beam?

To solve this research question, two sub-questions are presented that need to be answered in order to make
the main question more transparent.

1. What is the influence of a contact point on Energy Flux in the time-domain, frequency-domain and time-
frequency-domain?

Based on a numerical model developed in ANSYS, the influence of a contact point on Energy Flux will
be simulated. These results will be analyzed in three different domains (time, frequency and time-
frequency). Each domain may provide additional information of the effect of a simulated contact area
on Energy Flux.

2. How can the numerical results be validated in an experiment?

The outcome of the numerical study may reveal an in-depth understanding on the behaviour of Energy
Flux with and without contact areas. In order to use Energy Flux in industry, the Energy Flux should be
validated in experiments. A step-by-step experiment set-up will be developed in this study.

1.4. OUTLINE
Chapter 2 provides background information that is relevant for the understanding of the processes regarding
Energy Flux in a vibrating beam. The main topics in this chapter are theory on the slip-joint connection, the
meaning and simulation of a contact area and theory on Energy Flux. In Chapter 3 the methodology, and the
implementation of the numerical analysis are covered. The numerical model is described, and the approach
of the analysis is explained. The experimental part uses a similar approach and is further discussed in Chapter
4. The most important results regarding the numerical analysis of the Energy Flux and the experiment set-up
are presented in Chapter 5. Results of all other analyses can be found in Appendix A. Subsequently, the main
topics of discussion that concern implications on the presented results and points for improvement will be
discussed in Chapter 6. In conclusion, Chapter 7 will present brief answers to the research questions and
provide recommendations for further research.





2
BACKGROUND AND THEORY

2.1. SLIP-JOINT CONNECTION
A major challenge in offshore wind technology is transferring loads from the upper tower to the foundation
of the structure. The transition piece is a critical component, which is designed to resists bending moments,
shear stresses and axial loads coming from wave, wind and current loads (Lee et al., 2016). Traditionally, a
transition piece is executed using a grouted connection. This connection had been widely used in the oil and
gas industry and with satisfactory performance (Lotsberg, 2013, e.g). For this reason, the grouted connections
were thought to be sufficiently strong for offshore wind turbines. However, in 2009, it was observed that the
grouted connections at the offshore wind turbines of Egmond aan Zee were settling (Segeren et al., 2014).
Later on, also implications of several other wind farms indicate that the strength of the grouted connections
was inadequate (Tziavos et al., 2016). Lotsberg et al. (2012) showed that loads in offshore wind turbines are
significantly different than those in marine structures. Hence, a new solution for fitting a transition piece
onto an installed monopile was required to endure environmental forces.

To circumvent these problems, a slip-joint connection was proposed. This was firstly done by a company
called WindMaster. In the 1990s, they used this innovative connection in its onshore turbines. The company
went bankrupt in 1998 and the idea fell into desuetude (Segeren, 2017). A few years later, Van der Tempel
and Lutje Schipholt (2003) studied whether slip-joint connections could be used for offshore wind turbines.
The results of their study were very promising and showed a reduction of installation time and overall costs,
compared to traditional grouted connections. Even though the results of the study were very favourable,
slip-joints were not used in the industry yet (Segeren, 2017). The Dutch company Delft Offshore Turbine
(DOT) further studied the possibilities of using slip-joint connections for offshore wind turbines. In 2016
an onshore turbine was built within the DOT500 project. In 2018, the first offshore wind turbine using the
slip-joint connections were successfully installed off the coast of IJmuiden (Topsector Wind, 2018).

Figure 2.1: Conceptional drawing of a slip-joint connection. The bottom part is connected to the monopile and the upper part to the
transition piece. Acquired from Segeren (2017).

5
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The principle of the slip-joint connection basically consists of two cups that fit together, as illustrated in
Figure 2.1. The lowest cup is connected to the monopile and the upper cup to the transition piece. Frictional
forces between the contact surfaces result in stability and load transfer (Segeren, 2017).

According to Segeren (2017), the slip-joint connection presents a number of advantages compared to grouted
connections. The advantages are listed below:

1. Reduction of steel and grout;

2. The possibility of dividing the monopile foundation into two or more sections;

3. Faster installation of the transition piece;

4. Prevention of progressive settlement;

5. Decommissioning of the joint.

However, there also are some challenges that arise in the design, installation, and operational phase of the
connection. In this study, the focus is on the effective contact areas between the surfaces of the cones. Re-
duced contact areas, lead to higher stresses which will affect the lifetime. Currently, the location and sizes
of the contact areas are unknown. A minimal amount of contact areas is assumed and the slip-joint con-
nections are executed larger than is probably required. When the effective contact areas would be known,
material could be reduced. In this study, the Energy Flux method is used to analyse the cones’ contact areas.

2.2. CONTACT AREAS
The main goal of this study is to analyse the surface contact between the monopile and the transition piece.
The contact that is achieved between the two cones is achieved from the imperfections of the surfaces. These
imperfections are a result from manufacturing tolerances and the installation process (Segeren, 2017). Re-
duced contact areas lead to higher stress, which might result in a limiting lifetime. Therefore, it is important
to know the location of the contact areas.

A contact area consists of a force, distributed over a certain size area. This contact force is often decomposed
into an orthogonal and a normal component. The normal component being perpendicular to the surface area
and the orthogonal component being parallel to the surface area. To model a contact area in an experiment,
a weight could be used. This weight will distribute its own weight, over the area of contact. Numerically, a
contact area can be modeled by a point load in a 1-dimensional model, and a pressure area in a 2-dimensional
model.

2.3. EULER-BERNOULLI BEAM THEORY
In the theory about vibration of systems, a distinction is made between discrete and continuous systems. Dis-
crete systems have a finite number of degrees of freedom. The vibration of discrete systems can be described
by a set of ordinary differential equations. Structural components like beams on the other hand, are consid-
ered as continuous systems. These systems have an infinite number of degrees of freedom. The vibration
of continuous systems is described by partial differential equations, which involve variables that depend on
time and space (Shabana and Ling, 1997).

Several theories exist that analyses the structural vibration of beams, simply referred to as "beam theories". A
beam theory provides a relatively simple tool to analyze a beam. There are also more complex tools available,
such as the finite element method, to analyze stresses in structures. However, beam theories are still often
used, because they provide valuable information about the behaviour of continuous systems (Bauchau and
Craig, 2009). One of the most popular beam theories is the Euler-Bernoulli beam theory.

2.3.1. ASSUMPTIONS
EBBT describes the relation between the deflection of a beam and an applied load. The theory is widely
applied on beams with small deflections under lateral loads only. A fundamental assumption of the Euler-
Bernoulli beam theory states that the plane cross-sections remain plane and perpendicular to the neutral
axis after bending (Graff, 2012, Rao, 1995). This means that no deformations occur in the cross-section of
the beam, since an infinitely rigid cross-section is assumed (Bauchau and Craig, 2009). This is the case in
bending deformations, but not in shear deformation. Shear deformation is therefore not taken into account.
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This also means that if the neutral axis is located in the middle of the beam, the strains on top of the beam,
are equal and opposite to the strains on the bottom of the beam. Another assumption EBBT makes, is that the
deformed beam slopes are small. Meaning that if we let φ= d w

d x , this assumption lets φ2 = 0, as φ is assumed
very small.

2.3.2. DERIVATION
The listed advantages of section 2.3.1 result in the following equation:

d 2w

d x2 = M

E I
(2.1)

in which E I is the bending stiffness, M is the moment and d 2w
d x2 is the second derivative of the deflection. The

bending stiffness is a property of the beam shape and material, and can easily be calculated. E is given by the
young’s modulus of steel, and I can be calculated using I = 1

12 bh3. This now describes the behaviour of the
beams deflection, under a lateral load.

2.3.3. STRUCTURAL VIBRATION
Free vibration is the natural response of a system to any temporary given force or displacement. This response
depends on the properties of the system, and is therefore well suited for the detection of small variations
within the system. For this thesis, free vibration was examined. The behaviour of an Euler Bernoulli beam in
free vibration is shortly discussed here.

Free vibration is governed by a homogeneous partial differential, see equation 2.2. The solution is given by
equation 2.3, whose parameters depend on the boundary conditions of the system. For a simply supported
beam, this results in equation 2.4. In this solution, n refers to the eigenmode of the system. These eigen-
modes are illustrated in figure 2.2. The corresponding eigenfrequencies can be calculated using equation 2.5
(Spijkers et al., 2005b).

E I
∂4w(x, t )

∂x4 +ρA
∂2w(x, t )

∂t 2 = 0 (2.2)

w(x) = Acosh(βx)+B si nh(βx)+C cos(βx)+Dsi n(βx) (2.3)

wn(x) = Dn si n

(
nπ

x

l

)
(n = 1,2...∞) (2.4)

ωn =C ·
√

E I

ρAL4 (2.5)

Figure 2.2: The first three eigenmodes, as found in (Spijkers et al., 2005b)
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2.4. ENERGY FLUX
There are two ways energy can be stored in a vibrating Euler-Bernoulli beam. Potential energy through de-
formation and kinetic energy through movement. Multiple theories exist on the kinds of deformation that
is relevant. This derivation follows Euler-Bernoulli Beam Theory (EBBT). That means that the only relevant
deformation is bending deformation, meaning shear deformations will not be taken into account. The quan-
tities can be calculated using the formulas 2.6 for the potential, and 2.7 for the kinetic energy.

P = 1

2

∫
E I (

d 2w

d x2 )2d x (2.6)

K = 1

2

∫
ρA(

d w

d t
)2d x (2.7)

This means that if we only consider a small part of the beam, we can calculate the stored energy. This is
known as the energy density. This energy density can be rewritten using the equation of motion (equation
2.9), and describes over time, given in equation 2.10

e = E I w ′′+ρAẇ (2.8)

E I
d 4w

d x4 =−ρA
d 2w

d t 2 = 0 (2.9)

∂e

∂t
= E I w ′′ẇ ′′−E I w ′′′′ẇ (2.10)

The energy variation law states that, in a non dissipating system equation 2.11 applies. This gives us an
expression for ∂S

∂x .

∂e

∂t
=−∂S

∂x
(2.11)

∂S

∂x
=−E I w ′′ẇ ′′+E I w ′′′′ẇ (2.12)

After integration, this gives the equation of Energy Flux in an Euler Bernoulli beam.

S =−E I w ′′ẇ ′+E I w ′′′ẇ ẇ (2.13)

This concludes the derivation of Energy Flux in an Euler-Bernoulli beam. However, not all quantities are
known at every section of the beam, so measuring Energy Flux brings its difficulties.

2.4.1. MEASURING ENERGY FLUX
When integrated over time, Energy Flux in a semi-infinite beam has another can be written as:

S =−M · ẇ ′+V · ẇ = 2 ·M · ẇ ′ (2.14)

in which M is the moment, V is the shear force and w is the transverse displacement. Also, ẇ = ∂w
∂t and

w ′ = ∂w
∂x . Since in an existing structure, it is difficult to measure shear force, the latter equation will possibly

be used for the measurements in the experiment. From equation 2.14 we can see that we need to measure
both the moment, and the rotational velocity.
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MOMENT - M

(a) Relation between curvature and angle θ
(b) Definition of angle φ

Figure 2.3: Geometrical relations

As described in section 2.3, the behaviour of the beam can be described by M = E I ·w ′′, where w ′′ is known as
the curvature of the beam. According to EEBT this is related to the strains, with equation 2.15. Also see figure
2.3a. y is the distance to the centre line of the beam, in this case half the thickness. θ is the angle and finally ε
is the strain.

d 2w

d x2 = 1

R
= κ= dθ

d x
= ε

y
(2.15)

In Euler-Bernoulli beam theory, the strains at the top of the beam are the same as the strains at the bottom.
The y coordinate of these strain values is also known, this gives us the value of curvature κ, which is equal to
the w ′′. So, if the strains in the outer fibers are known, the moment at that location can be calculated.

ROTATIONAL VELOCITY - ẇ ′

The rotational velocity is not directly calculable from the strains in the outer fibers. The angle φ = d w
d x does

not depend on the strains in the outer fibers. However, φ can be derived from the difference in position
between two points (see figure 2.3b). This means that the rotational velocity can be derived when w1 and w2

are known over time. These values can be obtained, as they can be derived from the accelerations, that are
known over time. If we then divide the difference of the displacements into the distance between them, we
know the angle φ. The time derivative of the now know φ will give us ẇ ′

w1 −w2

d x
=φ= w ′ (2.16)

It should be noted that the positions of w1 and w2 are to be close together. This means that d x will be as
small as possible.
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Figure 2.4: Flowchart of calculations

As shown in this chapter, the Energy Flux S at a certain point can be calculated with known strains at that
point, and known accelerations close to each other. All steps from measurements to Energy Flux can also be
shown in flowchart form, see figure 2.4. In this figure, the round blocks are variables that are known through
measurements or calculations. The arrow blocks are equations used to derive said variables. The squares
indicate the start or finished variable.

After the data has been processed. The result will be values of Energy Flux for every weight step at 3 places,
plotted over time. The values of the Energy Flux can then be compared to each other.



3
NUMERICAL ANALYSIS

In the background chapter, a method of energy flux measurement is discussed. Now that that’s known, the
exact set-up of a numerical and physical experiment can be chosen. In this experiment a multitude of param-
eters should be set. Some of them should be the same in every iteration, and some of them should change
between iterations. These parameters are discussed below.

3.1. SET-UP
The experiment can be seen as a proof of concept. The main questions it should answer are discussed in
section 1. To ease the analysis the experiment should have as few unknowns as possible. Therefore, a few
key properties of the application in a slip-joint are not taken into account to break the situation down to its
easiest and most basic form. As discussed in section 2.3, this thesis will use EBBT. This theory simplifies the
situation significantly. The curvature of the shell is ignored and simplified to a 1-dimensional situation. The
beam will be simply supported, this support leads to the least amount of unknown forces at the boundaries
of the beam. In conclusion, the setup discussed above is shown in figure 3.1.

Figure 3.1: Example setup for the analyses.
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3.2. BEAM PROPERTIES
Both the numerical analysis and the experiment investigate a vibrating beam. Some of the properties of this
beam are given below. These properties are the same for both the experiment and the numerical analysis.

Beam property Value

Length [m] 1
Width [m] 0.1
Height [m] 0.006
Cross-sectional Area [ m2] 0.0006
Density [kg /m3] 7850
Young’s Modulus [GPa] 200
Shear Modulus [GPa] 79.3
Bending stiffness EI [N ·M 2] 360
Shear stiffness GA [N ·M 2] 47580000

Table 3.1: Properties of the beam

3.3. NUMERICAL SIMULATION IN ANSYS
ANSYS is a multi physics engineering simulation software tool. The software is employed to calculate fluid
dynamics and structural problems, that are based on discretization of the analyzed problems. For this thesis,
ANSYS Workbench 19.1 was used.

Multiple analyses are possible within ANSYS. For this research, a transient structural analysis was done. This
model consists of multiple building blocks, discussed in section 3.4. ANSYS can build up its model with
various elements. For this study, Euler Bernoulli beam theory needs to be uphold. Therefore, BEAM188
elements were used. These elements have 6 degrees of freedom at each node, namely translation along three
axes and rotation about three axes. This means that it is a Timoshenko beam element. However, in our model
the shear modulus is so much larger than the bending stiffness, that the results will differ less than 0.003%
(Department of applied Mechanics, Budapest University of Technology, 2018).

3.4. ANSYS MODEL
The ANSYS model consists of several parts. The properties of the model itself, meaning, among other things,
the input of the model. These are the properties with which the modal analysis of the system was done.
Secondly, the load properties are discussed. These are only used in the transient structural analysis. Lastly,
the type of output of the model is quickly described.

3.4.1. MODEL DESCRIPTION
In this section, the developed model is described. The focus is on determining input parameters, such as
sampling frequency and mesh size, beam parameters, measurement locations, contact points and damping.

Determining sampling frequency and mesh size
For the determination of the necessary sampling frequency, the eigenfrequencies of the beam are needed.
A modal analysis calculates these eigenfrequencies. The results for the first six eigenmodes can be found in
table 3.2.

Mode Frequency [Hz]
1 21.93
2 55.008
3 136.32
4 184.52
5 220.7
6 359.65

Table 3.2: Eigenfrequencies of the beam
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Figure 3.2: ANSYS model for the numerical analysis, with the 3-dimensional representation shown. The actual mesh is 1-dimensional.
Supports are present, but not shown in this figure.

To correctly assess the movement of the beam, at least eight samples are needed during the eigenperiode of
the highest relevant eigenfrequency. As a first estimate, eigenmodes higher than the sixth are not expected to
play any significant role in the behaviour of the beam. The sampling speed for the first model will then be

T = 1

359.65
= 0.00278s (3.1)

∆t = 0.00278

8
= 3.475 ·10−4s (3.2)

Using this time step the first analysis was done. The beam was excited with a temporal force. From the Fourier
Analysis, it could clearly be seen that the vibration almost completely consists of the first two eigenfrequen-
cies, making such a small time step unnecessary. Consequently, a larger time step of∆t = 1∗10−4 was chosen
afterwards.

The determination of the mesh size was an iterative process. The mesh size was increased step-wise, until no
more changes in behaviour were seen. At this point, the mesh size was assumed to be sufficient. This ended
in a mesh size of 0.01 meter. The meshing was performed using a sweep mesh method. This method ensures
that the model consists of elements of equal size. This resulted in the symmetrical mesh presented in figure
3.2. The mesh is symmetrical about all axis from the midpoint of the beam.

Beam parameters
The beam has a length of 1000 mm, a width of 100 mm and a thickness of 6 mm, as was presented in table
3.1. At both ends the beam is simply supported. Meaning that one of the edges of the mesh is fully supported,
restricting movement in all directions, but allowing for rotation. The beam is made of structural steel class
S460, with a density of 7850 kg ·m−3.

Measurement locations
To get an overview of the behaviour of the Energy Flux along the beam, eleven locations for the calculation
of Energy Flux were determined. These locations were placed in such a way, that they are evenly spread,
and there is a measurement location close to both supports, and midpoint. All eleven locations are shown in
figure 3.3.
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Figure 3.3: Mechanical Model with the measurement locations

Contact point
The contact point is modelled by adding a point weight at a certain location along the beam. The amount of
weight was increased step wise. In an one-dimensional model the size of the contact area cannot be changed
because, evidently, a point weight cannot increase in size. Therefore, influences of contact area size will not
be discussed.

To determine the influence of the location of a contact point, four different Point Load Locations (PLLs), were
determined. These PLLs are shown in figure 3.4. PLL 1 is at the midpoint of the beam. PLL 2, 3 and 4 are on
measurement locations 7, 8 and 9, respectively.

Figure 3.4: The location of point load locations 1, 2, 3 and 4. PLL 1 is located at the midpoint of the beam.

Damping
Any form of pulse load, will introduce a spectrum of frequencies into the system. Some of these frequencies
will be very high. Due to the short wavelength of these high frequencies, they will dissipate more quickly than
the lower frequencies. In the model, this effect is imitated using numerical damping. This kind of damping
makes sure that the higher frequencies of the model decay. Because numerical damping is fictional damping,
the damping coefficient should not be very large to achieve the correct response of the system. The value of
0.0005 was chosen, the exact magnitude of the coefficient showed little influence in this order of magnitude.

LOAD DESCRIPTION

The model runs for 4 time-steps. The first three time-steps are 0.01 seconds, the last time-step is 4.97 seconds.
The hammer blow is modelled by applying a force during one of the time steps. The force increases linearly
to 100N during time step 2, and linearly decreases back to 0N in time step 3. During all other time steps this
force is absent.

OUTPUT DESCRIPTION

Once the input of the ANSYS model is provided, the parameters to output are set. ANSYS can calculate defor-
mations, forces and velocities directly. So there is no reason to use the method described in section 2.4.1. The
Energy Flux is directly provided by the model. The Energy Flux is given as a direct output using the moment,
the rotational velocity, the shear force and the directional velocity.

However, to compare the numerical results to the experimental results, another extraction of Energy Flux is
done. This method replicates the experimental method. The strains are calculated at both ends, with which
the moment is calculated. The rotational velocity is calculated using the deformation at two places. These
results are discussed in section 5.2.2. The data processing and visualization have been done using MATLAB.



4
EXPERIMENTAL APPROACH

The overall set-up has already been discussed in section 3.1. The experimental approach is very similar to the
numerical approach. The requisites and the way to build up to a final design are discussed in this chapter.

4.1. EXPERIMENT REQUISITES
Most of the experiment requisites need no further introduction, and are simply summed up here. Five of
them are discussed in further detail below, namely the weights, the hammer, strain gauges, accelerometers
and ADC.

• Analog-to-digital converter (ADC)

• Weights

• Laptop with Mp3 software

• Cables

• Support Structure for the beam

• Simply supported connection

• Beam

• Strain gauges

• Accelerometers

• Media to attach weight

Weights
The weights will be used to model a contact area. This weight will distribute its weight over its area on the
beam. This way, both the area size, and the area pressure can be changed between experiments. To ensure
that the weight will remain attached to the beam, the Vaseline will be used to join them together.

Hammer
The hammer to be used in the experiment has its own accelerometer and force measurement device built in.
Using this data, the energy input of the hammer can be calculated.

Strain gauges
A strain gauge is a sensor that is used to measure strain on an object. The resistance of the device varies with
applied force. The force is converted into electrical resistance, which is a property that can be measured.
Strain gauges are glued on a specific spot on the beam and can therefore only used once. Strain gauges can
be attached in multiple ways. Because only bending stresses are relevant for this research, the strain gauges
will measure the strain along the beam, and not perpendicular to the length of the beam. Furthermore, the
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strain gauges can form a so called ’bridge’. These bridges come in three variations, which all only use one
channel. Each bridge has its own applications. Depending on these applications, multiple configurations are
possible. These are shown in figure 4.1

• Full Bridge - Two strain gauges at both sides of the beam.

• Half Bridge - One strain gauge at both sides of the beam.

• Quarter Bridge - One strain gauge at one side of the beam.

A fundamental parameter of the strain gauge is its sensitivity to strain. This is expressed as the gage factor
(GF), which is the ratio of relative change in the electrical resistance R to the mechanical strain ε.

Ideally, the resistance of the strain gauge only changes due to the applied strain. However, the resistance
of the strain gauge is not perfectly constant. This can be caused by changes in temperature, or other small
variations in its environment. This signal is called noise, and the expected signal should be at least five times
as large as the expected noise. The expected strains can be calculated by the numerical model.

The strain gauges that will be used are, naturally, not perfect. A certain amount of random ’output’ is ex-
pected. When the strains are too little, the only output will be this so called noise. For the output to be
interpretable, a minimum amount of strain is needed. This is called the Signal-to-Noise ratio (S/N ratio).
When this ratio is too low, the output will mean nothing. For the Energy Flux to be measurable, this S/N ratio
should exceed a value of 5. The actual expected signal largely depends on the hammer blow. With an im-
pact of 100N, for 0,01 seconds, the expected strains at the top and the bottom of the beam are approximately
2·10−4[m/m] . The noise of a standard full bridge strain gauge is around 20µm. This gives a S/N ratio of 10, at
most points in time. As long as the S/N ratio is larger than 5, the signal is good. This means that, numerically,
the signals are large enough for Energy Flux measurements.

Figure 4.1: Configuration options for a full bridge strain gauge

Accelerometers
An accelerometer is a sensor used to measure acceleration forces. These forces can be static, like continuous
or gravity forces, or dynamic, like vibrations. They measure in meters per seconds squared (m/s2) or in G-
forces (g ). Accelerometers are made of many different components and communicate over an analog, digital
or pulse-width modulation interface.

When choosing an accelerometer, the range of the device is important. Ranges vary between more or less 1g
to 250g . Smaller ranges are more sensitive. The accelerations expected in the experiment can be check in the
numerical model. After this, an appropriate accelerometer can be chosen.

Analog-to-Digital Converter
Analog-to-Digital converters (ADC) are devices that convert analog signals into digital signals. These ma-
chines take the output of the strain gauges and the accelerometers as an input, and output digital signal, a
computer can interpret. However, these devices have a maximum amount and frequency of input. The ADC’s
available at the TU Delft can process nine channels simultaneously. Accelerometers and strain bridges (full
or half), all consist of one channel. This puts a maximum on the amount of data that can be acquired in one
experiment.
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4.2. BUILDING BLOCKS OF THE EXPERIMENT
The second research question introduced in section 1.3, was "How can the numerical results be validated in
an experiment?". This research question requires several sub-questions. Each of these questions will provide
a building block for the experiment. Using these building blocks the final experiment can be composed. The
questions and their necessary building blocks are discussed below.

Is Energy Flux measurable?
This question is already partly answered in section 2.4.1. However, in that section, a new equation for Energy
Flux is given, namely S = 2 ·M · ẇ ′. This is because the shear force is difficult to measure at a specific point.
Since we know that d M

d x = V , the original equation for the Energy Flux might also be measurable, with two
strain gauges close to each other, V can be approximated. These measurements can afterwards be compared
to the numerical model.

The equations for the numerical analysis, and the experimental analysis are slightly different. For a proper
comparison, there are two necessities. A numerical analysis using the equation for the experiment, and the
measurement of the shear force in the experiment. A numerical analysis with the experimental equation
has been done. Most of these results can be found in Appendix. Once the experiments have been done, the
results can be compared to the numerical results. In the experiment, the shear force should also be computed.
This can be done by measuring the moment at two locations close to each other. Therefore, the experiment
should have strain gauges, close to each other along the length of the beam, a full bridge strain gauge in
configuration C.

Is Euler-Bernoulli Beam Theory applicable?
As discussed in section 2.3, EBBT makes a few key assumptions that need to be validated. First of all, EBBT
assumes a linear elastic stress line, along the cross-section of the beam. This will result in equal and oppo-
site strains at both sides of the beam. To check this, full bridge strain gauges are needed. Secondly, EBBT
assumes no changes in behaviour along the width of the beam. To check this assumption, multiple Energy
Flux equations have to be done, along the width of the beam.

Are the numerical results representative for the experimental results?
To get a good understanding of how realistic the numerical analysis is, a proper comparison has to be made
between the numerical results, and the experimental results. Therefore, the experimental setup should be
comparable to the numerical model. Depending on the results of the numerical model, a few locations on
which Energy Flux should be measured in the experiment should be chosen.

In conclusion, the experiment should consist of these things

• A full bridge strain gauge in configuration A at a measurement location.

• A half bridge strain gauges, at all measurement locations.

• A full bridge strain gauge in configuration C at a measurement location.

• Two accelerometers, at all measurement locations.

• A point at which a weight can be attached.

(a) Configuration A (b) Configuration C

Figure 4.2: Strain configurations to be used in the experiment
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RESULTS

The results of the methodology discussed above are twofold. In the first part, the results of the numerical
analyses are discussed. Secondly, a clear plan is described for the numerical results to be experimentally
validated.

5.1. NUMERICAL RESULTS
From the numerical model, lots of data were acquired. These data described the behaviour of Energy Flux,
which can be analyzed in different manners. First of all, the behaviour of EF over time can be studied. This
signal consists of several frequencies, which can be studied in the frequency-domain. Finally, the impor-
tance of frequencies over time may provide additional information on the presence of contact areas. This
can be studied in the time-frequency-domain. Subsequently, results are divided into three sections: (1) time-
domain, (2) frequency-domain and (3) time-frequency-domain. All these sections are divided into two parts.
Firstly, ’the general behaviour’ is studied, where no point load is added to the system. Secondly, the influence
of the location and the magnitude of the weights are discussed. To understand the influence of a simulated
contact area, the first section describes the global differences of a system with and without a point load.

5.1.1. INFLUENCE OF POINT LOAD ON SYSTEM PROPERTIES
Before analyzing the numerical results, it is important to understand the changes in the system properties
caused by a point load anywhere in the system. The two main system properties discussed here are the
energy input and the eigenfrequencies.

Energy Input
The energy input of the system is given by the force of the hammer, multiplied by the velocity at the point of
impact. The added point load influences the velocity of the beam at the point of impact, and therefore also
the energy put into the system. For this study, the point load can have multiple locations and magnitudes.
The parameters of the hammer blow are kept constant, meaning the location and the force of the hammer
are the same for every simulation.

0kg 1kg 2kg 3kg 4kg 5kg
PLL 1 160.8 151.7 146.0 142.0 139.2 137.0
PLL 2 160.8 162.1 163.1 163.4 163.8 164.2
PLL 3 160.8 171.3 178.2 182.9 186.2 188.6
PLL 4 160.8 173.4 184.9 193.9 200.9 206.5

Table 5.1: Overview of Energy Input for every system, expressed in Joule. PLL refers to the location of the point load. For all locations six
magnitudes were studied, ranging from 0 to 5 kilograms.

Table 5.1 shows the energy input for four different locations of point loads. The energy input depends on the
locations and the magnitude of the point load. The four different PLL’s can be found in figure 3.4.
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Naturally, when the magnitude of the point load is 0 kg, the location is irrelevant, because the system does
not change. Table 5.1 shows that the energy input equals 160.8J , when no point load is added. In case of
PLL 1, located at the middle of the beam, the increase of magnitude of the point load results in a decrease of
energy input. In case of PLL 2, the changes in energy input are small, but an increase can be seen. For PLL 3
and 4 the increase of added weight results in a clear increase of energy input. When comparing PLL 3 and 4,
a larger distance from midpoint results in a larger increase of energy input.

Eigenfrequencies
The eigenfrequencies depend on the eigenmode shapes. These are strongly influenced by the presence of a
point load. This effect can be seen in figure 5.1. 5.1a shows the second eigenmode shape of the system without
any point loads can be seen. In figure 5.1b the second eigenmode shape of the system with a 4 kilogram point
load at PLL 3 is shown.

(a) Second eigenmode of the system without a point load. (b) Second eigenmode of the system with 4kg at PLL 3.

Figure 5.1: Effect of the point load on the shape of the second eigenmode.

Table 5.2 shows the eigenfrequencies of all the simulated systems. An increase in weight results in a decrease
in eigenfrequencies. However, there is one exception. In case of PLL 1, the second eigenmode shape is not in-
fluenced by the point load. As can be seen in figure 5.1, the midpoint of the beam does not move in the second
eigenmode. Because of this, a point load at this location does not influence the second eigenfrequency.

PLL 1 0kg 1kg 2kg 3kg 4kg 5kg
1st eigenfrequency 13,732 11,497 10,082 9,0854 8,335 7,744
2nd eigenfrequency 54,918 54,918 54,918 54,918 54,918 54,918
3rd eigenfrequency 123,53 107,89 101,35 97,792 95,553 94,016

PLL 2 0kg 1kg 2kg 3kg 4kg 5kg
1st eigenfrequency 13,732 11,726 10,387 9,4166 8,6736 8,0816
2nd eigenfrequency 54,918 51,264 49,455 48,386 47,683 47,185
3rd eigenfrequency 123,53 120,26 118,61 117,63 116,98 116,53

PLL 3 0kg 1kg 2kg 3kg 4kg 5kg
1st eigenfrequency 13,732 12,243 11,123 10,25 9,5489 8,9711
2nd eigenfrequency 54,918 47,624 44,178 42,193 40,907 40,009
3rd eigenfrequency 123,53 120,02 118,63 117,88 117,43 117,11

PLL 4 0kg 1kg 2kg 3kg 4kg 5kg
1st eigenfrequency 13,732 12,945 12,254 11,645 11,109 10,633
2nd eigenfrequency 54,918 47,562 43,187 40,376 38,438 37,03
3rd eigenfrequency 123,53 109,09 103,89 101,32 99,801 98,802

Table 5.2: Eigenfrequencies of the various systems



5.1. NUMERICAL RESULTS 21

5.1.2. TIME-DOMAIN
An example of Energy Flux in the time-domain is given below. In this figure, a few things should be noted.
First of all, the Energy Flux slowly decreases. This is due to damping. Secondly, there are multiple frequencies
important in this signal. An analysis of these frequencies is done in section 5.1.3. Lastly, it could be that the
importance of certain frequencies decreases over time. An analysis of these effects is done in section 5.1.4

Figure 5.2: Example of Energy Flux in the time-domain

Figure 5.2 shows an example of what Energy Flux looks like through the cross-section at midpoint in the time-
domain. Energy Flux behaviour depends heavily on the examined cross-section. In figure 5.3 the behaviour
at all locations can be examined. To ease the comparison, the y-axis is kept the same across all subplots. It
can be clearly seen that the more energy flows through the middle sections of the beam.

Figure 5.3: Example of Energy Flux through all locations

As discussed earlier, Energy Flux is a vector. When plotted over time, the direction is given by the sign of the
scalar (above or below 0). All values above zero indicate an Energy Flux in a positive direction, in this case to
the right. Values below zero indicate flux in the opposite direction, in this case leftward. When this signal is
then integrated. The complete energy through this cross-section can be calculated. A cumulative integration
would mean to subtract negative Energy Flux from the positive Flux. Again, this Cumulative Energy Flux
(CEF) can be plotted. The behaviour of these plots is described using three examples.



22 5. RESULTS

• CEF through location 3, see sub-figure A.1a.
At the start, a large amount of energy is transported rightwards. After this, the EF simply fluctuates. The
amplitude of this fluctuation is not very large. The signal is mostly composed of three frequencies: the
first, the second and the second minus the first

• CEF through location 6, see sub-figure A.1b.
This behaviour resembles the behaviour through location 3, with the exception that the amplitude has
increased. Towards the middle, the amplitude of these plots always showed an increase. The signal
importance of the first eigenfrequency has decreased. Meaning that this signal is mostly composed of
two frequencies: The second, and the second minus the first.

• CEF through location 9, see sub-figure A.1c.
Except for the absence of the large amount of energy transported rightwards in the beginning, this
behaviour strongly resembles figure A.1a. Both signals are made up of the same frequencies, and have
similar amplitudes.

(a) CEF through location 3 (b) CEF through location 6 (c) CEF through location 9

Figure 5.4: Cumulative Energy Flux through three locations, without added weight.

Location of a contact point
With the added weight, the amplitudes of Energy Flux increases. Not only on the location of the weight, but
also on the neighbouring locations. When the signal is normalized with respect to the absolute mean value
of the original signal, these differences become clear, see table 5.3. In this table, the Mean Absolute Values
(MAV’s) of EF of the system with, and without weight are compared. This is done for all PPL’s. Around a
point load locations, a more clear increase in MAV is seen. However, the highest increase is not always at the
location of the point load. Lastly, it should be noted that the increases are less significant for PPL 1, than for
the others.

|0kg | / |2kg |
PPL 1

|0kg | / |2kg |
PPL 2

|0kg | / |2kg |
PPL 3

|0kg | / |2kg |
PPL 4

Location 1 1.0279 1.3238 1.1956 1.0367
Location 2 1.0260 1.3305 1.2076 1.0495
Location 3 1.0471 1.3740 1.2597 1.0941
Location 4 1.0790 1.4416 1.3474 1.1689
Location 5 1.1248 1.5326 1.4802 1.2853
Location 6 1.1678 1.6500 1.6822 1.4712
Location 7 1.1060 1.6266 2.0221 1.7976
Location 8 1.0685 1.2519 2.3006 2.5654
Location 9 1.0410 1.1679 1.5213 4.2340
Location 10 1.0249 1.1287 1.4269 2.0969
Location 11 1.0317 1.1367 1.4371 2.1107

Table 5.3: The increase of mean absolute value of the Energy Flux, at all locations for all point load locations

This increase in amplitude is also illustrated in figure 5.5. In this figure, the normalized Energy Flux is plotted.
At every moment in time, the value of EF is divided by the MAV of the EF at that location without any added
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weight. To ease the comparison, two red lines are plotted at values of 5 and −5. At the exact location of the
weight, the EF plot looks differently, the EF becomes mostly positive, which would indicate a large flow of
energy towards the support. Besides this, no clear difference can be identified. An increase at neighbouring
locations for example, cannot be seen. So besides a change at the exact PLL, when looking at the time-domain
alone, the location of a contact point cannot be identified.

Figure 5.5: Normalized Energy Flux on all locations, with 2kg at location 8

When looking at the CEF, the differences are similar. At the exact location of the point load, the CEF looks
completely different. At all other locations, the differences are smaller. For two situations these differences
are illustrated in figure 5.6. The figure shows the CEF through three cross-sections, without any added weight,
and with two kilogram at PLL 3. In the sub-figure 5.6a, a small increase in amplitude, and a change in fre-
quencies can be seen. The increase in amplitude is much larger at location 6, in sub figure 5.6b. The CEF at
the location of the point load, is completely different. This effect could also be seen in figure 5.5. In that figure
the EF becomes mostly positive, resulting in a large amount of EF moving rightwards. This can now be seen
also be seen in figure 5.6c.

(a) CEF through location 4 (b) CEF through location 6 (c) CEF through location 8

Figure 5.6: Cumulative Energy Flux through three locations, without added weight.



24 5. RESULTS

Magnitude of the weight
As described before, the presence of a point load increased the amplitude of the CEF. The magnitude of this
point load, simply increased this effect. However, the increase also depended on the location along the beam,
as can be seen in figures 5.8 and 5.7. The increase seems to depend on the proximity to the middle, and to
the weight. Meaning that both closer to the weight, and closer to the middle, the magnitude of the point load
had more influence.

Figure 5.7: Cumulative Energy Flux through location 6, with increasing weight at location 8

Figure 5.8: Cumulative Energy Flux through location 4 with increasing weight at location 8
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5.1.3. FREQUENCY-DOMAIN
The Energy Flux in the time-domain clearly consists of multiple frequencies. To examine which frequencies
are important, a Fourier analysis is done. A fast Fourier transform decomposes a function into its constituent
frequencies. The results display which frequencies are important in the five-second signal. First, the be-
haviour of the frequencies will be discussed without any additional weight. When this behaviour is clear, the
influence of a simulated contact point is discussed. First the location of the weight, and then the magnitude
of it.

When multiplying two sinusoids that consist of two pure frequencies, the outcome consists of four frequen-
cies. When the sinusoids are not longer pure, the outcome is expected to consist of six frequencies. The first,
twice the first, the second, the second minus and plus the first, and twice the second. These are the six peaks,
expected to be visible in a Fourier analysis. Naturally, not all frequencies will be visible at every location,
because the importance of each component of the Energy Flux will vary depending on location.

However, when no weight is added to the system, the six peaks are not all located at those frequencies. The
frequencies can be seen in figure 5.9. The peaks are discussed below.

• Peak 1 - 13.8 Hz - This peak is at the first eigenfrequency, as expected.

• Peak 2 - 40.6 Hz - This peak is at the second eigenfrequency, minus the first frequency, a peak here was
expected.

• Peak 3 - 54.4 Hz - This peak is at the second eigenfrequency, as expected.

• Peak 4 - 63.4 Hz - This peak is not at the second eigenfrequency plus the first eigenfrequency. It is five
Hertz too low.

• Peak 5 - 104.2 Hz - This peak is not at twice the second eigenfrequency, but again five Hertz too low.

• Peak 6 - 117.8 Hz - This peak is also not at any of the predicted locations. It should be noted that it is
exactly the first eigenfrequency higher than peak 5.

Besides the odd placement of peaks four, five and six, the absence of two expected peaks is also worth noting.
No peaks are visible at twice the first, and twice the second eigenfrequency. At twice the second eigenfre-
quency, absolutely nothing was visible, even without the presence of a high peak nearby. However, at twice
the second eigenfrequency, a small peak was found at some locations, especially when the third peak was
lower. Because of the height of the third peak, specifically in the middle, it is possible that the peak at twice
the second eigenfrequency was too low to be noticeable, even though it was actually there. This is illustrated
in figure 5.10.

Without any point loads, these peaks always appear at the same places. This is also illustrated in figure 5.9.
This figure shows all peaks, at all locations. The heights of the peaks vary, but the locations of the peaks are
constant over the entire length.

Figure 5.9: Example of a Fourier analysis of Energy Flux through location 7. In this example, no weight was added
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It should also be noted that above 110 Hz, no other peaks could be distinguished. This indicates that for this
structure, only the first two eigenmodes play a role.

Figure 5.10: Example of a Fourier analysis of Energy Flux through location 7. In this example, no weight was added

The heights of these peaks vary, depending on the location of the analysis. This height can be plotted over the
length of the beam. This is illustrated in figure 5.11. Over the length of the beam, 11 locations were chosen to
calculate Energy Flux. The positions and numbering of these locations have already been discussed in section
3.4, and can be seen in figure 3.3. To get a complete picture of how the entire beam behaves all locations were
examined. First, the behaviour is analyzed with no added weight. In this analysis, 6 peaks were analyzed.

The first four peaks are the peaks at the expected locations, for peak five and six, the closest peak was ana-
lyzed, because at the expected locations, no peak was found.

Figure 5.11: The height of the peaks along the length of the beam

The first peak, at the first frequency, is most important at 1/4 and 3/4 of the beam. This can be logically
explained by the fact that, when getting closer to the middle, there is no rotational velocity in the first eigen-
mode, the Energy Flux at that point will therefore become zero. The second peak is too small to distinguish,
and is therefore not taken into account here. For the fourth peak, at the second eigenfrequency, the ampli-
tude increases towards the middle. Furthermore is should be noted that the third and the fifth peak are a
combination of the first and the second eigenfrequency. The third peak is the highest by far, with the peak in
the middle being five times as large as any other peak.
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Figure 5.12: The behaviour of all peaks over the length of the beam

Presence of a weight
When a point load is present in the system, regardless of its locations and magnitude, a few things change in
the Fourier analysis. This situation is illustrated in figure 5.13. First of all, there now is a clear peak at twice
the first eigenfrequency. Secondly, the location of the previous peak 4, is now at the second plus the first
eigenfrequency, where it was expected. The height of the peaks depends on the location of the weight. This
is described below.

Figure 5.13: Example of a Fourier Analysis of Energy Flux through all locations. With 2kg on PLL 2
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Location
First the influence of the location of the weight is examined. For a first estimate, one can simply compare
Fourier analyses at the location of the weight, and at any other location. As discussed before, the outcome of
a Fourier analysis consists of 6 peaks. With weight, the expected six peaks are seen.

However, when looking at the Fourier analysis at the exact location of the weight, it looks different. An exam-
ple is given in figure 5.14. Now a peak can be seen at every multiplication of the first eigenfrequency. This
is only when the Fourier analysis is exactly at the location of the weight, one node next to the location the
Fourier analysis looks like all other locations. When looking at the behaviour over the length of the beam,
these additional peaks are ignored, because they only occur at the location of the weight.

Figure 5.14: Zoomed in example of a Fourier analysis at the location of the weight

The location of the last peaks also depends on the location of the weight. For every PLL the two peaks around
twice the second eigenfrequency, seen in figure 5.9, were, albeit small visible. However, their locations dif-
fered. For PLL 2, 3 and 4, a peak was also seen at twice the second eigenfrequency. This peak was significantly
larger than the other two peaks, but still substantially smaller than the earlier peaks.

This means that, for PLL 2, 3 and 4, there are three peaks above 80 Hz. One at twice the second eigenfrequency,
and two at slightly higher frequencies. The locations of the latter two peaks, for 1 kilogram on all PLL’s are
given in table 5.4. Because the behaviour of these peaks differs per PLL, they are all discussed separately.

• PLL 1 - Above 80 Hz, there are two peaks. These peaks are separated by the first eigenfrequency.

• PLL 2 - Above 80 Hz, there are three peaks. One at twice the second eigenfrequency, one at 102.6 and
one at 103.2 plus the first eigenfrequency.

• PLL 3 - Above 80 Hz, there are three peaks. One at twice the second eigenfrequency, one at 102.6 and
one at 102.6 plus the first eigenfrequency.

• PLL 4 - Above 70 Hz, there are three peaks. One at twice the second eigenfrequency, one slightly lower,
and one slightly above that. The latter two are separated by the first eigenfrequency.

Second to last peak Last peak
PLL 1 92.6 104
PLL 2 103.2 115
PLL 3 102.4 114.8
PLL 4 94.4 105

Table 5.4: The location of the last two peaks, for 1 kilogram at each PLL

Figure 5.12 can also be made with a weight added to the system, see figure 5.15. In these figures, a comparison
has been made between the behaviour with, and without a weight. Both are plotted, for a weight of 2kg at two
locations. The y-axis is scaled the same for all locations to ease the comparison. For PLL 1, the sixth peak was
ignored.
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(a) Amplitude behaviour over the length with 2kg at midpoint (b) Amplitude behaviour over the length with 2kg at location 7

Figure 5.15: Comparison between the amplitudes of the FFT peaks, with and without added weight

The properties of the Energy Flux change, with the presence of a point load. The characteristic shape at the
first eigenfrequency is no longer seen. Especially at the location of the point load, the amplitudes enlarged.
With an asymmetric load, the amplitude over the length also becomes asymmetric, with the amplitude at the
point load clearly being higher.

Weight
The influence of the amount of weight added to the system requires another plot. In this figure, the magnitude
of all six peaks is visible along the length of the beam. These magnitudes are shown for all of the studied loads
at PLL 3. This plot is given in figure 5.16.

Figure 5.16: Behaviour of the amplitude over the length of the beam, with an increasing weight

The first thing to notice from the plots provided in figure 5.16 is that the shapes are very similar. Besides the
sixth peak, the increase in weight enlarges the peak heights at all locations. The heights of the peaks, are given
in table 5.5.
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Location 6 0kg 1kg 2kg 3kg 4kg 5kg

1st peak 9.1 679.8 1471 4327 7018 12680
2nd peak 0 398.5 1423 1783 2152 5130
3rd peak 36640 65860 81200 117500 126600 183900
4th peak 6916 13280 17290 49990 51400 127200
5th peak 1.113 4.3 33.7 282.1 1017 2012
6th peak 0 0.6 1.8 2.56 14.1 6.5

Table 5.5: Influence of the weight on the magnitudes of the peaks in the Fourier analysis of the Energy Flux through location 6.

5.1.4. TIME-FREQUENCY-DOMAIN
Besides changes in frequencies over the length of the beam, we can also analyze changes over time. This
requires another sort of analysis, known as a wavelet analysis. This will track what happens with the Fourier
analysis over time. Since now we have 3 different entities to plot. This will be a 3D-plot. The color intensity
can be seen as the height of the peak in the Fourier analysis. Some of the changes that were seen are discussed
below. All figures are shown in the Appendix. An example of what these plots like is given below.

(a) location 4 (b) location 6 (c) location 8

Figure 5.17: Wavelet analyses without any weights

You can look at these changes in multiple ways. When looking at a single wavelet analysis, they are not distin-
guishable. A slow decrease of intensity over time can be seen on every wavelet. However, not every frequency
shows this decrease. When looking at the figures above, the lower frequencies do not seem to decrease am-
plitude, unlike the higher frequencies, that do decrease intensity rather quickly. The higher frequencies hold
more energy within them and are therefore decreased faster. The dissipated energy mostly belongs to the
higher frequencies.

The ripple effect you see at certain frequencies is due to how this specific wavelet analysis works. The wavelet
is completely made up of a sinusoid, which means that in the signal, it fluctuates between being in and out
of phase. This causes the maxima and minima visible in figure 5.17. At the lower frequencies, the temporal
resolution is not high enough for the ripples to be visible. When another type of wavelet is used, these ripples
are no longer visible.
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5.2. DESIGN OF EXPERIMENT
Using the building blocks described in section 4.2, the final design for the experiment is made. This experi-
ment was designed to be performed at the TU Delft1. In this section, first the design is discussed by specifying
the placement and uses for all measurement devices. Secondly, the expected outcome of the design is dis-
cussed.

5.2.1. FINAL DESIGN
In the experiment, the Energy Flux will be measured through two cross-sections. One in the middle, at the
peak of the first eigenmode, and one at around three quarters the length of the beam, at one of the peaks of
the second eigenmode. The locations match the antinodes of the first two eigenmodes. These locations were
chosen, because of their behaviour in the numerical analysis. At these locations, the behaviour showed the
biggest decency on the presence of a contact point.

Figure 5.18: Top view of the experiment set-up

As discussed in section 2.4.1, the equation to measure Energy Flux in experiments slightly differs from the
one used in the numerical analysis. The way the moment and the rotational velocity can be calculated have
already been discussed. In the experiments, the following question should be answered:

• Can Energy Flux be measured experimentally?

• Are the results of these measurements comparable to the results of the numerical analysis?

• Can a vibrating beam be modeled in 1D?

• What is the influence of a contact area?

The moment can be calculated using a full bridge of strain gauges. When applied on multiple locations, Euler
Bernoulli Beam Theory can be tested. The strains should be the same on both sides. If this indeed is the
case, the neutral axis is assumed to be in the middle. This will provide us with the moment at that location.
With the possibility to measure moments and rotational velocities, the Energy Flux can be calculated at any
location.

5.2.2. EXPECTED RESULTS OF THE EXPERIMENT
Besides a direct extraction of the relevant quantities from ANSYS. The numerical analysis has also been done,
using the same extraction method as the experiment. This way, a better comparison can be made between
the experimental and the numerical results. The results from that analysis are discussed in Appendix A.

For the strain gauges to properly work, a minimal amount of strain is required, as discussed in section 4.1. The
numerical model can give a good approximation of the expected strain. According to the model, the strains
that will occur are 7 ·10−5. The strain gauges to be used, can measure strains of 2 ·10−6m and higher. This
means that, according to the numerical model, the strains will easily be large enough for the strain gauges to
measure them.

1This experiment was designed to be carried out in the Delft University of Technology - Stevin Laboratory 1. Therefore, the described
measurement techniques and experiment requisites depended on the availability of the Stevin Lab. When executing this experiment in
a different laboratory, adjustments to the material list and the design might be necessary.
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5.2.3. FOLLOW UP EXPERIMENTS
The experiment described above will act as a proof of concept, and more experiments will have to be con-
ducted before the technique can be applied in a slip-joint. The follow up experiments will first have to focus
on the energy flux in a conical shaped structure. This could lead so significant changes. Secondly, other
frequencies will have to be examined. Smaller contact areas can not be detected, if the wavelength of the
eigenmode is too large. Acoustic wave, or ultrasonic wave measurements should be examined. These experi-
ments should lead to a possible implementation of this technique in a slip-joint.
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DISCUSSION

6.1. INTERPRETATION OF THE RESULTS
The results shown in chapter 5 are discussed below, which consists of an interpretation of the results in the
time-domain and in the frequency-domain. The time-frequency-domain is not further discussed here.

6.1.1. TIME-DOMAIN
In the time-domain the amplitude of the Energy Flux and the Cumulative Energy Flux were studied over time.
First of all, the course of the amplitude of the Energy Flux is discussed. The Energy Flux showed an increase
of amplitude at the location of the contact point. However, the increase seen in figure 5.5, is expected to
largely be caused by the incorrect effects of a point load in a numerical model. When the point load was
located slightly next to a measurement location, these increases were less severe. This makes it unlikely, that
a contact area can be identified by solely looking at an increase of amplitude. At points around the contact
area, the EF also increased relative to the situation without a contact point.

Secondly, the Cumulative Energy Flux results were studied as well. The CEF showed a clear movement of
energy towards the middle, at the side of the hammer blow. It could be theorized that right after the hammer
blow, the energy density at this part of the beam is very high. This could explain the movement of the energy
towards the other regions of the beam. A contact area had relatively little influence on this effect. A contact
area can therefore be hard to detect using this information.

6.1.2. FREQUENCY-DOMAIN
Besides the time-domain, also the frequency-domain was analyzed. The interpretation of the Fourier analysis
by studying the frequencies in the signal. At the exact location of the weight, the Fourier analyses showed
more peaks than at any other locations. It would be interesting to see if the physical experiment shows the
same effect. If so, this could be used for the detection of contact areas. However, it could also be a numerical
error. A point load in a numerical model, is a force applied at a single infinitesimal point in the model. This
can produce incorrect results, as was seen in the CEF plots in the time-domain.

Most of the frequencies in the signals were as expected. Only at the higher frequencies, the system deviated
from the predicted behaviour. Although these deviations and the heights of the deviating peaks were small,
they were consistent. However, when a point load was present, these divergences were no longer prevailed.
The reason for the deviating peaks is unknown.

Surprisingly, PLL 1 and the other PLL’s showed, to some extent, different results. The locations of the peaks
differed. At PLL 1, the same locations were found as without weight, whereas at the other PLL’s, the peaks
were found at the expected locations. This would indicate that the surprising peaks depend on the second
eigenfrequency, because PLL 1 had no influence on the second eigenfrequency.

33
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6.2. DIFFERENCE BETWEEN THE TWO ENERGY FLUX EQUATIONS
This thesis uses two equations to calculate Energy Flux

S =−M · ẇ ′+V · ẇ (6.1)

S = 2M · ẇ ′ (6.2)

The situation for which it was proven that these two are equal, uses an infinite beam. That beam has no
reflection of energy, as all energy only passes each cross-section once. Which is a large part of the energy
flowing through the system examined in this study. In the actual slip-joint, this is expected to be less.

6.3. VALIDITY OF THE MODEL
Energy Balance
One way to check the validity of the model is to check the energy balance. From the derivation of the Energy
Flux equation in section 2.4 it is known that:

dS

d x
= dE

d t
(6.3)

In other words, this means that the change in Energy Flux over the length of the beam must equal the change
of stored energy in that part of the beam, over time. For the model, this equation has to hold. The first part,
dS/d x, is calculated using Energy Flux calculations on two parts of the beam, close to each other. The differ-
ence between the two, divided over the distance between them, results in this first term. For the second term,
three types of energy storage had to be calculated: kinetic energy, deformation energy, and height energy.
These quantities were calculated using the following equations:

Ek = 1

2
mv2 (6.4)

Eb = 1

2
E Iκ2 (6.5)

Eh = mg h (6.6)

The total amount of stored energy is the sum of the quantities above. Now, both sides of equation 6.3 can be
plotted. These should show the same results, as can be seen in figure 6.1. Only in the first 50 milliseconds, a
difference between the two can be seen. At these time steps, energy was still being put into the system.

Figure 6.1: The change in stored energy over time, and the change in Energy Flux over x.
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Eigenfrequencies
Another way of validating the model is by analytically calculating the eigenfrequencies, and comparing those
with the eigenfrequencies calculated by the model. Using the method described in section 2.3.3 the eigenfre-
quencies were calculated, results can be found in table 6.1. This table shows that the analytically calculated
eigenfrequencies are the same as the numerically calculated eigenfrequencies.

The first natural frequency is given by:

ωn =C ·
√

E I

ρAL4 = 9.87 ·
√

360

7850 ·0.0006 ·14 = 86.29
r ad

s
(6.7)

with ρ = 7850kg /m3, A = 0.006 ·0.1 = 0.0006m2 and L = 1m. λ is the wavelength of the mode and λL =π

Figure 6.2: C values for simply supported beams, as found in (Spijkers et al., 2005a)

This gives us a first natural frequency of

f = ω

2π
= 13.73Her t z (6.8)

Natural Frequencies First Second Third Fourth Fifth
Analytical f [H z] 13.7 54.96 123.70 219.85 343.7
Numerical f [H z] 13.732 54.918 123.53 219.51 342.8

Table 6.1: The calculated analytical eigenfrequencies of the system

The differences between the numerically and the analytically calculated natural frequencies are within 0.003%.
This confirms the numerical model to be correct.

6.4. APPLICATION IN THE SLIP-JOINT
Now that the behaviour of Energy Flux is more properly understood, a real-life application can be discussed.
The situation in the slip-joint connection is very different than in the proposed experiment and the numerical
model. However, the results show possible implementations in a slip-joint connection. There are two main
possibilities for such an implementation, excitement of the global eigenmodes, and excitement of the local
eigenmodes. Both possibilities are discussed below.

Global eigenmodes
The global eigenmodes are already excited during installation. These eigenmodes, and their corresponding
eigenfrequencies are seen in figure 6.3. From the results of this thesis, it is expected that the behaviour of
the Energy Flux will depend on contact points. The results showed that at certain locations of an eigenmode,
no Energy Flux is transported in the corresponding eigenfrequency. However, with the presence of a con-
tact point, this transport does occur in that eigenfrequency. This phenomenon could be used to detect the
locations of contact points using the global eigenmodes method.

However, there is one limitation of the global eigenmodes method. During installation, the system is excited
in one eigenfrequency at a time. This complicates the implementation of the Energy Flux method, because
the results of the frequency-domain presented in section 5.1.3 show that the presence of multiple eigenfre-
quencies in the behaviour is essential. This is because the relative importance of an eigenfrequency provides
information about the locations of contact points. However, it is expected that there is only one eigenfre-
quency present during the harmonic load of the installation.

Therefore, the global eigenmodes method cannot be used during installation. An alternative would be to
excite the system with a single impulse, forcing free vibration.
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Figure 6.3: Global Mode Shapes, as found by (Segeren, 2017)

Local eigenmodes
Contrary to the global eigenmodes method, for the local eigenmodes approach only a small part of the entire
connection will vibrate. For this method, the exciting force is applied at one specific location. In this method,
only a very small part of the connection can be examined each time. This means that the wavelength of the
eigenmodes should also decrease, excitation should be done in much higher frequencies.

The excitement of local eigenmodes is more closely comparable to the analysis done in this thesis. The
contact-less, or ’free’ areas in the slip-joint, will in this case form the span of the beam in the experiment.
The high pressure contact areas surrounding the free area could act as the supports in the experiment. The
detecting of contact areas works the same as it did in the numerical analysis performed in this study. For this
method, the importance of the eigenfrequencies can be compared. This information could be used to find
the location of contact points.

However, while this method seems promising, several aspects need further research. Recommendations for
this can be found in section 7.2



7
CONCLUSIONS AND RECOMMENDATIONS

7.1. KEY FINDINGS
In this thesis, the application of the Energy Flux method for the detection of contact areas has been re-
searched. In this section the key findings for answering the research questions are listed. First the two sub-
questions will be answered, after which the main research question will be discussed.

What is the influence of a contact point on Energy Flux in the time-domain, frequency-domain and time-
frequency-domain?
For this research question, the behaviour of EF was examined both with and without a contact point. First
the general behaviour of EF in a vibrating beam was examined. It was found that:

• For short beams S =−M ·ẇ ′+V ·ẇ should be used, because the Energy Flux equation S = 2 ·M ·ẇ ′ does
not apply. However, in a slip-joint the latter equation may still be valid.

• Close to the location of energy input, the energy moves towards the longer, unsupported section of the
beam. This results in a more evenly spread energy density.

Now that the general behaviour of EF in a vibrating beam is known, the influence of a contact point can be
studied. For those it was found that:

• The influence of contact areas is most pronounced in the frequency-domain. The presence and loca-
tion of a contact area had little influence in the time- and time-frequency-domain.

• In the frequency domain it can be seen that the presence of a contact point introduces two new fre-
quencies in the EF signal, namely twice the first and twice the second eigenfrequencies.

• In the studied domains, the exact location of an introduced contact point is difficult to identify. How-
ever, an estimate of the location was easily found, because the changes of the frequencies within the EF
were most pronounced around the contact point.

How can the numerical results be validated in an experiment?
The numerical results are promising and show that, especially in the frequency-domain the presence of a con-
tact point can be indicated. In this study an experiment was proposed, which should validate the numerical
findings. This experiment measures the EF through two cross-sections of a vibrating simply supported beam.
The two cross-section are located at the antinodes of the first two eigenmodes. These locations were chosen,
because the numerical results indicated the largest difference in behaviour at those points. An overview of
the experiment set-up can be seen in figure 3.1.

How can the Energy Flux method be used to detect contact areas in a vibrating steel beam?
Based on these sub-questions the main research question can be answered. The question has been ap-
proached from two sides, numerically and experimentally.

Numerically, the frequency-domain is the best indicator of a contact point. Although the exact location is
difficult to find, the presence and the approximate location of a contact point can be determined.
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Experimentally, the EF can be calculated by measuring strains and accelerations at two point besides one an-
other. The numerical results indicate that the presence of a contact point will introduce two new frequencies
in the EF.

7.2. SUGGESTIONS FOR FURTHER RESEARCH
Even though the results of this thesis are promising for the application of the Energy Flux method for the
detection of contact areas in a slip-joint connection, a real-life implementation is still a long way out. Further
research is needed on the following aspects:

• It should be studied whether the EBBT is applicable in a cylindrical shape. Several of the assumptions
made in EBBT, could be invalid in a slip-joint, such as the absence of the shear deformation, and of
the rotational inertia. This could be studied by performing a similar experiment, both numerical as
experimental, as conducted in this study on a cylinder, instead of a beam.

• In this study the numerical results of the two Energy Flux equations were different. The numerical
results showed that S = M · ẇ ′ is not valid in a beam. It should be studied whether this equation is valid
in a cylinder. Because a cylinder more closely resembles the situation for which the two equations are
identical, this is promising.

• The orthogonal component of a contact area is not taken into account in this study. Even though the
influence of this component is expected to be small, further research is needed to confirm this.

• In-field measurements of strains and accelerations during the slip-joint installation should be studied.
The frequencies within these signals and their corresponding locations will show the potentials of the
global eigenmodes method.



A
EXPECTED EXPERIMENT RESULTS

Besides a direct extraction of the relevant quantities from ANSYS. The numerical analysis has also been done,
using the same extraction method as the experiment. This way, a better comparison can be made between
the experimental and the numerical results. The results of this analysis are discussed here.

The expected results for the experiment differ from the results of the numerical model, because the equation
with which the Energy Flux is calculated differs, see sections 2.4.1. For a quick evaluation of the experimental
results, the experimental equation has also been put into the numerical model, in this subsection, those
results are discussed.

As discussed earlier, Energy Flux is a vector. When plotted over time, the direction is given by the sign of the
scalar (above or below 0). All values above zero indicate an Energy Flux in a positive direction, in this case to
the right. Values below zero indicate flux in the opposite direction, in this case leftward. When this signal is
then integrated. The complete energy through this cross-section can be calculated. A cumulative integration
would mean to subtract negative Energy Flux from the positive Flux. Again, this cumulative Energy Flux can
be plotted. These plots can be roughly subdivided in three categories.

• CEF through the left half of the beam, at the side of impact, see sub-figure A.1a.
The net Energy Flux is always positive, meaning to the right. As the input of energy is at this side of the
beam, this is not a surprising result. First, some of the energy input has to move rightwards, to get a
more homogeneous distribution of energy. Once this is achieved. The CEF simply fluctuates. All CEF
plots at this side of the beam qualitatively look like this.

• CEF through the middle of the beam, see sub-figure A.1b.
In the middle of the beam, the CEF looks slightly different. More centered, albeit still mostly positive.
This can be explained by the fact that the hammer blow was on the left side. Naturally, more energy will
then move rightwards through the middle. In Appendix A, a figure can be seen with the hammer blow
on the other side.

• CEF through the right half of the beam, see sub-figure A.1c.
The right half of the beam looks more like the left, with the important difference that the CEF is not al-
ways positive. Unsurprisingly, the CEF is now mostly negative, meaning leftwards. It fluctuates around
zero.
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(a) CEF through location 3 (b) CEF through location 6 (c) CEF through location 9

Figure A.1: Cumulative Energy Flux through three locations, without added weight.

Figure A.2: Overview of the behaviour areas of the cumulative Energy Flux

In these figures, it becomes clear that the location of the weight influences the behaviour of the amplitudes.
At the location of the weight, there is an increase in amplitude. The amplitude of the third peak remains low,
but a small increase is visible at exactly the point of the weight. This peak becomes more apparent when the
y-axis is not set. At the first eigenfrequency, the half with the weight is increased. A precise location is hard to
pinpoint, but a general location can easily be found.

All expected results in the frequency-domain can be found below. For all PLL’s, weights, locations and peaks,
the height of the fourier analysis. Figure A.3 shows the height of the peaks for PLL 1, the first figure shows the
height of the peaks at location 1. The colours indicate the amount of weight at the corresponding PLL. This
way, all information is shown in one figure.

Figure A.3: The expected results of the experiment with PLL 1.
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Figure A.4: The expected results of the experiment with PLL 2.

Figure A.5: The expected results of the experiment with PLL 3.
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Figure A.6: The expected results of the experiment with PLL 4.



B
CUMULATIVE ENERGY FLUX RESULTS

As described in section 5.1.2, The cumulative energy flux results have been calculated for all systems. The
results of those calculations are shown below for all systems that have been investigated.

B.1. PLL 1

Figure B.1: CEF through all locations with 1 kilogram at PLL 1
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Figure B.2: CEF through all locations with 2 kilogram at PLL 1

Figure B.3: CEF through all locations with 3 kilogram at PLL 1
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Figure B.4: CEF through all locations with 4 kilogram at PLL 1

Figure B.5: CEF through all locations with 5 kilogram at PLL 1
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B.2. PLL 2

Figure B.6: CEF through all locations with 1 kilogram at PLL 2

Figure B.7: CEF through all locations with 2 kilogram at PLL 2
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Figure B.8: CEF through all locations with 3 kilogram at PLL 2

Figure B.9: CEF through all locations with 4 kilogram at PLL 2
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Figure B.10: CEF through all locations with 5 kilogram at PLL 2

B.3. PLL 3

Figure B.11: CEF through all locations with 1 kilogram at PLL 3
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Figure B.12: CEF through all locations with 2 kilogram at PLL 3

Figure B.13: CEF through all locations with 3 kilogram at PLL 3
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Figure B.14: CEF through all locations with 4 kilogram at PLL 3

Figure B.15: CEF through all locations with 5 kilogram at PLL 3
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B.4. PLL 4

Figure B.16: CEF through all locations with 1 kilogram at PLL 4

Figure B.17: CEF through all locations with 2 kilogram at PLL 4
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Figure B.18: CEF through all locations with 3 kilogram at PLL 4

Figure B.19: CEF through all locations with 4 kilogram at PLL 4
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Figure B.20: CEF through all locations with 5 kilogram at PLL 4
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