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Propositional Team LogicsI
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Abstract

We consider team semantics for propositional logic, continuing [34]. In team seman-
tics the truth of a propositional formula is considered in a set of valuations, called a
team, rather than in an individual valuation. This offers the possibility to give meaning
to concepts such as dependence, independence and inclusion. We associate with every
formula φ based on finitely many propositional variables the set JφK of teams that sat-
isfy φ. We define a maximal propositional team logic in which every set of teams is
definable as JφK for suitable φ. This requires going beyond the logical operations of
classical propositional logic. We exhibit a hierarchy of logics between the smallest, viz.
classical propositional logic, and the maximal propositional team logic. We character-
ize these different logics in several ways: first syntactically by their logical operations,
and then semantically by the kind of sets of teams they are capable of defining. In
several important cases we are able to find complete axiomatizations for these logics.

Keywords:
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1. Introduction

In classical propositional logic the propositional atoms, say p1, . . . ,pn, are given a
truth value 1 or 0 by what is called a valuation and then any propositional formula φ
can be associated with the set |φ| of valuations giving φ the value 1. This constitutes
a perfect analysis of the circumstances under which φ is true. The formula φ can
be presented in so-called Disjunctive Normal Form based on taking the disjunction
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of descriptions of the valuations in |φ|. Two fundamental results can be proved for
classical propositional logic. The first says that every set of valuations of p1, . . . ,pn is
equal to |φ| for some propositional formula φ. The second fundamental result says that
there is a simple complete axiomatization of those φ that are valid in the sense that |φ|
is the full set of all valuations on the propositional atoms occurring in φ.

In this paper, which continues [34], we consider a richer semantics called team se-
mantics for propositional logic. In team semantics the truth of a propositional formula
is evaluated in a set of valuations, called a team, rather than in an individual valuation.
This offers the possibility of considering probabilities of formulas, as in [19], and the
meaning of concepts such as dependence, independence and inclusion, as in [34]. It is
the latter possibility that is our focus in this paper.

Team semantics was introduced by the second author in [27] on the basis of a
new compositional semantics, due to Hodges [17, 18], for independence friendly logic
[16, 25]. The monograph [27] was written in the context of predicate logic and team se-
mantics was used to give meaning to a variable being totally determined by a sequence
of other variables. In the context of propositional and modal logic team semantics
was introduced in [28]. In propositional logic team semantics can be used to give
meaning to a propositional variable being totally determined by a sequence of other
variables. It took a few years before this idea was fully exploited in [31, 32]. Mean-
while modal dependence logic, i.e. team semantics for modal logic, was investigated
e.g. in [7, 8, 9, 14, 15, 23, 26].

When propositional formulas are evaluated in a team—i.e. a set—of valuations, a
whole new landscape opens in front of us. The first observation is a numerical explo-
sion: If we have n propositional atoms, there are 2n valuations, 22n teams, and 222n

sets of teams. For n= 3 the third number is about 1077. This emphasises the need for
mathematical methods in team semantics. The truth table methods which list all pos-
sibilities is bad enough in ordinary propositional logic, but totally untenable in team
semantics.

In classical propositional logic, we associate with every formula φ based on propo-
sitional atoms p1, . . . ,pn the set |φ| of valuations that satisfy φ. Similarly, in team
semantics we associate with every formula φ based on propositional atoms p1, . . . ,pn
the set JφK of teams that satisfy (in the sense defined below) φ. By choosing our formu-
las carefully we can express every set of teams in the form JφK for suitable φ, but this
requires going beyond the logical operations of classical propositional logic. We can
also axiomatize the propositional formulas that are valid i.e. satisfied by every team.

The rich structure of teams gives rise to a plethora of new propositional connectives.
Most importantly, disjunction has several versions. To define when a team X satisfies
φ∨ψ we can say that this happens if X satisfies φ or it satisfies ψ, or we can say
that this happens if X is the union of two sets Y and Z such that Y satisfies φ and Z
satisfies ψ, or, finally, we can also say that this happens if, assuming X 6= /0, the team
X is the union of two sets Y 6= /0 and Z 6= /0 such that Y satisfies φ and Z satisfies ψ.
If X is a singleton, which corresponds to the classical case, the first two disjunctions
are equivalent, but the third is equivalent to φ∧ψ. But for non-singleton teams there
is a big difference in every respect. These distinctions, leading to different variants
of familiar logical operations, reveal a hierarchy of logics between the smallest, viz.
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classical propositional logic, and the maximal one capable of defining every set of
teams. We characterize these different logics in several ways: first syntactically by their
logical operations, and then semantically by the kind of sets of teams they are capable
of defining. In several important cases we are able to find complete axiomatizations for
these logic.

In our previous paper [34] we considered sets of teams that are downward closed in
the sense that if a team is in the set, then every subteam is in the set, too. Respectively,
the logics studied in [34] have the property that the sets of teams defined by their
formulas are downward closed. We isolated five equivalent logics with this property,
all based on some aspect of dependence. In these logics every downward closed set of
teams is definable, and the logics have complete axiomatizations. The axiomatizations
are by no means as simple as typical axiomatizations of classical propositional logic,
but have still a certain degree of naturality.

In this paper we consider sets of teams, and related propositional logics, that are
not downward closed. A property in a sense opposite to downward closure is closure
under (set-theoretical) unions. In fact, a set of teams that is both closed downward and
closed under unions is definable in classical propositional logic. So-called inclusion
logic, to be defined below, is an example of a logic in which definable sets of teams
are closed under unions. So-called independence logic, also to be defined below, is
neither downward closed nor closed under unions. Our methods do not seem to apply
to independence logic, we can merely approximate it from below and from above with
logics that we understand better.

We do not rule out the possibility that a team is empty. Accordingly we distinguish
whether a set of teams contains the empty team as an element or not. The basic de-
pendence, independence and inclusion logics have the Empty Team Property i.e. every
definable set of teams contains the empty team. However, many of our proofs depend
on the ability to express the non-emptiness of a team. For this purpose we also consider
a special atomic formula NE the only role of which is to say that the team is nonempty.
This so-called non-emptiness NE was introduced in [32] and in [29]. We give examples
which suggest that NE is not completely alien to common usage of language although
it seems hopelessly abstract. The introduction of NE leads to two versions of each of
our propositional logics: one without NE and one with NE.

This paper is structured as follows. In Section 2 we define the basic concepts and
make some preliminary observations. We also define the propositional team logics we
study in the paper, including propositional dependence logic, propositional indepen-
dence logic, propositional union closed logic, propositional inclusion logic and propo-
sitional team logic as well as the strong version of each. In Section 3 we establish
basic normal forms and use them to obtain semantic characterizations of our logics,
whether strong or not. In Section 4 we prove some metalogical properties of our log-
ics, including compactness and the closure under classical substitutions of the logics.
In Section 5 we establish complete axiomatizations of the strong versions of our logics.
Several open problems are listed in the concluding Section 6.
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2. Preliminaries

Our propositional team logic follows the pattern set forth on first-order level by
dependence logic [27], independence logic [13], as well as inclusion and exclusion
logics [10]. The concepts of dependence and independence were earlier introduced
in database theory, starting with [6]. However, in database theory the focus is on de-
pendence and independence of attributes per se, while we take the dependence and
independence as atomic formulas and use logical operations to build complex formu-
las. The benefit of considering complex formulas is that we can express very involved
types of dependence and independence. A good example is the fact that first-order in-
clusion logic can express in finite models exactly all dependencies expressible in fixed
point logic [11].

We follow here the reasoning of Wilfrid Hodges [17, 18] to the effect that a set of
valuations, rather than a single valuation, permits the delineation of dependence and
independence. We call such sets teams. Let us now give the formal definition of a
team.

Definition 2.1. Throughout the paper we fix an infinite set Prop = {pi | i ∈ N} of
propositional variables. We sometimes use ~x,~y,~z, . . . to denote arbitrary sequences
of propositional variables. A valuation s on a set N of indices (i.e. a set of natural
numbers) is a function from N to the set 2 = {0,1}. A team X on N is a set of
valuations on N . A team X on the set N of all natural numbers is called a team. If X
is a team on N and N ′ ⊆N , then we write X �N ′ for the set {s �N ′ | s ∈X}.

Table 1 shows an example of a teamX consisting of six valuations. One possibility
is to view a team as an information state as is done in inquisitive logic [5]. The idea is
that there is one “true” valuation v and the valuations in the team are approximations
of it as far as we know. The bigger the team the bigger is our uncertainty about v. On
the other hand, if the team is as small as a singleton {v}, we know the valuation, and
there is no uncertainty. This is just one intuition behind the team concept. A different
intuition is that the valuations in a team arise from scientific observations. They may
arise also from the organizational structure of a large company, etc.

We call propositional logics that have semantics based on teams propositional team
logics. As the first step, let us examine the usual classical propositional logic in the
setting of team semantics.

Definition 2.2. Well-formed formulas of classical propositional logic (CPL) are given
by the following grammar

φ ::= pi | ¬pi | ⊥ | (φ∧φ) | (φ⊗φ).

Here we use the symbol ⊗ to denote the disjunction of CPL. A well-formed formula
of CPL is said to be a formula in the language of CPL or a classical formula.

Definition 2.3. We define inductively the notion of a classical formula φ being true on
a team X , denoted by X |= φ, as follows:

• X |= pi iff for all s ∈X , s(i) = 1
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p0 p1 p2 p3 . . .
s1 1 1 1 1
s2 1 0 0 0
s3 0 1 1 1
s4 0 0 0 0 . . .
s5 1 1 0 0
s6 0 1 0 1

Table 1: A team X = {s1, . . . ,s6}

• X |= ¬pi iff for all s ∈X , s(i) = 0

• X |=⊥ iff X = /0

• X |= φ∧ψ iff X |= φ and X |= ψ

• X |= φ⊗ψ iff there exist two subteams Y,Z ⊆ X with X = Y ∪Z such that
Y |= φ and Z |= ψ

We write φ(pi1 , . . . ,pin) if the propositional variables occurring in the formula φ
are among pi1 , . . . ,pin . The following lemma summarizes the main properties of clas-
sical formulas. The reader is referred to [34] for details on other properties of the team
semantics of classical formulas.

Lemma 2.4. Classical formulas have the Locality Property, the Flatness Property,
the Downward Closure Property, the Union Closure Property, and the Empty Team
Property defined as follows.

(Locality Property) Let X and Y be two teams, and φ(pi1 , . . . ,pin) a formula. If
X � {i1, . . . , in}= Y � {i1, . . . , in}, then X |= φ ⇐⇒ Y |= φ.

(Flateness Property) X |= φ ⇐⇒ ∀s ∈X({s} |= φ)

(Downward Closure Property) If X |= φ and Y ⊆X , then Y |= φ

(Union Closure Property) If X |= φ for all X ∈ X , then
⋃
X |= φ

(Empty Team Property) /0 |= φ always holds

Under the usual single valuation semantics a classical formula φ(pi1 , . . . ,pin) de-
fines a set |φ|= {s∈ 2N : s |= φ} of valuations (a team!) onN = {i1, . . . , in}; the same
formula under the team semantics defines a set

JφK := {X ⊆ 2N |X |= φ}

of teams onN . It is well-know that CPL is expressively complete under the usual single
valuation semantics in the sense that every property X ⊆ 2N is definable by a classical
formula φ, i.e., X = |φ|. We now define a similar notion of expressive completeness
for a set of team properties under the team semantics.
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Definition 2.5. Let P be a set of team properties i.e. a set of sets of teams. We let
PN = {P �N : P ∈ P}, where each P �N = {X �N :X ∈ P} is a team property on a
finite set N of indices. We say that a propositional team logic L characterizes P, if for
each index set N = {i1, . . . , in},

PN = {JφK : φ(pi1 , . . . ,pin) is a formula in the language of L}.

If a logic characterizes a set P of team properties, then we also say that the logic is
expressively complete for P.

Below we define some interesting team properties, already inherent in Lemma 2.4:

Definition 2.6. A team property P, i.e., a set of teams, is called

• flat if X ∈ P ⇐⇒ ∀s ∈X({s} ∈ P);

• downward closed if Y ⊆X ∈ P=⇒ Y ∈ P;

• union closed if X ⊆ P=⇒
⋃
X ∈ P.

It follows from our previous paper [34] that several propositional logics of de-
pendence (PD) (including propositional dependence logic and inquisitive logic) are
expressively complete for the set of all nonempty downward closed team properties.
In this paper we will study logics that are expressively complete for each of the team
properties defined above. In particular, we will prove that CPL is expressively com-
plete for the set of flat team properties and it is the biggest propositional team logic that
defines both all downward closed team properties and all union closed team properties
(Theorem 3.1).

The empty team is a member of any flat team property and of any nonempty down-
ward closed team property. The familiar classical formulas and formulas in the lan-
guage of PD that we studied in our previous paper [34] all have the empty team prop-
erty. To define team properties that do not contain the empty team, we introduce a new
atom NE, called non-emptiness, stating that the team in question is nonempty. To define
also other interesting team properties, we now enrich the language of our logic.

Definition 2.7. Well-formed formulas of the full propositional team logic (FPT) are
given by the following grammar

φ ::=pi | ¬pi | NE | ⊥ | pi1 . . .pik ⊥ pj1 . . .pjm |=(pi1 , . . . ,pik ,pj)
| pi1 , . . . ,pik ⊆ pj1 . . .pjm | (φ∧φ) | (φ⊗φ) | (φ�φ) | (φ∨φ)

The formulas pi1 . . .pik ⊥ pj1 . . .pjm , =(pi1 , . . . ,pik ,pj) and pi1 , . . . ,pik ⊆ pj1 . . .pjm
are called the independence atom, the dependence atom and the inclusion atom, respec-
tively. The connectives ⊗, � and ∨ are called the tensor (disjunction), the nonempty
disjunction and the Boolean disjunction, respectively.

Definition 2.8. We define inductively the notion of a formula φ in the language of FPT
being true on a team X , denoted by X |= φ. All the cases are identical to those defined
in Definition 2.3 and additionally:
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• X |= NE iff X 6= /0

• X |= pi1 . . .pik ⊥ pj1 . . .pjm iff for all s,s′ ∈X , there exists s′′ ∈X such that

〈s′′(i1), . . . ,s′′(ik)〉= 〈s(i1), . . . ,s(ik)〉

and
〈s′′(j1), . . . ,s

′′(jm)〉= 〈s′(j1), . . . ,s
′(jm)〉

• X |==(pi1 . . .pik ,pj) iff for all s,s′ ∈X ,

if 〈s(i1), . . . ,s(ik)〉= 〈s′(i1), . . . ,s′(ik)〉, then s(j) = s′(j)

• X |= pi1 . . .pik ⊆ pj1 . . .pjk iff for all s ∈X , there exists s′ ∈X such that

〈s(i1), . . . ,s(ik)〉= 〈s′(j1), . . . ,s
′(jk)

• X |= φ�ψ iff X = /0 or there are nonempty Y and Z such that X = Y ∪Z,
Y |= φ and Z |= ψ

• X |= φ∨ψ iff X |= φ or X |= ψ

We say that a formula φ is valid, denoted by |= φ, if X |= φ holds for all teams X . We
say that a formula ψ is a logical consequence of a set Γ of formulas, written Γ |= ψ,
if for any team X such that X |= φ for all φ ∈ Γ, we have X |= ψ. We also write
φ |= ψ for {φ} |= ψ. If φ |= ψ and ψ |= φ, then we say that φ and ψ are semantically
equivalent, in symbols φ≡ ψ.

Let L1 and L2 be two propositional team logics. We write L1 ≤ L2 if every formula
of L1 is semantically equivalent to a formula of L2. If L1 ≤ L2 and L2 ≤ L1, then we
write L1 ≡ L2 and say that L1 and L2 have the same expressive power.

Let us now spend a few moments with the atoms and connectives of FPT.

Independence atom
Let us first take a closer look at the independence atoms by considering the team X

of Table 1. It can be verified that the independence atom p0 ⊥ p3 is satisfied byX . One
may think of the team X as given data about p0,p1,p2,p3, . . . . For example, p0,p1,p2
may be propositional variables which tell whether some valves V0,V1,V2 controlling
gas flow in an industrial process are open (1) or closed (0), and p3 is a propositional
variable indicating whether a warning lamp is on (1) or off (0). We can conclude on the
basis of the team of Table 1 that the lamp is independent of the valve V0. However, the
lamp is not completely independent of V1, because if V1 is closed, the lamp is definitely
off. Also, the lamp is not entirely independent of the valve V2, because if V2 is closed,
the lamp is again definitely off.

One way to describe the truth definition of X |= pi1 . . .pik ⊥ pj1 . . .pjm is to com-
pare it to Cartesian product: X |= {pi : i ∈ I} ⊥ {pj : j ∈ J} if and only if

X � I ∪J = (X � I)× (X � J).
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This manifests the similarity between our concept of independence and the concept of
independence of random variables in statistics.

The implication problem of independence atoms (i.e., the problem of asking whether
an independence atom follows from a set of independence atoms) can be completely
axiomatized by the axioms below, known in database theory as the Geiger-Paz-Pearl
axioms ([12]):

(i) If ~x⊥ ~y, then ~y ⊥ ~x.

(ii) If ~x⊥ ~y, then ~z ⊥ ~y, where ~z is a subsequence of ~x.

(iii) If ~x⊥ ~y, then ~u⊥ ~v, where ~u and ~v are permutations of ~x and ~y, respectively.

(iv) If ~x⊥ ~y and ~x~y ⊥ ~z, then ~x⊥ ~y~z.

While the downward closure property has a profound influence on properties of
dependence logic as already mentioned, the independence atoms violate this property.
For example, in Table 1 in the team X the attributes p0 and p3 are independent but in
the subteam Y = {s1,s2,s3} they are not. We will see in the sequel that propositional
independence logic and other propositional team logics have a completely different
flavor than propositional logics of dependence.

Non-emptiness atom

Another formula that violates the downward closure property is the very simple
atom NE that we call nonemptieness which states that the team is nonempty. An easy
inductive proof shows that the NE-free fragment of FPT has the empty team property.
But often when describing properties of teams, we do want to distinguish between
the empty team and the nonempty teams. The atom NE is introduced exactly for this
purpose.

The symbol NE is a logical symbol, on a par with ⊥, with no internal structure and
no proposition symbols occurring in it. While ⊥ is generally conceived of as a symbol
of contradiction, one may ask what is the intuitive meaning of NE? Does this symbol
occur in natural language or in scientific discourse? Let us think of a natural language
sentence that has the modality “might”:

I might come to the party.

Given a nonempty information state (i.e. a team) X , this sentence can be characterized
as “there exists a nonempty substate Y in which I indeed come to the party”. This
“might” modality (denoted by O) was considered by Hella and Stumpf in [15] and its
team semantics is given by the clause

• X |= Oφ iff X = /0 or there exists a nonempty team Y ⊆X such that Y |= φ

The “might” modality can be expressed in terms of the more basic notion of non-
emptiness of a team:

Oφ≡⊥∨
(
(φ∧NE)⊗>

)
.
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Contradictions and linear implication

In the presence of the non-emptiness NE contradiction has two variants: the weak
contradiction ⊥ that is satisfied only by the empty team and the strong contradiction
⊥∧NE that is satisfied by no team at all.

A related logical constant is the linear implication ( (introduced by Abramsky
and Väänänen [1]) that has the semantics

• X |= φ( ψ iff for any team Y , if Y |= φ, then X ∪Y |= ψ

The strong contradiction is easily definable using the linear implication:

⊥∧NE≡>(⊥,

where > = pi1 ⊗¬pi1 . The reader is referred to [1] for details on linear implication.
We only remark that in the presence of the downward closure property, we have

φ |= ψ ⇐⇒ /0 |= φ( ψ.

In other words, deciding whether ψ is a logical consequence of φ is reduced to deciding
whether the linear implication φ( ψ is satisfied by the empty team.

Disjunctions

Due to the way we define semantics there are more propositional operations than
in the case of classical propositional logic. In particular, disjunction has three different
incarnations, namely ⊗, � and ∨. These different forms arise from the difference
between considering individual valuations and sets of valuations.

The tensor disjunction⊗ generalizes the disjunction of classical propositional logic.
The semantics of⊗ and other connectives as defined in Definitions 2.3 and 2.8 is known
in the literature (see e.g.,[10]) as the Lax Semantics (in contrast to the Strict Seman-
tics). An easy inductive proof shows that our logic FPT has the locality property.
By contrast, if we replace the clause for tensor disjunction ⊗ in Definition 2.3 by the
corresponding clause under strict semantics (denoted by |=s)

• X |=s φ⊗ψ iff there exist two disjoint subteams Y,Z ⊆X withX = Y ∪Z such
that Y |=s φ and Z |=s ψ

the logic does not any more satisfy the local property. This is because, for instance,
for the two valuations s1 and s2 defined in Table 1, we have {s1,s2} |=s (NE∧p0)⊗
(NE∧p0) while {s1} 6|=s (NE∧p0)⊗ (NE∧p0), even though {s1 � {0},s2 � {0}} =
{(0,1)}= {s1 � {0}}. We refer the reader to [10] for further discussions on the differ-
ence between lax and strict semantics.

The nonempty disjunction φ�ψ was introduced by Raine Rönnholm (personal
communication). One can easily verify that � can be defined in terms of the other
disjunctions and the non-emptiness:

φ�ψ ≡⊥∨
(
(φ∧NE)⊗ (ψ∧NE)

)
.
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Moreover, it was observed in [15] that in any fragment of FPT that has the empty team
property the might modality O and the nonempty disjunction � as inter-definable:

Oφ≡ φ�> and φ�ψ ≡ (φ⊗ψ)∧ (Oφ∧Oψ) (1)

To understand the meaning of � in natural language, let us think of the sentence
(in the context of chess):

Rook or queen was sacrificed in each play. (2)

It is clear what it means to say that a nonempty setX of plays satisfies this, and in each
play in X either rook or queen was sacrificed. There is a slight difference in saying

Rook or queen was sacrificed and both cases occurred in some plays. (3)

In our symbolic language, denoting “Rook was sacrificed” by φ and “queen was sacri-
ficed” by ψ, (2) would be written

X |= φ ⊗ ψ

while (3) would be written

X |= (φ∧NE) ⊗ (ψ∧NE) or X |= φ�ψ.

In a sense, φ�ψ is an “honest” disjunction: if the team has anything in it at all, then it is
divided between φ and ψ in the non-trivial way that both get a nonempty subteam. We
can think that whoever says (3), means that if some plays were actually played, then in
some of them a Rook was sacrificed and in some the Queen. To put it in a more general
context, the formula φ�ψ permits a type of “free choice” by having each disjunct
nonvoid. This way the nonempty disjunction φ�ψ provides more information than
the tensor disjunction φ⊗ψ. In particular, uttering a disjunction with a void disjunct is
actually less informative than simply stating one of the disjuncts.

The Boolean disjunction ∨ was called intuitionistic disjunction in our previous pa-
per [34] in the context of propositional logics of dependence. In particular, in the pres-
ence of the downward closure property the intuitionistic disjunction has the disjunction
property:

|= φ∨ψ implies |= φ or |= ψ.

However, in the absence of the downward closure, this property, reminiscent of con-
structive logic, for ∨ fails, since, e.g., |= ⊥∨NE and |= (p�¬p)∨ (p∨¬p), whereas
6|=⊥, 6|= NE, 6|= p�¬p and 6|= p∨¬p.

We define the empty disjunction for all three disjunctions as⊗
/0 :=⊥,� /0 :=⊥ and

∨
/0 :=⊥∧NE .

We are interested in fragments of FPT that are expressively complete for some nice
sets of team properties as defined in Definition 2.6. The languages of these fragments
are determined in terms of which atoms and connective are allowed. Table 2 defines
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Table 2: Propositional team logics

Logic Atoms Connectives
Classical propositional logic (CPL) pi,¬pi,⊥ ∧,⊗
Strong classical propositional logic (CPL+) pi,¬pi,⊥,NE ∧,⊗

Propositional independence logic (PI) pi,¬pi,⊥, ∧,⊗
pi1 . . .pik ⊥ pj1 . . .pjm

Strong propositional independence logic (PI+) pi,¬pi,⊥,NE, ∧,⊗
pi1 . . .pik ⊥ pj1 . . .pjm

Propositional team logic (PT) pi,¬pi,⊥ ∧,�,∨
Strong propositional team logic (PT+) pi,¬pi,⊥,NE ∧,⊗,∨
Propositional union closed logic (PU) pi,¬pi,⊥ ∧,⊗,�
Strong propositional union closed logic (PU+) pi,¬pi,⊥,NE ∧,⊗,�

Propositional inclusion logic (PInc) pi,¬pi,⊥, ∧,⊗
pi1 . . .pik ⊆ pj1 . . .pjk

Strong propositional inclusion logic (PInc+) pi,¬pi,⊥,NE, ∧,⊗
pi1 . . .pik ⊆ pj1 . . .pjk

Propositional dependence logic (PD) pi,¬pi,⊥, ∧,⊗,∨
=(pi1 . . .pik ,pj)

Strong propositional dependence logic (PD+) pi,¬pi,⊥, ∧,⊗,∨,(
=(pi1 . . .pik ,pj)

Full propositional team logic (FPT)

pi,¬pi,⊥,NE,

∧,⊗,�,∨pi1 . . .pik ⊥ pj1 . . .pjm
=(pi1 . . .pik ,pj)

pi1 . . .pik ⊆ pj1 . . .pjk

the sets of atoms and connectives of the languages of these logics. Apart from FPT, we
consider six other types of propositional logics, namely, classical logic, independence
logic, team logic, union closed logic, inclusion logic and dependence logic, each of
which has two variants, a weak version that has the empty team property, and a strong
version that contains the NE atom or the linear implication ( in its language. The
propositional independence logic, propositional inclusion logic and propositional de-
pendence logic we define here are propositional version of their first-order counterparts
introduced in [10, 13, 27]. The propositional team logic defined as in Table 2 does not
directly correspond to the propositional fragment of the first-order team logic studied
in [21, 27], and the reader should not confuse the two logics. The propositional union
closed logic is a new logic that was not previously considered in the literature.

3. Expressive Power and Normal Forms

In this section, we study the expressive power of the propositional team logics
defined in Table 2 and their normal forms. We will also prove the interconnections
illustrated in Figure 1.
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Figure 1: Expressive power of propositional team logics

To begin with, recall from [34] that for each teamX on a finite setN = {i1, . . . , in}
of indices, the classical formula

ΘX =
⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

(in disjunctive normal form) defines the team X modulo subteams, where p1
i := pi and

p0
i := ¬pi for any index i. That is, for any team Y on N ,

Y |= ΘX ⇐⇒ Y ⊆X. (4)

Using this formula, we can prove the expressive completeness of CPL under the team
semantics for the set of all flat team properties, as illustrated in Figure 1.

Theorem 3.1. CPL characterizes the set of all flat team properties.

Proof. Recall from Definitions 2.5 and 2.6 that we need to show that for any finite set
N = {i1, . . . , in} of indices, every classical formula φ(pi1 , . . . ,pin) defines a flat team
property, i.e., JφK is flat, and every flat team property P⊆ P(2N ) is definable by some
classical formula φ(pi1 , . . . ,pin), i.e., JφK = P. The former follows from Lemma 2.4.
We now prove the latter. Let P be a flat team property and {s1}, . . . ,{sk} all singleton
teams in P. Putting X = {s1, . . . ,sk}, we have P= JΘXK, since for any team Y on N ,

Y |= ΘX ⇐⇒ Y ⊆X ∈ P ⇐⇒ Y ∈ P.

12



Clearly, from the above theorem it follows that the standard disjunctive normal
form of CPL under the usual single valuation semantics is also a normal form of CPL
under the team semantics. Another immediate corollary of the expressive completeness
of CPL for the set of all flat properties is that flatness is equivalent to being logically
equivalent to a classical formula in propositional team logics, as stated in the theorem
below. Flatness was originally introduced by Hodges [18] in the first-order context,
and further studied in [27]. In the first-order dependence logic case all classical first-
order formulas have the flatness property (see, e.g., [27]) but the converse is not true.
For example, all first-order sentences (i.e., formulas without free variables) have the
flatness property for the trivial reason that their truth in any model is decided by the
truth in the singleton team { /0} of the empty assignment /0 alone (see Lemma 1.1.14 in
[32]).

Theorem 3.2. Let φ be a formula in the language of FPT. The following are equiva-
lent.

(i) φ has the flatness property.

(ii) φ is semantically equivalent to a classical formula.

(iii) φ has the downward closure property and the union closure property.

Proof. The equivalence of (i) and (ii) follows from Theorem 3.1 and the equivalence
of (i) and (iii) is easy to verify.

Our characterization of classical propositional logic can be equivalently formulated
as follows: The classical propositional logic cannot be extended in the context of team
semantics to a propositional logic which satisfies both the downward closure and the
union closure property. This is remotely reminiscent of the characterization of classical
first-order logic, known as Lindström’s Theorem [22], to the effect that classical first-
order logic cannot be extended in the context of abstract logics to a logic which satisfies
both the Downward Löwenheim-Skolem Theorem and the Compactness Theorem.

Recall from [34] that PD is expressively complete for the set of all downward
closed team properties which contain the empty team. Having established also the
expressive completeness of CPL for the set of all flat team properties, we now proceed
towards the proof of the other expressive completeness results illustrated in Figure 1.

The set of subteams of a fixed team X on a finite set N is characterized by the
classical formula ΘX (in the sense of (4)). We now show that with the non-emptiness
or the nonempty disjunction, a team can be characterized precisely.

Lemma 3.3. Let X be a team on a finite set N = {i1, . . . , in} of indices. Define

Θ
∗
X :=

⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE) and Θ
∗∗
X :=�

s∈X
(p
s(i1)
i1
∧·· ·∧ps(in)in

).

For any team Y on N , we have

(i) Y |= Θ∗X ⇐⇒ Y =X.

(ii) Y |= Θ∗∗X ⇐⇒ Y =X or Y = /0.
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Proof. The direction “⇐=” for both items is obvious. For the direction “=⇒” of item
(i), suppose Y |= Θ∗X . If X = /0, then Θ∗X =⊥, hence Y = /0 =X . Otherwise, for each
s ∈X there exists a set Ys such that

Y =
⋃
s∈X

Ys and Ys |= p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE .

Clearly, Ys = {s} for each s ∈X , implying Y =X .
For the direction “=⇒” of item (ii), suppose Y |= Θ∗∗X . If Y = /0, then we are done.

Otherwise, Y =X is proved by a similar argument to that of item (i).

Next, we prove that many of the logics we defined in Section 2 (see Table 2) are
expressively complete for certain sets of team properties (see Definitions 2.5 and 2.6
for definitions of the relevant notions).

Theorem 3.4. (i) Both PT+ and FPT characterize the set of all team properties, i.e.,
every team property is definable in the logics. In particular, PT+ ≡ FPT.

(ii) PT characterizes the set of all team properties which contain the empty team.

(iii) PU characterizes the set of all union closed team properties which contain the
empty team.

(iv) PU+ characterizes the set of all union closed team properties.

(v) PD characterizes the set of all downward closed team properties which contain the
empty team.

(vi) PD+ characterizes the set of all downward closed team properties.

Proof. Let N = {i1, . . . , in} be an arbitrary finite set of indices.
(i) Obviously every formula φ(pi1 , . . . ,pin) in the language of PT+ or FPT defines

a team property on N , i.e., JφK ⊆ P(2N ). Conversely, for any team property P ⊆
P(2N ), we shall show P= J

∨
X∈P Θ∗XK.

By Lemma 3.3(i), for any team Y on N ,

Y |=
∨
X∈P

Θ
∗
X ⇐⇒ ∃X ∈ P(Y =X) ⇐⇒ Y ∈ P.

In particular, if P= /0, then J
∨
X∈ /0 Θ∗XK= J⊥∧NEK= /0.

(ii) Since formulas φ(pi1 , . . . ,pin) in the language of PT have the empty team prop-
erty, we have /0 ∈ JφK ⊆ P(2N ). Conversely, for any team property P ⊆ P(2N ) with
/0 ∈ P, we show P= J

∨
X∈P Θ∗∗X K.

By Lemma 3.3(ii), for any team Y on N ,

Y |=
∨
X∈P

Θ
∗∗
X ⇐⇒ ∃X ∈ P(Y =X) or Y = /0 ⇐⇒ Y ∈ P.

(iii) It is easy to show by induction that every formula φ in the language of PU
has the union closure property and the empty team property, which imply that JφK is
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a union closed team property that contains the empty team. Conversely, for any union
closed team property P⊆P(2N ) with /0 ∈ P, we show that P= J

⊗
X∈P Θ∗∗X K.

If Y ∈ P, then, by Lemma 3.3(ii) we have Y |= Θ∗∗Y and Y |=
⊗
X∈P Θ∗∗X . Con-

versely, if Y |=
⊗
X∈P Θ∗∗X , then for each X ∈ P there is YX ⊆ Y such that Y =⋃

X∈PYX and YX |= Θ∗∗X . By Lemma 3.3(ii), we have YX = /0 or YX = X for each
X ∈ P. Since /0 ∈ P and P is a union closed team property, we conclude that Y ∈ P.

(iv) Obviously JNEK is a union closed team property. Thus, by item (iii), for every
formula φ in the language of PU+, JφK is a union closed team property. Conversely,
for any union closed team property P ⊆ P(2N ), we show that P is definable by some
formula φ in the language of PU+.

If P contains the empty team, then P= J
⊗
X∈P Θ∗∗X K by item (iii). If /0 /∈ P, then it

is easy to verify that P= JNE∧
⊗
X∈P Θ∗∗X K.

(v) This item is a consequence of results in [34]. Note that in [34], propositional
dependence logic and some of its variants (including propositional inquisitive logic)
are all shown to be expressively complete for the set of all downward closed team
properties which contain the empty team. With a slight abuse of notation, we denote in
this paper by PD any of these equivalent logics.

(vi) It is easy to show, by induction, that every formula φ in the language of PD+

has the downward closure property, which implies that JφK is a downward closed team
property. Conversely, for any downward closed team property P ⊆ P(2N ), we show
that P is definable by some formula in the language of PU+.

If P is a downward closed team property that contains the empty set, then by item
(v), we know that P is definable by some formula in the language of PD (thus also in
the language of PD+). If /0 /∈ P, then since P is a downward closed team property, we
must have P= /0. Clearly, P= /0 = J>(⊥K.

Results in Theorems 3.1 and 3.4 are illustrated in Figure 1, where all those expres-
sively complete logics are represented in shaded rectangles labeled with their corre-
sponding characteristic team properties. The logics FPT, PT+ and PT do not have
a label in Figure 1, as they characterize the set of arbitrary team properties (with or
without the empty team). Except for the flat team property, each characteristic team
property we study here has two variants. One with the empty team in the property
and the other one without this constraint. We have an expressively complete logic for
certain set of team properties that has the empty team property (indicated by a solid
rectangle) and an expressively complete logic for the same set of team properties with-
out the empty team property (indicated by a dashed rectangle).

We remarked in Section 2 that in any propositional team logic with the empty team
property, the nonempty disjunction � and the might modality O are inter-definable
(Equation (1)). Consequently, classical propositional logic extended with the might
modality O has the same expressive power as PU and thereby is also expressively
complete for the set of all union closed team properties which contain the empty team.

Propositional independence logic PI is expressively properly included in the ex-
pressively strongest logic PT+. In particular, the independence atoms are definable in
PT+:

pi1 . . .pik ⊥ pj1 . . .pjm ≡
∨

X∈XI,J

Θ
∗
X , (5)
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Logic Normal Form
PT+ ∨

f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
FPT
PT

∨
f∈F
�
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

PU+ either NE∧
⊗
f∈F
�
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

) or
⊗
f∈F
�
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

PU
⊗
f∈F
�
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

PD
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

PD+ either
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

) or >(⊥

CPL
⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

)

Table 3: Normal forms of propositional team logics

where I = {i1, . . . , ik}, J = {j1, . . . , jm} and

XI,J = {X ⊆ {0,1}I∪J |X = (X � I)× (X � J)}.

The expressive power of PI is an open problem.
Another immediate consequence of the expressive completeness of PT+ for the

set of all team properties is that all the possible atoms and all the instances of all the
possible connectives are expressible in the expressively strongest logic PT+. Consider
the Boolean negation ∼ defined as

• X |=∼φ iff X 6|= φ

Clearly NE≡∼⊥ and φ∨ψ ≡∼ (∼ φ∧ ∼ ψ). Thus CPL+ extended with the Boolean
negation ∼ has the same expressive power as PT+. See [24] for other properties of
the Boolean negation ∼ and a complete axiomatization for propositional dependence
logic extended with ∼. In this paper we will restrict our attention to the considerably
simpler logical constant NE instead of ∼. Note that from the equivalence of the two
logics, we only derive that every instance of ∼ φ is expressible in PT+, but Boolean
negation turns out to be not uniformly definable in PT+ (see [33]).

From the proofs of Theorem 3.1 and Theorem 3.4 we obtain interesting disjunctive
normal forms for the logics, as listed in (the self-explanatory) Table 3. It is worth
taking note of the many similarities and at the same time the subtle differences of these
normal forms.

We now prove the results in Figure 1 concerning the comparison of the logics in
terms of their expressive powers. In Figure 1, the logics placed in the same rectangle
have the same expressive power. If a line connects two sets of logics, then the logics
L2 positioned above are expressively strictly stronger than the logics L1 positioned
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below, i.e., L1 < L2. If instead, L1 and L2 are connected by a double line, then only
L1 ≤ L2 is known. As discussed already, the logic PT+ and FPT are expressively
complete for the set of all team properties, thus they are both the expressively strongest
logics. The logic PT is expressively complete for the set of all team properties which
contain the empty set, therefore it has stronger expressive power than the two logics
PU and PI that characterize certain team properties which contain the empty set. For
any other pair of logics that are linked by a solid line or a double line in Figure 1,
if the one that is positioned above is an extension of the other, then it obviously has
stronger expressive power. The logics CPL, PU, PD, PI and PT that have the empty
team property are strictly weaker than their corresponding logics CPL+, PU+, PD+,
PI+ and PT+ that do not have the empty team property, respectively. PD is strictly
stronger than CPL because classical formulas have the flatness property, while PD has
formulas that lack the flatness property (see [34] for detail). The union closed logics
CPL+, PU and PU+ are expressively different from the non-union closed logics PI+,
PT and PT+, respectively. For instance, the formulas p0⊥ p1 and p0∨p1 are not closed
under unions. Similarly, the downward closed logics PD and PD+ are expressively
different from the non-downward closed logics PI and PI+, respectively. For instance,
the formula p0 ⊥ p1 is not closed downward.

It now remains to prove that PD and PD+ are expressively weaker than PI and PI+,
respectively. This reduces to showing that dependence atoms are expressible in PI and
in PI+. First, note that the independence atoms ~x ⊥ ~y are known as unconditional in-
dependence atoms in the literature of independence logic. A conditional independence
atom [13] is written as ~x⊥~z ~y and its semantics is defined by the clause

• X |= pj1 . . .pjb ⊥pi1 ...pia
pk1 . . .pkc iff for all s,s′ ∈X with s(~i) = s′(~i), there

exists s′′ ∈X such that

s′′(~i) = s(~i) = s′(~i), s′′(~j) = s(~j) and s′′(~k) = s′(~k),

where~i= i1 . . . ia, ~j = j1 . . . jb and ~k = k1 . . .kc.

In our setting conditional independence atoms are expressible in terms of unconditional
ones:

~x⊥pi1 ...pia
~y ≡

⊗
s∈2I

(
p
s(i1)
i1
∧·· ·∧ps(ia)ia

∧ (~x⊥ ~y)
)
,

where I = {i1, . . . , ia}. As observed already in [13] in the context of first-order logic,
dependence atoms are definable in terms of conditional independence atoms:

=(~x,pi)≡ pi ⊥~x pi.

Putting these altogether, we conclude that dependence atoms are expressible in PI and
in PI+. This completes the proof of the inter-relationships shown in Figure 1.

4. Metalogical properties

In this section, we study metalogical properties of propositional team logics. We
will prove that propositional team logics are compact, and closed under classical sub-
stitutions.
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4.1. Compactness

Propositional inquisitive logic was shown to be compact in [5]. As a consequence,
propositional logics of dependence are all compact (see Theorem 3.3 in [34]). More-
over, from the same argument as given in [3] the compactness of all the other propo-
sitional team logics follows as well. Below we present a sketch of this proof (which
makes essential use of König’s Lemma) using the terminologies of this paper for the
benefit of the reader.

Theorem 4.1 (Compactness Theorem). For any set Γ∪{φ} of formulas in the language
of an arbitrary propositional team logic, if Γ |= φ, then there exists a finite set Γ0 ⊆ Γ

such that Γ0 |= φ.

Proof. Let Γ = {θk | k ∈ N}. For each k ∈ N, define γk = θ1∧·· ·∧θk. It is sufficient
to show that γk |= φ for some k ∈N. Towards a contradiction, assume otherwise. Then
for each k ∈ N, there exists a team X ⊆ 2N such that X |= γk and X 6|= φ. Let Nk be
the set of all indices of all propositional variables occurring in γk and φ. By the locality
property of propositional team logics, the finite set

Xk = {X ⊆ 2Nk :X |= γk and X 6|= φ}

is nonempty. Put T = { /0}∪
⋃
k∈NXk. Define a relation ≤ on T by putting

• /0≤X for all X ∈ T ;

• X ≤ Y iff Y � dom(X) = X.

It is not hard to see that (T,≤) is a finitely branching infinite tree. By König’s Lemma,
the tree has an infinite branch 〈Xk | k ∈ N〉, where Xk ∈ Xk for each k ∈ N. Putting
N =

⋃
k∈NNk, this infinite branch determines a team X ⊆ 2N in such a way that

X � Nk = Xk for each k ∈ N. Clearly, X 6|= φ and X |= γk for each k ∈ N. These
contradict Γ |= φ.

4.2. Closure under classical substitutions

A substitution of a propositional team logic L is a mapping σ from the set FormL

of all well-formed formulas of L into the set FormL itself that commutes with the con-
nectives and atoms of L. We say that L is closed under the substitution σ, if for any set
Γ∪{φ} of formulas of L,

Γ |= φ=⇒{σ(γ) | γ ∈ Γ} |= σ(φ).

If L is closed under all substitutions, then we say that L is closed under uniform substi-
tution. The logics FPT, PT, PT+, PD, PD+, PI and PI+ are not closed under uniform
substitution, because, for instance, we have

pi⊗pi |= pi and pi�pi |= pi,

whereas
=(pi)⊗=(pi) 6|==(pi), (pi ⊥ pi)⊗ (pi ⊥ pi) 6|= pi ⊥ pi,
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(pi∨¬pi)⊗ (pi∨¬pi) 6|= (pi∨¬pi) and (pi∨¬pi)� (pi∨¬pi) 6|= (pi∨¬pi).

The logics PU+ and PU are not closed under uniform substitution either (for at least
the trivial reason that strings of the form ¬(φ�ψ) are not well-formed formulas), but
nontrivial counter-examples of the above kind for the two logics are yet to be found.
It was shown in [3] and [20] that propositional logics of dependence are, neverthe-
less, closed under flat substitutions, i.e., substitutions σ such that σ(p) has the flatness
property for any propositional variable p. Using the method in [20], we will prove in
this section that propositional team logics are closed under classical substitutions, i.e.,
substitutions σ such that σ(p) is a classical formula (i.e., a formula in the language of
CPL) for any propositional variable p.

Let us start by examining in detail the notion of substitution in our logics. The
well-formed formulas of the propositional team logics we consider in this paper are as-
sumed to be in negation normal form and we do not allow arbitrary formulas to occur
in a dependence or independence atom. Strings of the form ¬φ, ~φ ⊥ ~ψ, =(~φ,ψ) and
~φ ⊆ ~ψ are not necessarily well-formed formulas of our logics. As such, the notion of
substitution is actually not well-defined in our logics. To derive our intended closure
under substitution result we will then first need to seek for ways to make sense of the
notion of substitution in our logics. In general, there are two possible solutions: either
to expand the languages of the logics so as to allow more well-formed formulas, or
to restrict the range of a substitution to a subset of the full set FormL of well-formed
formulas. We will take both approaches at the same time. We will confine ourselves
to classical substitutions only and will also expand the language of our logics to in-
clude every substitution instance σ(φ) of a classical substitution σ to be a well-formed
formula. Our reason for restricting attention to classical substitutions only is twofold.
Conceptually, we do not have a good intuition of the intended semantics of the for-
mulas ¬(φ�ψ) and ¬(φ∨ψ) or of the dependence and independence atoms ~φ ⊥ ~ψ,
=(~φ,ψ) and ~φ ⊆ ~ψ with arbitrary arguments. Technically, arbitrary substitutions are
not very interesting, as the logics are not closed under uniform substitution.

For simplicity, in what follows we will only work with FPT which has the max-
imal set of atoms and connectives among the propositional team logics we consider
in this paper. Similar results for the other logics can be easily obtained as corollar-
ies of those for FPT. Let us now expand the language of FPT and include strings of
the forms ¬α, >, ~α ⊥ ~β, =(~α,β) and ~α ⊆ ~β as well-formed formulas, where α,β,~α
and ~β are classical formulas or sequences of classical formulas. Denote the extended
logic by MPT. Observe that MPT will, clearly, have the same expressive power as
FPT, since the latter is already expressively complete for the set of all team properties
(Theorem 3.4(i)).

We now define the semantics of MPT. Given sequences ~α = α1 . . .αk and ~β =
β1 . . .βk of classical formulas, we define an equivalence relation ∼(~α,~β) on the set of
all valuations as follows:

s∼(~α,~β) s
′ iff ∀i ∈ {1, . . . ,k}({s} |= αi ⇐⇒ {s′} |= βi).

We write ∼~α for ∼(~α,~α).
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Definition 4.2. The team semantics of well-formed formulas of MPT is defined in-
ductively in the same way as in Definitions 2.3 and 2.8 and additionally we have the
following extra clauses:

• X |= ¬α iff s 6|= α in the usual sense for all s ∈X .

• X |=> always holds.

• X |= ~α⊥ ~β iff for all s,s′ ∈X , there exists s′′ ∈X such that s∼~α s′′ and s′ ∼~β s
′′ .

• X |==(~α,β) iff for all s,s′ ∈X , if s∼~α s′ then s∼β s′.

• X |= ~α⊆ ~β iff for all s ∈X , there exists s′ ∈X such that s∼(~α,~β) s
′.

The above definition deserves some comments. In the literature of logics of de-
pendence and independence, negation is usually treated only syntactically. That is, a
negated classical formula ¬φ is defined to have the same semantics as the unique for-
mula φ∼ in negation normal form obtained by exhaustively applying the De Morgan’s
laws and the following syntactic rewrite rules:

p∼ 7→ ¬p >∼ 7→ ⊥ (φ∧ψ)∼ 7→ φ∼⊗ψ∼
(¬p)∼ 7→ p ⊥∼ 7→ > (φ⊗ψ)∼ 7→ φ∼∧ψ∼ (6)

A routine inductive proof shows that ¬α≡ α∼ for all classical formulas α (or see [20]
for the proof), i.e., our negation as defined in Definition 4.2 coincides with the above
syntactic negation when applied to classical formulas. It is also worth noting that our
negation corresponds to the defined connective ∼↓ in Hodges [17, 18].

The extended inclusion atom ~α ⊆ ~β is also studied in [15] in the context of modal
inclusion logic. There it is shown that the usual modal logic extended with the extended
inclusion atoms has the same expressive power as the usual modal logic extended with
the might modality O (see Section 2, under the heading “non-emptiness atom”). Given
this result, it is natural to conjecture that classical propositional logic extended with
the extended inclusion atoms has the same expressive power as classical propositional
logic extended with the might modality O, and it is also expressively complete for the
set of union closed team properties which contain the empty team (see the remark after
Theorem 3.4).

If α is a classical formula and σ is a classical substitution, then σ(α) is still a
classical formula. In particular, given any classical substitution, the substitution in-
stance of an extended dependence and independence atom is a well-formed formula of
the extended logic MPT. Having the notion of classical substitution well-defined in
MPT, we will now prove that MPT is closed under classical substitutions, namely the
following theorem holds.

Theorem 4.3. Let Γ∪ {φ} be a set of formulas in the language of MPT, and σ a
classical substitution. If Γ |= φ, then {σ(γ) | γ ∈ Γ} |= σ(φ).

Note that this theorem also implies that the original logic FPT is closed under those
classical substitutions σ such that σ(φ) is a well-formed formula of FPT, whenever φ
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is. In this sense, Theorem 4.3 also characterizes the behavior of substitutions in the
original logic FPT.

For the proof of Theorem 4.3, we first establish the following lemma, which gener-
alizes Lemma 3.5 in [20] concerning flat substitutions (note that classical substitutions
are also flat substitutions). For any valuation s and any substitution σ, define a valua-
tion sσ as

sσ(i) =

{
1 if {s} |= σ(pi);
0 if {s} 6|= σ(pi).

For any team X , we write Xσ = {sσ | s ∈X}.

Lemma 4.4. For any formula φ in the language of MPT and any classical substitution
σ, we have

X |= σ(φ) ⇐⇒ Xσ |= φ.

Proof. We prove the lemma by induction on φ. The case φ = {NE,⊥,>} is trivial.
Case φ= pi. Since σ(pi) has the flatness property, we have

X |= σ(pi) ⇐⇒ ∀s ∈X({s} |= σ(pi)) ⇐⇒ ∀sσ ∈Xσ({sσ} |= pi) ⇐⇒ Xσ |= pi.

Case φ = ~α ⊥ ~β, where ~α and ~β are sequences of classical formulas. To show the
direction “=⇒”, assume X |= σ(~α) ⊥ σ(~β). For any sσ,s′σ ∈Xσ , we have s,s′ ∈X
and there is s′′ ∈X such that s∼σ(~α) s′′ and s′ ∼σ(~β) s

′′. By the induction hypothesis,
we have sσ ∼~α s′′σ and s′σ ∼~β s

′′
σ , as required. The other direction “⇐=” is proved

analogously.
The cases φ = =(~α,β) and φ = ~α ⊆ ~β, where ~α, ~β,β are (sequences of) classical

formulas, are proved analogously.
Case φ = ψ�χ. For the direction “=⇒”, assuming X |= σ(ψ)�σ(χ), if X = /0,

then Xσ = /0 |= ψ�χ. If X 6= /0, then there are nonempty sets Y,Z ⊆ X such that
X = Y ∪Z and Y |= σ(ψ) and Z |= σ(χ). Since Yσ ∪Zσ =Xσ and Yσ,Zσ 6= /0, we
obtain Xσ |= ψ�χ by the induction hypothesis. The other direction “⇐=” is proved
analogously.

The case φ = ψ⊗χ is proved analogously. The cases φ = ¬α for α classical,
φ= ψ∧χ and φ= ψ∨χ follow readily from the induction hypothesis.

Finally, we give the proof of Theorem 4.3.

Proof of Theorem 4.3. If Γ |= φ, then for any team X ,

X |= σ(γ) for all γ ∈ Γ =⇒Xσ |= γ for all γ ∈ Γ (by Lemma 4.4)
=⇒Xσ |= φ (by the assumption)
=⇒X |= σ(φ) (by Lemma 4.4)

Hence {σ(γ) | γ ∈ Γ} |= σ(φ).

21



5. Axiomatizations

In this section, we study the axiomatization problem of propositional team logics.
For a set of n propositional variables, there are in total 22n teams. Therefore propo-
sitional team logics are clearly decidable. Concrete axiomatizations for propositional
logics of dependence can be found in [34]. In this section, we give natural deduction
systems and prove the Completeness Theorem for the logics PT+, CPL+, PI+ and
PInc+. Among the propositional team logics we have defined, these are the logics
that have the non-emptiness NE but not the nonempty disjunction � in their languages.
The problem of finding (nontrivial) axiomatizations for the other logics, especially for
propositional independence logic PI, is open.

5.1. PT+

In this subsection, we define a natural deduction system of strong propositional
team logic (PT+), an expressively strongest logic, and prove the Soundness and Com-
pleteness Theorems for it.

We first present our natural deduction system. We adopt the standard conventions
of natural deduction systems (readers who are not familiar with natural deduction sys-
tems are referred to, e.g., [2, 30]). For example, the letterD (with or without subscripts)
in the following definition stand for an arbitrary derivation (with or without extra as-
sumptions). As discussed in Section 4.2, PT+ (and also the other propositional team
logics to be axiomatized) are not closed under uniform substitution. Therefore, the
(sound and complete) deduction system given by the definition below will not admit
the Substitution Rule

φ(pi1 , . . . ,pin)
Sub

φ(σ(pi1)/pi1 , . . . ,σ(pin)/pin)

In particular, the axioms and rules of the system presented below using concrete for-
mulas such as pi should not be read as schemata. Only the metalanguage symbols φ,
ψ and χ stand for arbitrary formulas.

Definition 5.1 (A natural deduction system of PT+).

AXIOMS

Atomic excluded middle NE introduction

EM0pi⊗¬pi NE I⊥∨NE

RULES

Conjunction introduction Conjunction elimination

D1

φ

D2

ψ
∧I

φ∧ψ

D
φ∧ψ

∧E
φ

D
φ∧ψ

∧E
ψ
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Boolean disjunction introduction Boolean disjunction elimination

D
φ

∨I
φ∨ψ

D
ψ

∨I
φ∨ψ

D0

φ∨ψ

[φ]

D1
χ

[ψ]

D2
χ
∨Eχ

Tensor disjunction weak introduction Tensor disjunction weakening

D
φ

(∗) ⊗I−
φ⊗ψ

D
φ

⊗W
φ⊗φ

(∗) whenever ψ dose not contain NE

Tensor disjunction weak elimination Tensor disjunction weak substitution

D0

φ⊗ψ

[φ]

D1
α

[ψ]

D2
α

(∗) ⊗E−α

D1

φ⊗ψ

[ψ]

D2
χ

(∗) ⊗Sub−
φ⊗χ

(∗) whenever α is a classical formula and
the undischarged assumptions in the

derivations D1 and D2 contain classical
formulas only

(∗) whenever the undischarged assumptions
in the derivation D2 contain classical

formulas only

Commutative and associative laws for tensor disjunction

D
φ⊗ψ

Com⊗
ψ⊗φ

D

φ⊗ (ψ⊗χ)
Ass⊗

(φ⊗ψ)⊗χ

Contradiction introduction Contradiction elimination

D
pi∧¬pi ⊥I⊥

D
φ⊗⊥

⊥E
φ

Strong ex falso Strong contradiction contraction

D
⊥∧NE

ex falso+φ

D

φ⊗ (⊥∧NE)
0Ctr⊥∧NE
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Strong contradiction introduction

D(⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)
∧
(⊗
s∈Y

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE)
)

(∗) 0I⊥∧NE

(∗) whenever X and Y are distinct teams on {i1, . . . , in}

Distributive laws

D

φ⊗ (ψ∨χ)
Dstr⊗∨

(φ⊗ψ)∨ (φ⊗χ)

D

NE∧
⊗
i∈I

φi

Dstr NE∧⊗∨
/06=J⊆I

⊗
i∈J

(NE∧φi)

The above deduction system consists of two axioms and fifteen sets of rules. The
atomic excluded middle axiom EM0 is not an axiom schema. Especially, as discussed
in the previous section, the substitution instances of ¬pi are not necessarily well-
formed formulas of PT+. The conjunction ∧ and the Boolean disjunction ∨ have the
usual introduction and elimination rules. The usual commutative law, associative law
and distributive laws for the two connectives can be derived easily in the system. Over
classical formulas the tensor disjunction admits the usual Introduction Rule and Elim-
ination Rule. Over non-classical formulas the rules for the tensor disjunction ⊗ are
more subtle. The Introduction Rule ⊗I− is not in general sound in case ψ does not
have the empty team property. For instance, we have ⊥ 6|=⊥⊗NE. But the weakening
rule ⊗W is sound and we will apply this rule later on in our completeness proof. The
elimination rule ⊗E− is not in general sound in case α is non-classical. For instance,
we have pi⊗¬pi 6|= pi∨¬pi, even if pi |= pi∨¬pi and ¬pi |= pi∨¬pi. The rules⊗E−
and⊗Sub− have some side conditions concerning the undischarged assumptions in the
sub-derivations. To see why these restrictions are necessary, note, for example, that for
the rule ⊗E− we have

(NE∧p)⊗ (NE∧¬p),p⊗¬p 6|=⊥,

even if (NE∧p)⊗ (NE∧¬p),p |=⊥ and (NE∧p)⊗ (NE∧¬p),¬p |=⊥
and for the rule ⊗Sub− we have

NE 6|= NE⊗(NE∧⊥), even if NE |= NE⊗⊥ and NE,⊥ |= NE∧⊥.

In the absence of the usual (Strong) Introduction Rule and Elimination Rule for ⊗, we
added the (weak) substitution, commutative and associative rules for ⊗ to the system.
We also include some of the distributive laws that involve ⊗ in our system, and we
derive the other sound distributive laws in the next proposition. The usual distributive
laws that are not listed in Definition 5.1 are not sound in our system, see [34] for
examples of the failure of these laws. The non-emptiness NE, the weak and strong
negation (⊥ and ⊥∧NE) have self-explanatory rules in our system.
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Proposition 5.2. The following are derivable in the natural deduction system of PT+:

(i) Weak ex falso (ex falso−): If φ does not contain NE, then ⊥ ` φ.

(ii) The usual commutative law, associative law and distributive law for conjunction
and Boolean disjunction.

(iii) Distributive laws:

(a) φ⊗ (ψ∧χ) ` (φ⊗ψ)∧ (φ⊗χ) (Dstr⊗∧)
(b) φ∨ (ψ⊗χ) ` (φ∨ψ)⊗ (φ∨χ) (Dstr∨⊗)
(c) (φ⊗ψ)∨ (φ⊗χ) ` φ⊗ (ψ∨χ) (Dstr⊗∨⊗)
(d) If α is a classical formula, then

- (α∧ψ)⊗ (α∧χ) ` α∧ (ψ⊗χ) (Dstr∗∧⊗∧)
- α∧ (ψ⊗χ) ` (α∧ψ)⊗ (α∧χ) (Dstr∗∧⊗)

Proof. The rules in item (ii) are derived as usual. The items (a), (c) and (d) are not hard
to derive (or see the proof of Proposition 4.6 in [34]). We will only give the derivation
for the other rules.

For ex falso−, assuming that φ does not contain NE, we have the following deriva-
tion

⊥ ⊗I−⊥⊗φ
⊥E

φ

For Dstr∨⊗, we have the following derivation

φ∨ (ψ⊗χ)

[φ]
⊗W

φ⊗φ
∨I, ⊗Sub−

(φ∨ψ)⊗ (φ∨χ)
[ψ⊗χ]

∨I, ⊗Sub−
(φ∨ψ)⊗ (φ∨χ)

∨E
(φ∨ψ)⊗ (φ∨χ)

Next, we prove the Soundness Theorem for our deduction system.

Theorem 5.3 (Soundness Theorem). For any set Γ∪{φ} of formulas in the language
of PT+, we have Γ ` φ =⇒ Γ |= φ.

Proof. We show that Γ |= φ holds for each derivation D = {δ1, . . . , δk} with the con-
clusion φ and the hypotheses in Γ.

If D is a singleton, then φ ∈ Γ or φ = pi⊗¬pi or φ = ⊥∨NE. In the first case,
obviously {φ} |= φ. The last two cases are also easy because the two formulas are
clearly valid.

The induction steps for the rules 1-4, 6, 9-12, 14 and the distributive rules Dstr⊗∨
and Dstr⊗∨⊗ are easy to verify. We only check the induction step for the other rules.
⊗I−: Assume that D is a derivation for Π ` φ. We show that Π |= φ⊗ψ whenever

ψ is does not contain NE. Suppose X |= θ for all θ ∈ Π. By the induction hypothesis,
we have Π |= φ, thus X |= φ follows. Now, since ψ does not contain NE, an easy
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inductive proof shows it has the empty team property, i.e., /0 |= ψ. Hence we obtain
/0∪X |= φ⊗ψ as required.
⊗E−: Assume that D0, D1 and D2 are derivations for Π0 ` φ⊗ψ, Π1,φ ` α and

Π2,ψ ` α, respectively. Assume that α is a classical formula and Π1 and Π2 contain
classical formulas only. We show that Π0,Π1,Π2 |= α follows from the induction
hypothesis Π0 |= φ⊗ψ, Π1,φ |= α and Π2,ψ |= α. Suppose X |= θ for all θ ∈ Π0 ∪
Π1∪Π2. Then we have X |= φ⊗ψ, which means that there exist Y,Z ⊆X such that
X = Y ∪Z, Y |= φ and Z |= ψ. For all θ ∈ Π1 ∪Π2, since θ is a classical formula,
by Lemma 2.4 we know that θ has the downward closure property. It then follows that
Y |= θ1 for all θ1 ∈ Π1 and Z |= θ2 for all θ2 ∈ Π2. Thus Y |= α and Z |= α. Since α
is a classical formula, by Lemma 2.4 we know that α has the union closure property,
which yields that X |= α.
⊗Sub−: Assume that D1 and D2 are derivations for Π1 ` φ⊗ψ and Π2,ψ ` χ,

respectively and Π2 contains classical formulas only. We show that Π1,Π2 |= φ⊗χ
follows from the induction hypothesis Π1 |= φ⊗ψ and Π2,ψ |= χ. Suppose X |= θ for
all θ ∈Π1∪Π2. By the induction hypothesis, we have X |= φ⊗ψ, which means there
exist Y,Z ⊆X such that X = Y ∪Z, Y |= φ and Z |= ψ. For all θ ∈ Π2, since θ is a
classical formula, by Lemma 2.4 we know that θ has the downward closure property.
Thus Z |= θ. It then follows from the induction hypothesis that Z |= χ. Hence we
conclude Y ∪Z =X |= φ⊗χ.

0I: It suffices to show that if X and Y are distinct teams on {i1, . . . , in}, then
Z 6|= Θ∗X ∧Θ∗Y for all teams Z. In view of the locality property, we may assume that Z
is a team on {i1, . . . , in}. By Lemma 3.3, if Z |= Θ∗X ∧Θ∗Y , then X = Z = Y , which
contradicts the assumption.

Dstr∗ ∧⊗: It suffices to show that φ∧ (ψ⊗χ) |= (φ∧ψ)⊗ (φ∧χ), whenever φ
does not contain NE. Suppose X |= φ∧ (ψ⊗χ). Then X |= φ, Y |= ψ and Z |= χ for
some teams Y,Z ⊆X with Y ∪Z =X . Since φ does not contain NE, an easy inductive
proof shows that φ has the downward closure property. Thus Y |= φ and Z |= φ. Hence
Y |= φ∧ψ and Z |= φ∧χ, implying X |= (φ∧ψ)⊗ (φ∧χ).

Dstr NE ∧⊗: It suffices to show that if X |= NE∧
⊗
i∈I φi for some team X , then

X |=
⊗
i∈J(NE∧φi) for some nonempty J ⊆ I . The assumption implies that X 6= /0

and there exist teams Xi ⊆X for each i ∈ I such that
⋃
i∈IXi =X and Xi |= φi. Let

J ⊆ I be the set of indices i ∈ I such that Xi 6= /0. Since X 6= /0, we must have that
J 6= /0. Hence Xi |= NE∧φi for each i ∈ J and X |=

⊗
i∈J(NE∧φi).

We now proceed to prove the main result of this section, the Completeness Theo-
rem for our system. Our argument is similar to that of the proof of the Completeness
Theorem for propositional logics of dependence in [34]. The reader may compare what
follows with Section 4.2 in [34]. To begin with, below we present a crucial lemma that
is very similar to Lemma 3.2 in [34].

Lemma 5.4. For any finite nonempty collections of teams {Xf | f ∈ F}, {Yg | g ∈G}
on some fixed domain, the following are equivalent:

(a)
∨
f∈F

Θ
∗
Xf
|=
∨
g∈G

Θ
∗
Yg

;

(b) for each f ∈ F , we have Xf = Ygf for some g ∈G.
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Proof. Follows easily from Lemma 3.3.

Two formulas φ and ψ are said to be provably equivalent (written φ a` ψ) if both
φ ` ψ and ψ ` φ hold. Another crucial step for the completeness proof is to establish
that every formula is provably equivalent in the deduction system to a formula in the
disjunctive normal form shown in Table 3. Let us now state this as a lemma.

Lemma 5.5. Every formula φ(pi1 , . . . ,pin) in the language of PT+ is provably equiv-
alent to a formula in the normal form∨

f∈F
Θ
∗
Xf
, where Θ

∗
Xf

=
⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(in)in

∧NE), (7)

{Xf | f ∈ F} a finite set of teams on N = {i1, . . . , in}.

The detailed proof of the above lemma will be postponed. We now give the proof
of the Completeness Theorem for our system.

Theorem 5.6 (Completeness Theorem). For any formulas φ and ψ in the language of
PT+, we have ψ |= φ=⇒ ψ ` φ. In particular, |= φ=⇒` φ.

Proof. Supposeψ |=φ, where φ=φ(pi1 , . . . ,pin) andψ=ψ(pi1 , . . . ,pin). By Lemma 5.5,
we have

φ a`
∨
f∈F

Θ
∗
Xf

and ψ a`
∨
g∈G

Θ
∗
Yg

(8)

for some finite sets {Xf | f ∈ F} and {Yg | g ∈ G} of teams on {i1, . . . , in}. The
Soundness Theorem and (8) imply that∨

f∈F
Θ
∗
Xf
|=
∨
g∈G

Θ
∗
Yg
. (9)

If F = /0, then φ a` ⊥∧NE. We obtain φ ` ψ by ex falso+. If G = /0, then ψ a`
⊥∧NE. In view of (9), we must have F = /0 as well and φ a` ⊥∧NE. Hence φ ` ψ.

If F,G 6= /0, then by Lemma 5.4, for each f ∈ F we have Xf = Ygf and Θ∗Xf
=

Θ∗Ygf
for some gf ∈G, which implies that Θ∗Xf

`
∨
g∈GΘ∗Yg by ∨I. Hence, we obtain∨

f∈F Θ∗Xf
`
∨
g∈GΘ∗Yg by applying ∨E. Finally, in view of (8) we conclude that

φ ` ψ.

Theorem 5.7 (Strong Completeness Theorem). For any set Γ∪{φ} of formulas in the
language of PT+, we have Γ |= φ =⇒ Γ ` φ.

Proof. By Theorem 5.6 and the Compactness Theorem (Theorem 4.1).

We end this section by supplying the proof of Lemma 5.5.

Proof of Lemma 5.5. Note that in the statement of the lemma we have fixed a set
{pi1 , . . . ,pin} of variables. These variables all occur in the formula (7) in normal form,
but not necessarily all of them actually occur in the formula φ(pi1 , . . . ,pin). In order to
take care of this subtle point we first prove the following claim:
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Claim. If {i1, . . . , im} ⊂ {j1, . . . , jk}, then any formula ψ(pi1 , . . . ,pim) in the normal
form is provably equivalent to a formula θ(pj1 , . . . ,pjk) in the normal form.

Proof of the claim. Without loss of generality we may assume that K = {j1, . . . , jk}=
{i1, . . . , im, im+1, . . . , ik} and k >m. By the assumption, we have

ψ(pi1 , . . . ,pim) =
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(im)

im
∧NE),

where {Xf | f ∈ F} is a finite set of teams on M = {i1, . . . , im}. Let

θ(pi1 , . . . ,pik) =
∨
f∈F

∨
Y⊆2K

Y �M=Xf

⊗
s∈Y

(p
s(i1)
i1
∧ . . . . . .ps(ik)ik

∧NE).

The following derivation proves θ ` ψ:

(1)
∨
f∈F

∨
Y⊆2K

Y �M=Xf

⊗
s∈Y

(p
s(i1)
i1
∧ . . . . . .ps(ik)ik

∧NE)

(2)
∨
f∈F

∨
Y⊆2K

Y �M=Xf

⊗
s∈Y

(p
s(i1)
i1
∧ . . . . . .ps(im)

im
∧NE) (∧E,⊗Sub−)

(3)
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(im)

im
∧NE) (∨E)

Conversely, ψ ` θ is proved by the following derivation:

(1)
∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(im)

im
∧NE)

(2) (pim+1 ⊗¬pim+1)∧·· ·∧ (pik ⊗¬pik) (EM0, ∧I)
(3)

⊗
t∈2K\M

(p
t(im+1)
im+1

∧·· ·∧pt(ik)ik
) ((2),Dstr∗∧⊗)

(4)
( ∨
f∈F

⊗
s∈Xf

(p
s(i1)
i1
∧·· ·∧ps(im)

im
∧NE)

)
∧
( ⊗
t∈2K\M

(p
t(im+1)
im+1

∧·· ·∧pt(ik)ik
)
)

((1),(3),∧I)
(5)

∨
f∈F

⊗
s∈Xf

(
p
s(i1)
i1
∧·· ·∧ps(im)

im
∧
(

NE∧
⊗

t∈2K\M
(p
t(im+1)
im+1

∧·· ·∧pt(ik)ik
)
))

(Dstr∗∧⊗)
(6)

∨
f∈F

⊗
s∈Xf

(
p
s(i1)
i1
∧·· ·∧ps(im)

im
∧

∨
/0 6=Z⊆2K\M

⊗
t∈Z

(p
t(im+1)
im+1

∧·· ·∧pt(ik)ik
∧NE)

)
(DstrNE∧⊗,⊗Sub−)

(7)
∨
f∈F

⊗
s∈Xf

∨
/06=Z⊆2K\M

(
p
s(i1)
i1
∧·· ·∧ps(im)

im
∧
⊗
t∈Z

(p
t(im+1)
im+1

∧·· ·∧pt(ik)ik
∧NE)

)
(8)

∨
f∈F

⊗
s∈Xf

∨
/0 6=Z⊆2N\M

⊗
t∈Z

(p
s(i1)
i1
∧·· ·∧ps(im)

im
∧pt(im+1)

im+1
∧·· ·∧pt(ik)ik

∧NE)

(Dstr∗∧⊗)
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(9)
∨
f∈F

∨
G:Xf→Z

⊗
s∈Xf

⊗
t∈G(s)

(p
s(i1)
i1
∧·· ·∧ps(im)

im
∧pt(im+1)

im+1
∧·· ·∧pt(ik)ik

∧NE)

where Z = {Z ⊆ 2K\M | Z 6= /0} (Dstr⊗∨)
(10)

∨
f∈F

∨
Y⊆2K

Y �M=Xf

⊗
s∈Y

(p
s(i1)
i1
∧ . . . . . .ps(ik)ik

∧NE) (since dom(Xf ) =M)

a
We now prove Lemma 5.5 by induction on φ(pi1 , . . . ,pin).
Case φ(pi1 , . . . ,pin) = pik . We prove that pik a` ⊥∨ (pik ∧NE). For pik ` ⊥∨

(pik ∧NE), we have the following derivation:

(1) pik
(2) ⊥∨NE (NE I)
(3)

(
pik ∧⊥

)
∨ (pik ∧NE) ((1), (2), ∧I, Dstr)

(4) ⊥∨ (pik ∧NE) (∧E)

Conversely, for ⊥∨ (pik ∧NE) ` pik , we have the following derivation

(1) ⊥∨ (pik ∧NE)
(2) pik ∨pik (ex falso−, ∧E)
(3) pik (∨E)

By the Claim, the formula pik is provably equivalent to a formula θ(pi1 , . . . ,pin) in the
normal form.

Case φ(pi1 , . . . ,pin) = ¬pik . Similar to the above case.

Case φ(pi1 , . . . ,pin)=NE. Note that NE is a formula with no propositional variable,
but for the sake of the inductive proof, we need to prove the theorem for NE viewed as
NE(pi1 , . . . ,pin), a formula whose propositional variables are among pi1 , . . . ,pin . By
the claim, it suffices to derive the normal form for NE when it is viewed as NE(pi1). We
prove that NE a` θ, where

θ := (pi1 ∧NE)∨ (¬pi1 ∧NE)∨
(
(pi1 ∧NE)⊗ (¬pi1 ∧NE)

)
.

For NE ` θ, we have the following derivation:

(1) NE
(2) NE∧(pi1 ⊗¬pi1) (EM0, ∧I)
(3) (pi1 ∧NE)∨ (¬pi1 ∧NE)∨

(
(pi1 ∧NE)⊗ (¬pi1 ∧NE)

)
(Dstr NE∧⊗)

For the other direction θ ` NE, we have the following derivation:

(1) (pi1 ∧NE)∨ (¬pi1 ∧NE)∨
(
(pi1 ∧NE)⊗ (¬pi1 ∧NE)

)
(2) (pi1 ∧NE)∨ (¬pi1 ∧NE)∨

(
(pi1 ⊗¬pi1)∧NE

)
(Dstr∗∧⊗∧)

(3) NE∨NE∨NE (∧E)
(4) NE (∨E)
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Case φ(pi1 , . . . ,pin) =⊥. Trivially ⊥ a` Θ∗/0 =⊥.

Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)∨χ(pi1 , . . . ,pin). By the induction hypothe-
sis, we have

ψ a`
∨
f∈F

Θ
∗
Xf

and χ a`
∨
g∈G

Θ
∗
Xg
, (10)

where each Xf ,Xg ⊆ 2N . Then it follows from the rules ∨E and ∨I that

ψ∨χ a`
∨
f∈F

Θ
∗
Xf
∨
∨
g∈G

Θ
∗
Xg
.

If ψ a` ⊥∧NE (i.e., F = /0), then we obtain further by ex falso+, ∨E and ∨I that
ψ∨χ a`

∨
g∈GΘ∗Xg

. Similarly for the case χ a` ⊥∧NE.

Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)⊗χ(pi1 , . . . ,pin). By the induction hypothe-
sis, we have (10). If ψ a` ⊥∧NE (i.e., F = /0), then we derive ψ⊗χ a` ⊥∧NE =

∨
/0

by (0Ctr) and (ex falso+). Similarly for the case χ a` ⊥∧NE (i.e., G= /0).
Now, assume F,G 6= /0. We show that ψ⊗χ a` θ, where

θ :=
∨
f∈F

∨
g∈G

Θ
∗
Xf∪Xg

.

For the direction ψ⊗χ ` θ, we have the following derivation:

(1) ψ⊗χ
(2)

( ∨
f∈F

Θ
∗
Xf

)
⊗
( ∨
g∈G

Θ
∗
Xg

)
(3)

∨
f∈F

∨
g∈G

(
Θ
∗
Xf
⊗Θ

∗
Xg

)
(Dstr ⊗∨)

(4)
∨
f∈F

∨
g∈G

Θ
∗
Xf∪Xg

(⊗E−,⊗Sub−)

The other direction θ ` ψ⊗χ is proved similarly using ⊗W and Dstr⊗∨⊗.

Case φ(pi1 , . . . ,pin) = ψ(pi1 , . . . ,pin)∧χ(pi1 , . . . ,pin). By the induction hypothe-
sis, we have (10). If ψ a` ⊥∧NE (i.e., F = /0), then we derive ψ∧χ a` ⊥∧NE =

∨
/0

by (∧E) and (ex falso+). Similarly for the case χ a` ⊥∧NE (i.e., G= /0).
Now, assume F,G 6= /0. We show that ψ∧χ a` θ, where

θ :=
∨
h∈H

Θ
∗
Xh

and {Xf | f ∈ F}∩{Xg | g ∈G}= {Xh | h ∈H}.

For ψ∧χ ` θ, we have the following derivation:

(1) ψ∧χ
(2)

( ∨
f∈F

Θ
∗
Xf

)
∧
( ∨
g∈G

Θ
∗
Xg

)
(3)

∨
f∈F

∨
g∈G

(
Θ
∗
Xf
∧Θ

∗
Xg

)
(4)

( ∨
(f,g)∈F×G
Xf 6=Xg

(
Θ
∗
Xf
∧Θ

∗
Xg

))
∨
( ∨
(f,g)∈F×G
Xf=Xg

(
Θ
∗
Xf
∧Θ

∗
Xg

))
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(5)
(
⊥∧NE

)
∨

∨
(f,g)∈F×G
Xf=Xg

(
Θ
∗
Xf
∧Θ

∗
Xg

)
(0I)

(6)
∨

(f,g)∈F×G
Xf=Xg

(
Θ
∗
Xf
∧Θ

∗
Xg

)
(0E)

(7)
∨
h∈H

Θ
∗
Xh

(∧E,∨E)

For the other direction θ ` ψ∧χ, we have the following derivation:

(1)
∨
h∈H

Θ
∗
Xh

(2)
( ∨
h∈H

Θ
∗
Xh

)
∧
( ∨
h∈H

Θ
∗
Xh

)
(∧I)

(3)
( ∨
f∈F

Θ
∗
Xf

)
∧
( ∨
g∈G

Θ
∗
Xg

)
(∨I, H ⊆ F,G)

(4) ψ∧χ

5.2. CPL+

We will give a complete axiomatization of CPL+ in the style of natural deduction.
For this end, let us review our proof above of the Completeness Theorem for PT+. In
a crucial step of the proof we transformed a formula into its disjunctive normal form∨
f∈F Θ∗Xf

. Each disjunct Θ∗Xf
is a formula in the language of CPL+, but CPL+

is a fragment of PT+ that does not have the Boolean disjunction ∨ in the language,
so we seem to be in trouble. Our trick is that we view the set {Θ∗Xf

| f ∈ F} of
formulas, rather than the disjunction of this set, as a weak normal form for formulas in
the language of CPL+. On the basis of this plan, we can axiomatize CPL+ and prove
the completeness theorem.

We will define a natural deduction system of CPL+ in which every formula φ is
essentially provably equivalent to its disjunctive normal form

∨
f∈F Θ∗Xf

. In partic-
ular, we will be able to essentially derive the provable equivalence between the non-
emptiness NE and its disjunctive normal form

∨
/0 6=Y⊆2N Θ∗Y . The behavior of the usual

Introduction Rule and Elimination Rule of the Boolean disjunction ∨ (∨I and ∨E) will
be simulated by two Strong Elimination Rules (SE1 and SE2) that do not involve ∨.

To define the Strong Elimination Rules, we will need to specify a particular occur-
rence of a subformula inside a formula. For this purpose, we identify a formula in the
language of CPL+ with a finite string of symbols. A propositional variable pi and the
non-emptiness NE are symbols and the other symbols are ∧,⊗,¬. Starting from the
leftmost symbol, we number each symbol in a formula with a positive integer, as in the
following example:

NE ⊗ ( ¬ p1 ∧ NE )

1 2 3 4 5 6 7 8
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If themth symbol of a formula φ starts a string ψ which is a subformula of φ, we denote
the subformula [ψ,m]φ, or simply [ψ,m]. We will sometimes refer to an occurrence
of a formula χ inside a subformula ψ of φ. In this case we will use the same counting
for the subformula ψ, rather than restart the counting from 1. We write φ(β/[α,m])
for the formula obtained from φ by replacing the occurrence of the subformula [α,m]
by β. For example, for the formula φ= NE⊗(¬p1∧NE), the second occurrence of the
non-emptiness NE is denoted by [NE,7], and the same notation also designates the oc-
currence of NE inside the subformula ¬p1⊗NE. The notation φ(ψ/[NE,7]) designates
the formula NE⊗(¬p1∧ψ).

Below we present the natural deduction system of CPL+.

Definition 5.8 (A natural deduction system of CPL+).

AXIOM

Atomic excluded middle

EM0pi⊗¬pi

RULES

All of the rules in Definition 5.1 that do not involve Boolean disjunction, i.e., the
rules ∧I, ∧E, ⊗I−, ⊗W, ⊗E−, ⊗Sub−, Com ⊗, Ass ⊗, ⊥I, ⊥E, ex falso+, 0I,

0Ctr, Dstr∗∧⊗.

Strong elimination rules

D0

φ

[φ(Θ∗Y1
/[NE,m])]

D1

θ . . .

[φ(Θ∗Yk/[NE,m])]

Dk

θ
SE1θ

where {Y1, . . . ,Yk} is the set of all nonempty teams on a set N of indices

D0

φ

[φ(ψ∧⊥/[ψ,m])]
D1

θ

[φ(ψ∧NE/[ψ,m])]
D2

θ
SE2θ

All rules that do not involve the Boolean disjunction ∨ in the natural deduction
system of PT+ (Definition 5.1) are included in the above system. Thus all clauses in
Proposition 5.2 that do not involve ∨ are also derivable in the above system.

Let us ponder why we define the Strong Elimination Rules the way they are in our
system in the absence of the Boolean disjunction ∨. The idea of the elimination rules
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for the conjunction is simply that if we have inferred φ∧ψ, we can infer both φ and ψ.
The elimination rule for disjunction in classical logic is that if we have φ∨ψ and we
can derive θ separately from both φ and ψ then we have θ. In both cases the elimination
rule builds into the syntax of the proof the semantics of the logical operation. This is
roughly the general idea of natural deduction, due to Gentzen. We followed the same
line of thinking when we introduce our rules for Boolean disjunction ∨ in the system
for PT+. Now, we moved to the weak logic CPL+ which does not have Boolean
disjunction in the language. But still, the non-emptiness NE is semantically equivalent
to the formula

∨k
i=1 Θ∗Yi (in the language of PT+), where {Y1, . . . ,Yk} is the set of all

nonempty teams on a set N of indices. To derive a formula θ from NE given some
assumptions, in PT+ in the presence of the Boolean disjunction we could build up the
following derivation:

D0
NE∨k
i=1 Θ∗Yi

[Θ∗Y1
]

D1

θ . . .

[Θ∗Yk ]

Dk

θ

θ

Evidently such a derivation can be simulated in our deduction system of CPL+ using
the rule SE1. More generally, a formula φ whose nth symbol is NE is semantically
equivalent to the formula φ(

∨k
i=1 Θ∗Yi/[NE,m]) (in the language of PT+), which, as

∨ distributes over all connectives, is semantically equivalent to
∨k
i=1φ(Θ

∗
Yi
/[NE,m]).

In the same way, to derive a formula θ from φ given some assumptions, it suffices to
derive θ from each φ(Θ∗Yi/[NE,m]). This is exactly what the Strong Elimination Rule
SE1 characterizes. Analogously, the rule SE2 characterizes the equivalence between a
formula φ and φ(ψ∧ (⊥∨NE)/[ψ,m]).

We now prove the Soundness Theorem for the deduction system of CPL+.

Theorem 5.9 (Soundness Theorem). For any set Γ∪{φ} of formulas in the language
of CPL+, we have Γ ` φ =⇒ Γ |= φ.

Proof. We show that for each derivation D with the conclusion φ and the hypotheses
in Γ we have Γ |= φ. We only verify the cases where the Strong Elimination Rules are
applied. The other cases follow from the Soundness Theorem for PT+.

SE1: Put φ∗i =φ(Θ∗Yi/[NE,m]) for each i∈{1, . . . ,k}. Assume thatD0,D1, . . . ,Dk

are derivations for Π0 ` φ, Π1,φ
∗
1 ` θ, ..., Πk,φ

∗
k ` θ, respectively. We show that

Π0,Π1, . . . ,Πk |= θ follows from the induction hypothesis Π0 |= φ, Π1,φ
∗
1 |= θ, ...,

Πk,φ
∗
k |= θ. This reduces to showing that φ |= φ∗1 ∨ ·· · ∨φ∗k by induction on the sub-

formulas ψ of φ.
Case ψ = NE. By the locality property, X |= NE ⇐⇒ X �N |= NE for any team

X . Now, since {Y1, . . . ,Yk} is the set of all nonempty teams on N , we have X �N |=
NE ⇐⇒ X �N |= Θ∗Yi for some i ∈ {1, . . . ,k}. Hence NE |= Θ∗Y1

∨·· ·∨Θ∗Yk .
If ψ is pj or ¬pj , then ψ∗i = ψ for each i ∈ {1, . . . ,k} and ψ |= ψ∗1 ∨·· ·∨ψ∗k holds

trivially.
If ψ = θ⊗χ and without loss of generality we assume that the occurrence of the

NE is in the subformula θ. Then by the induction hypothesis we have θ |= θ∗1 ∨·· ·∨θ∗k.
Thus θ⊗χ |= (θ∗1 ∨·· ·∨θ∗k)⊗χ |= (θ∗1⊗χ)∨·· ·∨ (θ∗k⊗χ).
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The case ψ = θ∧χ is proved similarly.
SE2: Put φ∗+ = φ(ψ∧NE/[ψ,m]) and φ∗− = φ(ψ∧⊥/[ψ,m]). Assume thatD0,D1

and D2 are derivations for Π0 ` φ, Π1,φ
∗
+ ` θ and Π2,φ

∗
− ` θ, respectively. We show

that Π0,Π1,Π2 |= θ follows from the induction hypothesis Π0 |= φ, Π1,φ
∗
+ |= θ and

Π2,φ
∗
− |= θ. This is reduced to showing that φ |= φ∗+∨φ∗− by induction on the subfor-

mulas δ of φ.
If δ is an atom and δ 6= [ψ,m], then δ∗+ = δ = δ∗− and δ |= δ∗+∨ δ∗− holds trivially.
If δ = [ψ,m], then δ∗+ = δ ∧NE and δ∗− = δ ∧⊥. Since |= NE∨⊥, we have δ |=

δ∧ (NE∨⊥) |= (δ∧NE)∨ (δ∧⊥).
The induction steps are proved analogously to the SE1 case.

In the remainder of this section we prove the Completeness Theorem for our sys-
tem. This proof is similar to the completeness proof for PD that we gave in [34]. The
reader may compare this section with Section 4.3 in [34]. When proving the Com-
pleteness Theorem for the deduction system of PT+, we transformed a formula into
its disjunctive normal form. Here in CPL+ we follow essentially the same idea. But
in the absence of the Boolean disjunction we will not be able to express the relevant
disjunctive normal form in the logic. Instead, we work with the weak normal form (i.e.,
the set of all disjuncts of a disjunctive normal form) and the behavior of the (strong)
normal form can be simulated by using the Strong Elimination Rules SE1 and SE2.
The disjuncts of the disjunctive normal of a formula (or elements in the weak normal
form) can be obtained from what we call strong realizations. Our strong realizations
are analogues of the “resolutions” in [4], and they are more complex than the “(weak)
realizations” we defined in [34]. These strong realizations will play a crucial role in
our argument. Let us now define this notion formally.

Let α ∈ {pi,¬pi,NE,⊥} be an atom and Y ⊆ 2N a team on a set N of indices such
that Y |= α. A strong realization α∗Y of α over Y is defined as

α∗Y := Θ
∗
Y .

Let o = 〈[α1,m1], . . . , [αc,mc]〉 be a sequence of some of the occurrences of atoms
in a formula φ in the language of CPL+. A strongly realizing sequence of φ over o
is a sequence Ω = 〈Y1, . . . ,Yc〉 such that Yi |= αi for each i ∈ {1, . . . , c}. We call the
formula φ∗

Ω
defined as follows a strong realization of φ over o:

φ∗〈Y1,...,Yc〉 := φ((α1)
∗
Y1
/[α1,m1], . . . ,(αc)

∗
Yc
/[αc,mc]).

Let O be the sequence of all occurrences of all atoms in φ. A strongly realizing se-
quence of φ over O is called a maximal strongly realizing sequence. A strong realiza-
tion φ∗

Ω
over O is called a strong realization of φ.

For example, consider the formula φ = NE⊗(¬p1 ∧NE). Let Y1 and Y2 be two
nonempty teams and X = {{(1,0)}} a team on {1}. Over o = 〈[NE,7]〉 the sequence
〈Y1〉 is a strongly realizing sequence of φ and the formula NE⊗(¬p1∧NE∗Y1

) is a strong
realization of φ. Both NE∗Y1

⊗((¬p1)
∗
X ∧NE∗Y2

) and NE∗Y2
⊗((¬p1)

∗
X ∧NE∗Y1

) are strong
realizations of φ. Note that a formula always has at least one atom, so its maximal
strongly realizing sequence is always a nonempty sequence.
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In the next lemma we prove that every formula is semantically equivalent to the
Boolean disjunction of all of its strong realizations over an arbitrary sequence of some
occurrences of atoms, particularly of all its maximal strongly realizing sequences.

Lemma 5.10. Let φ be a formula in the language of CPL+ and Λ the set of its strongly
realizing sequences over a sequence o. Then φ≡

∨
Ω∈Λ

φ∗Ω.

Proof. We prove the lemma by induction on the subformulas ψ of φ. Let N be the set
of indices of propositional variables occurring in φ.

Base case: ψ is an atom. If the occurrence of ψ is not listed in o, then ψ∗
Ω
= ψ

for all Ω ∈ Λ and ψ ≡
∨

Ω∈Λψ
∗
Ω

holds trivially. Otherwise, the occurrence ψ = [ψ,mi]
is in o and the set Y = {Yi | 〈Y1, . . . ,Yc〉 ∈ Λ} consists of all teams on N that satisfy
ψ. For any team X on N , by Lemma 5.4 we have X |= ψ ⇐⇒ X ∈ Y ⇐⇒ X |=∨
Y ∈Y Θ∗Y ⇐⇒ X |=

∨
Ω∈Λψ

∗
Ω

.
The induction case ψ = θ⊗χ follows from the induction hypothesis and the fact

that [A |= A′ and B |= B′ ] =⇒ A⊗B |= A′⊗B′ and that A⊗ (B∨C) |= (A⊗B)∨
(A⊗C) for all formulas A,B,C. Analogously for the case ψ = θ∧χ.

We will show that in our system one derives essentially the equivalence between a
formula φ and the Boolean disjunction

∨
Ω∈Λφ

∗
Ω

of its strong realizations over some
sequence of occurrences of atoms. We first prove the direction that φ follows from∨

Ω∈Λφ
∗
Ω

, which is simulated in our system by the derivation that each Boolean disjunct
φ∗

Ω
implies φ.

Lemma 5.11. If Ω is a strongly realizing sequence of a formula φ in the language of
CPL+ over a sequence of some occurrences of atoms in φ, then φ∗

Ω
` φ.

Proof. We derive the lemma by induction on the subformulas ψ of φ. Let N =
{i1, . . . , in} be the set of indices of propositional variables occurring in φ.

The induction step is left to the reader. We only check the basic case when ψ is
an atom. If the occurrence of ψ is not listed in o, then ψ∗

Ω
= ψ and the statment holds

trivially. Now, assume otherwise. Then ψ∗
Ω
= Θ∗X and X is a team on N that satisfies

ψ. If ψ = ⊥, then X = /0 and Θ∗/0 = ⊥. Thus ψ∗
Ω
` ⊥ holds trivially. If ψ = pik and

X = /0, then Θ∗/0 = ⊥ ` pik follows from ex falso−. If X 6= /0, then we have s(ik) = 1
for all s ∈X and we derive Θ∗X ` pi as follows:

(1)
⊗
s∈X

(p
s(i1)
i1
∧·· ·∧ps(ik−1)

ik−1
∧pik ∧p

s(ik+1)
ik+1

∧·· ·∧ps(in)in
∧NE)

(3)
⊗
s∈X

pik (∧E,⊗Sub−)

(4) pik (⊗E−)

The case ψ = ¬pik is proved analogously. If ψ = NE, then X 6= /0 and Θ∗X ` NE is
derived by a similar argument.

Next, we turn to prove that the Boolean disjunction
∨

Ω∈Λφ
∗
Ω

of the strong real-
izations of some formula φ over some sequence o of occurrences of atoms follows
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essentially from φ. Following the idea we used when we defined the Strong Elimina-
tion Rules, we simulate the derivation by proving in our system that a formula θ follows
from φ, given that θ follows from each φ∗

Ω
. We prove this in steps. First of all, if o is

a sequence of one occurrence of the non-emptiness NE, then the statement follows by
applying the SE1 rule. We now generalize this result and show that the statement holds
if o is a sequence of one occurrence of any atom.

Lemma 5.12. If δ ` θ, then φ(δ/[ψ,m]) ` φ(θ/[ψ,m]).

Proof. We prove the lemma by induction on the subformulas χ of φ.
If χ is an atom and χ 6= [ψ,m], then χ(δ/[ψ,m]) = χ = χ(θ/[ψ,m]) and trivially

χ(δ/[ψ,m]) ` χ(θ/[ψ,m]).
If χ = [ψ,m], then χ(δ/[ψ,m]) = δ and χ(θ/[ψ,m]) = θ. Thus χ(δ/[ψ,m]) `

χ(θ/[ψ,m]) follows directly from the assumption.
Suppose χ = χ0⊗χ1. Without loss of generality we may assume that the occur-

rence of the formula ψ is in the subformula χ0. By the induction hypothesis we have
χ0(δ/[ψ,m]) `χ0(θ/[ψ,m]). An application of the rule⊗Sub− yields χ0(δ/[ψ,m])⊗
χ1 ` χ0(θ/[ψ,m])⊗χ1.

The case χ= χ0∧χ1 is proved analogously by applying ∧E and ∧I.

Lemma 5.13. Let [α,m] be an occurrence of an atom in a formula φ and Y the set
of all teams on N = {i1, . . . , in} that satisfy α. For any set Γ∪{θ} of formulas in the
language of CPL+, if Γ,φ∗Y ` θ for all Y ∈ Y , then Γ,φ ` θ.

Proof. If α is the non-emptiness NE, then the statement follows from SE1. If α = ⊥,
then Y = { /0}, Θ∗/0 = ⊥ and φ∗/0 = φ. Thus the statement holds trivially. The nontrivial
case is when α is pik or ¬pik . We only give the proof for the case α = pik . The case
α= ¬pik is proved similarly.

In view of SE2, to show Γ,φ ` θ it suffices to show that Γ,φ(pik ∧NE/[pik ,m]) ` θ
and Γ,φ(pik ∧⊥/[pik ,m]) ` θ. To show the latter, first note that by the assumption
we have Γ,φ(Θ∗/0/[pik ,m]) ` θ, i.e., Γ,φ(⊥/[pik ,m]) ` θ. It then suffices to check that
φ(pik ∧⊥/[pik ,m]) ` φ(⊥/[pik ,m]). But this follows from Lemma 5.12, as by ∧E we
have pik ∧⊥ ` ⊥.

To show the former, in view of SE1 it suffices to derive Γ,φ(pik ∧Θ∗X/[pik ,m]) ` θ
for all nonempty teamsX onN \{ik}. By the rule Dstr∗∧⊗, we have pik ∧Θ∗X `Θ∗Y ,
where Y ⊆ 2N is defined as

Y = {s :N → 2 | s �N \{ik} ∈X and s(ik) = 1}.

It then follows from Lemma 5.12 that φ(pik ∧Θ∗X/[pik ,m]) ` φ(Θ∗Y /[pik ,m]). On
the other hand, clearly Y ∈ Y and the assumptions implies that Γ,φ(Θ∗Y /[pik ,m]) ` θ.
Hence we obtain Γ,φ(pik ∧Θ∗X/[pik ,m]) ` θ, as desired.

Now we are ready to prove the full statement for an arbitrary sequence o of occur-
rences of atoms.

Lemma 5.14. Let Λ be the set of all strongly realizing sequences of φ over a sequence
o of some occurrences of atoms in a formula φ. For any set Γ∪{θ} of formulas in the
language of CPL+, if Γ,φ∗

Ω
` θ for all Ω ∈ Λ, then Γ,φ ` θ.
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Proof. Let o = 〈[α1,m1], . . . , [αc,mc]〉. By the assumption, for any Y1 that satisfies
α1 we have

Γ,φ((α1)
∗
Y1
/[α1,m1],(α2)

∗
X2
/[α2,m2], . . . , (αc)

∗
Xc
/[αc,mc]) ` θ

for all 〈Y1,X2, . . . ,Xc〉 ∈ Λ

Then we conclude by Lemma 5.13 that Γ,φ∗
Ω
` θ for all Ω ∈ Λ1, where Λ1 is the set of

all strongly realizing sequences of φ over a sequence o1 = 〈[α2,m2], . . . , [αc,mc]〉.
By repeating this argument c times, we obtain Γ,φ ` θ in the end.

For the sake of the proof of the Completeness Theorem, we need to further trans-
form each strong realization φ∗

Ω
into a formula Θ∗XΩ

in the normal form. To simplify
notations, we write Θ∗0 for the formula ⊥∧NE and view 0 as a void team. Note that
Θ∗0 6= Θ∗/0 =⊥.

Lemma 5.15. Let Λ be the set of all maximal strongly realizing sequences of a formula
φ(pi1 , . . . ,pin) in the language of CPL+.

(i) For each Ω ∈ Λ, we have φ∗
Ω
a` Θ∗XΩ

for some team XΩ on N = {i1, . . . , in} or
XΩ = 0.

(ii) Let Λ0 = {Ω ∈ Λ |XΩ 6= 0}. We have φ ≡
∨

Ω∈Λ0
Θ∗XΩ

.

Proof. (i) We prove the lemma by induction on the subformulas ψ of φ. If ψ is an atom,
then ψ∗

Ω
= Θ∗XΩ

for some team XΩ on N that satisfies ψ and trivially ψ∗
Ω
a`Θ∗XΩ

.
If ψ = δ⊗χ, then by the induction hypothesis, we have

δ∗Ω a`Θ
∗
XΩ

and χ∗Ω a`Θ
∗
YΩ
, (11)

By ⊗Sub− we have δ∗
Ω
⊗χ∗

Ω
a` Θ∗XΩ

⊗Θ∗YΩ
. It then suffices to show that Θ∗XΩ

⊗
Θ∗YΩ
a`Θ∗Z for some team Z on N .

If XΩ = 0, then taking Z = 0, we derive Θ∗0 a` Θ∗0⊗Θ∗YΩ
by ex falso+ and 0Ctr.

The case YΩ = 0 is proved similarly. If XΩ,YΩ 6= 0, then by ⊗W and ⊗E−, we derive
Θ∗XΩ

⊗Θ∗YΩ
a`Θ∗XΩ∪YΩ

.
If ψ = δ ∧χ, then the induction hypothesis implies (11). By ∧I and ∧E we have

δ∗
Ω
∧χ∗

Ω
a`Θ∗XΩ

∧Θ∗YΩ
. It then suffices to show that Θ∗XΩ

∧Θ∗YΩ
a`Θ∗Z for some team

Z on N .
If XΩ = 0, then taking Z = 0, we derive Θ∗0 a` Θ∗0 ∧Θ∗YΩ

by ex falso+ and ∧E.
The case YΩ = 0 is proved similarly. If XΩ = YΩ 6= 0, then by ∧E and ∧I, we derive
Θ∗XΩ

∧Θ∗YΩ
a` Θ∗XΩ

. If XΩ,YΩ 6= 0 and XΩ 6= YΩ, then we derive Θ∗0 a` Θ∗XΩ
∧Θ∗YΩ

by ex falso+ and 0I.
(ii) It follows from the item (i), the Soundness Theorem and Lemma 5.10 that

φ ≡
∨

Ω∈Λφ
∗
Ω
≡
∨

Ω∈Λ Θ∗XΩ
. If Λ0 6= /0, then the statement clearly follows, as Θ∗0∨ψ=(

⊥∧NE
)
∨ψ ≡ ψ for all formulas ψ. If Λ0 = /0, then φ∗

Ω
≡ ⊥∧NE for each Ω ∈ Λ.

Thus φ≡
∨

Ω∈Λφ
∗
Ω
≡
∨

Ω∈Λ(⊥∧NE)≡⊥∧NE≡
∨

/0.

Finally, let us give the proof of the Completeness Theorem.
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Theorem 5.16 (Completeness Theorem). For any formulas φ and ψ in the language
of CPL+, we have φ |= ψ =⇒ φ ` ψ.

Proof. Suppose φ |=ψ, where φ= φ(pi1 , . . . ,pin) and ψ=ψ(pi1 , . . . ,pin). By Lemma
5.15 and the Soundness Theorem, we have

φ≡
∨

Ω∈Λ0

Θ
∗
XΩ
|=

∨
ϒ∈Λ′0

Θ
∗
Yϒ
≡ ψ. (12)

where

(i) Λ, Λ′ are the sets of all strongly realizing sequences of φ and ψ, respectively and
each XΩ and Yϒ are teams on {i1, . . . , in};

(ii) φ∗
Ω
a`Θ∗XΩ

and ψ∗
ϒ
a`Θ∗Yϒ

for all Ω ∈ Λ and ϒ ∈ Λ′;

(iii) Λ0 = {Ω ∈ Λ |XΩ 6= 0} and Λ′0 = {ϒ ∈ Λ′ | Yϒ 6= 0}.

If Λ0,Λ
′
0 6= /0, then for any Ω ∈ Λ, by Lemma 5.4 there exists ϒ ∈ Λ′ such that

XΩ = Yϒ. We then have

φ∗Ω `Θ
∗
XΩ

= Θ
∗
Xϒ
` ψ∗ϒ ` ψ

by (ii) and Lemma 5.11. Finally, we obtain φ ` ψ by Lemma 5.14.
If Λ0 = /0, then for each Ω∈Λ we have φ∗

Ω
a`Θ∗0 =⊥∧NE. Then by ex falso+ we

derive φ∗
Ω
` ψ and φ ` ψ follows from Lemma 5.14 again. If Λ′0 = /0, then ψ ≡

∨
/0 =

⊥∧NE. But in view of (12), we must also have φ ≡ ⊥∧NE and Λ0 = /0. This then
reduces to the previous case.

5.3. PI+, PInc+ and other extensions of CPL+

The argument in the previous section can also be applied to axiomatize other propo-
sitional team logics obtained by adding new atoms with the empty team property to the
language of CPL+, such as strong propositional independence logic (PI+) and strong
propositional inclusion logic (PInc+). Throughout the section, we write L for an ar-
bitrary such logic. In this section, we will show how to generalize the method in the
previous section to axiomatize L, and PI+ and PInc in particular.

What was crucial in the axiomatization of CPL+ was the notion of a strong real-
ization of a formula. This notion can be generalized to richer languages, such as PI+
and PInc+. A strong realization α∗Y of an atom α (such as independence atom and
inclusion atom) over a team Y that satisfies α is defined as α∗Y := Θ∗Y . A strongly
realizing sequence of a formula φ over a sequence o of some occurrences of atoms in φ
and a strong realization (over o) are defined the same way as in the logic CPL+, except
that a richer language L may contain more atoms.

Our natural deduction system of L consists of all of the axioms and the rules from
the system of CPL+ (Definition 5.8), together with the Introduction Rule and the Elim-
ination Rule (αI and SEα presented below) that characterize the equivalence between
an arbitrary new atom α and the Boolean disjunction

∨
Y Θ∗Y of its strong realizations.

Definition 5.17 (A natural deduction system of L).
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AXIOM

Atomic excluded middle

EM0pi⊗¬pi

RULES

All of the rules from Definition 5.8, together with the following two rules for each
new atom α in L:

Atom α introduction

D
Θ∗Y

αIα

where Y is a team on a set N of indices that satisfies α3

Strong elimination rule for α

D0

φ

[φ(Θ∗Y1
/[α,m])]

D1

θ . . .

[φ(Θ∗Yk/[α,m])]

Dk

θ
SEαθ

where {Y1, . . . ,Yk} is the set of all teams on a set N of indices that satisfy α

Next, we prove the Soundness Theorem and the (Strong) Completeness Theorem
for the system.

Theorem 5.18 (Soundness Theorem). For any set Γ∪{φ} of formulas in the language
of L, we have Γ ` φ =⇒ Γ |= φ.

Proof. We show that for each derivation D with the conclusion φ and the hypotheses
in Γ we have Γ |= φ. We only verify the cases when the rules αI and SEα are applied.

αI: Assume thatD is a derivation for Π `Θ∗Y where Y is a team onN that satisfies
the atom α. We show that Π |= α follows from the induction hypothesis Π |= Θ∗Y . This
is reduced to showing Θ∗Y |= α. For any team X such that X |= Θ∗Y , by Lemma 5.4 we
have X = Y . Thus X |= α follows from the assumption.

3On the surface this looks like a confusion between syntax and semantics. However, it is as in the
Conjunction Introduction Rule “From φ and ψ we infer φ∧ψ”. On the basic level the rules establish a
connection between logical operations and their intended meaning. We could replace here the assumption
“Y satisfies the atom α” by explicitly listing teams onN that satisfy α, but that would be more cumbersome.
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SEα: Put φ∗i = φ(Θ∗Yi/[α,m]) for each i ∈ {1, . . . ,k}. Assume that D0,D1, . . . ,Dk

are derivations for Π0 ` φ, Π1,φ
∗
1 ` θ, ..., Πk,φ

∗
k ` θ, respectively. We show that

Π0,Π1, . . . ,Πk |= θ follows from the induction hypothesis Π0 |= φ, Π1,φ
∗
1 |= θ, ...,

Πk,φ
∗
k |= θ. This is reduced to showing that φ |= φ∗1∨ ·· ·∨φ∗k by induction on φ. If φ

is the atom α, then the statement follows from Lemma 5.4 and the choice of the Yi’s.
The other cases are left to the reader.

Theorem 5.19 (Completeness Theorem). For any formulas φ and ψ in the language
of L, we have φ |= ψ =⇒ φ ` ψ.

Proof. The theorem is proved by a similar argument to that of the proof of Theo-
rem 5.16. Especially, all the lemmas leading to Theorem 5.16 can be easily generalized
to the case of any extension L of CPL+ with new atoms having the empty team prop-
erty. In particular, in the proof of the lemma that corresponds to Lemma 5.11, if ψ is a
new atom α, then ψ∗

Ω
` ψ follows from αI. When proving the lemma that corresponds

to Lemma 5.13, one applies SEα when α is a new atom.

Instantiating the new atoms α in the deduction system of Definition 5.17 with inde-
pendence atoms or inclusion atoms, we obtain sound and (strongly) complete deduction
systems of PI+ and PInc+. We end this section with a demonstration of the natural
deduction system of PI+. Below we derive the Geiger-Paz-Pearl axioms [12]. To sim-
plify notation, we write IndI for the Independence Atom Introduction Rule and SEInd

for the Independence Atom Elimination Rule.

Example 5.20. Let ~x = pi1 · · ·pik , ~y = pj1 · · ·pjm and ~z = pl1 · · ·pln . The following
Geiger-Paz-Pearl axioms are derivable in the natural deduction system of PI+:

(i) ~x⊥ ~y ` ~y ⊥ ~x

(ii) ~x⊥ ~y ` ~z ⊥ ~y, where ~z is a subsequence of ~x.

(iii) ~x⊥ ~y ` ~u⊥ ~v, where ~u is a permutation of ~x and ~v is a permutation of ~y.

(iv) ~x⊥ ~y, ~x~y ⊥ ~z ` ~x⊥ ~y~z.

Proof. We are going to use the Independence Atom Introduction Rule IndI a lot here.
Therefore the proofs below seem entirely semantical. However, we have built the
meaning of the independence atom into the rule IndI, so it is only natural that we refer
to this meaning in the proofs. This is more complicated but, in principle, analogous
to the way we often use in elementary logic the meaning of “and” and “or” when we
prove e.g. distributivity laws using just the Elimination Rule and Introduction Rule for
∧ and ∨.

Put K = {i1, . . . , ik}, M = {j1, . . . , jm} and N = {l1, . . . , ln}.
(i) By SEInd, it suffices to show that for any team Y onK∪M such that Y |= ~x⊥ ~y

we have Θ∗Y ` ~y ⊥ ~x. But this follows from IndI, as Y |= ~y ⊥ ~x also holds.
(ii) By SEInd, it suffices to show that for any team Y on K ∪M ∪N such that

Y |= ~x ⊥ ~y we have Θ∗Y ` ~z ⊥ ~y, where ~z is a subsequence of ~x. In view of IndI, this
is reduced to showing Y |= ~z ⊥ ~y. But this is obvious.
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(iii) By SEInd, it suffices to show that for any team Y onK∪M such that Y |= ~x⊥ ~y
we have Θ∗Y ` ~u ⊥ ~v, where ~u = pi1 · · ·pia is a permutation of ~x and ~v = pm1 · · ·pmb

is a permutation of ~y. In view of IndI this is reduced to showing Y |= ~u ⊥ ~v, which
follows from that Y |= ~x⊥ ~y.

(iv) We will show that (~x ⊥ ~y)∧ (~x~y ⊥ ~z) ` ~x ⊥ ~y~z. By SEInd, it suffices to show
that for any teamX onK∪M ∪N such thatX |= ~x⊥ ~y, we have Θ∗X ∧(~x~y⊥ ~z)` ~x⊥
~y~z. But this, by SEInd, is further reduced to showing that for any team Y onK∪M ∪N
such that Y |= ~x~y ⊥ ~z, we have Θ∗X ∧Θ∗Y ` ~x⊥ ~y~z.

Now, if X 6= Y , then by 0I and ex falso+, we derive Θ∗X ∧Θ∗Y ` ⊥∧NE ` ~x⊥ ~y~z.
If X = Y , then Θ∗X = Θ∗Y . By IndI, it suffices to show X |= ~x ⊥ ~y~z. For any

s1,s2 ∈X , since X |= ~x⊥ ~y, there exists s3 ∈X such that s1(~x) = s3(~x) and s2(~y) =
s3(~y). But as X |= ~x~y ⊥ ~z, there exists s4 ∈ X such that s4(~x)s4(~y) = s3(~x)s3(~y)
and s4(~z) = s2(~z). We then conclude that s4(~x) = s3(~x) = s1(~x) and s4(~y)s4(~z) =
s3(~y)s2(~z) = s2(~y)s2(~z). Hence X |= ~x⊥ ~y~z and this completes the proof.

6. Concluding remarks

In our previous work [34] we have investigated classical propositional logic, and
several versions of propositional dependence logic. We proved their expressive com-
pleteness for downward closed team properties, and gave several complete axiomati-
zations of such logics. In this paper, we have studied propositional team logics more
generally, recognizing that there is a whole hierarchy of them. We have established
the results in Figure 1 concerning the expressive power of these logics. Several ex-
pressively complete logics are identified. For example, we have proved that PU+ is
expressively complete for the set of union closed team properties. We also derived nor-
mal forms for many of the logics. Some of the logics we considered have the empty
team property, and some do not. We axiomatized the logics (PT+, CPL+, PI+ and
PInc+) without the empty team property, and we leave the concrete axiomatization of
PU+ for future research. As is reflected by the sophisticated Strong Elimination Rules
we gave in this paper, propositional logics of independence are more intricate than
propositional logics of dependence. In particular, we feel that we have not yet fully
understood the notion of independence, and neither a characterization of expressive
power nor a complete axiomatization is given for PI here. Nevertheless, it is our hope
that the results obtained concerning logics around PI will set the stage for further re-
search in this field and lead to a better understanding of PI, propositional independence
logic, itself.
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[24] LÜCK, M. Axiomatizations for propositional and modal team logic. In 25th
EACSL Annual Conference on Computer Science Logic (CSL 2016) (Dagstuhl,
Germany, 2016), J.-M. Talbot and L. Regnier, Eds., vol. 62, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 33:1–33:18.

[25] MANN, A. L., SANDU, G., AND SEVENSTER, M. Independence-Friendly
Logic: A Game-Theoretic Approach. London Mathematical Society Lecture Note
Series. Cambridge University Press, 2011.

[26] SEVENSTER, M. Model-theoretic and computational properties of modal depen-
dence logic. Journal of Logic and Computation 19, 6 (2009), 1157–1173.
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[34] YANG, F., AND VÄÄNÄNEN, J. Propositional logics of dependence. Annals of
Pure and Applied Logic 167, 7 (July 2016), 557–589.

44


	Introduction
	Preliminaries
	Expressive Power and Normal Forms
	Metalogical properties
	Compactness
	Closure under classical substitutions

	Axiomatizations
	PT+
	CPL+
	PI+, PInc+ and other extensions of CPL+

	Concluding remarks



