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Sworn testimony of the model evidence: Gaussian Mixture
Importance (GAME) sampling
Elena Volpi1 , Gerrit Schoups2, Giovanni Firmani1 , and Jasper A. Vrugt3,4

1Department of Engineering, University of Roma Tre, Rome, Italy, 2Department of Water Management, Delft University of
Technology, Netherlands, 3Department of Civil and Environmental Engineering, University of California, Irvine, California,
USA, 4Department of Earth System Science, University of California, Irvine, California, USA

Abstract What is the ‘‘best’’ model? The answer to this question lies in part in the eyes of the beholder,
nevertheless a good model must blend rigorous theory with redeeming qualities such as parsimony and
quality of fit. Model selection is used to make inferences, via weighted averaging, from a set of K candidate
models,Mk ; k5ð1; . . . ; KÞ, and help identify which model is most supported by the observed data,
~Y5ð~y 1; . . . ; ~y nÞ. Here, we introduce a new and robust estimator of the model evidence, pð~YjMkÞ, which
acts as normalizing constant in the denominator of Bayes’ theorem and provides a single quantitative mea-
sure of relative support for each hypothesis that integrates model accuracy, uncertainty, and complexity.
However, pð~YjMkÞ is analytically intractable for most practical modeling problems. Our method, coined
GAussian Mixture importancE (GAME) sampling, uses bridge sampling of a mixture distribution fitted to
samples of the posterior model parameter distribution derived from MCMC simulation. We benchmark the
accuracy and reliability of GAME sampling by application to a diverse set of multivariate target distributions
(up to 100 dimensions) with known values of pð~YjMkÞ and to hypothesis testing using numerical modeling
of the rainfall-runoff transformation of the Leaf River watershed in Mississippi, USA. These case studies dem-
onstrate that GAME sampling provides robust and unbiased estimates of the evidence at a relatively small
computational cost outperforming commonly used estimators. The GAME sampler is implemented in the
MATLAB package of DREAM and simplifies considerably scientific inquiry through hypothesis testing and
model selection.

Plain Language Summary Science is an iterative process for learning and discovery in which com-
peting ideas about how nature works are evaluated against observations. The translation of each hypothesis
to a computational model requires specification of system boundaries, inputs and outputs, state variables,
physical/behavioral laws, and material properties; this is difficult and subjective, particularly in the face of
incomplete knowledge of the governing spatiotemporal processes and insufficient observed data. To guard
against the use of an inadequate model, statisticians advise selecting the ‘‘best’’ model among a set of can-
didate ones where each might be equally plausible and justifiable a priori. Bayesian model selection uses
probability theory to select among competing hypotheses; the key variable is the Bayesian model evidence,
which provides a single quantitative measure of relative support for each hypothesis that integrates model
accuracy, uncertainty, and complexity. Bayesian model selection has not entered into mainstream use in
Earth systems modeling due to the lack of general-purpose methods to reliably estimate the evidence.
Here, we introduce a new method, called GAussian Mixture importancE (GAME) sampling. We demonstrate
GAME power and usefulness for hypothesis testing using benchmark experiments with known target and
numerical modeling of the rainfall-runoff transformation of the Leaf River watershed (Mississippi, USA).

1. Introduction and Scope

Science is an iterative process for learning and discovery in which competing ideas about how nature works
are evaluated against observations [Johnson and Omland, 2004]. Building upon our perceptual understand-
ing of the real-world system, these ideas can emerge as verbal and pictorial hypotheses but must be trans-
lated to mathematical equations or computer models before being fit to data. The capabilities of such
computer models typically exceed by far traditional paper-and-pencil calculations and can involve simula-
tions on spatial scales of individual atoms to an entire ecosystem, and temporal scales of nanoseconds to
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many millions of years. The translation of one or more hypotheses to a computational model requires speci-
fication of (among others) relevant system boundaries, inputs and outputs, state (prognostic) variables,
physical and behavioral laws (e.g., conservation of mass, momentum and energy), and material properties.
Model building is a complex and intuitive process which is heavily influenced by perception, intuition, and
prior knowledge on system functioning and reality and colored by mental concepts (state of mind). From a
myriad of countless processes and mechanisms, the modeler seeks to elucidate those key principles, laws,
and generalizations, which explain the observed data. Their translation to a computational model is difficult
and subjective, particularly in the face of incomplete knowledge of the governing spatiotemporal processes
and insufficient data on (spatially distributed) system properties and state variables.

To guard against the use of an inadequate model, statisticians advise selecting the ‘‘best’’ model among a
set of plausible candidate models chosen and/or construed by the researcher(s). This approach rules out
model selection bias and recognizes explicitly ambiguity in the interpretation and analysis of complex natu-
ral systems. The ensemble of models, and their associated hypotheses, constitute a finite sample of possible
explanations of the data deemed plausible a priori from the extremely, perhaps even unfathomably, large
space of alternatives. This can include black-box, conceptual (empirical), and physically based models and
involve widely different variables, mathematical functions that define the spatiotemporal relationships
between independent variables and the response variable of interest, computational states, fluxes and
parameters, and the initial and boundary conditions that govern system behavior and response. Each of the
candidate models might be equally plausible and justifiable a priori [see, e.g., Neuman, 2003; Vrugt and Rob-
inson, 2007; Ye et al., 2008; Clark et al., 2011]. Model selection then involves the identification of a single
best model by evaluating the relative support for each competing hypothesis. The guiding principle at this
step is to avoid generating so many models that spurious findings become likely. Burnham and Anderson
[2002] argues, on philosophical grounds, that K 5 20 candidate models are more than sufficient.

The definition of the ‘‘best’’ model is somewhat elusive laying in part in the eyes of the beholder. Empirical
findings suggest choosing the simplest explanation of the data, as such hypotheses have led to mathemati-
cally rigorous and empirically verifiable theories. This parsimony principle is often attributed to William of
Ockham (1287–1347), an English Franciscan friar, scholastic philosopher, and theologian, but traceable to
the works of philosophers such as Aristotle (384–322 BC) and Ptolemy (circa AD 90 to circa AD 168). Ock-
ham’s believe that ‘‘. . .Entities must not be multiplied beyond necessity’’ is commonly referred to in the lit-
erature as Occam’s razor, and consistent with requirements of falsifiability in the scientific method [Popper,
1992]. Indeed, simpler hypotheses (theories) are preferred as they involve fewer assumptions and are there-
fore easier testable. Thus, a ‘‘good’’ model selection technique must necessarily balance goodness of fit with
complexity (often measured in terms of the number of ‘‘free’’ parameters). Indeed, more complex models
may be able to better explain the data, but the additional parameters might have little correspondence
with the specific processes and behaviors of the system the model is intended to represent [Schoups et al.,
2008]. A classic example is polynomial wiggle, wherein the use of a higher degree polynomial hardly
improves the approximation error, yet introduces oscillations between observations which magnify at the
edges of the data interval. This so-called Runge phenomenon cautions against the use of high-order poly-
nomials for interpolation, let alone out-of-sample prediction. Note, in cases where models have similar lev-
els of support from the data, model averaging can be used to negate statistical bias and improve treatment
of conceptual model uncertainty [Neuman, 2003; Refsgaard et al., 2006; Vrugt and Robinson, 2007; Ye et al.,
2008; Clark et al., 2011].

The traditional approach to model selection builds on information theory, and uses principles of entropy
maximization to determine which hypothesis, Hk , is most supported by available data, ~Y5ð~y 1; . . . ; ~y nÞ.
Selection is based on an information criterion, Ik, which quantifies the information that is lost if the hypothe-
sis,Hk , is used to explain the data generating process

Ik522 ln fLðHk j~YÞg1C; (1)

where LðHk j~YÞ denotes the (maximized) likelihood of Hk and C> 0 is a strictly positive scalar which penal-
izes for the hypothesis’ complexity (say, number of ‘‘free’’ parameters, d), and/or n, the length of the data
record, ~Y, and may account for uncertainty of each hypothesis. Thus, the better a hypothesis explains the
data, the larger its likelihood, LðHk j~YÞ, and the smaller the value of the information criterion, Ik in equation
(1). Thus, among several competing hypothesis, the proposition, Hk , with lowest value of Ik receives most
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support by the experimental data, ~Y. The most popular variants of equation (1) are Akaike’s information cri-
terion (AIC, Akaike [1998]) with C52d, Bayesian information criterion (BIC, Schwarz [1978]) with penalty term
C5dln ðnÞ and the deviance information criterion (DIC, Spiegelhalter et al. [2002]) with C52d̂ , wherein d̂ is
an estimate of the effective number of parameters.

Information criteria are routinely used in many different fields of study to support efforts such as hypothesis
testing, scientific inquiry, and model selection. This is explained in part by their parsimony and ease of cal-
culation. Nonetheless, most information criteria consider only the likelihood maximum of each hypothesis
without recourse to its underlying statistical uncertainty. This approach suffices if the data honor one partic-
ular model, but might not be adequate in situations with nearly equivalent support for the competing
hypotheses. The DIC is an exception, and considers explicitly the distribution of the likelihood in determina-
tion of the penalty term, d̂ . What is more, information criteria generally do not allow for informative priors
(either assessed from field data or through expert elicitation), and can provide contradictory and biased
results, particularly for parameter-rich models [Ye et al., 2008; Lu et al., 2011; Sch€oniger et al., 2014].

Bayesian model selection provides an attractive alternative to information-theoretic selection, and tradi-
tional null hypothesis testing via likelihood ratio tests and metrics such as the adjusted R2 statistic. This
Bayesian approach uses probability theory to select among multiple competing hypotheses. The key vari-
able is the marginal likelihood, or Bayesian model evidence, pð~YjMkÞ, which is computed separately for
each model,Mk , or hypothesis, Hk , where k5ð1; . . . ; KÞ by averaging rather than maximizing the likelihood
function over the prior parameter distribution. This prior distribution plays a key role in Bayesian epistemol-
ogy and will affect the support a model receives from the observed data. In fact, with an improper prior the
model can be made to fit the data arbitrarily poorly, changing fundamentally our opinion about which
model should be favored, a phenomenon known as the Jeffreys-Lindley paradox. Information criteria conve-
niently ignore this antecedent and use only each model’s likelihood as proxy for quality of fit. In general,
the larger a model’s marginal likelihood the more support it receives from the observed data, simply
because this data assigns a relatively high probability to the model output. The marginal likelihood encodes
a natural preference for simpler and more constrained models, and combats the selection of overly complex
and/or overfitted models by information criteria that incorporate only the likelihood maximum. The mar-
ginal likelihood can also be shown to approximate the expected out-of-sample prediction error, and thus
implicitly performs a split-sample test without actually setting apart data for model evaluation [see Bishop,
2006, p. 32]. Furthermore, the Bayesian model evidence also has theoretical connections with AIC and BIC,
as shown by Sch€oniger et al. [2014].

Bayesian model selection is a preferred alternative to null hypothesis testing, yet has not entered into main-
stream use across fields in Earth systems modeling. The crux is the lack of general-purpose methods avail-
able to reliably estimate the model evidence, pð~YjMkÞ. Analytic estimates are available for simulation
models whose output depends linearly on its parameters, and for conjugate priors as illustrated by
Sch€oniger et al. [2014]. Unfortunately, these conditions are too restrictive to be practically useful for most
real-world simulation models. Here, we resort to Monte Carlo simulation to estimate numerically the model
evidence via multidimensional integration of the posterior model parameter distribution. This task can be
cumbersome and computationally demanding, particularly for CPU-intensive system models and high-
dimensional posterior parameter distributions that deviate considerably from normality. Nevertheless,
Monte Carlo sampling methods [Hammersley and Handscom, 1964] can provide better estimates of the
model evidence than information criteria [Kass and Raftery, 1995; Lu et al., 2011; Sch€oniger et al., 2014]. The
most basic and straightforward Monte Carlo approach approximates the evidence by the arithmetic mean
of the likelihoods of a large sample of parameter vectors drawn randomly from the prior distribution. This
approach, albeit relatively simple, is rather inefficient as a large proportion of the samples might exhibit a
negligible density and therefore contribute little to the model evidence. More efficient and viable alterna-
tives are importance sampling and Markov Chain Monte Carlo (MCMC) simulation [see, e.g., Kass and Raftery,
1995; Marshall et al., 2005].

In this paper, we explore, develop, test, benchmark, and contrast different model evidence estimation meth-
ods. We introduce a new method, called GAussian Mixture ImportancE (GAME) sampling, which estimates
the evidence via multidimensional numerical integration of the posterior parameter distribution using
bridge sampling. This method involves two main steps. First, a large collection of samples is generated from
the posterior parameter distribution, pðhj~Y;MkÞ, using MCMC simulation with the DREAM algorithm [Vrugt
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et al., 2008, 2009; Vrugt and ter Braak, 2011; Laloy and Vrugt, 2012; Vrugt, 2016] by conditioning separately
each candidate model, Mk , on the observed data, ~Y. Then, a multivariate mixture distribution is fitted to
this MCMC collection of posterior samples using likelihood theory. This distribution serves as our catalyst to
estimate the marginal likelihood of each competing hypothesis via bridge sampling [Meng and Wong,
1996], a natural generalization of importance sampling. We benchmark the robustness, accuracy, and reli-
ability of GAME sampling by application to a diverse set of multivariate target distributions (up to hundred
dimensions) with known values of pð~YjMkÞ. We then illustrate the power and usefulness of GAME for
hypothesis testing using numerical modeling of the rainfall-runoff transformation of the Leaf River water-
shed in Mississippi, USA. The GAME sampler is implemented in the MATLAB package of DREAM described
by Vrugt [2016] and simplifies considerably hypothesis testing and model selection.

The remainder of this paper is organized as follows. Section 2 reviews briefly the theory of Bayesian hypoth-
eses testing, while in section 3 we present the bridge sampling framework for model evidence estimation.
This is followed in section 4 by a detailed description of the GAME sampler and its numerical implementa-
tion in the MATLAB package of DREAM described by Vrugt [2016]. In section 5, we present the results of our
multivariate benchmark experiments, and section 6 demonstrates the application of GAME sampling to
hypothesis testing using multiple different models of the rainfall-discharge relationship of the Leaf River
watershed. Finally, we conclude this paper in section 7 with a summary of our main findings.

2. Hypothesis Testing

The first step in hypothesis selection involves articulation of a reasonable set of competing ideas about the
structure and functioning of the real-world system of interest. These ideas may be summarized in drawings,
maps, tables, papers, reports, and oral presentations, and depend critically upon an investigator’s state of
knowledge, process understanding, prior facts, training, and experience. Verbal rendition of these ideas
leads to a collection of testable hypotheses. Ideally, the collection of hypotheses is construed before data
collection and samples exhaustively and systematically the plausible space of explanations for the experi-
mental data.

Hypothesis formulation can be viewed as a preliminary, informal, stage to model building, wherein an inves-
tigator expresses verbally their ‘‘perceptual’’ model. Such model is the result of purely sensory perceptions
coupled with qualitative and quantitative interpretations of the data. This interpretive process may be
strongly influenced by prior concepts, and may be colored by mental concepts. Unfortunately, perceptual
models cannot be subjected to formal analysis as this would require symbolic representation. The resulting
computational models may not express faithfully the collection of hypotheses due to lack of knowledge,
ideas, or imagination about how to express mathematically (among others) the architecture (extent, struc-
ture, and spatial variability), governing processes, state variables, and fluxes of each perceptual model.

In surface hydrology, one can easily envisage multiple working hypotheses that may explain watershed
behavior and functioning as catchment behavior is complex and controlled by a myriad of interrelated and
spatially distributed physical, chemical, and ecological processes. Each candidate hypothesis may be used
to explain the watershed data, ~Y5ð~y 1; . . . ; ~y nÞ, observed at discrete times t5ð1; . . . ; nÞ as follows

~Y  Mkðh; ~x0; ~BÞ1E; (2)

where h5ðh1; . . . ; hdÞ is a d-vector of model parameters, ~x0 stores the values of the state variables at the
start of simulation, ~B signifies the control matrix with temporal measurements of the atmospheric forcing
variables, and E5ðe1; . . . ; enÞ is a n-vector of residuals

EðMkÞ5~Y2Mkðh; ~x0; ~BÞ: (3)

Without further loss of generality, we restrict the model parameters to a closed space, X, equivalent to a
d-dimensional hypercube, h 2 X 2 Rd , called the feasible parameter space.

We conveniently assume herein that the control variables are observed without error, or dðB; ~BÞ50, and
that a spin-up period of T days suffices to ameliorate the effect of state initialization errors on the model
output, lim

t!T
dðytð~x0Þ; ytðx0ÞÞ ! 0. These two assumptions simplify considerably hypothesis testing as the

support each model receives from the data depends only on the values of its parameters, h. This approach
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may bias model selection and favor hypotheses that do not suffer large measurement errors of their respec-
tive (set of) control variables. In principle, we can augment the parameter vector of each model with latent
variables that rectify errors in the forcing data. This approach is outside the scope of the present work. Inter-
ested readers are referred to the BATEA framework of Kavetski et al. [2006a, 2006b], the hydrology backward
approach of Kirchner [2009] and the parameter augmentation method of Vrugt et al. [2008, 2009].

Once a set of suitable candidate models has been specified, we must determine appropriate values of their
parameters before we can proceed with model selection. We can estimate each model’s posterior parame-
ter distribution, pðhj~Y;MkÞ, via Bayes’ theorem using the observed data, ~Y, as follows

pðhj~Y;MkÞ5
pðhjMkÞLðhj~Y;MkÞ

pð~YjMkÞ
/ pðhjMkÞLðhj~Y;MkÞ; (4)

where pðhjMkÞ denotes the candidate model’s prior parameter distribution, Lðhj~Y;MkÞ signifies the likeli-
hood function. The denominator, pð~YjMkÞ, is a normalizing constant which ensures that the posterior
parameter distribution integrates to unity over pðhjMkÞ. This so-called model evidence or marginal likeli-
hood can be ignored for parameter inference as the unnormalized posterior density, pðhjMkÞLðhj~Y;MkÞ,
suffices to estimate pðhj~Y;MkÞ. Knowledge of pð~YjMkÞ is strictly necessary for hypothesis testing to select
the best model among a set of plausible alternatives.

The marginal likelihood, pð~YjMkÞ, is computed separately for each model Mk by averaging rather than
maximizing the likelihood function over the prior parameter distribution

pð~YjMkÞ5
ð

X
pðhjMkÞLðhj~Y;MkÞdh (5)

The candidate model with largest marginal likelihood is preferred statistically, as it assigns the highest prob-
ability (density) to the experimental data, ~Y. Marginalization is used to eliminate from equation (5) the effect
that different parameters (their number and prior distribution) have on the data likelihood and thus quality
of the model fit. Being the average of the likelihood over the prior distribution, the marginal likelihood is
largest for models whose likelihood values are high and uniformly distributed across the parameter space,
and smallest for models whose parameter space produces consistently low likelihoods. Models with more
parameters have larger output spaces and are often better in fitting the data. Consequently, parameter-rich
models may have higher peak likelihoods, nevertheless, in order to increase their marginal likelihood,
pð~YjMkÞ, the area with maximized likelihood must compensate for other areas in the parameter space
where the data fit is much poorer and the likelihood is rather low. Simpler models may yield lower peak
likelihoods, but provide larger values of the average likelihood, thus being preferred statistically. Thus, mar-
ginalization in the Bayesian framework can be viewed as a formalization of Occam’s razor: a simpler theory
with compact parameter space will have a larger marginal likelihood than a more complicated model,
unless the latter is significantly better at explaining the data. The evidence estimates can also serve as
weights for the simulations of the different models, as in Bayesian model averaging [Hoeting et al., 1999;
Wasserman, 2000; Vrugt and Robinson, 2007].

The next section discusses theory, concepts, and application of Monte Carlo simulation methods to estimate
the marginal likelihood, pð~YjMkÞ. For notational simplicity, we suppress the dependence of pð~YjMkÞ on
Mk from now on.

3. Monte Carlo Approximation of the Marginal Likelihood

Estimation of the marginal likelihood is difficult for nonlinear system models as the integral of their poste-
rior parameter distribution is often high-dimensional and without analytic solution. Monte Carlo simulation
methods can be used to approximate the evidence of competing models, but their implementation is not
necessarily easy and straightforward.

Before we proceed with bridge sampling as general vehicle for evidence estimation, we illustrate in
Figure 1a the definition of the marginal likelihood for a standard normal target distribution (red line). We
use m Monte Carlo samples of this distribution to approximate the integral. These samples will be distrib-
uted exactly according to the underlying target distribution, yet their corresponding densities (blue dots)
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are substantially smaller than their counterparts of the normal distribution (red line). Per equation (5), the
marginal likelihood is now equivalent to the area under the blue curve. If we now divide the m unnormal-
ized densities of the posterior samples by this (normalizing) constant, we recover exactly the probability
density function of the standard normal target.

The next section discusses bridge sampling as unifying framework to estimate the marginal likelihood
(model evidence) from a collection of target samples. We use the standard convention whereby lower case
letters are used to denote probability density functions, whereas curly brackets are used to differentiate
between random variables and their actual sampled values. Thus, ðfh1g; . . . ; fhmgÞ stores a sequence of m
different realizations (draws) of the d-vector of model parameters, h.

3.1. Bridge Sampling for Model Evidence Estimation
Bridge sampling was introduced by Meng and Wong [1996] and generalized to thermodynamic integration
by Gelman and Meng [1998] to estimate the ratio, r, of the normalizing constants, z0 and z1, of two unnor-
malized densities, q0ðhÞ and q1ðhÞ, with support X0 and X1, respectively. We can write this ratio as follows
[Gelman and Meng, 1998]

r � z1

z0
5

z1=2=z0

z1=2=z1
5

E0 q1=2ðhÞ=q0ðhÞ
� �

E1 q1=2ðhÞ=q1ðhÞ
� � � 1

m0

Xm0

j51
q1=2ðfhj

0gÞ=q0ðfhj
0gÞ

1
m1

Xm1

j51
q1=2ðfhj

1gÞ=q1ðfhj
1gÞ

; (6)

where the numerator and denominator signify the expectations with respect to the density,
p0ðhÞ5q0ðhÞ=z0, and the density, p1ðhÞ5q1ðhÞ=z1, respectively. The quotient at the right-hand-side of equa-
tion (6) expresses the ratio, r, of normalizing constants, z0 and z1, as a Monte Carlo approximation using m0

draws, fH0g5ðfh1
0g; . . . ; fhm0

0 gÞ, from p0ðhÞ and m1 samples, fH1g5ðfh1
1g; . . . ; fhm1

1 gÞ, from p1ðhÞ. The
entity q1=2ðhÞ is an arbitrary unnormalized density with support X0 \ X1 of q0ðhÞ and q1ðhÞ, respectively,
which plays a crucial role in the calculation of r. The subscript ‘‘1/2’’ implies a density that transitions
‘‘between’’ q0ðhÞ and q1ðhÞ in the sense of being overlapped by both of them. This density serves as a
bridge between q0ðhÞ and q1ðhÞ, hence the name bridge sampling. The ‘‘smoother’’ and ‘‘shorter’’ the bridge
density, q1=2ðhÞ, transitions between q0ðhÞ and q1ðhÞ the better it is [Meng and Wong, 1996].

Figure 1. (a) Probability density of standard normal distribution (red curve) and unnormalized target (blue curve). The blue dots signify m different samples, fhj
�g � pðhj~YÞ, where

j5ð1; . . . ;mÞ. The marginal likelihood, pð~YÞ, is equivalent to the area under the blue curve (see equation (5)). (b) Illustration of importance sampling via equation (10). By drawing m0

samples at random from the importance distribution, q0ðhÞ (green curve), one can approximate the area/volume under the unnormalized target (blue curve) as mean of the m0 ratios of
the target and importance density. The light-blue rectangles signify the representative area/volume of each sample; this depends on sample density, and is merely for illustrative
purposes.

Water Resources Research 10.1002/2016WR020167

VOLPI ET AL. SWORN TESTIMONY OF THE MODEL EVIDENCE 6138



To use bridge sampling for model evidence estimation, we take q1ðhÞ to be the unnormalized density of
the (posterior) target distribution, that is, q1ðhÞ5pðhÞLðhj~YÞ, so that p1ðhÞ signifies the normalized density
function and z15Z is the model evidence, pð~YÞ. In addition, we use for q0ðhÞ a normalized density, hence
z051, and thus the bridge sampling expression for r returns directly the model evidence, Z. In the following,
we will substitute Z for r. Given m1 samples of the posterior distribution, we can now compute the model
evidence with equation (6) for different ‘‘sensible’’ choices of q0ðhÞ and q1=2ðhÞ. In general, q0ðhÞ should sat-
isfy two requirements to be of practical use. First, the density of q0ðhÞ should be easy to compute, and, sec-
ond, the distribution of q0ðhÞ should be easy to sample from. Another desirable, but not strictly necessary
property of q0ðhÞ is, that, it approximates closely the target distribution of interest. Then, the Monte Carlo
approximation will be most robust and efficient. In this paper, we evaluate two different choices for q0ðhÞ,
namely (i) the prior distribution, pðhÞ, and (ii) the posterior distribution, pðhj~YÞ, approximated with a mixture
of normal variates (see section 3.2).

In the remainder of this section, we elaborate on the choice of q1=2ðhÞ, and demonstrate how various com-
monly used sampling methods originate as special and limiting cases of bridge sampling by setting q1=2ðhÞ
equal to either q0ðhÞ or q1ðhÞ. Last, we generalize the distribution of q1=2ðhÞ by using its density ‘‘in
between’’ q0ðhÞ and q1ðhÞ.
3.1.1. Methods that Set q1=2ðhÞ Equal to Either q0ðhÞ or q1ðhÞ
We first study what happens if we set q1=2ðhÞ5q0ðhÞ. This reduces the numerator in equation (6) to unity,
and, with r 5 Z this gives

Z51=E1
q0ðhÞ
q1ðhÞ

� �
51=E1

q0ðhÞ
pðhÞLðhj~YÞ

� �
� 1

m1

Xm1

j51

q0ðfhj
1gÞ

pðfhj
1gÞLðfh

j
1gÞ

" #21

(7)

An advantage of this choice is that we do not need any samples from q0ðhÞ as all inferences are made using
m1 realizations, fH1g, of the target distribution derived via Monte Carlo simulation. If both q0ðhÞ and q1=2ðhÞ
are equivalent to the prior distribution, then we arrive at the harmonic estimator [Kass and Raftery, 1995],
which is known to be unstable [Newton and Raftery, 1994; Liu et al., 2016]. A better choice for both q0ðhÞ and
q1=2ðhÞ is a parametric approximation of the posterior distribution, which leads to reciprocal importance
sampling [Gelfand and Dey, 1994; Di Ciccio et al., 1997]. A further simplification can be made if, instead of aver-
aging over all target samples, one uses only the mode, �h, of the posterior realizations, fH1g. The formula for Z
then becomes

Z5
pð�hÞLð�hj~YÞ

q0ð�hÞ
(8)

If we take q0ðhÞ to be the d-variate normal density, fdðh; �h;CðhÞÞ, with mean �h and covariance matrix,
CðhÞ5CovðfH1gÞ, then this reduces to the well-known Laplace-Metropolis (LM) estimator [Lewis and Raftery,
1997]

Z5pð�hÞLð�hj~YÞð2pÞd=2jCðhÞj1=2; (9)

where j � j signifies the determinant operator. If the posterior distribution deviates from normality, then bet-
ter results can be expected by using for q0ðhÞ a mixture approximation of the target density (see section
3.2), turning equation (8) into a ‘‘generalized’’ LM estimator.

We now evaluate what happens if we set q1=2ðhÞ5q1ðhÞ. This reduces the denominator in equation (6) to
unity, and turns bridge sampling into importance sampling (IS) with q0ðhÞ as importance density [Hammers-
ley and Handscom, 1964]. This becomes evident if we interpret the simplified formula of r (5Z)

Z5E0
q1ðhÞ
q0ðhÞ

� �
5E0

pðhÞLðhj~YÞ
q0ðhÞ

� �
� 1

m0

Xm0

j51

pðfhj
0gÞLðfh

j
0gj~YÞ

q0ðfhj
0gÞ

(10)

While the posterior samples, fH1g, do not enter directly in the formula above (samples of fH1g are drawn
from q0ðhÞ), they are still used to construct a good importance distribution. Indeed, the importance distribu-
tion should match closely the posterior distribution for importance sampling to be efficient and robust. Ide-
ally, the importance distribution has slightly heavier tails, and is thus more overdispersed than the
distribution it is intended to approximate [see, e.g., Evans and Swartz, 1995; Raftery, 1996; Tokdar and Kass,
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2010]. The rationale behind importance sampling is that it ‘‘allow us to sample from one distribution when
we ought to be sampling from another’’ [Hammersley and Handscom, 1964, p. 42]. Specifically, ‘‘the object in
importance sampling is to concentrate the distribution of the sample points in the parts of the interval that
are of most importance instead of spreading them out evenly’’ [Hammersley and Handscom, 1964, p. 58], as
in simple Monte Carlo, thus returning a more efficient estimate of the evidence, Z. We graphically illustrate
importance sampling in Figure 1b and use it to estimate the area under the posterior distribution, q1ðhÞ5pðhÞ
Lðhj~YÞ (in blue). We do so by sampling from a distribution (indicated in green) that is biased toward the
important regions of the posterior distribution, hence the name importance sampling. This ‘‘importance dis-
tribution,’’ q0ðhÞ, has a known integral of unity, and should satisfy that q0ðhÞ > 0 whenever pðhÞ � 0, other-
wise the area under pðhÞLðhj~YÞ is underestimated. The ratio of the density of the unnormalized posterior
(blue curve) and the density of the importance distribution (green curve) now details the contribution (light
blue area) of the sample, fhj

0g, to the marginal likelihood. The integral of the unnormalized posterior distri-
bution is thus equivalent to the expectation of pðhÞLðhj~YÞ=q0ðhÞ, which is approximated numerically using
equation (10).

A degenerate case occurs when the prior distribution is used as importance distribution, or, q0ðhÞ5pðhÞ.
Now the posterior samples are not used at all, and the inference of Z amounts to brute-force Monte Carlo
sampling, wherein the model evidence is estimated by averaging of the likelihood over the prior distribu-
tion. This method is rather inefficient for high-dimensional targets and/or likelihood functions that are rela-
tively peaked compared to the prior distribution [e.g., Liu et al., 2016]. In general, importance sampling may
reduce significantly the computational burden of Monte Carlo simulation [Evans and Swartz, 1995; Raftery,
1996; Tokdar and Kass, 2010], yet the exact gains in efficiency and speed of convergence depend critically
on the choice of q0ðhÞ. In practice, however it is not particularly easy to construct an adequate importance
distribution [see, e.g., Neal, 2001; Perrakis et al., 2014], especially when the posterior distribution is high-
dimensional and poorly described with a traditional statistical distribution. In section 3.2, we introduce a
new and robust method that solves efficiently for equation (10). Our evidence estimator uses as importance
density, q0ðhÞ, a mixture model of a large collection of posterior samples.
3.1.2. Using q1=2ðhÞ as a ‘‘Bridge’’ Between q0ðhÞ and q1ðhÞ
From a viewpoint of bridge sampling, the methods in the previous section are at best suboptimal, because
they do not exploit the idea of using q1=2ðhÞ as a bridge to connect q0ðhÞ and q1ðhÞ. A more efficient evi-

dence estimator would choose a bridge density, q1=2ðhÞ, which lies in between q0ðhÞ and q1ðhÞ. In this case,

the general formula of equation (6) applies. Following Gelman and Meng [1998], we consider two generic

choices: (i) a geometric bridge, q1=2ðhÞ5q0ðhÞ12xq1ðhÞx, where each value of x (0 < x < 1) yields a q1=2ðhÞ

in between q0ðhÞ and q1ðhÞ, and (ii) the optimal bridge, q1=2ðhÞ5 Z s0
q1ðhÞ1

s1
q0ðhÞ

h i21
, where s05 m0

m01m1
and s1

5 m1
m01m1

[Meng and Wong, 1996]. From all possible choices for q1=2ðhÞ, the optimal bridge should, at least in

theory, yield the most efficient estimate of Z with smallest relative variance. Indeed, only if the m0 samples
of fH0g and m1 draws of fH1g are independent we know exactly the values of m0 and m1. Serial correlation
between the samples within both collections reduces the effective sample size. Further, the optimal bridge
depends on the ratio between m0 and m1. If m0 	 m1, then q1=2ðhÞ tends to q0ðhÞ, whereas, on the con-

trary, if m0 
 m1 then the optimal bridge converges toward the posterior (target) distribution, pðhÞLðhj~YÞ.
Finally, the optimal q1=2ðhÞ itself depends on Z, necessitating the use of fixed-point iteration to solve for Z in

this case (obtained by inserting in equation (6) the expression for the optimal q1=2ðhÞ) [see also Gelman and

Meng, 1998]

Z  

1
m0

Xm0

j51

lj
0

s0Z1s1lj
0

1
m1

Xm1

j51

1

s0Z1s1lj
1

(11)

where lj
u5q1ðfhj

ugÞ=q0ðfhj
ugÞ with u 5 0 or u 5 1. Note THAT in this iteration only Z changes. The idea of

constructing a bridge between q0ðhÞ and q1ðhÞ is illustrated graphically in Figure 2 with a simple one-
dimensional example. The choices for the geometric bridge (GB) and optimal bridge (OB) are both pre-
sented. Note, that OB (which depends on m0=m1) results in a smoother transition between q0ðhÞ and q1ðhÞ
than GB.
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While the methods in this section use the slightly more complex formulation of equation (6), it is important
to stress here that they do not necessarily involve a much larger CPU-cost than the evidence estimators dis-
cussed in the previous section (apart from reciprocal importance sampling), pending the assumption that
all the different methods use the posterior realizations, fH1g, as Monte Carlo approximation of q1ðhÞ. In
fact, most computational resources will need to be allocated to additional evaluations of the target density
(prior 3 likelihood) for samples, fH0g drawn from q0ðhÞ. Thus, from a computational point of view there is
little difference between importance sampling and bridge sampling (with geometric or optimal bridge), yet,
bridge sampling may offer substantial improvements of the evidence estimates (lower variance).

The various choices for q0ðhÞ and q1=2ðhÞ and the resulting model evidence estimators are summarized in
Table 1. When choosing a suitable method, both accuracy and CPU-cost have to be considered. The closer
q0ðhÞ is to the posterior distribution, the more accurate and efficient the evidence estimates will be. There-
fore, by definition, sampling methods that use for q0ðhÞ an approximation of the target distribution are

Figure 2. The d 5 1 bridge density, q1=2ðhÞ, between q0ðhÞ5Nð0; 10Þ and q1ðhÞ5Nð0; 1Þ for a geometric bridge (GB) with x50:5 (dashed
curve) and optimal bridge (OB) for different values of the ratio m0=m150:5; m0=m152, and m0=m155 (solid black curves). The bridge
density, q1=2ðhÞ, converges on q0ðhÞ when m0 	 m1, whereas q1=2ðhÞ approaches the target, q1ðhÞ (blue curve) when m0 
 m1. The den-
sity of the unnormalized target distribution is derived from the standard normal density, p1ðhÞ (red curve), via the identity, q1ðhÞ5Zp1ðhÞ
with Z 5 0.5.

Table 1. Overview of Model Evidence Estimation Methods Within the Context of Bridge Samplinga

q0ðhÞ q1=2ðhÞ Method Samples

pðhÞ q0ðhÞ Harmonic estimatorb q1ðhÞ
q1ðhÞ Simple Monte Carloc q0ðhÞ
q0ðhÞ12xq1ðhÞx Bridge sampling with a geometric bridged q0ðhÞ; q1ðhÞ

Z s0
q1ðhÞ1

s1
q0ðhÞ

h i21 Bridge sampling with the optimal bridge q0ðhÞ; q1ðhÞ

pmixðhÞ q0ðhÞ Reciprocal importance samplingb,e q1ðhÞ
q1ðhÞ Importance samplingc,f q0ðhÞ; q1ðhÞg
q0ðhÞ12xq1ðhÞx Bridge sampling with a geometric bridged q0ðhÞ; q1ðhÞ

Z s0
q1ðhÞ1

s1
q0ðhÞ

h i21 Bridge sampling with the optimal bridge q0ðhÞ; q1ðhÞ

aWe summarize possible choices for q0ðhÞ and q1=2ðhÞ, wherein pðhÞ signifies the prior distribution, pmixðhÞ denotes the mixture
approximation of the posterior target distribution, q1ðhÞ is the unnormalized posterior, and q1=2ðhÞ characterizes the bridge density. As
discussed in the text, the optimal bridge, q1=2ðhÞ, depends on the model evidence, Z, and on the fractional number of samples, s0 and
s1, drawn from q0ðhÞ and q1ðhÞ, respectively.

bLimiting case of bridge sampling with a geometric bridge and x 5 0.
cLimiting case of bridge sampling with a geometric bridge and x 5 1.
dWith 0 < x < 1.
eLaplace-Metropolis is a special case (see text).
fWith q0ðhÞ as importance distribution
gPosterior samples are used to construct pmixðhÞ.
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expected to outperform those that use for q0ðhÞ the prior distribution [Gelman and Meng, 1998]. Here, we
choose as importance distribution a Gaussian mixture model, pmixðhÞ, of a large collection of samples of the
target distribution. Thus our method relies heavily on the ability of Monte Carlo sampling methods such as
DREAM to characterize adequately the target distribution. The next section discusses the details of this
approach.

Before we proceed to the next section, we note that Gelman and Meng [1998] have presented a generali-
zation of bridge sampling, called ‘‘multi-bridge’’ sampling. This approach uses an infinite number of inter-
mediate densities to estimate the target’s normalizing constant. This method, coined path-sampling, is
also known as thermodynamic integration (e.g. Ogata [1989]; see also Xie et al. [2011] and Fan et al.
[2011] for related steppingstone estimators). Multiple step integration methods are superior to single-step
methods, particularly when the target distribution is initially unknown. The series of intermediate densities
then slowly converges to the target distribution, yet at the expense of a much enlarged computational
complexity and burden. As our method constructs the mixture distribution, pmixðhÞ, from a large sample
of posterior draws, it adapts immediately, and in a single-step, to the target, rendering unnecessary multi-
ple step methods.

3.2. Mixture Approximation of the Posterior Distribution
If we choose the importance distribution, q0ðhÞ, in equation (6) rather loosely and freehand, then evi-
dence estimation may become cumbersome, particularly for parameter-rich models. A much better and
more defensible approach would be to modulate the importance distribution after the target distribu-
tion. This not only guarantees that we sample the ‘‘right’’ areas of the parameter space, but also make
sure that we visit these areas with a frequency approximately equivalent to their underlying posterior
density. We choose our importance distribution within the family of normal mixtures [cf., Di Ciccio et al.,
1997] and coin our approach GAussian Mixture importancE, or GAME, sampling. Normal mixtures are
flexible and allow us to approximate as closely and consistently as possible a wide range of target distri-
butions. Indeed, multimodal, truncated, and ‘‘quasi-skewed’’ distributions can be emulated with a mix-
ture distribution if a sufficient number of Gaussian variates is used. In some cases, one may prefer to
use a nonparametric importance distribution, yet the efficiency of nonparametric importance sampling
relies heavily on the nonparametric estimator being used, thus necessitating development of new esti-
mators that are computationally superior to their kernel-based counterparts [see, e.g., Neddermeyer,
2009].

As a precursor to our method, we generate many different (parameter) samples from each candidate mod-
el’s unnormalized posterior distribution in equation (4) using MCMC simulation with the DREAM algorithm
[Vrugt et al., 2008, 2009]. We collect these m posterior samples in a m 3 d matrix, fH�g5ðfh1

�g; . . . ; fhm
� gÞ,

and store their corresponding unnormalized posterior densities, pðfhj
�gÞLðfhj

�gj~YÞ in a m31 vector, where
j5ð1; . . . ;mÞ. We use the DREAM package in MATLAB [Vrugt, 2016] because of its demonstrated capabilities
and its many built-in options that simplify practical application. Nevertheless, the user is free to select any
other Monte Carlo sampling method.

Next, we approximate the m posterior samples, fH�g, with a mixture distribution

pmixðhÞ5
XJ

j51

wj fdðh; lj ;RjÞ; (12)

of J> 0 different d-variate normal densities, fdð�jlj;RjÞ, where wj, lj , and Rj signify the weight, the d-

dimensional mean vector, and the d 3 d-covariance matrix of the jth Gaussian component, respectively,
and j5ð1; . . . ; JÞ. The weights, or mixing probabilities, must lie on the unit simplex,

Sd5fw 2 Rd : wj 2 ½0; 1�;
PJ

j51 wj51g, and the Rj ’s must be symmetric, Rjða; bÞ5Rjðb; aÞ, and positive

semidefinite.

The Expectation-Maximization (EM) algorithm [see e.g., McLachlan and Krishnan, 2007, and references
therein] is used to estimate the values of the dmix-variables of the mixture distribution,
U5ðw1; . . . ;wJ; b1; . . . ; bJÞ, where bj5ðlj;RjÞ stores the mean and covariance matrix of the jth normal den-
sity of the mixture. This algorithm maximizes the log-likelihood, ln fLðUjfH�g; JÞg, of the mixture distribution
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ln fLðUjfH�g; JÞg5
Xm

i51

ln
XJ

j51

wj fdðfhi
�g; lj;RjÞ

( )
; (13)

by alternating between an expectation (E) step and a maximization (M) step, until convergence of the
values of U is achieved for a given number of components, J. The optimum mixture distribution, hereaf-
ter referred to as p̂mixðhÞ, can be determined from information criteria such as the BIC; see also equation
(1)

IBICðJÞ522 ln fLðUjfH�g; JÞg1dmixðJÞln ðmÞ: (14)

If we treat as unknowns of each mixture component its weight, d-mean vector and dðd11Þ=2 free elements
of its covariance matrix, then dmix5J211Jðd1dðd11Þ=2Þ. The unit simplex restricts the inference to J21
weights. The BIC strikes a balance between quality of fit (first-term) and the complexity of the mixture distri-
bution (second term). Alternatively, we can select J so that the variance of the ratio between the density of
target distribution and the density of its parametric approximation, pmixðhÞ, is minimized. This variance can
be computed as follows

r2
mixðJÞ5

1
m

Xm

i51

pðfhi
�gÞLðfhi

�gj~YÞ
pmixðfhi

�gÞ
2f̂

" #2

; (15)

where f̂5 1
m

Xm

i51

pðfhi
�gÞLðfhi

�gj~YÞ
pmixðfhi

�gÞ
. Unlike BIC, this variance criterion uses all the m posterior samples,

fH�g, to determine p̂mixðhÞ. In practice, we can use different values for J and then select p̂mixðhÞ from within
this pool using

Ĵ5arg min
J2N1

vðJÞ; (16)

where N1 is the collection of strictly positive integers, and vðJÞ5IBIC or vðJÞ5r2
mix.

Once the optimal mixture distribution, p̂mixðhÞ, has been determined, we can set q0ðhÞ5p̂mixðhÞ in equation
(6) and estimate the normalizing constant, Z, and thus marginal likelihood, pð~YÞ, via reciprocal importance
sampling, importance sampling and bridge sampling (see Table 1). This concludes our description of our
mixture distribution.

4. GAME Sampling and Implementation in DREAM Package

We now provide an algorithmic outline of GAME sampling for evidence estimation within the context of
MCMC simulation [cf., e.g., Marshall et al., 2005]. This recipe will include four different sampling methods
that have been detailed in the previous section to approximate the evidence, Ẑ , and thus integral, of the
target distribution.

GAME takes as input a m 3 d matrix of posterior samples, fH�g5ðfh1
�g; . . . ; fhm

� gÞ, and a m31 vector of
corresponding unnormalized densities, pðfhi

�gj~YÞ5pðfhi
�gÞLðfhi

�gj~YÞ, of the i5ð1; . . . ;mÞ realizations. Fur-
thermore, the user also has to specify the value of x 2 ½0; 1�, which determines the sampling method that
will be used to compute Ẑ .

In words, we first generate m samples, fH�g, from each models’ posterior parameter distribution using
MCMC simulation with the DREAM algorithm. Then Jmax different mixture distributions, pmixðhÞ, with increas-
ing number of normal components, J5ð1; . . . ; JmaxÞ are fitted to the posterior samples using maximum like-
lihood estimation with the EM algorithm (step 1). Then, in step 2, we determine the optimum complexity, Ĵ ,
of the mixture distribution via minimization of IBIC or r2

mix. This optimal mixture, p̂mixðhÞ, then serves as our
catalyst in step 5 to estimate the evidence, Z, and thus marginal likelihood, pð~YÞ, of the target distribution.
Via the identity, q1=2ðhÞ5q0ðhÞ12xq1ðhÞx, of the bridge density, q1=2ðhÞ, the user can choose among four dif-
ferent sampling methods. A value of x 5 0 results in reciprocal importance sampling (RIS), 0 < x < 1
amounts to bridge sampling with a geometric bridge (GB), and x 5 1 equates to importance sampling (IS).
As fourth, and last method, the user can activate, at the end of step 5, bridge sampling with an optimal
bridge (OB). This method requires as input an initial value of Ẑ from IS or GB.
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It should be evident from the algorithmic recipe that the RIS, IS, GB, and OB evidence estimators do not
invoke the same computational cost. In general, RIS is most CPU-efficient as the collection of target samples,
fH�g, suffices to compute the evidence, Ẑ , in equation (7). The other three methods (IS, GB, and OB) require
a second collection, fH0g, of m0 samples drawn randomly from the optimal mixture (5 importance) distri-
bution, p̂mixðhÞ, to calculate the evidence, Z, via equations (10), (6), or (11), respectively. As it takes time to
evaluate the (unnormalized) target density, pðfhj

0gj~YÞ5pðfhj
0gÞLðfh

j
0gj~YÞ, of each of these j5ð1; . . . ;m0Þ

mixture samples, IS, GB, and OB may require a much larger computational budget, particularly for CPU-
demanding forward models. Nevertheless, this second collection of ‘‘importance samples’’ may proof crucial
for obtaining unbiased evidence estimates.

The GAME sampler contains several algorithmic parameters that need to be specified by the user. This
includes m0, m1, Jmax and R. In our case studies, we used default values of m051000; m151000; Jmax 55,

Algorithm 1 GAUSSIAN MIXTURE IMPORTANCE SAMPLING

1. For J51 : Jmax Do

Calibrate mixture distribution, pmixðhÞ, of equation (12) by maximizing the log-likelihood,
ln fLðUjfH�g; JÞg, of equation (13) with the EM algorithm

Compute IBICðJÞ and r2
mixðJÞ using equations (14) and (15)

End

2. Select optimal mixture distribution, p̂mixðhÞ, via equation (16) using IBICðĴÞ or r2
mixðĴÞ.

3. Draw m1 (m1 � m) samples from fH�g and store collection in m13d matrix, fH1g.

4. Evaluate the mixture density, p̂mixðfhi
1gÞ, for the m1 target samples; i5ð1; . . . ;m1Þ

5. If x 5 0 Then (Reciprocal Importance Sampling)

Compute Ẑ via equation (7)

Otherwise (0 < x � 1)

Draw m0 samples fH0g from p̂mixðhÞ

Compute p̂mixðfh
j
0gÞ and evaluate target density, pðfhj

0gj~YÞ; j5ð1; . . . ;m0Þ

If x 5 1 Then (Importance Sampling)

Compute Ẑ via equation (10)

Otherwise (0 < x < 1) (Bridge Sampling with Geometric Bridge)

Determine bridge density, q1=2ðhÞ5q0ðhÞ12xq1ðhÞx

Compute Ẑ using q1=2ðhÞ in equation (6)

End

If (Bridge Sampling with Optimal Bridge) Then

Set Ẑ ð0Þ equal to Ẑ from previous step

For r51 : R Do (fixed point iteration)

Compute Ẑ ðrÞ with equation (11) using Ẑ ðr21Þ

End

Set value of Ẑ equal to Ẑ ðRÞ

End

End

6. Return Ẑ
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and R 5 10. These values worked well for a range of different targets. Further on, we construct the mix-
ture distribution, pmixðhÞ, in step 1 using only h 5 2000 samples from the (much) larger collection of m
target realizations (step 0). This approach enhances considerably the overall CPU-efficiency of our
method, while still providing a relatively accurate description of the target distribution. To negate sam-
pling bias, we draw the m1 realizations of fH1g in step 3 from the collection fH�g but without the h pos-
terior samples that were used for mixture calibration (step 1). We report the values of m1 in our
numerical experiments.

Note, we advise to thin the chains of DREAM to reduce, as much as possible, serial correlation between sub-
sequent samples of the target distribution. Thinning is particularly important for parameter-rich models,
and explains why the use of a large number of posterior realizations, m1, in step 3 does not necessarily
improve evidence estimates. As discussed before, the culprit is effective sample size.

5. Benchmark Experiments With Known Targets

We conducted a wide range of numerical experiments to benchmark the performance of GAME sampling
on target distributions with known normalizing constants. This includes multivariate normal distributions
with variable dimensionality (up to d 5 100), one or two (disconnected) modes, and variably correlated,
twisted, and/or truncated dimensions. Each target has a normalizing constant of unity, except for the trun-
cated distributions presented in section 5.1.3. Table 2 summarizes our setup of DREAM for the different
benchmark experiments.

Thus, in this section we do not focus on model selection, but rather evaluate the ability of GAME sampling
to infer successfully the normalizing constants of a variety of known statistical distributions with diverse
and complex problem features. In all these benchmark experiments, the unnormalized posterior density is
simply equivalent to the target density. For each target, we use 250 different trials with GAME and report
the mean evidence estimates and their associated 95% confidence intervals.

Before we proceed with presentation of the results, we first analyze the impact of the choice of mixture
selection criteria, IBIC or r2

mix, on the selection of the optimal importance distribution. Table 3 reports the
results of this analysis for the different case studies discussed in this section. Note that one has to be some-
what careful with interpretation of these results in the absence of detailed knowledge on the optimized val-
ues of the weights of the individual normal components of the mixture distribution. The results in this table
highlight several important findings. First, notice that the optimal mixture distribution, p̂mixðhÞ, does not
contain more than four normal distributions. This provides support for the claim that the default value of
Jmax55 is properly chosen. Second, the two selection criteria provide conflicting results for target distribu-
tions with fewer than 50 dimensions, but consistently select the same number of mixture components for
the most complex targets. Third, the larger the number of dimensions of the target distribution, the lower
the optimal number of components of the mixture distribution. In fact, both model selection criteria sug-
gest that a single mode suffices for target distributions with more 50 dimensions. Fourth, the variance crite-
rion, r2

mix, promotes mixture parsimony. This is particularly evident for low-dimensional targets with fewer
than 20 dimensions, for which the BIC almost always selects a more complex mixture distribution with
larger number of normal components.

Take home message is that the variance criterion, r2
mix, guarantees selection of a parsimonious mixture dis-

tribution. What is more, r2
mix and IBIC promote use of a multivariate normal importance density for target dis-

tributions with more than 20 dimensions.

Table 2. Dream Settings Used in the Different Benchmark Experimentsa

d 1 2 5 10 20 50 75 100

T 1,000 2,000 3,000 4,000 8,000 12,000 16,000 20,000
N 10 10 10 10 20 50 75 100
th 1 1 1 1 1 5 5 10
m 5,000 10,000 15,000 20,000 80,000 60,000 120,000 100,000

ad 5 target dimensionality; T 5 number of samples per chain; N 5 number of chains; th 5 thinning rate, and m 5 size of collection of
posterior samples. To give DREAM sufficient opportunity to converge to a point on the target distribution, we discard the samples in
the first half of each chain. This equates to a burn-in of 50%.
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Unless stated otherwise, we use the variance criterion, r2
mix, in equation (15) to select the optimal mixture

distribution, p̂mixðhÞ.

5.1. Evidence Estimation Using End-Member Bridge Densities: IS and RIS
In this section, we discuss the results of IS and RIS, the two extreme bridge densities. These two methods
share the same importance density, that is, q0ðhÞ5p̂mixðhÞ, but they differ in how they estimate the normal-
izing constant of the target. To do so, RIS uses only the samples of the target distribution and their respec-
tive unnormalized densities, whereas IS (plus GB and OB) requires another sample of points drawn
randomly from the optimal mixture distribution, p̂mixðhÞ. Consequently, IS is computationally more costly. In
a later section, we investigate the performance of the intermediate bridge densities using GB and OB.
5.1.1. Multivariate Target With Variably Correlated Dimensions
Our first study considers a zeroth-mean d-variate normal distribution with d 3 d covariance matrix, R, in Rd

f ðhÞ5fdðh; 0;RÞ: (17)

The variance of the jth variable
is set equal to j and all pair-
wise correlations are set to q,
where q 2 ð0:25; 0:50; 0:75Þ.
Unless stated differently, we
first analyze results for q 5 0.5.
Note, that the target is
within the same family of
distributions as the impor-
tance distribution.

Figure 3 presents trace plots
of the mean evidence esti-
mates, Ẑ (solid lines) and
their 95% confidence inter-
vals (dashed lines) as func-
tion of target dimensionality,
d. Color coding is used to
differentiate between the
results of IS (blue) and RIS
(green). The mean evidence
estimates of the LM method
are separately indicated with
the solid yellow lines. The
most important results are
as follows. First, RIS and IS
retrieve correctly the unit nor-
malizing constants of the tar-
get distributions. The mean

Table 3. Mixture Model Selectiona

d 1 2 5 10 20 50 75 100

Normal (q 5 0.25) 1 (1) 1 (2) 1 (1) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1)
Normal (q 5 0.5) 1 (1) 1 (1) 1 (1) 1 (3) 1 (1) 1 (1) 1 (1) 1 (1)
Normal (q 5 0.75) 1 (1) 1 (1) 1 (3) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1)
Banana-shaped 4 (4) 2 (4) 1 (4) 1 (4) 1 (1) 1 (1) 1 (1)
Normal mixture 2 (2) 2 (4) 2 (4) 1 (2) 1 (2) 1 (1) 1 (1)
Truncated normal (q 5 0.5) 4 (4) 4 (4) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

aThe number of normal components, Ĵ , of the optimal mixture (5 importance) distribution, p̂mixðhÞ, according to selection criteria
r2

mix and IBIC (between brackets) as function of target dimensionality, d. We list separately the results for the multivariate normal distribu-
tion with variably correlated dimensions using q50:25; q50:5, and q 5 0.75, the banana-shaped distribution with b 5 0.1, the multivari-
ate mixture distribution with two disconnected modes, and the truncated normal distribution.

Figure 3. d-variate normal target distribution with correlated dimensions, q 5 0.5: (a) Trace
plot of mean evidence estimates, Ẑ (solid lines), and their 95% confidence intervals (dashed
lines) as function of target dimensionality, d, using 250 independent trials with IS (m051000)
and RIS (m151000). The mean evidence estimates of the LM method are separately indicated
with the yellow lines; (b) Same as Figure 3a, but now using 12m, that is, a collection of MCMC
samples that is about 12 times larger. Default values of m are found in Table 2.
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evidence estimates appear unbiased for all considered target dimensions. Second, the 95% confidence inter-
vals of the evidence estimates of both methods increase with target dimensionality. This result is expected
and explained by random between-trial variations in the selection of target (RIS) and importance (IS) samples
of both methods. Third, the confidence intervals of IS appear larger than their counterparts derived from RIS.
This is most evident at d 5 75 and d 5 100, and suggests that the target samples may contain most informa-
tion to estimate with high confidence the evidence. Finally, the LM evidence estimates are spot on for low-
dimensional targets, but gravitate toward values of zero for d � 10. This may be an unexpected result, cer-
tainly because the multivariate normal Laplace approximation satisfies exactly the Gaussian target distribution.
Instead, this highlights a problem with the mode of the LM distribution. This mode is derived from the collec-
tion of MCMC realizations by locating the sample with largest value of the target density. If this mode deviates
only a little bit from the true mode of the target (5 zeroth vector), the density will be reduced, and the LM
method may underestimate the integral of the target distribution. It is for this reason that Lewis and Raftery
[1997] suggest using the median of the MCMC realizations instead, as this moment is more robust. Altogether,
the results favor RIS.

The bottom plot, Figure 3b, presents the evidence estimates of RIS, IS, and LM, for a much enlarged sample
of posterior realizations using a 123 larger value of m. The results are qualitative similar to those presented
in the top plot, except, that the 95% confidence intervals of the evidence estimates of IS and RIS have
become smaller. This is particularly true for IS. Note, that the evidence estimates of the LM method appear
rather unaffected by the value of m.

We next investigate, in Figure 4, the relationship between the dimensionality, d, of the multivariate normal tar-
get, and the value of the variance, r2

mix of the optimal mixture distribution, pmixðhÞ, for IS. We present traces
for different values of m0 (solid lines) using the default value of m in Table 2 (and used in Figure 3). We sepa-
rately also depict a trace (dashed black line) for the much larger collection of 12m target realizations using the
default value of m051000. In general, the smaller the value of r2

mix the closer the mixture distribution is to
the target of interest. The solid lines are in qualitative agreement, and demonstrate that the error variance, r2

mix,
of the mixture distribution increases linearly with dimensionality of the target distribution. In fact, r2

mix

increases almost linearly (on a log-scale) with d. This may not be a desirable finding, yet this increase can be
countered in part by using a substantially larger number of samples, m0, from the importance distribution.
Note, that the dashed-black line with 12m and m051000 is in close agreement with the solid blue line using
m5m0510; 000. Figure 4 also highlights that, when comparing models with contrasting number of parameters
(different values for d), one may need to use a different number of importance samples, m0, to achieve evidence
estimates with comparable confidence intervals.

We next investigate what hap-
pens to the performance of IS
when the dimensions of the
normal target exhibit an
increasingly stronger linear
correlation. Figure 5 presents
the results of this analysis, and
displays trace plots of the
mean evidence estimates
(solid line) and their 95%
confidence intervals (dashed
lines) using pairwise parame-
ter correlations of (a) q50:25,
(b) q 5 0.5, and (c) q 5 0.75,
respectively, and m055000.
These results suggest that
parameter correlation hardly
affects the IS evidence esti-
mates. Indeed, the mean evi-
dence estimates (blue lines)
match perfectly their unit

Figure 4. d-variate normal target distribution with correlated dimensions, q 5 0.5: Variance,
r2

Ẑ
, of IS evidence estimates as function of target dimensionality, d using 250 independent tri-

als. The solid lines (color coded) use differentiate values of m0 (number of importance sam-
ples). The dashed line presents the results of m051000 but using 12 m, that is, a collection of
MCMC samples that is about 12 times larger. Default values of m for the solid lines are found
in Table 2.
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values of the target distribu-
tions. Stronger linear depen-
dencies among the
parameters do enlarge the
95% confidence intervals of
the evidence estimates, never-
theless, this increase is rela-
tively small.
5.1.2. Multivariate Target
With Twisted Dimensions
The second case study con-
siders a d-variate twisted
normal distribution

f ðhÞ5fdð/bðhÞ; 0;RÞ; (18)

where /bðhÞ5ðh1; h21bh2
12

100b; h3; . . . ; hdÞ and R5Id ,
the d 3 d identity matrix,
except for Rð1; 1Þ5100. We
use the value of b 5 0.1 to
yield a strongly twisted,
banana-shaped, distribution
for the first two dimensions.
We consider d 2 ½2; 100�, and
use m055000 and m151000
(default).

Figures 6a and 6c (top) dis-
plays the evolution of the
mean evidence estimates
(solid lines) and their 95%
confidence intervals (dashed
lines) derived from RIS

(green) and IS (blue) as function of the dimensionality of the d-variate twisted distribution using r2
mix (left

graph) and IBIC (right graph) as selection criteria for the optimal mixture distribution. The solid yellow line in
both graphs displays the mean evidence estimates of LM. In general, the results do not seem to depend
much on the choice of selection criteria for the optimal mixture distribution. It is evident that the performance
of all three methods has deteriorated compared to the multivariate normal target. IS is the only method that
correctly retrieves the unit normalizing constant of the target and provides evidence estimates that appear
unbiased for d 2 ½2; 100�. Note, however that its 95% confidence intervals have increased compared to the
normal target (cf., Figure 6 with Figure 5). The LM method is particularly inferior even for smallest values of d,
reinforcing the inability of a single multivariate normal to approximate closely a highly nonlinear (twisted) tar-
get distribution.

But why then does RIS perform (much) more poorly on this twisted target than IS? RIS uses as bridge density
the optimal mixture distribution, and, thus uses only the collection of target samples to compute the evi-
dence. The banana-shaped target is more difficult to sample by DREAM with an acceptance of about 10%
which is considerably lower than its counterpart of 14–47% of the normal target. This reduces sample diver-
sity, and, with the use of a fixed m (see Table 2), may bias somewhat the description of the target distribution.
What is more, the normal mixture model may not be flexible enough to approximate sufficiently the twisted
target. This is further illustrated in Figure 7, which displays for d 5 2 different confidence intervals of (the cen-
ter of) the target distribution, ðhÞ (left graph) and the optimal mixture distribution, p̂mixðhÞ (right graph).
Indeed, the optimal mixture model does not mimic exactly the target distribution. This discrepancy may bias
the RIS evidence estimates, but not affect much the results of IS as this method uses as bridge density the tar-
get distribution (see section 3.1 and Table 1).

Figure 5. d-variate normal target distribution with correlated dimensions, q: Trace plot of
mean evidence estimates, Ẑ (solid blue lines), of IS and their 2.5% and 97.5% percentiles
(dashed blue lines) as function of target dimensionality, d using a) q50:25, (b) q 5 0.5, and
(c) q 5 0.75. Results are based on 250 independent trials with m055000.
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By now, it should be clear that the performance of RIS depends critically on the ability of the mixture distri-
bution to emulate exactly the posterior target distribution. This may suggest using a much larger number of
mixture components, J, nevertheless, as is shown for IBIC in Figure 6c, this hardly improves the evidence esti-
mates of RIS.
5.1.3. Multivariate Target With Disconnected Modes
The third case study considers a mixture distribution with two disconnected modes. The density of this d-
variate distribution is given by

f ðhÞ51=3fdðh; 25;RÞ12=3fdðh; 5;RÞ; (19)

where 25 and 5 signify the d-means of the first and second normal component, respectively, and the
covariance matrix, R is set equal to the identity matrix, Id . This study is relevant for environmental modeling
as it portrays a quite common situation in which the posterior distribution is dispersed and concentrated in
two or more, disconnected, pockets of the parameter space. This demands separate integration of each
posterior mode, complicating tremendously model evidence estimation.

We assume m055000 and present in the bottom plot of Figure 6 the results of IS, LM, and RIS for d 2 ½2;
100� using as selection criteria for the optimal mixture distribution r2

mix (Figure 6b) and IBIC (Figure 6d). Over-
all, the results are very similar to those presented previously for the twisted target. Indeed, the LM method
cannot be relied upon to make accurate estimates of the evidence. The multivariate normal Laplace approx-
imation cannot mimic the two modes and peaks of the target. RIS appears adequate for d � 10 but does
not work well for larger target dimensionalities. This is explained by the selection of a too simplistic, unimo-
dal, optimal mixture distribution, p̂mixðhÞ, by r2

mix and IBIC (see Table 3) which cannot capture the two modes
of target. As was the case in the previous two studies, IS correctly retrieves the unit normalizing constant of
the target and provides evidence estimates that appear unbiased up to d 5 100 dimensions.
5.1.4. Multivariate Target With Truncated Dimensions
Our last benchmark experiment considers application of GAME sampling to a truncated target distribution.
This case study is deliberately included to evaluate the ability of GAME to accurately estimate the evidence

Figure 6. (a, c) d-variate twisted normal and(b, d) d-variate mixture of two normal variates with disconnected modes: Evolution of mean evidence estimates, Ẑ (solid lines), of IS (blue)
and RIS (green) and their 2.5% and 97.5% percentiles (dashed lines) as function of target dimensionality, d using 250 independent trials with m055000 and m151000. The optimum mix-
ture distribution, p̂mixðhÞ, is determined via minimization of the variance criterion, r2

mix . The evidence estimates of the LM method are separately indicated with the yellow lines. Note,
that for d> 20 the LM evidence estimates approach zero (see also Figure 3).

Water Resources Research 10.1002/2016WR020167

VOLPI ET AL. SWORN TESTIMONY OF THE MODEL EVIDENCE 6149



of models with bounded parameter spaces. This is common in environmental modeling as parameters may
represent physical and/or conceptual properties with known upper and lower values. We revisit the d-vari-
ate Gaussian distribution of equation (17) with q 5 0.5, and truncate each dimension with a box-car prior so
that the target’s normalizing constant is reduced from unity to 3/4. We approximate this truncated distribu-
tion with DREAM by evaluating the target density on a bounded search domain with ranges that are sym-
metric around zero (5 target mean) and increase linearly with d in agreement with the covariance matrix.
As a consequence, truncation reduces most the ranges of the higher target dimensions as they exhibit the
largest variances.

To best emulate the actual target density, we scale the density of the optimal mixture distribution, p̂mixðhÞ,
after step 2 of GAME so that its integral becomes unity within the prior ranges of the parameters of the tar-
get distribution. Figure 8 presents the results of our analysis using the default value of m051000. The mean
evidence estimates of IS (solid green line) appear unbiased for all considered target dimensionalities, and
its 95% uncertainty ranges (dashed green lines) have increased somewhat compared to the first case study
(see Figure 3). RIS (blue lines) works well for d< 20, but strongly underestimates the normalizing constant
for larger values of d. The culprit is the density of the truncated mixture distribution which does not approx-
imate sufficiently closely the target density for d � 20. This mismatch will affect only RIS and not IS, as this

latter method uses directly
the target density of the mix-
ture samples. Finally, the LM
estimator (solid yellow lines)
appears to be deficient and
biased for even the smallest
values of d.

5.2. Model Evidence
Estimation Using
Geometric and Optimal
Bridge Densities
Our benchmark experiments
have shown that IS provides
accurate estimates of the evi-
dence for target distributions
with a host of different prob-
lem features. On the other
hand, RIS suffers if the

Figure 7. Bivariate contour plot of the density of the (a) d 5 2 variate, banana-shaped, target distribution, and (b) the ‘‘optimal’’ mixture dis-
tribution, p̂mixðhÞ with J 5 4 normal variates (see Table 3). The dashed line in both graphs presents the theoretical relationship between h1

and h2. The target distribution is described in detail in section 5.1.2.

Figure 8. d-variate truncated normal target distribution with correlated dimensions, q 5 0.5:
Trace plot of mean evidence estimates, Ẑ (solid lines), of RIS (green) and IS (blue) and their 2.5%
and 97.5% percentiles (dashed lines) as function of target dimensionality, d using 250 indepen-
dent trials with m051000 and m151000. The evidence estimates of the LM method are sepa-
rately indicated with the yellow lines. The theoretical evidence equates to 0.75 for all d.
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optimal mixture distribution in step 2 of GAME does not accurately portray the target distribution. We can
further enhance IS by embedding this method in the bridge sampling framework of section 3.1.2. In this
section, we analyze what happens to the evidence estimates if we use a bridge density, q1=2ðhÞ, to traverse
between q05p̂mixðhÞ and the unnormalized posterior density, q1ðhÞ.

Figure 9 displays the evidence estimates of GB as function of x for a d 5 75 (top) and d 5 100 (bottom) vari-
ate normal target with q 5 0.75 and m055000. Note, that if x 5 0 then GB is equivalent to RIS with the opti-
mal mixture distribution, p̂mixðhÞ, and if x 5 1 then GB becomes equivalent to IS with p̂mixðhÞ as importance
distribution. GB appears biased for all values of x 2 ½0; 1Þ if d 5 75, but correctly infers the evidence, Ẑ , of
the d 5 100 variate normal target, irrespective of the value of x. What is more, if x ’ 0:6, then the 95% con-
fidence intervals of the evidence estimates derived from GB are substantially smaller than their counterparts
derived from RIS (x 5 0) and IS (x 5 1). Although not further demonstrated herein, we observed similar
results for other values of d and target distributions.

If we satisfy the assumption of independent sampling, then among all possible choices for the bridge den-
sity, q1=2ðhÞ, OB in equation (11) should yield the most accurate estimates of the model evidence. Figure 10
presents trace plots of the mean evidence estimates (solid red line) and associated 2.5% and 97.5% percen-
tiles (dashed red lines) derived from OB for the d-variate normal target with q 5 0.75 (a: top plot), the d-vari-
ate twisted normal target with b 5 0.1 (b: middle plot) and the d-variate normal mixture with disconnected
modes (c: bottom plot). The results of IS are separately displayed using the solid and dashed blue lines,
respectively. These results demonstrate that OB provides unbiased estimates of the evidence, and with 95%
prediction intervals that are considerably smaller than their IS counterparts, particularly for the higher
dimensional targets. This is true even if the m1 posterior samples from the unnormalized density q1ðhÞ violate
independence. Indeed, thinning (discussed in section 4) may not remove fully the autocorrelation of the m1

DREAM samples, certainly for larger values of d. Note, that the RIS evidence estimates for the twisted and
bimodal targets appeared particularly poor (see Figure 6).

Finally, we recall that the results of OB depend on the ratio between m0 and m1. The simulations in Figure
10 assumed that m055m1. In general, the smaller the value of m0, the larger the variance of the OB evi-

dence estimates. We investi-
gate this further in Figure 11
and display the mean evi-
dence estimates (solid red
line) of OB and associated
2.5% and 97.5% percentiles
(dashed red lines) as function
of m0 for a d 5 100 variate
normal target with q 5 0.75.
The results of IS are sepa-
rately displayed with the
blue lines. The mean evi-
dence estimates of OB
appear rather unaffected by
the choice of m0. What is
more, the OB evidence esti-
mates also are insensitive to
the initial guess of Ẑ in step
5 of the algorithmic recipe of
GAME. The results in Figures
10 and 11 are obtained using
for Ẑ 0 the evidence estimate
from IS. Nevertheless, similar
results are obtained if Ẑ 0 is set
equivalent to the evidence
estimates of RIS or GB (as in
step 5 with 0 � x � 1).

Figure 9. d-variate normal target distribution with q 5 0.75 using (a) d 5 75, and (b) d 5 100:
Mean evidence estimate, Ẑ (solid lines) and its 2.5% and 97.5% percentiles (dashed lines) as
function of the scalar x using 250 different trials with RIS (x 5 0 and m151000), IS (x 5 1 and
m055000), and GB (x 2 ½0; 1�).
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6. Real-World Case
Study: The Rainfall-
Runoff
Transformation

We now apply GAME sam-
pling to a real-world case
study involving the modeling
of the rainfall-discharge rela-
tionship of the Leaf River
watershed in Mississippi, US.
This temperate, 1944 km2,
catchment has been studied
extensively in the water
resources literature, which
allows for comparative analy-
sis against published results.
Here, we are especially con-
cerned with model selection
and evaluate, compare, and
contrast the evidence esti-
mates and model rankings
derived from GAME sampling
with results of information cri-
teria such as AIC and BIC.

6.1. Hydrologic Data and
Conceptual Watershed
Models
We simulate the rainfall-runoff
transformation for a 10 year
historical record (1 October
1952 to 30 September 1962)
with daily data of discharge

(m3/s), mean areal precipitation (mm/d), and mean areal potential evapotranspiration (mm/d) using the d 5 5
parameter HYMOD [Boyle, 2001], d 5 7 parameter HMODEL [Schoups and Vrugt, 2010], and d 5 14 parameter

SAC-SMA [Burnash et al., 1973]
conceptual watershed models.
Interested readers are referred
to the cited publications for a
detailed description of each
model.

6.2. Prior, Likelihood, and
Posterior Parameter
Distribution
We assume the prior distri-
bution, pðhÞ, of the HYMOD,
HMODEL, and SAC-SMA
parameters to be d-variate
uniform, Udða;bÞ, on the
bounded search domain
X 2 Rd , with d-vectors of
upper, b, and lower, a,
parameter limits listed in

Figure 10. Trace plots of the mean evidence estimate, Ẑ (solid lines) and its 2.5% and 97.5%
percentiles (dashed lines) as function of the dimensionality, d 2 ½2; 100� of the (a) d-variate
normal target distribution with q 5 0.75, (b) d-variate twisted normal target distribution, and
(c) d-variate normal mixture target with disconnected modes, using 250 independent trials
with IS (blue; m055000 as in Figures 6 and 7) and OB (red).

Figure 11. d 5 100 variate normal target distribution with q 5 0.75: Evolution of mean evi-
dence estimates, Ẑ (solid lines) and its 2.5% and 97.5% percentiles (dashed lines) as function
of m0, the number of samples from the importance distribution using 250 independent trials
with IS (blue) and OB (red; m151000). Thus, the ratio, m0=m1, will increase from 0.1 to 10 from
left to right across the plot.
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Vrugt et al. [2008], Schoups and Vrugt [2010], and Vrugt et al. [2009], respectively. We now use the measured
daily discharge data to estimate each model’s posterior parameter distribution. For the time being, we
resort to a simple Gaussian likelihood function, Lðhj~YÞ as we expect inadvertently each model’s discharge
residuals to be independent, normally distributed, and with a constant variance. Then, MCMC simulation
with the DREAM algorithm results in a collection of m posterior samples, fH�g5ðfh1

�g; . . . ; fhm
� gÞ, and their

unnormalized densities, pðfhj
�gÞLðfhj

�gj~YÞ, where j5ð1; . . . ;mÞ. We can relax the strong assumptions of
independence and normality of the streamflow residuals by using a more sophisticated likelihood function
with nuisance variables [see Schoups and Vrugt, 2010], but this is beyond the scope of the present work.

In our DREAM trials, we use N 5 10 chains for HYMOD and HMODEL and N 5 20 chains for the SAC-SMA
model with T 5 2000, T 5 4000 and T 5 20,000 samples, respectively, in each chain. Convergence of DREAM
to the target distribution is monitored using a variety of built-in diagnostics. The first half of each sampled
chain is used as burn-in, resulting in a total of m 5 10,000, m 5 20,000, and m 5 200,000 realizations of the
posterior parameter distribution of HYMOD, HMODEL, and the SAC-SMA model, respectively. To assess the
relationship between the length of the streamflow data record and the evidence of each model, we con-
sider calibration data sets that vary in length between 40 and 730 days.

6.3. Hydrologic Model Selection Using GAME Sampling and Information Criteria
We express the model evidence on a logarithmic scale to facilitate comparison between their esti-
mates derived from GAME sampling and their values calculated separately with information criteria.
For AIC and BIC, the evidence, Ẑ , or marginal likelihood, pð~YÞ, satisfies Ẑ5exp ð21=2IÞ, which is equiv-
alent to I522ln fẐg [Sch€oniger et al., 2014]. Per equation (1), we can now separate the evidence into
two terms, 2ln fẐg52ln fLðf�h�gj~YÞg2C. The first term, 2ln fLðf�h�gj~YÞg, summarizes the model’s
goodness-of-fit via the likelihood maximum. This value is found at the mode, �h� , of the likelihood
function and does not necessarily maximize the model’s posterior density, as information criteria gen-
erally preclude the use of prior information. The second term, C, penalizes for model complexity, and
varies among the different evidence estimation methods (see Table 4). This penalty term is easy to
compute for AIC and BIC and does not demand knowledge of the actual target distribution. The pen-
alty terms of the other three evidence estimation methods (LM, RIS and IS) require command of the
likelihood maximum, Lð�h�j~YÞ, and the marginal likelihood, Ẑ (for RIS and IS).

6.4. Results
In this section, we present and discuss the results of the three watershed models. We report only the mean evi-
dence estimates of IS and RIS. The confidence intervals of these mean estimates are relatively small due to the
large number of posterior samples being used (as discussed in section 5.1.1) and the steadily growing values of
the absolute log-likelihood (increasing length of calibration data set). As the three watershed models are rather
parsimonious, we expect the evidence estimates of LM, RIS, and IS to be rather similar. This is particularly true, if
each model’s posterior parameter distribution is well described by a multivariate Gaussian, that is, if a large
amount of informative data is used for parameter estimation [see, e.g., Kass and Raftery, 1995]. Conversely, we
may expect the model evidence estimates of AIC and BIC to deviate from their values of LM, RIS, and IS.

Figure 12 summarizes the results of our analysis and depicts graphically the relationship between the
length, n, of the discharge calibration data record and the value of the penalty term (left y axis) of each

evidence estimation method (colored
lines) and the goodness-of-fit of each
watershed model (black lines)
expressed as 2lnf Lðf�h�gÞg on the right
y axis. The solid, dashed, and dotted line
types discriminate between the results
of HYMOD (in top graph) and those of
the HMODEL and SAC-SMA models (in
bottom graph), respectively. In general,
an enhanced model complexity is sup-
ported by the data if the gain in the
goodness-of-fit exceeds increments of
the penalty term.

Table 4. Penalty Term for Model Complexity of Different Model Selection
Methods

Method Penalty for Model Complexity

AIC 2da

BIC dln n
ML using Laplace-Metropolis 22ln fpðh��Þg2dln ð2pÞ2ln jR�j
ML using RIS 22ln fẐg12ln fLðh��j~YÞgb

ML using IS 22ln fẐg12ln fLðh��j~YÞgc

a12dðd11Þ=ðn2d21Þ for n< 40 d (AICc) [Burnham and Anderson, 2004].
bẐ is computed with equation (7).
cẐ is computed with equation (10) where q0ðhÞ5p̂mixðhÞ is given by equa-

tion (12).
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The results in this figure highlight several important findings. We first summarize the results of HYMOD in
the top plot. First, and as expected, the penalty and goodness-of-fit terms decrease with increasing length,
n, of the calibration data record. The exact shape of this dependency is determined by the choice of dis-
charge observations if the calibration data set is small, but approaches linearity for larger values of n. Sec-
ond, the dispersion (e.g., spread) of each model’s posterior parameter distribution, pðhj~YÞ, decreases with
increasing length of the calibration record (not shown). This causes the optimal mixture model, p̂mixðhÞ, to
collapse to a multivariate normal distribution with a single peak (e.g., J 5 1). Third, the penalty term of AIC
appears constant and unaffected by the length of the calibration record, except if n < 40 d (see Table 4).
For all other evidence estimation methods, the penalty term for model complexity increases with n. Conse-
quently, for a given length of the calibration data record, the penalty term of BIC will be more severe than
its counterpart of AIC. This conclusion is readily confirmed by the expressions of their penalty terms in Table
4. Fourth, if, per the findings of our benchmark experiments, we consider IS to be our reference solution,
then AIC and BIC condemn insufficiently model complexity [cf., Sch€oniger et al., 2014], whereas the penalty
terms of LM and RIS are spot on, especially for larger calibration data sets. We recall here that one of the
key assumptions of AIC and BIC is that model complexity depends only on the length of the calibration
data set, and not on the actual information content (and thus dynamics) of this data.

We now move on to the bottom graph of Figure 12 and present the results of the HMODEL and SAC-SMA
watershed models. These results appear qualitatively similar as those discussed previously for HYMOD but
with an enlarged evidence for the HMODEL and SAC-SMA models, and larger discrepancies between the
different methods. Indeed, for n ’ 150 we obtain logarithmic values of the evidence, ln fẐg that equate to
2786, 2981, and 2635 for HYMOD, HMODEL, and SAC-SMA, respectively. The differences between the
model selection methods are irrelevant when comparing the three watershed models. All methods assign
the largest evidence to the SAC-SMA model in response to its superior goodness-of-fit and thus strongest
ability to describe the observed discharge data. This result generalizes the findings of Vrugt and Robinson

Figure 12. The penalty term (on left y axis) of AIC (purple lines), BIC (pink lines), RIS (green lines), IS (blue lines), and LM (yellow lines) and
the goodness-of-fit, 2ln Lðh��Þ (on right y axis) of each watershed model (black lines) as function of the length, n, of the discharge calibra-
tion record. Line style differentiates between the results of HYMOD (solid lines in top and bottom graph), HMODEL (dashed lines in bottom
graph), and SAC-SMA (dotted lines in bottom graph). As IS and RIS do not possess a separate term to combat model complexity, we esti-
mate their individual penalty terms using Table 4. In general, models with a relatively high goodness-of-fit and small penalty term receive
most support from the discharge data.
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[2007] to different lengths of the calibration data record. As expected, the model complexity term increases
with the number of ‘‘free’’ parameters, d, except for IS when n< 100. For the sake of clarity, we display only
the penalty terms of AIC (lowest values) and IS (highest values). However, in this case the differences in
goodness-of-fit between the three watershed models are much larger than their differences in model com-
plexity. Under such circumstances, information criteria such as AIC and BIC will single-out correctly the
‘‘best’’ model at a computational cost that is lower than required for more advanced sampling methods (as
in Marshall et al. [2005]).

Note, that the smaller the length of the calibration data set, the smaller the magnitude of the goodness-of-
fit, and the more model selection is governed by model complexity. In this situation with small n, and with
the use of parameter-rich models, accurate computation of the evidence becomes of paramount impor-
tance. For example, for the limiting case with n 5 1 calibration measurement, the LM method erroneously
ranks highest the HMODEL, whereas RIS and IS lend most support to HYMOD as the most parsimonious
model of the ensemble. Information criteria such as AIC and BIC have another weakness, and that is, that
they do not allow for the use of prior information. This complicates severely their application to the ranking
and selection of parameter-rich models whose ability to describe system behavior can depend crucially on
our ability to properly constrain parameters via informative priors.

Before we summarize the main results of this paper, we discuss briefly possible limitations of the proposed
GAME sampler. Of course, no evidence estimation method would protect us against the use of an incorrect
posterior parameter distribution. Thus, a requirement of GAME is access to an adequate collection of Monte
Carlo samples of the target distribution. Otherwise, the performance of RIS will be severely compromised.
The use of a second collection samples from the mixture distribution offers IS, GB, and OB more protection
against an imperfect description of the target distribution. Nevertheless, these methods also deteriorate
rapidly when confronted with an incorrect target distribution. What is more, GAME sampling may suffer if
the target distribution is highly irregular with features that are complicated and not easily emulated with a
mixture distribution of normal densities. In theory, a normal mixture should be able to approximate closely
any target distribution, yet, in practice, this may require a much larger number of components, J, than toler-
ated in this paper (J 5 5). Obviously, the results of the GAME sampler also depend on the values of its algo-
rithmic variables. The method may not produce accurate results if, among others, an insufficient number of
target samples, m0, is used, or a too sparse supply, m1, of mixture realizations.

As a final note, it is important to stress that model support is determined by the choice of prior distribution
and likelihood function. An improper choice of these two antecedents will affect the target distribution and
thus model evidence estimates. This is by no means unique to GAME sampling, instead, it will affect all
model evidence methods. Whereas the choice of the prior distribution will, to some extent, always necessi-
tate subjective decisions regarding each parameter’s ranges and distribution, the adequacy of the likelihood
function can be carefully scrutinized using residual analysis. If, as in the last case study, parameters evoke
physical and/or conceptual entities, then this simplifies the assignment of their ranges.

7. Summary and Conclusions

This paper has presented a new methodology for estimating the marginal likelihood of a model. This so
called model evidence provides a single quantitative measure of model support which integrates model
accuracy, uncertainty, and complexity, and is of key importance in Bayesian model selection. The proposed
approach was coined GAussian Mixture importancE, or GAME, sampling, and uses multidimensional integra-
tion of the posterior parameter distribution to efficiently estimate the marginal likelihood. First, we generate
a large collection of samples from the target distribution using Markov chain Monte Carlo (MCMC) simula-
tion with the DREAM algorithm. Then, a mixture of normal densities is fitted to the posterior samples using
maximum likelihood estimation of the weight, mean, and free elements of the covariance matrix of each
mixture component. The optimal mixture distribution can be determined using information-theoretic mea-
sures or via minimization of the variance of the distance between the target and mixture density. Finally,
the optimal mixture distribution serves as bridge distribution in bridge sampling, and returns estimates of
the model evidence.

Bridge sampling is a generalization of importance sampling and uses an intermediate density, or bridge
density, to transition smoothly between the importance distribution and the target of interest. The user is
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free to select the bridge density, q1=2ðhÞ, via the identity, q1=2ðhÞ5q0ðhÞ12xq1ðhÞx, using the scalar
x 2 ½0; 1�. As extreme, or limiting, cases, this results in reciprocal importance sampling (RIS, x 5 0) or impor-
tance sampling (IS, x 5 1), and with x 2 ð0; 1Þ this amounts to a transient case using bridge sampling with
a geometric bridge (GB) or optimal bridge (OB). The GAME sampler has been implemented in the DiffeRen-
tial Evolution Adaptive Metropolis (DREAM) MATLAB toolbox of Vrugt [2016] and simplifies considerably
hypothesis testing and model selection.

A wide range of numerical experiments were conducted to benchmark the performance of GAME sampling
on target distributions with known normalizing constants. This includes multivariate normal distributions
with variable dimensionality (up to d 5 100), one or two (disconnected) modes, and variably correlated,
twisted, and/or truncated dimensions. We also presented a real-world case study involving the application
of GAME sampling to Bayesian model selection of the rainfall-discharge response of the Leaf River water-
shed in the US. This study also compared the results of the GAME sampler with model evidence estimates
and rankings derived separately from information theory using Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC). The main conclusions can be summarized as follows.

1. GAME addresses an important practical problem in importance sampling, namely that of choosing an
appropriate scale and orientation of the importance distribution. The importance distribution is con-
strued by fitting a mixture of normal densities to a large collection of target samples derived separately
from Markov chain Monte Carlo simulation with the DREAM algorithm.

2. The RIS, IS, GB, and OB evidence estimators do not invoke the same computational cost. In general, RIS
is most CPU-efficient as the collection of target samples suffices to compute the model evidence. The
other three methods (IS, GB, and OB) necessitate the use of a second collection of samples drawn ran-
domly from the optimal mixture (5 importance) distribution. As the unnormalized density of the target
distribution must be evaluated for these mixture samples, this enhances computational demands.

3. For all the case studies analyzed herein, IS provides unbiased estimates of the evidence with an estima-
tion uncertainty that increases with complexity and dimensionality of the posterior parameter distribu-
tion. The evidence estimates of IS appeared unaffected by the choice of selection criteria for the
optimal mixture distribution.

4. The evidence estimates of the Laplace-Metropolis (LM) method have to be interpreted with care, and
are particularly suspicious if the target distribution does not satisfy normality. Examples include twisted,
truncated, and multimodal posterior distributions.

5. A poor mixture distribution will lead to importance densities of the target samples that deviate consid-
erably from their actual unnormalized values. This mismatch will directly corrupt the evidence estimates
of RIS, but not affect much the performance of IS, as this latter method does not use the importance
density of the target samples but rather works with the target density of the mixture samples.

6. The use of a second collection of samples from the mixture distribution by IS enhances considerably
the diversity of the target approximation, but at the expense of an increased computational cost of
GAME sampling.

7. The efficiency of IS can be further enhanced by embedding the method in a bridge sampling frame-
work. OB preserves the accuracy of IS while significantly reducing the variance of the model evidence
estimates. This is true even if the posterior realizations sampled by DREAM do not satisfy independence,
as required by OB to guarantee, at least in theory, an optimal performance of this evidence estimation
method.

8. OB provides robust estimates of the evidence for a range of different quotients between the number of
target samples and the number of importance samples. This ratio controls the bridge distribution.

9. One should be particularly careful in using information criteria such as AIC and BIC for model selection
purposes. The evidence estimates of these metrics can deviate considerably from their values derived
from GAME sampling, and should not be relied upon for hypothesis testing and model selection under
general conditions. This is especially true with the use of informative priors and/or parameter-rich
models.

10. Information criteria such as AIC and BIC underestimate the value of the penalty term that is used to
combat model complexity, even if these metrics yield the same model ranking.

11. GAME sampling provides a method for evidence computation that returns a robust estimate of the
Bayesian model evidence under general conditions.
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