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1. Introduction
Human interference in rivers can have large impacts on river morphology that manifests themselves often 
only after decades, or centuries. Global change and measures to mitigate them or anticipate on these changes 
(e.g., Haasnoot et al., 2013), have similar time scales. As examples of human induced morphological changes, 
Havinga (2020), Ylla Arbós et al.  (2021), Habersack et al.  (2016) and Harmar et al.  (2005) describe incising 
trends in the rivers Rhine, Danube and Mississippi, caused by engineering measures over the past centuries. 
New (dynamic) equilibrium conditions have not yet been reached. De Vries (1975), Dade and Friend (1998) and 
Church and Ferguson (2015) show that for lowland rivers, it may take 10 3–10 5 years for the riverbed to adapt 
to permanent changes. This underlines the need for sustainable sediment management in rivers as advocated by 
Habersack et al. (2016), which requires long-term predictions of the morphological impact of global change and 
integrated river management strategies for long river reaches. Morphological numerical simulations for river 
reaches of tens of kilometers over several decades may take hours to days, even for one-dimensional models. 

Abstract Sustainable river management often requires long-term morphological simulations. As the future 
is unknown, uncertainty needs to be accounted for, which may require probabilistic simulations covering a large 
parameter domain. Even for one-dimensional models, simulation times can be long. One of the acceleration 
strategies is simplification of models by neglecting terms in the governing hydrodynamic equations. Examples 
are the quasi-steady model and the diffusive wave model, both widely used by scientists and practitioners. Here, 
we establish under which conditions these simplified models are accurate. Based on results of linear stability 
analyses of the St. Venant-Exner equations, we assess migration celerities and damping of infinitesimal, but 
long riverbed perturbations. We did this for the full dynamic model, that is, no terms neglected, as well as 
for the simplified models. The accuracy of the simplified models was obtained from comparison between the 
characteristics of the riverbed perturbations for simplified models and the full dynamic model. We executed a 
spatial-mode and a temporal-mode linear analysis and compared the results with numerical modeling results 
for the full dynamic and simplified models, for very small and large bed waves. The numerical results match 
best with the temporal-mode linear analysis. We show that the quasi-steady model is highly accurate for Froude 
numbers up to 0.7, probably even for long river reaches with large flood wave damping. Although the diffusive 
wave model accurately predicts flood wave migration and damping, key morphological metrics deviate more 
than 5% (10%) from the full dynamic model when Froude numbers exceed 0.2 (0.3).

Plain Language Summary Human interference in rivers impact the transport of sediment in 
these rivers and cause aggradation and erosion of the riverbed. This may cause problems for navigation, flood 
safety, groundwater levels, nature, agriculture and stability of infrastructure in and along the river. The changes 
in the riverbed are called morphological changes, which develop slowly and may continue for hundreds or 
even thousands of years. For future plans in river basins, it is important to know what the impact of these 
plans may be on the riverbed development in the future. Numerical models are widely used for this. For 
simulations of long river reaches and predictive horizons of decades or more, run times of these models can be 
very long. Shorter run times are possible with simplified models. However, it has remained unclear whether 
these simplified numerical models provide reliable projections of the future riverbed development. This 
research provides a method to assess under which conditions of flow and sediment load in the river simplified 
numerical models can be applied. We prove that a widely used quasi-steady modeling approach yields accurate 
morphological predictions for a wide range of lowland rivers.
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Siviglia and Crosato (2016) provide a list with remaining challenges for numerical modeling of river morphody-
namics, including the development of new and fast numerical morphodynamic codes and study of the uncertainty 
in the results of morphodynamic models. Such new developments will facilitate effective long-term morphologi-
cal assessments and design of sustainable river management solutions for the next century.

Barneveld et al. (2023) summarized several methods for fast morphological assessments, which include analyt-
ical methods, numerical modeling techniques and simplified numerical models in which terms in the governing 
equations are neglected. They focus on linear stability analyses as a rapid assessment tool for migration and 
damping of bed waves with spatial scales much larger than the water depth. In combination with numerical 
simulations and field data, Barneveld et al. (2023) show that especially for moderate and small Froude numbers 
(F ≤ 0.3) and bed waves with amplitudes smaller than 10% of the water depth, the linear stability analyses provide 
a good indication of the morphodynamics of bed waves. The method was verified using field data of the Fraser 
River in Canada and the Waal River in the Netherlands.

One-, two- and three-dimensional numerical models are potentially capable of simulating long-term morphodynamic 
developments with a higher degree of resemblance to real-world river geometries than what can be achieved with 
stability analysis. This is at the cost of a simulation time, which increases with increasing size of the river and predic-
tion horizon. Concerning techniques for faster numerical modeling, De Vries  (1965, 1973) first showed that for 
lowland rivers with small to moderate Froude numbers (F < 0.7), migration celerities of bed perturbations are negligi-
ble compared to celerities of hydrodynamic waves. The Saint-Venant equations for water flow and Exner equation for 
morphological development may then be solved uncoupled. This means that, rather than solving all equations simul-
taneously, one can first resolve the flow (either steady or unsteady) keeping the bed fixed and subsequently solve the 
bed level keeping the flow fixed. This enables faster simulations compared to fully coupled models or semi-coupled 
models in which the flow and bed equations are solved iteratively in a given time step (e.g., Cao et al., 2002). Other 
researchers (e.g., Cao et al., 2002; Lyn, 1987; Lyn & Altinakar, 2002; Morris & Williams, 1996) confirmed the results 
of De Vries, yet added the condition of moderate sediment transport as a prerequisite for decoupling.

In addition to the decoupled solution of the set of equations, improvement of numerical solvers, improved CPU 
performances, parallelization technologies and speeding up of convergence of hydrodynamic computations (e.g., 
Yossef et  al.,  2008) are effective in reducing simulation times. Alternatively, one can resort to morphologi-
cal acceleration factors such as MORFAC (e.g., Lesser et al., 2004; Roelvink, 2006) or MASSPEED (Carraro 
et al., 2018). These morphological acceleration factors were first introduced for coastal modeling scenarios with 
cyclical flow, but are also applied for rivers (e.g., Edmonds, 2012; Schuurman & Kleinhans, 2015; Williams 
et al., 2016). In models using this technique, the bed level changes are multiplied by a non-unity factor after each 
hydrodynamic time step, thereby extending the morphological time step and thus speeding up simulations.

High computational demands have also motivated efforts to reduce the equations for hydrodynamics, which are 
typically based on the Saint-Venant equations. The hydrodynamic regime subject to study determines which type 
of simplifications may be allowed. Grijsen and Vreugdenhil (1976) distinguish short inertial or gravity waves, 
in which friction is neglected, diffusive waves, where inertia is neglected, and kinematic waves, where inertia 
and non-uniformity are neglected. Ponce and Simons (1977) added the steady dynamic wave, in which only the 
time derivative in the momentum equation of flow is neglected. The appropriateness of omitting terms in the 
equations of motion depends on the type of problem. For flood forecasting, kinematic wave models (e.g., Chen 
& Capart, 2020; Lee & Huang, 2012; Singh, 2001) and diffusive wave models (e.g., Cappelaere, 1997; Moussa 
& Bocquillon, 2009) are widely used. Teng et al. (2017) show that such simplified modeling approaches are also 
applicable to 2D flood inundation modeling. Both Grijsen and Vreugdenhil (1976) and Ponce and Simons (1977) 
apply linear stability analyses to assess the error of hydrodynamics of simplified models compared to models 
based on the full set of equations (unsteady or full-dynamic models). They prove, for example, that the diffusive 
wave model can accurately simulate the celerity and damping of flood waves in rivers.

Simplified hydrodynamic models can be used in combination with the Exner equation to form simplified 
morphological models. Examples of numerical morphological models based on the diffusive wave approach are 
described in Fasolato et al. (2011) and Abril et al. (2012). One simplification has become particularly popular 
both in scientific literature and in consultancy practice, which is referred to as the quasi-steady approach. Under 
the quasi-steady assumption, the flow can be considered steady during subsequent morphodynamic steps of the 
decoupled solution procedure. This implies that the time derivatives in both Saint-Venant equations are neglected. 
The discharge may still vary in time, but during one time step, the discharge is the same for the entire river.
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Mosselman, V. Chavarrías, A. J. F. 
Hoitink
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Although flood wave attenuation in long river models is not captured in a quasi-steady model, the quasi-steady 
approach has obtained a wide application domain. Cao et  al.  (2017) mention that quasi-steady flow models 
are frequently used by Chinese engineers for large-scale and long-duration cases such as the operation of 
the Three Gorges Reservoir in the Yangtze River. The quasi-steady approach is also implemented in widely 
used one-dimensional software packages such as HEC-RAS, MIKE 11 and SOBEK-RE. The advantage of 
the quasi-steady approach over the unsteady approach is related to the larger time step that can be used in the 
quasi-steady models. The HEC-RAS quasi-steady model proves to be more stable than the unsteady model, 
allowing larger time-steps (USACE, 2022). In MIKE 11 and SOBEK-RE the Courant-Friedrichs-Lewy (CFL) 
stability condition may be based on the celerity of disturbances in the riverbed as the flow is steady. These celer-
ities are much lower than celerities of water level disturbances, allowing a larger time step. Although the implicit 
Preissmann scheme for hydrodynamics in SOBEK-RE does not restrict the time step of the unsteady model from 
a stability perspective, accuracy does (see also the next paragraph). As a rule of thumb, unsteady simulations with 
a time step restricting the hydraulic Courant number to a maximum value of 10 provide accurate and stable results 
(Personal Communication C. J. Sloff, 2022). In the quasi-steady model the time step can be chosen upto dozens 
times larger, limited only by the ability to resolve the boundary conditions (e.g., DHI, 2017).

Regarding the maximum time step for morphological simulations from the perspective of morphological accu-
racy, Vreugdenhil (1994) proves that for large hydraulic Courant numbers implicit schemes are becoming less 
accurate. Vreugdenhil (1982) and Olesen (1981) show that the maximum Courant number (and thus time step Δt) 
depends on the numerical method, spatial discretization (Δx) and targeted morphological accuracy. They show 
that to maintain a certain degree of accuracy in implicit schemes, larger Courant numbers are possible, but with 
increasing Courant number, a higher spatial discretization (smaller Δx) is required. Consequently also the time 
step is restricted. Van Buuren et al. (2001) performed numerical simulations with a second-order implicit Crank–
Nicolson scheme, and showed that for acceptable accuracy, the time step may be not more than 20 to 40 or even 
80 times larger than the explicit stability time step following from the hydrodynamic CFL condition.

The analysis of prevailing quasi-steady morphological numerical codes shows that although the solvers for the 
quasi-steady models are not faster than those of the unsteady models, simulations with quasi-steady models 
can be substantially faster due to the possibility of larger time steps and a schematized hydrograph. However, 
quasi-steady models do not simulate damping of flood waves, which may result in underestimation of morpholog-
ical changes in long river models. In such cases, diffusive wave models better simulate the flood wave dynamics 
and possibly also the morphological changes. Although for specific field cases unsteady and simplified models 
are sometimes compared (e.g., Hummel et al., 2012; Sloff, 2000), it remains unknown under which circumstances 
common simplified morphological models exactly apply. Here, we aim to establish under which conditions the 
quasi-steady model and diffusive wave model yield accurate morphological predictions for practical cases with 
large bed waves in long river reaches. We perform linear stability analyses on the 1-dimensional set of equations 
and compare these with numerical simulations for very small bed waves, to check the agreement for linear cases. 
We also verify linear stability results with numerical simulations for larger bed waves, that is, when non-linearity 
becomes important. This procedure allows us to assess the ranges of Froude numbers, sediment loads and bed 
wave dimensions for which simplified models (i.e., quasi-steady model and diffusive wave model) can be applied. 
In addition we perform numerical simulations to assess the importance of flood wave damping in longer river 
stretches on the morphological predictions of quasi-steady models.

The structure of the remainder of this paper is as follows. Section 2 describes the linear stability analyses, provid-
ing analytical expressions of migration celerity and damping for the unsteady and simplified models for infini-
tesimal bed perturbations. The same section describes the one-dimensional numerical model ELV (Chavarrías, 
Stecca, et al., 2019) and the simulations performed with it, for very small and larger bed waves. Results of the 
linear stability analysis, the comparison with numerical results and assessment of the validity range of simpli-
fied numerical models for lowland rivers with large bed waves are given in Section 3 and further discussed in 
Section 4. Section 5 summarizes the main conclusions.

2. Methods
2.1. Model Equations

We consider unidirectional flow over an erodible bed and we interpret bed elevation and sediment transport per 
unit width to be averaged over smaller bedforms (ripples and dunes) for which the impact on flow conditions is 
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incorporated through a roughness parameter. We consider the development of large perturbations or bed waves 
in the riverbed, with wave lengths much larger than the water depth. For these conditions the one-dimensional 
governing equations describing flow and bed evolution read as:

𝛼𝛼1
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝛼𝛼2𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑔𝑔

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑔𝑔

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑔𝑔

𝜕𝜕2

𝐶𝐶2𝜕
 (1)

𝛽𝛽
𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 (2)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 (3)

𝑠𝑠 = 𝑓𝑓 (𝑢𝑢) (4)

Herein.

t = time (s)

x = longitudinal co-ordinate (m)

u = water velocity averaged in a cross-section (m/s)

h = water depth (m)

z = bed level (m)

C = Chézy coefficient for hydraulic roughness (m 1/2/s)

s = sediment transport per unit of width (bulk volume, so including pores) (m 2/s)

g = acceleration due to gravity (m/s 2)

αi (i = 1, 2) and β are flag integers that can take values of 0 and 1 only.

This set of equations contains the 1D Saint-Venant equations for conservation of mass and momentum of water 
(Equation 1 and Equation 2), the continuity equation for sediment (Equation 3) and a capacity-limited sediment 
transport predictor (Equation 4), implicitly assuming small bed slopes. The latter two equations together form the 
Exner equation. For the case of long bed waves, equilibrium sediment transport predictors such as Meyer-Peter 
and Müller (1948) or Engelund and Hansen (1967) are widely used. Here, we adopt the latter formula, which is 
especially suitable for lowland sand-bed rivers. It relates the equilibrium sediment transport capacity to the flow 
velocity (s = m u n). The parameter m depends on the sediment properties (median grain diameter and density) and 
hydraulic roughness. The power n equals 5.

For the full dynamic model all values of αi and β are equal to 1. When in the Saint-Venant equations the time 
derivatives are neglected (α1 = β = 0), Equation 2 reduces to 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 , representing steady flow conditions for every 

time step. In numerical models the discharge may still vary over time, hence the name quasi-steady model (e.g., 
De Vries, 1973; Guerrero et al., 2015; Paarlberg et al., 2015; Sieben, 1996; Yossef et al., 2008). Another often 
applied simplified model neglects both inertial terms in Equation 1 (α1 = α2 = 0). In flood routing and morpho-
dynamics this is often called the diffusive wave model. This model has been proven accurate for a long time in 
predicting migration and damping of flood waves in lowland rivers (e.g., Grijsen & Vreugdenhil, 1976; Ponce & 
Simons, 1977) and has been extensively analyzed (e.g., Beg et al., 2022; Cappelaere, 1997; Charlier et al., 2019; 
Moussa & Bocquillon, 2009) and applied for hydrological studies since then (e.g., Cimorelli et al., 2018; Fan & 
Li, 2006; Fenton, 2019; Mitsopoulos et al., 2022).

2.2. Linear Stability Analysis

Barneveld et al. (2023) present linear stability analyses that are valid for bed waves with wave lengths much larger 
than the water depth. Their equations are the same as Equation 1 through 4, but with all flag integers (αi and 
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β) equal to 1 (full dynamic model). Here we follow the same analyses but with variable flag integer values. We 
assume small perturbations of water depth, flow velocity and bed level: 

ℎ = ℎ𝑜𝑜 + ℎ′ 

𝑢𝑢 = 𝑢𝑢𝑜𝑜 + 𝑢𝑢′ 

𝑧𝑧 = 𝑧𝑧𝑜𝑜 + 𝑧𝑧′ 

The subscript o indicates the steady uniform reference situation and the superscript ′ indicates a small pertur-
bation to the steady uniform reference situation. Substituting these expressions for h, u, and z in Equation 1 
through 4 provides a linearized set of equations. Substitution of a periodic solution such as

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑢′

ℎ′

𝑧𝑧′

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

�̂�𝑢

ℎ̂

�̂�𝑧

⎤

⎥

⎥

⎥

⎥

⎦

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖 (5)

with complex wave number k  =  kr  +  iki and complex frequency ω  =  ωr  +  iωi, yields a set of equations in 
first-order terms. In matrix notation, nontrivial solutions for this set of equations are given by

|

|

|

|

|

|

|

|

|

|

𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐴𝐴𝑖𝑖 𝐷𝐷𝑟𝑟 + 𝑖𝑖𝐷𝐷𝑖𝑖 𝐹𝐹𝑟𝑟 + 𝑖𝑖𝐹𝐹𝑖𝑖

𝐵𝐵𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑖𝑖 𝐸𝐸𝑟𝑟 + 𝑖𝑖𝐸𝐸𝑖𝑖 0

𝐶𝐶𝑟𝑟 + 𝑖𝑖𝐶𝐶𝑖𝑖 0 𝐺𝐺𝑟𝑟 + 𝑖𝑖𝐺𝐺𝑖𝑖

|

|

|

|

|

|

|

|

|

|

= 0 (6)

where

𝐴𝐴𝑟𝑟 = 𝛼𝛼1𝜔𝜔𝑖𝑖 − 𝛼𝛼2𝑢𝑢𝑜𝑜𝑘𝑘𝑖𝑖 + 2
𝑔𝑔𝑖𝑖𝑜𝑜

𝑢𝑢𝑜𝑜
𝐴𝐴𝑖𝑖 = −𝛼𝛼1𝜔𝜔𝑟𝑟 + 𝛼𝛼2𝑢𝑢𝑜𝑜𝑘𝑘𝑟𝑟

𝐵𝐵𝑟𝑟 = −ℎ𝑜𝑜𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖 = ℎ𝑜𝑜𝑘𝑘𝑟𝑟

𝐶𝐶𝑟𝑟 = −𝑛𝑛
𝑠𝑠𝑜𝑜

𝑢𝑢𝑜𝑜
𝑘𝑘𝑖𝑖𝐶𝐶𝑖𝑖 = 𝑛𝑛

𝑠𝑠𝑜𝑜

𝑢𝑢𝑜𝑜
𝑘𝑘𝑟𝑟

𝐷𝐷𝑟𝑟 = −𝑔𝑔𝑘𝑘𝑖𝑖 −
𝑔𝑔𝑖𝑖𝑜𝑜

ℎ𝑜𝑜

𝐷𝐷𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑟𝑟

𝐸𝐸𝑟𝑟 = 𝛽𝛽𝜔𝜔𝑖𝑖 − 𝑢𝑢𝑜𝑜𝑘𝑘𝑖𝑖𝐸𝐸𝑖𝑖 = −𝛽𝛽𝜔𝜔𝑟𝑟 + 𝑢𝑢𝑜𝑜𝑘𝑘𝑟𝑟

𝐹𝐹𝑟𝑟 = −𝑔𝑔𝑘𝑘𝑖𝑖𝐹𝐹𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑟𝑟

𝐺𝐺𝑟𝑟 = 𝜔𝜔𝑖𝑖𝐺𝐺𝑖𝑖 = −𝜔𝜔𝑟𝑟

 

and
 𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 ℎ̂ , 𝐴𝐴 𝐴𝐴𝐴  = velocity, depth, bed level amplitude function (−)
 io = steady uniform slope, using Chézy's equation 𝐴𝐴

(

𝑢𝑢2𝑜𝑜 = 𝐶𝐶2ℎ𝑜𝑜𝑖𝑖𝑜𝑜
)

 (−)
 so = steady uniform sediment transport per unit width (m 2 s −1)
 n = the power in the sediment transport relation (s = m ⋅ u n)
 k = complex wave number (m −1)
 ω = complex frequency (s −1)
 𝐴𝐴 𝐴𝐴 =

√

−1

To solve Equation 6, two approaches are possible, a spatial-mode linear stability analysis or a temporal-mode 
linear stability analysis. In the spatial-mode analysis, the wave number k in the periodic solution is assumed 
complex and the wave frequency ω in the periodic solution is real and equal to 𝐴𝐴 𝐴𝐴𝑟𝑟 =

2𝜋𝜋

𝑇𝑇
 , where T is the wave 

period. In the temporal-mode analysis, the frequency ω is assumed complex and the wave number is real and 
equal to 𝐴𝐴 𝐴𝐴𝑟𝑟 =

2𝜋𝜋

𝐿𝐿
 , where L is the wave length. The complex roots, that is, either ω or k, determine the propagation 

and damping of perturbations in the flow and at the riverbed.

A spatial-mode analysis fits best to a model in which oscillating boundary conditions exert an influence on the 
modeling domain of interest. Temporal-mode analyses are appropriate for systems with initial conditions in 
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infinitely long domains (i.e., Drazin & Reid, 2004) or at least for reaches far away from boundaries. Both situa-
tions are relevant for river systems, so we explore both approaches.

Barneveld et al. (2023) described a similar method in which the characteristic polynomial was derived starting 
from the same Equation 1 through 4. They inserted the linearized expressions for h, u and z in these equations 
and subsequently combined these four equations into a single equation in one of the parameters h′, u′ or z′. The 
resulting third order equation (for the full dynamic model) can again be solved analytically by assuming a peri-
odic solution (like Equation 5).

For the spatial-mode analysis of the full dynamic model, Barneveld et al. (2023) derived a third-order algebraic 
equation in the dimensionless wave number 𝐴𝐴 �̂�𝑘 (identical to Equation 12 in Barneveld et al. (2023), for the case 
α1 = α2 = β = 1):

Ψ

2𝜋𝜋𝜋𝜋 3𝐸𝐸

(

�̂�𝑘
)3

+
1

𝜋𝜋 3𝐸𝐸

(

1 − 𝛼𝛼2𝜋𝜋
2
+ 𝛽𝛽Ψ

)(

�̂�𝑘
)2

−
𝛼𝛼1 + 𝛼𝛼2𝛽𝛽

2

4𝜋𝜋

𝜋𝜋𝐸𝐸
�̂�𝑘 + 3𝑖𝑖�̂�𝑘 − 𝛼𝛼1𝛽𝛽

4𝜋𝜋2

𝜋𝜋𝐸𝐸
+ 4𝜋𝜋𝑖𝑖 = 0 (7)

where:

�̂�𝑘 = �̂�𝑘𝑟𝑟 + 𝑖𝑖�̂�𝑘𝑖𝑖 = 𝑘𝑘𝑘𝑘𝑜𝑜 (−) (8)

𝑥𝑥𝑜𝑜 =
𝑄𝑄𝑜𝑜𝑇𝑇

𝐵𝐵𝑜𝑜ℎ𝑜𝑜

= 𝑢𝑢𝑜𝑜𝑇𝑇 (m) = characteristic length scale (9)

Herein, Qo is the undisturbed water discharge, and Bo is the undisturbed width. This method identifies the three 
governing dimensionless parameters F, Ψ, and E:

𝐹𝐹 =
𝑢𝑢𝑜𝑜

√

𝑔𝑔𝑔𝑜𝑜

= Froude number (10)

Ψ = 𝑛𝑛
𝑠𝑠𝑜𝑜

𝑞𝑞𝑜𝑜
= dimensionless transport parameter (11)

𝐸𝐸 =

√

𝑔𝑔3𝑇𝑇 2

𝐶𝐶4ℎ
= dimensionless flow variation parameter (12)

The parameter E expresses the influence of unsteadiness and non-uniformity of the flow on a scale larger than the 
local flow depth. Figure 9 in Barneveld et al. (2023) show that there is a clear relation between the parameter E and the 
wave length L of bed perturbations. Larger values of E imply larger values of L and for river cases E is normally well 
over 10,000. For a situation with Ψ equal to 5 ⋅ 10 −5 and sub-critical flow the value of E exceeds for example 350,000.

The three roots of Equation 7 determine the characteristic wave properties (migration celerity c and damping 
length Ld) of water and bed waves:

𝑐𝑐 = −
2𝜋𝜋𝜋𝜋𝑜𝑜

�̂�𝑘𝑟𝑟

 (13)

𝐿𝐿𝑑𝑑 =
𝑢𝑢𝑜𝑜𝑇𝑇

�̂�𝑘𝑖𝑖

=
𝑢𝑢𝑜𝑜𝐸𝐸𝐸𝐸2ℎ1∕2

�̂�𝑘𝑖𝑖𝑔𝑔3∕2
 (14)

where Ld is defined as the distance over which the amplitude of a wave is damped by a factor e −1. As in subcritical 
conditions the migration celerity of bed waves is much lower than the one of water waves, the morphodynamic 
root can easily be identified.

For the temporal-mode analysis of the full dynamic model, Barneveld et al. (2023) presented a third-order alge-
braic equation in the dimensionless complex frequency 𝐴𝐴 𝐴𝐴𝐴 (identical to Equation 21 in Barneveld et al. (2023), 
when α1 = α2 = β = 1):

𝛼𝛼1𝛽𝛽𝛽𝛽
2
(�̂�𝜔)

3
+

(

2𝑖𝑖 − 2
𝛼𝛼1 + 𝛼𝛼2𝛽𝛽

2
�̂�𝐿𝛽𝛽 2

)

(�̂�𝜔)
2
+

(

−3�̂�𝐿𝑖𝑖 −
(

�̂�𝐿
)2(

1 − 𝛼𝛼2𝛽𝛽
2
+ 𝛽𝛽Ψ

)

)

�̂�𝜔 +
(

�̂�𝐿
)3

Ψ = 0 (15)
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where:
 𝐴𝐴 �̂�𝐿 = 2𝜋𝜋

𝐿𝐿𝑜𝑜

𝐿𝐿
 (−)

 𝐴𝐴 𝐴𝐴𝑜𝑜 =
ℎ𝑜𝑜

𝑖𝑖𝑜𝑜
 (m)

 L = wave length of disturbance (m)
 Herein, 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴𝐴𝑟𝑟 + 𝑖𝑖 𝐴𝐴𝐴𝑖𝑖  = dimensionless complex frequency (−)

Clearly in the temporal-mode analysis the governing parameters are Froude number F, transport parameter Ψ 
and bed wave length L. Solving Equation 15 again provides the roots determining propagation and damping of 
disturbances of flow and the bed.

𝐴𝐴 𝐴𝐴𝐴𝑟𝑟 determines the migration celerity of the waves (water and bed waves), according to:

𝑐𝑐 =
𝐿𝐿

𝑇𝑇
=

�̂�𝜔𝑟𝑟𝑢𝑢𝑜𝑜

�̂�𝑘
. (16)

and 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 determines the damping of water and bed waves:

𝐿𝐿𝑑𝑑 = −
𝑐𝑐

�̂�𝜔𝑖𝑖
 (17)

For the quasi-steady model, Equation 7 and Equation 15 provide, with α1 = β = 0 and α2 = 1, a second order 
equation. For the diffusive wave model, with α1 = α2 = 0 and β = 1, a (simplified) third order equation results.

Solving these equations, or directly solving the matrix in Equation 6, with the appropriate values of αi and β yields 
roots for the complex wave number (spatial-mode analysis) or complex frequency (temporal-mode analysis) for 
the different models. With Equations 13 and 14 for the spatial-mode analysis and Equations 16 and 17 for the 
temporal-mode analysis, the migration celerity and damping length of bed waves can be determined. The ratio of 
parameters for the simplified models and those of the full dynamic model determine how accurate the simplified 
models are, using that the full dynamic model provides the proper values for migration celerity and damping. 
These ratios are defined as follows for the spatial-mode analysis:

𝑐𝑐b =
𝑐𝑐simplified

𝑐𝑐full dynamic

=
�̂�𝑘r,full dynamic

�̂�𝑘r,simplified

 (18)

𝐿𝐿b =
𝐿𝐿simplified

𝐿𝐿full dynamic

=
�̂�𝑘i,full dynamic

�̂�𝑘i,simplified

 (19)

For the temporal-mode analysis the ratios are

𝑐𝑐b =
�̂�𝜔r,simplified

�̂�𝜔r,full dynamic
 (20)

𝐿𝐿b =
�̂�𝜔i,full dynamic

�̂�𝜔i,simplified
 (21)

2.3. Numerical Model Simulations

2.3.1. Introduction

To verify whether the results of the linear stability analysis can be used to assess the applicability of simplifi-
cation of hydrodynamics in morphological models, numerical model simulations are performed first for very 
small perturbations. For these cases the results of the linear stability analyses and numerical results should agree. 
Subsequently numerical model simulations are performed for long and large-amplitude perturbations in the river-
bed and compared to the linear stability analyses. This illustrates the importance of non-linearity. The cases 
performed in Barneveld et al. (2023) form the starting point for the simulations. For this study, these cases were 
also performed with the quasi-steady model and the diffusive wave model.
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2.3.2. Model Description

Barneveld et al. (2023) selected the numerical modeling code ELV (Chavarrías, Stecca, et al., 2019), which is 
a Matlab code for modeling morphodynamic processes on a one-dimensional domain. ELV has been applied 
successfully in various studies and proved stable and accurate (Arkesteijn et al., 2019, 2021; Blom et al., 2017; 
Chavarrías, Arkesteijn, & Blom, 2019). The full set of Equations 1 through 4 are solved in an uncoupled way, 
with an implicit Preissmann scheme for flow and a first-order forward Euler upwind scheme for bed level change. 
In Barneveld et al. (2023) the results of the full dynamic model have already been presented and for validation 
compared with the extensively tested and widely applied SOBEK-RE model. ELV also provides code for the 
simplified quasi-steady and diffusive wave models with the same schemes and solver.

2.3.3. Model Set-Up

The model set-up is identical to and extensively described in Barneveld et al. (2023), with a one-branch model for 
which the geometry is inspired on the Meuse River in the Netherlands (Table 1). The minimum space step was 
selected such that the bed wave is reproduced by at least 20 calculation points. Furthermore convergence tests 
were performed to select the minimum time step Δt and space step Δx required to obtain the desired accuracy of 
the results. With the selected values of Δt and Δx the morphological changes for all models deviate less than 2% 
from the simulations with 0.5 Δt and 0.5 Δx.

2.3.4. Performed Simulations

The simulations performed are taken from Barneveld et al.  (2023), which are valid for conditions in lowland 
rivers. The Froude number F varies between 0.1 and 0.6. For the dimensionless transport parameter Ψ a constant 
value of 5.15 ⋅ 10 −5 was set, which means that for increasing Froude number the grain size increases. The param-
eter E is determined by the wave period of the flood wave, which we set at 25 days in a 45 days time domain.

The first set of simulations is based on combinations of the parameters F, E, Ψ for which a value of the wave 
length of (low) bed perturbations was selected, matching the spatial-mode linear stability analysis. The wave 
lengths of these low bed perturbations vary from 107 m (F = 0.1) to 446 m (F = 0.6). In further sets of the 

Characteristic Value/description

Model length 10–25 km

Channel width (no floodplains) B 100 m

Hydraulic roughness, Chézy value C 40 m 1/2/s

Bed slope ib 0.0001 to 0.0022 (giving Froude numbers up to 0.6)

Space step Δx 2.5–25 m

Time step Δt 1–5 s

Sediment transport s Uniform sediment, transport predictor of Engelund and Hansen (1967)

Grain diameter D50 0.002–0.35 m (to maintain constant Ψ)

Upstream boundary conditions Time series for discharge with base flow of 500 m 3/s and equilibrium 
sediment transport

Downstream boundary condition Uniform flow conditions (stage-discharge relation for uniform flow)

Table 1 
Model Set-Up for Simulation With ELV, Ranges of Parameters Depending on Cases Simulated (Barneveld et al., 2023)

Set Qbase a (m 3/s) Qtop b (m 3/s) Height c (m) Length d (m) Run duration (yr) Comment

1 500 505 0.005 matching to flow (107–446 m) 1 base set

2 500 505 0.005 3,000 3 long bed wave

3 500 1,500 0.1–0.5 3,000 3 large flow and bed waves

 aBase flow boundary condition.  bPeak flow boundary condition.  cHeight of bed perturbation (bed wave).  dWave length of bed perturbation (bed wave).

Table 2 
Numerical Simulations Performed to Validate Results From the Linear Stability Analysis (Barneveld et al., 2023)
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simulations the wave length (set 2) and the amplitude of the bed perturbations were increased (set 3). The set of 
simulations performed is shown in Table 2.

The impact of flood wave damping on the morphological effects is not captured by the quasi-steady model. 
In case of strong damping of the flood wave, the quasi-steady model will overestimate the peak discharge and 
underestimate the duration of the flood wave in downstream reaches. This may alter the morphological response. 
With the quasi-steady model we performed test simulations with an original and attenuated flood wave, having 
the same water volume, to assess this impact.

3. Results
3.1. Migration Celerity of Bed Perturbations

For the spatial-mode analysis, the ratio of migration celerity for simplified and full dynamic models can be 
assessed with Equation 18 for combinations of the parameters E, F and Ψ. For the temporal-mode analysis, Equa-
tion 20 provides this ratio for combinations of the parameters F, Ψ and L. Figure 1 shows that the full dynamic 
and quasi-steady model agree very well for both types of linear analyses in the complete parameter range. The 
diffusive wave model shows larger differences from the full dynamic model. The celerity is underestimated 
(spatial mode) or under- and overestimated (temporal mode) by the diffusive wave and the celerity error increases 
with increasing value of F. For longer bed waves, that is, larger values of L in the temporal mode and larger values 
of E in the spatial mode, the celerity error increases. The diffusive wave model underestimates the damping in 
both temporal and spatial mode analysis. The impact of the wave length is negligible in the temporal mode. In 
the spatial mode the error is largest for small values of the parameter E. The influence of the sediment transport 
parameter Ψ is very small in the temporal mode analysis, but appears to have an influence in the spatial mode 
analysis, especially when F exceeds 0.2.

Figure 1. Ratio of celerity and damping of simplified models to those of the full dynamic model for linear stability analyses. (a) and (b) show ratios for celerity and 
damping, respectively, for the temporal mode analysis and (c) and (d) for the spatial mode analysis for Ψ = 5 ⋅ 10 −5. In the temporal mode analysis the ratios are plotted 
as a function of the Froude number F and bed wave length L, and for L = 3,000 m the variation for Ψ = 5 ⋅ 10 −5 to 5 ⋅ 10 −3 is illustrated in orange (showing minor 
variation). For the spatial mode analysis the ratios are given as a function of F and parameter E, while for E = 100,000 the variation for Ψ = 5 ⋅ 10 −5 to 5 ⋅ 10 −3 is 
illustrated with the red area.

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035052 by T

u D
elft, W

iley O
nline L

ibrary on [16/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

BARNEVELD ET AL.

10.1029/2023WR035052

10 of 20

The migration celerity ratios can also be assessed with the numerical simulation results for the same combi-
nations of parameters. From the numerical results the migration celerities are taken from the propagation 
of the top of the perturbation. Figure 2 shows an example of the migration of perturbations for the alterna-
tive numerical models and Figure 3 shows the matching average migration celerities according to the three 
models.

The results from the linear stability analyses and the numerical results for the infinitesimal perturbations (set 1 
in Table 2) are shown in Figure 4. For the quasi-steady model, the results from the linear stability analyses match 
perfectly well. Clearly, the numerical results for the initial celerities (t = 0 years) are in good agreement with the 
spatial-mode analysis in the area delimited by the lines for E = 10,000 (F = 0.1) and E = 30,000 (F = 0.6). Also, 
the numerical results are in line with the temporal-mode analysis.

When longer bed perturbations, with a wave length equal to 3,000 m are considered, with the amplitude still 
chosen small (set 2 in Table 2), Figure 4 changes to Figure 5. In this figure, the numerical results at t = 0 
(filled markers) and the average over a period of 3 years of simulation time (open markers) are shown. The 
numerical results for the diffusive wave model fit better to the temporal-mode linear stability analysis. For the 

Figure 2. Simulation results for three models Dyn = Full Dynamic Wave model; Diff.Wave = diffusive wave model and the 
quasi-steady model for the case of F = 0.5, Ψ = 5.15 ⋅ 10 −5, Δt = 1 s, Δx = 25 m and sediment perturbation of 2 cm high and 
3 km long.

Figure 3. Migration celerity of the riverbed perturbation for the three models shown in Figure 2. The lines show the average 
celerities of the peak of the perturbation after x days.
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diffusive wave model, the ratio according to the spatial-mode analysis is always smaller than unity, while the 
temporal-mode analysis follows the numerical results in the change of the ratio from below 1 to over 1, when F 
increases.

When the amplitude of the perturbations also increases (to a maximum of 0.5 m) and a flood wave with a period 
of 25 days and a peak discharge of 1,500 m 3/s is resolved, the figure further evolves to Figure 6 (note the change 
in vertical scale compared to Figure 5). Although the ratio of initial migration celerities from the numerical 
models deviate more from the temporal-mode analysis, the results after 3 years of simulation are quite similar. 
Apparently, the temporal-mode analysis is again closer to the numerical results for the diffusive wave model. 

Figure 4. Ratio of celerities obtained from simplified and full dynamic models for linear stability analyses and numerical results of simulations of small riverbed 
perturbations, Ψ = 5.15 ⋅ 10 −5, Δt = 1 s, Δx = 5 m.

Figure 5. Ratio of celerities obtained from simplified and full dynamic models for linear stability analyses and numerical 
results for 3,000 m long but still low amplitude (≤0.025 m) bed perturbations, Ψ = 5.15 ⋅ 10 −5, Δt = 1 s, Δx = 25 m.
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Figure 6. Ratio of celerities obtained from simplified and full dynamic models for linear stability analyses and numerical results for long (L = 3,000 m) and large 
(0.5 m amplitude) bed perturbations under a flood wave regime, Ψ = 5.15 ⋅ 10 −5, Δt = 1 s, Δx = 25 m.

Figure 7. Ratio of damping length obtained from simplified and full dynamic models for linear stability analyses and 
numerical results for small bed perturbations (filled markers, simulations as in Figure 4) as well as for long and large bed 
perturbations under a flood wave regime (open markers, simulations as in Figure 6). Thin lines represent the spatial-mode 
analysis and the thick dotted lines provide temporal-mode analysis results, where Ψ = 5.15 ⋅ 10 −5.
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However, for the quasi-steady model, both approaches in linear stability analysis yield accurate metrics for the 
accuracy estimate of that simplified model (blue lines and markers).

3.2. Damping of Bed Perturbations

Figure 2 shows how in subcritical conditions a bed wave dampens when migrating downstream. Such damping 
in the numerical model is also described by the spatial-mode analysis (Equation 14) and temporal-mode analysis 
(Equation 17). Combining the results of the linear stability analyses (Equation 19, respectively, Equation 21) and 
the numerical results from the cases in Figures 4 and 6 yields Figure 7. This figure shows the ratio of damping 
length of the simplified models to the damping length of the full dynamic model. Again, the results of the linear 
stability analyses for the quasi-steady model overlap.

Figure 7 shows that spatial-mode and temporal-mode analyses closely align when the Froude number F is less 
than or equal to 0.4. The numerical results show that the distance over which the amplitude of a wave is damped 
by a factor e −1 is not clearly dependent on the height of the bed perturbation. Finally, the linear stability analy-
ses results are close to the numerical simulation results, especially in case of the temporal-mode analysis. For 

Figure 8. Simulations with the quasi-steady model for different flood waves as an upstream boundary condition. (a) original 
and attenuated flood wave with equal flood volume, (b) morphological response after 2, 3 and 10 years of simulation, with 
F = 0.2 and Ψ = 5.15 ⋅ 10 −5, Δt = 6 s, Δx = 100 m.
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the diffusive wave model, the spatial-mode analysis with values of E being well over 100,000 (as indicated by 
Barneveld et al. (2023)), underestimates the damping length ratio compared to the numerical results, especially 
for Froude numbers larger than 0.4.

3.3. Impact of Flood Wave Damping on Quasi-Steady Model Results

Figure 8 shows boundary conditions for the simulations with original and attenuated flood waves and the corre-
sponding morphological changes simulated with the quasi-steady model. The case represents a typical flood 
wave attenuation in the Meuse River in the Netherlands. Figure 8 (b) shows that the lines for the two simulations 
overlap, so the resulting morphodynamics appear to be identical for this case.

4. Discussion
4.1. Spatial-Mode or Temporal-Mode Analysis

In Barneveld et al. (2023) it was shown that the spatial-mode linear stability analysis of one-dimensional riverbed 
evolution provides accurate information on the initial migration celerities of small bed perturbations (several 
hundreds of meters long and low amplitude) in case of the full dynamic model. They also showed that for longer 
and higher bed perturbations the spatial-mode analysis still describes the initial migration celerities well, but 
overestimates the long-term migration celerities when F is larger than 0.3. In this context the temporal-mode 
analysis performs better. These ranges are also reflected in the ratios of migration celerities of bed waves as 
presented in Figures 4–6. For both types of reduced equations models, the ratios of initial migration celerities are 
well-described by the spatial-mode analysis for F ≤ 0.3. For larger Froude numbers, the spatial-mode analysis 
underestimates the ratio for migration celerities in case of the diffusive wave model, even at the initial stage. This 
underestimation grows with increasing Froude number.

The convective (or advective) acceleration term 𝐴𝐴

(

𝑢𝑢
𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕

)

 in the hydrodynamic momentum equation (1), which is 
neglected in the diffusive wave model (α2 = 0), appears to be important for proper calculation of the migration 
celerity of bed waves. Grijsen and Vreugdenhil (1976) and Ponce and Simons (1978) showed that for flood wave 
conditions in rivers, the convective acceleration term does not have important impact on the celerity and damping 
of flood waves over a flat riverbed. In combination with a bed wave, the term does become important for the 
morphodynamics of that bed wave. In the spatial-mode analysis, neglecting the convective acceleration term 
causes an overestimation of the diffusion coefficient 𝐴𝐴 𝐴𝐴 =

ℎ𝑜𝑜𝑢𝑢𝑜𝑜

2𝑖𝑖𝑜𝑜

(

1 − 𝛼𝛼2𝐹𝐹
2 +

𝛽𝛽

ℎ𝑜𝑜

𝜕𝜕𝜕𝜕 (𝑢𝑢)

𝜕𝜕𝑢𝑢

|

|

|𝑜𝑜

)

 in Equation 5 of Barneveld 
et al. (2023) as α2 = 0. This overestimation grows with increasing F and manifests itself apparently in an underes-
timation of the celerity in the diffusive wave approach. According to the numerical modeling results, the ratio of 
migration celerity of the diffusive wave model and the celerity of the full dynamic model changes from less than 1 
to over 1 when the value of F increases. This change from underestimation of the celerity to overestimation of the 
celerity by the diffusive wave approach does not proceed from the spatial-mode analysis. However, the change in 
this range of F matches the range in which the spatial-mode analysis overestimates the migration celerity, in case 
of the full dynamic model. For F > 0.3, the temporal-mode linear stability analysis predicts the bed wave celerity 
of the full dynamic model progressively better than the spatial-mode linear stability analysis. For these  condi-
tions, plausibly, the temporal-mode analysis also better predicts the celerity ratio of the simplified models.

For the quasi-steady model the results from both the spatial-mode analysis and the temporal-mode analysis 
are close to the numerical results. The errors in the spatial-mode analysis for the full dynamic model and the 
quasi-steady model for F > 0.3 are apparently equally large.

Regarding the damping of bed perturbations the results of the temporal-mode analysis are in line with numerical 
modeling results (Figure 7). For the spatial-mode analysis this is also true for the quasi-steady approach. For the 
diffusive wave approach, the underestimation of the bed wave damping is only partly captured by the spatial mode 
analysis for values of F larger than 0.4. Again, the deviation of the spatial-mode linear stability analysis estimates 
from numerical results for the full dynamic model in this range can explain this.

The finding that the temporal mode analysis agrees better with numerical results than the spatial mode analysis 
is merely empirical. It is not easily explained from the underlying mathematics, because numerical simulations 
solve an essentially different mathematical problem than the spatial and temporal mode analyses. The numerical 
model solves the equations of an initial-value problem (IVP) on a finite domain subject to boundary conditions 
whereas the two linear analyses solve the same equations as an initial-value problem on an infinite domain. In 
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Section 2.2 we argue that the spatial mode analysis fits best to a system governed by boundary conditions, but this 
is not true in a strict mathematical sense.

4.2. Limit Cases Temporal Mode

M. Colombini (pers. comment) suggested to perform analyses for limit cases for the wave number kr, to explore 
whether the results found can be reproduced with a limit approximation. For the temporal mode analysis kr tend-
ing to zero (long-wave limit) as well as tending to ∞ (short-wave limit) could be considered, as done previously 
by Lanzoni et al. (2006) and Colombini (2022). Lanzoni et al. (2006) show that with the scaling adopted there 
the short-wave limit kr → ∞ could properly describe the behavior of long sediment waves, in the order of channel 
width. The supplementary material demonstrates that the celerity for the kr → ∞ limit for the quasi-steady model 
reads

𝑐𝑐 =
Ψ

1 − 𝐹𝐹 2
𝑢𝑢𝑜𝑜 (22)

This is identical to Equation (43) of Colombini (2022) for the quasi-steady case and to Equation (25) in Lanzoni 
et  al.  (2006) valid for conditions where decoupling is allowed. This explains the good performance of the 
quasi-steady model in terms of celerities of bed waves. For the diffusive wave model the celerity in the kr → ∞ 
limit is described by

𝑐𝑐 =
Ψ

1 + Ψ
𝑢𝑢𝑜𝑜 (23)

Based on these equations the ratio of celerity of the diffusive wave model to the full dynamic model depends on 
F and Ψ

𝑐𝑐b =
𝑐𝑐diffusive wave

𝑐𝑐full dynamic

=
1 − 𝐹𝐹 2

1 + Ψ
 (24)

In addition the long-wave limit was explored for the diffusive wave model assuming kr → 0, as only this model 
clearly deviates from the full dynamic model. The analyses of Lanzoni et al. (2006) have been repeated providing 
this relation for the celerity of very long bed waves:

𝑐𝑐 = Ψ
𝜆𝜆2

9𝐹𝐹 4
𝑢𝑢𝑜𝑜 (25)

The results of this exploration of the limits are included in the design graphs of the next subsection (Figure 9). 
The green lines provide the lower and upper boundary of the design graph. It is clear that in case of wave lengths 
of bed waves smaller than 500 m and Froude numbers of 0.5 or less, the short-wave limit provides an appropriate 
estimate. This is in agreement with the statement in Lanzoni et al. (2006) that this limit properly describes the 
behavior of sediment waves with lengths in the order of the channel width.

4.3. Quasi-Steady and Diffusive Wave Model

Overall, we conclude that the temporal-mode linear stability analysis results describe migration celerity and 
damping of bed waves in lowland rivers better than the spatial-mode equivalents. Based on this, a design graph 
can be constructed to assess the error of simplified models for various combinations of the parameters Froude 
number F, wave length L and transport parameter Ψ, as presented in Figure 9. Values of Ψ in a range from 0.005 
to 5 ⋅ 10 −5 are adopted. In case of the Engelund-Hansen sediment transport predictor the range for the ratio so/qo 
is then 0.001–1 ⋅ 10 −5. The highest value could be considered a maximum. For the Yellow River the ratio is for 
example, around 0.006. For lowland rivers such as the Meuse River, the Rhine River and the Po River the values 
of the ratio so/qo are typically in the order of 1 ⋅ 10 −5.

Figure 9 shows that the quasi-steady model proves accurate for all combinations of these parameters. Only at the 
high values of Ψ a small deviation from 1 of the ratio for migration celerity and damping value can be observed. 
The diffusive wave model, which appears to be accurate for flood wave dynamics, deviates more than 5% from 
the full dynamic model for both migration and damping of bed waves when the Froude number is 0.2 or larger. 
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The figure further shows that for this model (1) the results are insensitive to the magnitude of the sediment trans-
port, (2) the wave length of the bed perturbation influences the ratio for the migration celerity, but not the ratio 
for the damping, and (3) the deviation from the full dynamic model increases with increasing Froude number.

4.4. Quasi-Steady Approach in Practise

Figure 8 shows that the impact of neglect of flood wave damping on morphological changes with the quasi-steady 
model may be small. This result is supported by simulations with a morphological model of the Meuse River, 
based on the numerical model SOBEK-RE. Sloff (2000) presented simulations for an extreme flood wave period 
with both the unsteady model and the quasi-steady model. Over 225 km of river length the flood wave damping 
is moderate in the upstream 70 km, where the river is relatively steep. In the transition area of around 20 km long, 
between steep and gentle longitudinal slope, large artificial lakes in the floodplains, created by sediment mining 
in the past, affect the shape of flood waves. Especially short spiky and average shaped flood waves are strongly 

Figure 9. Ratio of migration celerities (left) and ratio of damping length (right) obtained from simplified and full dynamic models for different values of the sediment 
transport parameter Ψ: 5 ⋅ 10 −3 (top), 5 ⋅ 10 −4 (middle), 5 ⋅ 10 −5 (bottom). Green lines in the left panels indicate, for the diffusive wave, limit cases for kr → ∞ (short 
bed waves, firm line) and kr → 0 (long bed waves, dotted line).
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dampened here. In Sloff (2000) the upstream model boundary was chosen just upstream of the transition area indi-
cated above, so that the flood wave attenuation is included in the model. The unsteady model predicted bed level 
changes up to 1 m. The quasi-steady simulation for a 150 km long reach of the Meuse River could be performed 
using a 1 day time step instead of the 1/2 hr time step in the unsteady model. The run time of the quasi-steady 
model was consequently approximately 20 times shorter, but provided almost identical morphological effects in 
the main channel compared to the unsteady run (only a few centimeters difference in some of the large peaks of 
morphological change). Apparently, sediment transport gradients and morphological changes in the main channel 
at discharges exceeding bankfull conditions are hardly affected by the damping of flood waves. Due to the wide 
floodplains of the Meuse River and associated large conveyance capacity, the flow velocities in the main channel 
only increase to a limited extent above bankfull flow conditions. The sediment transport capacity in the main 
channel thus remains almost constant above bankfull flow and only the duration of exceedance of bankfull condi-
tions is of importance. These results and the simulations described in Section 3.3 do not provide a generic indi-
cation of the applicability of quasi-steady models for long river reaches or reaches with strong non-uniformities. 
For each application of a quasi-steady numerical model test, simulations with both a full dynamic model and 
a quasi-steady model can help to decide whether the results with the simplified model are appropriate. If not, 
application of a quasi-steady model might still be feasible by simulating the flood wave attenuation with internal 
(boundary) conditions. An internal condition could take the form of lateral water inflow and extraction to repre-
sent the flood wave attenuation. Such an application of the quasi-steady model requires tailor-made assessment 
of the (internal) boundary conditions, especially when considering that the wave damping depends on the shape 
and peak value of each flood wave. For this assessment, the dimensions of the characteristics of the floodplains 
are also of importance (see example above for the Meuse River). With the above consideration in mind, the design 
graph of Figure 9 can be used to assess what kind of simplified model is accurate enough to be applied in general 
for the river reach considered. In case of the quasi-steady model some test simulations should be performed to 
determine whether (internal) boundary conditions should be implemented, so as to simulate the hydrodynamics 
in the complete model in such a way that the bed level evolution is accurately reproduced.

4.5. Other Applications

The approach as presented is focused on one-dimensional river models, but could be applied to two- or 
three-dimensional models as well. For the two-dimensional case Blondeaux and Seminara (1985) and Struiksma 
et al. (1985) already performed such linear analyses and the quasi-steady approach is routinely applied in 2D 
numerical models of river morphodynamics (i.e., MIKE21 (Warren & Bach, 1992), Delft3D (Lesser et al., 2004) 
and CCHE2D (Jia & Wang, 2001)).

In addition, it could be applied to other situations in which simplified models are often used, such as landscape 
evolution models. Tucker and Hancock (2010), Temme et al.  (2013) and Nones (2020) for example, describe 
that also for landscape evolution applications, quasi-steady and diffusive wave models are often applied. The 
approach presented here with linear stability analyses and numerical modeling could indicate the applicability 
range of the simplified landscape evolution models.

5. Conclusions
The results of linear stability analyses and numerical simulations with ELV are compared to assess which type of 
linear stability analysis (temporal mode or spatial mode) best describes the impact of reducing the Saint Venant 
equations in morphodynamic simulations. The temporal-mode linear stability analysis outperforms the spatial-
mode linear stability analysis in terms of predicting the migration celerity of river bed waves. The same can be 
concluded for the bed wave damping length. The linear stability analysis results and the numerical simulations 
show that the quasi-steady model provides riverbed evolution results deviating less than 1% from the results with 
the full dynamic model for Froude numbers between 0.1 and 0.7, wave lengths of the bed waves up to 25,000 m 
and the non-dimensional sediment transport parameter Ψ from 0.005 to 5  ⋅  10 −5. Previous calculations with 
high-complexity numerical models for long river sections indicate that, despite the neglect of attenuation of flood 
waves in quasi-steady models, morphological effects are well-predicted.

Although diffusive wave models are well-capable of simulating migration and damping of flood waves in lowland 
rivers, they underestimate or overestimate the migration celerity of bed waves. Especially the neglect of the 
convective acceleration term in this model causes this error. The degree of deviation is controlled by the Froude 
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number F and the wave length of the bed perturbation L. Especially when F increases, diffusive wave models 
underestimate the damping of bed waves. Generally speaking, the migration celerity and damping of bed pertur-
bations from the diffusive wave model deviate less than 5% from the full dynamic model when Froude numbers 
are 0.2 or less. To achieve at least 10% accuracy, the Froude number should not exceed 0.3.

Data Availability Statement
Numerical simulations have been carried out with the numerical modelling package ELV. ELV is available in the 
open access repository of the Open Earth Tools managed by Deltares (Deltares, 2020) For the simulations we 
used the version at Revision 16,973 from Thursday 17 December 2020 11:20:54.

The input and (reworked) output of the simulations with ELV, presented in Figures 2–8, are available through 
Barneveld (2024).
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