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RESEARCH ARTICLE

Scalable Water Balances from Earth Observations (SWEO): 
results from 50 years of remote sensing in hydrology
Tim Hessels a,b,c, Jeffrey C. Davids d,e and Wim Bastiaanssena,c

aDelft University of Technology, Department of Water Management, Faculty of Civil Engineering and 
Geosciences, Delft, the Netherlands; bUN-IHE Delft, Institute for Water Education, Delft, the Netherlands; 
cIrriWatch, Wageningen, the Netherlands; dDavids Engineering, Chico, CA, USA; eCalifornia State University, 
Chico, CA, USA

ABSTRACT
Strategic planning of water management at the river-basin scale 
requires (1) measurement and accounting of individual hydrologi
cal processes, (2) quantification of water resources, and (3) their 
optimal allocation. Scalable Water Balances from Earth 
Observations (SWEO) is an open-access parameterization enabling 
automated reporting of water footprints and Sustainable 
Development Goal (SDG) indicators. We present its systematic 
arrangement and input datasets, and demonstrate its accuracy by 
independent riverflow measurements. We also review some 
achievements in remote sensing for hydrology during the last 
50 years in quantifying hydrological and water management pro
cesses, flows, fluxes and changes in storage from various indepen
dent sources; and append mathematical formulations.

KEYWORDS 
50 years of remote sensing 
hydrology; rapid water 
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Introduction

Tony Allan observed, ‘the way that we consume water is detached’ (Allan, 1997). He 
pointed out that the greater part of our water resources is consumed by the food supply 
chain. The World Economic Forum (2014) listed water scarcity as a global risk affecting 
business, society and the environment; Mekonnen and Hoekstra (2016) estimated that 
two-thirds of the global population (4.0 billion people) live under conditions of severe 
water scarcity at least one month of the year. The amount of water used to produce the 
goods, commodities and services that we rely on has been formally captured by the water 
footprint concept, and teams led by Allan and Hoekstra have used this concept to 
quantify water systems and water use at the product, field and river-basin 
scales (Hoekstra, 2013). Here, we focus on the water footprint per river basin.

Scarcity prompts users to develop accounting systems for water resources (e.g., 
Bastiaanssen, 2009; Karimi et al., 2013; Molden, 1997). Financial accounts present an 
overview of inputs, outputs and resulting balances that provide strategic insights: the 
same applies to water accounting (Figure 1). However, even more so than financial 
accounting, accurately measuring inflows, outflows and changes in storage in water 
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systems is fraught with difficulty (Davids et al., 2019a). For instance, it is essential to 
know the difference between gross and net water withdrawals, but, in many cases, it is not 
directly measurable – even blue water in streams, lakes and reservoirs is hard to quantify 
(Davids et al., 2019b). Weekly or monthly water resources budgets would be helpful in 
support of fundamental decisions about water allocation, but the determination of all in- 
and outflows is hard to do and, therefore, not often done. So, it is the exception and not 
the rule to have reasonably complete water balances available for decision-makers. New 
tools and streamlined processes for water accounting are sorely needed.

Followers of water footprints use CropWat and AquaCrop models (Steduto et al., 
2009) to relate water use to food production (e.g., Chukalla et al., 2015). While these 
models are robust, they are typically applied at the field scale; for the water footprint of 
river basins, more comprehensive methods are needed. Feng et al. (2021) have reviewed 
the analytical tools used for water footprint analysis, including some remote sensing 
methods that have emerged in recent years (e.g., Madugundu et al., 2018). Shilpakar et al. 
(2011) estimated monthly river flow in the East Rapti basin, Nepal, from remotely sensed 
monthly precipitation minus evapotranspiration (P-ET) data; Bastiaanssen et al. (2014) 
applied P-ET pixel information to determine river flow and water withdrawals in the Nile 
basin; and, similarly, Poortinga et al. (2017) estimated flow in the Red River, Vietnam. 
Moreira et al. (2019) went a step further by merging P, ET and storage changes (ΔS) from 
the independent GRACE gravity mission to estimate terrestrial water balances in South 

Figure 1. Physical processes in a river basin that need to be quantitatively described by water 
authorities for dealing with water scarcity and communications with society. Source: https://www. 
alevelgeography.com/drainage-basin-hydrological-system/.
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America. Here, we report progress in preparing spatially distributed water balances using 
open-access Earth observations of P, ET and ΔS – in particular, the methods used in 
Scalable Water Balances from Earth Observations (SWEO) which enable the computa
tion of consistent water balances at the river-basin scale.

50 years of remote sensing of hydrological processes (1970–2020)

Adequate water accounting systems require big datasets that are not easily available. 
SWEO uses globally standardized, open-access datasets: (1) to avoid dependence on 
unpredictable data-sharing attitudes from third parties; and (2) to alleviate any appear
ance of bias and potential data-sharing limitations associated with data ownership. 
Therefore, the results and achievements from water accounting can be shared with all 
relevant stakeholders. SWEO integrates Earth-observation data from the following indi
vidual hydrological processes into a vertical soil water balance for each pixel (currently 
either 250 or 1000 m): rainfall, snowmelt, evapotranspiration, soil moisture, water levels, 
surface-water change and groundwater-storage change. These data are currently avail
able from various Earth-observation data archives (Table 1). These databases are based 
on recurrent satellite measurements, with time steps varying from daily to monthly. In 
addition, there are several data layers that, by nature, are relatively stable but essential for 
determining physical process, such as soil hydraulic conductivity that controls, for 
example, the partitioning of rainfall into surface runoff and infiltration.

Table 1. Open-access databases leveraged by Scalable Water Balances from Earth Observations.
Spatially variable–temporally variable Spatial variable–temporally constant

Variable Source Spatial (m)
Temporal 

(days) Variable Source
Spatial 

(m)

Precipitation CHIRPS 5000 1 Terrain height, accumulated 
pixels, drainage direction

SRTM or 
HydroShed

90, 250 
or 

1000
Rainfall days CHIRPS 1000 1 Land cover GlobCover and 

MCD12Q1
300 or 

500
ET0 reference FEWS 10,000 1 Population density GPW V4 1000
ET actual WaPOR, 

SSEBop
30, 250, 

1000
1 Livestock density FAO GWL 2005 5000

Air  
temperature

GLDAS, 
MERRA or 
GEOS

25,000 or 
50,000

0.125 or 
0.25

Sand content SoilGrids 250

LAI 
(MOD15A2)

MODIS 500 8 Clay content SoilGrids 250

fPAR 
(MOD15A2)

MODIS 500 8 Soil organic carbon content SoilGrids 250

Snow cover 
(MOD10A2)

MODIS 500 8 Bulk density SoilGrids 250

∆S Ground 
Water 
Storage

GRACE 300,000  
−400,000

30 Saturated hydraulic 
conductivity (Ksat)

SoilGrids 250

Water body 
area

JRC 30 – Specific yield (μ) SoilGrids 250

Piezometric heads at start PCR-GLOBWB 9000
Reservoirs and dams (optional) GRAND Points
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Precipitation (P) and snow cover

There are several rainfall products based on radar satellites, notably Tropical Rainfall 
Measurement Mission (TRMM) and Global Precipitation Mission (GPM). Radar emits 
a burst of energy that is scattered if the energy strikes an object (raindrop, snowflake, 
hailstone); the density of rainfall droplets and the size of these droplets affects the 
scattering. In combination with radar measurements, thermal radiometers onboard 
geostationary satellites and radar satellites measure cloud temperatures that reflect 
water and ice concentrations. Remotely sensed precipitation products represent larger 
areas than a gauge on the ground, which has advantages and disadvantages. A larger 
representative area is great for determining catchment and river-basin rainfall volumes, 
but it is hard to validate because, by definition, there is a spatial-scale mismatch with 
in situ measurements. Satellite remote sensing products achieve global coverage but may 
suffer from random errors and bias (Koutsouris et al., 2016) arising from the indirect 
linkage between the observed parameters and precipitation and, also, imperfect 
algorithms.

SWEO uses the calibrated Climate Hazard Group InfraRed Precipitation Stations 
(CHIRPS) database for monthly rainfall and number of rainy days, making use of 
radar and geostationary satellites, ground stations and terrain information (Funk et al., 
2015). The grid size is 5 km and data are available continuously since 1981, which is 
attractive for generating time series (e.g., Paca et al., 2020). CHIRPS has been widely 
tested and is well accepted (Dinku et al., 2018; Hessels, 2015; Hsu et al., 2021; Nawaz 
et al., 2021).

Precipitation includes rainfall and snowfall. Snowfall extends the time lag between 
precipitation and runoff and infiltration, so needs to be quantified as a separate process. 
MODIS images detect snow cover and its changes (https://modis.gsfc.nasa.gov/data/ 
dataprod/mod10.php). SWEO uses eight-day snow cover maps to detect the timing of 
snowmelt, which is an essential input into monthly river flow determinations, especially 
in cold or mountainous regions where snowfall comprises much of total precipitation. 
The amount of snowmelt is computed from changes in snow cover and ambient air 
temperatures during this period (standard equations are provided in Appendix A in the 
supplemental data online). SWEO has delay factors built in for the location and timing of 
snowmelt and the arrival of meltwater in the nearest stream. In this way, snow cover 
information can be used to infer which parts of CHIRPS-based precipitation can be 
attributed to snowfall and which to rainfall. For further information on remote sensing of 
snow cover products, see Hall et al. (2002), Parajka and Blöschl (2006) and Rittger et al. 
(2013).

Evapotranspiration (ET) (actual)

ET represents consumptive use of water. It is the second largest term of the water balance, 
returning about two-thirds of precipitation to the atmosphere, so it is crucial for water 
footprint analysis but hard to measure without advanced equipment. It is commonly 
assumed that weather stations measure ET. Not so. Weather stations measure the state 
conditions of the atmosphere which can be used to assess a reference ET of grass or 
alfalfa. The United Nations Food and Agriculture Organization (FAO) has adopted 
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procedures to compute reference ET (ET0) from a strictly defined hypothetical surface 
(Allen et al., 1998), but these values may deviate substantially from actual ET; several ET 
algorithms have been developed but only a few operational spatial databases are related to 
actual ET fluxes. SWEO uses ET for the water balance, and ET0 for computing the aridity 
index, which is used (among other processes) to develop Budyko curves for partitioning 
green and blue ET (Budyko, 1974; Simons et al., 2020a).

The first scientific publications using thermal infrared satellite measurements to 
express evaporative cooling date from the 1960s–70s (Gates, 1964; Jackson et al., 1977; 
Menenti, 1980; Rosema & Fiselier, 1990; Soer, 1977). Since then, many algorithms have 
been developed and tested against field measurements, amongst them the Surface Energy 
Balance Algorithm for Land – SEBAL (Bastiaanssen & Roebeling, 1993), which has been 
widely adopted and that led to other energy-balance models such as the Simple Surface 
Energy Balance Operational model (SSEBop) (Savoca et al., 2013; Senay et al., 2014), 
originally developed to monitor drought and crop development for Africa but now 
applied globally; METRIC (Allen et al., 2007); ETWatch (Wu et al., 2008); and SAFER 
(Teixeira et al., 2015). Another operational ET product, GlodET (www.glodet.nebraska. 
edu) from the Water for Food Institute, is based on the ALEXI model (Anderson et al. 
2007a, 2007b).

The latest versions of SEBAL are implemented on Google Earth Engine, so they are 
becoming more easily available for automated implementation (Jaafar & Mourad, 2021; 
Laipelt et al., 2021). In principle, 30 m SEBAL outputs could be used for high-resolution 
applications of SWEO, but this has yet to be tested. SWEO is agnostic in terms of ET data 
and can use any raster-based ET dataset.

Soil water

Soil water controls various agronomic and ecological processes. Wet soils in arid climates 
suggest non-precipitation sources of water in the form of irrigation, floods or shallow 
groundwater. Determination of soil water by remote sensing usually makes use of 
thermal images (often in combination with vegetation cover) or microwave imagery. 
Passive microwave sensors measure the very weak natural emissions of the Earth surface 
after making corrections for vegetation (Jackson et al., 2011; Kerr et al., 2012; Mo et al., 
1982; Owe & Van de Griend, 1998; Schmugge et al., 1986). At best, near-surface soil water 
values can be acquired for very large pixels (12.5–50 km) with sparse vegetation. The Soil 
Moisture and Ocean Salinity (SMOS) satellite measures radiation emitted in the micro
wave L-band (1.4 GHz). The Soil Moisture Active Passive (SMAP) satellite was to 
combine passive and active signals (Entekhabi et al., 2010), but the active radar system 
is not functioning; instead, radar-based soil moisture retrieval is based on Sentinel 3 data 
(Ojha et al., 2021). Lekshmi et al. (2014) review the retrieval of remotely sensed soil water.

Because of the poor spatial resolution of microwave techniques and their restriction to 
the near-surface layer, SWEO estimates soil water from thermal infrared measurements 
following the principles of a relative term of ET (e.g., Hain et al., 2011) or the evaporative 
fraction of the surface energy balance (e.g., Bastiaanssen et al., 1997; Scott et al., 2003). 
Canopy temperature reflects the access of vegetation to soil water in the entire root zone, 
thereby probing deeper into the soil than microwave technology. Earlier soil water 
detection work based on thermal infrared remote sensing (e.g., Carlson, 2007; Carlson 
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et al., 1994; Gillies & Carlson, 1995) is based on the trapezoid between surface tempera
ture and vegetation cover. Pang et al. (2020) compiled a good review of methods to assess 
soil water using thermal measurements.

Groundwater storage changes

Groundwater resources can be of immense value to ecosystems, and for domestic and 
industrial use. Recharge resulting from the infiltration of precipitation is the main source. 
Groundwater storage changes (ΔSgw) are a result of differences between groundwater 
inflows (predominantly recharge at the river basin scale) and outflows (withdrawals, 
baseflow to streams, ET from groundwater-dependent ecosystems, and inter-basin 
groundwater flows). Due to geological variability, these underground processes are 
hard to quantify without calibrated local groundwater models, so GRACE satellite data 
are invaluable as an independent measure of changes in water storage. GRACE measures 
inter-satellite range changes and their derivatives between two co-planar satellites in low- 
altitude, polar orbits 220 km apart, achieving global coverage every 30 days; the orbits of 
the two independently orbiting systems are perturbed by the Earth’s gravitational field, 
leading to inter-satellite range variations. Each system carries a Global Positioning 
System (GPS) receiver of geodetic quality and high-accuracy accelerometers to enable 
accurate orbit determination, spatial registration of gravity data and the estimation of 
gravity field models. Primarily, gravity fluctuations on land reflect storage changes of 
water, snow and ice. The value of GRACE data has been demonstrated in many hydro
logical studies (e.g., Jiang et al., 2014; Long et al., 2014; Rodell & Famiglietti, 2002; 
Sriwongsitanon et al., 2020). SWEO uses GRACE data from the Colorado Center for 
Astrodynamics Research (https://ccar.colorado.edu/grace/gsfc.html) to account for 
changes in groundwater storage.

Surface water storage changes

Lakes and reservoirs can store runoff to meet subsequent crop water demands. Changes 
in surface areas of open water bodies can be detected easily and accurately from spectral 
water indices (e.g., normalized difference water index – NDWI) and from radar back
scatter signals. Changes of water bodies have recently been summarized into water 
occurrence maps (https://developers.google.com/earth-engine/datasets/catalog/JRC_ 
GSW1_3_GlobalSurfaceWater); and attempts are being made to determine the width 
(perhaps, in future, flow) of large rivers (Yang et al., 2019).

SWEO relates the relationship between open-water surface areas (A) and water 
elevations (L) with water volumes using information from a pre-inundation Digital 
Elevation Model (Figure 2). First, water occurrence data are used to identify lakes and 
reservoirs. Next, changes in area can be related to changes in water level (Duan & 
Bastiaanssen, 2013). Unique A(L) relationships for each reservoir can be mathemati
cally integrated to arrive at volume V changes. The relationship between the volume of 
water storage and the surface area (i.e., V = f(A) relationship) for each lake or reservoir 
is determined by SWEO and used to assess monthly surface-water storage changes 
(ΔSsw). As an independent validation, water-level measurements can also be taken from 
satellite-borne altimeter data (e.g., https://dahiti.dgfi.tum.de/en/map/). For various 
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reasons, it is essential to make a distinction between natural water bodies that delay the 
natural runoff and reservoirs that provide a mechanism to store surface water for 
a longer period (months, years); SWEO uses the database of dams and reservoirs 
(GRAND) to differentiate between natural lakes and operational reservoirs (Lehner 
et al., 2011).

Land use

Land use influences hydrology and water management. For instance, forests intercept 
and consume a lot of water and can draw on shallow groundwater (McCulloch & 
Robinson, 1993), whereas urban areas have a completely opposite hydrological response. 
And hydrological processes affect land uses: for instance, cropland with sufficient but not 
abundant rainfall can be seasonally flooded and transformed into wetlands. SWEO uses 
land-use information to quantify and characterize the various services and benefits 
arising from consumptive use: bush and natural landscapes provide biodiversity and 
have reduced greenhouse gas emissions; irrigated agriculture provides jobs and food 
security, and also provides significant ecosystem services such as microclimate cooling, 
reduction of erosion and carbon capture.

SWEO uses customized land-use land cover (LULC) classes but, when dealing with 
global databases, it is often unavoidable to also include more generic land cover classes. 
At a minimum (pending the availability of more detailed LULC information), SWEO 

Figure 2. Remotely sensed determination of the relationship between water body surface area, water 
levels and water volume.
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expresses water usage by means of the following classes retrieved from GlobCover (Arino 
et al., 2007) and MODIS (MCD12Q1): (1) bare land, (2) bushland, (3) forest, (4) pasture, 
(5) irrigated cereals, (6) irrigated non-cereals, (7) irrigated perennials, (8) rainfed crops, 
(9) other nature, (10) urban, (11) snow and ice, (12) natural water bodies, and (13) 
reservoirs (Table 1). When agencies have locally refined LULC information, this infor
mation can be incorporated into SWEO.

LAI and fPAR

In addition to ecosystem services, vegetation regulates the conversion of P into ET, 
enhances the infiltration capacity and water-holding capacity of soils, and provides 
food, stockfeed and fibre. SWEO uses leaf area index (LAI) information from MODIS 
to compute the partitioning of ET into E (evaporation) and T (transpiration). Also, 
interception and infiltration can be estimated from LAI and the fractional vegetation 
cover related to LAI. The fraction of photosynthetically active radiation (fPAR) is taken 
from MODIS to compute dry matter production from radiation using light-use efficiency 
(LUE) (Monteith, 1977).

Further reviews of the remote sensing to determine hydrological processes have been 
prepared by Engman and Gurney (1991), Schultz (1988), Schmugge et al. (2002), 
Pietroniro and Prowse (2002), Neale and Cosh (2012) and Frappart and Bourrel (2018).

SWEO parameterization

Hydrological input data are downloaded from independent satellite data archives. The 
risk is that each term has its own uncertainty and, by adding all terms together, an 
unrealistic water balance arises that is neither closed nor consistent: SWEO has 
a particular sequence of steps and procedures to avoid this. Each term is evaluated, 
bias corrected (when feasible), calibrated and tuned for conservation of mass. SWEO 
computes a two-layer vertical soil water balance for every pixel with a monthly time step. 
There is an upper soil water balance that represents the root zone with a fixed thickness of 
0.5 m. Below is an unconfined shallow aquifer that represents a groundwater bucket with 
lateral exchanges. All flows between the two layers are assumed to be vertical. The upper 
soil water balance for the root zone is defined as: 

PþQswþQgwþq" ¼ ETþ RPþRQþq# þ ΔSθþΔSsnow 

where P is precipitation, QSW is the surface water supply, QGW is the groundwater supply, 
q↑ is the capillary rise from shallow water tables, ET is the actual evapotranspiration, RP is 
the surface runoff due to precipitation, RQ is the surface runoff from water supply, q↓ is 
the percolation, ∆Sθ is the change of soil moisture storage, and ∆Ssnow describes the 
storage changes of snow. Figure 3 presents these major processes where the Δ sign reveals 
incremental values related to Qsw and Qgw. These blue arrows originate both from natural 
(e.g., seepage, flood) and anthropogenic (e.g., pumping) water supplies.

Due to the importance of consumptive use, actual evapotranspiration ET is considered 
in more detail. One breakdown is to separate ET into the physically different processes 
E + T + I, where E is the evaporation from soil and water surfaces, T is the evaporation 
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through stomata and I is the evaporation from interception; another is into the source of 
water, namely ET from rainfall (ETgreen) and non-rainfall sources (ETblue).

Runoff from precipitation (Rp) denotes snowmelt and overland flow. There is also 
runoff RQ from the water supply (Qsw + Qgw) that is specified a priori for different types 
of land use such as the leakage from a water utility or the tail water of an irrigation 
furrow. The groundwater bucket receives percolation water which can be considered as 
recharge of the shallow aquifer. The water balance of the shallow aquifer is defined as: 

q#þQlat in¼QgwþBSþQlat outþq"þΔSGW 

where q↓ is the recharge from leaking fields, Qlat is the lateral groundwater flow, Qgw is 
the groundwater abstraction by crops and groundwater dependent ecosystems, BS is the 
base flow towards the main river for provision of dry season flow, q↑ is capillary rise, and 
∆SGW is the changes of groundwater storage. Recharge q↓ occurs from snow-covered 
land being saturated with water, forests, rivers, lakes and from irrigated land. SWEO 
considers recharge to be a three-month moving average of percolation water leaving the 
root zone because it takes time before moisture touches the zone of saturation where 
pores and fractures of the ground are saturated. Soil water needs to be above field 
capacity for generating percolation, albeit drier soils can also convey water but at 
a lower rate. Appendix A in the supplemental data online provides the mathematical 
formulation of percolation and other flows and fluxes presented in Figure 3.

Two types of bias corrections are included in SWEO. First, P is compared with 
individual rain gauges; bias factors can be derived to explain the difference with observa
tions, and these factors can be inserted to modify monthly CHIRPS data. Next is the 
verification of the total mass balance of the river basin. Without any knowledge on 

Figure 3. Vertical soil water balance applied to any pixel.
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internal water (re-)distribution in the basin, it can be stated in general that a bulk water 
balance always applies: 

�Q ¼ �P � �ET � �ΔS 

where ΣQ is the net basin outflow, being the difference between transboundary inflow 
(i.e., aqueduct, aquifer) and outflow (i.e., sea, sink, aquifer). Because ΣP is bias corrected 
by gauges and ΣET is the second most important term that far exceeds ΣS in absolute 
numbers, SWEO introduces a bias correction for ΣET to make the balance. 
A prerequisite for applying this second bias correction is that ΣQ is measured. In the 
absence of outflow measurements, at best the longer term ΣQ term can be approximated 
from global hydrological models or other sources of information. The bias correction for 
ΣET will, for simplicity, be applied to any pixel and to any month. This is realistic as the 
equation for net radiation can have a systematic deviation that applies to any pixel. 
A constraint is built in to prevent monthly ET exceeding 250 mm/month. Hence, ΣP and 
ΣET at the river basin scale are always congruent with ΣS and ΣQ.

With P and ET being bias corrected for every pixel, information on P-ET can be 
deployed to obtain first insights into the location of net water-generating areas (P > ET) 
and net water-consuming areas (P < ET). Figure 4 is an example from Afghanistan 
showing mountains and water divides with P-ET > 500 mm/yr simultaneously with 
irrigated and wetland areas with P-ET ~ –1000 mm/yr. Water must move from positive 
to negative P-ET values, and where river topography cannot explain this, interflow and 
groundwater flows must take care of this lateral transport. Hence, the vertical pixel 
columns are hydrologically connected through streams and aquifers.

Surface runoff (RP + RQ) is routed from each pixel to the nearby stream using 
topographical information. The same occurs with baseflow BS that is, by definition, an 
extra source of water to the river system. However, BS cannot drain all excess 

Figure 4. Annual scale values of P – ET in Afghanistan during 2015. Note: Positive values represent net 
water-generating areas; and negative values are net water consumers (wetlands, irrigation systems).
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groundwater to rivers because it depends on hydraulic heads and hydraulic conductivity 
(see Appendix A in the supplemental data online). There is a maximum capacity to BS 

that cannot be exceeded.
With the vertical soil and groundwater bucket for every pixel being determined, 

the water resources of aggregated areas such as natural catchments, sub-basins, 
irrigation schemes or administrative units can be quantified. Figure 5 shows the 
schematic coupling of the vertical pixel based balance and the regional basin 
including also horizontal components. In the absence of detailed, available ground
water models, SWEO considers lateral groundwater movements Qlat in the regional 
context. The Qlat sign of a pixel can be positive or negative depending on other 
terms of the groundwater bucket. Because groundwater storage changes ∆SGW are 
measured by large GRACE pixels and, thus defined, a lateral groundwater process 
is required to obtain an equilibrium between all smaller pixels, a mixed-cell 
approach of all pixel-based groundwater buckets is applied to check whether 
there is an equilibrium. If the balance is neutral, then Qlat from SWEO is con
sidered as an assessment of local lateral groundwater movement without any 
geohydrological basis. If not in balance, BS is enhanced to a certain maximum by 
syphoning groundwater to streams. If still not in balance, the separation of Qsw and 
Qgw will be adjusted until Qlat at the regional scale (aquifer level) is zero. This is 
another important calibration process to get realistic groundwater balances. A key 
assumption in this process is that recharge is reasonably good (and has been 
internally calibrated from green water pixels; see the next section).

SWEO computes river flow for every 250 m reach by accumulating surface runoff (Rp 

and RQ) and baseflow BS from the nearest pixels; in general, though not in drylands, river 
flow increases from the upstream to the downstream ends of the basin. Lakes and 

Figure 5. Schematic coupling of various components of Scalable Water Balances from Earth 
Observations in the regional basin context.
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reservoirs create a storage-and-release system that is included in the flow accumulation: 
ΔSsw are computed from the V(A) relationship that varies with each surface-water body. 
The complexity of this system can be defined by the user by defining the minimum size of 
a water body that should be considered in SWEO.

Surface water is withdrawn in transit by various agro-ecosystems. These withdrawals 
diminish flow and large flood plains and wetlands or irrigation systems can reduce river 
flow to virtually nothing. So, it is essential to have a number of checkpoints for actual 
flow; in case of a mismatch of river flow, corrections on the ratio of surface water (Qsw) 
versus groundwater supply (Qgw) for different land-use classes are introduced. The 
assessments of various sinks and sources make it feasible to reconstruct a hydrograph 
at any reach. In the case of natural catchments with small withdrawals and supplies, 
corrections on infiltration and runoff are introduced.

The calculation of q↓, Rp, Qsw and Qgw for every pixel depends on P, ET and soil water 
θ. To simplify the process, first q↓ and Rp are computed for pixels where water supply can 
be safely excluded, hence Qsw and Qgw are zero for this special group of pixels. This 
occurs when P > ET: they are also known as green water pixels. The notion of green water 
was introduced by Falkenmark and Rockström (2006, p. 130) to better understand agro- 
ecosystems that need no water supply other than ‘water from precipitation that is stored 
in the root zone of the soil and evaporated, transpired or incorporated by plants’. This 
definition is followed in SWEO. For green water pixels, q↓ can be approximated as P-ET – 
Rp – ΔS. ETgreen is a natural process that is hard to change (only by land-use changes). In 
SWEO, a first estimation of ETgreen is computed from the Budyko curve that prescribes 
the breakdown of gross rainfall into runoff and ETgreen using the aridity index. This will 
give a first separation between rainfed and irrigated pixels required to calculate q↓. 
A more precise ETgreen value can be computed from a separated soil water balance that 
does not have any other water source then P (Dogrul et al., 2017). Therefore, one soil 
water balance in SWEO is only for green water determination, and the same pixel has 
a second soil water balance for all inflows and outflows.

The counterpart ETblue relates to water supply from surface water systems (streams, 
rivers, lakes, reservoirs, wetlands, lagoons) and groundwater systems (unsaturated zone, 
unconfined and confined aquifers). Floods, irrigation, seepage, interflow, capillary rise 
and deep-rooting plants all supply water to vegetation that evaporates into the atmo
sphere. The water footprint network defines blue water as ‘water that has been sourced 
from surface or groundwater resources and is either evaporated, incorporated into 
a product or taken from one body of water and returned to another, or returned at 
a different time’. SWEO defines ETblue as the incremental consumptive use due to water 
supply from a piped utility, hydrants, irrigation canal, river inflow, flood, interflow, 
capillary rise, perched water table, groundwater pumping or direct withdrawal from 
deep rooting systems. (Note: ETblue is computed as ET – ETgreen, so any error in ETgreen is 
translated into ETblue.) The isolation of computing percolation q↓ and surface runoff Rp 

from ETgreen pixels, followed by determination of surface water Qsw and groundwater 
supplies Qgw is a practical method to solve terms of the water balance that cannot be 
derived from Earth observations otherwise.
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SWEO case studies

Some national-scale hydrology models may serve in national water resources plans. 
However, hardly any river basins have their own models, and water resources planners 
have to rely on open-access data. Most hydrological models focus on P and river flow. 
They are not suitable to describing complex irrigation, wetland, bushland and forest 
hydrological processes, being the major users of renewable water resources. Against this 
background, the FAO and TUDelft have been involved in setting up SWEO studies for 
different basins (Table 2).

The success of merging different hydrology terms into a consistent, calibrated water 
balance can be checked with independent field measurements; river discharge at key 
locations is suitable information for such validation. Note that river flow is not a standard 
SWEO input parameter but infiltration, baseflow, groundwater withdrawals and surface 
water withdrawals are tuned to match the longer term flow at strategic locations. 
Figures 6 and 7 demonstrate the accuracy attainable following the standard SWEO 
internal calibrations.

Figure 6 shows the predicted inflow into Shardara reservoir, a key reservoir in the 
transboundary Syr Darya River system. Inflow at this point is of paramount importance 

Table 2. Scalable Water Balances from Earth Observations 
case studies completed. In most cases the hydrological 
period 2003–19 was analysed.

Countries/region River basin

Pakistan Indus
Afghanistan All basins
Central Asia Syr Darya
Myanmar Irrawaddy
Palestine–Israel Jordan basin and mountain aquifer
Chile Seven selected basins

Figure 6. Estimated monthly inflow into the Shardara reservoir based on Scalable Water Balances from 
Earth Observations water accounting and discharge measurements by KhazHydroMet (Kazakhstan).
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for Kazakhstan, and depends on excess water from Kyrgyzstan and other countries. The 
graphs show good agreement of monthly flows; the only difference is a systematically 
higher inflow measured during the low-flow season, which suggests that baseflow BS 

should be increased or groundwater abstractions decreased to obtain a more exact match.
The second case covers three strategic discharge stations on the Aconcagua River 

(Chile). In this case, low flow is predicted satisfactorily, so baseflow was apparently good. 
Months with peak flow are determined well, and this confirms that spatio-temporal P-ET 
data and surface runoff Rp are accurate. Also, the partitioning into surface runoff and the 
withdrawals for irrigation and other water use sectors must be rather accurate, otherwise 
the flow at particular points would not match.

These two examples demonstrate that river flow can be rather well reproduced indirectly 
from satellite measurements, and that SWEO can be used for various allocation analyses 
including withdrawals, supplies, consumptive use, non-consumptive use and recycling. 
This is the basis for using the information for evaluating good water management practices.

SWEO implementation in water footprint analysis of river basins

Society’s water footprint must be reduced (Allan, 2003; Chapagain et al., 2006). This will 
require courageous – that is, unpopular – interventions that will have to be supported by 
reliable water accounts: How much water do we really have available? Who is currently 
getting the water? Is the water used efficiently? Is it over-exploited? Can we import food 
grown elsewhere? Perry’s (2013) ABCDE(F) framework on water resources management 
is germane: the first step is the determination of the water accounts (being the capital A) 

Figure 7. Estimated and measured river flow at three key discharge stations with longer term records 
from the Aconcagua River.
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that are necessary for defining longer term policies, rules, operations and laws. 
Withdrawals should be analytically related to caps on consumptive use, with an explicit 
recognition of consumptive use by ETgreen and ETblue (Yan et al., 2020).

Decisions require information on the longer term storage changes of lakes, reservoirs 
and aquifers, the volume of renewable water resources, natural and anthropogenic water 
supplies, return flows, recycling, reuse, and virtual water trade. Water-use efficiency, 
water productivity, water footprint, irrigation efficiency and beneficial fraction all help to 
evaluate whether water is used efficiently, and standard indicators are suggested by 
AquaStat and the Sustainable Development Goals (SDGs), both promoted by the 
United Nations. SWEO computes these performance indicators from water balances, 
vegetation photosynthesis and land use (Table 3).

Conclusions

Changing precipitation patterns and increasing demands for water have created count
less situations where most, if not all, available water resources are utilized and demands 
can no longer be met. Such water-scarce situations demand a rapid water-accounting 
system that quantifies hydrological and water management processes and presents them 
in a clear, consistent way. The accounts must include withdrawals, supplies, consumptive 
use and non-consumptive use whereby flows are returned into the river systems. 
Simultaneously, benefits such as dry matter production and the efficient use of scarce 
water resources should be described, including water footprints, water productivity, and 
efficiency and recycling coefficients. However, no standard model can produce all this 
information in an automated, standardized, rapid and affordable manner.

This paper discusses a breakthrough in water accounting – SWEO – that leverages 
spatially and temporally explicit information from open-access Earth observation data
bases and integrates these independent estimates of flows, fluxes and storage changes into 
a consistent water balance. This parameterization includes bias factors and internal 
calibration coefficients to ensure closure of the water budget; in situ measurements of 
precipitation and streamflow at one or more locations, especially the river basin outflow 

Table 3. Information produced by Scalable Water Balances from Earth Observations for monthly water 
analysis.

Hydrology Water management Water resources indicators Efficiency

P External renewable water Water utilization: withdrawal/available water Water productivity
ET Internal renewable water Water scarcity: supply – demand Water footprint
q↓ Water demand Water stress: ETpot – ETact Irrigation 

efficiency
q↑ Non-utilized outflow Recycling factor: Σwithdrawal/Σsupply Beneficial fraction
RP Qsw per land use Changes SW storage Consumed fraction
RQ Qgw per land use Changes GW storage
BS E per land use Changes irrigated area
Qsw T per land use Changes wetland area
Qgw ETgreen per land use Groundwater dependency
Qlat ETblue per land use
River flow Consumptive use, domestic
Groundwater 

flow
Consumptive use, industry

Consumptive use, livestock
Consumptive use, hydropower
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(in the case of streamflow), are necessary. However, this is a much-reduced data demand 
compared with classical methods for preparing monthly water balances and river basin 
profiles, and vital for water accounting in data-scarce regions such as Afghanistan or 
Myanmar. SWEO’s philosophy is to exploit recurrent Earth observation data to the 
greatest extent possible to provide accurate, timely, spatially discrete information in an 
automated manner using a standardized open-source model developed in Python. Over 
the last five years, six pilot studies with SWEO have been completed in collaboration with 
enthusiastic end-users. In order to broaden SWEO’s accessibility and usefulness, and to 
limit data bandwidth and computing requirements, the idea of implementing SWEO on 
Google Earth Engine has been suggested and is currently under consideration.

This paper summarizes: (1) SWEO’s essential open-access Earth observation data; (2) 
the primary mathematical framework; (3) related computational steps to achieve con
sistency through bias-corrections and calibration of typical breakdown; and (4) the 
partitioning of parameters (e.g., ET into E and T). Further, we validated SWEO with 
17 years of river flow data in the Syr Darya and Aconcagua rivers. SWEO’s formalized 
data sources and workflow and its flexibility that enables customized tuning for particular 
conditions makes this new model applicable to a range of environmental, physiographi
cal and anthropological conditions. Its outputs are standardized and include several SDG 
and AquaStat indicators. Finally, critical areas of development in future versions of 
SWEO include: (1) recycling and reuse of non-consumptive use (Simon et al., 2020b); 
(2) downscaling of the groundwater storage (because GRACE satellite pixels are very 
large; Miro & Famiglietti, 2018; Vishwakarma et al., 2021); and (3) inclusion of locally 
refined land-use information to improve reporting of water-related benefits and services.
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