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Abstract—Traditional search engines rely on centralized
databases and powerful servers to process and retrieve
information. Developing alternatives to key-value search
engine databases in distributed computing environments is a
significant challenge, particularly when dealing with limited
computational resources. This study explores the use of large
language models (LLMs) to address this problem. We focus
on environments with constrained computing power, such
as mobile devices, to investigate the feasibility of using
LLMs as a localized search solution. Through experiments
with the state-of-the-art LLMs BERT and T5, we demonstrate
their ability to memorize and retrieve unstructured data,
specifically YouTube video IDs, based on partial information
derived from video titles or tags. Our results show that
the explored models can achieve 100% precision and recall
when retrieving 48266 video IDs. The findings suggest that
LLMs have the potential to effectively function as a search
engine database, offering semantic search capabilities while
operating within the constraints of limited computational
resources.

Index Terms—Search engine, Local semantic search, Large
Language model, Database, Machine learning, Information
Retrieval, Distributed Systems.

I. Introduction

Search engines play an important role in finding the
specific information we need from the huge amount of
content online. Internet users use them to learn new
things and for entertainment, such as finding online
videos based on personal interests. However, when peo-
ple search for content that is stored in the data centers
of big companies like Google, they have to share their
search queries, which raises privacy concerns [1] [2].
In this context, powerful local search engines emerge
as an increasingly popular solution, especially when it
comes to searching private data locally. In this thesis,
we explore the feasibility of this approach.

Traditional local search engines store search data in a
database, where data might be organized as key-value
pairs. Such key-value storage can be implemented using
data structures like HashMaps or by tables for relational
databases like SQL or directly key-value pairs for NoSQL
databases like Redis [3]. These databases can be used to
retrieve documents using indices as keys, a strict one-to-
one key-value mapping.

To rank local searches, these local search engines, such
as Elasticsearch [4], use solutions similar to those applied
by online search engines. First, documents are parsed to
generate indices based on certain algorithms, such as in-
verse document frequency (IDF [5]). The indices are then
stored, mostly in a relational database. When a search is
performed, the results are retrieved by key-value pair
search, using the index to get the relevant documents.
The results are then ranked based on algorithms such as
BM25 [6].

While traditional search methods have been effective,
they have limitations. Their strict one-to-one key-value
mapping can be challenging for fuzzy searches that
require semantic understanding. Taking online video
search as an example, users input natural language
queries to find videos. The search engine processes this
input and matches it with the metadata like titles stored
in its system and output other mapped metadata like
URLs. Retrieving the URL of a video directly from its
title is complicated without pre-indexed metadata.

The demand to semantically interpret the user’s query
in relation to a knowledge base has led to the exploration
of techniques that go beyond simple and strict keyword-
result searching. Modern search engines started to apply
artificial intelligence and natural language processing
(NLP) techniques to improve their performance in un-
derstanding of the context of the search content [7] [8].
This represents a significant shift in approach compared
to traditional search methods. Large language models
(LLMs), like GPT-4 [9], have even been used standalone,
as an alternative to traditional search engines, illustrating
a growing trend in search technology [10].

In this study, we position LLMs as a novel type of
semantic database, focusing on their ability to enable
powerful semantic search functionality. The storage char-
acteristics of LLMs remain largely unknown, particularly
in terms of stochastic insert and select operations. Our
research aims to quantify these unknown properties
through several experiments centered around informa-
tion retrieval metrics such as precision and recall. We
also investigate the the storage capacity of these semantic
databases using YouTube video search as a research case.

The main focus of this study is to explore the feasibility



of using LLMs for local semantic search functionalities
on devices with limited computing power, i.e. personal
computers and mobile phones instead of data centers. In
particular, we focus on using the example of searching
for YouTube video URLs through natural language in-
put. Through experiments with state-of-the-art language
models like BERT [11] and T5 [12], we seek to evaluate
their capacity to store and retrieve key-value type data,
such as video IDs corresponding to video information,
paving the way for a new type of local or distributed
search engines optimized for privacy, efficiency, and
accessibility.

This article is structured as follows: In section II, we
formulate the main problems to resolve in this study.
We give an overall review of related works in section III.
In section IV, we introduce relevant technical details of
our approach. From section V to VII, we describe the
experiments with two language models. We conclude
our study in the last section.

II. Problem Statement
This research explores the use of language models as

an alternative to traditional search engine databases in
distributed computing environments with limited com-
putational resources. The core issue is to investigate
how a language model can function as a search engine
database to retrieve YouTube video URLs from online
videos. The retrieval is based on queries from partial in-
formation that is derived from video titles or tags. Since
video IDs can directly form a YouTube video URL by
adding a prefix like "https://youtube.com/watch?v=",
we choose video IDs as the desired outcomes, which are
the memorization and search targets.

Video IDs consist of a 64-bit identifier expressed in a
modified base64 format using the character set [A-Z][a-
z][0-9][-_] [13]. Due to the nature of base64 encoding, an
11-character base64 string is equivalent to 66 bits, result-
ing in the last character of a video ID being limited to one
of 16 values. The regex pattern for a video ID is [A-Za-z0-
9_-]{10}[AEIMQUYcgkosw048] [13]. This pattern results
in random IDs whose structure is arbitrary, which means
they do not contain any semantic information.

Semantically retrieving unstructured data using lan-
guage models, such as random IDs, remains an under-
explored area of research. This study investigates the
potential for language models to memorize unstructured
data that lacks semantic information and apply this
knowledge for retrieval purposes. The findings of this
research can provide valuable insights into the direct
application of LLMs as search databases and contribute
to the development of local or distributed semantic
search engines.

LLMs can support complex queries and understand
nuanced relationships between words, as demonstrated
by the classic example of "king - man + woman = queen"
[14]. Although LLMs offer this unique advantages in

semantic search capabilities, they are not designed to
replace traditional SQL databases, as they may struggle
to achieve the same levels of stability, availability, and
data integrity [15]. For instance, CRUD operations (Cre-
ate, Retrieve, Update, Delete) are basic and mandatory
for traditional databases. But for LLMs as databases,
it is still unknown whether they can support all these
operations effectively. Update and deletion operations
pose significant challenges, as they involve modifying
and removing knowledge from an LLM, which is not
a straightforward task [16]. Consequently, this study
primarily focuses on the creation (memorization) and
retrieval (search) aspects of using LLMs as databases.

Our problem consists of teaching LLMs to generate
video IDs from user queries. It presents a unique chal-
lenge for the model: understanding the semantic context
of a query well enough to produce a precise video ID
that corresponds to the stored information. Unlike tradi-
tional keyword-based retrieval systems, this requires the
model not only to grasp the gist of the query but also to
map this understanding to a specific string of characters
that follows the video ID format.

III. Related work

Recent advancements in natural language processing
and information retrieval have led to a growing interest
in applying language models to search and retrieval
tasks. Several studies have explored the use of pre-
trained language models, such as BERT [11] and T5 [12],
for document retrieval and semantic search.

One notable work in this area is Google’s Differen-
tiable Search Index (DSI) [17], which applies a pre-
trained T5 model for document retrieval tasks, similar to
our approach. In their study, the document IDs (docids)
are represented as numeric values, whereas in our case,
the video IDs are encoded using a modified base64
format. The DSI paper explores the concept of seman-
tically structured identifiers, where each part of the
index reflects a specific category of the documents. The
motivation behind this approach is that adding semantic
structure to the docid space can lead to better indexing
and retrieval capabilities [17]. The authors compare the
performance of atomic and unstructured string strategies
for docid representation and we perform similar experi-
ments. However, their findings suggest that the semantic
docid strategy did not always outperform the other two
strategies, highlighting the need for further investigation
into the optimal representation of identifiers in retrieval
tasks.

Another relevant work is the self-retrieval architecture
proposed from Alibaba by Tang et al. [18], which also
uses a T5 model for document retrieval. Their approach
extends beyond simple retrieval by training the T5 model
to calculate a score for ranking the retrieved results,
leading to improved performance. Our approach falls



into the encoder-decoder category, similar to their ar-
chitecture, but we focus on directly generating the top-1
result without an additional ranking step. However, their
work raises an interesting possibility of incorporating
a separate model to evaluate and rank the retrieved
results for better performance, which could be explored
in future extensions of our research.

Recent developments, such as Apple’s potential de-
ployment of LLMs within each new iPhone [19], further
highlight the relevance and timeliness of this research.
With billions of devices potentially leveraging LLMs for
local search capabilities, understanding the performance
and limitations of these models becomes increasingly
important.

IV. System design
Our proposed system consists of an LLM model that

offers the ability to implement local search. Most state-of-
the-art models like BERT [11], T5 [12], GPT [20] are based
on the transformer architecture, introduced by “Attention
Is All You Need” [21] by the Google Brain team. These
models are pre-trained on large corpora, which can
benefit downstream tasks by learning universal language
representations [22].

The transformer architecture introduced important
concepts including self-attention, multi-head attention,
and word embeddings [21]. Attention mechanisms allow
models to focus on the most relevant parts of input text.
Self-attention works by evaluating input sequences and
assigning different weights to different parts of the input,
regardless of distance between the parts. This is similar
to how we pay attention to certain words in a sentence
without considering every word in between. Mathe-
matically, the attention mechanism can be described as
follows:

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉 (1)

𝐴 = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

) (2)

𝐻 = AttentionHead(𝑋) = 𝐴𝑉 (3)

where 𝑄, 𝐾, and 𝑉 are query, key, and value matrices,
respectively, and 𝐴 represents the attention weights.

For instance, consider the input sequence
𝑋 = "The cat sat on the mat because it was warm.".
For query (Q) "mat", the keys (K) and values (V) are
both the the words in the sequence: "the", "cat", "sat",
"on", "the", "mat", "because", "it", "was", "warm". When
calculating the attention weights (A), the dot product
of the query for "mat" and the keys are computed and
normalized through a softmax function. Suppose the
calculated attention scores are [0.05, 0.15, 0.20, 0.05,
0.05, 0.4, 0.05, 0.05, 0.05, 0.10], respectively. The output
vector for "mat" is then the dot product 𝐻 = 𝐴𝑉 ,
which is the sum of the word embeddings weighted by
the normalized attention scores ([0.09, 0.10, 0.11, 0.09,

0.09, 0.13, 0.09, 0.09, 0.09, 0.10]). This weighted sum
forms the output vector 𝐻, incorporating how "mat" is
contextually related to "cat", "sat", and "warm".

Multi-head attention allows the model to learn multi-
ple input sequence possibly in different ways. The word
embeddings are the vectors transformed from the input
text.

The transformer architecture consist of encoder and
decoder parts. The encoder processes the input text
by converting it into embeddings, which are numerical
representations of words or subwords that capture se-
mantic meaning. These embeddings are then enhanced
with positional information to preserve the sequence
order. This part of the transformer uses self-attention and
feed-forward networks (neural networks that process the
output of the attention layer, introducing non-linearity
and enabling the model to learn complex patterns) to
refine these embeddings, enabling the model to un-
derstand and capture the context of the entire input
sequence. The decoder is designed to generate output
based on the encoder’s processed data. The decoder also
uses self-attention, but it uniquely applies attention over
the encoder’s output, allowing it to generate the most
reasonably likely next token of the output. BERT uses the
encoder part of the Transformer to create contextualized
word representations. It’s designed for understanding
the meaning of text by considering the context of words
both before and after them in a sentence. T5, on the other
hand, applies the full encoder-decoder structure of the
Transformer. T5 uses the encoder to interpret the input
and the decoder to produce the output text, facilitating
tasks like translation or summarization. In this study,
We evaluate both BERT and T5 models because there is
limited related work showing which option would work
best for our specific use case of video ID retrieval.

The model inference process consists of four repeat-
ing steps, which occur within any Transformer-based
model. Before going through these steps the input text
is tokenized and transformed into embeddings. First,
positional encodings are added to the embeddings, pro-
viding information about the position of each token
in the sequence. This helps the model understand the
context and relationships between words. Next, the em-
beddings are fed into multiple self-attention heads, each
focusing on different aspects of the input and capturing
various relationships between tokens. The output of the
multi-head attention is then added to the original input
embeddings (residual connection) and normalized. In
the last step, this output output is passed through a feed-
forward neural network, consisting of multiple layers
that apply non-linear transformations to the data, further
refining the representation of each token. These steps
are repeated multiple times, with each layer capturing
deeper and more complex relationships between words.
Finally, the output of the Transformer is used for the
specific task at hand, such as classification or, in our case,



generation.
In our system, we utilize transformer based models

to map natural language queries to video IDs. Formally,
our objective can be expressed as:

Model(𝑞) → 𝑖

where 𝑞 is the user’s query (a natural language input
consisting of a sequencce of words) and 𝑖 is the generated
video ID corresponding to the most relevant video based
on the query.

For the purpose of this study, we make the following
assumptions:

• Each query has a single ground truth answer. In
other words, we assume that a query like "trailer"
or "first take" has only one correct video ID associ-
ated with it. This assumption simplifies the retrieval
problem and allows us to focus on evaluating the
model’s ability to generate the correct video ID
given a specific query.

• Precision and recall metrics reflect the model’s rele-
vance performance for video retrieval in real-world
systems.

One significant limitation of LLMs is hallucination,
where the model generates information that is not fac-
tually correct or present in its training data. Dealing
with hallucination is our major challenge to apply any
LLM as database. Counterintuitively, we propose using
overfitting as a solution to ensure the model memorizes
the training data as accurately as possible. This approach
is suitable because:

• We narrow our application scope to only the retrival
of video ids, not insertion and deltetion

• Overfitting may stabilize output, ensuring the model
retrieves correctly formatted and relevant video IDs.

In the following sections, we detail our experiments
with BERT and T5 models, exploring how they handle
query and video ID tokenization and perform in retriev-
ing correct video IDs based on various input queries.

V. Index-based retrieval experiment
In this experiment, we investigate the capability of

BERT [11] to function as a local semantic search engine
for video retrieval. The success criterion for our model
is its ability to grasp these semantic inputs and yield
accurate video IDs. This goal is similar to the key-value
pair retrieval in a traditional database, where the key is
some query and the value is the corresponding video
ID.

As an initial setup, we focus on using video titles as
queries as the starting point because video titles inher-
ently contain information about the video that can be
utilized for search purposes. This simulates a real-world
scenario where users search for videos using natural
language queries or title-like descriptions. It is important
to note that this experiment aims to evaluate the broader

potential of LLMs in understanding and relating queries
to video content, extending beyond the limitations of
exact title matching. To achieve this, we choose to fine-
tune the state-of-the-art LLM model, BERT [11] (Bidi-
rectional Encoder Representations from Transformers),
on a dataset of video titles and their corresponding
video IDs. Through fine-tuning we adapt BERT’s pre-
trained language ability to the specific task of video title
matching. This approach does not only reduce training
time but also ensures our model can effectively capture
the linguistic patterns in the video titles.

BERT has been released in several variations to accom-
modate different use cases. These include "cased" and
"uncased" versions for English text, as well as multilin-
gual models trained on a broader range of languages. For
this experiment, we assume that users do not depend
on capitalization when creating queries. Therefore, we
selected the BERT-uncased model, pre-trained on English
text and insensitive to capitalization differences (e.g.,
"english" vs. "English").

Our task involves fine-tuning BERT to process a text
query and predict the integer index corresponding to
the most relevant sample in a dataset, which contains
both the video title and its unique video ID. We opt to
predict the row index instead of the video ID to gain two
advantages. The first advantage is the simplified output
Space. Video IDs are complex 11-character strings, with
most characters randomly selected from a 64-character
set, making them challenging to directly predict. By
predicting an integer index, we reduce the model’s out-
put space to a finite set of numbers, simplifying the
prediction task. The second advantage is the extensibility
of the output. Row indices provide a more flexible
representation than video IDs alone. Predicting the row
index allows us to easily retrieve not only the video ID
but also other relevant information associated with the
video, such as the title or additional metadata, which
could be useful in future extensions of this work.

A. Dataset and Preprocessing

As shown in Figure 1, we start with the ’US videos
trending dataset’. This dataset is a subset of the ’Trend-
ing YouTube Video Statistics (daily)’ dataset [23] from
Kaggle, which contains daily records of top trending
YouTube videos across various regions, including the US,
Germany, and France. We specifically focused on the US
subset due to its English-based content because of the
BERT release version we use. This dataset is a forked ver-
sion of the dataset [24]. Compared to the original version,
the forked US videos subset offers a significantly larger
volume of data, with 48,471 unique video titles. The
dataset provides a one-to-one mapping between video
titles and their corresponding 11-character video IDs
(consisting of uppercase and lowercase letters, hyphens,
and underscores), which simplifies the task of video ID



prediction. Henceforth, this dataset is referred to as ’US
Videos’ II.

We performed a preliminary experiment and uncov-
ered two methods to improve our model. Our setup
consisted of separating a subset 4577 samples from the
entire US Videos dataset as the training dataset for a
faster experiment. Then we performed pre-processing on
this dataset before training to ensure data consistency
and compatibility with the model. Firstly, any irrelevant
or inconsistent information that may negatively impact
the model’s learning process is removed from the titles
including special characters or HTML tags and lead-
ing/trailing whitespaces. As we use the uncased version
of BERT, which is not sensitive to letter casing, the
original case of each title is not preserved. Secondly,
to maintain the focus on English-language content and
align with the linguistic scope of the pre-trained BERT
model, titles containing non-English characters are fil-
tered out. Each preprocessed title is tokenized using
BERT’s tokenizer, which converts the text into a sequence
of tokens that the model can process. The tokenizer
handles tasks such as splitting words, handling punctu-
ation, and converting the tokens into embeddings - their
corresponding numerical representations.

B. Metrics
We use several traditional metrics commonly used

in Information Retrieval tasks: precision, recall, and F1
score to evaluate the performance of the fine-tuned
model. All metrics are calculated based on the row
indices and the predicted row indices.

1) Precision: Precision reflects the ability of a model
to identify only the relevant instances in classification
tasks. It is mathematically the number of true positives
divided by the number of true positives plus the number
of false positives. In our context, precision represents the
fraction of correctly predicted video IDs among all video
IDs predicted by the model. A high precision indicates
that the model’s predictions are highly reliable.

2) Recall: Recall reflects the ability of a model to find
all the relevant instances in a dataset. It is calculated
by number of true positives divided by the number of
true positives plus the number of false negatives. For our
task, recall represents the fraction of correctly predicted
video IDs among all relevant video IDs in the dataset. A
high recall indicates that the model can identify a large
portion of relevant videos.

3) F1 Score: F1 score is a measure combining both
precision and recall by calculating their harmonic mean.
It is calculated as follows:

𝐹1 = 2 × Precision × Recall
Precision + Recall

A high F1 score indicates a good balance between the
predictions’ reliability and covering as many relevant
predictions as possible.
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Fig. 1: Index-based video ID retrieval architecture.

C. Training and Evaluation

The process of fine-tuning and evaluation of the model
for video ID retrieval is illustrated in Figure 1. The
figure outlines the steps involved, starting from the US
videos trending dataset, which contains video IDs, titles,
tags, and other relevant information. During the pre-
processing phase, cleaning, deduplicating the titles, and
adding integer indices as well as tokenization are per-
formed to prepare the data for model training. During
the training phase, the BERT base uncased model is fine-
tuned on the processed dataset, effectively incorporating
the knowledge of video titles and the corresponding
sample indices. In the evaluation phase, the fine-tuned
BERT model takes a given title as input and generates the
integer index, which is then used to look up the matched
video ID in the mapping table. This retrieved video ID
can subsequently be used to construct the corresponding
video URL, enabling semantic video retrieval based on
the input query or title.

We use the sequence classification capability of the
BERT model, which is designed to classify an entire
input sequence into one of several categories. This is
achieved by passing the output of BERT through a
sequence classification head, consisting of a linear layer.
This linear layer produces a set of scores, called logits,
one for each potential class. In our case, each class
corresponds to a unique video in the dataset. The model
then selects the class with the highest logit score as



its prediction for the most relevant video title. During
training, a softmax function is applied to these logits to
convert them into probabilities, which are then used to
calculate the cross-entropy loss:

𝐿cross-entropy = −
𝐶∑
𝑖=1

𝑦𝑜,𝑖 log(𝑝𝑜,𝑖)

where 𝐶 is the number of classes which is the number
of unique video titles, 𝑦 is a binary indicator (0 or 1) of
whether predicted row index 𝑖 is the correct classification
for observation 𝑜, and 𝑝 is the predicted probability that
observation 𝑜 is of class 𝑖. The cross-entropy loss function
quantifies the difference between the predicted probabil-
ity distribution and the true label. By minimizing this
loss, the model learns to adjust its parameters so that its
predictions align more closely with the ground truth.

The model is trained on a Google Colab [25] instance
with the following hardware specifications:

• Instance type: n1-highmem-2
• vCPU: 2 @ 2.2GHz
• RAM: 13GB
• GPU: 1 NVIDIA Tesla T4
Preliminary experiments with 2 epochs showed a de-

crease in loss, and further training for 8 epochs with an
initial learning rate of 0.001 and a linear scheduler led
to convergence. The training parameters can be found in
table III in Appendix.

D. Results
We evaluated the model’s performance on the training

set (4577 samples of US videos) itself, which differs from
the conventional approach of using a separate test set.
This choice aligns with our objective of enabling the
model to memorize the dataset for precise retrieval. In
this context, overfitting, which is typically undesirable,
is actually beneficial as it allows the model to memorize
the input data of video classification information based
on the titles as much as possible, which further helps
find corresponding video IDs of the queries.

The fine-tuned BERT model achieved a precision of
95.79%, a recall of 99.10%, and an F1 score of 97.41% on
the training set. The high precision indicates that when
the model predicts a video ID, it is highly likely to be the
corresponding one. The exceptional recall value suggests
that the model successfully identifies a vast majority of
the relevant videos for the given titles in the training set.
The high F1 score shows the model’s overall effectiveness
in accurately matching video titles to their corresponding
IDs.

Our approach has limitations in terms of general-
ization on partial or modified titles. When presented
with queries that were not part of the training data,
the model’s performance is expected to decline. This
is because the model has been optimized to memorize

the exact titles rather than learning to generalize to un-
seen variations. We performed qualitative analysis using
only part of the titles as queries. This confirmed our
expectation that the model’s performance would drop
significantly. While this lack of generalization may be
seen as a drawback in other contexts, it aligns with our
specific goal of retrieving video IDs based on exact title
matches.

It is important to acknowledge that the model’s ef-
fectiveness relies on its ability to memorize the training
samples. By overfitting towards the training data, the
model can achieve a high recall, ensuring that it captures
the most relevant video IDs in the dataset. Although
this approach may not be suitable for scenarios requiring
generalization on unseen data, it is suited well for our
task of accurate video retrieval given queries based on
exact titles.

VI. Generative retrieval experiment
The previous approach using BERT as a classifier for

video retrieval faced a significant limitation: the inability
to directly generate video IDs. BERT, being an encoder-
only model, requires an external mapping between the
predicted indices and the corresponding video IDs.
This indirect approach introduces an additional layer of
complexity and storage requirements, as the mapping
needs to be maintained separately. To address this issue,
we explored the use of the T5 (Text-to-Text Transfer
Transformer) [12] model, which has an encoder-decoder
architecture capable of directly generating video IDs.

Our motivation for choosing the T5 model comes from
its ability to learn and generate sequences, making it
well-suited for the task of mapping video titles (a se-
quence of words) to video IDs (a sequence of characters)
without the need for an intermediary mapping step.
The T5 model has demonstrated success in similar tasks,
such as generating document IDs from queries [17]. By
leveraging the sequence-to-sequence (seq2seq) nature of
T5, we aim to create a direct mapping between the input
video titles and the generated video IDs, eliminating the
need for external storage of mappings.

For this experiment, we chose the flan-T5-small variant
[26] of the T5 model. The T5-small model is a smaller
version of T5 with 60 million parameters, making it more
suitable for environments with limited computational
resources. The "flan" version of T5 is an updated release
that has been fine-tuned on more than 1,000 additional
tasks, covering a wider range of language processing
tasks such as question answering and chain-of-thoughts
[27] [28] compared to the original T5 model.

To encode the video IDs, we applied the Naively Struc-
tured String Identifiers strategy [17]. In this approach,
we used T5’s original tokenizer to encode the video ID
token-by-token, where each token can be any substring
of the video ID. For example, the ID ’J78aPJ3VyNs’ is
encoded by ’J78’, ’aP’, ’J3’, ’V’, ’yNs’ tokens which are



already present in the T5 tokenizer’s vocabulary. This
strategy allows the model to learn the structure and
composition of the video IDs.

A. Data Preparation and Preprocessing
For this experiment, we continued to use video titles as

queries, similar to our approach in the BERT experiment.
However, we performed additional data augmentation
and data preprocessing steps to generalize the capability
of the model to handle more queries based on the titles.

The T5 model is sensitive to the capitalization of user
input. The T5 tokenizer has uppercase and lowercase
letters in its vocabulary, so it distinguishes between them
during training and inference. Changing the case of
words in the input can lead to different model outputs. In
the original dataset, many of the samples are capitalized
while some are not. To make the model able to handle
all lowercase queries, we created an additional lowercase
copy for each sample containing uppercase.

To further improve the model’s ability to learn query-
video ID associations, we extracted key nouns and
named entities from the video titles using the spaCy
library. Each extracted keyword from the original video
title is added as a new query with the same video ID of
that title. For example, for the video title "When your cat
is a real couch potato", key nouns or named entities "cat",
"couch", and "potato" are extracted and added as queries.
This augmentation enables the model to focus on the
most relevant information within the titles, potentially
enhancing its retrieval performance.

After augmenting the dataset, we performed dedupli-
cation to ensure that each unique query maps to only one
video ID. In cases where duplicate queries are mapped
to different IDs, we kept only the first query-ID pair. This
deduplication step was intended to enforce a one-to-one
mapping between queries and video IDs. However, in
retrospect, this may be a potential limitation to our work.
Further experimentation without this deduplication step
is planned for future work.

B. Metrics
To evaluate the performance of the T5 model, we

utilized the same metrics as in the BERT experiment,
namely precision, recall, and F1 score. As the T5 model
might output invalid video IDs, we introduced a new
metric specific to this task: the validity rate. The validity
rate measures the proportion of generated video IDs
that meet the format of a YouTube video ID (containing
lowercase letters [a-z], uppercase letters [A-Z], hyphens
[-], and underscores [_]) out of all the predicted outputs.
This metric provides insights into the model’s ability
to generate well-formed video IDs. The validity rate is
calculated as follows:

Validity Rate =
Number of valid video IDs

Total number of generated IDs

A low validity rate could limit the model’s practical
utility since it suggests that the model is having difficulty
understanding the structure and format of the video IDs.
We may evaluate the model’s effectiveness in producing
precise and well-formed video IDs by taking the validity
rate into account in addition to the other metrics.

C. Training and Evaluation
The model was trained in the same environment as

the BERT experiment, utilizing 1 NVIDIA T4 GPU for
8 epochs. We discovered through experimental investi-
gation that we obtained the best result with an initial
learning rate of 0.001. Also, we evaluated learning rates
of 0.002 and 0.0005 but observed no significant differ-
ences in performance. With a learning rate of 0.0005, the
training process was notably slower. As such, we opted
for the default value of 0.001 as the initial learning rate.
From this starting value, the scheduler decreases the
learning rate over time during training. The T5 model
also use cross-entropy as its default loss function, which
is commonly used in sequence-to-sequence tasks.

The training phase involved 1 experiment with 50
samples and 11 consecutive experiments across multi-
ple increasing sample sizes, ranging from 100 to 1100
samples in increments of 100 (i.e., 100, 200, 300, ...,
1000, 1100). The AdamW optimizer [29], with an initial
learning rate of 0.001, and the default linear scheduler
were utilized alongside the cross-entropy loss function.
Data tokenization was performed using the T5 tokenizer.
It is important to note that no separate test data was used
in these experiments, and the evaluation was conducted
on the augmented training dataset itself. This approach
aligns with the reasoning behind the BERT experiment,
where the focus was on the model’s ability to memorize
and retrieve exact video IDs from the training set.

D. Results
Training with the dataset of 50 samples achieved the

most favorable loss reduction, with the loss dropping
below 0.0001 after 1000 epochs, which achieved 100%
precision and recall. Therefore, for small data sets, train-
ing the T5 model from the ground up is unnecessary,
and fine-tuning the model is sufficient.

We now present the results for the larger sample sizes.
The resulting precision of the varying sample sizes is
given in Figure 3. These results reveal a clear trend:
the precision of the model decreases as the size of the
sub-training dataset increases. This observation suggests
that the T5 model faces challenges in maintaining high
precision when trained on larger datasets, given the fixed
number of epochs used in each experiment.

One possible explanation for the loss in precision
as the data set size increases is that larger datasets
introduce more complexity and diversity in the training
samples, making it harder for the model to converge
to a low training loss within the allocated number of
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index-based retrieval architecture.

epochs. For instance, a larger dataset may contain a
wider variety of video titles, ranging from simple and
straightforward titles like "Funny cat video" to more
complex and descriptive titles such as "The Kissing Booth
Cast Kisses A Hairless Cat & Other Weird Stuff | Kiss
& Tell | Netflix". The diversity can be reflected in the
difference in title length, structure, and vocabulary. Also,
a larger dataset is likely to include a broader range of
topics, genres, and styles, requiring the model to learn
and memorize associations across a more heterogeneous

set of samples. For example, a smaller dataset might
primarily consist of cat videos, while a larger dataset
could encompass a mix of cat videos, cooking tutorials,
music performances, and travel vlogs. Furthermore, the
likelihood of encountering ambiguous or overlapping
titles may increase with the dataset size growing. For
instance, two videos with similar titles like "Amazing
Dance Moves" and "Beautiful Dance Moves" might have
different video IDs, requiring the model to learn fine-
grained distinctions.

As the dataset size increases, the model requires more
training iterations to effectively learn and memorize the
associations between video titles and their correspond-
ing IDs. Consequently, with a fixed number of epochs,
the model ends up with a higher training loss when
trained on larger datasets compared to smaller ones. It
highlights the trade-off between dataset size and the
model’s ability to memorize and retrieve exact video
IDs. While larger datasets provide more diverse and
representative samples, they also pose challenges to the
model’s convergence and precision.

Across all T5 experiments, we observed a consistent
validity rate of 1.0, indicating that the model always
generated syntactically correct video IDs. This perfect
validity rate demonstrates the T5 model’s robust under-
standing of the output format and signifies the absence
of structural hallucination in the model’s outputs. This
performance can be attributed to the model’s overfitting
to the training data, which proves beneficial for our task
of exact video ID retrieval.

Our result shows the difficulty for the T5 model to
memorize more video IDs. Training time, which posi-
tively correlates with the number of training samples,
is a significant consideration in this context. This is a
scalability concern for environments with constrained
computing resources because it is expected to take
tremendous time to let the model memorize 800 million
videos which is an estimation of the number of Youtube
videos as of 2023 [30], not taking into account the limit
of the capability model to memorize.

E. Discussion

While the experiment illustrates that the T5-small
variant faces challenges with larger datasets in terms of
memorization capacity, it also brings forth an intriguing
question. Why does the T5-small’s ability to memorize
video IDs decline with an increase in IDs, despite the
apparent trend of precision drop with fewer data points?
This observation may not be directly explainable by the
aforementioned trends and suggests an area for further
investigation. It could imply a nuanced complexity in
how sequence-to-sequence models like T5 deal with
information density and the memorization-retrieval bal-
ance, especially when scaled down to smaller variants
like the T5-small.



In summary, the T5 model demonstrates a promising
capacity to memorize and generate video IDs from title
inputs, though with limitations influenced by dataset
size and computing constraints. This experiment not only
showed the potential of utilizing language models like
T5 in search engine applications but also highlighted the
critical balance required between computing resources
and model precision in distributed environments.

VII. Tag-based generative retrieval experiment
The previous experiment using video titles as queries

provided valuable insights into the T5 model’s perfor-
mance. However, we recognized that video titles may not
accurately reflect typical user search behavior. Users of-
ten perform fuzzy searches using keywords, rather than
full titles [31]. To better simulate real-world scenarios, we
explored the use of video tags as queries, as tags tend
to be shorter and more keyword-oriented.

Users also might provide ambiguous queries, which
can have multiple correct answers for certain queries
semantically. Ambiguous queries are those that can have
multiple interpretations or refer to different entities. For
example, the query "java" could refer to the program-
ming language, the island in Indonesia, or the coffee
beverage. Similarly, "apple" could refer to the fruit or the
technology company. In the context of video retrieval,
ambiguous queries can lead to multiple relevant videos,
each corresponding to a different interpretation of the
query.

The overall process is illustrated in Figure 4. We used
pairs of (query, video_id) as training samples, where
video_id was the expected output. In the US Videos
dataset, each video had multiple tags stored as a string
separated by the "|" character in the "tags" column. We
extracted these tags and created a query, video_id pair
for each tag. The tag, video_id pairs are used for both
training and inference.

A. Data Preprocessing
Similar to the preprocessing steps in the previous

T5 experiment, we performed data augmentation us-
ing techniques including extracting keywords, splitting
elements and adding lowercased queries. However, in
this experiment, we applied the Unstructured Atomic
Identifiers strategy [17], where each whole video ID
was added as a single token to the vocabulary of the
tokenizer, and the model embedding dimension was
resized accordingly. This approach treats the video IDs
as atomic units, enabling the model to generate them as
complete entities.

B. Training and Evaluation
For the training phase, we utilized the DAS6 [32]

High-Performance Computing (HPC) resources, which
provided access to NVIDIA A4000 GPUs. Similar to
the previous T5 experiment, we chose the flan-T5-small
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Fig. 4: Generative video ID retrieval architecture using
video tags.

model variant to align with our computing resource
constraints. The AdamW optimizer [29] with an initial
learning rate of 0.001, the default scheduler, and cross-
entropy loss were used during training. We still only
use the training dataset and tokenized the data using
the T5 tokenizer. Training the model for 70 epochs on
the augmented full dataset of 48,266 samples required
approximately 68 hours of computation time on the
A4000 GPU, highlighting the significant computational
demands of training language models on larger datasets.

C. Results
We evaluate the model’s performance, initially fo-

cusing on the same metrics used in the previous T5
experiment: precision, recall, and F1 score. The results
of the recall are summarized in figure 5.

The results show that the model achieves decent recall
rates on small dataset sizes but performs poorly when
the dataset size is larger, based on the initial metrics.

We manually inspected the "false negatives" - cases
where the model generated a video ID that did not
match the expected output. We found that for certain
queries, there were multiple correct answers, and the
model’s output, although different from the expected
video ID, was still relevant to the query. For example,
for the ’trailer’ query, the expected video ID was present
in the dataset, but the model predicted a different video
ID that also contained the ’trailer’ tag. For another exam-
ple, when given the query "First Take," the model was
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Fig. 5: Average recall trends with increasing dataset
sizes on training set.

expected to output a video with the tag ’first take’ (jLX-
tcoI7q4), but it instead outputs a video (TkWSOtqJf6I)
that did not have the ’first take’ tag but had ’First Take’
in its title.

To account for this, we defined a new metric that
gives a correct score to multiple answers. Instead of
considering only an exact match between the generated
video ID and the expected output, we checked if the
generated video ID corresponded to any of the relevant
videos for the given query. This modification allowed us
to measure the model’s performance more accurately in
the presence of ambiguous queries.

Based on the manual analysis, we updated the eval-
uation metric to address the false negatives. We now
consider a video ID prediction correct if the input tag
is present in either the tags or the title of the predicted
video. Using this updated metric, the model achieves
near-perfect recall rates on dataset sizes of 1,000 and
10,000, with a recall of 0.999 on the 10,000 datasets I. The
change in the evaluation metric boosted the model’s per-
formance to the maximum achievable rate of 100% recall.
This finding highlights the importance of considering
ambiguity when evaluating the effectiveness of language
models for video retrieval tasks.

D. Encoding video IDs with word list
The training target, video IDs, do not contain any

semantic information; they looks like hash strings. In
our previous experiments, we explored two strategies for
encoding the video IDs: the Naively Structured String
Identifiers strategy and the Unstructured Atomic Iden-
tifiers strategy. Although both strategies gave relatively
good performance, we wondered if combining them
could further improve the results. On a closer look of
the Naively Structured String Identifiers strategy, we

noticed that many tokens in the vocabulary of the T5
tokenizer used to encode the video id did not have
inherent meanings and appear to be random substrings.
However, language models may perform better when
dealing with semantic information. This observation led
us to hypothesize that replacing each part of the video
ID with meaningful words could potentially enhance the
model’s performance.

We selected the intersection of the BIP39 word list
[33] and the T5 tokenizer vocabulary as the vocabulary
for encoding the video IDs. The words in this list are
more distinct and well-separated [33], which we believed
might aid the model in better understanding the se-
mantic information. We decided to randomly select 64
words from this intersection vocabulary and performed
a small-scale experiment with 10 samples to assess the
effectiveness of this approach. Unfortunately, the initial
results were not promising, with the model achieving
a precision rate of only 0.2568. This low performance
indicated that simply replacing parts of the video ID
with meaningful words from the BIP39 list did not yield
the desired improvement.

E. Discussion
The T5 experiment using video tags as queries pro-

vided valuable insights into the model’s performance
in a more realistic search scenario. By updating the
evaluation metric to consider the presence of the input
tag in either the tags or title of the predicted video,
we observed significant improvements in recall rates,
especially on smaller dataset sizes. This optimization
highlighted the importance of considering the practical
aspects of search engine applications when designing
experiments. In real-world scenarios, a query may be
relevant to multiple videos, and the model should be
able to associate a single tag with multiple video IDs.
While we did not remove the deduplication step during
preprocessing in this experiment, it is an important
consideration for future work to better reflect real-world
search scenarios.

While the word encoding experiment using the BIP39
word list did not yield promising results, it gives in-
sight for further exploration in incorporating semantic
information into the training process. Future work could
investigate alternative word encoding strategies or the
use of different semantic-rich vocabularies to potentially
enhance the model’s performance.

Overall, the T5 experiments using both video titles
and tags as queries demonstrated the potential of using
language models for video retrieval tasks. The results
underscored the importance of selecting appropriate
query types, preprocessing techniques, and evaluation
metrics to align with real-world search scenarios. Fur-
thermore, the experiments highlighted the trade-offs
between model complexity, dataset size, and compu-
tational resources, emphasizing the need for careful



Dataset size Augmented data-size Epochs New Metric Recall
100 3220 70 1.000
100 3220 150 1.000
100 3220 70 1.000
1000 19382 70 0.999
10000 104833 70 1.000
20000 175364 100 1.000
48266 340884 150 1.000

TABLE I: New metric recall on augmented dataset in T5 experiment.

consideration when deploying such models in resource-
constrained environments. Future work should explore
the removal of the deduplication step during prepro-
cessing to allow the model to associate a single query
with multiple video IDs, better reflecting real-world
search scenarios. Additionally, investigating alternative
approaches to incorporate semantic information into the
training process could potentially improve the model’s
performance and generalization capabilities.

VIII. Conclusion

We investigated the potential of using large language
models (LLMs) as an alternative to traditional search
engine databases in distributed computing environments
with limited computational resources. Our experiments
demonstrated that LLMs can effectively memorize and
retrieve unstructured data, such as YouTube video IDs,
without relying on semantic information. This finding
highlights the potential of LLMs to function as search
databases, offering unique advantages in semantic search
capabilities while supporting complex queries and un-
derstanding nuanced relationships between words. Fur-
ther research is needed to investigate the feasibility
of implementing other CRUD operations in LLMs and
to address the challenges associated with their use as
databases. The insights gained from this study could po-
tentially contribute to the development of local semantic
search engines that leverage the power of LLMs while
optimizing for privacy, efficiency, and accessibility.

Appendix A
Dataset

Table II lists and describes the fields contained in
the ’Trending YouTube Video Statistics’ dataset. This
includes a range of information from basic video details
to engagement metrics.

Appendix B
Training parameters

Table III details major training parameters and outputs
for the BERT model. Table IV details major training
parameters and outputs for T5 model.

Acknowledgment

The authors would like to thank ChatGPT. ChatGPT is
only used for polishing sentences and not for generating
the content of this paper.

References

[1] V. Toubiana, V. Verdot, and B. Christophe, “Cookie-based
privacy issues on google services,” in Proceedings of the Second
ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 141–148. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1145/2133601.2133619

[2] E. Rader, “Awareness of behavioral tracking and information pri-
vacy concern in facebook and google,” in Proceedings of the Tenth
USENIX Conference on Usable Privacy and Security, ser. SOUPS ’14.
USA: USENIX Association, 2014, p. 51–67.

[3] J. Carlson, Redis in action. Simon and Schuster, 2013.
[4] C. Gormley and Z. Tong, Elasticsearch: the definitive guide: a dis-

tributed real-time search and analytics engine. " O’Reilly Media,
Inc.", 2015.

[5] Wikipedia, “Tf–idf — Wikipedia, the free encyclopedia,”
http://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&
oldid=1214201167, 2024, [Online; accessed 09-June-2024].

[6] S. Robertson and H. Zaragoza, “The Probabilistic Relevance
Framework: BM25 and Beyond,” Foundations and Trends in Infor-
mation Retrieval, vol. 3, pp. 333–389, Jan. 2009.

[7] A. McCallumzy, K. Nigamy, J. Renniey, and K. Seymorey, “Build-
ing domain-specific search engines with machine learning tech-
niques,” in Proceedings of the AAAI Spring Symposium on Intelligent
Agents in Cyberspace. Citeseer, 1999, pp. 28–39.

[8] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft, “Indri:
A language model-based search engine for complex queries,”
in Proceedings of the international conference on intelligent analysis,
vol. 2, no. 6. Washington, DC., 2005, pp. 2–6.

[9] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al.,
“Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

[10] B. B. Arcila, “Is it a platform? is it a search engine? it’s chatgpt!
the european liability regime for large language models,” J. Free
Speech L., vol. 3, p. 455, 2023.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” 2019.

[12] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of
transfer learning with a unified text-to-text transformer,”
CoRR, vol. abs/1910.10683, 2019. [Online]. Available: http:
//arxiv.org/abs/1910.10683

[13] “Youtube/technical details,” https://wiki.archiveteam.org/
index.php/YouTube/Technical_details, accessed: 2023-06-04.

[14] K. W. CHURCH, “Word2vec,” Natural Language Engineering,
vol. 23, no. 1, p. 155–162, 2017.

[15] P. Dean and B. Sundgren, “Quality aspects of a modern database
service,” in Proceedings of 8th International Conference on Scientific
and Statistical Data Base Management. IEEE, 1996, pp. 156–161.

https://doi-org.tudelft.idm.oclc.org/10.1145/2133601.2133619
http://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=1214201167
http://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=1214201167
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://wiki.archiveteam.org/index.php/YouTube/Technical_details
https://wiki.archiveteam.org/index.php/YouTube/Technical_details


Field Name Description
video_id Unique identifier for each video. Useful for

indexing and referencing specific videos in the
dataset.

trending_date The date when the video was trending. This can
help in analyzing trends over time.

title The title of the video. This is a crucial text field
for IR, as it often contains keywords and topics
that are highly relevant to the content of the
video.

channel_title The name of the channel that posted the video.
This can be used for channel-based recommen-
dations or analysis.

category_id The category of the video (e.g., Entertainment,
News, etc.). Useful for categorizing content and
making category-based recommendations.

publish_time When the video was published. This can be
used to study the impact of publication time on
trending status or viewership.

tags Keywords associated with the video. Tags are
extremely valuable for IR as they directly rep-
resent the content and context of the video.

views, likes, dislikes, comment_count Engagement metrics. These can be used to
gauge the popularity and reception of a video.

thumbnail_link Link to the video’s thumbnail. While not di-
rectly useful for IR, it can be used for vi-
sual analyses or to enhance the presentation of
search results.

comments_disabled, ratings_disabled, video_error_or_removed Boolean fields indicating certain statuses of the
video. These can be used for filtering out certain
videos from the analysis.

description The description text of the video. Like the title,
this is a rich text field that can be mined for
keywords and topics.

TABLE II: Fields in the ’Trending YouTube Video Statistics’ Dataset.

Parameter Value
global_step 32760
training_loss 3.232750225882245
train_runtime 3834.9877
train_samples_per_second 68.337
train_steps_per_second 8.542
total_flos 7106770821765600.0
train_loss 3.232750225882245
epoch 8.0

TABLE III: Training parameters and outputs for BERT training.

Parameter Value
global_step 1,547,100
training_loss 0.006010371688755774
train_runtime 553,825.9108
train_samples_per_second 89.39
train_steps_per_second 2.793
total_flos 2,871,809,617,349,837,000
train_loss 0.0001
epoch 150
grad_norm 0.012379933148622513

TABLE IV: Training parameters and outputs for T5 training
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