
On-Device Split Inference for Edge Devices
A literature review

Bora Kozan

Supervisors: Qing Wang, Mingkun Yang, Ran Zhu

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Bora Kozan
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Mingkun Yang, Ran Zhu, Johan Pouwelse

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Nowadays, the popularity of machine learning and artificial
intelligence algorithms is very high. A new research direction
has emerged where the machine learning algorithms are ex-
ecuted on resource-constrained embedded devices. With the
development of the Internet of Things paradigm, these edge
devices are deployed in a lot of places. Due to the limited re-
sources of embedded devices, it is difficult to bring machine
learning algorithms to them. This is where the on-device split
inference comes in. It is possible to distribute the inference
between multiple edge devices and the cloud so that the edge
devices can execute the inference of complex machine learn-
ing models. This paper presents a systematized literature
review of papers that focus on on-device split inference for
edge devices. The papers are analyzed and compared based
on pre-determined questions and displayed based on several
categories.

1 Introduction
Machine learning and artificial intelligence (AI) algorithms
are commonly used nowadays. Usually, they are run on the
cloud on powerful hardware. However, there are several ben-
efits to running these algorithms on embedded devices such as
microcontrollers. Bringing AI to Internet of Things (IoT) de-
vices and microcontrollers, we expand the power of AI [33].
This is where on-device split inference can be utilized to run
complex and demanding inference algorithms on multiple de-
vices.

In today’s world, IoT is the cornerstone of many applica-
tions. There are embedded devices all around us. That’s why
recently there has been research focused on edge computing.
By bringing computation to the origin of data, the processing
of the data can be low-latency and highly available [49]. As
machine learning and artificial intelligence are quite popular,
in recent years, there has been an interest in bringing these
heavy algorithms from the cloud to low-power embedded de-
vices and this subject is called Tiny Machine Learning[33].

When edge computing is mentioned, Tiny Machine Learn-
ing (TinyML) comes to mind. The idea of TinyML became
popular around 2018 and can be defined as “a paradigm that
facilitates running ML on the edge devices with minimal pro-
cessor and memory requirements; hence, the power consump-
tion of such systems is expected to be within a few milliwatts
or less.” [9] According to Warden [56], many people in the
technology industry and academia suggest that it can be quite
handy to run a neural network model on a device with low
energy consumption. That is because such a device can be
made to be very small and run for a significantly long time
which would be very beneficial in many different industries.

This paper is a literature review of split machine learning
inference on edge devices including embedded systems. “The
term "edge" refers to the location where data is collected and
processed”. Edge devices are the client devices in a system.
Some examples can be a smartphone, camera, drone, or self-
driving car [41]. This paper aims to give an overview of the
existing algorithms and methods that enable on-device split
inference. It compares the existing systems by presenting
the general categories they fall into and compares the papers

based on several features. Lastly, it talks about the real-world
applications of on-device split inference.

Research Question
The research focus is to survey the key split inference
technologies on edge devices.

Sub-questions:

1. Which machine learning models and algorithms are
used for distributed inference on edge devices?
There are different ways on-device split inference can
be achieved. There are different machine learning mod-
els and different ways to distribute inference to multiple
devices.

2. What are the benefits and the limitations of the currently
used on-device inference methods?
The distributed inference methods can have different
performances depending on a couple of parameters such
as the number of nodes. By knowing their strong and
weak points, the right one can be chosen for a given ap-
plication.

3. Are there any distributed computing and parallelization
algorithms that are used for or can be applied to split
inference on edge devices?
The focus of this survey is the distributed inference of
artificial intelligence and machine learning algorithms
on edge devices. However, there might be some dis-
tributed computing and parallelization algorithms that
support and enable on-device split inference.

4. What are the applications of on-device split inference?
There are many different areas in real life where on-
device split inference can play a role. Knowing about
real world applications can increase the understanding
of the topic.

This paper is organized in the following way: section 2
talks about similar work done in the field. section 3 presents
how the papers were found, selected, and analyzed. The sur-
vey results are displayed in section 4. section 5 talks about
the ethical risks present in the research and the precautions
taken against them. Some key points about research are dis-
cussed in section 6. Lastly, section 7 concludes the paper and
talks about possible future work.

2 Related Work
There are several survey papers that look at similar topics
as this survey paper. There are quite some papers that re-
view literature around TinyML such as [9], [33], [48], and
[1]. In addition to TinyML, there are papers talking about
edge devices and IoT such as [43]. Even though these pa-
pers contain valuable information about various trends and
use cases of TinyML and IoT, they do not focus on dis-
tributed/collaborative inference. During the research process,
one recent paper which is [45] was found which focuses on
distributed deep neural network inference. This survey is sim-
ilar to that one and in this paper, runtime flexibility categories
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and the metric categories were inspired by that paper. In addi-
tion to that paper, this paper contains some discussion about
potential use cases of on-device split inference.

3 Methodology
The literature study presented in this paper is a systematized
review. It is not a full systematic review due to time con-
straints. The goal is to find papers that are the most relevant
to the research topic in the given time frame and extract com-
mon trends from them.

To increase the review process of papers, a set of inclusion
and exclusion criteria was created. A paper needs to meet
all the inclusion criteria and not satisfy any of the exclusion
criteria to be included in the review.

Inclusion Criteria
• The paper talks about distributed inference on edge de-

vices. (The focus of this paper)
• The hardware used includes multiple edge devices, em-

bedded processing units, or microprocessors.(The scope
of this paper)

• The edge devices are used for inference (The focus of
this paper)

Exclusion Criteria
• The paper talks about distributed inference but does not

focus on edge devices or embedded systems.
• The paper talks about inference but it is not distributed

inference.

3.1 Finding papers
At the start of the study, to get a general idea of the topic,
Google Scholar was used. After that, three databases were
used to create a more systematic review. Those databases are
ACM Digital Library, IEEE Xplore, and Scopus.

At this point, it should be mentioned that the initial goal
of this survey was to find papers that focused on embedded
systems and microcontrollers which is a subset of edge de-
vices. Edge devices can be quite powerful compared to mi-
crocontrollers which have a few kilobytes of RAM, and a few
megabytes of flash memory, run with a clock speed of a cou-
ple tens of megahertz, and consume around 1mW power [56].
However, it turned out that not a lot of papers focus on split
inference on microcontrollers and embedded systems. There
was quite some focus on tiny machine learning inference on
single microcontrollers, so not split inference. In addition,
split inference on edge devices was a popular topic. That’s
why the scope of this paper was extended to split inference
on edge devices including embedded systems.

After selecting databases, comes the task of creating
queries to find the papers that are the most relevant for the
survey. The first step in this process was to find keywords
that could be in the papers. The main research question can
be divided into three main parts which are distributed part,
the inference part, and the edge devices part. Therefore, two
sets of keywords were created for those parts. The idea of the
keywords came from the papers found in the initial searches
at the early stages of the research.

Distributed: split, distributed, collaborative
Inference: inference, artificial intelligence, ma-
chine learning, neural network
Embedded systems: TinyML, tiny machine learn-
ing, embedded, microcontroller, resource con-
straint, edge

Using the aforementioned keywords, queries were formed
using the query languages of the databases. In order to narrow
down the search, only the abstracts or the metadata of the pa-
pers were considered in the queries. If the number of retrieved
papers exceeded 100, only the first 100 papers were scanned
for review due to time constraints. The retrieved papers were
first scanned to check if they met the inclusion criteria and did
not satisfy the exclusion criteria. The scan consisted of read-
ing the title and the abstract and a quick look at the whole pa-
per. Based on the inclusion and exclusion criteria, the papers
were either selected for the review or ignored. The following
list shows how many papers were retrieved, scanned, and re-
viewed from each database. The item Other represents papers
found during the initial search or papers found as citations on
the other reviewed papers. In total, 50 papers were reviewed
and included in this survey.

ACM Digital Library
Number of papers retrieved with the query: 59
Number of papers scanned: 59
Number of papers reviewed: 13

IEEE Xplore
Number of papers retrieved with the query: 264
Number of papers scanned: 100
Number of papers reviewed: 15

Scopus
Number of papers retrieved with the query: 1485
Number of papers scanned: 100
Number of papers reviewed: 15

Other
Number of papers reviewed: 7

3.2 Analysis of the selected papers
To streamline the survey and make it easy to compare the pa-
pers, a set of questions was created. All selected papers were
read with the goal of finding answers to the created questions.

What data/information to extract?
• What device is used? (Related sub-questions: 1,2)

• What machine learning or artificial algorithm is the pa-
per based on? (For example, if the paper is talking about
splitting CNN, the answer for this question is CNN) (Re-
lated sub-questions: 1, 3)

• What optimization and preprocessing methods are they
using? (For example: pruning, quantization, etc.) (Re-
lated sub-questions: 3)
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• How are they achieving the distribution of the inference
task? (For example, by splitting a neural network) (Re-
lated sub-questions: 1)

• Are there any performance gains? (Related sub-
questions: 2)

• What are the benefits of the method? (For example:
faster inference) (Related sub-questions: 2)

• What are the shortcomings of the method? (For exam-
ple: reduced accuracy) (Related sub-questions: 2)

• What is the purpose or the use case of the method? (Re-
lated sub-questions: 4)

After reviewing some papers and looking at [45], based on
common trends observed, additional questions were created
to further analyze and compare the papers. The inference
distribution question was inspired by [40] and the adaptivity
question was inspired by [45].

Additional Questions
• What is the inference distribution of the proposed

method? (horizontal, vertical, or both)

• Which programming libraries are they using?

• Is the method proposed static or adaptive during run-
time?

4 Survey Results
4.1 Inference Distribution
As Murshed suggests, there are two main ways that a neu-
ral network can be distributed: horizontally and vertically.
Horizontal distribution means that the inference task is split
between devices that are at the same level in an edge-cloud ar-
chitecture.[40] Since the focus of this paper is split inference
on edge devices, only horizontal distribution on edge devices
is considered in this paper. On the other hand, vertical distri-
bution is when the inference is distributed among various lay-
ers of an edge-cloud architecture.[40] Again, because of the
scope of this paper, the vertical inference distribution meth-
ods described in this paper are selected because there is some
inference task being executed on an edge device.

According to the proposed methods in the reviewed pa-
pers, the inference distribution seems to be the main factor
that affects how the system architecture looks. It makes sense
to make it the main characteristic to categorize different on-
device split inference methods. That’s why in this section,
they are discussed separately. The first two subsections are
about distributing the inference horizontally and vertically,
respectively. The last subsection talks about methods that in-
corporate both inference distributions. Table 1 list presents
the papers that fall into each category. Figure 1 illustrates
both of the inference distribution types.

Horizontally Distributed Inference
As an example of horizontal inference distribution, the
Network-of-Neural Networks (NoNN) method can be pre-
sented. [6] It is a CNN-based algorithm that is designed with
network science in mind. The inference task is handled by
memory and communication-aware students. The students

Figure 1: Horizontal distribution vs vertical distribution [16]

are trained with one section of the teacher’s knowledge that
does not overlap with other students’ sections. That’s why
there is very little communication until the final layer of the
CNN. Low communication cost seems to be the main benefit
of this method. In addition, the student modules can be sized
based on the students’ hardware constraints. NoNN looks
promising in the experiments. NoNN using two Raspberry
Pi’s was tested against the teacher network on a single Rasp-
berry Pi’s. NoNN led to 12.2 reduced latency and 14.3 times
reduced energy consumption.[6]

In horizontal inference distribution, there are two main
ways two split a neural network: semantically and layer split-
ting [54]. The NoNN method mentioned previously is an
example of semantic split. In the semantic case, the neural
network weights are grouped into logical sets that recognize
certain features. That’s why the created sub-networks don’t
have to communicate with each other until the later stages
of execution [6, 54] which can lead to systems with low com-
munication overhead. Furthermore, the generated models can
run independently since they don’t have to communicate with
each other, so they can run in parallel which greatly reduced
latency [54]. On the other hand, Tuli et al. suggests that se-
mantic splitting results in decrease in accuracy because of the
reduced communication between the neural network sections
[54]. In addition, semantic splitting requires training for the
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Table 1: The inference distribution types of the methods in the re-
viewed papers

Inference
Distribution
Type

Number of
papers Papers

Horizontal 25
[2, 7, 10–14, 19, 20, 23,
26, 29, 39, 42, 51, 54, 55,
58, 60, 63–68]

Vertical 21

[3, 5, 8, 15, 17, 18, 24,
27, 30–32, 35, 36, 38,
44, 47, 52, 57, 59, 61,
62]

Both 4 [4, 37, 46, 53]

created sub-models [54] since they are essentially neural net-
works themselves and not just simple subsections of a neural
network. The papers [60] and [10] also utilize semantic split-
ting in their proposed methods.

The other common method of neural network splitting
in the case of horizontal inference distribution is layer-wise
splitting [54]. It is when a pre-trained neural network is split
in between the layers [54]. However, in some cases such as
[51], the individual layers might also be split. The sections of
the neural network is distributed over multiple devices. This
structure means that the intermediate results must be trans-
mitted between the devices which suggests high communica-
tion costs [54]. Moreover, Tuli et al. argues that layer-wise
splitting leads to better accuracy [54]. The proposed meth-
ods in [64] and [39] can be given as examples for horizontal
inference distribution with layer-wise splitting.

The SplitCNN method [54] stands out here as it utilizes
both layer and semantic splitting. It intelligently decided be-
tween those two splitting techniques based on latency require-
ments. Overall, horizontal inference distribution on edge de-
vices are very beneficial as it allows complex neural networks
to be employed on the edge, removing the need for a cloud
server, and making edge devices more intelligent and useful.

Vertically Distributed Inference
The PArtNNer [18] method can be presented as an exam-
ple for vertically distributed inference. PArtNNer [18] is a
"platform-agnostic adaptive system" that is designed to au-
tomatically partition DNNs. The method doesn’t split layer
by layer but rather uses high-level blocks for partitioning
that is tailored for DAG topology DNNs. The advantage of
PArtNNer is that it doesn’t have to look at the hardware used
for inference beforehand. It only performs run-time measure-
ments of end-to-end inference latency solely on the edge de-
vice and based on the custom heuristics created for itself, the
PArtNNer algorithm can dynamically select the optimal DNN
partition point. So the partition point is selected not just for
the particular edge-cloud platforms but also for the current
operating conditions. However, one significant drawback of
this method is that currently, it requires exactly on e edge
device and one cloud server. In addition, it can be very com-
munication heavy between the edge and the cloud because
it has to transmit intermediate feature maps with full preci-
sion. However, the experiments suggest that it can provide up

to 21.1 times improvement in end-to-end inference latency
compared to running a DNN only on the edge and up to 6.7
times improvement compared to running a DNN only on the
cloud.[18]

One of the prominent techniques used for distributing in-
ference tasks is to split the neural network model and putting
one portion of it to the edge device and the other portion to the
cloud server. The papers that employ this scheme are [3, 17,
18, 24, 27, 30–32, 35, 38, 44, 47, 52, 59, 62]. The edge col-
lects the data and runs the local portion. Then it transmits the
intermediate result to the cloud and the cloud executes the rest
of the model. This has several benefits. It is possible that this
scheme increases the throughput [3, 47] and decrease latency
[47]. Since part of the model is executed on the edge device,
the edge device doesn’t have to send raw data to the server. It
only sends the intermediate output which can be less costly in
terms of communication and energy [47]. This is also bene-
ficial for privacy sensitive systems because the raw data stays
on the edge device and not sent to the server over the network
[52]. In the split computing method proposed in [52], the
partition point can be adjusted to how much computation the
edge and the server has to do, size of the intermediate output
to be transmitted, or for privacy.

Splitting a neural network vertically can be advantageous
for privacy as well. If the partition point is close to the initial
layers of a neural network, the intermediate output is similar
to the actual data [52]. However, if the neural network is
split at a later stage, the intermediate output is resembles the
actual data a lot less since it only contains information that is
necessary for the inference [52]. [24] stands out here because
it has two split points. The head of the model is executed
on the edge devices and then the middle section of the model
is offloaded to the server. After that, the tail of the model
also run on the edge so that the output of the inference is only
known to the edge [24]. In addition, [38] also takes extra steps
for privacy. Based on a random value, the edge rearranges
the output of the DNN. Again, the DNN is split, and the edge
executes the head and the server executes the tail. However,
the server cannot know the meaning of the output without
the random number generated on the edge. So, the generated
output is sent back to the edge and using the random number
generated earlier, the edge interprets the output [38].

Another practice that is commonly used in vertical infer-
ence distribution is have two models: One lightweight model
for the edge device and one heavyweight model for the cloud
server. The papers that adopt this strategy are [5, 8, 15, 36, 57,
61]. In this practice, the inference is done fully on the edge or
fully on the server. Either the input is analyzed as in Appeal-
Net [36], or the lightweight model on the edge is executed
and it outputs a confidence value as in the "Use of Classifiers
after TinyML" section in [5]. According to the input analy-
sis or the outputted confidence value, the input is marked as
simple or complex. For simple inputs, the local lightweight
model is used and the cloud is not used. For complex inputs,
the inference is offloaded to the heavyweight model in the
cloud.

Lastly, early exit strategies frequently come up in vertical
inference distribution. The idea of an early exit is that some
inputs might be simple and they might not need to be pro-
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cessed using all the layers of a neural network to get an infer-
ence with good accuracy [37]. With early exits, a neural net-
work model can make classifications using the early layers
where some features might already be learned well enough
[59]. C. Luo et al. present that models that incorporate early
exits have two issues [8]. One of the issues is that the early
exit points have low accuracy because they don’t utilize the
full model and can only work with low-level features [8]. The
other drawback is that placing an early exit to the model may
decrease the accuracy of the final exit (the full model) [8].
That’s because when updating the weights of the model, the
accuracy of the early exits will be given importance as well
and this may come at the cost of reducing the accuracy of the
final exit of the model [8]. However, early exits require less
computation power, and that makes it possible to execute a
model until the early exit locally and get an inference result
on an edge device [37]. The papers that use this method are
[8, 32, 37, 59].

Methods That Include Both Vertical and Horizontal
Inference Distribution
Some of the papers proposed systems that include two types
of inference distribution at the same time. One example is
the Multi-Compression Scale DNN Inference Acceleration
(MCIA) system [46]. In this paper, Qi et al. present a whole
architecture consisting of a cloud server, an edge server, a
base station, and a group of heterogeneous end devices. The
cloud is first responsible for, training and learning with deep
reinforcement learning and also configuring and compressing
the DNN. The cloud then creates an optimizer for resource
allocation and computation offloading. This optimizer is then
provided to the edge server. The edge server utilizes this opti-
mizer for decision-making for DNN inference tasks. The end
server receives an inference task request from end devices and
the end server optimizer makes a decision based on the sta-
tus of the environment (network bandwidth, computational
resource status, end device status). The optimizer decides the
model version, partitioning point, and bandwidth and compu-
tational resource allocations. The end server talks to the end
devices and they all complete a DNN inference task [46].

The papers that propose a method that incorporates both
vertical and horizontal inference distribution are [4, 37, 46,
53]. In these methods, the inference tasks are divided be-
tween multiple edge devices and also multiple servers.

4.2 Which artificial intelligence or machine
learning technique is the base of the methods?

All of the papers that were reviewed talk about distributing
inference tasks. They start with a model and then use vari-
ous techniques mentioned in the previous section. The ma-
jority of the papers focused on generic DNNs while another
significant portion of the papers focused specifically on con-
volutional neural networks (CNN) which are a type of neural
network that excels in "computer vision, speech recognition,
virtual/augmented reality, and other fields"[64].

Table 2 displays the algorithms the papers are based on.
The other category contains papers that do not focus on DNNs
or CNNs. [15] utilizes a shallow feed-forward neural net-
work and also a CNN. [68] doesn’t focus on machine learn-

Table 2: The algorithms the reviewed papers are based on

Algorithm
type

Number of
papers Papers

DNN 34

[7, 8, 11, 13, 14, 17, 18,
20, 23, 24, 27, 30–32,
35–39, 42, 44, 46, 47,
51–55, 57, 59–63]

CNN 11 [3, 10, 12, 19, 26, 29, 58,
64–67]

Other 5 [2, 4, 5, 15, 68]

ing specifically and proposes a method for distributed tasks
in general. [4] employs a simple statistical model based on
linear regression. [5] uses both tinyML models and simple
machine learning classifiers. Lastly, [2] talks about a system
that is based on recurrent neural networks.

4.3 What are the optimization and preprocessing
methods that stand out?

All the reviewed papers are talking about a system that aims
to bring machine learning inference to the edge which is an
ambitious goal. While doing so they utilize some preprocess-
ing and optimization techniques. Two main methods stood
out during this review: the DAG representation and pruning.
Note that here, the methods that are related to neural net-
works and inference distribution are given importance. The
application-specific techniques that are just about manipulat-
ing the input are not considered here. First, there is converting
a neural network to a directed acyclic graph (DAG) represen-
tation. This makes it possible to run various algorithms on the
neural network model. The papers that employ this technique
are [18, 30, 47, 62]. For example, in [47], after converting the
DNN to a DAG, the Max-flow Min-cut algorithm is applied
to the DAG to partition the DNN.

Another technique that was encountered during the review
was pruning. Pruning is removing some parts of the neu-
ral network that don’t contribute much, therefore decreasing
the size of the model without sacrificing much from accuracy
[22]. The papers [14] and [10] use this method where they
prune less important filters in a neural network to compress
the model.

4.4 Are the methods static or adaptive during
runtime?

The methods in the reviewed papers were designed to op-
timize based on several metrics such as accuracy, latency,
communication overhead, memory consumption, computa-
tion costs, etc. In some papers, the system is static. The opti-
mizations were done during the design. Once it is deployed,
it takes predetermined actions. However, several other sys-
tems are adaptive. They make decisions during run-time and
adjust some system parameters to further increase the perfor-
mance of the system. Table 3 displays which papers introduce
adaptive systems and which ones introduce static systems.

From Table 3, it can be seen that more than half of the
papers are talking about a system that is adaptive. That is
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Table 3: Whether or not the systems proposed in the reviewed papers
are adaptive

Adaptive
during run-
time?

Number of
papers Papers

Static 20
[2, 5, 7, 10, 15, 27, 31,
36, 38, 39, 44, 51–53,
55, 58–60, 63, 68]

Adaptive 30

[3, 4, 8, 11–15, 17, 19,
20, 23, 24, 26, 29, 30, 32,
35, 37, 42, 46, 47, 54, 57,
61, 62, 64–67]

not surprising considering that the systems include edge de-
vices. The edge environments are usually dynamic and it
makes sense to implement some adaptability to make the sys-
tem more robust. There are several parameters that adaptive
systems monitor and adjust. One of the most common param-
eters is the network condition. One example is [24] where
the model is split between the edge and the server and the
split point is adjusted in real-time based on the wireless chan-
nel state to minimize latency. Another system that stands
out here is RobustDice [19]. It can continue with the infer-
ence task and manages to maintain accuracy even if one or
more edge devices fail [19]. Similarly, the system proposed
in [26] can handle device failures. Furthermore, the system
in [42] supports joining and leaving devices. Another metric
is the computation power of the edge devices. For example,
in [65], if an edge device is fast, it will get assigned more
tasks compared to the slower edge devices. In addition, an-
other example for this case is OfpCNN [64]. OfpCNN has an
online optimization stage where it predicts the computation
time of CNN layers on the devices based on real-time CPU
loads of the devices and network conditions and then parti-
tions the CNN model to minimize the latency [64]. Using
these various techniques, these systems adapt to the environ-
ment conditions and execute inference tasks robustly.

4.5 Which programming libraries are being used?

Table 4: Programming libraries used in the reviewed papers

Programming
library

Number of
papers Papers

PyTorch 14 [2, 3, 12–14, 17, 18, 31,
55, 61, 62, 64–66]

Tensorflow 4 [10, 51, 52, 60]

Other 7

[68]:DeepThings,
[17]:grpc, [60]:CUDA,
[39]:MXNet(modified),
[54]:COSCO,
[37]:Keras, [18]:Pil-
low,OpenCV

A lot of the reviewed papers didn’t stop after they came up
with the theoretical design of a system. They implemented
their system to evaluate their performance. Some of the pa-

pers shared which programming libraries they used. Looking
at what programming libraries are used might be a good way
to see the common trends among the papers. Table 4 shows
the used programming libraries and the papers that mentioned
them. Note that some papers used multiple libraries. It is
clear that PyTorch is quite popular. It makes sense to use
programming libraries that make it very easy to work with
machine learning models. They make it easy to focus on the
important parts of the system instead of the small implemen-
tation details.

4.6 Which devices are being used?
All the systems mentioned in the reviewed papers have the
goal of bringing intelligence to the edge. That’s why it makes
sense to see what these papers consider as edge devices. This
can give a good idea about the performance of the proposed
systems. In this survey, the edge devices the papers used to
deploy and evaluate are reviewed. The results can be found
in Table 5. The simulation section lists the papers that didn’t
deploy their system to actual devices but ran simulations with
their system instead. Note that some papers used two or more
different edge devices.

Table 5: Edge devices and simulation usage in the reviewed papers

Device or simu-
lation

Number
of pa-
pers

Papers

Raspberry Pi
model [34] 21

[7, 8, 10–12, 14, 17, 18,
20, 26, 30, 32, 47, 52, 55,
60, 63–67]

NVIDIA Jetson
model [25] 7 [3, 18, 19, 31, 58, 60, 61]

Microcontroller-
based board 2

[4]: LPC2148
from NXP; [51]:
MSP430FR5994 from
TI

Smartphone 3 [17, 23, 39]
Laptop or PC 6 [8, 12, 24, 37, 47, 64]

Simulation 15
[2, 5, 13, 27, 29, 35, 36,
38, 44, 46, 54, 57, 59, 62,
68]

Other 2

[18]: Intel Neural Com-
pute Stick 2, Coral
Dev Board; [7]:Odroid-
XU4S

From Table 5, it is obvious that a Raspberry Pi model is the
most popular choice. A Raspberry Pi is a single-board com-
puter that is quite small compared to a conventional laptop. It
makes sense to use it on the edge due to its compactness. It
is used in commercial IoT products [21, 50]. It is also a very
popular product among hobbyists and makers and there for
there is lots of documentation and information available on-
line for Raspberry Pi’s. That’s why it is not surprising that it
is commonly used in research as well. The second most com-
mon platform is simulation. This is also expected as some
researchers are not interested in actually developing the sys-
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tems they design. It is enough for them to evaluate their de-
signs with simulations and experiments. After the simulation
category comes NVIDIA Jetson models with 7 papers using
them. NVIDIA Jetson models are similar to Raspberry Pi’s in
the sense that they are also compact single-board computers
[25]. However, they have much more computational capabil-
ities than Raspberry Pi’s especially because they have graphi-
cal processing units [25]. This makes them ideal for machine
learning tasks. The other categories that are not as popular are
smartphones, laptops, PCs, and other development boards.
All in all, there is some variety in the edge devices used to
develop and test distributed inference.

4.7 Use Cases and Real World Applications
During the review, some papers talked about various appli-
cations of on-device split inference. Currently, there are sev-
eral fields and applications that distributed inference on the
edge can be quite useful. As the first example, [15] can be
presented where a verticle inference distribution architecture
for healthcare applications is presented. In some healthcare
applications, large amounts of data need to be transferred to
the cloud for processing with machine learning [15]. How-
ever, using edge devices can be very beneficial in this case
since they can make it possible for important applications
with strict latency requirements to make real-time decisions
[15]. They also developed an example system to detect ar-
rhythmia based on ECG signals to demonstrate their idea
[15]. Thanks to the popularity of small wearable devices and
IoT technologies, using collaborative on-device inference can
be very promising in the healthcare industry. A similar exam-
ple is given in [10]. The paper mentions that collaborative
inference tasks can be employed in an environment with mul-
tiple IoT devices. A possible scenario is people in a meeting
can use their smartphones to perform collaborative automatic
speech recognition-based applications such as automatic tran-
scription generation [10].

Another real-world application is presented in [4]. The pa-
per talks about an architecture for predictive environmental
sensor networks that can be deployed over large geographic
areas. The architecture has multiple levels and node types.
The idea is to have multiple Sensing nodes placed over an
area. These nodes collect and share data between them. On
the next level, there are Computation nodes. They perform
statistical analysis and also prediction. In addition, other
higher-level nodes provide an interface for government of-
ficials and also for the public. These high-level nodes can
also perform predictions using the collected data. This way
a large geographical area can be monitored. The researchers
also develop a real system using this architecture to predict
river flooding. The goal is to monitor several environmental
parameters such as rainfall and air temperature and predict
when the rivers are going to flood. That way the area around
the rivers can be evacuated and other emergency protocols
can be utilized early on [4].

Furthermore, there can be industrial use cases for on-
device split inference. The paper [14] introduces a system
called EdgeDI and talks about its potential applications. Fang
et al. say that EdgeDI can be deployed on devices near a pro-
duction line and run DNNs collaboratively to identify product

defects or detect equipment faults in real-time [14]. They also
mention that EdgeDI can be employed for vision tasks such
as object detection and tracking on unmanned aerial vehicles
(UAV) [14]. The computation power of UAVs can be limited
so it can be valuable to run inference tasks collaboratively in
a swarm. Another industrial application design is presented
in [10]. They design a system where their splitCNN system
is used to detect anomalies based on vibration. The system
utilizes multiple devices with sensors placed in different loca-
tions on the object of interest. These devices use splitCNN to
collaboratively run the CNN inference task [10]. This system
can be beneficial since it can reduce the latency and remove
the need for energy-intensive data transmission even though
it may require advanced signal processing on the data [10].

Lastly, video processing is another potential application of
on-device distributed inference. DNNs are commonly used
for real-time object detection [31]. There are deep learning
applications such as object detection and tracking, face recog-
nition, and activity recognition where the images and videos
taken by IoT devices are used [27]. However, it is difficult to
process the data and use DNNs on IoT devices as they have
limited resources [27, 28]. The on-device collaborative in-
ference can be very effective in these scenarios. The papers
[31] and [28] propose methods for video processing where
they spit the inference task between the edge and the cloud to
reduce the computational load and latency.

5 Responsible Research
Of course, there is a risk of bias in this review as is in all re-
search. This study was conducted by a Bachelor of Computer
Science and Engineering student who was the only reviewer.
Therefore there was only one person responsible for search-
ing, selecting, and reviewing papers. The first opportunity for
bias to affect the review is the queries. In order to properly
choose keywords for the queries, an brief initial study was
conducted. In this study, a couple of surveys on tiny machine
learning were read to get an idea about how the surveys in
the field look like. In addition, a couple of papers that were
related to the topic were skimmed over and the important key-
words were noted. Based on the keywords found, the queries
for the search engines were created. The full queries can be
found in Appendix A.

Furthermore, all papers are unique and different. In or-
der to compare them, the same questions presented in subsec-
tion 3.2 were asked. Based on the answers, the papers were
categorized and analyzed. Of course, again only one person
was responsible for understanding and recording the informa-
tion presented in the papers which might be a source of bias.
However, in order to validate the study, anyone can easily re-
produce it since the entire methodology is clearly presented
in section section 3 and all of the reviewed papers are listed
in the references.

6 Discussion
Overall, it can be said that this review sheds some light on
common trends of on-device split inference. However, it
should be pointed out that this review was done with 50 pa-
pers which might not be considered high in the scope of lit-

7



erature reviews. This was due to time constraints since this
was a ten-week Bachelor project. That’s why this is a sys-
tematized review and not a systematic one. Furthermore, sub-
questions 2 and 3 were useful when reviewing a paper and try-
ing to understand the contents but they were not very handy
for comparing the papers. Most papers present results that
are positive and don’t mention a lot of negative points about
their work. In addition, due to the short time, it is difficult to
learn enough about the complex algorithms to compare them.
That’s why in this paper, I talked about the general architec-
tures and overall structures of the methods without going into
details about very specific algorithms that are utilized in some
parts of the systems.

Another point to mention here is that the initial goal of this
literature review was to focus on on-device split inference
on microcontrollers. However, finding papers that focused
on distributed inference for microcontrollers turned out to be
quite difficult. That’s why the scope of this paper was ex-
tended to include edge devices. In the end, only two papers
were found that used microcontrollers as it can be seen in Ta-
ble 5. This is a bit surprising since there is a lot of research
revolving around TinyML as seen in [9], [33], [48], and [1].
However, it is understandable that developing systems for mi-
crocontrollers is a lot more difficult compared to edge de-
vices. For example, edge devices such as Raspberry Pi’s or
smartphones run operating systems that provide useful tools.
For example, operating systems provide interfaces for wired
and wireless communication and also support more libraries.
However, the options are very limited for microcontrollers,
and the developers (in this case researchers) have to do a lot
more work to get a system working on microcontrollers. Fur-
thermore, as the technology evolves, computers are getting
smaller and more power-efficient. Thus they are getting easier
to use them on the edge as embedded devices. For example,
Jetson AGX Orin Series single-board computers have a foot-
print of 100 millimeters by 87 millimeters and come with a
powerful GPU [25]. That’s why focusing on edge devices that
are a bit more powerful than microcontrollers makes sense as
they are used a lot in the real world. All in all, the reason
for the low number of papers that focus on distributed infer-
ence on microcontrollers is likely to be that they are difficult
to work with compared to other more powerful edge devices,
and the other edge devices are commonly used in many ap-
plications.

7 Conclusion and Future Work
In conclusion, this paper presents the results of a literature
survey about on-device split inference on edge devices. First,
the papers were categorized based on the distribution style
of the inference task. This is the main parameter that shapes
the architecture of an on-device split inference system. Fur-
thermore, the papers were analyzed according to the machine
learning models they are based on, the adaptability of the pro-
posed systems, the programming libraries, and the devices
they used. In addition, several use cases of on-device dis-
tributed inference were presented. In the future, a systematic
review that aims to find all the related papers that focus on
this topic can be done. This will result in the review of more

papers so it can give a better view of the overall trends in
this research area. Moreover, since distributed inference on
microcontrollers is not a heavily focused topic, research can
be conducted based on findings from distributed inference on
edge devices to design a system for distributed inference on
microcontrollers and similar embedded systems.
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((Abstract: "split inference") OR (Abstract: "distributed in-
ference") OR (Abstract: "collaborative inference") OR (Ab-
stract: "split artificial intelligence") OR (Abstract: "dis-
tributed artificial intelligence") OR (Abstract: "collaborative
artificial intelligence") OR (Abstract: "split machine learn-
ing") OR (Abstract: "distributed machine learning") OR (Ab-
stract: "collaborative machine learning") OR (Abstract: "split
neural network") OR (Abstract: "distributed neural network")
OR (Abstract: "collaborative neural network")) AND ((Ab-
stract: "tinyml") OR (Abstract: "tiny machine learning") OR
(Abstract: "embedded") OR (Abstract: "microcontroller")
OR (Abstract: "resource constrain*") OR (Abstract: "edge"))

A.2 IEEE Xplore
("All Metadata":"distributed" NEAR/5 "All Meta-
data":"inference" OR "All Metadata":"split" NEAR/5 "All
Metadata":"inference" OR "All Metadata":"collaborative"
NEAR/5 "All Metadata":"inference" OR "All Meta-
data":"distributed" NEAR/5 "All Metadata":"artificial
intelligence" OR "All Metadata":"split" NEAR/5 "All
Metadata":"artificial intelligence" OR "All Meta-
data":"collaborative" NEAR/5 "All Metadata":"artificial
intelligence" OR "All Metadata":"distributed" NEAR/5 "All
Metadata":"machine learning" OR "All Metadata":"split"
NEAR/5 "All Metadata":"machine learning" OR "All Meta-
data":"collaborative" NEAR/5 "All Metadata":"machine
learning" OR "All Metadata":"distributed" NEAR/5 "All
Metadata":"neural network" OR "All Metadata":"split"
NEAR/5 "All Metadata":"neural network" OR "All Meta-
data":"collaborative" NEAR/5 "All Metadata":"neural
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data":"embedded" OR "All Metadata":"microcontroller"
OR "All Metadata":"resource constrain*" OR "All Meta-
data":"edge")
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constrain*" OR "edge"))
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