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Lay summary

In this thesis, the Gibbs phenomenon will be investigated. Specifically, what is the Gibbs phenomenon,
when it occurs and why it is important to investigate this phenomenon.
Signals can be described by a sum of simple sine and cosine waves, known as Fourier series. When
we approximate a signal that contains a “jump” with finitely many terms in the Fourier series, something
interesting happens: around the “jump” we can see a ripple - a peak followed by rapid oscillations - that
was not present in the original signal.
In general, if we consider more terms in the Fourier series we would expect this ripple to vanish. How-
ever, the observation that this peak will never decrease below 9% of the height of the “jump” is exactly
what we call the Gibbs phenomenon.
Several methods will be discussed in order to remove this phenomenon and finally we will look into its
occurrence (and its resolution) in Magnetic Resonance Imaging.

Milou Dijk
Delft, June 2024
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Abstract

In short, the Gibbs phenomenon describes the oscillating behaviour followed by an overshoot or under-
shoot of a Fourier partial sum expansion compared to the original function near jump discontinuities. In
particular, the fact that this overshoot or undershoot will never decrease below 9% of the height of the
“jump”.

First, some historical remarks about the discovery of the Gibbs phenomenon are given and several
fundamental elements of Fourier analysis are introduced. By thoroughly analyzing the Saw-tooth wave
function, an example of a function that exhibits the Gibbs phenomenon, we provide some figures in
order to visualize this phenomenon. Furthermore, we address and fill in the gaps of the existing math-
ematical proof to advance the theoretical understanding of the Gibbs phenomenon. This analysis is
then generalized to apply to a broader class of functions with jump discontinuities, by first considering a
function with a jump discontinuity at 0 and then proving the occurrence of the phenomenon at a general
point of jump discontinuity.

Furthermore, a literature research is conducted to evaluate different methods for resolving the Gibbs
phenomenon. This thesis includes an in-depth analysis of filtering methods and spectral reprojection
methods. Specifically, the Gegenbauer reconstruction method is described and its theoretical foun-
dations in removing the Gibbs phenomenon is examined. Finally, a real-life application of the Gibbs
phenomenon is given by looking at its occurrence in Magnetic Resonance Imaging.

Overall, this thesis not only advances the theoretical understanding of the Gibbs phenomenon but also
provides an insight into its resolution and application in Magnetic Resonance Imaging.

Milou Dijk
Delft, June 2024
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1
Introduction

Any signal can be rewritten as the sum of a series of simple sine and cosine waves. By adding together
all these simpler waves with varying combinations of frequencies and amplitudes, the Fourier series,
we can recover the original signal.

If we consider a function f that has a jump discontinuity at a certain point t0 and we draw a graph of the
partial sum of the Fourier series of this function, a typical behaviour can be observed, see for instance
Figure 1.1. As t approaches the point of discontinuity t0, the graph of the partial Fourier sum SN [f ](t)
somehow oscillates right before the jump and when the jump is accomplished, it overshoots and then
calms down again.

(a) Square wave function (b) Fourier series approximation of Square wave function

Figure 1.1: Gibbs phenomenon. Image from [2].

During the nineteenth century this sort of behaviour was observed by experimental physicists. At that
time it was considered as an error of the measuring equipment. However, number of mathematicians
showed this is not the case and that we are dealing with an actual mathematical phenomenon. This
behaviour is named after J.W. Gibbs, and has an extensive history.
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Historical remarks
The first known study on the observation of the oscillatory behaviour of partial sums of Fourier series
near discontinuities was carried out by H. Wilbraham in 1848 [13]. Remarkably, this paper was never
properly appreciated and seemed forgotten.
In 1898, A. A. Michelson wrote a letter toNature in which he criticized the idea that a series of continuous
functions could converge to a discontinuous function. He investigated the function

g(x) =
1

2
x

corresponding to the series

g(x) =

∞∑
k=1

(−1)k+1

k
sin(kx)

in order to substantiate his criticism. However, he lacked understanding of the difference between the
sum of an infinite series and the partial sums of such a series.
Hence, in the next issue of Nature, the mathematician A. Love pointed out Michelson’s lack of under-
standing. This is when J.W. Gibbs joined the discussion by writing a letter in which he tried to clarify
Love’s remark, by stating that the graph of the limit is not necessarily the same as the limit of the graphs
(of the partial sums of Fourier series) [5]. In other words, the Fourier series converges point-wise to the
function, but this does not imply that the graphs of the partial sums need to look like the graph of the
function as N → ∞. Furthermore, Gibbs published a second letter in which he mentioned the quantity

Si(x) =
∫ x

0

sin(t)

t
dt.

This sine integral function plays an important role in determining the amount of overshoot in the con-
vergence of the partial sums of Fourier series near discontinuities. However, Gibbs did not provide any
proofs or calculations of this overshoot near discontinuities.
Only after seven years since Gibbs first publication, the term “Gibbs phenomenon” was introduced by
M. Bôcher [3]. Bôcher performed a detailed analysis on the function

f(x) =
1

2
(π − x)

for 0 < x < 2π which can be described by

f(x) =

∞∑
k=1

sin(kx)

k
.

He also provided the complete proof of Gibbs’ assertion.
Towards the end of 1914, H. Burkhardt mentioned the long-forgotten work of H.Wilbraham, who already
discovered the Gibbs phenomenon in 1848. Hence, he argued it would be more appropriate to call the
observation discussed here the “Wilbraham-Gibbs phenomenon”.

Structural overview
In Chapter 2 some fundamental theorems and definitions of Fourier analysis will be introduced. More-
over, some important convergence results will be stated. Chapter 3 will consist of a detailed analysis
of the Saw-tooth wave function and the mathematical proof of the Gibbs phenomenon.
This result will be generalized in Chapter 4, by considering a function with a jump discontinuity at 0 and
then proving the occurrence of the phenomenon at a general point of jump discontinuity.

The second part of this thesis focuses on the resolution of the Gibbs phenomenon. In Chapter 5, sev-
eral techniques - such as filtering and spectral reprojection methods - to improve the convergence rate
will be reviewed.
The Gegenbauer reconstruction method, an example of a spectral reprojection method, will be inves-
tigated in Chapter 6. In Chapter 7 we will look at the occurrence of Gibbs ringing artifact in Magnetic
Resonance Imaging and describe the hybrid Gegenbauer method in order to resolve this artifact. To
finalize, Chapter 8 will consist of the main conclusions and some suggestions for further research.



2
Preliminary theory

In this chapter some definitions and theorems of Fourier analysis are reviewed that will be used in this
report. These definitions and theorems with their proofs can be found in references [9], [10] and [12].

Fourier series
TheGibbs phenomenon occurs whenwe consider the partial Fourier sums of a certain class of functions.
These functions are piecewise continuous except for a finite number of points in which the function
“jumps” from a certain value to another.

Definition 2.1. Let a, b ∈ R. A function f : [a, b] → C is called piecewise continuous if there exist
a = a0 ≤ a1 ≤ ... ≤ an = b such that f is continuous on (aj , aj+1) for j = 0, 1, ..., n − 1 and the limits
f ′(a+j ) and f ′(a

−
j ) exist and are finite for all j = 0, 1, ..., n− 1.

Definition 2.2. A function f(x) has a jump discontinuity at x = a, if we have f(a+) = limx→a+ f(x) <∞,
f(a−) = limx→a− f(x) <∞, and f(a+) ̸= f(a−).

Definition 2.3. Suppose f : T → C integrable and 2π periodic. Then the nth Fourier coefficient of f is
defined by

f̂(n) =
1

2π

∫ π

−π

f(θ)e−inθdθ.

Definition 2.4. Let f : T → C integrable and 2π periodic and f̂(n) be the Fourier coefficients of f as
in Definition 2.3. Then the Fourier series of f is defined by

∞∑
n=−∞

f̂(n)einθ =
a0
2

+

∞∑
n=1

[an cos(nθ) + bn sin(nθ)] , (2.1)

where an and bn are given by

an =
1

π

∫ π

−π

f(θ) cos(nθ)dθ (2.2)

and
bn =

1

π

∫ π

−π

f(θ) sin(nθ)dθ. (2.3)

Definition 2.5. Let f : T → C integrable and 2π periodic. Then we define the N th partial Fourier sum
of f as

SN [f ](θ) =

N∑
n=−N

f̂(n)einθ.

3
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Dirichlet kernel
The Dirichlet kernel has some important properties useful for analysis of the partial Fourier sums of
certain functions.

Definition 2.6. The Dirichlet kernel is a trigonometric polynomial of degree N defined by

DN (t) =

N∑
n=−N

eint.

If we use the fact that eint + e−int = 2 cos(nt), the Dirichlet kernel can also be written as

DN (t) = 1 + 2

N∑
n=1

cos(nt). (2.4)

Another expression of the Dirichlet kernel in terms of the sine function is given by

DN (t) =
sin
(
(2N + 1) t2

)
sin
(
t
2

) for t ̸∈ 2πZ. (2.5)

Proof. Suppose t ̸∈ 2πZ. Then eit ̸= 1 and we get

DN (t) =

N∑
n=−N

eint = e−iNt(1 + eit + ...+ e2iNt).

This is a finite geometric series, so we get

DN (t) = e−iNt

(
1− ei(2N+1)t

1− eit

)
=
e−iNt − ei(N+1)t

1− eit

=
e−i(N+ 1

2 )t − ei(N+ 1
2 )t

e−
1
2 it − e

1
2 it

=
sin
((
N + 1

2

)
t
)

sin
(
t
2

)
=

sin
(
(2N + 1) t2

)
sin
(
t
2

) .

Definition 2.7. Let f, g : T → C be 2π periodic and integrable functions. Then their convolution f ∗ g
on T is defined as

(f ∗ g)(θ) = 1

2π

∫ π

−π

g(θ − y)f(y)dy.

Important properties of the Dirichlet kernel are stated in Theorem 2.1.

Theorem 2.1. Let f : T → C be integrable and t ∈ R. Then the following holds:

(i) SN [f ](t) = (DN ∗ f)(t)
(ii) DN is an even function
(iii) 1

2π

∫ π

π
DN (t)dt = 1
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Proof. (i) From the definition of the convolution we get

(DN ∗ f)(t) = 1

2π

∫ π

−π

DN (t− τ)f(τ)dτ.

Now using the definition of the Dirichlet kernel we obtain

(DN ∗ f)(t) = 1

2π

∫ π

−π

[
N∑

n=−N

ein(t−τ)

]
f(τ)dτ

∗
=

N∑
n=−N

eint
(

1

2π

∫ π

−π

e−inτf(τ)dτ

)

=

N∑
n=−N

eintf̂(n)

= SN [f ](t).

Since we have a bounded summand the Dominated Convergence Theorem can be used to switch the
integral and sum in step (*).
(ii) Trivial, since from expression (2.4) it is clear that we have DN (t) = DN (−t).
(iii) Consider the integral

1

2π

∫ π

−π

DN (t)dt
(ii)
=

1

π

∫ π

0

DN (t)dt

(2.4)
=

1

π

∫ π

0

[
1 + 2

N∑
n=1

cos(nt)

]
dt

=
1

π
· π + 2

∫ π

0

[cos(t) + cos(2t) + ...+ cos(Nt)] dt

= 1.
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Convergence results
In order to investigate the behaviour of the partial sums near discontinuities it is important to consider
some general convergence results regarding the Fourier series.

The Riemann-Lebesgue Lemma, stated in Lemma (A.1) shows that for functions f ∈ L1(T) the Fourier
coefficients of f decay to zero as |n| tends to ∞.

Lemma 2.1. Let −∞ ≤ a < b ≤ ∞ and f ∈ L1(a, b). Then

lim
|λ|→∞

∫ b

a

f(x)e−iλtdt = 0.

In particular, if f ∈ L1(T), then f̂(n) → 0 as |n| → ∞.

The formal proof of the Riemann-Lebesgue Lemma can be found in Appendix A.1.

Furthermore, it is important to mention the definition of α-Hölder continuity since ’normal’ continuity is
not a sufficient condition for (uniform) convergence of the partial Fourier sum.

Definition 2.8. Let f(x) be a 2π periodic function in L1(−π, π). Then f is α-Hölder continuous at x0 with
order α > 0, if there exists a constantM > 0 such that |f(x)−f(x0)| ≤M |x−x0|α in a neighborhood of
x0. If the condition holds for all x0 with the same constant M, then f is uniformly α-Hölder continuous.

Note that α-Hölder continuity with α = 1 can be considered as Lipschitz continuity.

Theorem 2.2. Let f ∈ L1(−π, π). Suppose that there exists x ∈ R such that the left- and right- limits
f(x+) and f(x−) exist. Moreover assume that there existM > 0, α > 0 and δ > 0 such that

|f(x+ t)− f(x+)| ≤Mtα, |f(x− t)− f(x−)| ≤Mtα

for 0 < t < δ. Then
SN [f ](x) → 1

2
(f(x+) + f(x−)) as N → ∞.



3
Gibbs phenomenon

Piecewise continuous functions are functions that are continuous at every point in their domain except
at finitely many points at which they have jump discontinuities, i.e. the left- and right-hand limits of the
function exist but are not equal. Due to their abrupt changes between two values, piecewise continuous
functions pose challenges in signal processing.
It is well known that periodic piecewise continuous functions can be represented as infinite sums of sine
and cosine waves, known as Fourier series. As we delve deeper into the convergence of the partial
sums of the Fourier series, we encounter a particular behaviour near jump discontinuities, the so-called
Gibbs phenomenon. We will investigate this phenomenon for the Saw-tooth wave function, see Figure
3.1. Despite its simplicity, the Saw-tooth function serves as an example to observe this behaviour and
to give a formal mathematical proof of the Gibbs phenomenon.

Figure 3.1: This figure displays the Saw-tooth wave function f(x) = 1
2
(π − x) for 0 < x < 2π.

This phenomenon is often referred to as the “overshoot” in the partial sums of Fourier series around
“jumps”. However, the behaviour of the partial sums near jump discontinuities appears to be more
complicated than just an overshoot.

7



3.1. Fourier series expansion of Saw-tooth wave function 8

3.1. Fourier series expansion of Saw-tooth wave function
We consider the Saw-tooth wave function, which is the 2π-periodic function defined by f(x) = 1

2 (π−x)
for 0 < x < 2π. Then, we use formula (2.1) to compute its Fourier series. Since the Saw-tooth wave
function is odd, we expect a pure sine expansion. Indeed, by using integrating by parts, we find

an =
1

π

∫ 2π

0

1

2
(π − x) cos(nx)dx

=
1

2

∫ 2π

0

cos(nx)dx− 1

2π

∫ 2π

0

x cos(nx)dx

= 0− 1

2π

x sin(nx)
n

∣∣∣∣∣
2π

0

−
∫ 2π

0

sin(nx)

n
dx


= 0,

(3.1)

while

bn =
1

π

∫ 2π

0

1

2
(π − x) sin(nx)dx

=
1

2

∫ 2π

0

sin(nx)dx− 1

2π

∫ 2π

0

x sin(nx)dx

= 0− 1

2π

−xcos(nx)
n

∣∣∣∣∣
2π

0

+

∫ 2π

0

cos(nx)

n
dx


= − 1

2π
· −2π

n

=
1

n
.

(3.2)

Thus, we get the following Fourier series expansion

∞∑
n=1

sin(nx)

n
. (3.3)

So that, the N th partial Fourier sum of f is

SN [f ](x) =

N∑
n=1

sin(nx)

n
. (3.4)

We observed that SN is 2π-periodic, SN (−x) = −SN (x) and SN (0) = SN (π) = 0. Thus, it is sufficient
to completely study the behavior of SN by looking at the interval (0, π).
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3.2. Convergence of partial Fourier sums
In order to describe the convergence of SN (x) to its sum 1

2 (π − x) in the interval (0, π), it suffices to
show that the integral IN defined in (3.5) is bounded.

Integral IN
Define the integral IN by

IN =

∫ π

0

sin

((
N +

1

2

)
t

)[
1

2 sin
(
1
2 t
) − 1

t

]
dt. (3.5)

Denote the part in square brackets by g(t). In order to apply the second mean value theorem for
integrals, it is enough to show that g(t) is continuous in the interval (0, π).

According to the second mean value theorem for integrals there is a number 0 < ξ < π for which we
have

IN = g(0)

∫ ξ

0

sin

((
N +

1

2

)
t

)
dt+ g(π)

∫ π

ξ

sin

((
N +

1

2

)
t

)
dt

=

(
1

2
− 1

π

)∫ π

ξ

sin

((
N +

1

2

)
t

)
dt

=

(
1

2
− 1

π

)
1

N + 1
2

cos

((
N +

1

2

)
ξ

)
.

Thus, if we consider the bound |IN |, we can use the fact that | cos(x)| ≤ 1 for all x, to obtain a bound
for the integral IN .

Sine integral function
As mentioned in the introduction, Gibbs analysed the quantity

Si(x) =
∫ x

0

sin(t)

t
dt. (3.6)

The sine integral function is known to converge to 1
2π, as shown graphically in Figure 3.2.

Figure 3.2: This figure displays the convergence of Si(T) as T → ∞.

The mathematical proof establishing the convergence of the sine integral function is described in The-
orem 3.1.
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Theorem 3.1. The function Si(x) converges to 1
2π as x→ ∞, i.e. limx→∞ Si(x) = 1

2π.

Proof. By direct computation, we have that

0 = SN (π)− SN (0)

(1)
=

∫ π

0

S′
N (t) dt

(2)
=

∫ π

0

sin
(
1
2Nt

)
cos
(
1
2 (N + 1)t

)
sin
(
1
2 t
) dt

(3)
=

∫ π

0

sin
(
− 1

2 t
)
+ sin

(
(N + 1

2 )t
)

2 sin
(
1
2 t
) dt

=

∫ π

0

(
sin
(
(N + 1

2 )t
)

2 sin
(
1
2 t
) − 1

2

)
dt.

The first step follows from the fundamental theorem of calculus.
In the second step, the expression of the first-derivative from (3.8) is used.
We apply the trigonometric identity sin(x) cos(y) = 1

2 (sin(x+ y) + sin(x− y)) in step (3) to obtain the
desired expression for the integral.
Finally, by linearity of the integral, we get∫ π

0

sin
(
(N + 1

2 )t
)

2 sin
(
1
2 t
) dt =

∫ π

0

1

2
dt,

which gives us the following result ∫ π

0

sin
(
(N + 1

2 )t
)

2 sin
(
1
2 t
) dt =

1

2
π. (3.7)

Hence, we showed that the integral Si(x) converges to 1
2π.

By using these results and preliminary theorems about convergence of partial sums of Fourier series,
we obtain the following result.

Theorem 3.2. limN→∞ SN (x) = 1
2 (π − x) for 0 < x < π.

Proof. By direct computation, we get

SN (x) =

∫ x

0

S′
N (t)dt

(1)
=

∫ x

0

(
sin
(
(N + 1

2 )t
)

2 sin
(
1
2 t
) − 1

2

)
dt

(2)
=

∫ x

0

sin
(
(N + 1

2 )t
)

2 sin
(
1
2 t
) dt−

∫ x

0

1

2
dt

(3)
=

∫ x

0

(
sin
(
(N + 1

2 )t
)

2 sin
(
1
2 t
) −

sin
(
(N + 1

2 )t
)

t
+

sin(
(
N + 1

2 )t
)

t

)
dt− 1

2
x

=

∫ x

0

sin

((
N +

1

2

)
t

)[
1

2 sin( 12 t)
− 1

t

]
dt+

∫ x

0

sin
(
(N + 1

2 )t
)

t
dt− 1

2
x

= IN (x) +

∫ x

0

sin
(
(N + 1

2 )t
)

t
dt− 1

2
x

= IN (x) +

∫ (N+ 1
2 )x

0

sin(t)

t
dt− 1

2
x.
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Step (1) follows from (3.7). Then, we use linearity of the integral in step (2). By adding and subtracting
the term sin((N+ 1

2 )t)
t in the third line we can rewrite the integral in terms of IN , defined in (3.5).

Now if we consider the limit of the partial sum we obtain

lim
N→∞

SN (x) = lim
N→∞

IN (x) +

∫ (N+ 1
2 )x

0

sin(t)

t
dt− 1

2
x

(Thm 3.4)
= 0 + lim

T→∞

∫ T

0

sin(t)

t
dt− 1

2
x

(3.6)
= lim

T→∞
Si(t)− 1

2
x

(Thm 3.1)
=

1

2
π − 1

2
x =

1

2
(π − x),

which concludes the proof.
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3.3. Mathematical proof of Gibbs phenomenon
We start considering the N th partial sum SN of the Fourier series of the Saw-tooth wave function and
determine its local maxima and minima. We observe that, as we consider more terms in the partial
sum, i.e. as N tends to ∞, the first minimum and maximum tend to zero and the partial sums at these
extreme points converge to certain values of the sine integral function. Several auxiliary results need
to be proved in order to show such a behaviour of the partial sums. Finally, we use the sine integral
function in order to compute the amount of overshoot and undershoot near the jump discontinuities.

3.3.1. Determining extreme points
First of all, we need to find the local maxima and minima of SN by computing S′

N (x) = 0.

S′
N (x) =

N∑
k=1

cos(kx)

=
1

2 sin
(
1
2x
) N∑

k=1

2 sin

(
1

2
x

)
cos(kx)

=
1

2 sin
(
1
2x
) N∑

k=1

[
sin

(
1

2
x+ kx

)
+ sin

(
1

2
x− kx

)]

=
1

2 sin
(
1
2x
) N∑

k=1

sin

((
k +

1

2

)
x

)
+ sin

((
k − 1

2

)
x

)

=
1

2 sin
(
1
2x
) [ N∑

k=1

sin

((
k +

1

2

)
x

)
−

N−1∑
k=0

sin

((
k +

1

2

)
x

)]

=
1

2 sin
(
1
2x
) [sin((N +

1

2

)
x

)
− sin

(
1

2
x

)]
.

By using the trigonometric identity sin(x) − sin(y) = 2
[
sin
(
x−y
2

)
cos
(
x+y
2

)]
, we obtain the following

equation

S′
N (x) =

sin
(
1
2Nx

)
cos
(
1
2 (N + 1)x

)
sin
(
1
2x
) . (3.8)

The zeros of S′
N (x) in (0, π) can be obtained from equation (3.8). If we consider the interval

(
2l
N π,

2(l+1)
N π

)
,

the cosine-term changes sign and the sine-term remains constant in sign. Therefore, the first-derivative
of the partial sums changes its sign at every point 2l

N , thus we get that these points are alternatively
minima and maxima.
To conclude, for 1 ≤ l ≤ N the partial sum SN (x) has its relative maxima at x = 2l+1

N+1π and has its
relative minima at x = 2l

N π.



3.3. Mathematical proof of Gibbs phenomenon 13

3.3.2. Behaviour in extreme points
In order to determine how SN behaves at its first maximum

(
π

N+1

)
and its first minimum

(
2
N π
)
we con-

sider several theorems. It is important to observe that these extreme points tend to zero as N → ∞.
Hence, the first maxima and minima become closer to zero as the number of Fourier terms increases.

We first show that the sequences
(
SN

(
2s−1
N+1π

))∞
N=1

and
(
SN

(
2s
N π
))∞

N=1
are ultimately increasing, for

which we use the result of an additional theorem, stated in Appendix A.2.

Theorem 3.3. For 0 ≤ l ≤
[
1
2 (N − 1)

]
, we have

SN+1

(
2l + 1

N + 2
π

)
> SN

(
2l + 1

N + 1
π

)
,

and for 1 ≤ l ≤
[
1
2 (N − 1)

]
we have

SN+1

(
2l

N + 1
π

)
> SN

(
2l

N
π

)
.

Proof. It is trivial that 2l+1
N+2π <

2l+1
N+1π <

2l+2
N+1π.

Now since SN+1 has a maximum at 2l+1
N+2π and its next minimum at 2l+2

N+1π, we get the partial sums
decreases in this interval.
Therefore we get

SN+1

(
2l + 1

N + 2
π

)
> SN+1

(
2l + 1

N + 1
π

)
(1)
= SN

(
2l + 1

N + 1
π

)
+

1

N + 1
sin

(
(N + 1)

2l + 1

N + 1
π

)
= SN

(
2l + 1

N + 1
π

)
+

1

N + 1
sin ((2l + 1)π)

(2)
= SN

(
2l + 1

N + 1
π

)
.

In the first step we write the SN+1 in terms of SN and its final term. Step (2) follows from the fact that
sin(kπ) = 0 for all k ∈ Z.

Now, we are able to prove the main result of this section which shows that the values of the partial
sums at the extreme points converge to limit numbers related to the sine integral function.

Theorem 3.4. For every s ∈ Z>0, the sequence
(
SN

(
2s−1
N+1π

))∞
N=1

is ultimately increasing and has∫ (2s−1)π

0
sin(t)

t dt as limit number and
(
SN

(
2s
N π
))∞

N=1
is ultimately increasing and has

∫ 2sπ

0
sin(t)

t dt as
limit number.

Proof. First, we will consider the sequence
(
SN

(
2s−1
n+1 π

))∞
N=1

.

SN

(
2s− 1

N + 1
π

)
(Thm3.3)

=

N∑
k=1

1

k
sin

(
k(2s− 1)

N + 1
π

)

=

N∑
k=1

1

k
sin

(
k(2s− 1)

N + 1
π

) ( 2s−1
N+1π

)
(

2s−1
N+1π

)
(∗)
=

N∑
k=1

[
1

k(2s−1)
N+1 π

sin

(
k(2s− 1)

N + 1
π

)]
2s− 1

N + 1
π.



3.3. Mathematical proof of Gibbs phenomenon 14

Consider the interval [0, (2s−1)π] and divide this interval into equally spaced sub-intervals starting from[
0, 2s−1

2 π
)
till the last sub-interval

(
N(2s−1)

N+1 π, (2s− 1)π
]
. Hence, we get (N +1) sub-intervals of length

2s−1
N+1π.
TheRiemann sum is defined as the sumof the (N+1) rectangles below the graph of the integrand. Thus,
the equation between brackets in step (*) can be seen as a Riemann sum for the integral

∫ (2s−1)π

0
sin t
t dt

for t = k(2s−1)
N+1 π.

Now if we consider the limit N → ∞, the length of the sub-intervals tend to zero from which we know
that the Riemann sum converges to the actual integral.

Therefore we get the following expression in the limit

lim
N→∞

SN

(
2s− 1

N + 1
π

)
=

∫ (2s−1)π

0

sin t

t
dt. (3.9)

Similar argument can be used for the sequence
(
SN

(
2s
N π
))∞

N=1
to obtain

lim
N→∞

SN

(
2s

N
π

)
=

∫ 2sπ

0

sin t

t
dt. (3.10)

To conclude, as we consider the partial sum in the limit N → ∞ we get that the partial sum evaluated
in the first maximum converges to the limit number

∫ (2s−1)π

0
sin t
t dt and the partial sum evaluated in the

first minimum converges to the limit number
∫ 2sπ

0
sin t
t dt.

The observation that the partial sum converges to a value independent of the number of terms used in
the Fourier series illustrates that this behaviour doesn’t vanish if we increase the amount of terms used
in the expansion, see Figures 3.3 and 3.4. The Python code for these figures can be found in Appendix
A.3.

(a) Fourier series representation with N = 10. (b) Fourier series representation with N = 25.

Figure 3.3: Fourier series representations.
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3.3.3. Computing the amount of overshoot and undershoot near discontinuities
If we look at the first maximum, π

N+1 , we obtain

lim
N→∞

SN

(
π

N + 1

)
= Si(π) = 1.8519370 = 1.1789797

(
1

2
π

)
. (3.11)

As we consider the limit N → ∞, the first maximum will tend to zero and the partial sums converge to
the limit number Si(π). Thus, the sum overshoots the line 1

2 (π − x) by a factor of 1.1789797.
Considering the first minimum, 2

N π, we obtain

lim
N→∞

SN

(
2

N
π

)
= Si(2π) = 1.4181516 = 0.9028233

(
1

2
π

)
. (3.12)

Again, since we consider the limit N → ∞, the first minimum will tend to zero and the partial sums
converge to the limit number Si(2π). Hence, the sum undershoots at the first minimum by a factor of
0.9028233. This is an example of the so-called Gibbs phenomenon for complex Fourier series of the
function f(x) = 1

2 (π − x) for 0 < x < 2π and can be seen in Figure 3.4.
To conclude, the behaviour of SN (x) near jump discontinuities is more complicated than just an over-
shoot in the convergence of the partial sum near the “jumps”.

Figure 3.4: Fourier series representation of Saw-tooth wave function with N = 250.

The point where the maximum oscillation takes place will tend closer to the “jump”, in this case the
value zero. Moreover, it is important to understand that the Gibbs phenomenon is not a contradiction
of Theorem 2.2. Since in Theorem 2.2 we fix a certain point of discontinuity x and then consider the
partial sum SN (x) in the limit N → ∞. But in this chapter we considered the case where the point x
was the first maximum or minimum that is dependent on N and tends to zero in the limit. However, the
maximal oscillation itself does not vanish when more terms of the series are added. On the contrary, it
stabilizes towards a value that is approximately 9% of the total height of the “jump”.

In the next chapter, we will see that the Gibbs phenomenon occurs in general for functions with jump
discontinuities at arbitrary points.



4
General case

In this chapter, the result of Chapter 3 will be used in order to show the existence of the Gibbs phe-
nomenon for simple functions with a jump discontinuity. In Subsection 4.1.1 we will show that the Gibbs
phenomenon occurs when we consider a function with a jump discontinuity at the origin. Finally, we
will extend this proof in Subsection 4.1.2 in order to show that functions with a finite number of jump
discontinuities also exhibit the Gibbs phenomenon near the jump discontinuities.

4.1. Generalization of the Gibbs phenomenon
In order to prove the existence of the Gibbs phenomenon for a “general” function with a jump disconti-
nuity at the origin, we first need to look at the uniform version of the Riemann-Lebesgue Lemma.

Theorem 4.1. Suppose f ∈ L1[−π, π] is a periodic function and h ∈ C1[α, β] such that [α, β] ∈ [−π, π].
Then ∫ β

α

f(x− u)h(u) sin(λu)du→ 0 as λ→ ∞

uniformly in x.

Proof. We start the proof with using the fact that C1[−π, π] is dense in L1[−π, π]. This means we can
find a function g ∈ C1[−π, π] that is close to f in the L1-norm. In other words, for all ϵ > 0

||f − g||L1 =

∫ π

−π

|f(x)− g(x)|dx < ϵ.

Now consider the integral I to be

I =

∫ β

α

g(x− u)h(u) sin(λu)du. (4.1)

If we perform integration by parts we get

I = g(x− u)h(u) · − 1

λ
cos(λu)

∣∣∣∣u=β

u=α

−
∫ β

α

d

du
[g(x− u)h(u)] · − 1

λ
cos(λu)du

= −g(x− u)h(u)
cos(λu)

λ

∣∣∣∣u=β

u=α

+

∫ β

α

d

du
[g(x− u)h(u)]

cos(λu)

λ
du.

Since −g(x − u)h(u) and d
du [g(x− u)h(u)] are both uniformly bounded and cos(λu)

λ tends to zero as
λ→ ∞, we get that I converges uniformly to zero as λ tends to ∞.

Thus,let ϵ > 0 arbitrary, if we consider the absolute value of the integral∫ β

α

f(x− u)h(u) sin(λu)du

16
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and use the previous result, we obtain∣∣∣∣ ∫ β

α

f(x− u)h(u) sin(λu)du

∣∣∣∣ ≤ ∣∣∣∣ ∫ β

α

[f(x− u)− g(x− u)]h(u) sin(λu)du

∣∣∣∣+ ∣∣∣∣ ∫ β

α

g(x− u)h(u) sin(λu)du

∣∣∣∣
=

∣∣∣∣ ∫ β

α

[f(x− u)− g(x− u)]h(u) sin(λu)du

∣∣∣∣+ |I|

≤ max
α≤u≤β

|h(u)|
∫ β

α

∣∣∣∣ [f(x− u)− g(x− u)]

∣∣∣∣du+ |I|

≤ max
α≤u≤β

|h(u)|ϵ+ |I|.

To conclude, as λ→ ∞ we get I goes to zero and we obtain the desired result.

Furthermore, we need Theorem 4.2 about the convergence of the partial Fourier sum of an α-Hölder
continuous function.

Theorem 4.2. Let f be a function such that the left- and right-hand limit f(x+0 ), f(x
−
0 ) satisfy the α-

Hölder continuity condition at x0. Then

lim
n→∞

SN [f ](x0) =
f(x+0 ) + f(x−0 )

2
.

Proof. In this proof we will consider the case x0 ̸= ±π. For the case x0 = ±π, a translation by π and
then using the same argument will give SN [f ](x− π) → f̄(x− π) at x = 0.
By using the properties of the Dirichlet kernel, stated in Theorem 2.1, we obtain the following equation

SN [f ](x)− f(x) =
1

2π

∫ π

−π

[f(x− u)− f(x)]DN (u)du. (4.2)

Now define
f̄(x0) =

f(x+0 ) + f(x−0 )

2
(4.3)

and insert this expression in (4.2) to get

SN [f ](x0)− f̄(x0) =
1

2π

∫ π

−π

[
f(x0 − u)− f̄(x0)

]
DN (u)du.

Substituting (4.3) will give

SN [f ](x0)− f̄(x0) =
1

2π

∫ π

−π

[
f(x0 − u)−

(
f(x+0 ) + f(x−0 )

2

)]
DN (u)du

=
1

2π

∫ π

−π

[
f(x0 − u)− f(x+0 )

2
− f(x−0 )

2

]
DN (u)du.

(4.4)

Then, we use linearity of the integral and split the integration interval [−π, π] into sub-intervals to get
the following integrals

SN [f ](x0)− f̄(x0) =
1

2π

∫ π

0

f(x0 − u)DN (u)du− 1

2π

∫ π

0

f(x+0 )

2
DN (u)du− 1

2π

∫ π

0

f(x−0 )

2
DN (u)du

+
1

2π

∫ 0

−π

f(x0 − u)DN (u)du− 1

2π

∫ 0

−π

f(x+0 )

2
DN (u)du− 1

2π

∫ 0

−π

f(x−0 )

2
DN (u)du

=
1

2π

∫ π

0

(
f(x0 − u)− f(x−0 )

)
DN (u)du+

1

2π

∫ π

0

f(x−0 )

2
DN (u)du

− 1

2π

∫ π

0

f(x+0 )

2
DN (u)du+

1

2π

∫ 0

−π

(
f(x0 − u)− f(x+0 )

)
DN (u)du

+
1

2π

∫ 0

−π

f(x+0 )

2
DN (u)du− 1

2π

∫ 0

−π

f(x−0 )

2
DN (u)du

= I1 + I2 + I3 + I4 + I5 + I6.
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Now we will rewrite I5 + I6 by using the fact that the Dirichlet kernel is an even function and applying
a change of variables with y = −u.

I5 + I6 =
1

2π

∫ 0

−π

f(x+0 )

2
DN (u)du− 1

2π

∫ 0

−π

f(x−0 )

2
DN (u)du

=
1

2π

∫ 0

−π

f(x+0 )

2
DN (−y)(−dy)− 1

2π

∫ 0

−π

f(x−0 )

2
DN (−y)(−dy)

= − 1

2π

∫ 0

−π

f(x+0 )

2
DN (y)dy +

1

2π

∫ 0

−π

f(x−0 )

2
DN (y)dy

=
1

2π

∫ π

0

f(x+0 )

2
DN (y)dy − 1

2π

∫ π

0

f(x−0 )

2
DN (y)dy

= −(I2 + I3),

thus we get I2 + I3 + I5 + I6 = 0. Therefore, we obtain

SN [f ](x0)− f̄(x0) = I1 + I4

=
1

2π

∫ π

0

(
f(x0 − u)− f(x−0 )

)
DN (u)du+

1

2π

∫ 0

−π

(
f(x0 − u)− f(x+0 )

)
DN (u)du.

Let 0 < δ < π. In step (1) we split the integration interval and in step (2) we divide and multiply by u to
obtain

SN [f ](x0)− f̄(x0)
(1)
=

1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

)
DN (u)du+

1

2π

∫ 0

−δ

(
f(x0 − u)− f(x+0 )

)
DN (u)du

+
1

2π

∫ δ

0

(
f(x0 − u)− f(x−0 )

)
DN (u)du+

1

2π

∫ π

δ

(
f(x0 − u)− f(x−0 )

)
DN (u)du

(2)
=

1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

u

)
uDN (u)du+

1

2π

∫ 0

−δ

(
f(x0 − u)− f(x+0 )

u

)
uDN (u)du

+
1

2π

∫ δ

0

(
f(x0 − u)− f(x−0 )

u

)
uDN (u)du+

1

2π

∫ π

δ

(
f(x0 − u)− f(x−0 )

u

)
uDN (u)du

= J1 + J2 + J3 + J4.

Now it suffices to show that given ϵ > 0, there exist δ > 0 and N ′ ∈ N such that these choices imply
that for all N ≥ N ′ we get |SN [f ](x0)− f̄(x0)| = |J1 + J2 + J3 + J4| < ϵ.

For integrals J1 and J4 we use the expression of the Dirichlet kernel from (2.5) to rewrite them in terms
of Fourier coefficients and then apply the Riemann Lebesgue Lemma to obtain |J1|+ |J4| ≤ ϵ

2 .
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J1 =
1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

u

)
uDN (u)du

=
1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

) sin (N + 1
2

)
u

sin
(
u
2

) du

=
1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

) 1

sin
(
u
2

) (sin(Nu) cos(u
2

)
+ cos(Nu) sin

(u
2

))
du

=
1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

cos
(
u
2

)
sin
(
u
2

)) sin(Nu)du+
1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

)
cos(Nu)du

=
1

2π

∫ π

−π

(
f(x0 − u)− f(x+0 )

cos
(
u
2

)
sin
(
u
2

)χ[−π,−δ](u)

)
sin(Nu)du

+
1

2π

∫ π

−π

(
f(x0 − u)− f(x+0 )χ[−π,−δ](u)

)
cos(Nu)du

=
1

2π

∫ π

−π

g(x0, u) sin(Nu)du+
1

2π

∫ π

−π

h(x0, u) cos(Nu)du

= A+B.

Since f ∈ L1(π, π) and sin
(
u
2

)
is bounded in the interval [−π,−δ], we get both g and h are in L1(π, π)

and the integrals A and B are the Fourier coefficients of g and h. Therefore, by the Riemann Lebesgue
Lemma we get that A and B tend to zero as N → ∞. Hence, J1 → 0 as N → ∞. Similar argument
can be used in order to show J4 → 0 as N → ∞. Thus we can choose δ > 0 and N ′ ∈ N such that
|J1|+ |J4| ≤ ϵ

2 .

As for the other two integrals, we use the α-Hölder continuity condition to show |J2|+ |J3| ≤ ϵ
2 .

|J2| =
1

2π

∣∣∣∣ ∫ 0

−δ

(
f(x0 − u)− f(x+0 )

u

)
uDN (u)du

∣∣∣∣
=

1

2π

∣∣∣∣ ∫ 0

−δ

(
f(x0 − u)− f(x+0 )

u

)
u

sin
(
u
2

) sin((N +
1

2

)
u

)
du

∣∣∣∣
≤ 1

2π

∫ 0

−δ

∣∣∣∣ (f(x0 − u)− f(x+0 )

u

)
u

sin
(
u
2

) sin((N +
1

2

)
u

) ∣∣∣∣du
By the α-Hölder continuity condition on f(x) we know that

|f(x)− f(x0)| ≤M1|x− x0|α, if |x− x0| < δ.

Therefore, |f(x0 − u)− f(x0)| ≤M1|x0 − u− x0|α =M1|u|α.

Since we have | sin
((
N + 1

2

)
u
)
| ≤ 1, let |u| < δ to get

∣∣∣∣ u

sin(u
2 )

∣∣∣∣ ≤M3.

Combining these bounds we obtain

|J2| ≤M3

∫ 0

−δ

M1|u|α−1du ≤M

∫ 0

−δ

|u|α−1du. (4.5)

Similarly, we obtain

|J3| ≤M3

∫ δ

0

M2|u|α−1du ≤M

∫ δ

0

|u|α−1du, (4.6)

whereM = max{M3M1,M3M2}.
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Hence, we get

|J2|+ |J3| ≤M

∫ 0

−δ

|u|α−1du+M

∫ δ

0

|u|α−1du

≤ M

2

∫ 0

−δ

|u|α−1du+
M

2

∫ δ

0

|u|α−1du

=
M

2

∫ δ

−δ

|u|α−1du

=M

∫ δ

0

|u|α−1du

=M
|u|α

α

∣∣∣∣∣
δ

0

=
M

α
δα.

(4.7)

To conclude, given ϵ > 0, we can choose δ > 0 and N ′ ∈ N such that for all N ≥ N ′ we get
|SN [f ](x0)− f̄(x0)| < ϵ.

In order to show uniform convergence we need the uniform Riemann Lebesgue Lemma, stated in
Theorem 4.1, and the following theorem.

Theorem 4.3. Suppose f satisfies the uniform α-Hölder continuity condition of order 0 < α ≤ 1 in (a, b).
Then SN [f ] → f uniformly in any interior subinterval [c, d] ⊂ (a, b).

Proof. Let δ < min(c− a, b− d). From (4.7) of the previous proof we get |J2|+ |J3| ≤ M
α δ

α.
Now write J1 as

J1 =
1

2π

∫ −δ

−π

(
f(x0 − u)− f(x+0 )

) sin ((N + 1
2

)
u
)

sin
(
u
2

) du

=
1

2π

∫ −δ

−π

f(x0 − u)
sin
((
N + 1

2

)
u
)

sin
(
u
2

) du− 1

2π

∫ −δ

−π

f(x+0 )
sin
((
N + 1

2

)
u
)

sin
(
u
2

) du.

Since 1

sin(u
2 )

∈ C1[−π,−δ] we can apply the uniform Riemann Lebesgue Lemma with α = −π, β = −δ

and λ = N + 1
2 to get uniform convergence to zero of J1 as N → ∞. According to the same argument

we get J4 converges uniformly to zero as N → ∞.

These convergence results enable us to show that a “general” function g with a jump discontinuity at
the origin exhibits the Gibbs phenomenon. Because it is now sufficient to show the occurrence of the
phenomenon for another simple function (such as the Saw-tooth wave function), in order to conclude
that g also shows this behavior near the origin. To elaborate this result, we consider the following
example.

4.1.1. Jump discontinuity at 0
Suppose g(x) is a piecewise smooth function with a jump at 0 such that the left- and right-limits g(0+)
and g(0−) both exist and are finite.
In order to “remove” the discontinuity at 0 we consider the function h(x) defined as

h(x) = g(x)−
(
g(0+)− g(0−)

π

)
f(x), (4.8)

where f is the Saw-tooth wave function investigated in Chapter 3.
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Now look at the limits as x→ 0+ and as x→ 0−.

lim
x→0+

h(x) = g(0+)−
(
g(0+)− g(0−)

π

)
π

2
=
g(0+)− g(0−)

2

and
lim

x→0−
h(x) = g(0−)−

(
g(0+)− g(0−)

π

)(
−π
2

)
=
g(0+)− g(0−)

2
.

Define
h(0) :=

g(0+)− g(0−)

2
,

then h(x) is continuous at 0, since both left- and right-hand limits exist finite and are equal. Therefore,
the function h(x) satisfies the hypothesis of Theorem 4.2, so we get SN [h](x) converges at 0.
Moreover, by Theorem 4.3 we have uniform convergence in a neighborhood of 0. Therefore, we can
conclude that since f exhibits the Gibbs phenomenon near 0, it must also holds for the function g.

4.1.2. Jump discontinuity at general point
Consider a function g with a jump discontinuity at a general point x = x0 and that is piecewise smooth
everywhere else. Then we can define the function

h(x) =

g(x)−
(

g(x+
0 )−g(x−

0 )
π

)
f(x− x0) if x ̸= x0

g(x+
0 )−g(x−

0 )
2 if x = x0

, (4.9)

in which f(x−x0) is a function known to exhibit the Gibbs phenomenon. Then, we get that the left-hand
limit is equal to the right-hand limit, so we get

lim
x→x+

0

h(x) = lim
x→x−

0

h(x) = h(x0) =
g(x+0 )− g(x−0 )

2
.

Hence, h is continuous at x = x0 and therefore by Theorem 4.2, the partial sum SN [h] converges
uniformly near x0. Since the Gibbs phenomenon occurs in f(x−x0), we conclude from the convergence
results in Subsection 4.1.1 that g(x) displays the Gibbs phenomenon as well at x = x0.

We can use the same argument for finitely many points x1, ..., xj for which g(x) has a jump discontinuity
by defining the function

ĥ(x) =

g(x)−
(∑

j g(x+
j )−g(x−

j )
π

)
f(x− x0) if x ̸= xj

g(x+
j )−g(x−

j )
2 if x = xj

. (4.10)



5
Resolution Gibbs phenomenon

Using Fourier series expansions for approximating functions has proved to be a powerful technique
for simulations of several physical phenomena. However, as we have seen in previous chapters, the
Gibbs phenomenon arises when we approximate a function with a jump discontinuity. Specifically, the
convergence of the Fourier coefficients to zero deteriorates to the first-order and spurious oscillations
develop near the jump discontinuities. The problems that characterize the Gibbs phenomenon are also
present in Fourier spectral methods applied to partial differential equations with discontinuous functions
[8].

In this chapter we present techniques that can significantly reduce the effects of the Gibbs phenomenon.
In Section 5.1 we elaborate the problem of the slow convergence rate of the Fourier coefficients in
more detail. In Section 5.2 we review the use of filters in Fourier expansions of functions with jump
discontinuities. However, filtering does not completely remove the Gibbs phenomenon. In order to
completely remove the Gibbs phenomenon, one can use spectral reprojection methods. The general
idea of these reprojection methods is that we can reconstruct a rapidly converging series from the
knowledge of the Fourier coefficients by using different expansion functions. Thus the storage of the
information (in Fourier coefficients) remains the same, but the retrieval of the information should be
done in a different basis. This method was first introduced in [6] and will be explained in more detail in
Section 5.3.

5.1. Convergence rate
One of the manifestations of the Gibbs phenomenon is that the Fourier coefficients decay slowly. This
can be explained by the global nature of the approximation: the Fourier coefficients of a 2π-periodic,
piecewise continuous function f with jump discontinuities in the interval [−π, π] are computed by

f̂(n) =
1

2π

∫ π

−π

f(t)e−intdt. (5.1)

Hence, they are obtained by integration over the entire domain, including the points of discontinuity.

In the following theorem it becomes clear that we get first-order convergence of the Fourier coefficients
when we consider 2π-periodic piecewise continuous functions.

Theorem 5.1. Let f be 2π-periodic and piecewise continuous, then

f̂(n) = O
(

1

|n|

)
, |n| → ∞.

22
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Proof. Let a0 = −π < a1 < a2 < ... < am = π be a partition of [−π, π] such that f is piecewise
continuous on (aj , aj+1) and the left- and right-hand limits exist finite for all j = 0, ...,m− 1.
Let n ∈ Z, n ̸= 0. Then we get

f̂(n) =
1

2π

∫ π

−π

f(t)e−intdt =
1

2π

m−1∑
j=0

∫ aj+1

aj

f(t)e−intdt. (5.2)

Now consider f on a certain interval [aj , aj+1] for 0 ≤ j ≤ n− 1. Define f̃j : [aj , aj+1] → C as

f̃j(t) =


f(t) for aj < t < aj+1

limt→a+
j
f(t) for t = aj

limt→a−
j+1

f(t) for t = aj+1

, (5.3)

then f̃j is a continuous function on [aj , aj+1]. Therefore, by using integration by parts we get∫ aj+1

aj

f(t)e−intdt =

∫ aj+1

aj

f̃j(t)e
−intdt

= − 1

in
f̃j(t)e

−int

∣∣∣∣t=aj+1

t=aj

+
1

in

∫ aj+1

aj

f̃ ′j(t)e
−intdt

= − 1

in

[
f̃j(aj+1)e

−inaj+1 − f̃j(aj)e
−inaj

]
+

1

in

∫ aj+1

aj

f̃ ′j(t)e
−intdt

=
1

in

∫ aj+1

aj

f ′(t)e−intdt− 1

in

[
f(a−j+1)e

−inaj+1 − f(a+j )e
−inaj

]
.

(5.4)

If we look at the first part we get a finite integral and in the second part we get a constant. Thus, we
can estimate this integral with∣∣∣∣ ∫ aj+1

aj

f(t)e−intdt

∣∣∣∣ ≤ 1

|n|

∫ aj+1

aj

|f ′(t)|dt+ 1

|n|
(
|f(a−j+1)|+ |f(a+j )|

)
. (5.5)

Consequently, when we put these estimates together we obtain

|f̂(n)| ≤ 1

2π

1

|n|

∫ π

−π

|f ′(t)|dt+ 1

2π

1

|n|

m−1∑
j=0

(
|f(a−j+1)|+ |f(a+j )|

)
. (5.6)

Hence, we get |f̂(n)| ≤ 1
|n| · C, where C is a constant.

From this we can conclude that |f̂(n)| = O
(

1
|n|

)
for |n| → ∞

Thus we have first-order convergence of Fourier coefficients away from the jump discontinuity and
non-uniform convergence (oscillating behaviour) near the jump discontinuity.
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5.2. Filtering methods
Filtering is a classical tool for reducing the effect of the Gibbs phenomenon in Fourier expansions. By
using a filter we alter the expansion coefficients so that they decay faster. While this will not improve the
non-uniform convergence near the jump discontinuity, a well chosen filter can improve the convergence
rate away from the jump discontinuity.

We define a filter of order q, where we use the notation as in [8].

Definition 5.1. A filter of order q is a real and even function σ(η) ∈ Cq−1(R)with the following properties:

(a) σ(η) = 0 for |η| > 1

(b) σ(0) = 1, σ(1) = 0

(c) σ(m)(0) = σ(m)(1) = 0 for all m ∈ [1, ..., q − 1].

Now assume the following situation: we are given the first 2N + 1 Fourier coefficients of a piecewise
analytic function f(x) that has a jump discontinuity at x = ξ. The classical approximation based on the
Fourier expansion would be the N th partial Fourier sum

SN [f ](x) =

N∑
k=−N

f̂(k)eikx. (5.7)

This partial Fourier sum approximation yields the Gibbs phenomenon, so first-order convergence away
from the jump discontinuity at x = ξ and oscillations near the jump discontinuity. To improve the
convergence rate of (5.7), we use the filter σ

(
|k|
N

)
.

Applying a filter can be seen as modifying the classical Fourier sum (5.7) by multiplying the Fourier
coefficients with a Fourier space filter such that we obtain the modified approximation

Sσ
N [f ](x) =

N∑
k=−N

σ

(
|k|
N

)
f̂(k)eikx. (5.8)

Now, there are two important observations that can be made. First of all, it is crucial that the filtered
approximation is a continuous function in order to improve the convergence rate.
Secondly, we can rewrite the filtered approximation (5.8) to an infinite sum by using the following prop-
erty of the filter: σ(η) = 0 for η = |k|

N ≥ 1. Hence, we obtain

Sσ
N [f ](x) =

∞∑
k=−∞

σ

(
|k|
N

)
f̂(k)eikx. (5.9)

Since now the effect of truncating the amount of Fourier coefficients used is removed, the truncation
error will vanish. This means that we have obtained a fast decay of the Fourier coefficients when we
use a filtered approximation.

More formally, this can be seen as a convolution

Sσ
N [f ](x) =

1

2π

∫ π

−π

S(x− y)f(y)dy, (5.10)

where the filter function is given by

S(z) =

∞∑
k=−∞

σ

(
|k|
N

)
eikz. (5.11)
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Proof. By direct computation, we get

Sσ
N [f ](x) =

1

2π

∫ π

−π

S(x− y)f(y)dy

=
1

2π

∫ π

−π

[ ∞∑
k=−∞

σ

(
|k|
N

)
eik(x−y)

]
f(y)dy

=

∞∑
k=−∞

σ

(
|k|
N

)[
1

2π

∫ π

−π

eik(x−y)f(y)dy

]

=

∞∑
k=−∞

σ

(
|k|
N

)[
1

2π

∫ π

−π

e−ikyf(y)dy

]
eikx

=

∞∑
k=−∞

σ

(
|k|
N

)
f̂(k)eikx.

(5.12)

Since f(x) is a piecewise Cp(R) function with a single jump discontinuity at x = ξ, we get that the
following theorem holds.

Theorem 5.2. The pointwise difference between the filtered approximation fσN and the function f(x)
away from the discontinuity (so x ̸= ξ) is bounded by

|f(x)− Sσ
N [f ](x)| ≤ C1

1

Np−1

1

d(x)p−1
K(f) + C2

√
N

Np

(∫ π

−π

|f (p)|2dx
) 1

2

, (5.13)

where d(x) = |x− ξ| is defined as the distance between a point x ∈ [−π, π] and the discontinuity, and

K(f) =

p−1∑
l=0

d(x)l|f (l)(ξ+)− f (l)(ξ−)|
∫ ∞

−∞
|G(p−l)

l (η)|dη

with
Gl(η) =

σ(η)− 1

ηl
.

This bound is obtained by estimating the truncation error and regularization error of the approximation
and the detailed formal proof can be found in [6].

To conclude, filtering improves the convergence rate away from the discontinuity (d(x) > 0), since
all terms can be bounded by O(N1−p) depending only on the regularity of the piecewise continuous
function and the order of the filter. However, when we approach the discontinuity at x = ξ, the ac-
curacy of the approximation decreases as d(x) → 0 and thus it fails to completely remove the Gibbs
phenomenon.
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5.3. Spectral reprojection methods
If the underlying function is piecewise analytic, the Gibbs phenomenon can be completely removed by
re-expanding its Fourier partial sum approximation (5.7) using a different set of basis functions.

In this section we will show that this is indeed true for a function f(x) ∈ L2[−1, 1] that is analytic on
some subinterval [a, b] ⊂ [−1, 1].
Let {Ψk(x)} be an orthonormal family under some inner product (·, ·). Assume that the inner product is
bounded |(f,Ψk)| ≤ C by some constantC independent of k. Furthermore, denote the finite continuous
expansion in this orthonormal basis by

f̃N (x) =

N∑
k=0

(f,Ψk)Ψk(x) (5.14)

and assume this is a good approximation of the function f(x) almost everywhere. Thus

lim
N→∞

|f(x)− f̃N (x)| = 0, (5.15)

almost everywhere in x ∈ [−1, 1].

Due to the global nature of the expansion, the fact that the coefficients are computed over the entire
domain, the approximation inside the analytic sub-interval [a, b] converges slowly if there is any jump
discontinuity outside this interval.
However, under certain conditions we will show that it is possible to get a higher order approximation of
f(x) in the interval [a, b]. This can be done by re-expanding f̃N (x) in a so-called “Gibbs complementary
family” basis.

First of all, we use the linear transformation of x ∈ [a, b] to ξ ∈ [−1, 1].

ξ = −1 + 2

(
x− a

b− a

)
,

such that if a ≤ x ≤ b, then −1 ≤ ξ ≤ 1.

Now, consider the re-expansion of f̃N (x) by using a different orthonormal family of functions {ϕλk}
defined in an interval [a, b] that is analytic and some inner product <,>λ.

fλm(x) =

m∑
k=0

< f̃N (x), ϕλk >λ ϕ
λ
k(ξ(x)), (5.16)

where the family {ϕλk} is orthonormal under the inner product <,>λ. Then this new expansion fλm(x)
converges exponentially fast in the interval [a, b] if the family {ϕλk} is Gibbs complementary to the family
{Ψk(x)}. Where we consider the definition of Gibbs complementary from [8].

Definition 5.2. The family {ϕλk} is Gibbs complementary to the family {Ψk(x)} if the following three
conditions hold:

(i) Orthonormality
< ϕλk(ξ), ϕ

λ
l (ξ) >λ= δkl

for any fixed λ.
(ii) Spectral convergence

The expansion of a function g(ξ) which is analytic in −1 ≤ ξ ≤ 1, in the basis ϕλk(ξ) converges
exponentially fast with λ = βm (λ proportional to N ). In other words,

max
−1≤ξ≤1

∣∣∣∣g(ξ)− m∑
k=0

< g, ϕλk >λ ϕ
λ
k(ξ(x))

∣∣∣∣ ≤ e−q1λ, q1 > 0.

(iii) The Gibbs condition
There exists a number β < 1 such that if λ is proportional to N we have∣∣∣∣ < ϕλl (ξ),Ψk(x(ξ)) >λ

∣∣∣∣ max
−1≤ξ≤1

∣∣∣∣ϕλl (ξ)∣∣∣∣ ≤ (αNk
)λ

, k > N, l ≤ λ, α < 1.
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Orthonormality makes sure to avoid redundancy. Thus to describe a function with only a small amount
of coefficients. The spectral convergence condition ensures that the maximum difference between the
actual function and the approximation converges exponentially. In other words, the “new” approximation
does not exhibit the Gibbs phenomenon. Finally, theGibbs conditionmakes sure that the new projection
basis can contain all the necessary information about the function that needs to be approximated. This
means that we can project the high modes of the basis {Ψk} (with k > N ) on the low modes of the
Gibbs complementary family ϕλl (with small l).

To conclude, a slowly converging series

f̃N (x) =

N∑
k=0

(f,Ψk)Ψk(x), (5.17)

can still yield a rapidly converging approximation to f(x) if one can find another reprojection basis that
satisfies the above three conditions. Hence, given the locations of the jump discontinuities, we can
reconstruct partially analytic functions using spectral reprojection methods.

An example of a Gibbs complementary family are the Gegenbauer polynomials. In the next chapter it
will be demonstrated that any Fourier approximation can be re-expanded in the Gegenbauer basis. This
method is known as the Gegenbauer reconstruction method and the newly constructed approximation
converges exponentially.



6
Gegenbauer Reconstruction Method

As we have seen before, piecewise analytic functions exhibit the Gibbs phenomenon, resulting in os-
cillations near the “jumps” and only first-order accuracy away from the jump discontinuities. One way
to reduce the Gibbs phenomenon is to reproject the Fourier series on another set of basis functions. In
this chapter we will discuss an example of such a reprojection method: the Gegenbauer reconstruction
method.

First of all, we will show that the Gegenbauer reconstruction method can remove the Gibbs phe-
nomenon for an analytic, non-periodic function f ∈ L2[−1, 1] with a single jump discontinuity. After
that, we will summarize this result in the main resolution theorem. Finally, we will look at the case
of multiple jump discontinuities (as we have seen in Chapter 4) by considering an analytic function
f ∈ L2[−1, 1] that is analytic on a sub-interval [a, b] ⊂ [−1, 1].

Throughout this chapter we will use N to denote the number of Fourier coefficients. Furthermore, m
denotes the polynomial order of the Gegenbauer reconstruction, thus m + 1 will be the number of
Gegenbauer coefficients used in the “new” approximation and λ is the parameter that determines the
weight function of the Gegenbauer polynomials.

6.1. Resolution using Gegenbauer polynomials
The Gegenbauer transform can be seen as a special case of the Fourier transform, which is a projection
on a set of orthogonal basis functions. The Gegenbauer projection uses Gegenbauer polynomials
instead of the functions eint (in Fourier expansion), as a basis.

6.1.1. Gegenbauer polynomials
The Gegenbauer polynomials Cλ

n(x) are solutions to the differential equation

(1− x2)y′′ − 2(λ+ 1)xy′ + n(n+ 2λ)y = 0. (6.1)

They are defined as

Definition 6.1. The Gegenbauer polynomials Cλ
n(x) for λ ≥ 0 are the polynomial of order n that satisfy∫ 1

−1

(1− x2)λ−
1
2Cλ

k (x)C
λ
n(x)dx = 0 for k ̸= n,

with normalization
Cλ

n(1) =
Γ(n+ 2λ)

n!Γ(2λ)
.

28
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If we consider a function f(x) on the interval [−1, 1], we define its Gegenbauer coefficients as

f̂λl (x) =
1

hλl

∫ 1

−1

(1− x2)λ−
1
2 f(x)Cλ

l (x)dx, (6.2)

with
hλl = π

1
2Cλ

n(1)
Γ
(
λ+ 1

2

)
n!Γ(λ)(l + λ)

. (6.3)

Furthermore, we define the truncated Gegenbauer series expansion of f(x) based on the first m + 1
terms as

Gλ
m(f)(x) :=

m∑
l=0

f̂λl (x)C
λ
l (x). (6.4)

Hence, the Gegenbauer polynomials are polynomials of order m which are orthogonal with respect to
their weight function (1− x2)λ−

1
2 in the interval [−1, 1], i.e.

∫ 1

−1

(1− x2)λ−
1
2 f(x)Cλ

k (x)C
λ
l (x)dx = δk,lh

λ
l . (6.5)

The Gegenbauer series Gλ
m has two parameters;m describes the polynomial order of the Gegenbauer

expansion and the parameter λ determines the weight function. These parameters play an important
role in estimating the truncation and regularization error of the Gegenbauer approximation.

6.1.2. Procedure
Let f(x) ∈ L2[−1, 1] be an arbitrary function. Assume that the first 2N +1 Fourier coefficients f̂(n) are
given, thus SN [f ](x) as defined in (2.5) is known.
The idea is to construct an exponential convergent approximation by using a Gegenbauer expansion
based on the information that is contained in the first 2N + 1 Fourier coefficients. This procedure
consists of two steps.

Step 1:
We want to recover the firstm+1 Gegenbauer coefficients, defined as in (6.2). Since the function f(x)
is unknown, we only have an approximation of the Gegenbauer coefficients f̂λl of the original function.
This approximation is denoted by ĝλl and can be obtained by using the partial Fourier sum

ĝλl =
1

hλl

∫ 1

−1

(1− x2)λ−
1
2SN [f ](x)Cλ

l (x)dx. (6.6)

Step 2:
We want to construct a Gegenbauer expansion from the obtained Gegenbauer coefficients ĝλl in the
previous step. Assume that f(x) is an analytic function on [−1, 1] satisfying the following assumption.

Assumption 6.1. There exist constants ρ ≥ 1 and C(ρ) such that, for every k ≥ 0,

max
−1≤x≤1

∣∣∣∣dkfdxk
(x)

∣∣∣∣ ≤ C(ρ)
k!

ρk
,

where ρ is the distance from [−1, 1] to the nearest singularity of f(x) in the complex plane.

Then we can denote Gλ
m(f)(x) as the Gegenbauer expansion based on the first m + 1 Gegenbauer

coefficients ĝλl

Gλ
m(f)(x) =

m∑
k=0

ĝλl C
λ
l (x). (6.7)
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6.1.3. Exponential convergence
Now we must show that we have exponential accuracy in obtaining the Gegenbauer coefficients during
the first step, provided thatm and λ are proportional to N . Furthermore, we need to show that the con-
structed Gegenbauer expansion in step 2 also converges exponentially with N , given that the original
function is analytic, but contains a single jump discontinuity.

Let Fλ
m be the expansion of the original function f(x) into m-th degree Gegenbauer polynomials:

Fλ
m =

m∑
l=0

f̂λl C
λ
l (x), (6.8)

where we defined f̂λl as the Gegenbauer coefficients of the original function.

Truncation error
During the first step of the procedure we obtained the following truncation error Te.

Te := ||Fλ
m −Gλ

m|| = max
−1≤x≤1

∣∣∣∣ m∑
l=0

(
f̂λl − ĝλl

)
Cλ

l (x)

∣∣∣∣ (6.9)

The truncation error is defined as the difference between the Gegenbauer expansion (withm+1 terms)
of the function f(x) and the truncated Fouries series SN [f ](x). Thus it measures the error in the finite
Gegenbauer expansion due to truncating the Fourier series.

The following theorem from [7] shows that if both λ andm grow linearly with N the truncation error can
be made exponentially small.

Theorem 6.1 (Exponential decay of truncation error). Let f(x) be a function in L2[−1, 1], and its Fourier
coefficients f̂(n),−N ≤ n ≤ N defined as in (5.1). Let f̂λl be the Gegenbauer coefficients of f(x) as
defined in (6.2) and ĝλl be the Gegenbauer coefficients of the partial Fourier sum SN [f ](x) defined in
(6.6).
Then, if λ = αN and m = βN for α, β > 0, the truncation error decays exponentially with N, i.e.

Te(αN, βN,N) = max
−1≤x≤1

∣∣∣∣ m∑
l=0

(
f̂λl − ĝλl

)
Cλ

l (x)

∣∣∣∣ ≤ AN2qNT ,

with qT = (β+2α)β+2α

ββ(2eπα)α
.

Regularization error
The regularization error Re originates from the second step of the procedure. Thus we consider a
function f(x) analytic on [−1, 1] and satisfying the assumption (6.1).

Re := ||f − Fλ
m|| = max

−1≤x≤1

∣∣∣∣f(x)− m∑
l=0

f̂λl C
λ
l (x)

∣∣∣∣ (6.10)

The regularization error can be estimated in the maximum norm by the following theorem from [7].

Theorem 6.2 (Exponential decay of regularization error). Let f(x) be an analytic function on [−1, 1]

satisfying assumption (6.1). Let f̂λl , 0 ≤ l ≤ m be the Gegenbauer coefficients of f(x) as defined in
(6.2). Furthermore, if λ = αN and m = βN for α, β > 0. Then

Re(αN, βN,N) = max
−1≤x≤1

∣∣∣∣f(x)− m∑
l=0

f̂λl C
λ
l (x)

∣∣∣∣ ≤ BqNR ,

where qR = (β+2α)β+2α

αα2β+2α(β+α)β+α .

To achieve exponential decay of the truncation error and regularization error, both the degree m and
the weight parameter λ have to be selected proportional to N .



6.2. Main Resolution theorem 31

6.2. Main Resolution theorem
To summarize, with properly chosen parameters we can reconstruct an analytic (but non-periodic)
function with exponential accuracy by using the Gegenbauer reconstruction method. Thus, we can
construct an exponentially convergent approximation to an analytic, non-periodic function, from its first
2N + 1 Fourier coefficients.

This can be done by the procedure described in Subsection 6.1.2. In Subsection 6.1.3 we showed
this approximation is exponentially accurate and thus converges to the true coefficients provided that λ
grows linearly withN . Furthermore, these coefficients can be used to construct the partial Gegenbauer
expansion which is shown to converge exponentially to f(x). These results can be summarized in the
following main resolution theorem about the removal of the Gibbs phenomenon.

Theorem 6.3 (Main resolution theorem). Consider an analytic and non-periodic function f(x) on [−1, 1],
satisfying

max
−1≤x≤1

∣∣∣∣dkfdxk
(x)

∣∣∣∣ ≤ C(ρ)
k!

ρk
, ρ ≥ 1.

Assume that the first 2N + 1 Fourier coefficients f̂(n) are known.
Let ĝλl , 0 ≤ l ≤ m, be the Gegenbauer coefficients of SN [f ](x) =

∑N
n=−N f̂(n)einx.

Then, for λ = αN and m = βN with α, β > 0

max
−1≤x≤1

∣∣∣∣f(x)− m∑
l=0

ĝλl C
λ
l (x)

∣∣∣∣ ≤ AN2qNT +BqNR ,

where
qT =

(β + 2α)β+2α

ββ(2eπα)α
< 1, qR =

(β + 2α)β+2α

αα2β+2α(β + α)β+α
< 1.

Proof. The proof of exponential convergence involves considering the distance between the original
function f(x) and its approximation based on the Gegenbauer series Gλ

m(f)(x).
More formally,

||f −Gλ
m|| ≤ ||f − Fλ

m||+ ||Fλ
m −Gλ

m||.
This equation can be rewritten in terms of the truncation error and regularization error as defined in
(6.9) and (6.10) to obtain

max
−1≤x≤1

∣∣∣∣f(x)− m∑
l=0

ĝλl C
λ
l (x)

∣∣∣∣ ≤ max
−1≤x≤1

∣∣∣∣f(x)− m∑
l=0

f̂λl C
λ
l (x)

∣∣∣∣+ max
−1≤x≤1

∣∣∣∣ m∑
l=0

(
f̂λl − ĝλl

)
Cλ

l (x)

∣∣∣∣
≤ BqNR +AN2qNT .

The first term is the regularization error and the second term describes the truncation error. Both errors
are bounded, as can be seen in Theorem 6.2 and Theorem 6.1 respectively.

So far we can remove Gibbs oscillations from non-periodic analytic functions, thus handling a single
jump discontinuity. However, what if the function has multiple jump discontinuities?

6.2.1. Reconstruction for piecewise analytic functions
For piecewise analytic functions one can project each analytic sub-interval on another basis and then
combine these parts to restore the function on the whole interval. Let f(x) be such a function in
L2[−1, 1], which is analytic on a sub-interval [a, b] ⊂ [−1, 1].
Just as in Section 5.3, we can use the linear transformation of x ∈ [a, b] to ξ ∈ [−1, 1] and apply the
Gegenbauer projection Gλ

m(SN [f ])(ξ(x)) in order to get the following expression for the Gegenbauer
coefficients

g̃λl =
1

hλl

∫ 1

−1

(1− ξ2)λ−
1
2SN [f ](ξ(x))Cλ

l (ξ)dξ. (6.11)

Hence, following the same procedure, we can obtain the Gegenbauer coefficients g̃λl by evaluating
these integrals. Computing these integrals is more costly, but the idea remains the same: computing
the Gegenbauer coefficients by using the given truncated Fourier series.
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6.2.2. Gegenbauer reconstruction of step function
Consider the step function defined on [−1, 1] of the form f(x) = 1

2L for x ∈ [−L,L]. To illustrate the
Gegenbauer reconstruction compared to the Fourier reconstruction we will look at the approximation
of this function using both methods. Furthermore, we will consider different values of the parameter m
to show the importance of choosing the right amount of coefficients used in the Gegenbauer expansion.

In Figure 6.1, it can be seen that if the number of Fourier coefficients N (proportional to m) is too low,
the reconstruction will not be accurate. However, if we take m too high, the reconstruction will still
exhibit some of the Gibbs phenomenon as can be seen in Figure 6.2.

Figure 6.1: Gegenbauer reconstruction with not enough Fourier coefficients. Figure from [11].

Figure 6.2: Gegenbauer reconstruction with m too high. Figure from [11].
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To conclude, m has to have a value for which both the truncation error and regularization error decay
exponentially. Figure 6.3 shows that if m is chosen carefully, then the Gegenbauer reconstruction
indeed will be a good approximation of the original function.

Figure 6.3: Gegenbauer reconstruction with parameters well chosen. Figure from [11].



7
Application to MRI

One of the most common applications of Fourier analysis is signal processing. The Fourier trans-
form is often used to decompose a signal into individual simple sine and cosine waves with varying
combinations of frequencies and amplitudes. By adding together all these simpler waves with their cor-
responding Fourier coefficients, the Fourier series, we can reconstruct the original signal. This enables
us to approximate an infinite signal in the time domain with a finite amount of Fourier coefficients in the
frequency domain.

7.1. Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) is a noninvasive procedure that provides discrete data about the
human body. With regard to MRI, the signal we wish to decompose is the MR echo containing the
frequency-and phase-encoded spatial information necessary to construct an image.

This signal is digitized, decomposed by the Fourier transform, and entered into a two-dimensional
Fourier space, the so-called ’k-space’, that organizes spatial frequency and amplitude information [4].
One pixel in k-space corresponds to a single, specific spatial frequency. The two-dimensional inverse
Fourier transform of the k-space combines all these spatial frequencies to obtain an image.

The filtered Fourier reconstruction method is mostly used to reconstruct the image. This Fourier ap-
proximation is commonly used because of its exponentially and uniformly converging approximation for
images without discontinuities (or edges). However, if the image contains discontinuities, then spuri-
ous oscillations will appear in the reconstruction at the discontinuities and the overall convergence rate
will be significantly reduced. This behaviour can be seen in the image and is called the Gibbs ringing
artifact.

7.1.1. Gibbs ringing artifact
Gibbs artifact is an imperfect approximation of sharp edges by a Fourier series lacking an adequate
number of high-frequency terms. In MRI, this is commonly referred to as the “ringing artifact”. This
artifact appears due to the many different tissues of the body present in each scan. It can be seen as
an oscillation appearing radially around the borders of the image discontinuities. In axial brain imaging,
the Gibbs ringing artifact manifests itself at the boundaries of the tissues as can be seen in Figure 7.1,
making it difficult to determine the structure of the brain tissue.
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Figure 7.1: Gibbs artifact. Axial gradient-echo image of brain obtained at 256 x 160 matrix. Gibbs artifact near inner table of
calvarium manifests as subtle hypointense lines overlying cortex (arrows), image from [4].

7.2. Resolution to Gibbs ringing artifact
In Neural imaging, there is a difference between high-signal fat in the scalp and low-signal in the scull.
Therefore the underlying function has discontinuities at tissue boundaries and consequently the Gibbs
ringing artifact will occur. Hence, we get oscillations near tissue boundaries and the overall rate of
convergence will be reduced to first-order. To demonstrate a resolution of the Gibbs ringing artifact, we
will be looking at the two-dimensional Fourier approximation of a piecewise analytic periodic function
on [−1, 1]× [−1, 1] that is sampled on equally spaced discrete data points xj = j−N

N for j = 0, ..., 2N−1.

The two-dimensional Fourier approximation is given by

SN [f ](x, y) =

N∑
k=−N

N∑
l=−N

f̂k,le
i(kx+ly), (7.1)

where we define the Fourier coefficients as

f̂k,l =
1

4N2ckcl

2N−1∑
j=−0

2N−1∑
h=−0

f(xj , yh)e
−i(kxj+lyh). (7.2)

7.2.1. Filtered Fourier reconstruction
As noted in Section 5.2 a filter can increase the rate of decay of the Fourier coefficients away from the
discontinuity. The filtered Fourier reconstruction applied to MRI is efficient and has low computational
cost [1].

The two-dimensional filtered Fourier reconstruction is computed as

Sσ
N [f ](x, y) =

N∑
k=−N

N∑
l=−N

σkσlf̂k,le
i(kx+ly), (7.3)

where σk = σ
(

|k|
N

)
and σl = σ

(
|l|
N

)
are the filter functions used.

However, this filtered Fourier reconstruction still exhibits oscillating behavior near the tissue boundaries.
Thus, we will consider applying a hybrid method in which we combine the efficiency of filtered Fourier
in regions away from discontinuities and the high-resolution of Gegenbauer reconstruction near the
discontinuities.
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7.2.2. Hybrid Gegenbauer method
In Chapter 6 we have seen that the Gegenbauer reconstruction method clearly has a higher resolution
near jump discontinuities compared to the (filtered) Fourier approximation. However, it is considerably
more computationally costly than the filtered Fourier reconstruction [1].

In order to perform the hybrid Gegenbauer method we must be able to locate the discontinuities and
their corresponding jump values.Therefore an edge-detection method is necessary to determine the
analytic intervals in which the images can be reconstructed, see for example [1].

Let both x and y be close to the edges of the interval, so near the discontinuities, then we apply the
Gegenbauer reconstruction procedure in both directions.

The Gegenbauer coefficients in two dimensions can be computed as

ĝλk,l =
1

hλkh
λ
l

∫ 1

−1

∫ 1

−1

(1− η2x)
λ− 1

2 (1− η2y)
λ− 1

2SN [f ] (x(ηx), y(ηy))C
λ
k (ηx)C

λ
l (ηy)dηxηy, (7.4)

where ηx and ηy are the local variables in [−1, 1] defined by x(ηx) = εxηx + δx and y(ηy) = εyηy + δy

with εx = (bx−ax)
2 , εy =

(by−ay)
2 and δx = (bx+ax)

2 , δy =
(by+ay)

2 .
TheGegenbauer coefficients are computed using the two-dimensional Fourier partial sum Sσ

N [f ](x(ηx), y(ηy))
as can be computed in (7.1).

Furthermore, we can construct the two-dimensional Gegenbauer series. For simplicity, assume we
choose λ = λx = λy and m = mx = my. Then using the Gegenbauer reconstruction methods in both
directions we get

Gλ,θ
m (f)(x, y) =

m∑
k=0

m∑
l=0

ĝλk,l(x)C
λ
k (x)C

λ
l (y). (7.5)

Consider a piecewise analytic function f(x) that is analytic inside the interval [ax, bx] × [ay, by]. Then
the hybrid Gegenbauer method is given by

hσ,λ,θm (x, y) =


Gλ,θ

m (f)(x, y) if ax ≤ x ≤ ax + ρ, ay ≤ y ≤ ay + ρ

or bx − ρ ≤ x ≤ bx, by − ρ ≤ y ≤ by

Sσ
N [f ](x, y) if ax + ρ < x < bx − ρ and ay + ρ < y < by − ρ

, (7.6)

where 0 ≤ ρ ≤ (b−a)
2 is a neighborhood parameter.

Thus, inside the analytic interval we will use the computational efficient two-dimensional filtered Fourier
partial sum and in the neighborhood of a jump discontinuity we use the high-resolution Gegenbauer
method. To conclude, it is possible to improve the accuracy of reconstruction in MRI by using the hybrid
Gegenbauer method.



8
Conclusion

In this report, we showed the existence of the Gibbs phenomenon for the Saw-tooth wave function
and computed the size of the overshoot and undershoot near the jump discontinuities by evaluating
the sine integral function. In particular, we observed that this overshoot and undershoot will never
decrease below 9% of the height of the “jump”.

Using the convergence result from the uniform Riemann Lesbesgue Lemma, we showed that any piece-
wise smooth function with a jump discontinuity at the origin exhibits this phenomenon. After that, we
generalized this result for a function with a jump discontinuity at a general point.
Hence, we showed that any piecewise smooth function with a finite number of jump discontinuities
exhibits the Gibbs phenomenon.

The Gibbs phenomenon arises when we approximate a function with a jump discontinuity. Specifically,
the convergence of the Fourier coefficients to zero deteriorates to the first order and spurious oscil-
lations develop near the jump discontinuities. In the second part of this thesis we discussed several
techniques to remove these oscillations and improve the convergence rate.
Filtering methods can improve the convergence rate away from the jump discontinuities, however this
will not improve the non-uniform convergence near the “jumps”. In order to completely remove the
Gibbs phenomenon we need to re-expand the Fourier approximation using a different set of basis func-
tions. Spectral reprojection methods can be used to reconstruct a rapidly converging series from the
knowledge of the Fourier coefficients by using a “Gibbs complementary family” of expansion functions.
These reprojection methods are very suitable for recovering piecewise analytic functions from their
Fourier coefficients with great accuracy up to the jump discontinuities.
For example, we have seen that the Gegenbauer reconstruction method can be used to reconstruct an
exponentially convergent approximation of a piecewise analytic function.

Finally, we looked at the occurrence of Gibbs ringing artifact in Magnetic Resonance Imaging. It has
been shown that it is possible to improve the accuracy of image reconstruction by using the hybrid
Gegenbauer method. This method combines the efficiency of the filtered Fourier reconstruction in
regions away from the tissue boundaries and the high-resolution of the Gegenbauer reconstruction
near the tissue boundaries.

Discussion and further research
It is possible to study other possible Gibbs complementary basis functions that can further improve
the accuracy. In particular, one can try to address the weaknesses of the Gegenbauer reconstruction
method that consist of round-off errors and the appearance of the generalized Runge phenomenon.
In addition, one can demonstrate the improvement of the Gibbs ringing artifact in medical imaging for
the MRI by simulating brain phantoms.
Furthermore, different edge-detection methods, necessary in order to apply the hybrid Gegenbauer
method in MRI, could be reviewed.
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A
Appendix

A.1. Riemann-Lebesgue Lemma
Lemma A.1. Let −∞ ≤ a < b ≤ ∞ and f ∈ L1(a, b). Then

lim
|λ|→∞

∫ b

a

f(x)e−iλtdt = 0. (A.1)

In particular, if f ∈ L1(T), then f̂(n) → 0 as |n| → ∞.

Proof. For all λ ∈ R we consider

J(f, λ) =
1

2π

∫ π

−π

f(t)e−iλtdt.

Observe that J(f, λ) is well-defined since we have

|J(f, λ)| ≤ 1

2π

∫ π

−π

|f(t)||e−iλt|dt = ||f ||1 <∞.

The structure of the proof consists of three parts. First, the statement (A.1) will be proven for character-
istic functions. Secondly, simple functions will be considered and finally the density of simple functions
in L1(−π, π) will be used in order to proof (A.1) for functions f ∈ L1(−π, π).

Let α, β ∈ R with −π < α < β ≤ π, and denote

1[α,β)(t) =

{
1 if t ∈ [α, β)

0 else
.

Then for λ ̸= 0, we have

J(1[α,β), λ) =
1

2π

∫ π

−π

1[α,β)(t)e
−iλtdt =

1

2π

∫ β

α

e−iλtdt = − 1

2πiλ

(
e−iλβ − e−iλα

)
. (A.2)

Thus if we take the limit |λ| → ∞ we get

lim
|λ|→∞

|J(1[α,β), λ)| = lim
|λ|→∞

|e−iλβ − e−iλα|
2π|λ|

≤ lim
|λ|→∞

2

2π|λ|

= lim
|λ|→∞

1

π|λ|
= 0.

(A.3)
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Hence, we proved the statement (A.1) for characteristic functions.

Consider step functions defined as

s =

n∑
i=1

γi1[αi,βi),

for −π < αi < βi ≤ π. By linearity of the integral, it follows from (A.3) that

lim
|λ|→∞

J(s, λ) =
n∑

i=1

γiJ
(
1[αi,βi), λ

)
= 0. (A.4)

Finally, let f ∈ L1(−π, π).
Since step functions are dense in L1(−π, π) we get for all ϵ > 0 there exists sϵ =

∑n
i=1 γi1[αi,βi) such

that ||f − sϵ||1 < ϵ
2 . Furthermore, from the second part of the proof (A.4) we know there exists δϵ > 0

such that for all |λ| > δϵ we have |J(s, λ)| < ϵ
2 .

Combining these two results we get that for all |λ| > δϵ, we have

|J(f, λ)| ≤ |J(f − s, λ)|+ |J(s, λ)|
≤ ||f − s||1 + |J(s, λ)|

<
ϵ

2
+
ϵ

2
= ϵ.

(A.5)

To conclude, we proved that
lim

|λ|→∞
J(f, λ) = 0.

A.2. Additional theorem for proving the Gibbs phenomenon
Theorem A.1. For 0 ≤ l ≤

[
1
2 (n− 1)

]
− 1, we have

ϕn

(
2l + 1

n+ 1
π

)
> ϕn

(
2l + 3

n+ 1
π

)
.

Proof. Define
ψ±(t) = ϕn

(
(2l + 2)π ± t

n+ 1

)
(A.6)

and
ω(t) = ψ−(t)− ψ−(t− 2π)− ψ+(t) + ψ+(t+ 2π). (A.7)

To show ω(t) is strictly increasing for 0 ≤ t ≤ π, we consider

dω

dt
(t) =

sin
(

1
n+1π

)
sin(t)

n+ 1

 1

cos
(

1
n+1π

)
− cos

(
(2l+3)π−t

n+1

) − 1

cos
(

1
n+1π

)
− cos

(
(2l+3)π+t

n+1

)
 (A.8)

The full derivation of this equation can be found below in (??).
If n is even, the condition 0 ≤ l ≤

[
1
2 (n− 1)

]
− 1 implies 2l + 3 ≤ n− 1.

If n is odd, the condition implies 2l + 3 ≤ n.
Hence, we get

cos

(
1

n+ 1
π

)
> cos

(
(2l + 3)π − t

n+ 1

)
> cos

(
(2l + 3)π + t

n+ 1

)
. (A.9)

From inequality (A.9) we can conclude that in both cases (n is odd or even) the denominator of (A.8)
is positive. So dω

dt (t) > 0 for 0 ≤ t ≤ π. Consequently, ω(t) is strictly increasing on the interval [0, π].
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Since ω(0) = 0, we get ω(π) > 0.
From this inequality, we can obtain the following equation by using the definition of ω(t) from (A.7)

ϕn

(
2l + 3

n+ 1
π

)
− ϕn

(
2l + 5

n+ 1
π

)
< ϕn

(
2l + 1

n+ 1
π

)
− ϕn

(
2l + 3

n+ 1
π

)
. (A.10)

Now it is useful to consider two cases:

Case 1: n is even
If we consider 2l + 3 = n− 1, we get ϕn

(
2l+5
n+1 π

)
= ϕn(π) = 0. Substituting this in equation (A.10), we

get

0 < ϕn

(
n− 1

n+ 1
π

)
< ϕn

(
n− 3

n+ 1
π

)
− ϕn

(
n− 1

n+ 1
π

)
. (A.11)

Case 2: n is odd
If we consider 2l + 3 = n, we get ϕn

(
2l+5
n+1 π

)
= ϕn

(
n+2
n+1π

)
. Substituting this in equation (A.10) we

obtain

0 < ϕn

(
n

n+ 1
π

)
< ϕn

(
n− 1

n+ 1
π

)
− ϕn

(
n+ 2

n+ 1
π

)
< ϕn

(
n− 2

n+ 1
π

)
− ϕn

(
n

n+ 1
π

)
. (A.12)

Combining (A.10) with (A.11) for n is even and with (A.12) for n is odd finalizes the proof.

A.3. Python code
Python code for Figures 3.3 and 3.4, to provide a visualization of the Gibbs phenomenon for the Saw-
tooth wave function.� �

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define the nth partial sum function of Saw-tooth wave function
5 def nth_partial_sum(x, n):
6 partial_sum = np.zeros_like(x)
7 for k in range(1, n + 1):
8 partial_sum += np.sin(k * x) / k
9 return partial_sum

10

11 # Generate x values
12 x_values = np.linspace(0, np.pi, 1000)
13

14 # Number of terms in Fourier series
15 N = 250
16

17 # Calculate Nth-partial sum
18 S_N = nth_partial_sum(x_values , N)
19

20 # Plotting
21 plt.figure(figsize=(10, 6))
22 plt.plot(x_values , S_N)
23 plt.legend()
24 plt.grid(False)
25 plt.show()
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