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A Bi-level Real-time Microsimulation Framework for Modeling
Two-dimensional Vehicular Maneuvers at Intersections

Saeed Rahmani1, Jan Neumann2, Lucas Elbert Suryana1, Christiaan Theunisse3,
Simeon C. Calvert1, Bart van Arem1

Abstract— Intersections are critical bottlenecks within urban
transportation networks. Current models for simulating two-
dimensional (2D) vehicular movements at intersections are met
with limitations in accurately representing complex interactions
and capturing vehicle dynamics. Accordingly, this paper pro-
poses a novel microsimulation framework for trajectory plan-
ning and vehicular control at intersections. The model considers
vehicle dynamics and control variables, such as acceleration
and steering angle, and releases the popular assumption that
there is full knowledge sharing or cooperation among vehicles
at intersections. These features make the proposed framework
more realistic compared to previous microsimulation attempts
and applicable to traffic flow and environmental impact as-
sessment studies. In addition, it efficiently operates in real-
time for multiple vehicles, overcoming the limitations of offline
methods. Moreover, the model is capable of accounting for
driver/vehicle detection range, reaction time, and perception
and prediction inaccuracies, which enhances its suitability for
safety assessments. The evaluation in several scenarios indicates
the ability of the proposed framework in real-time planning
and following realistic and consistent 2D paths while avoiding
collisions with other vehicles.

I. INTRODUCTION

Intersections are critical components of urban transporta-
tion networks and a significant portion of urban congestion
and accidents are happening at or near intersections. Accord-
ingly, ensuring their safe and efficient design and operation
is paramount to the overall performance of the entire traffic
network. Achieving a realistic model that sufficiently rep-
resents the interactions and movements of vehicles within
intersections can be highly beneficial to the design, control,
and evaluation of intersections. However, due to the complex
interactions and weak lane-following behaviors, developing
microsimulation models for describing the decision-making
and movements of vehicles within intersections is challeng-
ing and still an open research question [1].

Current endeavors in modeling 2D vehicular movements
can be broadly divided into four main categories: Lane-based
traffic flow models, cellular automata (CA) models, social
force theory, and optimal control techniques [2]. Traffic flow
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models, which were initially developed to understand and
predict the dynamics of vehicular traffic on roadways, have
been calibrated [3] or modified [4] for studying the traffic
flows at intersections. However, the interaction mechanism
described in these studies is following, bi-vehicle interaction,
which is not realistic at intersections where multiple vehicles
interact with each other from different angles.

CA models have also been utilized for modeling move-
ments of vehicles at intersections by focusing on the in-
teractions among vehicles [5], [6] or including the driver’s
decision-making process [7]. These models have also been
extended to optimize the intersection flow [8], [9]. However,
the fixed-size, grid-based lattices in CA models make them
inaccurate in representing the kinematics of the vehicle and
the spatial variations of vehicular movement.

Social force theory has been mainly applied to modeling
the interactions among pedestrians or cyclists [10], but it
has been also used for modeling vehicular movements at
intersections. Ma et al. [11] developed a model for vehicles
at intersections, but their assumptions were valid in lane-
based environments. Yang et al. [12] modeled the movement
of vehicles around a work zone within an intersection, but the
interaction with crossing vehicles was not considered. While
social force models offer a more comprehensive considera-
tion of the interactions, they have shortcomings in modeling
vehicular traffic. Firstly, the resulting trajectory is determined
based on the combination of several types of ”forces” rather
than explicitly modeling the driver’s decision-making or
vehicle dynamics [2]. This limits their interpretability and
applicability to safety and efficiency impact assessment and
their capability in considering the non-holonomic constraints
of vehicles. Secondly, due to the high complexity of these
models, their scalability and application in dense situations
are challenging [11], and the relatively high number of
parameters makes their calibration process demanding.

Optimal control theory, which is a popular tool in mod-
eling vehicle movements at intersections [13], [14], has
been often applied based on the assumption of coopera-
tion, connectivity, or controllability among vehicles [15].
Recently, Zhao et al. [1] proposed a model for a single
vehicle moving within an intersection and further extended
their model by modifying its cost function to incorporate the
interactions among vehicles [2]. Although this model proved
to successfully plan two-dimensional trajectories for vehicles
at intersections, it still lacks some important features.

Firstly, the proposed model in [2] assumes that all vehicles
are aware of the utility function of other vehicles and that
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there is full cooperation among them to avoid collisions.
Moreover, the kinematics of the vehicles is not modeled,
which overlooks the state dependencies and non-holonomic
constraints of vehicles. In addition, their model is estimated
offline, which limits its applicability for real-time simulation
and visualization. Lastly, their framework lacks some fea-
tures crucial for safety impact assessment. For instance, the
sight distance of the driver/vehicle and the perception and
anticipation errors cannot be added to the model plainly.

To address some of these gaps, a microsimulation frame-
work is proposed for modeling 2D vehicular maneuvers at
intersections. The proposed framework releases the assump-
tions that there is full knowledge sharing or cooperation
among vehicles since each vehicle is controlled decentrally
using its own model and without accessing others’ utility
functions. This is achieved by utilizing a collision avoid-
ance module. It is also designed efficiently for real-time
simulation. This is important since many of the previous
optimization-based methods are solved offline and cannot be
used for real-time simulation and visualized investigations.
Furthermore, the proposed framework utilizes a vehicle dy-
namics model to account for its kinematics. The controller
within the framework uses acceleration and steering angle as
the input variables, which is intuitive and makes the model
interpretable and applicable to traffic flow, environmental,
and motion comfort studies. Finally, the detection range of
the driver/vehicle, their reaction time, and their perception
inaccuracy can be seamlessly incorporated into the proposed
framework, which makes it suitable for safety impact assess-
ment. Evaluation in several scenarios indicates the validity
of the presented framework in planning and following two-
dimensional trajectories for vehicles in real-time.

The remainder of the paper is organized as follows. In
the next section, the proposed model is described in detail.
In section III, the designed scenarios for evaluating the
framework are presented. section IV presents the results of
the designed scenarios. Finally, future research directions are
discussed in section V.

II. METHODOLOGY

The proposed framework enjoys a bi-level design. At the
higher level, an efficient global planner is designed to find
a kinematically feasible and optimal path for the vehicle
considering the design of the intersection and traffic rules
(which is called reference trajectory hereinafter). Then, a
controller is utilized to find the optimal values for accel-
eration and steering angle to follow the reference trajectory
while avoiding collisions with other vehicles. It is worth not-
ing that there is a feedback loop, meaning that if the variation
from the reference trajectory is large, the global planner is
again activated to find a new reference path. This design
enables achieving a real-time simulation model (as will be
discussed in Sections II-B and II-C), and provides flexibility
for employing different collision avoidance modules and
incorporating the detection range and reaction time of the
driver. In the following subsections, different components of
the proposed frameworks are described in more detail.

Fig. 1. Kinematic bicycle model representation of a vehicle

A. Vehicle Dynamics and Motion
The controller used in the proposed framework is a model

predictive controller (MPC), which requires a system model
(in this case, a vehicle model) for predicting and simulating
the vehicle states through time and finding the optimal
control values. In this study, the kinematic bicycle model
is used to represent the vehicle dynamics (Figure 1). Using
a bicycle model allows for considering the kinematics of
the vehicle, including the interrelations between the position,
heading angle, steering angle, speed, acceleration, and length
of the vehicle, which is essential for 2D movement modeling.
Polak et al. [16] showed that the kinematic bicycle model
can produce consistent trajectory when compared to the 9th-
order realistic vehicle dynamics model, which is a significant
improvement over the simplified assumption of point mass
that is often used in traffic flow microsimulation models.

The model used in this paper is represented as a dif-
ferential equation ẋ = f(x, u), where f(x, u) consists of
four differential equations Ẋ, Ẏ , V̇ , and θ̇. Those differential
equations can be arranged as a non-linear state space:


Ẋ

Ẏ

V̇

θ̇

 =


V cos(θ)
V sin(θ)

a
V
L tan(δ)

 (1)

where the state of the vehicle, symbolized by x, includes
the longitudinal position, latitudinal position, heading, and
speed of the vehicle that are represented by X , Y , θ, and
V , respectively. The acceleration and steering angle are the
control inputs (u) and are depicted by a and δ, respectively.
The distance between the front and rear wheels of the bicycle
model is denoted by L.

1) Linearization: Although using the bicycle model al-
lows for considering the dynamics of the vehicle, its nonlin-
ear form might be computationally inefficient. Therefore, a
linearized version of the bicycle model is used in this study
to increase the efficiency of the framework for the sake of
real-time simulation. Estimating the linear bicycle model is
achieved by using the Taylor series expansion (Equation 2).
This linear form can be sufficiently accurate, especially at
low speeds [17]. As vehicles do not adopt very high speeds at
intersections, this representation can produce reliable results.
This will be evaluated in section IV.

ḟ(x, u) ≈ f(x̄, ū)+
∂f(x, u)

∂x
|x̄,ū(x−x̄)+

∂f(x, u)

∂u
|x̄,ū(u−ū)

(2)
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where x̄ and ū represent the state and input elements of
the operating point. Accordingly, the linearized kinematic
bicycle state-space equation is obtained as follows:

ẋ = Ax+Bu+ d (3)

where x, u, A, B, and d are as follows:

x =


X
Y
V
θ

 , A =


0 0 cos(ϕ) −v sin(ϕ)
0 0 sin(ϕ) v cos(ϕ)
0 0 0 0

0 0 tan(σ)
L 0

 ,

B =


0 0
0 0
1 0
0 v

L cos2(σ)

 , C =

[
a
δ

]
, d =


v sin(ϕ)ϕ
−v cos(ϕ)ϕ

0
−vσ

L cos2(ϕ)

 (4)

The operating point of θ, V , and δ are ϕ, v, and σ,
respectively. The linearization is carried out for every time
step of the simulation and then the linearized model is used
in the optimization problem.

B. Global Planner

Most current models for describing 2D vehicular maneu-
vers at intersections use a pre-defined path for the vehicle [1],
which limits their realism in capturing the dynamics of the
vehicles within the intersection. Contrarily, in this study, a
high-level planner is designed to construct a two-dimensional
trajectory for the vehicle. The resulting trajectory (including
the reference speed) is then given as a reference path to the
controller. In this regard, starting from the vehicle’s current
position, a directed graph of motion primitives is constructed
towards the goal area and an optimal graph search algorithm
is designed to find the optimum path from the current
position to the goal area on the graph. The graph expands to
(and the search algorithm only visits) those branches that
do not collide with any obstacle, do not enter the areas
prohibited by traffic rules, and do not deviate much from the
location and the orientation of the goal area. Putting these
conditions significantly decreases the graph size resulting in
a much faster implementation of the global planner. This
reduced the planner’s run-time from several seconds to a
hundredth of a second, which is a significant improvement
toward achieving real-time planning and simulation.

To show the generalizability and validation of the proposed
framework, the motion primitives for the global planner are
created by simulating a nonlinear vehicle model consistent
with the kinematics described in Section II-A. Using a
nonlinear vehicle model for the planner allows testing the
accuracy of the controller utilizing a linearized bicycle model
in following the generated trajectory. Also, using a vehicle
model in the global planner forces the planner to search
through and generate only those trajectories that are con-
sistent with the kinematics of the vehicle, which makes the
optimization problem even more efficient. However, any set
of motion primitives could be generated and used according
to the problem-specific needs.

Fig. 2. Motion primitives for two consecutive vehicle positions.

Figure 2 shows the motion primitives for two adjacent
nodes (one vehicle at two different time steps). The circles
drawn around the vehicle are for collision checking. The
vehicle is represented as a set of two circles of the same
radius to the front and back. This representation streamlines
collision checking by keeping a balance between computa-
tional efficiency and accuracy by reducing the problem into
an efficient matrix multiplication problem based on the radius
of the circles and the location of the obstacles.

1) Graph Search Algorithm: The graph search algorithm
in this framework is an A* algorithm. Multiple functions
are defined to find the optimal path on the graph: 1) a
“neighbor” function, which for a given node, returns a set of
adjacent nodes and the cost of the respective edges. The cost
of an edge is the length of the motion primitives, which is
defined by the user. 2) A “goal check” function, determining
if a node is within the goal area. The goal function accepts
any node as the final goal if its location is within a pre-
determined goal area, and the orientation of the motion
primitive in that node is within the allowed range θmargin.
3) Lastly, an admissible heuristic function assigns a value
to each node to guide the A* algorithm toward the goal
area. The heuristic is shown in Equation 5, where ∆x and
∆y represent the shortest distance to the goal in x and y
directions, respectively, and ∆θ and θmargin are the difference
between the current and goal orientations and the relaxation
on the goal orientation, respectively. α is an empirically
chosen parameter that weighs the two parts of the equation.

H =
√
∆x2 +∆y2 + α ∗max(0, |∆θ| − θmargin) (5)

Figure 3 shows the result of the search algorithm. All
graph nodes visited by the search algorithm are also depicted
using colored dots. As is shown, the graph is only expanded
to a limited area, which enables real-time re-planning when
required due to the interactions with other vehicles.

C. Controller and Vehicle’s Motion

After finding a reference trajectory, a controller is needed
to specify the control inputs and describe the dynamics of
the vehicle when following the trajectory. This is achieved
by specifying the amount of acceleration and steering angle
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Fig. 3. Trajectory found by the global planner for a sample T-intersection.
graph nodes visited by the search algorithm are visualized. The color of the
points represents the heuristic function value.

by solving an optimal control problem in the context of an
MPC. The selection of acceleration and steering angle stems
from their correlation with the controls typically used in
real life (that are the acceleration and braking pedals, and
the steering wheel). Furthermore, this configuration enables
the imposition of penalties on variations of acceleration or
steering angle, which can lead to non-smooth and uncomfort-
able driving. Thus, the framework can be readily utilized for
evaluating the efficiency and smoothness of different driving
policies.

1) Controller: The MPC controller is formulated in a
linear and discrete form. The state-space model of the vehicle
is described in Equation 6:

x(k + 1) = Adx(k) +Bdu(k) + dd (6)

where Ad Bd, and dd are the discrete versions of matrix A,
B, and d from Equation 4. The vehicle’s states and inputs for
each time instants t = kTs, k = 0, 1, 2, ..., are represented
by x(k) and u(k), respectively, where Ts represents the time
sampling interval for discretizing the system from Equation
3. The system here is assumed to be full-state feedback so
that all states can be measured.

The general aim of the controller is to minimize the cost
J of a quadratic function, which is formulated as follows:

J =
∑

k=0...N
xref(k) not end

||δkXY ||2Q
XY ⊥

+ ||δkXY ||2Q
XY ∥

+ ||δkV θ||2QV θ

+

N−1∑
k=0

||u(k)||2R + ||u(k + 1)− u(k)||2Rd

+
∑

k=0...N
xref(k) is end

||x(k)||2Qf
(7)

where δkXY = x
XY

(k) − xref
XY (k) and δkV θ = x

V θ
(k) −

xref
V θ(k), and the term ref refers to the reference trajectory.

N , x
XY

(k), xV θ(k) are, respectively, the time horizon,
coordinate states, and velocity and yaw states. The parallel

and perpendicular weight matrices, Q
XY ∥ and Q

XY ⊥, are
used to penalize the parallel and perpendicular deviations
from the reference path, differently. The weight QV θ aims
at penalizing the deviation of speed and heading from the
reference point on the trajectory. R and Rd are the weight
matrices to penalize the intensity of input (u(k)) and the vari-
ations of input, respectively. These weights try to minimize
the effort needed to reach the goal and to assure a smooth
movement for the vehicle. Lastly, Qf is the weight matrix
for the final state to ensure stability and reaching the target
state. The optimization problem is formulated as follows:

min J

s.t. x(0) = xinit

x(k + 1) = Adx(k) +Bdu(k) + dd

|δ̇(k)| ≤ max δ̇

|δ(k)| ≤ max δ

min V ≤ V (k) ≤ max V

min a ≤ a(k) ≤ max a

(8)

where x(0) = xinit indicates the initial state, max δ̇ and
max δ specify the maximum steering angle and maximum
changing rate of the steering angle, min and max V are the
minimum and maximum allowed speeds, min and max a
are the minimum and maximum allowed accelerations.

2) Collision Avoidance: In the proposed framework, it is
assumed that the information about the intentions of vehicles
is not known by the ego vehicle. Also, unlike previous studies
[2], there is no assumption about full cooperation among
vehicles. Therefore, a collision avoidance module is needed
so that the ego vehicle can avoid colliding with others. This
is done by predicting the future states of the ego vehicle and
the surrounding vehicles in a finite space and time horizon.

To this end, firstly, a detection range is defined for the ego
vehicle, within which it can observe the other vehicles’ states
(including their current location, speed, and heading). This
can represent the sight distance of the driver or the detection
range of the vehicle’s sensors. Secondly, a prediction horizon
is defined, for which the vehicle should predict the future
states of itself and others. This is important because the
control horizon in MPC is chosen relatively short for the sake
of model efficiency and real-time simulation, but this short
horizon might not be sufficient to timely react to potential
collisions. Therefore, it is necessary to make predictions for
a longer time horizon even for the ego vehicle. In this study,
the prediction horizon is specified so that the ego vehicle
can stop with its maximum allowed deceleration from the
maximum allowed speed. For the sake of simplicity, and to
show the capability of the proposed framework in avoiding
collisions, the trajectory of other vehicles in this study is
predicted based on the simple assumption that they keep
their current speed and steering angle. As the simulation is
updated with a frequency of 5-10 Hz, this simple assumption,
given a sufficiently large prediction horizon, can successfully
avoid collisions (as it is shown in section IV). For predict-
ing the ego vehicle’s trajectory, it is assumed that it will
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Fig. 4. Possible combination of maneuvers in Scenario Set 3

accelerate with its desired (comfortable) acceleration toward
the desired speed along the planned path. This is because
we have basic information about the intentions of the ego
vehicle, so we can have a more realistic prediction for the
ego vehicle compared to the others.

If a conflict is detected based on the predicted trajectories
of the ego vehicle and all other vehicles, the controller is
informed about the location of the conflict, and the reference
trajectory is updated according to the conflict point. This
modified reference trajectory is then used as the new refer-
ence trajectory within the controller. This collision avoidance
is run at each time step, and the reference trajectory is
updated, if necessary. This is possible thanks to the efficient
global planner and local controller.

III. EXPERIMENT SETUP
In order to evaluate the performance of the developed

modeling framework, several scenarios were designed and
tested in the context of a T-intersection. These scenarios
include the followings:

• Scenario 1 – The ego vehicle moves within the in-
tersection without interacting with other vehicles. This
scenario is intended to test the validity of the global
planner, the graph search algorithm, and the ability of
the controller in following the planned trajectory while
considering the kinematics of the vehicle.

• Scenario 2 – The ego vehicle turns right and interacts
with another vehicle crossing the intersection. This
scenario aims to evaluate both the performance of the
global planner and the controller coupled with the
collision avoidance module.

• Scenario Set 3 – The ego vehicle turns left and interacts
with two other vehicles coming from different directions
and making turning or straight-line maneuvers. Also,
different goal areas are defined for the ego vehicle to
test the right-turning and left-turning capability of the
controller. Scenario Set 3 aims to evaluate the ultimate
performance of the established framework in different
and challenging conditions.

Figure 4 shows a combination of these scenarios.

IV. RESULTS
Figure 5 shows the result of testing Scenario 1. As can be

seen in Figure 5.a, the global planner has been successful in

finding a smooth path toward the goal, and the controller has
followed the reference path accurately (blue is the planned
path and red is the followed path achieved by using the
controller). The speed profile for the whole simulation period
(Figure 5.b) indicates that the vehicle smoothly increased its
speed and then decreased it toward zero when getting closer
to the goal area. The amount of deviation from the planned
path depicted in Figure 5.c indicates that the controller using
a linearized bicycle model has successfully tracked the global
path and its deviation has been in the order of centimeters.
As mentioned in section II-B, the global path is achieved
based on the motion primitives of a nonlinear vehicle model,
while the controller uses a linearized bicycle model. It is
worth noting that part of this deviation could be related to
the limitations and constraints set within the optimal con-
trol problem, and therefore, by fine-tuning the optimization
problem, even lower deviations may be achievable.

The results of running Scenario 2 are depicted in Figure 6.
The red dot in Figure 6.a (which is a snapshot of the scenario
during the simulation) shows that the collision avoidance
module has successfully detected a potential conflict and
avoided it by setting a stopping point before the conflict
point. Moreover, Figure 6.b shows that the vehicle decreased
its speed at around t=3.5s when it detected the conflict, and at
time t=7.5s, when no potential collision is detected any fur-
ther, it starts accelerating to the desired speed again. Finally,
when the vehicle approaches the goal area, it decelerates
again to stop at the final point.

Finally, a sample of the results for Scenario Set 3 is de-
picted in Figure 7. The red dot in Figure 7.a indicates that the
vehicle has successfully identified the potential collision and
modified its reference trajectory, accordingly. Also, based on
Figure 7.b, the vehicle has detected the potential collision
with the first vehicle at around t=4s and starts decelerating.
At approximately t=7s, it decides to accelerate because the
first vehicle is passing the intersection, but suddenly the
second vehicle starts a left turn maneuver, and therefore, the
ego vehicle again decelerates to nearly a full stop. After the
second vehicle also passes the intersection at around time
t=9s, the ego vehicle again accelerates to the desired speed.
Similarly to previous scenarios, when approaching the goal
area, the vehicle again decelerates to a full stop. The results
related to the deviation from the planned trajectory (depicted
in Figure 7.c) also indicate that despite several changes in

Fig. 5. Results of running the model in Scenario 1
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Fig. 6. Results of running the model in Scenario 2

Fig. 7. Results of running the model in a sample scenario from the Scenario
Set 3

trajectory planning, the controller has been successful in
following the planned trajectories.

In all scenarios, the model was successful in real-time
planning and trajectory following. Also, the speed profiles
indicate that the movement of the vehicle was fairly smooth
in the evaluated scenarios. All in all, the proposed framework
showed it can successfully plan and follow two-dimensional
trajectories for describing vehicular movements at intersec-
tions while avoiding collisions. Moreover, the values of run-
time and the simulation period indicated in Figure 5.a, Figure
6.a, and Figure 7.a show that the framework has successfully
found a reference trajectory and followed it in real-time,
which is a significant improvement compared to the model
proposed in [2] with a reported run-time of around 150
seconds for a two-vehicle scenario.

Thanks to its efficient implementation and realistic results,
as well as its capability to take into account the kinematics
of the vehicles and the detection range of the drivers or
sensors, this framework is suitable for simulating vehicular
movements at intersections.

V. CONCLUSION

In this study, a bi-level framework is proposed for mod-
eling two-dimensional vehicular movements at intersections
for microsimulation purposes. The proposed framework
presents a significant advancement in planning and control-
ling vehicle maneuvers at intersections by effectively ac-
counting for vehicle dynamics and embracing a decentralized
and real-time approach. Its efficiency, real-time applicability,
and ability to incorporate key parameters like driver/vehicle
detection range, reaction time, and perception inaccuracy,

distinguish it from previous methods. These features not only
enhance its applicability to traffic flow and environmental
studies, but also position it as a valuable tool for safety
impact assessment studies. Future research can be directed
toward incorporating perception and decision-making errors
into the proposed framework. Also, calibrating the model
against real-world data instead of simulated trajectories
seems a relevant following step. Finally, validating the
framework is a wider range of scenarios, including full
intersections, is suggested.
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