
Predicting Delays in Software Deliveries using

Networked Classification at ING

Version of August 22, 2022

Pravesh Moelchand

Predicting Delays in Software Deliveries

using Networked Classification at ING

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE
TRACK: DATA SCIENCE AND TECHNOLOGY

by

Pravesh Moelchand

Software Engineering Research Group

Department of Software Technology

Faculty EEMCS

Delft University of Technology

Delft, the Netherlands

www.ewi.tudelft.nl

AI for Fintech Research Lab

ING Analytics

Bijlmerdreef 106

Amsterdam, the Netherlands

https:

//se.ewi.tudelft.nl/ai4fintech/

www.ewi.tudelft.nl
https://se.ewi.tudelft.nl/ai4fintech/
https://se.ewi.tudelft.nl/ai4fintech/

© 2022 Pravesh Moelchand.

Cover picture: Story network with delayed and non-delayed stories

Predicting Delays in Software Deliveries

using Networked Classification at ING

Author: Pravesh Moelchand

Student id: 4570294

Abstract

Delays in the delivery of software projects and the corresponding cost and schedule

overruns have been common problems in the software industry for years. A challenge

within software project management is to make accurate effort estimations during plan-

ning. Software projects are complex networks, with multiple dependencies between

software tasks.

This study aims to combine the field of effort estimation and networked classifica-

tion to utilise network information for delay prediction in industry. We conducted a case

study at ING, resulting in a number of insights with regards to networked classification

in an industry setting.

There is a difference in the organisational structure of open-source and industry

projects. This constitutes to a difference in available information, but there is also an

opportunity to leverage the organisational structure of ING to improve delay prediction

performance.

Using weights in networked classification has shown no improvement compared

to not using them, but relational models do benefit from larger datasets as the used

network contains more relational information.

Based on the insights we recommend ING to: keep track of more information,

improve data quality by educating their teams and create models for specific domains

or teams to leverage their organisational structure.

p.p.a.moelchand@student.tudelft.nl

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft

Company supervisor: MSc. Elvan Kula, ING - AI for Fintech Research

Committee Member: Dr. Jie Yang, Faculty EEMS, TU Delft

Committee Member: Prof. Dr. ir. Rini van Solingen, Faculty EEMCS, TU Delft

ii

Preface

It’s done!

The road leading up to this thesis has been one with many obstacles, which we have

luckily been able to overcome. We, you read that correctly. I conducted this research project

by myself, but I have never had the feeling I was on my own. This is thanks to all the people

who supported me in these past months.

Firstly, I would like to thank my (ex-)supervisors Rini, Arie and Elvan for guiding me

through the process of conducting this study. I have always had the feeling that you genuinely

put effort into supervising me and felt we were in this together.

Doing a thesis project on your own for so many months could have been lonely, if it

wasn’t for my friends. Thank you Brian and Martin, for giving me valuable insights. Thank

you Emiel and Thijmen, for supporting me when the need was high. And of course thank

you to all the heroes of the fourth floor, my final months in Delft were a blast because of you.

Studying is however not everything. I want to thank all my friends and family, who were

there to hang out when I needed time to relax, who understood that I sometimes had to

cancel our plans, who kept checking in on me for all these months and who have always had

the faith that I could do this.

Finally, coming home to a cooked dinner on busy days, being provided with loads of

opportunities and always getting all the support to follow my dreams have been crucial in

obtaining this degree. Thank you Akash, Rashvin, Mom and Dad for creating such an envi-

ronment for me.

Pravesh Moelchand

Delft, the Netherlands

August 22, 2022

iii

Contents

Preface iii

Contents iv

List of Figures vii

1 Introduction 1

1.1 Research Questions . 2

1.2 Contributions . 3

1.3 Report Outline . 3

2 Background 4

2.1 Agile Development . 4

2.1.1 Overview . 4

2.1.2 Agile development in industry and open-source settings 5

2.2 Related Work on Delay Prediction . 6

2.2.1 Effort estimation . 6

2.2.2 Networked classification . 6

2.3 Case Study at ING . 6

3 Research Method 8

3.1 Data Collection . 8

3.1.1 Dataset requirements . 8

3.1.2 Dataset characteristics . 9

3.2 Data Preprocessing . 11

3.2.1 Classifying ground-truth delay status 11

3.2.2 Dealing with missing information 12

iv

Contents

3.3 Feature Engineering . 12

3.3.1 Local open-source (Lo) . 13

3.3.2 Local ING (Li) . 13

3.3.3 Relational open-source (Ro) . 14

3.3.4 Relational attribute-based (Ra) . 15

3.3.5 Relational attribute-based features with low availability (Ra−low) . . 15

3.3.6 Relational resource-based (Rr) 15

3.3.7 Descriptive (D) . 15

3.4 Transforming Logs to Data Points . 16

3.5 Building the Local Model . 16

3.6 Building the Relational Model . 18

3.6.1 Story network construction . 18

3.6.2 Stacked Graphical Learning . 18

3.6.3 Stacked Inference . 19

4 Networked Classification in an Open-Source and Industry Setting (RQ1) 21

4.1 Evaluation Setup . 21

4.1.1 Creating train/test splits . 21

4.1.2 Performance metrics . 21

4.2 Open-Source Features in an Industry Setting (RQ 1a) 23

4.2.1 Approach . 23

4.2.2 Results . 23

4.2.3 Discussion . 24

4.3 Local Features from Industry (RQ 1b) . 25

4.3.1 Approach . 25

4.3.2 Results . 25

4.3.3 Discussion . 27

4.4 Relational Features from Industry (RQ 1c) 27

4.4.1 Approach . 27

4.4.2 Results . 28

4.4.3 Discussion . 30

4.5 Feature Importances (RQ 1d) . 32

4.5.1 Approach . 32

4.5.2 Results . 32

4.5.3 Discussion . 32

5 Using Weights in Networked Classification (RQ 2) 34

v

Contents

5.1 Evaluation Setup . 34

5.2 Weights Based on Time Interval (RQ 2a) 34

5.2.1 Approach . 34

5.2.2 Results . 35

5.2.3 Discussion . 35

5.3 Weights Based on Assortativity Coefficient (RQ 2b) 36

5.3.1 Approach . 36

5.3.2 Results . 37

5.3.3 Discussion . 37

6 Using Different Sliding Window Sizes for Delay Prediction (RQ 3) 39

6.1 Evaluation Setup and Approach . 39

6.2 Results . 40

6.3 Discussion . 40

7 Threats to Validity 43

7.1 Construct Validity . 43

7.2 Internal Validity . 43

7.3 External Validity . 44

8 Conclusion and Future Work 45

8.1 Insights . 45

8.2 Recommendations for ING . 46

8.3 Future Work . 46

Bibliography 48

vi

List of Figures

2.1 Agile work breakdown structure . 5

3.1 Transforming logs to data points . 17

3.2 An example of a story network . 19

4.1 Visual representation of the 10 generated folds 22

4.2 Confusion matrix . 22

4.3 Performance measures . 22

4.4 Evaluation results for baseline and using feature sets Lo and Ro on ING data . . 23

4.5 Evaluation results for baseline and using feature sets Lo and Li on ING data . . 26

4.6 Evaluation results for building a relational model with feature sets Ra and Rr on

ING data . 28

4.7 Recomputed baseline 2 for datasets corresponding to features from Ra−low . . . 29

4.8 Evaluation results for building a relational model with features from Ra−low on

ING data . 30

4.9 Feature importances for different models . 33

5.1 Results for using time-dependent weights . 36

5.2 Example of different networks based on different relational features 37

5.3 Scores for using assortativity-based weights 38

6.1 Visual representation of 10 folds with different training set sizes 40

6.2 Evaluation results for using different training set sizes 41

vii

Chapter 1

Introduction

Imagine being a software developer working in a development team in industry and being in

the planning meeting at the start of a new iteration. You are deciding which tasks you want to

tackle and relying on the expertise of the team, you put together a decent list of tasks which

you think will all be completed on time.

As the week progresses, you and your team work hard to complete all the planned tasks.

Some are completed, some take more time than expected but are finished in time and some

are delayed to later iterations. Even though you tried to plan the iteration to the best of your

abilities, not all tasks were finished in time.

The research area of effort estimation is all about making this kind of planning more

accurate. Leveraging Machine Learning has recently gained a lot of popularity [30], but

many approaches only look at locally available information of a software task, not considering

relational information such as dependencies between tasks. This relational information could

however be used in relational classifiers to achieve better results.

In 2015, Choetkiertikul et al. combined relational information with effort estimation. They

developed an approach for Predicting Delays in Software Deliveries using Networked Classi-

fication [10]. The approach made use of relational information to create a network of software

tasks and employed relational classifiers to predict delays in an open-source software devel-

opment setting.

At ING, a Dutch internationally operating bank, more than 15,000 developers are em-

ployed worldwide. The company is organised following the Agile Squads, Tribes and Chap-

ters model of Spotify [27], meaning most of the development teams make use of user stories

for their project planning. The environment of ING enabled us to assess the effectiveness of

the approach presented by Choetkiertikul et al. in an industrial setting and expand upon it.

1

1.1. Research Questions

1.1 Research Questions

Using relational classification for effort estimation has already proven to work well on open-

source data [10]. The aim of this study is to apply relational classification for delay prediction

in an industry setting. ING is used as case company to perform this study.

We investigate different aspects of relational classification for effort estimation in industry.

At first, we look at the performance of relational classification in an industry setting and which

information is useful to include for delay prediction. Then, we tweak the relational classifiers

by adding weights to the relations. Finally, we investigate the effect of different sizes of

sliding windows on prediction performance. These aspects are covered by the following

three research questions:

RQ 1 What is the performance of delay prediction using networked classification in an in-

dustry setting compared to open-source data?

a) What is the performance of delay prediction in an industry setting using features

that work well on open-source data?

b) Which local features, available at ING, improve delay prediction in an industry

setting?

c) Which relational features, available at ING, improve delay prediction in an indus-

try setting?

d) Which features are most important for delay prediction on ING data?

RQ 2 What is the impact of adding weights to relations on delay prediction using networked

classification?

a) What is the prediction performance when determining weights based on the time

interval between stories?

b) What is the prediction performance when determining weights using the assor-

tativity coefficient of the network?

RQ 3 What is the effect of using different sizes of sliding windows when performing delay

prediction on ING data?

2

1.2. Contributions

1.2 Contributions

The contributions of this study consist of six insights about delay prediction using networked

classification in an industry setting:

1. There is a difference in the information that is available between open-source and

industry settings.

2. Record-keeping is treated differently across teams.

3. Using networked information improves delay prediction.

4. Using a general approach for ING as a whole performs worse than a team-specific

approach.

5. Using weights in networked classification does not improve prediction performance at

ING.

6. Larger dataset sizes improve prediction performance for relational models.

Based on the insights, we derive three recommendations to ING for implementing delay

prediction using networked classification:

1. Keep track of more information.

2. Improve data quality.

3. Create models for specific domains or organisational units.

1.3 Report Outline

Chapter 2 presents the broader context of this study and provides the reader with background

knowledge of related topics and work. The research method of this study is described in

Chapter 3. The results discussion for each research question are presented in Chapters 4, 5

and 6. The threats to validity are discussed in Chapter 7 and the conclusion and future work

are given in Chapter 8.

3

Chapter 2

Background

This chapter provides the reader with the background knowledge that is required for under-

standing the contents of this report. Agile development methods will be covered, but also

academic work related to effort estimation and networked classification. We finally describe

the context of this study at ING.

2.1 Agile Development

2.1.1 Overview

Agile software development, or Agile development in general, is an iterative approach to

managing software projects according to the twelve principles of the Agile Manifesto [2].

Over the past two decades, Agile development methods have grown in popularity amongst

organisations to manage software projects [13]. In an Agile project, the work is split into

smaller chunks of work at different levels and software is developed through short iterations

to enable organisations to react to changes in the market and customer needs. Agile teams

require a high level of self-organisation and intense collaboration [13], [44], something which

is to be stimulated through the structure and values of the organisation [39].

In large scale software companies, the user requirements are commonly expressed us-

ing the hierarchy introduced by Leffingwell [31], which is visually represented in Figure 2.1.

The work is divided into different levels: themes, epics, features, stories and tasks. At the

highest level are the strategic themes and epics. These provide high-level functional goals

for the product(s) [15]. Epics usually span three to twelve months and can further be subdi-

vided into features, which can further be subdivided into user stories. User stories represent

specific end user requirements and span only one iteration or sprint [14], which is one to four

weeks at ING, depending on the team. Stories can further be subdivided into tasks, which

are the technical work that needs to be done to complete a user story. In table 2.1 we give

4

2.1. Agile Development

an example of the different levels. For our study, we will be focusing on the story level, as

these are most widely-used to plan the work across sprints within ING.

Figure 2.1: Agile work breakdown structure. Diagram based on Kula et al. [30]

Table 2.1: Example of agile building blocks

Level Example

Theme Helping clients get funding for their homes
Epic Apply remarketing across the website

Feature Emailing clients about opportunities
Story Follow-up emails related to remarketing are working at the end of the sprint
Task Email client is ready

2.1.2 Agile development in industry and open-source settings

While developers within large software companies are usually organised along software

teams responsible for specific products or software domains [7], this is however different

for developers within open-source projects. Open-source projects are often lead by a core

team of developers, supported by up to hundreds of developers who join the project volun-

tarily [16]. The consequence is that instead of being organised along software teams, each

developer can be viewed as a self-organised team, following the guidelines and goals set by

the core team [28]. This means in industry there is an extra level of detail, as stories can be

related to not only developers but also to teams.

5

2.2. Related Work on Delay Prediction

2.2 Related Work on Delay Prediction

2.2.1 Effort estimation

Effort estimation is at the core of the short-term iterative planning in Agile software develop-

ment [15]. A large number of works have been published on effort estimation methods [26].

Agile teams mostly rely on subjective expert judgement for estimating the amount of work

that can be completed within an iteration [17, 47]. In order to provide automated, contextual

support for estimating effort in software projects, a number of recent works have introduced

the use of Machine Learning for effort estimation. There have been promising results for ef-

fort estimation in story completion [12, 40, 43] and predicting bug-fix duration [4, 21, 38, 49].

Mining source code and historical data is key to creating a dataset that can be leveraged by

Machine Learning approaches [24, 35]. In the context of delay prediction Choetkiertikul et al.

present the most recent studies [9, 11]. These approaches employ Machine Learning tech-

niques to classify software tasks and consider them as independent data points, ignoring

dependencies and relationships between tasks.

2.2.2 Networked classification

Networked data is present in many different areas of our daily lives, such as social networks,

biological networks and communication networks. These networks have been utilised in var-

ious studies, from web page classification [33] to scientific research paper network building

[20, 46]. Networked data allows for collective inferencing, meaning that related nodes in the

network are classified simultaneously [32]. The principle of a node’s neighbours’ class prob-

ability estimate influencing the node’s own estimate has been described early on by Markov

chains [3, 18, 19]. A first-order Markov model assumes the state of a node depends only on

the states of its direct neighbours.

Networked classification has been applied in software-related studies, such as predicting

software defects [22] and software quality [25, 36, 37, 48]. Using networked classification for

effort estimation has most recently been studied by Choetkiertikul et al. [10]. Their research

was carried out on open-source data and forms the basis of our study, where we apply

networked classification on industry data to predict delays.

2.3 Case Study at ING

Our study is conducted at ING, a large Dutch internationally operating bank with more than

15,000 developers worldwide working on projects across a variety of domains. ING has

reinvented its organisational structure to a completely Agile structure based on Spotify’s

6

2.3. Case Study at ING

Squads, Tribes and Chapters model [27]. A squad consists of 5 to 9 members and focuses on

a specific software functionality. Squads are grouped within tribes, which focus on a specific

business area, such as mobile. Using this model allows for coordination of hundreds of Agile

development teams. Each development team at ING use Scrum [42] as Agile methodology

[30]. Each team plans their work along user stories such as described in Section 2.1. Story

points are assigned to stories using expert judgement during a sprint planning meeting at

the start of the sprint. ING lends itself perfectly for studying delays, as about a quarter of its

user stories are delayed. Historical data of these stories is available in a data warehouse,

which gives us access to a significant amount of data for our study.

7

Chapter 3

Research Method

In this chapter we describe the general steps taken for answering our research questions. We

first explain how the data is collected and preprocessed. Then, we discuss how the features

are engineered and how the data points, which are used in the models, are constructed.

Finally, the local and relational model used for delay prediction are presented.

3.1 Data Collection

For this study, historical story data from ING is used. The majority of teams at ING make use

of the backlog management tool ServiceNow. Since 2016, all versions of all stories from this

system are stored in a data warehouse, which contains over 20 million historical logs1 as of

2022 and this number is growing as the database is updated continuously. In this section,

we give an overview of the data selection process and the characteristics of the resulting

dataset.

3.1.1 Dataset requirements

Not all data available is of use to the project and as the dataset is continuously updated with

new information, we have to make a selection of which data to include in our dataset. We

set the following requirements for the dataset.

Time frame This study started in October 2021 and we have started working with the data

in 2022. To ensure that our dataset is not affected by new updates to the data warehouse,

we only consider logs from before 2022.

1A log is a specific version of a story in the data warehouse

8

3.1. Data Collection

State The state of a story is stored as a numerical value in ServiceNow. Stories can have

one of the following states: (-6) draft, (1) ready, (2) work in progress, (3) complete or (4)

cancelled. For our study, we only include logs with state -6, 1, 2 or 3 of stories which have

been completed. Logs which belong to stories which have been cancelled at some point are

thus not included in the dataset.

Dataset size In Table 3.1 the number of logs and stories have been listed for each year.

We see that teams have increasingly been using the backlog management tool over time

and that 2021 therefore contains the most logs. As more teams start to use the system and

teams get more experience with using the system, the amount and quality of the data will get

better. Taking this into consideration, we choose to use the 2021 part of the dataset. This

provides us with a reasonable amount of data which is also the most recent data.

Table 3.1: Number of logs and stories for each year

Year Logs Stories

2016 232,706 26,392
2017 729,763 96,397
2018 1,624,060 241,826
2019 2,448,701 414,026
2020 3,240,871 598,868
2021 4,126,954 849,069

Total 12,403,055 2,226,578

3.1.2 Dataset characteristics

The dataset resulting from the selection process consists of 4,126,954 logs of 849,069 sto-

ries in 2021, spread over 60,954 sprints. The stories span across 1,949 themes and 20,409

epics. The stories are distributed over 2,563 squads and 17,373 developers worldwide.

Every story has 44 fields, of which 30 fields contain information about the story and the

other 14 fields serve as trackers for data warehouse. In Table 3.2 a description of these fields

can be found.

The availability of information varies however for each field. The following fields have a

value for each log: Id, Updated On, Active, Blocked, Description, Epic Reference, Number,

State, Story Points, Created By, Created On, Updated By, Theme Reference, Tribe Ref-

erence, Request, Secure and Template Story. The availability for the remaining fields are

shown in Table 3.3.

9

3.1. Data Collection

Table 3.2: Fields of a story

Field Description

Id Unique story ID
Updated On The date and time when the story was updated to this version
Acceptance Criteria Description of acceptance criteria
Active Whether the story is currently active
Assigned To To whom the story is assigned
Blocked Whether the story is blocked
Blocked Reason The reason why the story is blocked
Component Reference to component ID
Defect Reference Reference to defect ID
Description Description of the story
Enhancement Reference to enhancement ID
Epic Reference Reference to epic ID
Number Unique number of story used as ID in ServiceNow
Squad Reference Reference to squad ID
Short Description Short description of the story
Sprint Reference Reference to sprint ID
State The current state of the story
Story Points The number of story points estimated for this story
Created By ID of employee who created the story
Created On The date and time when the story was created
Updated By ID of the employee who updated the story
Theme Reference Reference to theme ID
Feature Reference Reference to feature ID
Tribe Reference Reference to tribe ID
Request Whether the story is a request
Secure Whether the story is secure
Closed On The date and time when the story is closed
Closed By Reference to the employee who closed the story
Actual Start The date and time when work on this story started
Template Story Whether the story is a template story or not
Change Reference Reference to change ID

10

3.2. Data Preprocessing

Table 3.3: Availability of story data. Numbers indicate the fraction of logs or stories that have
a value for the corresponding field

Attribute Logs Stories Ratio logs Ratio stories

acceptance criteria 1369062 249135 0.331737 0.293421
assigned to 2687129 670249 0.651117 0.789393

blocked reason 98484 4648 0.023864 0.005474
component 60326 12615 0.014618 0.014857

defect reference 12 12 0.000003 0.000014
description 4110087 845428 0.995913 0.995712

enhancement 0 0 0.000000 0.000000
epic reference 4126936 849065 0.999996 0.999995

short description 4112955 846022 0.996608 0.996411
sprint reference 3223824 781879 0.781163 0.920866

story points 3642002 819506 0.882492 0.965182
theme reference 4126937 849065 0.999996 0.999995

feature reference 2042235 398846 0.494853 0.469745
tribe reference 4126934 849065 0.999995 0.999995

closed on 1031037 752314 0.249830 0.886046
closed by 1031034 752309 0.249829 0.886040

actual start 1947590 767498 0.471919 0.903929
change reference 80919 36077 0.019607 0.042490

3.2 Data Preprocessing

We give an overview of the steps taken to prepare the data for the feature extraction and

experiments. Each feature requires different sets of information, so there is no general data

cleaning process apart from the data selection step as described in the previous section.

Furthermore, we discuss data compression, type conversion and delay classification as pre-

processing step.

3.2.1 Classifying ground-truth delay status

Stories do not contain explicit information about their delay status. We therefore have to de-

rive this from the available fields. Stories in open-source projects contain explicit information

about their planned to complete date, but the only planning-related field for the stories in our

dataset is the Closed On field. From this, we can not infer whether a story was completed

on time or over time.

We therefore decide to look at the number of sprints a story has been assigned for clas-

sifying its ground-truth delay status. A story can only be assigned to one sprint at a time.

11

3.3. Feature Engineering

When a story has been assigned to multiple sprints, this means the story was not completed

within the first sprint that it was assigned to, meaning it has been delayed to a later sprint. In

our study, the delay status is thus classified as either not delayed or delayed.

To establish a ground-truth for every story, we count the number of sprints for each story

based on the historical data. The ground-truth is then assigned to all logs of the story. After

the delay classification, we see that 73% of the stories are not delayed and 27% are delayed.

3.2.2 Dealing with missing information

As discussed in subsection 3.1.2, it is possible that logs do not have values for all fields.

We distinguish between local fields, which contain information that is available for each story

independently, and relational fields, which contain information that can be used for creating

a network of story.

Logs which have missing values for local fields are removed from the dataset. For local

features, data points with missing values are removed from the dataset. For relational fields,

we can however not simply remove logs with missing values because we are dealing with a

networked information. The relational fields are used for establishing links between nodes in

the network (see subsection 3.6.1). Removing a node from the network will thus affect the

information available to its neighbours. We therefore choose to replace the missing values

with -100 as the standard range of values for relational features is 0 to 1. This is a common

technique for dealing with missing information in Machine Learning [45].

3.3 Feature Engineering

Not all information available in the dataset can be directly used by the models use of in our

study. Therefore, we need to engineer features from this information, that we can use in

our models. We can subdivide the features into different sets, which we will describe below.

Similar to local and relational fields, we distinguish between local and relational features.

Local and relational feature sets are respectively indicated by L and R. We use a non-

capitalised subscript to indicate a specific feature set. An example of this is Lo, which are

local open-source features.

12

3.3. Feature Engineering

3.3.1 Local open-source (Lo)

[Changing of description — Developer’s workload (stories) — Delayed ratio of developer work-

load — Story repetitions — Waiting time]

These are local features which have been used in delay prediction on open-source data

[10]. Together with feature set Ro these will form the baseline for our evaluation. Below, we

describe how these features have been engineered at ING. The descriptions are formatted

as follows:

[Feature name] [“Description from Choetkiertikul et al.”] [10]. [Implementation using ING

data]

Changing of description “The number of times in which the task description was changed”.

We can implement this directly using the available data at ING.

Delayed ratio of developer workload “The percentage of delayed tasks in all of the tasks

which have been assigned to a developer”. The percentage of stories that have been delayed

of the total number of stories that have been assigned to a developer within a sprint.

Developer workload (stories) “The number of opened tasks that have been assigned to

a developer at a time”. The number of stories that have been assigned to a developer at the

start of a sprint.

Story repetition “The number of times that a task is reopened”. The number of times the

story is set to state ready or state WIP after is has been set to completed.

Waiting time “The time when a task is waiting for being acted upon”. This can be inter-

preted as: (1) when the story is assigned to a sprint or (2) when a story is acted upon within

a sprint and thus set to state WIP. As we are predicting the risk of delay at the start of a

sprint, we define the waiting time as follows: the time between a story being ready and not

assigned to a sprint and a story being ready and assigned to a sprint.

3.3.2 Local ING (Li)

[Blocked — Developer workload (story points) — Request — Secure — State at start sprint —

Story Points]

These are local features which can be engineered from the information available in the

ING dataset. The Blocked, Request, Secure and Story Points fields can directly be used as

13

3.3. Feature Engineering

input for our models. The other two features require some engineering. The steps taken and

reasoning behind using these features are explained below:

Blocked The Blocked field can be used by developers to indicate whether a story is

blocked. Developers can also give a textual reason for the blockage in the Blocked Rea-

son field. When a story is blocked, work cannot continue on this story, possibly causing a

delay.

Developer workload (story points) Similar to the Developer workload (stories), but in-

stead the number of story points are summed up for each sprint.

Request When a story is requested by a customer, it likely has a higher priority due to the

commercial nature of the industry. This means that it is more likely to be completed in time

in order to satisfy the customer’s needs.

Secure Secure stories are related to security issues or developments. These type of sto-

ries often deal with complex dependencies as they have a high-risk status. Stories which are

secure are therefore more likely to be delayed.

State at start sprint The status of the story when it is assigned to a sprint. Developers are

responsible for setting the status of a story. It is customary that the status of a story is ready

when it is assigned to a sprint. In the case that it is not, the story might not be completely

refined yet and this can be an indicator of delay.

Story Points Stories with more story points are more complex and require more effort.

The number of story points can therefore be an indicator of delay.

3.3.3 Relational open-source (Ro)

[Assigned To — Created By]

These are relations which have been used in delay prediction on open-source data [10].

When two stories share the same value for a feature, this means there is a relationship based

on that feature. Here, Assigned To corresponds to the Developer relationship of Choetkier-

tikul et al. and Created By corresponds to the Reporter relationship of Choetkiertikul et al.

[10].

Note that these two relational features are also part of the relational resource-based

feature set (Rr).

14

3.3. Feature Engineering

3.3.4 Relational attribute-based (Ra)

[Epic Reference — Theme Reference]

These are relations based on the attributes of a story, more specifically the strategic or

architectural area they belong to. It might be the case that there is a lot of delay within a

specific epic or theme due to a variety of reasons, therefore this might be an indicator of

delay. When two stories belong to the same epic or theme, there is a relationship between

them.

3.3.5 Relational attribute-based features with low availability (Ra−low)

[Change Reference — Component — Feature Reference]

These are relations based on the same principle as in Ra, however, there are less stories

in the dataset with this information available as can be seen in Table 3.3. This means we can

only use a part of the dataset, so we decide to not include these in the standard relational

attribute-based feature set. We do evaluate their performance separately.

Note that the Defect Reference and Enhancement can also be used as relational attribute-

based features, but this is infeasible due to their almost non-availability in the dataset (see

Table 3.3.

3.3.6 Relational resource-based (Rr)

[Assigned To, Created By, Squad Reference, Tribe Reference]

These are relations based on the resources that are used by the story. Developers

and squads can be seen as resources as their hours of work are not unlimited [10]. If a

developer or the squad or tribe they belong to has a history with delayed stories, this might

be an indicator for new delays. When two stories are assigned to the same developer, have

been created by the same developer, are belonging to the same squad or belonging to the

same tribe, there is a relationship between them.

3.3.7 Descriptive (D)

[Acceptance Criteria — Blocked Reason — Description — Short Description]

These are features based on textual columns. Textual information can often not directly

be used as input for machine learning models as the semantics of text are not directly clear

to a machine [23]. To make use of textual information, the semantics should be extracted

using NLP techniques such as topic modelling. The topics then serve as features for the

textual information. In our study we have explored applying topic modelling using Latent

Dirichlet Allocation [5] on the Blocked Reason field in the data. We decided however to not

15

3.4. Transforming Logs to Data Points

continue in this direction as we concluded that manual and qualitative analysis is required to

verify the resulting topic clusters. This is outside the scope of our study.

3.4 Transforming Logs to Data Points

After having engineered the features, our dataset still contains all logs of all stories. The

models used in our study will however be trained on the available information at a given

moment in time. This means that for each story, we will have to select one log to be used as

data point for our models. We illustrate this process using Figure 3.1.

Suppose we pick the 1st of July 2021 as the given moment in time (3.1a). We then

denote all logs before that moment as known information and all logs after that moment as

unknown information (3.1b). Then, for the known information, we select the latest log as the

version to be considered for the model and for the unknown information, we select the first

log as the version to be considered. From these two sets of information, we create a training

set and test set. We see that for Story C in the example, there are also logs in the unknown

information set. It is however customary to exclude training data from the test set, so for all

stories that are in the known set, we remove their logs from the unknown set (3.1c). This

leaves us with a training set and a test set as shown in (3.1d).

3.5 Building the Local Model

To avoid confusion with regards to the meaning of classifiers and models, we start this sec-

tion with a definition of these terms in our study:

Definition 1 (Classifiers and models). We define the following terms:

• Local model: Uses a local classifier to predict delayed stories.

• Local classifier: Random Forests Classifier with local features as input.

• Relational model: Uses a local classifier to compute initial probabilities. Then

uses multiple relational classifiers stacked on top of each other using Stacked

Graphical Learning (subsection 3.6.2) and Stacked Inference (subsection 2) to

utilize relational information.

• Relational classifier: Random Forests Classifier with relational features as input.

16

3.5. Building the Local Model

Figure 3.1: Transforming logs to data points

The local model is a Random Forests classifier [6] implemented using the scikit-learn

library2. The number of trees is set to 100, which is the default, and we fix the random state

to seed=2000 to ensure consistency across our experiments. This classifier is also used as

the basis for the relational model as described in Section 3.6.

The Random Forests classifier fits its model to the given training set based on a number

of features. Consequently it estimates the probability of being delayed for the stories in the

test set. We use the default threshold of 0.5 to predict the delay status of a story. If the

probability is higher than 0.5, the prediction is that the story will be delayed. If it is lower than

or equal to 0.5, the prediction is that the story will not be delayed.

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestCla
ssifier.html

17

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

3.6. Building the Relational Model

3.6 Building the Relational Model

The relational model is based on the approach of Choetkiertikul et al. [10] and Kou and Co-

hen [29] and consists of two algorithms: Stacked Graphical Learning for training and Stacked

Inference for the prediction phase. Both algorithms make use of the local classifier as de-

scribed in Section 3.5 and require a story network as additional input. Below we describe

the story network construction and the two algorithms used.

3.6.1 Story network construction

The relational model makes use of relations coming from a network of stories. This network

is constructed based on the different relational feature sets (Ro, Ra, Ra−low, Rr). The story

network is based on the task network presented by Choetkiertikul et al. [10] and is defined

as follows:

Definition 2 (Story network). A story network is an undirected graph G = (V,E) where:

• Each vertex v ∈V represents a story in the form of ⟨id,attrs, p⟩, where id is the

unique identifier of the story, attrs is a set of attribute-value pairs of the story

in the form of (attri,vali) representing the local features and p is the probability

estimation of the story being delayed.

• Each edge e ∈ E represents a link between two stories u and v in the form of

⟨u,v, type,weight⟩, where type is the relationship type of the link, representing a

relational feature, and weight is the weight of the link.

In Figure 3.2 an example is given of a story network. The stories have different proba-

bilities of being delayed and are linked by different types of relationships. In this example, all

weights are set to 1 and are not shown in the diagram. For RQ 1 and 3, all weights are set

to 1.

3.6.2 Stacked Graphical Learning

Utilizing network information in a classifier is non-trivial as there are multiple ways of trans-

forming the network information into features that can be used by a classifier. Stacked Graph-

ical Learning [29] provides a way to incorporate relational information in delay prediction. The

Stacked Graphical Learning algorithm is applied to the training set created using the method

described in Section 3.4 and is described in Algorithm 1.

18

3.6. Building the Relational Model

Figure 3.2: An example of a story network with story A to F . The labels on the edges indicate
the type of relationship, i.e. story B and C share the same epic.

The idea is to use a local classifier in combination with multiple relational classifiers

stacked on top of each other. The local classifier is used to initialise the probability estima-

tions of all the stories in the network. Then, for each node, the probabilities of the neighbours

for each type of relationship are averaged to form relational features. Consequently, the lo-

cal features and relational features are used to train a Random Forests classifier. We then

proceed to the next step.

In the next step, the trained classifier from the previous step is used to predict new

probability estimations for all stories in the network. The algorithm eventually returns T
classifiers for T steps which are then used in the Stacked Inference algorithm described in

subsection 3.6.3. In our approach T = 3, based on the findings of Kou and Cohen [29].

3.6.3 Stacked Inference

To predict the delay status for stories in the test set, Stacked Inference is used. The Stacked

Inference algorithm used in our approach is based on the Stacked Inference algorithm used

by Choetkiertikul et al. [10].

The idea is to use the T classifiers created by the Stacked Graphical Learning algorithm

to predict the delay status for stories in the test set. The network used in our Stacked

Inference algorithm is constructed using the stories in the training set and test set. This is to

resemble a real-world scenario as close as possible. By incorporating the training set in the

network, we make use of known information as all the stories in the training set exist before

the stories in the test set.

The Stacked Inference algorithm is described in Algorithm 2 and is similar to the Stacked

Graphical Learning algorithm. The algorithm initialises the probabilities for non-delayed sto-

19

3.6. Building the Relational Model

ries in the training set to 0 and for delayed stories in the training set to 1. The probability

estimations for the test stories are initialised using the classifiers from the Stacked Graphi-

cal Learning algorithm. Then, the relational features are created in the same way as in the

Stacked Graphical Learning algorithm. The last classifier T is finally used to compute the

probability estimations of the test stories which predicted as delayed if their probability p is

over 0.5.

Algorithm 1: Stacked Graphical Learning algorithm (adapted from [10] and [29])

1 T ← 3 Classifier 1← local classifier trained using local features;
2 for step t = 2,3, ...,T do
3 Compute probability estimations for all stories in the network using classifier t−1;
4 for each story s do
5 for each relation type r do
6 Rel. feature r← average of all prob. of the neighbours with relation r to story s;
7 end for
8 Create new feature set by concatenating all rel. features with the loc. features;
9 end for

10 Classifier t← relational classifier trained on new feature set;
11 end for
12 Return T classifiers (1 local, T −1 relational);

Algorithm 2: Stacked Inference algorithm (adapted from [10])

1 Set probability estimation for non-delayed training stories to 0;
2 Set probability estimation for delayed training stories to 1;
3 Compute probability estimations for test stories in the network using classifier 1;
4 for step t = 2,3, ...,T do
5 Compute probability estimations for test stories in the network using classifier t−1;
6 for each story s do
7 for each relation type r do
8 Rel. feature r← average of all prob. of the neighbours with relation r to story s;
9 end for

10 Create new feature set by concatenating all rel. features with the loc. features;
11 end for
12 end for
13 Compute probability estimations p for test stories using classifier T ;
14 for each story s do
15 if ps > 0.5 then
16 Classify story s as delayed
17 else
18 Classify story s as not delayed
19 end if
20 end for

20

Chapter 4

Networked Classification in an
Open-Source and Industry Setting

(RQ1)

This section focuses on research question 1: What is the performance of delay prediction

using networked classification in an industry setting compared to open-source data?

We first discuss the general evaluation setup and then present the approach, results and

discussion for each subquestion RQ 1a to RQ 1d separately.

4.1 Evaluation Setup

4.1.1 Creating train/test splits

For every experiment, the input set of features is modified. Every experiment is evaluated

using 10-fold time series cross-validation. Time series cross-validation takes into account

that data points in the training set should occur before data points in the test set.

Every month, approximately 30,000 stories are active within the dataset. We pick our fold

size in such a way that both the training and test set span roughly one-third of a month. To

generate 10 folds, we select the first day of the months February until November as splitting

points. For each fold, we select 10,000 stories before the splitting point as training set and

10,000 after the splitting point as test set using the method described in Section 3.4. The

resulting folds are visualised in Figure 4.1.

4.1.2 Performance metrics

To evaluate the performance of the models, a confusion matrix is used. The results are

stored in the confusion matrix as follows: if a story is predicted as delayed, when it actually

21

4.1. Evaluation Setup

Figure 4.1: Visual representation of the 10 generated folds

is delayed, the classification is a True Positive (TP). If a story is predicted as delayed, when

it actually is not delayed, the classification is a False Positive (FP). If a story is predicted as

not delayed, when it actually is delayed, the classification is a False Negative. Finally, if a

story is predicted as not delayed, when it actually is not delayed, the classification is a True

Negative (TN). This is visually presented in Figure 4.2.

We then calculate the following metrics, commonly used in machine learning models for

each fold: (a) Precision, the percentage of correctly predicted delays of all stories predicted

as delayed. (b) Recall, the percentage of delayed stories predicted correctly of all actually

delayes stories. (c) F-measure, the harmonic mean of precision and recall. (d) Area under

(ROC) Curve, the ability of the model to distinguish between classes. The exact computation

of each metric is shown in Figure 4.3. For each metric, the average over the folds is com-

puted, which gives us the performance measure for each experiment. As we are not focusing

on optimising precision or recall specifically, we regard the F-measure and AUC scores as

leading for our design decisions.

Figure 4.2: Confusion matrix

(a) Precision: T P
T P+FP

(b) Recall: T P
T P+FN

(c) F-measure: 2∗Precision∗Recall
Precision+Recall = 2∗T P

2∗T P+FP+FN

(d) Area under (ROC) Curve: T P+T N
T P+T N+FP+FN

Figure 4.3: Performance measures

22

4.2. Open-Source Features in an Industry Setting (RQ 1a)

4.2 Open-Source Features in an Industry Setting (RQ 1a)

RQ 1a: What is the performance of delay prediction in an industry setting using features that

work well on open-source data?

4.2.1 Approach

To answer this research question, we consider the local model and relational model sepa-

rately. First, we use the local open-source features which are available at ING (Lo) in the

local model. Then, we use these features together with the relational open-source features

which are available at ING (Ro) in the relational model.

The performance is then compared against the reported performance of Choetkiertikul

et al. [10]. Note that Choetkiertikul et al. report the performance scores for their models

on five different projects, the average of these performance scores is used as baseline to

compare our results to.

4.2.2 Results

Figure 4.4 shows the precision, recall, F-measure and AUC achieved by the local model and

the relational model. The performance scores are compared against the reported results of

Choetkiertikul et al. [10].

(a) Precision (b) Recall (c) F-measure (d) AUC

Figure 4.4: Evaluation results for baseline and using feature sets Lo and Ro on ING data

It is directly clear that in both experiments, local and relational, the performance of the

models is worse at ING than in open-source projects. Only the precision in the local model

is better at ING. Also note that the difference in performance is greatest for the relational

model.

23

4.2. Open-Source Features in an Industry Setting (RQ 1a)

When comparing the local model to the relational model at ING, we see that the relational

model performs better in terms of precision, whilst the local model performs better in terms of

recall. The scores of the F-measure and AUC are very close to each other for both models.

4.2.3 Discussion

It is not surprising that the performance at ING is worse than the performance reported

by Choetkiertikul et al. on open-source data as less features are available within the ING

context. Choetkiertikul et al. make use of 15 local features and 6 relational features. At

ING, only 5 of the local features are available (resulting in feature set Lo) and only 2 of the

relational features are available (resulting in feature set Ro).

This discrepancy can be explained by the organisational structure of the two different

settings. In an open-source project, the main communication channel is the project man-

agement system as developers are usually joining the project from all over the world. This

means that it is highly important to keep track of a lot of information in the project manage-

ment system. In an industry setting, developers usually work in teams which are focused on

a specific product or part of the software system. Developers make use of project manage-

ment systems, but this is not their main communication channel. They meet daily and often

work from the same location, which means that a lot of information can be shared outside of

a project management system. Information like the number of votes, number of watches or

discussion time is often not useful for industry developers to keep track of.

One of the relational features that is missing at ING, is the explicit blocked by depen-

dency (i.e. story A is blocked by story B). This dependency provides very valuable relational

information when explicitly kept track of [10].

In the subsequent research questions, we therefore explore which information is avail-

able within the industry setting that can be used for delay prediction.

Insight 1 (Difference in availability of information between open-source and industry).

There is a difference in which information is kept track of within open-source projects

and within industry projects. This is due to the organisational structure of the two set-

tings.

Furthermore, the dataset used at ING comprises all stories of all software teams world-

wide. This means that multiple projects are included in the dataset and it is possible that the

model is trained on data from project A, while its performance is tested on project B. This

can also explain the worse performance at ING compared to the open-source setting.

24

4.3. Local Features from Industry (RQ 1b)

4.3 Local Features from Industry (RQ 1b)

RQ 1b: Which local features, available at ING, improve delay prediction in an industry set-

ting?

4.3.1 Approach

For answering this research question, we are going to extend the local open-source feature

set Lo with the local ING feature set Li in two steps:

Firstly, we add the Blocked, Request, Secure and Story Points fields as features. This

is because these fields can be directly fed into the Random Forests classifier and do not

need an engineering step. This set of features is therefore indicated by non-engineered ING.

We add each feature separately to the model and measure its performance. Based on the

scores for each feature, we select the best combination of features and measure the model

performance again. The result is compared to the results presented by Choetkiertikul et al.

[10] and the result of only using feature set Lo. The best set of features is then used as the

basis for step 2.

Secondly, we engineer the Developer workload (story points) and State at start sprint

features. This set is indicated by engineered ING. These features are added separately and

in combination to the best set of features from the non-engineered ING feature set. Based

on the performance, we select which features should finally be included in the set of local

features which improve delay prediction in an industry setting. This best set of features is

the answer to RQ 1b.

4.3.2 Results

Figure 4.5 shows the precision, recall, F-measure and AUC achieved by adding the non-

engineered ING and engineered ING to the local open-source feature set Lo. The perfor-

mance scores are compared to the results presented by Choetkiertikul et al. [10] and to the

performance of local model using only local open-source feature set Lo.

For each added set of features, there is a clear increase of precision. F-measure and

AUC also show some improvement, while recall shows a decrease. Compared to the results

of Choetkiertikul et al., the local model is still not able to perform better on ING data with

regards to the recall, F-measure and AUC, but it does approach the same performance in

terms of F-measure and AUC.

25

4.3. Local Features from Industry (RQ 1b)

Figure 4.5: Evaluation results for baseline and using feature sets Lo and Li on ING data

In Table 4.1 the performance measures of adding different combinations of features to

the local open-source feature set Lo are shown. These results are discussed below.

Table 4.1: Performance scores for adding local ING features to Lo

Features Precision Recall F-measure AUC

Baseline (Choetkiertikul) 0.392 0.434 0.482 0.743
Baseline (Lo on ING data) 0.420 0.425 0.422 0.667

Extending baseline with:

Blocked 0.421 0.421 0.421 0.668
Request 0.420 0.424 0.422 0.667
Secure 0.418 0.425 0.421 0.666
Story Points 0.458 0.409 0.432 0.682

Lo + all non-engineered ING 0.464 0.400 0.429 0.681

Extending Lo and non-engineered ING with:

Developer workload (story points) 0.501 0.394 0.441 0.693
State at start sprint 0.517 0.326 0.400 0.692

Both of the above 0.556 0.364 0.440 0.702

Adding Blocked, Request and Secure to Lo shows almost no difference in performance,

whilst adding Story Points does show an increase in precision, F-measure and AUC. When

all non-engineered ING features are added to Lo, we see the greatest improvement in terms

of precision, F-measure and AUC, but a decline in terms of recall.

Adding Developer workload (story points) shows an improvement in precision, F-measure

and AUC, while there is a small decline in recall. Adding State at start sprint provides an

26

4.4. Relational Features from Industry (RQ 1c)

increase in precision and AUC, but a decrease in recall and F-measure. Adding both of

these features shows an even larger improvement in precision and AUC, while also showing

an improvement in F-measure. The recall does however decrease compared to the baseline

and adding the non-engineered ING feature set.

4.3.3 Discussion

When adding the local ING features, the results show a minimal increase in F-measure

and AUC, while precision and recall tend to deviate more from the baseline. This means that

adding more features from available industry data does increase the performance of the local

model. The local model does however not yet achieve the same results as Choetkiertikul et

el. report for open-source projects [10]. This is not surprising as Choetkiertikul et al. use 15

local features while the feature set we use (Lo + Li) consists of 11 features.

It is interesting to see that the precision increases for each added feature set, but the

recall decreases (see Figure 4.5). This might be explained by the fact that our experiments

are run on many different projects from different teams worldwide such as described in sub-

section 4.2.3. Every team makes use of ServiceNow differently. For example, team A could

assign 2 story points to a story that team B would assign 4 story points to. This means

that features of a delayed story can have different values for different teams and learning to

characterise these stories is harder.

Insight 2 (Record-keeping is treated differently across teams). Every team treats record-

keeping differently. This means that features of stories can have different values for dif-

ferent teams. Learning to characterise delayed and non-delayed stories when training

on data from many different teams will therefore be harder.

4.4 Relational Features from Industry (RQ 1c)

RQ 1c: Which relational features, available at ING, improve delay prediction in an industry

setting?

4.4.1 Approach

For answering this research question, we use a local classifier with feature sets Lo and Li

as the basis for the relational model. The relational classifier makes use of the relational

features available at ING (Ra, Ra−low, Ro) and its performance is compared to the following

three baselines:

27

4.4. Relational Features from Industry (RQ 1c)

1. The performance scores of the relational model of Choetkiertikul et al. [10].

2. The performance of using the local open-source and ING feature sets Lo, Li in the

local model.

3. The performance of using the local open-source and ING feature sets Lo, Li in combi-

nation with the relational open-source feature set Ro in the relational model.

Firstly, the relational model is built with relational attribute-based (Ra) and resource-

based (Rr) feature sets. We first add each feature set separately and then combine them to

evaluate the effect of adding relational features available in the industry setting.

Secondly, we build a relational model using the features from the relational attributes-

based features with low availability Ra−low. This is done separately from Ra and Rr because

the number of data points available with features from Ra−low is significantly lower. These

smaller datasets will be used to re-create baseline 2 in order to evaluate the effect of these

features specifically. The performance scores of adding these features will be compared

against baseline 1 and baseline 2 with the correspoding smaller datasets.

4.4.2 Results

Figure 4.6 shows the precision, recall, F-measure and AUC achieved by using the relational

attribute-based (Ra) and resource-based (Rr) feature sets. The performance scores are

compared to the baselines as described in subsection 4.4.1.

Figure 4.6: Evaluation results for building a relational model with feature sets Ra and Rr on
ING data

For both relation sets Ra and Rr and their combination, it is clear that the models do

not outperform baseline 1. The models do however show an improvement with regards to

baseline 2 and 3. The model with features from both Ra and Rr performs best of the three

relational models on ING data, but the difference between the three models is very small.

28

4.4. Relational Features from Industry (RQ 1c)

For the features of the relational attribute-based features with low availability set Ra−low,

baseline 2 has been recomputed using the smaller datasets available for each of the fea-

tures. The sizes of these datasets and relevant characteristics are shown in Table 4.2. In

terms of number of stories, the Feature Reference dataset is the largest, with approximately

half the number of stories as in the complete dataset. The Component and Change Refer-

ence datasets are relatively small, respectively containing only 1.2% and 5.5% of the total

number of stories. When the three features are combined, we are left with a dataset that is

extremely small in comparison with the complete dataset, containing only 0.1% of the total

number of stories.

Table 4.2: Data characteristics for availability-low datasets

Number of Component Feature Ref. Change Ref. Combined Complete dataset

Stories 3,634 (1.2%) 150,839 (49.6%) 16,864 (5.5%) 262 (0.1%) 303,978 (100.0%)

Developers 523 (3.7%) 9,529 (67.7%) 2,965 (21.1%) 71 (0.5%) 14,076 (100.0%)
Reporters 424 (3.8%) 7,054 (62.7%) 2,572 (22.9%) 62 (0.6%) 11,254 (100.0%)
Squads 127 (6.4%) 1,474 (74.5%) 705 (35.6%) 29 (1.5%) 1,979 (100.0%)
Tribes 57 (20.0%) 230 (80.7%) 131 (46.0%) 14 (4.9%) 285 (100.0%)
Epics 429 (3.1%) 6,566 (48.1%) 2,226 (16.3%) 59 (0.4%) 13,653 (100.0%)
Themes 145 (9.2%) 1,083 (68.8%) 499 (31.7%) 26 (1.7%) 1,573 (100.0%)

The result of using these smaller datasets to recompute baseline 2 is shown in Figure

4.7. For the datasets corresponding to Change Reference, Component and all three features

from Ra−low combined, the recomputed baseline 2 even outperforms the results reported by

Choetkiertikul et al.. For the dataset corresponding to Feature Reference, the recomputed

baseline 2 is similar to the original baseline 2.

Figure 4.7: Recomputed baseline 2 for datasets corresponding to features from Ra−low

Figure 4.8 shows the precision, recall, F-measure and AUC achieved by adding each of

the features of the relational attribute-based features with low availability set Ra−low.The ap-

29

4.4. Relational Features from Industry (RQ 1c)

proach using Change Reference, Component and all three features from Ra−low combined,

outperforms baseline 1 and 2, with the exception of recall for the individual features. The

combined set reaches scores above 90%, with a precision of 100% and AUC of 99%. For

Change Reference and all features combined, we see that baseline 3 outperforms baseline

1 with regards to precision, F-measure and AUC.

Using Feature Reference on its corresponding dataset shows an improvement compared

to baseline 2 with regards to precision and AUC, but it does not outperform the results of

baseline 1.

(a) Change Reference (b) Component

(c) Feature Reference (d) Features (a), (b) and (c) combined

Figure 4.8: Evaluation results for building a relational model with features from Ra−low on
ING data

4.4.3 Discussion

When using relational ING features Ra and Rr, the results show an increase in all perfor-

mance scores compared to baseline 2 (only local features) and baseline 3 (local features

and relational open-source features). This shows that adding relational features from ING

improves the prediction performance.

There is no significant difference between using attribute- or resource-based features,

both sets show similar performance scores. Combining them does however show an in-

crease in performance with regards to precision, F-measure and AUC. From this, we can

30

4.4. Relational Features from Industry (RQ 1c)

conclude that increasing the number of relational features has a positive effect on the pre-

diction performance.

Insight 3 (Using networked information improves delay prediction). Compared to only

using local features, adding networked information improves delay prediction. Increas-

ing the number of relational features improves the prediction performance even more.

Using the features from Ra−low and their corresponding datasets shows very interesting

results. When using the datasets corresponding to Change Reference, Component and all

three features from the set combined to recompute baseline 2, we see an improvement for

all performance measures. This suggests that these datasets are better suited for delay

prediction. This can be explained by looking at the characteristics of these datasets in Table

4.2. The unique numbers of developers, reporters, squads and epics is less than a quarter

of their unique numbers in the complete dataset. These smaller dataset are thus less diverse

with regards to the organisational units compared to the complete dataset.

The recomputed baseline 2 using the Feature Reference dataset shows minimal devia-

tion from the original baseline. Looking at the data characteristics, we see that, compared to

the other datasets corresponding to features from Ra−low, the Feature Reference dataset still

has a high number of data points. This large subset of the complete dataset is apparently

too diverse to show an improvement of the baseline.

Insight 4 (Using a general approach for ING as a whole performs worse than a team-spe-

cific approach). A model that is trained on data from all teams at ING has worse pre-

diction performance than a model that is trained on specific organisational units such

as squads and tribes or on specific domains using epics and themes. Training on spe-

cific organisational units allows the model to be fit better to the data and consequently

improve its prediction performance. This is in line with Insight 2.

Adding the features from Ra−low shows an improvement of all performance measures,

which is in line with insight 3.

31

4.5. Feature Importances (RQ 1d)

4.5 Feature Importances (RQ 1d)

RQ 1d: Which features are most important for delay prediction on ING data?

4.5.1 Approach

The feature importances of a classifier can be found by using the feature importances

function provided by the sci-kit learn library1. The feature importances of the baselines

and best performing sets of the previous research questions are reported, which are:

• Local open-source (Lo)

• Local open-source + local ING (Lo + Li)

• Choetkiertikul et al. (Lo + Ro)

• All local + relational attribute + relational open-source (Lo + Li + Ra + Ro)

4.5.2 Results

Figure 4.9 shows the feature importances across using different sets of features. We see

that Waiting time and Delayed ratio score highly for every feature set. Additionally, Story

Points, Developer workload in story points and State at start sprint are amongst the top-

most important features for the local ING approach. For the relational ING approach, we see

a much more balanced distribution of feature importances across all features.

4.5.3 Discussion

Before discussing the feature importance results, it is important to note that if a feature is

important for a certain model, this does not necessarily indicate that it is a good predictor for

delays. A feature can be very important to a certain model, but if that model has low perfor-

mance scores, the feature is apparently a large contributor to poor predictions. Conversely,

if the model has very high performance scores, the feature is a contributor to good prediction

and thus is a good predictor for delays.

Across all feature sets, Waiting time and Delayed ratio show a high importance, indicat-

ing that these features are important for delay prediction in general. Even in the relational

setting, their importances are higher than those of the relational features, emphasising their

contribution to delay prediction.
1https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.htm

l

32

https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

4.5. Feature Importances (RQ 1d)

Figure 4.9: Feature importances for different models

For the relational features, the importance scores are relatively similar, suggesting there

is not a specific relational feature that is highly effective for delay prediction in networked

classification. It is the combination of the features that contributes to the performance of the

model.

33

Chapter 5

Using Weights in Networked
Classification (RQ 2)

This section focuses on research question 2: What is the impact of adding weights to rela-

tions on delay prediction using networked information?

5.1 Evaluation Setup

For both RQ 2a and RQ 2b, the best performing relational model of RQ 1 which uses the

complete dataset is chosen as the baseline. This is the relational ING model which uses

feature sets Lo, Li, Ro, Ra and Rr. This model is then extended and evaluated using the

same evaluation setup as in RQ 1 (see Section 4.1).

5.2 Weights Based on Time Interval (RQ 2a)

RQ 2a: What is the prediction performance when determining weights based on the time

interval between stories?

5.2.1 Approach

Suppose a developer used to cause a lot of delays in the beginning of his career. Some

months later, the developer has gotten more experience and the amount of caused delays

has greatly decreased. In the relational model, all the stories of this developer are related

to each other with equal weight. Predictions for new stories assigned to this developer will

thus be influenced as much by the ‘old’ delayed stories as by the ‘new’ non-delayed stories.

To make use of this historical information and reduce the influence of ‘old’ stories, we add

weights to the relationships in the network based on the time interval between stories.

34

5.2. Weights Based on Time Interval (RQ 2a)

When creating the story network as described in subsection 3.6.1 every edge is assigned

a weight using the formulas below. For each vertex (story) v in the network we have a

set of edges (relations) Ev. The weights of the relations are determined for each type of

relationship. The set of edges (relations) with a specific type (of relationship) r for a specific

vertex (story) is then denoted by Ev,r. The weight we of edge e ∈ Ev,r is computed as follows:

Let

X = Set of intervals for edges in Ev,r

Z = Set of intervals normalised between 0 and 1 for edges in Ev,r

W = Set of weights for edges in Ev,r where sum(W) = 1

(5.1)

Then for each interval i in the set X we apply the 0,1 normalisation as follows:

Zi =
max(X)+min(X)−Xi

max(X)−min(X)
(5.2)

And transform the normalised intervals to weights as follows:

Wi =
Zi

sum(Z)
(5.3)

The resulting weights have values between 0 and 1 and the sum of the weights equals 1.

The largest interval has the smallest weight and the smallest interval has the largest weight.

In the relational model these weights are then used to compute the weighted average of

the probability estimations of the neighbours instead of the average. As sum(W) = 1, the

resulting weighted averages range between 0 and 1.

We set the time-dependent weights in the relational ING model and compare it with the

same model where all weights are set to 1.

5.2.2 Results

In Figure 5.1 the precision, recall, F-measure and AUC for using time-dependent weights are

shown. There is an improvement with regards to the recall, but no improvement with regards

to the other performance measures. The F-measure is equal for both models.

5.2.3 Discussion

Adding time-dependent weights to the relational ING model does not improve its prediction

performance. The recall is slightly higher, but the F-measure is unchanged and the precision

and AUC are lower. It seems that adding time-dependent weights introduces more noise to

the model. It might be the case that, within the timespan of our dataset, older stories are

35

5.3. Weights Based on Assortativity Coefficient (RQ 2b)

Figure 5.1: Results for using time-dependent weights

equally relevant as more recent stories. The fact that we are applying the model on a general

dataset instead of on a more specific subset (Insight 4) can also be a factor.

5.3 Weights Based on Assortativity Coefficient (RQ 2b)

RQ 2b: What is the prediction performance when determining weights using the assortativity

coefficient of the network?

5.3.1 Approach

The connectivity of a graph can be expressed by its assortativity coefficient. The assorta-

tivity coefficient of a graph can be calculated in various ways and for our study it is most

interesting to consider the attribute assortativity coefficient [34]. The attribute assortativity

coefficient is defined as: the tendency of nodes in a network to connect with nodes that

share similar attributes. In the context of delay prediction using networked classification this

is the tendency of stories to have a relationship with stories that have the same delay status.

The relational ING model does not differentiate between the influence of different types

of relationships. Each type of relationship is included as a separate feature, which is then fed

into the classifier. We can however differentiate between the relational features by combining

them into one feature using weights based on the assortativity coefficient for each relational

feature to improve prediction performance [32].

For each relational feature, we create a separate network as shown in Figure 5.2. Each

network has a corresponding assortativity coefficient, which serves as the weight for that

specific relationship type. The assortativity for each relation type is computed using the

attribute assortativity coefficient of the networkx library1. The weights are de-

1https://networkx.org/documentation/stable/reference/algorithms/assortativity.html

36

https://networkx.org/documentation/stable/reference/algorithms/assortativity.html

5.3. Weights Based on Assortativity Coefficient (RQ 2b)

termined by scaling all assortativity scores such that the sum of scores is equal to 1. A high

assortativity corresponds to a high weight, a low assortativity corresponds to a low weight.

To create the combined feature, we take the weighted average of the relational feature and

store the result in a new feature with the name Neighbours.

(a) Network 1 (b) Network 2 (c) Network 3

Figure 5.2: Example of different networks based on different relational features. Delayed
stories are red, non-delayed stories are green

We can include the Neighbours feature in the relational model in two ways:

1. Build a relational model with feature sets Lo, Li as input, extended with the Neighbours

feature created using Ro, Ra, Rr. This model is indicated by local + neigbours (LN)

2. Build a relational model with feature sets Lo, Li, Ro, Ra, Rr as input, extended with

the Neighbours feature created using Ro, Ra, Rr. This model is indicated by local +

relational + neighbours (LRN)

The LN and LRN models are compared against the relational ING model and the rela-

tional ING model using time-dependent weights from RQ 2a.

5.3.2 Results

In Figure 5.3 the precision, recall, F-measure and AUC for using assortativity-based weights

in the relational model are shown. With regards to recall, F-measure and AUC, the LN model

shows the highest scores. The performance measures for the LRN model are very similar

to those of the relational model using time-dependent weights. Both LN and LRN do not

outperform the relational ING model.

5.3.3 Discussion

Adding assortativity-based weights to the relational ING model does not improve its pre-

diction performance. The recall is slightly higher, but the F-measure is unchanged and the

37

5.3. Weights Based on Assortativity Coefficient (RQ 2b)

Figure 5.3: Scores for using assortativity-based weights

precision and AUC are lower. It seems that adding assortativity-based weights introduces

more noise to the model. Similar to the time-dependent weights model, the fact that we are

applying the model on a general dataset instead of on a more specific subset (Insight 4)

could explain the non-effectiveness of the assortativity-based weights model.

Excluding or including the relational features separately also does not seem much effect.

The precision of LRN is higher than the precision of LN , thus more stories are predicted

correctly. In terms of the other performance measures however, LN scores better, especially

for the recall, thus more of the delayed stories are identified. This can again be attributed to

Insight 4.

Insight 5 (Adding weights to the network does not improve prediction performance).

Adding either time-dependent or assortativity-based weights to the relational ING model

does not improve its performance. This can likely be attributed to the diversity of the

dataset as described in Insight 4.

38

Chapter 6

Using Different Sliding Window
Sizes for Delay Prediction (RQ 3)

This section focuses on research question 3: What is the effect of using different sizes of

sliding windows when performing delay prediction on ING data?

6.1 Evaluation Setup and Approach

For this research question, models with the following set of features are used:

• Local open-source (Lo)

• Local open-source + local ING (Lo + Li)

• Choetkiertikul et al. (Lo + Ro)

• All local + relational attribute + relational resource (Lo + Li + Ra + Rr)

In RQ 1, the prediction performance of these models has been evaluated using a sliding

window with a training and test set of 10,000 stories. To answer RQ 3, the models are trained

with the following training set sizes: 100, 1000, 5000, 10000, 20000, 30000. The test set

size is kept at 10000 for each experiment. In Figures 6.1 the folds are shown for training set

sizes 10,000 and 30,000. The prediction performance of using different training set sizes are

compared for each model.

39

6.2. Results

(a) Training set size 10,000 and test set size 10,000

(b) Training set size 30,000 and test set size 10,000

Figure 6.1: Visual representation of 10 folds with different training set sizes

6.2 Results

In Figure 6.2 the precision, recall, f-measure and AUC of using different training set sizes

for a sliding window are shown. The scores for using a training set size of 100 data points

deviate from the other training set sizes.

For the two local models, changing the training set size does not have any significant

effect. The two relational models do show an improvement with regards to precision, F-

measure and AUC when the training set size is increased.

6.3 Discussion

Using a training set size of 100 data points shows significantly different results compared to

using other training set sizes. This can be explained by the diversity of the training set (see

Insight 4).

Aside from the training set size with 100 data points, the local models show no change in

performance across using different training set sizes. The Random Forests classifier is not

able to fit a better model when more data points are added. This can possibly be explained

by the fact that there is a certain level of noise in the model due to the general approach

(Insight 2). Adding more data points does not change the level of noise. Note that for the

local open-source model, the precision decreases, so the noise for this model does increase.

The two relational models do show an improvement with regards to precision, F-measure

40

6.3. Discussion

(a) Precision (b) Recall

(c) F-measure (d) AUC

(e) Legend

Figure 6.2: Evaluation results for using different training set sizes. Note that the range of the
y-axis varies across the diagrams. The first data point of each diagram is at dataset size
= 100

and AUC. The recall scores are relatively constant. When more data points are added to the

relational model, the constructed network will be larger and there is more relational infor-

mation available that can be used by the model for its predictions. Creating such a larger

network and consequently performing predictions on it does however require more resources

(which can be the time available to run the model or the space available to store the data).

So using larger datasets is beneficial for relational models, but a trade-off should be made

between the size of the dataset and the feasibility of using the model with regards to the

available resources. We provide an insight on the next page.

41

6.3. Discussion

Insight 6 (Larger training set sizes improve prediction performance for relational mod-

els). Using larger training set sizes for the relational model improves its prediction per-

formance. This is because the constructed network is larger and there is more rela-

tional information available. There are limits to increasing the training set size as there

are computational limits with regards to the time and space (memory) available for the

model to run.

42

Chapter 7

Threats to Validity

In this chapter, threats to the validity of the study are discussed. We consider construct,

internal and external validity.

7.1 Construct Validity

Construct validity defines how effectively an experiment measures up to its claims and deals

with whether or not the researcher measures what is intended to be measured [1]. Data

variables are considered as constructs that meaningfully measure delay indicators, which

introduces possible threats to construct validity [41].We mitigated these threats by collecting

real-world data from stories and developers at ING, including all the historical information

available.

The ground-truth of the delay status is based on the number of sprints that a story has

been assigned to. It might however happen that teams do not properly keep track of their

stories within the project management system. Stories might be closed too early or too late,

teams might add stories to sprints without being committed to actually finish them within that

sprint, or fields like the Blocked status of a story are not used. We cannot account for the

impact of poor record-keeping by teams on our results.

7.2 Internal Validity

Internal validity defines to what extent the result of an experiment is related to the experimen-

tal condition applied [1]. The dataset in our study suffers from the class imbalance problem

as 73% of the stories are non-delayed and 27% are delayed. This may affect the ability of

the classifier to learn to identify delayed stories. To mitigate the risk of this threat, we focused

43

7.3. External Validity

on the AUC score, which is insensitive to class imbalance. We do acknowledge that more

advanced techniques could also be used, such as statistical over-sampling [8].

Another threat to the internal validity of our study is that the characteristics in the training

sets do not resemble those in the test sets. Different (amounts) of teams, tribes and epics

might be represented in the sets. To mitigate this threat, we mimicked a real-world scenario

by using time series cross-validation.

7.3 External Validity

External validity defines to what extend the result of an experiment can be generalised [1].

Our study is focused on one case, ING, but within this case, we considered 303,978 stories

from 1,979 teams. These significantly differ in size, composition and application domain as

13,853 epics from 1,573 themes are considered (Table 4.2). Our data is thus representative

of a variety of software projects, but the results might not generalise to other organisations,

as the organisational structure and way of working can differ greatly from the ING setting.

44

Chapter 8

Conclusion and Future Work

In this final chapter, we revisit the insights gained from the different experiments and give

recommendations to ING based on these insights. The chapter is concluded by a number of

suggestions for future work.

8.1 Insights

In this study, we have investigated the performance of relational models for predicting delays

in software deliveries at ING. Different feature sets for delay prediction (RQ 1), using weights

in relational models (RQ 2) and different dataset sizes (RQ 3) have been considered. The

results yield a number of insights:

1. There is a difference in the information that is available between open-source and

industry settings.

2. Record-keeping is treated differently across teams.

3. Using networked information improves delay prediction.

4. Using a general approach for ING as a whole performs worse than a team-specific

approach.

5. Using weights in networked classification does not improve prediction performance at

ING.

6. Larger dataset sizes improve prediction performance for relational models.

These insights indicate that delay prediction using networked classification within an

industry can be beneficial, but that factors regarding the dataset composition and size should

be taken into account to achieve better performance.

45

8.2. Recommendations for ING

8.2 Recommendations for ING

Based on the different insights that have been gained throughout the study, there are a

number of recommendations that can be given to ING.

Keep track of more information

There is already a lot of information available from the data warehouse at ING, however,

only 7 of the 21 features that have proven to work well for delay prediction on open-source

data could be engineered. As Waiting Time showed to be an important feature for delay

prediction, explicitly keeping track of this and possibly other features which track duration

could improve prediction performance. In addition, explicit dependencies between stories

(i.e.: story A blocks story B) could improve the prediction performance of relational models.

Improve data quality

We have seen that across teams, the project management system is used differently, as not

all teams keep track of the same information The Component field is a good example of

this. Only 127 teams of the total 1,979 teams in dataset make use of the Component field,

while this has shown to greatly improve prediction performance. Teams might also treat

record keeping of stories less seriously, with the consequence that the stories in the project

management system do not correctly reflect the actual state of their work. When teams are

encouraged to better and more consistently keep track of their stories, this could improve the

delay prediction.

Create models for specific domains or organisational units

In our study, we have applied delay prediction on data from a variety of teams working across

a large number of different domains. This general approach proved to be less effective at

predicting delays than a more domain-specific or team-specific approach. When the predic-

tion models were trained on a subset of the data, originating from a smaller number of unique

teams, the prediction performance increased. We therefore recommend to build prediction

models at domain-, tribe- or team-level instead of building a model for all the teams in the

whole company.

8.3 Future Work

In this work, we investigated the performance of networked classification for delay prediction

in an industry setting. We provide the following suggestions for further research in this area:

46

8.3. Future Work

Use second-order Markov assumptions in the relational model

The relational classifiers in our relational model make use of a first-order Markov assumption,

hence, only information about direct neighbours of a story is used. It might however be

the case that a delay propagates through the network, so using information about further

neighbours could improve the prediction performance of the relational model.

Make rescheduling recommendations based on delay prediction

When the model predicts that stories will be delayed based on the sprint planning of a team,

it would be interesting to give a recommendation how this delay could be mitigated. For

example by assigning stories to a different developer or lowering the workload by excluding

the story from the sprint.

Investigate the performance of using an expanding window

In our study, we investigated the effect of using different window sizes. The results show that

using larger window sizes benefit the prediction performance of the relational models. Due

to resource limitations, we could only test the models with a maximum training set size of

30,000 stories. It would however be interesting to investigate the performance of using an

expanding window where for each window ki, the stories of the previous windows k0...ki−1

are used to train the model.

Investigate optimal granularity for model-training

Our results indicate that training the prediction model on a smaller variety of teams, tribes

and domains achieves better prediction performance. It would be interesting to investigate

what level of granularity would be optimal for delay prediction. For example training on stories

from specific tribes, teams, themes or epics.

47

Bibliography

[1] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and Alexander

Chatzigeorgiou. Identifying, categorizing and mitigating threats to validity in software

engineering secondary studies. Information and Software Technology, 106:201–230,

2019.

[2] Kent Beck et al. The agile manifesto. Software development, 9(8):28–35, 2001. URL

https://agilemanifesto.org/.

[3] Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal

of the Royal Statistical Society: Series B (Methodological), 36(2):192–225, 1974.

[4] Pamela Bhattacharya and Iulian Neamtiu. Bug-fix time prediction models: can we

do better? In Proceedings of the 8th Working Conference on Mining Software

Repositories, pages 207–210, 2011.

[5] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal

of machine Learning research, 3(Jan):993–1022, 2003.

[6] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] Richard Brenner and Stefan Wunder. Scaled agile framework: Presentation and real

world example. In 2015 IEEE Eighth International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), pages 1–2. IEEE, 2015.

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence research,

16:321–357, 2002.

[9] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Characteriza-

tion and prediction of issue-related risks in software projects. In 2015 IEEE/ACM 12th

48

https://agilemanifesto.org/

Bibliography

Working Conference on Mining Software Repositories, pages 280–291. IEEE, 2015.

URL https://ieeexplore.ieee.org/abstract/document/7180087.

[10] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Predicting

delays in software projects using networked classification. In 2015 30th IEEE/ACM

international conference on automated software engineering (ASE), pages 353–364.

IEEE, 2015. URL https://ieeexplore.ieee.org/abstract/document/7372024.

[11] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Predicting

the delay of issues with due dates in software projects. Empirical Software Engineering,

22(3):1223–1263, 2017.

[12] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose, and

Tim Menzies. A deep learning model for estimating story points. IEEE Transactions on

Software Engineering, 45(7):637–656, 2018.

[13] Alistair Cockburn and Jim Highsmith. Agile software development, the people factor.

Computer, 34(11):131–133, 2001.

[14] Mike Cohn. User stories applied: For agile software development. Addison-Wesley

Professional, 2004.

[15] Mike Cohn. Agile estimating and planning. Pearson Education, 2005.

[16] Kevin Crowston and James Howison. Hierarchy and centralization in free and open

source software team communications. Knowledge, Technology & Policy, 18(4):65–85,

2006.

[17] Emanuel Dantas, Mirko Perkusich, Ednaldo Dilorenzo, Danilo FS Santos, Hyggo

Almeida, and Angelo Perkusich. Effort estimation in agile software development:

an updated review. International Journal of Software Engineering and Knowledge

Engineering, 28(11n12):1811–1831, 2018.

[18] PL Dobruschin. The description of a random field by means of conditional probabilities

and conditions of its regularity. Theory of Probability & Its Applications, 13(2):197–224,

1968.

[19] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on pattern analysis and machine

intelligence, (6):721–741, 1984.

49

https://ieeexplore.ieee.org/abstract/document/7180087
https://ieeexplore.ieee.org/abstract/document/7372024

Bibliography

[20] Lise Getoor. Link-based classification. In Advanced methods for knowledge discovery

from complex data, pages 189–207. Springer, 2005.

[21] Emanuel Giger, Martin Pinzger, and Harald Gall. Predicting the fix time of bugs.

In Proceedings of the 2nd International Workshop on Recommendation Systems for

Software Engineering, pages 52–56, 2010.

[22] Wei Hu and Kenny Wong. Using citation influence to predict software defects. In 2013

10th Working Conference on Mining Software Repositories (MSR), pages 419–428.

IEEE, 2013.

[23] Vlad-Sebastian Ionescu, Horia Demian, and Istvan-Gergely Czibula. Natural language

processing and machine learning methods for software development effort estimation.

Studies in Informatics and Control, 26(2):219–228, 2017.

[24] Nicholas Jalbert and Westley Weimer. Automated duplicate detection for bug track-

ing systems. In 2008 IEEE International Conference on Dependable Systems and

Networks With FTCS and DCC (DSN), pages 52–61. IEEE, 2008.

[25] Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect prediction. In 2013 28th

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

279–289. Ieee, 2013.

[26] Magne Jørgensen. A review of studies on expert estimation of software development

effort. Journal of Systems and Software, 70(1-2):37–60, 2004.

[27] Henrik Kniberg and Anders Ivarsson. Scaling Agile @ Spotify. http://www.agilelea

nhouse.com/lib/lib/People/HenrikKniberg/SpotifyScaling.pdf, 2012. Ac-

cessed: 03-08-2022, original upload: http://ucvox.files.wordpress.com/2012/

11/113617905-scaling-Agile-spotify-11.pdf.

[28] Stefan Koch. Agile principles and open source software development: A theoretical and

empirical discussion. In International Conference on Extreme Programming and Agile

Processes in Software Engineering, pages 85–93. Springer, 2004.

[29] Zhenzhen Kou and William W Cohen. Stacked graphical models for efficient inference

in markov random fields. In Proceedings of the 2007 SIAM International Conference on

Data Mining, pages 533–538. SIAM, 2007.

[30] Elvan Kula, Eric Greuter, Arie Van Deursen, and Gousios Georgios. Factors affect-

ing on-time delivery in large-scale agile software development. IEEE Transactions on

50

http://www.agileleanhouse.com/lib/lib/People/HenrikKniberg/SpotifyScaling.pdf
http://www.agileleanhouse.com/lib/lib/People/HenrikKniberg/SpotifyScaling.pdf
http://ucvox.files.wordpress.com/2012/11/113617905-scaling-Agile-spotify-11.pdf
http://ucvox.files.wordpress.com/2012/11/113617905-scaling-Agile-spotify-11.pdf

Bibliography

Software Engineering, 2021. URL https://ieeexplore.ieee.org/abstract/doc

ument/9503331/.

[31] Dean Leffingwell. Scaling software agility: Best practices for large enterprises (the agile

software development series), 2007.

[32] Sofus A Macskassy. Relational classifiers in a non-relational world: Using homophily

to create relations. In 2011 10th International Conference on Machine Learning and

Applications and Workshops, volume 1, pages 406–411. IEEE, 2011.

[33] Jennifer Neville and David Jensen. Collective classification with relational dependency

networks. In Workshop on Multi-Relational Data Mining (MRDM-2003), page 77, 2003.

[34] Mark EJ Newman. Mixing patterns in networks. Physical review E, 67(2):026126, 2003.

[35] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Chengnian

Sun. Duplicate bug report detection with a combination of information retrieval and

topic modeling. In 2012 Proceedings of the 27th IEEE/ACM international conference

on automated software engineering, pages 70–79. IEEE, 2012.

[36] Thanh HD Nguyen, Bram Adams, and Ahmed E Hassan. Studying the impact of depen-

dency network measures on software quality. In 2010 IEEE International Conference

on Software Maintenance, pages 1–10. IEEE, 2010.

[37] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea De Lu-

cia, and Denys Poshyvanyk. Detecting bad smells in source code using change history

information. In 2013 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 268–278. IEEE, 2013.

[38] Lucas D Panjer. Predicting eclipse bug lifetimes. In Fourth international workshop on

mining software repositories (MSR’07: ICSE workshops 2007), pages 29–29. IEEE,

2007.

[39] Rashmi Popli and Naresh Chauhan. Agile estimation using people and project re-

lated factors. In 2014 International Conference on Computing for Sustainable Global

Development (INDIACom), pages 564–569. IEEE, 2014.

[40] Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and Roberto

Tonelli. Estimating story points from issue reports. In Proceedings of the The

12th International Conference on Predictive Models and Data Analytics in Software

Engineering, pages 1–10, 2016.

51

https://ieeexplore.ieee.org/abstract/document/9503331/
https://ieeexplore.ieee.org/abstract/document/9503331/

Bibliography

[41] Paul Ralph and Ewan Tempero. Construct validity in software engineering research and

software metrics. In Proceedings of the 22nd International Conference on Evaluation

and Assessment in Software Engineering 2018, pages 13–23, 2018.

[42] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum Alliance, 21(19):1, 2011.

[43] Ezequiel Scott and Dietmar Pfahl. Using developers’ features to estimate story points.

In Proceedings of the 2018 International Conference on Software and System Process,

pages 106–110, 2018.

[44] Helen Sharp and Hugh Robinson. Three ‘c’s of agile practice: collaboration, co-

ordination and communication. In Agile software development, pages 61–85. Springer,

2010.

[45] Fei Tang and Hemant Ishwaran. Random forest missing data algorithms. Statistical

Analysis and Data Mining: The ASA Data Science Journal, 10(6):363–377, 2017.

[46] Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning associative markov net-

works. In Proceedings of the twenty-first international conference on Machine learning,

page 102, 2004.

[47] Muhammad Usman, Emilia Mendes, and Jürgen Börstler. Effort estimation in agile

software development: a survey on the state of the practice. In Proceedings of the

19th international conference on Evaluation and Assessment in Software Engineering,

pages 1–10, 2015.

[48] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. Predicting build

failures using social network analysis on developer communication. In 2009 IEEE 31st

International Conference on Software Engineering, pages 1–11. IEEE, 2009.

[49] Hongyu Zhang, Liang Gong, and Steve Versteeg. Predicting bug-fixing time: an empir-

ical study of commercial software projects. In 2013 35th International Conference on

Software Engineering (ICSE), pages 1042–1051. IEEE, 2013.

52

	Preface
	Contents
	List of Figures
	Introduction
	Research Questions
	Contributions
	Report Outline

	Background
	Agile Development
	Overview
	Agile development in industry and open-source settings

	Related Work on Delay Prediction
	Effort estimation
	Networked classification

	Case Study at ING

	 Research Method
	Data Collection
	Dataset requirements
	Dataset characteristics

	Data Preprocessing
	Classifying ground-truth delay status
	Dealing with missing information

	Feature Engineering
	Local open-source (Lo)
	Local ING (Li)
	Relational open-source (Ro)
	Relational attribute-based (Ra)
	Relational attribute-based features with low availability (Ra-low)
	Relational resource-based (Rr)
	Descriptive (D)

	Transforming Logs to Data Points
	Building the Local Model
	Building the Relational Model
	Story network construction
	Stacked Graphical Learning
	Stacked Inference

	 Networked Classification in an Open-Source and Industry Setting (RQ1)
	Evaluation Setup
	Creating train/test splits
	Performance metrics

	Open-Source Features in an Industry Setting (RQ 1a)
	Approach
	Results
	Discussion

	Local Features from Industry (RQ 1b)
	Approach
	Results
	Discussion

	Relational Features from Industry (RQ 1c)
	Approach
	Results
	Discussion

	Feature Importances (RQ 1d)
	Approach
	Results
	Discussion

	 Using Weights in Networked Classification (RQ 2)
	Evaluation Setup
	Weights Based on Time Interval (RQ 2a)
	Approach
	Results
	Discussion

	Weights Based on Assortativity Coefficient (RQ 2b)
	Approach
	Results
	Discussion

	 Using Different Sliding Window Sizes for Delay Prediction (RQ 3)
	Evaluation Setup and Approach
	Results
	Discussion

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion and Future Work
	Insights
	Recommendations for ING
	Future Work

	Bibliography

