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Abstract
There are quite a number of different metrics of network robustness. This paper addresses

the rationality of four metrics of network robustness (the algebraic connectivity, the effective

resistance, the average edge betweenness, and the efficiency) by investigating the robust

growth of generalized meshes (GMs). First, a heuristic growth algorithm (the Proximity-

Growth algorithm) is proposed. The resulting proximity-optimal GMs are intuitively robust

and hence are adopted as the benchmark. Then, a generalized mesh (GM) is grown up by

stepwise optimizing a given measure of network robustness. The following findings are pre-

sented: (1) The algebraic connectivity-optimal GMs deviate quickly from the proximity-opti-

mal GMs, yielding a number of less robust GMs. This hints that the rationality of the

algebraic connectivity as a measure of network robustness is still in doubt. (2) The effective

resistace-optimal GMs and the average edge betweenness-optimal GMs are in line with the

proximity-optimal GMs. This partly justifies the two quantities as metrics of network robust-

ness. (3) The efficiency-optimal GMs deviate gradually from the proximity-optimal GMs,

yielding some less robust GMs. This suggests the limited utility of the efficiency as a mea-

sure of network robustness.

1 Introduction
Nowadays, we live in a highly networked world, where numerous critical facilities are connected
together by various networks. For the critical facilities to work properly, the underlying net-
works must be robust, that is, the performance of the surviving network degrades gradually with
the increase of failing nodes/edges in such a network. To measure the robustness of a network, a
number of metrics, such as the connectivity [1], the algebraic connectivity [2–7], the effective
resistance [8–10], the average edge betweenness [9, 10], and the efficiency [10], have been pro-
posed. However, the rationality of these metrics of network robustness is still in question.
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In the process of infrastructural construction, it is often required that the robustness of an
existing network be enhanced by adding an additional set of edges. Mosk-Aoyama [11] proved
that the problem of maximizing the algebraic connectivity of an edge-growing network is NP-
hard. Ghosh and Boyd [12] proposed a heuristic algorithm for solving the problem. Wang and
Van Mieghem [13] designed and compared two heuristic algorithms for stepwise maximizing
the algebraic connectivity of an edge-growing network. Abbas and Egerstedt [14] solved the
problem of stepwise minimizing the effective resistance of an edge-growing network starting
from an empty network. Wang et al. [15] proposed and compared four heuristic algorithms for
stepwise minimizing the effective resistance of an edge-growing network starting from any
given network. In the construction of infrastructures, it is also required that new nodes be
linked to an existing network so as to form a most robust network. To our knowledge, however,
problems of this sort have not yet being addressed.

A generalized mesh (GM) is a network that has a finite subset of integral points in the plane
as the node set, where two nodes are adjacent if and only if they are one unit of Euclidean dis-
tance apart. GMs have widespread applications in areas such as parallel computing [16, 17],
fault-tolerant communication [18–20], optical communication [21], city planning [22], perco-
lation theory [23], and network epidemics [24–29].

This paper addresses the rationality of the four metrics of network robustness (the algebraic
connectivity, the effective resistance, the average edge betweenness, and the efficiency) by
investigating the robust growth of generalized meshes (GMs). First, a heuristic growth algo-
rithm (the Proximity-Growth algorithm) is proposed. The resulting proximity-optimal GMs
are intuitively robust and hence are adopted as the benchmark. Then, a generalized mesh
(GM) is grown up by stepwise optimizing a given measure of network robustness. The follow-
ing findings are presented: (1) The algebraic connectivity-optimal GMs deviate quickly from
the proximity-optimal GMs, yielding a number of less robust GMs. This hints that the rational-
ity of the algebraic connectivity as a measure of network robustness is still in doubt. (2) The
effective resistace-optimal GMs and the average edge betweenness-optimal GMs are in line
with the proximity-optimal GMs. This partly justifies the two quantities as metrics of network
robustness. (3) The efficiency-optimal GMs deviate gradually from the proximity-optimal
GMs, yielding some less robust GMs. This suggests the limited utility of the efficiency as a mea-
sure of network robustness.

The subsequent materials are organized in this fashion. Section 2 provides the preliminary
knowledge. Section 3 describes a heuristic growth algorithm of networks. Sections 4–7 address
the rationality of four different metrics of network robustness by examining the robustness of
the corresponding node-growing networks, respectively. Finally, Section 8 summarizes this
work.

2 Preliminary knowledge

2.1 Graph theory
For fundamental knowledge on graph theory, see Ref. [1]. Given a node u of graph G, let dG(u)

denote the degree of u in G, and let dðkÞ
G ðuÞ denote the number of nodes of G that are each dis-

tance k apart from u in G. Clearly, dð1Þ
G ðuÞ ¼ dGðuÞ.

Definition 1. Let G = (V,E) be a graph, S� V.

1. S is referred to as a separating set of G if V − S is disconnected.

2. The connectivity of G, denoted κ(G), is defined as follows.
κ(G) =min{|S|: S is a separating set of G} if G is not complete;
κ(G) = |V| − 1 if G is complete.
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The connectivity is an early proposed measure of network robustness: a network with larger
connectivity is intuitively more robust than a network with smaller connectivity. As one net-
work may be intuitively more robust than another network with equal connectivity, it is neces-
sary to introduce additional metrics of network robustness so as to fully capture the robustness
of a network.

2.2 Mesh, infinite mesh and generalized mesh
Let Zn ¼ f0; 1; 2; :::; n� 1g, Z ¼ f0;�1;�2; :::g. Anm × nmesh, denotedMm×n, is a graph
with Zm � Zn as the node set, where two nodes, (i1,j1) and (i2,j2), are adjacent if and only if
either (a) i1 = i2 and j1 = j2 ± 1, or (b) j1 = j2 and i1 = i2 ± 1.Mn×n is abbreviated asMn. Fig 1
depicts two small-sized unlabeled meshes.

An infinite mesh, denotedM1, is an infinite graph with Z� Z as the node set, where two
nodes, (i1,j1) and (i2,j2), are adjacent if and only if either (a) i1 = i2 and j1 = j2 ± 1, or (b) j1 = j2
and i1 = i2 ± 1. Fig 2 depicts an infinite mesh.

Fig 1. Two small-sized unlabeledmeshes.

doi:10.1371/journal.pone.0161077.g001

Fig 2. An infinite mesh.

doi:10.1371/journal.pone.0161077.g002
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A generalized mesh (GM, for short) is a graph with a finite subset of Z2 as the node set,
where two nodes, (i1,j1) and (i2,j2), are adjacent if and only if either (a) i1 = i2 and j1 = j2 ± 1, or
(b) j1 = j2 and i1 = i2 ± 1. Clearly, meshes are special GMs. Fig 3 depicts two GMs.

2.3 The robust growth of GMs
An initially small GM can grow up by stepwise adding new nodes. In real-world applications, it
is often desired that the addition of a new node to a GM leads to a new GMwith the best robust-
ness. However, what the best robustness means is not clear, because there are quite a number of
different metrics of network robustness. Indeed, given any metric of network robustness, λ, a
GM can be grown up by adding a new node so that the resulting GM achieves the optimal λ
value. Now, let us introduce some relevant notations and terminologies as follows.

Definition 2. Given a metric of network robustness, λ. Consider a growth process ofM2 by
stepwise adding new nodes so that each resulting GM achieves the optimal λ value.

1. The process is referred to as a λ-optimal growth.

2. A sequence of GMs produced in this growth process is referred to as a λ-optimal sequence.

3. Each GM in a λ-optimal sequence is referred to as a λ-optimal GM. Let GMλ(N) denote a λ-
optimal GM with N nodes.

Sections 4–7 of this paper will examine the λ-optimal sequence, where λ is algebraic connec-
tivity, effective resistance, average edge betweenness, and efficiency, respectively.

3 Heuristic growth of GMs

Given a generalized mesh G, define a sequence of subsets of Z2 � VðGÞ, D1, D2, . . ., recursively
as follows.

1. D1 ¼ fu 2 Z
2 � V ðGÞ : dG+u(u) attains the maximum; v≇w for any v,w 2 D1, v 6¼ w}.

2. For k� 2, Dk = {u 2 Dk−1: d
ðkÞ
GþuðuÞ attains the maximum; v≇w for any v,w 2 Dk, v 6¼ w}.

Clearly, D1 � D2 � � � �, and DjVðGÞj ¼ ⌀.

Below let us describe a heuristic algorithm for the robust growth of GMs.

Algorithm: Proximity-Growth
Input: a generalized mesh G.
Output: a generalized mesh G + u, u 2 Z

2 � VðGÞ.
begin

k: = 1;
while Dk 6¼⌀,
if |Dk| = 1, let Dk = {u}, return(u);

Fig 3. Two generalized meshes.

doi:10.1371/journal.pone.0161077.g003
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else k++;
end while;
arbitrarily choose u 2 Dk−1, return(u);

end

Intuitively, this algorithm grows a GM in a most robust way, because the newly added node
is best connected to the GM. Clearly, the Proximity-Growth algorithm applies not only to GMs
but to any other class of networks.

For our purpose, let us introduce the following notations and terminologies.
Definition 3. Consider a growth process ofM2 by repeatedly running the Proximity-Growth

algorithm.

1. This process is referred to as a proximity growth.

2. A sequence of GMs produced in a proximity growth is referred to as a PR-sequence.

3. Each GM in a PR-sequence is referred to as a PR-GM. Let GMPR(N) denote a PR-GM with N
nodes.

Theoretical analysis reveals that, up to isomorphism, the proximity growth of GMs is as follows.

1. If the current GM isMn and n is even, then growMn toMn+1 in the following node-adding
order:

ðn; n� 2

2
Þ ! ðn; n

2
Þ ! ðn; n� 4

2
Þ ! ðn; nþ 2

2
Þ ! . . . ðn; 0Þ ! ðn; n� 1Þ

ðn
2
; nÞ ! ðn� 2

2
; nÞ ! ðnþ 2

2
; nÞ ! ðn� 4

2
; nÞ ! ðnþ 4

2
; nÞ:

! . . . ! ð0; nÞ ! ðn; nÞ:

2. If the current GM isMn and n is odd, then growMn toMn+1 in the following node-adding
order:

ðn; n� 1

2
Þ ! ðn; n� 3

2
Þ ! ðn; nþ 1

2
Þ ! ðn; n� 5

2
Þ ! ðn; nþ 3

2
Þ

! . . . ! ðn; 0Þ ! ðn; n� 1Þ:

ðn� 1

2
; nÞ ! ðnþ 1

2
; nÞ ! ðn� 3

2
; nÞ ! ðnþ 3

2
; nÞ ! . . . ! ð0; nÞ ! ðn; nÞ:

Fig 4 shows a proximity growth of GMPR(144), where the numbers in the circles stand for
the node-adding order. Fig 5 displays a proximity growth ofM3 toM4. Intuitively, the PR-GMs
are most robust. In the sequel, we shall compare the GMs grown up by optimizing some other
measures of network robustness with the PR-GMs.

4 Algebraic connectivity-optimal growth of GMs
The algebraic connectivity (AC, for short) of a network G, denoted α(G), is defined as the sec-
ond smallest Laplacian eigenvalues of G. The algebraic connectivity is widely recognized as a
rational measure of network robustness [2–7, 11–13].

Let GMAC(N) denote an algebraic connectivity-optimal GM with N nodes. Numerical calcu-
lations give a AC-optimal growth of GMAC(64), see Fig 6. The following facts can be concluded
from this figure.
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1. For 4	 N	 10, GMAC(N) is isomorphic to GMPR(N).

2. GMAC(11) is not isomorphic to GMPR(11), see Figs 7 and 8. GMAC(11) is less robust than
GMPR(11), because

kðGMACð11ÞÞ ¼ 1 < 2 ¼ kðGMPRð11ÞÞ:

3. GMAC(18) is not isomorphic to GMPR(18), see Figs 9 and 10. GMAC(18) is less robust than
GMPR(18), because

kðGMACð18ÞÞ ¼ 1 < 2 ¼ kðGMPRð18ÞÞ:

4. Similar phenomena occur frequently in a AC-optimal growth of GMs.

The above discussions demonstrate that, at least in some situations, the algebraic connectiv-
ity is not suited to serve as a metric of network robustness. Hence, the utility of the algebraic
connectivity as a metric of network tolerance is still in doubt.

Fig 4. A proximity growth of GMPR(144).

doi:10.1371/journal.pone.0161077.g004
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Fig 5. A proximity growth of M3 to M4.

doi:10.1371/journal.pone.0161077.g005

Fig 6. A stepwise AC-optimal growth of GMAC(64).

doi:10.1371/journal.pone.0161077.g006
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5 Effective resistance-optimal growth of GMs
The effective resistance (ER, for short) of a network, denoted ER(G), is defined as follows.
First, regard the network as an electrical network with one Ohm resistor on each link. Second,
calculate the effective resistance between each pair of nodes by invoking the Kirchhoff’s circuit
law. Third, sum up the effective resistances over all pairs of nodes to get the ER of the original
network.

Fig 7. A AC-optimal growth of GMAC(10) to GMAC(11).

doi:10.1371/journal.pone.0161077.g007

Fig 8. A proximity growth of GMPR(10) to GMPR(11).

doi:10.1371/journal.pone.0161077.g008

Fig 9. A AC-optimal growth of GMAC(17) to GMAC(18).

doi:10.1371/journal.pone.0161077.g009

Fig 10. A proximity growth of GMPR(17) to GMPR(18).

doi:10.1371/journal.pone.0161077.g010
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The effective resistance of a network has been advised as a measure of robustness of the net-
work; the smaller the ER, the more robust the network [8]. The effective resistance outperforms
the algebraic connectivity, because the former decreases strictly when a new edge is added to a
network, whereas the latter may or may not rise up [30].

Let 0 = λ1 < λ2 	 . . .	 λn denote the Laplacian spectrum of a connected network G. Klein
and Randić [30] found that the effective graph resistance of a connected network can be written
as a function of all non-zero Laplacian eigenvalues of the network. Specifically,

ERðGÞ ¼ n
Xn

k¼2

1

lk

This equation offers a method for numerically calculating the ER of a network.
Let GMER(N) denote an effective resistance-optimal GM with N nodes. calculations show

that for 4	 N	 144, GMER(N) is isomorphic to GMPR(N). Hence, it is concluded that the ER
is a reasonable measure of network robustness.

6 Average edge betweenness-optimal growth of GMs
The betweenness centrality of an edge of a network is defined as the number of the node-pair
shortest paths that go through the edge [31]. The notion of edge betweenness centrality was
originally proposed by Girvan and Newman [32] to find the bottlenecks of a network; an edge
with a high edge betweenness centrality score represents a bridge-like connector between two
parts of a network, and the removal of which may affect the communication between many
pairs of nodes [33, 34].

The average edge betweenness (AEB, for short) of a network G, denoted AEB(G) is defined
as the arithmetic average of the betweenness centralities of all edges of G [8–10]. Ellens [9] sug-
gest the AEB as a metric of network robustness, because, intuitively, the lower the AEB, the
more robust the network.

Let �d(G) denote the average distance of a network G, then

AEBðGÞ ¼ nðGÞ nðGÞ � 1½ 

2εðGÞ

�dðGÞ;

where ν(G) and ε(G) denote the number of nodes and edges of G, respectively [9]. This equa-
tion offers a method for numerically calculating the AEB of a network.

Let GMAEB(N) denote an average edge betweenness-optimal GM with N nodes. calculations
show that for 4	 N	 144, GMAEB(N) is isomorphic to GMPR(N). This partly justifies the AEB
as a metric of network robustness.

7 Efficiency-optimal growth
The efficiency of a network G is defined as

EFFðGÞ ¼ 2

nðGÞ½nðGÞ � 1

X

u; v 2 VðGÞ
u 6¼ v

1

dGðu; vÞ
;

where dG(u, v) denotes the distance between nodes u and v. The notion of efficiency was origi-
nally proposed by Latora and Marchiori [35, 36] to characterize the closeness of a network.
Ellens and Kooij [10] proposed to use the efficiency as a metric of network robustness, because,
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intuitively, the higher the efficiency, the more robust the network. One advantage of this mea-
sure is that it can be used for unconnected networks.

Let GMEFF(N) denote an algebraic connectivity-optimal GM with N nodes. Numerical cal-
culations give an efficiency-optimal growth of GMEFF(64), see Fig 11. The following facts can
be derived from this figure.

1. Up to isomorphism, the efficiency-optimal growth of GMEFF(54) coincides with the prox-
imity growth of GMPR(54).

2. GMEFF(55) is not isomorphic to GMPR(55), see Figs 12 and 13. GMEFF(55) is less robust
than GMPR(55), because

kðGMEFFð55ÞÞ ¼ 1 < 2 ¼ kðGMPRð55ÞÞ:

The above discussions show that the utility of the efficiency as a metric of network robust-
ness is limited.

8 Conclusions
This paper has addressed the rationality of four metrics of network robustness (the algebraic
connectivity, the effective resistance, the average edge betweenness, and the efficiency) by
investigating the robust growth of generalized meshes (GMs). A heuristic algorithm for the

Fig 11. An efficiency-optimal growth of GMEFF(64).

doi:10.1371/journal.pone.0161077.g011
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robust growth of GMs has been proposed. Some GMs have been grown up by optimizing a
measure of network robustness. A comparative analysis shows that (1) the effective graph resis-
tance and the average edge betweenness can serve as metrics of network robustness, (2) the
utility of the efficiency as a metric of network robustness is limited, and (3) the utility of the
algebraic connectivity as a metric of network robustness is highly in doubt.

In our opinion, this work should be extended to other types of networks, such as the hexago-
nal networks [37–39] and the honeycomb networks [40–43].
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