
!

!

!

!

!

!

!

!

!

MSc thesis in Geomatics

An automatic geometry repair framework
for semantic 3D city models

Lisa Keurentjes
2024

MSc thesis in Geomatics

An automatic geometry repair framework
for semantic 3D city models

Lisa Keurentjes

November 2024

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master of

Science in Geomatics

Lisa Keurentjes: An automatic geometry repair framework for semantic 3D city models (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: dr. Hugo Ledoux
Ivan Paden

Co-reader: dr. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

Abstract

The growing complexity of urban environments has intensified the need for accurate 3D city
models to support simulations and analyses in various fields such as urban planning, energy
demand, and computational fluid dynamics (CFD). However, these models often contain
geometric and topological errors, such as non-watertight solids, intersecting volumes, and
missing surfaces, limiting their usability. This thesis presents AUTOr3pair, an automatic
framework designed to repair semantic 3D city models and address these issues.

The process begins with validating 3D city models using val3dity, which ensures geometric
validity based on ISO 19107 standards. Errors are addressed hierarchically, starting with
ring-level fixes and progressing to solid interaction-level corrections, focusing on localized
repairs to minimize alterations while preserving geometric and topological integrity. Existing
repair methods are integrated alongside new algorithms designed to meet the specific needs of
different use cases, including visualization, energy demand estimation, solar potential analysis,
and CFD simulations. Written in C++ for optimal performance, the framework supports CityJ-
SON and OBJ. The repairs prioritize maintaining semantic consistency and minimizing data
loss, but textures are excluded. This approach results in a robust validation and repair pipeline
that generates detailed error reports and post-processing outputs, significantly improving the
overall quality of 3D city models.

Extensive tests on real-world datasets, including 3DBAG tiles from Leiden and a dataset from
Brussels, demonstrated that AUTOr3pair successfully repaired most geometric errors, raising
validity rates to nearly 100%. The framework achieved additional requirements, such as
watertight geometry and proper surface orientation, for the specific use cases, CFD, energy
demand, visualization, and solar power estimation. While some floating-point errors and
geometric differences, due to global repairs, persist in complex cases, AUTOr3pair significantly
reduces manual pre-processing and improves model suitability for various applications.

This thesis demonstrates that automatic geometry repair is feasible and essential for improving
the quality and usability of 3D city models. It provides a foundation for further research and
development, particularly in extending the framework to support more file types and refining
its capabilities for additional use cases.

v

Acknowledgements

Within this section, I would like to express my gratitude to several individuals who played
an important role during this thesis research. First and foremost, I would like to sincerely
thank Dr. Hugo Ledoux for his guidance and ongoing support throughout the development of
this Master’s thesis. His expertise and constructive feedback played a crucial role in shaping
this work, and his teaching has broadened my understanding of 3D geoinformation. Also, his
understanding of my rowing career helped spread the workload over more years, resulting
in great rowing results (5th place at the World University Games in Chengdu, China) and a
well-written thesis.

I would also like to thank Ivan Paden for his technical support and advice, particularly in
developing and refining the CFD use case, which has been invaluable. I am also grateful to
Dr. Martijn Meijers, the co-reader of this thesis, for his constructive feedback and insightful
comments, which helped enhance the quality and clarity of this work.

Lastly, I would like to acknowledge my family, especially my parents, for their unwavering en-
couragement, which has been a constant source of strength throughout my academic journey.
A heartfelt thank you also goes to my boyfriend for his support and understanding during
this time. Finally, to my close friends and rowing teammates at Proteus-Eretes, thank you for
always being there for me and bringing balance and joy to my life during this intense study
period.

vi

Contents

1. Introduction 1
1.1. Introduction . 1
1.2. Motivation and problem statement . 1
1.3. Research Objectives . 3
1.4. The scope of this Thesis . 4
1.5. Thesis outline . 5

2. Background 7
2.1. Acquisition of 3D city models . 7

2.1.1. LiDAR . 8
2.1.2. Photogrammetry . 9

2.2. Characterization of 3D City models . 9
2.2.1. Level of detail of 3D city models . 9
2.2.2. Geometry - ISO 19107 . 11
2.2.3. Semantics . 15
2.2.4. Appearance - Materials & textures . 16
2.2.5. Metadata . 17

2.3. Storage of 3D city models . 17
2.3.1. Semantic 3D city models - CityGML and CityJSON 18
2.3.2. Geometry file format - Wavefront OBJ format 21
2.3.3. Simple 3D feature exchange - tu3djson . 22

2.4. Validation of geometries . 22
2.5. Validation of Semantics . 25

3. Existing repair methods 27
3.1. Odd-Even Paradigm vs. SetDiff Paradigm . 27
3.2. Geometric repair . 28

3.2.1. Local repair methods . 28
3.2.2. Global repair methods . 32

3.3. Simplifying meshes . 35
3.4. Adding and/or repairing semantics . 36

4. Methodology for automatic repair of semantics 3D city models 37
4.1. Validation by val3dity . 38
4.2. Ring level repair approaches . 40
4.3. Polygon level repair approaches . 42
4.4. Shell level repair approaches . 46
4.5. Solid level repair approaches . 51
4.6. Solid interaction level repair approaches . 54
4.7. BuildingPart level repair approaches . 56
4.8. Global approach . 56

vii

Contents

5. Repairing 3D city models for specific applications 58
5.1. Additional validity requirements for different use cases 58
5.2. Use case: Computational fluid dynamics (CFD) 58
5.3. Use case: Energy demand . 60
5.4. Use case: Visualization . 61
5.5. Use case: Estimation of solar irradiation . 63

6. Implementation of AUTOr3pair 64
6.1. How to use AUTOr3pair . 64
6.2. Program specifics . 65

6.2.1. Input . 66
6.2.2. Repair framework . 68
6.2.3. Post-processing of the 3D City-model . 78
6.2.4. Output . 80

6.3. Parameters . 81
6.3.1. Use case parameters . 83

7. Experiments 86
7.1. Unit tests . 86
7.2. Effect of (use cases) parameters . 88

7.2.1. disadvantage of many parameters . 93
7.3. Repairing well-known 3D city models . 93

7.3.1. 3DBAG . 94
7.3.2. Brussel . 98
7.3.3. Data-sets CityJSON website . 100

7.4. Discussion . 107
7.4.1. Specific repair situations . 107
7.4.2. Unrepairable non-manifolds . 108
7.4.3. ”Hardcoded” repair decisions . 109
7.4.4. Dependence on val3idty report schema . 109
7.4.5. Usability of repair report . 110
7.4.6. User friendliness . 110
7.4.7. Losing original groups OBJ . 110
7.4.8. Testing preserving of semantics . 111
7.4.9. Need for generalization for CFD . 111
7.4.10. Repair intersection between geometries . 111

8. Conclusions 113
8.1. Research overview . 113
8.2. Contributions . 114
8.3. Limitations . 115

8.3.1. Global repairs are needed . 115
8.3.2. What to keep . 118
8.3.3. OBJ non-repairs . 119
8.3.4. Decisions per object . 119
8.3.5. Floating point errors . 120
8.3.6. File sizes . 120
8.3.7. Texture deletion . 120

8.4. Recommendations for future work . 120
8.4.1. More input and output file types . 120

viii

Contents

8.4.2. Additional repair for more use-cases . 121
8.4.3. Intergrating val3dity and AUTOr3pair into one tool 121
8.4.4. Automatic validation and repair for more semantic values 121
8.4.5. Validation for preserving of semantics . 121
8.4.6. Intergrating automatic validation and repair for LODs 121
8.4.7. Research on keeping and extending textures 121
8.4.8. 3D GIS application for preparing 3D City data 122

A. Use case Requirements 123

B. Schema‘s of file types used 126
B.1. CityJSON . 126
B.2. Wavefront OBJ . 129
B.3. TU3djson . 130

C. Algorithm implementation 131

D. Reproducibility and self-assessment 135

ix

List of Figures

1.1. Examples of use cases of 3D city models . 1
1.2. The five Level of details of the OGC CityGML 2.0 2
1.3. Examples of 3d city model errors . 2
1.4. Time spend by data scientist . 3
1.5. Logo of the developed software framework, AUTOr3pair 4

2.1. The concept of the presence of city objects and their elements 7
2.2. Photogrammetry and LiDAR acquisition . 8
2.3. Pipeline for modeling a building from a point cloud 8
2.4. Pipeline getting a dense point cloud with Photogrammetry 9
2.5. The refined LODs . 10
2.6. Composite rendering of a dataset in four LODs (1.2, 2.2, 2.3, and 3.3) 11
2.7. The ISO 19107 primitives . 11
2.8. Objects hierarchy . 12
2.9. Visual representation of GM Objects . 14
2.10. Twelve solids . 15
2.11. Semantics versus geometry . 16
2.12. The possible Semantics for Buildings CityGML 16
2.13. 3D city model of Berlin . 17
2.14. The CityGML models . 18
2.15. Depths of the boundaries for different types . 20
2.16. Validation workflow . 23
2.17. Val3dity error codes . 24
2.18. Orientation of roof surfaces . 25
2.19. Semantic surfaces of buildings based on the normal of the surface 26
2.20. Example of an uncertain situation for semantic validation 26

3.1. Odd-Even paradigm explained . 27
3.2. Examples of local repairable errors . 29
3.3. Boolean operations in 2D and 3D . 31
3.4. Nef polygons boolean operations and with their local pyramids 31
3.5. Repairing 3D Non-Manifolds . 32
3.6. Shrink wrap . 33
3.7. Different alpha and offset values . 34
3.8. Voxelization . 35
3.9. Simplification methodology . 35
3.10. semantics CityJSON vs semantics Diakitéy . 36

4.1. Flowchart of the methodology . 37
4.2. Val3dity report structure . 38
4.3. Example of how the tolerance is applied . 39
4.4. Approach to repair: Too few points . 40
4.5. Approach to repair: Consecutive points same . 40

x

List of Figures

4.6. Approach to repair: ring self-intersection . 41
4.7. Approach to repair: Intersecting Rings . 42
4.8. Approach to repair: Duplicated rings . 43
4.9. Approach to repair: Non-planar polygon distance plane 44
4.10. Approach to repair: Non-planar polygon normal deviation 44
4.11. Approach to repair: Polygon interior disconnected 45
4.12. Approach to repair: Inner ring outside . 45
4.13. Approach to repair: Inner ring nested . 46
4.14. Approach to repair: Orientation rings same . 46
4.15. Approach to repair: Not valid 2-manifold . 47
4.16. Approach to repair: Too few polygons . 48
4.17. Approach to repair: Shell not closed . 48
4.18. Approach to repair: Non manifold case . 49
4.19. Approach to repair: Multiple connected components 50
4.20. Approach to repair: Shell self-intersection . 51
4.21. Approach to repair: Polygon wrong orientation 51
4.22. Approach to repair: Intersecting Shells . 52
4.23. Approach to repair: Duplicated Shells . 52
4.24. Approach to repair: Inner Shell outside . 53
4.25. Approach to repair: Solid interior disconnected 53
4.26. Approach to repair: Wrong orientation shell . 54
4.27. Approach to repair: Intersection solids . 55
4.28. Approach to repair: Duplicated solids . 55
4.29. Approach to repair: Disconnected solids . 56
4.30. Approach for global repair . 57

5.1. Simplification option of ”Sapho’s head model” by the Garland-Heckbert method 59
5.2. Footprint generalisation thresholds . 60
5.3. Footprint generalisation based on surroundings 60
5.4. Intersecting buildings and their Energy Demand estimation 61
5.5. Overlapping surfaces rendered . 62
5.6. Wrong oriented faces not rendered . 62
5.7. Solar potential example . 63
5.8. Shadow cast by a detailed building vs a LOD1 block 63

6.1. Flowchart of translating CityObject to TU3dJSON feature 67
6.2. Flowchart of translating OBJ to TU3dJSON features 68
6.3. Loop of errors while dealing with a sliver . 69
6.4. Sementics and materials preservation . 76
6.5. Difference between semantic parameters . 77
6.6. Detriangulation approach . 79
6.7. AUTOr3pair key for repaired 3D city models . 80
6.8. Repair report . 81
6.9. Repair loop when overlap tolerance is smaller than snap tollerance 83

7.1. Eight example unit tests . 87
7.2. Number of tests per category . 87
7.3. Parameter KeepEverything . 88
7.4. Parameter Orientation and Watertight . 89
7.5. Parameter Watertight when splitting a surface in geometry 89

xi

List of Figures

7.6. Parameter Watertight when splitting two solids in a geomerty 90
7.7. Parameter Mergetol . 90
7.8. Parameters semantics . 91
7.9. Parameter triangulation . 91
7.10. Parameter RemeshSlivers . 92
7.11. Parameter Simplification . 92
7.12. 3DBAG tiles from Leiden and their names . 94
7.13. 3DBAG tiles from Leiden and their validity . 95
7.14. 3DBAG tiles from Leiden and their validity after repair 95
7.15. 3D bag tiles before and after repair to visually see geometric difference 97
7.16. LUMC in Leiden . 97
7.17. Pieterskerk in Leiden . 98
7.18. Building in Brussel which loses details . 99
7.19. Example of one building in Brussel data set . 99
7.20. Repairing Brussel dataset . 100
7.21. 3DBAG results from use case EnergyDemand . 102
7.22. Den Haag Visualization without global repairs . 102
7.23. Ingolstadt missing window frames . 103
7.24. Semantic validation on Ingolstadt . 103
7.25. Result from repairing Montreal . 104
7.26. Errors after repairing Montreal . 104
7.27. Building missing a wall . 105
7.28. Doing unrealistic wrap on building in Railway . 105
7.29. Many compact global repairs in Rotterdam . 106
7.30. Vienna after Energy Demand repair . 106
7.31. Unrepairable non-manidfolds . 108
7.32. Deleting a big not watertight part . 109
7.33. val3dity reporting 302 error two times . 110
7.34. Overlap in 3DBAG . 112

8.1. Global repair needed when nonclosed shell self intersects 116
8.2. Global repair needed when nonclosed shell opening is very small 116
8.3. Global repair needed when unrepairable non-manifold 117
8.4. Global repair needed when unrepairable non-manifold 117
8.5. Global repair needed when unrepairable non-manifold 118
8.6. Valid building, which lost all its geometric intergrity 119
8.7. Non-manifold examples which don’t repair . 119

B.1. CityJSON keys . 126
B.2. CityObject in a CityJSON . 127
B.3. CityObject types . 128
B.4. TU3DJSON Object . 130

C.1. inheritance of the geometry class . 132

xii

List of Tables

5.1. Validity issues and problems it creates in CFD . 59

6.1. Use cases standards with default values . 84

7.1. Geometric difference after repair of the 3DBAG tiles 96
7.2. Result of Brussel tile after different repairs . 98
7.3. Repairing the example CityJSON datasets from their website 100

A.1. Additional requirements for different use-cases 123

xiii

List of Algorithms

1. Geometry repair . 133
2. val3dityReport . 134

xiv

List of Listings

2.1. Example vertices .obj File . 21
2.2. Example face .obj File . 21
2.3. object and groups .obj File . 21

6.1. Format for running . 64
6.2. Run input files . 64
6.3. Run Use case different use case parameters . 65
6.4. Run LOD as parameters . 65

7.1. Example output . 93

B.1. Example .obj File with 3 groups . 129

xv

Acronyms

CGAL Computational Geometry Algorithms Library
GIS geographical information system
GISs geographical information systems
CFD Computational fluid dynamics
LOD Level of detail
ISO International Standardization Organization
LiDAR Light Detection and Ranging
RANSAC Random sample consensus
OGC Open Geo-spatial Consortium
SDIs spatial data infrastructures
XML Extensible Markup Language
GML Geography Markup Language
UML Unified Modeling Language
ADE Application Domain Extension
API Application Programming Interface
tu3djson TU Delft 3D JSON specification
CLI command-line interface

xvi

1 Introduction

1.1 Introduction

The world grows more complex every day with continuously increasing social, ecological,
economic, and infrastructural challenges. To tackle this complexity, we tend to make cities
”smarter” by using simulations from various disciplines, for example, wind field or flood
simulations (Willenborg et al., 2016). These simulations and analysis have become essential
for urban planning decision-making and analytics. Some example use cases can be found in
Figure 1.1. For these simulations, models of the built environment are needed. With advances
in technologies to collect 3D elevation information, the way practitioners model our built
environment is rapidly changing from a 2D to a 3D representation, resulting in an increasing
number of municipalities building up 3D city models (Kolbe and Gröger, 2003). A 3D City
model is a representation of an urban environment with a three-dimensional geometry of
common urban objects and structures, with buildings as the most prominent feature (Biljecki
et al., 2015). These models can be derived from various construction methods, ranging from
automatic construction by photogrammetry and laser scanning to manually processed 2D
drawings. In Section 2.1, construction methods will be elaborated.

Figure 1.1.: Examples of use cases of 3D city models (taken from Biljecki et al. (2015))

1.2 Motivation and problem statement

3D city models come in many varieties, depending on the use cases. To standardize 3D city
models into classes, the Open Geo-spatial Consortium (OGC) attempts to classify grades of
3D data with the Level of detail (LOD) categorization (Biljecki, 2017). The geometric detail
and the semantic complexity increase with each level (Figure 1.2), which is further explained
in Section 2.2.1. When doing spatial analysis and/or simulation, two factors influence the
accuracy of the results, namely the semantic and geometric level of detail (Biljecki, 2017)

1

1. Introduction

and the correctness of the data (Coors et al., 2020). 3D city models, therefore, need to meet
certain requirements before they can be used. To validate the quality of the data and achieve
interoperability, the International Standardization Organization (ISO) created the 19100 series
(Wagner et al., 2013), which standardizes everything from services to the spatial schema of the
data (Section 2.2.2 explains more on the standards for geometry).

Figure 1.2.: The five Level of details of the OGC CityGML 2.0 (taken from Biljecki (2017))

Depending on the purpose of the model, use cases can have additional requirements comple-
mentary to the ISO standards. For example, a model used for analytic purposes such as heating
demand simulation and watertight geometry is mandatory (Coors et al., 2020). However, when
the same model is used for visualization, this is not required. According to Biljecki et al.
(2016a), many 3D city models are not considered valid to the standards needed. They contain
geometric as well as topological errors. Some examples of these errors are duplicate vertices,
missing surfaces, nonwatertight solids, and intersecting volumes (Figure 1.3).

(a) a missing surface (b) nonwatertight solid

(c) intersecting volumes

Figure 1.3.: Examples of 3d city model errors (taken from Biljecki et al. (2016a))

2

1. Introduction

Errors hinder the further analysis or processing of these models, so pre-processing of the
models is needed. Biljecki et al. (2016a) states that the only solution now is to spend a
substantial amount of hours manually repairing the data. El Morr et al. (2022) even states
that data scientist spend around 60% of their time on cleaning and organizing data while only
spending around 7% on actually using the data (Figure 1.4). These percentages are probably
higher for data where 3D geometry is present. As manual repair of 3D City models is very
time-consuming and prone to errors, automatic repair methods are highly desirable. However,
Semi-automatic repair tools, such as those available in MeshLab, offer a middle ground by
assisting users with specific tasks like hole filling or orientation, which makes semi-automatic
repair not very robust (Botsch, 2010). While these tools can help the repair process, they are
often made for triangular meshes, which means your 3D geometry needs to be converted to
triangular mesh and back, usually resulting in a loss of detail. Additionally, semi-automatic
methods still require a significant level of manual intervention, leading to suboptimal results
and potential new errors (Alam et al., 2014).

Figure 1.4.: Time spend by data scientist according to El Morr et al. (2022)

1.3 Research Objectives

A significant number of 3D city models suffer from geometric and topological errors. Semi-
manual repair, the current solution, is time-consuming and error-prone, which motivates
the need for automatic repair methods. There is a growing field of science that deals with
automatic repair (Ledoux, 2018). However, existing approaches often focus on specific error
types (for example, Hole filling or orientation) or brute-force global repair methods. Therefore,
a new approach to systematically address and hierarchically navigate through all errors based
on user needs is essential. Motivating the following main research objective:

Develop a framework for the automatic repair and reconstruction of 3D city models to facilitate
different use cases and implement a prototype.

This thesis aims to create an algorithmic repair framework for the automatic pre-processing of
3D city models tailored to user-defined use cases. This software serves as a proof of concept.
It focuses on repairing validity for geometric errors according to the ISO 19107 standard

3

1. Introduction

(discussed in Chapter 4) and meeting additional requirements outlined in Chapter 5. The
algorithm integrates existing repair methods (Chapter 3) and introduces complementary newly
developed repair techniques.

The research will investigate the following research questions:

(a) What is needed to achieve geometric validity?

(b) Is it possible to achieve geometric validity using automatic repair?

(c) How to achieve geometric validity using automatic repair?

(d) How to preserve semantics during automatic repair?

(e) How to achieve validity for different use cases?

(I) How are repair methods to achieve geometric validity affected by different use
cases?

(II) What extra repairs are needed to achieve validity for different use cases?

(f) What degree of validity can be achieved? And to what extent does this improve current
3D city models?

1.4 The scope of this Thesis

This thesis serves as a proof of concept to demonstrate the feasibility and effectiveness of
an automated approach to repairing semantic 3D city models. Substantiated by A software
framework called AUTOr3pair (Figure 1.5 shows the software’s logo). AUTOr3pair is open
source and the code can be found on GitHub at this AUTOr3pair repository. The framework is
written in C++ because performance is a critical factor, seeing that 3D city models often consist
of vast amounts of data and repairs consist of numerous 3D calculations. C++ is also suitable
for writing efficient processing pipelines, using static typing, inheritance and references for
better memory management.

Figure 1.5.: Logo of the developed software framework, AUTOr3pair

The AUTOr3pair framework operates seamlessly for repairing CityJSON, providing universal
repairs. Also, the basics of repairing OBJ are supported for better support for the use case
Computational fluid dynamics (CFD). AUTOr3pair is written so it could easily be extended to
repair more file types on which the repair process is done. For this thesis, the correctness of
the data schema is assumed, so defensive programming is not needed. For this thesis, four use
cases are chosen for which the repair process will be adjusted. These use cases are:

1. Computational fluid dynamics

2. Energy demand

4

https://github.com/Lkeurentjes/AUTOr3pair

1. Introduction

3. Visualization

4. Solar power estimation

This thesis and the software framework AUTOr3pair use the following scope for the repair
process:

• CityObjects are repaired when:

Type is Building or its sub-parts. Users can repair other types, but correctness is not
guaranteed

Geometry type is one of the following geometric entities: MultiSurface, Compos-
iteSurface, Solid, MultiSolid, and CompositeSolid

• Repairs focus on meeting the geometric standards from the ISO 19107 and 19125, keeping
the chosen use cases in mind

• Additional geometric and semantic requirements for the chosen use cases will be re-
paired

• No external data is used for repairs. Only the geometry of the CityObject itself will be
used.

• Repairs are done hierarchically and, therefore, as locally as possible; global repairs will
only be used when there is no other option.

• In terms of data processing, semantic and material information of surfaces is retained,
but textures are omitted from the repair process. The framework attempts to include this
information when possible, leaving it out only when dealing with entirely new surfaces.

• Repairs will change and, therefore, delete as little as possible.

• Repairs can change the LOD of an object, but the LOD member of the geometry must
change into the new LOD.

In addition to defining the scope of the repair process, the need for robustness in AUTOr3pair
is crucial for ensuring its practical applicability in diverse scenarios. Given that 3D city
models can vary widely in complexity and data integrity, the framework must be able to
handle errors or inconsistencies without compromising the overall repair process. Robustness
ensures the system can manage unexpected geometries or edge cases without reporting errors,
maintaining reliability across different use cases and datasets. This robustness not only makes
the framework more flexible but also enhances its ability to perform reliable and accurate
repairs across various applications.

1.5 Thesis outline

To achieve the research objective(s), this thesis comprises eight chapters. Starting with the
introduction (Chapter 1)), which establishes the context for the research. Chapter 2 delves into
essential concepts related to the automatic repair of 3D city models. The chapter covers the
background of 3D Citymodels, including level-of-detail, construction, and file types such as
CityJSON and OBJ geometry format. Furthermore, it introduces the scientific research related
to this graduation project, specifically validating primitives. Chapter 3 focuses on the current
repair methods, which can be reused in AUTOr3pair.

5

1. Introduction

The repair methodology is outlined in Chapter 4. It focuses on answering research questions
(a), (b), and (c) by explaining how val3dity is used for validating the data and proposing
approaches for repairing geometric errors. Alternative solutions and engineering decisions
are also addressed for several methods. After that, Chapter 5, implementation of use cases,
focuses on answering the research question: ”How to achieve validity for different use cases?”
((e)) by answering its sub-questions ((II) and (I)) per use case.

In Chapter 6, the implementation of the findings of chapters 4 and 5 is described for the
developed software framework AUTOr3pair. It details steps such as reading CityJSON, the
repair loop post-processing, and generating repair reports. It also explains how preserving
semantics (item (d)) is done. The research concludes with the experiment (Chapter 7), present-
ing findings from testing the software framework and results from the test data, answering the
research question ”What level of validity can be achieved?” (Question (f)). It also discusses
some shortcomings of the software framework, such as repair decisions, user-friendliness, and
loss of textures.

Afterward, a conclusion highlights the proof of concept, limitations, and contributions, fol-
lowed by recommendations for future work (Chapter 8). These recommendations suggest
avenues for expanding the tool’s capabilities, exploring more file types and use cases, and
conducting further research on texture handling in 3D GIS applications.

6

2 Background

This chapter provides an overview of the foundational concepts required for understanding
the construction and characterization of 3D city models. Firstly, various methods for acquiring
3D city models are discussed. The chapter then explores the characterization of 3D city models
in terms of their geometric, semantic, and appearance attributes. Lastly, validation methods
for 3D city models are introduced.

2.1 Acquisition of 3D city models

Different methods can be used to construct a 3D city model. To decide the suitable method,
it needs to be decided which real-world features need to be mapped, resulting in a LOD
(explained in Section 2.2.1) (Biljecki et al., 2014). Figure 2.1 shows an example of how different
LODs have different lists of real-world features geometrically mapped (for example if you need
windows for your simulation you need to acquire a 3d city model of LOD 3.3, while if you for
instance only need the roof for sun-analysis you would have enough when using a 3D city
model with LOD 3.3).

Figure 2.1.: The concept of the presence of city objects and their elements in three different
LODs of a 3D city model (modified from Biljecki et al. (2014))

The most common methods for automatically constructing 3D city models are lasergrammetry
and photogrammetry, or a combination (Singh et al., 2013). Figure 2.2 illustrates the critical

7

2. Background

difference between photogrammetry and LiDAR, which are explained in the following sec-
tions.

Figure 2.2.: Photogrammetry and Light Detection and Ranging (LiDAR) acquisition (taken from
landsurveyors (2023))

2.1.1 LiDAR
Lasergrammetry, also known as LiDAR or Laser scanning, uses laser light to measure distances
to objects. It measures the time it takes for laser pulses to bounce back from surfaces to
create a detailed 3D point cloud, which is, according to Singh et al. (2013), mostly done with
drones or airplanes (Figure 2.2). The biggest challenge for automatically reconstructing 3D
city models from large-scale airborne LiDAR point clouds is that the vertical walls are typically
missing (Huang et al., 2022). Huang et al. (2022) and Nys et al. (2020) both propose that urban
buildings typically consist of planar roofs connected to the ground by vertical walls. This
proposition can be used to create a pipeline to construct buildings. As shown in Figure 2.3, the
first step from point cloud (a) to a 3D building (e) is plane extraction (b). This can be done with
Random sample consensus (RANSAC) (Huang et al., 2022) or similar approaches (Nys et al.,
2020). The generated surfaces need to be intersected by their topological relationships (c),
which completes the roof of the building. With the roof known, a footprint can be generated,
or existing footprint data can be used (d). The footprint and the roof are connected with the use
of extrusion, which forms the walls of the building (Huang et al., 2022). Hajji and Jarar Oulidi
(2021) state that lasergrammetry is well suited to the development of building scale and large
urban scale (LOD 1.0 - LOD 2.1).

Figure 2.3.: Pipeline for modeling a building from a point cloud (modified from Nys et al.
(2020))

8

2. Background

2.1.2 Photogrammetry
Photogrammetry is a technique used to obtain precise measurements and 3D information
about physical objects or environments through the analysis of photographs. It can be done
with aerial images (Figure 2.2), satellite images, or with close-range imagery (Singh et al., 2013).
Hajji and Jarar Oulidi (2021) state that photogrammetry mostly remains a complementary
method to collect more detail, for example, to extract dormers and window locations (LOD 2.2
- LOD 3.3). According to Flamanc et al. (2003), the reason for not using photogrammetry to
construct 3D city models automatically is the higher processing time, particularly for highly
complex projects. However, ongoing advancements in software are continually improving
processing efficiency. Figure 2.4 shows the pipe for getting a dense point cloud out with the
help of photogrammetry. The first step is extracting key points (b) on overlapping images.
The key points are matched (c) across multiple images, and with the camera parameters, the
location of the camera (d) a sparse point cloud can be calculated (Reitinger et al., 2007). With
the help of triangulation and dense matching a dense point cloud can be made from the images
(e) and with surface reconstruction 3D models can be made (Javadnejad et al., 2021).

Figure 2.4.: Pipeline getting a dense point cloud with Photogrammetry (modified from Re-
itinger et al. (2007))

Flamanc et al. (2003) argues that lasergrammetry and photogrammetry can best be used in
combination with 2D ground maps; seeing the knowledge of the ground allows a massive step
in terms of quality and reliability. But to get the highest LOD 3D city models Fruh and Zakhor
(2003) proposes using a combination of aerial photos and airborne laser scans, merging them
with ground views. But as mentioned in Section 2.2.1, different use cases require different
LODs, so combinations are not always needed.

2.2 Characterization of 3D City models

The characterization of 3D city models consists of four key dimensions: Level of detail, Geom-
etry, Semantics, and Appearance. Metadata can also be used as an extra key to add additional
data. Depending on the 3D city model, one or more of these characteristics are present. The
subsections will explore their contributions and requirements for 3D city models.

2.2.1 Level of detail of 3D city models
3D city models are digital representations of urban environments that capture the spatial and
geometric details of buildings, infrastructure, and terrain in three dimensions. The Level of
detail (LOD) is the most important specification of a 3D city model, seeing it indicates the
model’s grade and usability, seeing it conveys the complexity of the models and their degree
of abstraction from the real-world (Biljecki et al., 2015). In Figure 1.2, the five base LODs are

9

2. Background

shown, but Biljecki et al. (2016b) argued that from a geometric point of view, the five LODs
are insufficient and that their specification is ambiguous. Therefore, they proposed a refined
set of 16 LODs, also known as the ”TU Delft LODs”, focused on the grade of the exterior
geometry of buildings. This provides a stricter specification and allows less modeling freedom
(Figure 2.5).

Figure 2.5.: The refined LODs (taken from Biljecki et al. (2016b))

Different use cases require different LODs. Biljecki (2017) argues that some applications (for
example, visualization) can strongly benefit from higher LODs. Still, his experiments have
indicated that the benefit provided by the added detail may be minuscule, which results in
the cost of producing a finer LOD being much higher than the benefit it brings. Biljecki (2017)
also indicates that some use cases require minimum LOD (for example, estimation of the solar
potential of roofs is not advised on abstract LOD1 block models).Figure 2.6 illustrates the
impact of using different LODs on the same dataset, changing the visual representation and,
with that, altering the use of the data set.

10

2. Background

Figure 2.6.: Composite rendering of a dataset in four LODs (1.2, 2.2, 2.3, and 3.3)(taken from
Biljecki (2017))

2.2.2 Geometry - ISO 19107
In 2003, the OGC standardized the representation and the analysis of data in 3D space for
geographical information systems (GISs) (Francois et al., 2010). It was documented in ISO 19107
and revised in 2019 (the International Organization for Standardization and Consortium, 2019).
The ISO 19107 specifies conceptual standards for geometries as vectors and topology schemas.
Figure 2.7 shows the 4 defined primary primitives (GM primitives), namely GM point (0D),
GM curve (1D), GM surface (2D) and GM solid (3D), where the n-dimension is build from (n-
1)-dimension primitives (Francois et al., 2010).

Figure 2.7.: The ISO 19107 primitives (taken from Ohori et al. (2022))

These four primitives can also be combined into sets of the same dimension. There are two
types of sets a GM Aggregate (called multi*) and a GM Complex (called composite*). The
difference between both sets is that a GM Complex is a set of primitives that share a com-
mon coordinate system and parts of their geometries, while GM Aggregate has no connection
between them. This results in the ISO object hierarchy shown in Figure 2.8.

11

2. Background

Figure 2.8.: Objects hierarchy (taken from Francois et al. (2010))

In 2004, the OGC enhanced the Standards with ISO 19125 (the International Organization for
Standardization and Consortium, 2004), which standardizes additional requirements for sim-
ple Simple feature access. This standard uses the same primitives but adds Line and Lin-
earRing as a subclass for curves and polygon as a subclass for the surfaces. Figure 2.9
visually represents the primitives and their sub-classes, including aggregates and complexes.
Each primitive is a class with its requirements. Note that for a primitive to be valid, all its
lower-dimensional primitives need to be valid. The requirements of the primitives, which are
needed for the scope of this thesis, are:

• Point - A Point instance of the Geometry is a single location given by a direct position.
Seeing it is a single location ISO 19107 states that:

The boundary is empty: ∀P; P.boundary.isEmpty = TRUE

The segment is zero: ∀P; P.segment→ length = 0

12

2. Background

• Surface - A Surface is defined by one exterior boundary and 0 or more interior bound-
aries, which define holes in the Surface. The boundaries are made from Rings. When a
surface is simple and planar, it is called a Polygon. For a surface to be a polygon, the ISO
19125 requires the following standards:

It is topologically closed

The boundary of a Polygon consists of a set of LinearRings

Boundaries do not cross: ∀c1, c2 ∈ Polygon.Boundary(); c1 ∩ c2 = ∅
But they may intersect at one point: p, q ∈ Point; p, q ∈ c1; p ∩ q ∈ c2

No cut lines, spikes or punctures: ∀P ∈ Polygon.P = Closure(Interior(P))

The interior of every Polygon is a connected point set

The exterior of a polygon with holes is not connected

Exterior ring must have the opposite orientation of its interior ring(s) (counterclock-
wise versus clockwise)

• MultiSurface - A MultiSurface is a 2-dimensional collection of Surfaces, which has no
extra requirements. It can be called simple if all surfaces are polygons.

• CompositeSurface - A CompositeSurface is a 2-dimensional collection of surfaces, Be-
sides the individual requirements per surface. The ISO 19107 also requires that:

All surfaces are connected: ∀s1, s2 ∈ CompositeSur f ace; s1∪ s2 = One surface

Interior should not overlap: ∀s1, s2 ∈ CompositeSur f ace; s1∩ s2 = ∅

To be called simple, each edge can have a maximum of two incident surfaces. A
CompositeSurface can be called a shell when:

It is closed if it bounds a volume ∀c; c.Volume.isEmpty = FALSE

It consists of a set of Polygons

• Solid - A Solid is defined by one exterior boundary and 0 or more interior boundaries,
which define cavities in the Solid. The boundaries are made from surfaces and can be
called a shell. The Requirements are:

It is topologically closed and watertight

The boundary (shell) of a Solid consists of a set of Polygons

Boundaries do not cross: ∀poly1, poly2 ∈ Solid.Boundary(); poly1 ∩ poly2 = ∅
But they may intersect at one point: p, q ∈ Point; p, q ∈ poly1; p ∩ q ∈ poly2

No cut lines, spikes or punctures: ∀P ∈ Solid; P = Closure(Interior(P))

The interior of every Solid is a connected point set

The exterior of a Solid with holes is not connected

Boundary (shell) must be constructed of polygons oriented that when viewed from
the exterior, the points are ordered counterclockwise (the normal must point to the
exterior).

• MultiSolid - A MultiSolid is a 3-dimensional collection of Solids, which has no extra
requirements. It can be called simple if all solids are made with polygons.

13

2. Background

• CompositeSolid - A CompositeSolid is a 3-dimensional collection of solids; besides the
individual requirements per solid, the ISO 19107 also requires that:

All solids are connected and form one solid: ∀S1, S2 ∈ CompositeSolids; S1 ∪ S2 =
One solid

Interior should not overlap: ∀S1, S2 ∈ CompositeSolids; S1∩ S2 = ∅

Figure 2.9.: Visual representation of GM Objects(taken from Ledoux (2018)

While a geometry can be called valid if it satisfies all requirements, it is essential to note that
achieving validity does not always occur. For example, Figure 2.10 shows twelve solids, eight
of which are invalid. S1 does not satisfy the requirement to be watertight. S2 and S5 seem to
be visually fixed, but only S2 is valid, seeing S5 uses an inner shell instead of one exterior shell
(having a ‘dent’). Also, S8 seems visually valid; it doesn’t meet the requirement for the interior
to be connected. Producing and using valid geometries is essential for many reasons. For
example, valid geometries in 3D city models reflect the actual physical conditions when used
in simulation use cases. Also, valid geometries in 3D city models play a role in the stability of
simulations and contribute to the reproducibility of simulations. Furthermore, simple, valid
geometries facilitate the generation of high-quality meshes, which are needed for several use
cases of 3D city models. Lastly, valid geometries facilitate better data exchange between file
types, tools and platforms.

14

2. Background

Figure 2.10.: 12 solids (taken from Ohori et al. (2022))

2.2.3 Semantics
According to Stadler and Kolbe (2007), an increasing number of applications of 3D city models
rely on complex semantic information. Brodeur (2012) explains that semantics is the study
of how signs (like words or symbols) relate to what they represent. In the context of 3D
city models, semantics represent the meaning associated with different elements within the
model. In a semantic 3D city model, objects (and their sub-parts) are labeled with their ”Real
world” meaning and attributes (Willenborg et al., 2018). Figure 2.11 shows how a 3D city
model can be decomposed into semantics and geometry. Stadler and Kolbe (2007) argues
that spatio-semantic coherence is highly beneficial for using 3D city models because of the
possibility for data validation and integration.

• Data validation could be more accurate. As the model includes geometry and semantics,
more detailed consistency rules, such as spatial and topological constraints between
different features, can be specified to ensure accurate representation. For example, it can
be better to ensure rooms are disjointed and fully contained within their surrounding
building shell.

• Data integration could be more precise. Semantic information can be used for har-
monization by proposing points for adjustment, such as aligning the terrain with a
building’s door and adjusting features like paths accordingly.

15

2. Background

Figure 2.11.: Semantics versus geometry (taken from Ledoux et al. (2019))

To avoid every 3D city model having its classes to decompose a city (for example, ”building”
can be called ”house” in a different model), semantic models prescribe standard classes (Ohori
et al., 2022). For example, the OGC defines that CityGML can only have ten types of thematic
classes (further explained in Section 2.3.1), of which ”Building” is the only one in the scope
of this thesis. The OGC also standardized semantic names of the surfaces of each class (Kolbe
et al., 2021). Figure 2.12 show the possible semantics surfaces for objects with the thematic type
building. They are broadly used in visualization and simulation tools because they always have
the same name.

Figure 2.12.: The possible Semantics for Buildings CityGML

2.2.4 Appearance - Materials & textures
Besides semantics, which gives the meaning of objects, 3D geometries can be supplemented
with textures and/or materials for a better impression of their appearance. Buchholz (2006)
argues that visual appearance of surfaces enrich 3D city models. Figure 2.13 illustrates how
specifying the visual appearance of surfaces such as facades, roofs, and terrain is crucial in
enhancing visual realism, making it more engaging and immersive. Also, materials and
textures help provide a sense of the geographic context of the city Buyukdemircioglu and
Kocaman (2020). For example, regions can have distinct architectural styles, which can be
visualized by textures and materials. Realistic representation is crucial for 3D city model use
cases, such as urban planning, aiding positioning, and disaster management (Mao, 2011).

16

2. Background

(a) Without textures (b) With textures

Figure 2.13.: 3D city model of Berlin (taken from Buchholz (2006)

Although materials enhance user experience and support various applications, they come
with challenges related to computational resources (Buchholz, 2006) and data availability
(Buyukdemircioglu and Kocaman, 2020). Also, detailed textures might not provide significant
advantages (Biljecki et al., 2016b) and may even introduce unnecessary complexity practical
usability (Lei et al., 2023). Lastly, it is a challenge to keep visual similarity across multiple
platforms and tools, seeing rendering phases and graphics resources could be different (Mao,
2011).

2.2.5 Metadata
According to Dietze et al. (2007), metadata can be essential for 3D city models, seeing it
provides additional information about the spatial data. This allows users to better understand,
interpret, and manage the 3D city model. However, Labetski et al. (2018) argues that Metadata
is rarely used in practice, making integrating them in 3D spatial data infrastructures (SDIs) is
difficult. The ISO has standardized a framework for metadata for geographical information
system (GIS) in their ISO19115, with the objective to enable users to understand and correctly
use the data (the International Organization for Standardization and Consortium (2014),
the International Organization for Standardization and Consortium (2019), the International
Organization for Standardization and Consortium (2023)). This standard includes multiple
facets, including identification information, data quality details, spatial representation, and
distribution specifics. But Labetski et al. (2018) notes that while these are important, further
attributes are missing, the most prominent being the level of detail and semantic object
classes.

2.3 Storage of 3D city models

Seeing 3D city models are constructed from various acquisition techniques as explained in
Section 2.1, their structure, format, and characteristic (Section 2.2) will greatly vary (Ohori
et al., 2022). To handle 3D city models, numerous data standards exist for storing and
converting 3D city models across platforms. According to McHenry and Bajcsy (2008), in 2008,
there were over 140 3D file formats available, which all have unique characteristics that make
them suitable for specific applications. Formats not discussed in the following subsections are
not part of the scope of this thesis. However, test data could come in different formats. This

17

2. Background

data conversion tool can be used but could lead to information loss (McHenry and Bajcsy,
2008).

The subsections will explore semantic 3D city models using standards like CityGML and the
efficient CityJSON (Ledoux et al., 2019). It also covers the technical side of geometric data
storage, discussing the widely-used Wavefront OBJ format, which is also widely used for
storing other 3D data (McHenry and Bajcsy, 2008). Lastly, it will explain the TU Delft 3D
JSON specification (tu3djson) format, a simple 3D feature exchange format.

2.3.1 Semantic 3D city models - CityGML and CityJSON
According to Ohori et al. (2022), lack of support for semantics and attributes makes that
most ways to store a 3D city model can not be used easily for simulations and/or analysis.
Therefore, in August 2008, the OGC proposed CityGML as the international standard for
representing and exchanging 3D city models (Gröger and Plümer, 2012).

CityGML defines 3D geometry and topology but also takes the objects’ semantics, their
thematic properties, taxonomies, aggregations, and interrelations are taken into account (Wil-
lenborg et al., 2016). For the geometry and topology, the standardized model Geography
Markup Language (GML) is used (Gröger and Plümer, 2012). GML is an Extensible Markup
Language (XML) encoding for the storage of geographic information modeled according to the
conceptual modeling framework used in the ISO 19100 (Cox et al., 2004). CityGML, therefore,
follows ISO19107 for geometry explained in Section 2.2.2, but it has two extra restrictions
(Ledoux, 2018). These two restrictions are:

1. GM curves can only be linear, which results in lineStrings and LinearRings (not in the
scope of this thesis)

2. GM surfaces can only be planar, which results in Polygons

CityGML is specified formally by Unified Modeling Language (UML) diagrams illustrating the
structures and concepts for all semantic models (Gröger and Plümer, 2012). Figure 2.14 gives
a module overview, the vertical boxes show the different thematic modules and the horizontal
modules specify concepts that apply to all thematic modules.

Figure 2.14.: The CityGML models (taken from Saeidian et al. (2023))

18

2. Background

The building model is the core of CityGML, which allows the representation of thematic and
spatial aspects of buildings, building parts, and accessories (Kolbe et al., 2005). Buildings
are represented in LOD 0 to LOD 4 (Figure 1.2), where LOD 0 can either be represented by
(horizontal) 2.5D polygons with roof level height or with footprint level height, while LOD4
represents a detailed building including, wall openings, and interior structures (Gröger and
Plümer, 2012).

CityGML makes use of spatio-semantic coherence (Section 2.2.3) and the UML describes for
which LOD and thematic (sub-)module, which semantics can be used. For example, the
building model can only use the semantics of Figure 2.12. CityGML reuses known and used
standards in other fields for the appearances(Section 2.2.4). Namely, X3D specifications for
materials and COLLADA standard for Textures (Gröger and Plümer, 2012), and metadata
(as explained in Section 2.2.5) can be saved. When users want to model additional objects
or use extensions on the standards, an Application Domain Extension (ADE) can be used
(Gröger and Plümer, 2012). ADE’s define new feature types (with new attributes, geometries,
and associations), which may be subtypes of existing types and uses inheritance to define
application schemas (Gröger and Plümer, 2012).

CityJSON was represented in 2019 as a new JSON-based exchange format for the CityGML
data model after Ledoux et al. (2019) argued that the XML-based exchange format of CityGML
has several drawbacks. CityJSON implements most of the CityGML data model, and all
of the CityGML modules have been mapped (Ledoux et al., 2019). CityJSON was designed
from a programmer’s perspective, which helps build software and Application Programming
Interface (API)s. Also, CityJSON is around six times more compact with real-world dataset
(Ledoux et al., 2019), which, according to van Liempt (2020), is a beneficial characteristic for
web use, as it decreases the time of data transfer over a network.

The JSON encoding of cityJSON makes use of arrays (in square brackets []) and dictionaries
made by key-value pairs (in curly brackets {}). The specifications are explained and updated
on their website: https://www.cityjson.org/specs/ (Ledoux and Balazs, 2023). This Thesis
focuses on version 2.0.0. The keys possible for CityJSON are shown in Figure B.1. The keys in
bold are five mandatory keys, these are:

• Type, which is always CityJSON

• version, which is the version of cityJSON you are using

• CityObjects a dictionary of all the cityobjects.

• vertices an array of all the coordinates of the vertices.

• Transform values that need to be used to scale and transform the vertices

Other keys, such as metadata and appearance, store additional information. CityJSON offers
the possibility to store metadata; six ISO19115 properties are supported (elaborated in Sec-
tion 2.2.5), and with the Metadata Extension, more properties can be stored. Appearance is
also used for CityGML X3D specifications and COLLADA. Geometry-templates can be used
as a method to compress files, storing identical geometries by only defining them once. Like
CityGML, CityJSON can be extended with ADEs, stored in extensions.

Figure B.2 shows the schema of a CityObject. A single CityObject stores in Type what kind
of CityObject is dealt with and the possible types for CityObjects are shown in Figure B.3.
In contrast to CityGML, City objects are “flattened out”, meaning both 1-st and 2nd-level
city objects are stored in the dictionary CityObjects (Ledoux et al., 2019). To still keep the
hierarchy, the keys parent and children link objects to their sub (or parent) parts by their

19

https://www.cityjson.org/specs/

2. Background

”ID.” attributes can be used to store extra properties about the object, however there are no
standards or limitations. Lastly, geographicalExtent can store the bounding box of the City
Object.

Unlike CityGML, the geometry doesn’t store all the coordinates of its vertices but links the
geometry to the vertices by using the boundaries to store in integer arrays. Each integer
refers to an index in the vertices array. The Geometry defines the 3D geometric primitives,
storing the 3D boundaries of the objects type and Lod. The eight geometry types are:

• MultiPoint

• MultiLineString

• MultiSurface

• CompositeSurface

• Solid

• MultiSolid

• CompositeSolid

• GeometryInstance.

This geometry is modeled following the ISO standards explained in Section 2.2.2. MultiPoint,
MultiLineString and GeometryInstance are not in the scope of this thesis.

The boundaries of these geometry types are a hierarchy of arrays, depending on the type.
Figure 2.15 shows that geometry arrays are built from the ”lower” geometry type; for example,
a composite solid consists of multiple solids, so a composite solid array is an array of solids.
Note that complex (Composite-) and aggregates (Multi-) are on the same hierarchical level.

Figure 2.15.: Depths of the boundaries for different types

For the building LOD, CityJSON supports 16 refined “TU Delft LoDs” (Figure 2.5), in contrast
to CityGML, which only used the five base LODs. Geometries may also store semantics,
materials and textures as additional information representing semantics and appearance of

20

2. Background

the CityObject. semantics has two values. surfaces, an array of array of semantic objects, and
values, a hierarchy of arrays with integers, where integer refers to the index in the ”surfaces”.
The values hierarchy is two less than the array boundaries, as a surface that has a depth
of two can only have one semantic. materials is built slightly differently, seeing it is a
collection of key-value pairs. The key is the theme of the material, referring to the themes
in appearance. The value values is again a hierarchy of arrays with integers, which is two less
than boundaries. textures is build the same a materials, but the depth of the values array
is equal to boundaries, as the indices refer to the UV positions of the corresponding vertices.
textures is not in the scope of this thesis. If a surface has no Semantics, Material, or textures,
the integer (or indices for textures) is replaced by null.

2.3.2 Geometry file format - Wavefront OBJ format
Wavefront OBJ is an open data format for 3D graphics, developed in 1970 by Wavefront
Technologies (Biljecki and Arroyo Ohori, 2015). When used for 3D city models, it does not
contain any attributes or semantics; it only contains the 3D geometry of the building models.
OBJ is a text-based format that stores each vertex’s position and the faces that define each
polygon as a list of vertices (bourke). It could also store the UV position of each texture
coordinate vertex and vertex normals, but those are out of the scope of this thesis. Vertices are
stored as v x y z, where x y z: are the x, y, and z coordinates for the vertex, which can be
floats (Listing 2.1 shows four example vertices).

1 # Vertices

2 v 1.0 1.0 1.0

3 v 1.0 1.0 -1.0

4 v 1.0 -1.0 -1.0

5 v 1.0 -1.0 1.0

Listing 2.1: Example vertices .obj File

Faces are stored as f v1 v2 v3 vn, where v are integers, where integer refers to the
index in the vertices (starting index = 1). A face needs at least three integers stored in a
counter-clockwise order to show the face normal (Listing 2.1 shows two examples of faces).

1 # face(s)

2 f 1 2 3 4

3 f 5 6 7 8

Listing 2.2: Example face .obj File

Objects and sub-objects (geometries) can also be named and grouped together. With the tag
o you can give the object (all geometries in the file) a name, and with the tag g all the faces
till the next g are grouped together (Listing 2.3). The vertices can be stored within the tags
of a group or as a whole at the beginning of the file, seeing the indexes of the vertices do
not change. Groups can also get materials that describe the visual aspects of the polygons;
this is done by usemtl [material name], where the material name matches a named material
definition in an external .mtl file. Listing B.1 shows an example obj file with the object name
”ThreeSolids” and three groups and their material, named ”Tetrahedron,” ”Hexahedron,” and
”Octahedron.”

1 o [object name/id]

2 ...

3 g [group name/id]

4 ... #faces

Listing 2.3: object and groups .obj File

21

2. Background

A drawback of OBJ geometries is that they do not allow the storage of all ISO 19107 primitives.
Also, holes and inner shells can not be used. Lastly, attributes and semantics cannot be stored
for different parts/elements.

2.3.3 Simple 3D feature exchange - tu3djson
tu3djson is developed by the TU Delft 3D geoinformation research group (geoinformation re-
search group). It is built like geoJSON, an open standard format designed for representing
simple geographical features, standardized in 2016 (Butler et al., 2016). But seeing that
geoJSON is restricted to 2D primitives, tu3djson was developed to store 3D features in a simple
format. Figure B.4 shows the schema for a tu3djson object, with in bold the mandatory keys,
namely type, which is always tu3djson, and feature which contains 0 or more feature objects.
The features consist of type, naming a type or id, properties, which can be anything, and
geometry. A geometry object must have a type, boundaries, and vertices. The possible
types for the geometry are:

• MultiPoint

• MultiLineString

• MultiSurface

• CompositeSurface

• Solid

• MultiSolid

• CompositeSolid

Based on the type, the boundaries are a hierarchy of arrays with integers, with the same depths
as CityJSON (explained in Section 2.3.1). The integers refers to the index of the vertices.

2.4 Validation of geometries

Because the ISO standardizes requirements for primitives (outlined in Section 2.2.2), geometries
in 3D city models should compile with the definitions for their concerned primitives. As a
result of the ISO19107 stating that for a 3D primitive to be valid, all its lower-dimensionality
primitives should also be valid, Ledoux (2013) argues that validation of a solid needs to be
performed hierarchically, starting from the lowest dimensionality primitives. Ledoux (2018)
extended the hierarchical validation with MultiSolids and CompositeSolids can also be
validated, resulting in Figure 2.16.

22

2. Background

Figure 2.16.: Validation workflow (taken from Ledoux (2018))

To automatically handle the validation process, Ledoux (2018) implemented a validator called
val3dity. At each level, the validator checks the requirements; if they are not met, it reports an
error code. val3dity has a total of 36 error codes, which are shown in Figure 2.17. 27 of those
are primitive-based and tested by unit tests. They are divided into five different dimensions,
as follows:

• LinearRings (error 1xx), being the lower-dimensional primitives, are validated and pro-
jected on a 2D plane.

• Polygons(error 2xx) are validated on the interactions and orientations of its LinearRings,
also projected on a 2D plane.

• Shells and CompositeSurfaces (error 3xx) are validated in 3D space on topology, orienta-
tion, and interactions of its Polygons in 3D space.

• Solids (error 4xx) are validated on the interactions and orientations of their shells.

• CompositeSolids(error 5xx) are validated on the intersections and interaction of its solids.

23

2. Background

The other 11 errors are based on CityGML and CityJSON (error 6xx), IndoorGML (error 7xx),
and ”other” errors (error 9xx), being input and unknown, which influence the validation
process. Errors on IndoorGML and input are not part of the scope of this thesis.

Figure 2.17.: val3dity error codes (updated version1from Ledoux (2018))

In 2016, Biljecki et al. (2016a) analyzed the most common geometric and semantic errors in
CityGML datasets. They found that datasets without errors are rare and that if (nearly) valid,
they are primarily LOD1 models. Studying 37 datasets, they observed that sometimes errors
appear to be random (for example, missing wall as shown in Figure 1.3a) in a dataset, while
others are encountered more systematically. According to Biljecki et al. (2016a), the most
geometric common errors in datasets are (in no particular order):

• Geometries not properly snapped - Invalid solids (Error 3xx) often occur due to not
snapped geometries, leading to intersecting surfaces and non-watertight solids. Mostly,
these errors are tiny, so close inspection by zooming in is necessary to detect them.
Figure 1.3b shows an example of this.

• Non-planarity - Non-planar polygons are the most common error in all the datasets
tested. Most planarity issues arise from deviations of just a few centimeters. Although
this might not pose problems for many applications, it is invalid according to the
standards.

1updated version from https://val3dity.readthedocs.io/en/latest/errors/

24

https://val3dity.readthedocs.io/en/latest/errors/

2. Background

• Polygon orientation - Polygons having a wrong orientation prevent polygons from form-
ing watertight solids and are less useful for spatial analysis. Figure 2.18 shows an
example dataset with wrong orientations.

Figure 2.18.: Orientation of roof surfaces, where green is correct, red is wrong (taken from
Biljecki et al. (2016a))

Biljecki et al. (2016a) also noted that intersecting solids (for example Figure 1.3c) could be a
common error. Upon manual inspection, they found that building parts overlap, resulting in
incorrectly calculated building volumes. But val3dity wasn’t able to cover CompositeSolids
(error 5xx) or overlapping building parts (error 601) at that time.

2.5 Validation of Semantics

According to Wagner et al. (2016), validation of semantics can be described in three different
ways, namely:

1. Validation on the thematic model. For example, ensure that elements like BuildingPart

are consistently child elements of a Building. This validation is not in the scope of this
thesis; however, when deleting a parent or a child feature because it cannot be repaired,
the thematic classes should be changed (described in Section 6.2.3).

2. Validation of semantics in relation to the geometry. For example, is a GroundSurface

label surface really a surface that represents the ground plate of a construction? This
form of validation will be discussed in this section.

3. Validation of mandatory attributes for (thematic) models. For example, is in the metadata
of ConstructionEvent, the dateOfEvent really a date? This validation is not in the scope
of this thesis.

Wagner et al. (2016) validates semantic surfaces for Building and its subparts based on the
normal vector of each face. They propose that RoofSurface and OuterFloorSurface have
a positive z-direction, GroundSurface and OuterCeilingSurface have a negative z-direction
and WallSurface have a zero z-coordinate. Boeters et al. (2015) adds an angle range to the
requirements for the normal, resulting in Figure 2.19a. Note that also classification validation
for interior surfaces is added to this model. Biljecki et al. (2016a) uses the same angle

25

2. Background

ranges as Boeters et al. (2015), but adds the OuterCeilingSurface and OuterFloorSurface for
validation, resulting in Figure 2.19b. Doors, windows, and closure surfaces are not considered
in the three models.

(a) Validation model of Boeters et al. (2015) (b) Validation model of Biljecki et al. (2016a)

Figure 2.19.: Semantic surfaces of buildings based on the normal of the surface

Biljecki et al. (2016a) argues that there are limitations to the validation based on the normal
approach. For example, RoofSurface and OuterFloorSurface are validated against the same
range of angles, which could result in a false positive when validating. Also the validation
based on normals is not conclusive for all architecture, for example Figure 2.20 shows how
WallSurface’s (grey) are now labeled RoofSurface (red) to be considered valid based on the
normals.

Figure 2.20.: Example of an uncertain situation for semantic validation (taken from Biljecki
et al. (2016a))

26

3 Existing repair methods

This chapter discusses the Odd-Even Paradigm vs. SetDiff Paradigm, followed by existing
repairs; only existing repair methods are discussed. Resulting in focusing on scientific papers
for which an implementation is available (and thus ignoring purely theoretical solutions). The
existing method sections are divided into geometric repair. Secondly, simplify meshes, which
helps (repaired) geometries reduce complexity for improved performance and can help with
additional requirements for, for example, CFD. Lastly, adding and/or repairing semantics is
needed for additional requirements such as estimating solar power.

3.1 Odd-Even Paradigm vs. SetDiff Paradigm

For validating and repairing geometries, it is vital to determine what the interior and exterior
regions are. The odd-even paradigm (Foley, 1996) is a straightforward method for determining
whether a point is inside a complex geometry with multiple boundaries, such as polygons with
holes or shells. This method works by drawing a (imaginary) line from the point in question to
infinity in any direction. The paradigm establishes the point’s location by counting how often
this line intersects with the geometry’s boundaries (Figure 3.1). If the count of intersections is
odd, the point is considered inside the geometry; if the count is even, the point is outside.

A

CB

D

G

F

H

E

E

HF

G

2

F

2

A

CB

D

1

2

1

Figure 3.1.: Odd-Even paradigm, where 1 is in both situations inside (odd number of intersec-
tions) and 2 is outside (even number of intersections)

Ledoux et al. (2014) proposed the set difference (setDiff) paradigm. This method explicitly
subtracts the interior spaces from the exterior boundary to accurately define the shape. Starting
with the area or volume enclosed by the exterior ring or shell, the setdiff paradigm subtracts
the areas or volumes enclosed by each interior ring or shell using the set difference operation.
For polygons, this can be mathematically expressed as: P = r \ (r1 ∪ r2 ∪ . . . ∪ rn) where r
represents the exterior boundary, and r1, r2, . . . , rn represent the interior boundaries. For 3D
shells, this operation defines the solid’s volume by subtracting the union of all interior shells
from the exterior shell.

The odd-even and setdiff paradigms are helpful in different situations. The odd-even paradigm
is simple and fast, making it great for validating if a point is inside or outside a shape.

27

3. Existing repair methods

However, for example, when shells are not closed, it can yield incorrect results. The setDiff
paradigm, on the other hand, is more robust in yielding results but has difficulty finding
errors. For example, an inner shell outside is no problem, seeing it is always exterior space.
Therefore, the best paradigm to use differs for each repair.

3.2 Geometric repair

According to Zhao et al. (2013), geometric repair methods can be divided into Local and
Global Approaches. Botsch (2010) uses roughly the same division, but local approaches are
called surface-oriented, and global approaches are called volumetric. Attene et al. (2013)
analyzed that local repair methods use local modification, which does not modify the whole
mesh. This repairs the defects, but not creating new defects can not be guaranteed. On
the other hand, global repair methods use completely re-meshing the object, which results in
guaranteed results but loses details of the object. In the following subsections, both approaches
are explained with existing repair methods.

3.2.1 Local repair methods
Local repairs try to identify and resolve artifacts explicitly. They change the model only
minimally and can preserve the original structure (Botsch, 2010). However, Zhao et al. (2013)
argues that this approach can only solve one or a few types of errors. Therefore, these repair
methods are rarely fully automatic, as the model cannot have other errors. This makes local
repairs not very robust (Botsch, 2010). Figure 3.2 shows 4 of the most common errors repairable
by local repair methods, each of them will be covered in the next subsections. Note that these
local errors can happen in 2D and 3D.

Orientation
Orientation errors arise in 2D when the interior ring(s) do not have an opposite orientation
from their exterior ring (clockwise versus counterclockwise). In 3D orientation, errors arise
when the normal polygons from the exterior shell do not point outwards (counterclockwise
orientation when viewed from the outside) or inwards for interior shells. One or more
polygons need to be flipped to repair the wrong orientation. Wagner et al. (2015) proposes
to find the polygons that need to be flipped by calculating the normal and intersecting it with
all the polygons. Intersection can be calculated with the Moller Trombore Algorithm (Möller
and Trumbore, 1997). When the number of intersection points is odd the orientation is valid,
otherwise it needs to be flipped. A prerequisite for this method is that the shell is closed.

Another method, proposed by Takayama et al. (2014), is a sampling of visibility through ray
shooting. This method samples random points on polygons, which are used as the origin
for the rays. For each point, two rays are shot, one in a random direction and one in its
inverse direction, ensuring the same number of rays are fired from both sides of the polygon.
The polygons normal needs to be flipped towards the side where there are the least rays that
intersect with other polygons. This method doesn’t have the prerequisite to have a closed shell
and is therefore more robust, however more calculations need to be done.

Loriot et al. (2023) also implemented Orientation Functions for Computational Ge-
ometry Algorithms Library (CGAL), which can compute or change the orientation of
faces and surfaces. This method translates the shell to a Polygon mesh. When the
connectivity (and or orientation) is unknown, the set of faces is called a polygon
Soup. The function CGAL::Polygon mesh processing::orient polygon soup() ensures
that the polygons are consistently oriented; this also works for non-closed shells. The

28

3. Existing repair methods

(a) Wrong orientation (of a ring/surface/shell) (b) Holes and gaps (in surface/shell)

(c) Overlap and duplicates (of rings/shells) (d) Ring Self-intersections/ Shell non-manifolds)

Figure 3.2.: Examples of local repairable errors

outputted Surface mesh can then be outward- or inward-oriented with the function
CGAL::Polygon mesh processing::orient(), but a prerequisite for this method is that
the shell is closed.

Hole and Gap filling
Holes and gaps are not necessarily errors in 2D, depending on the data structure; a polygon
may have holes, but in 3D, holes and gaps can result in a shell not being closed. Solids need
to consist of watertight shells; those so-called openings need to be closed.

All the existing repair methods for closing a shell can close openings of triangular meshes.
Some of the existing shell closing algorithms are:

• Tekumalla and Cohen (2004) proposed filling openings of triangular meshes using a
Moving Least Squares projection. The Moving Least Squares projection involves a
two-step algorithm, iteratively making the opening convex and adding vertices until the
opening is closed. This method smoothly fills holes and can be applied to both planar
and non-planar openings.

• Jun (2005) introduced a method capable of filling complex openings. Their algorithm
projects the opening onto a plane and divides it into several sub-openings. These sub-

29

3. Existing repair methods

openings are further projected and divided until the holes become simple enough to be
triangulated.

• Zhao et al. (2007) proposed closing openings in triangle meshes using the Advancing
Front Mesh Technique. This technique iterates by advancing over the edges of the
opening and adding new triangles to bridge the gap until it is closed. Afterward, the
algorithm smooths the filled triangles by refinement based on the Poisson equation. This
method is effective for non-planar complex openings as well.

• Botsch (2010) suggests employing Liepa’s hole-filling algorithm (Liepa, 2003), which
triangulates the opening to mimic the triangles of the boundary area. The patched
opening is then refined by adjusting the positions of the new vertices. Like the previous
methods, this approach is suitable for non-planar complex openings.

• Rashidan et al. (2022) proposed another local repair method called ”triangular mesh
repair,” focusing on filling holes specifically in 3D city models. This method utilizes
triangulation of polygons but can only close planar and almost planar openings.

• Loriot et al. (2023) implemented opening filling functions for CGAL. This method
involves translating the shell to a polygon mesh, which must be triangulated
using CGAL::Polygon mesh processing::triangulate faces(). Openings can then
be filled using either CGAL::Polygon mesh processing::triangulate hole() or
CGAL::Polygon mesh processing::triangulate and refine hole().

A drawback of all these methods is that they only work for triangular meshes, which result in
translating the geometry in a triangular mesh and afterwards detriangulating it to the original
data structure, which is prone to errors.

Overlap
Overlap errors can arise in 2D as well as in 3D by intersecting rings (2D), shells(3D), or even
solids (3D). The most common approach to change or create new geometries from existing
(overlapping) geometries is Boolean point set operations. Figure 3.3 shows the four primary
set operations, union, intersection, difference, and symmetric difference (Ohori et al., 2022).
Boolean operations offer a systematic method to resolve overlaps. Applying operations such
as union allows the overlapping regions to be merged into a single geometry. Intersection
can isolate the common volume shared by overlapping shapes, while difference can subtract
one geometry from another to eliminate the intersected portion. The symmetric difference,
on the other hand, can be used to retain only the non-overlapping parts of the intersecting
geometries.

30

3. Existing repair methods

Figure 3.3.: Boolean operations in 2D and 3D

Although boolean operations are versatile, Barki et al. (2015) argues that besides the utility
and importance, boolean computations are complex due to topological changes and geometric
degeneracy. To address this challenge, the Nef polygons and polyhedra theory was developed
(Bieri, 1995). This data model represents the geometry based on local pyramids, which can be
made by intersecting the neighborhood of a vertex with a sphere (or circle in 2D) (Granados
et al., 2003). Figure 3.4 shows the local pyramids of two Nef-Polygons. On Nef-geometries, a
boolean operation can be computed in three steps:

1. Subdivision, which overlays the geometries and creates an overall structure with new
vertices, edges, and faces at the intersections.

2. Selection, which checks which vertices, edges, and faces should be part of the output

3. Simplification, which removes all the other vertices, edges, and faces.

Seel (2023) and Hachenberger and Kettner (2023) implemented these operations in CGAL for 2D
and 3D geometries, although it is not a prerequisite, the algorithm is less robust for nonsimple
geometries. CGAL also has a boolean operation for meshes implemented (Loriot et al., 2023), but
it has perquisites that the mesh needs to be triangular and closed. Barki et al. (2015) therefore
proposed a more robust boolean operations on 3D meshes, which work on non-manifold and
not-closed meshes. However, the code he implemented is not open source.

Figure 3.4.: Nef polygons boolean operations and with their local pyramids (taken from Ohori
et al. (2022))

31

3. Existing repair methods

Self intersection (2D) and Non-manifolds (3D)
Non-manifold errors always arise from a form of self-intersecting. Figure 3.2d shows the three
most common cases, being:

1. Pieces collapsing in a lower dimension (line for 2D or dangling face for 3D),

2. Self-intersection on an edge or point creating two or more objects in the same dimension,

3. Self-intersection elsewhere creating two or more objects in the same dimension.

For 2D non manifolds Subramaniam (2003) proposed a method for partitioning self intersect-
ing polygons into simple polygons by using the non-zero winding number rule. Alternatively,
Ledoux et al. (2014) proposed a method based on triangulation that uses two repair options,
namely an extension of the odd-even algorithm and a point set difference rule. This method,
named prepair, focuses on automatically repairing single GIS polygons. Ohori et al. (2012)
proposed an extension, named pprepair, which can repair a set of polygons.

For 3D non-manifold Gueziec et al. (2001) proposes a method called cutting and stitching for
triangulated meshes. Firstly, the intersecting edges and points are marked, then disconnected,
by cutting faces. The following step stitches edges by pinching the geometry into two parts or
snapping the two parts back together (Figure 3.5a). Alternatively, Mikchevitch and Pernot
(2013) proposed a method to split non-manifold geometries into partitions (Figure 3.5b);
however, this method only works when all the nonmanifold parts are shell objects.

(a) Method of Gueziec et al. (2001) (b) Method of Mikchevitch and Pernot (2013)

Figure 3.5.: Repairing 3D Non-Manifolds

3.2.2 Global repair methods
Global repairs use intermediate volumetric representation from which an output model can be
extracted (Botsch, 2010). Instead of identifying errors and resolving those, a new representation
is made based on the (interior) space of the original geometry. Botsch (2010) argues that global
repair methods are typically fully automatic and often implemented robustly. However, the
downside is that it resamples the geometry, often resulting in a loss of detail. It also changes
the original data structure, so after the repair, you possibly need to convert back to the original
data structure, which can cause new errors. Converting back to the original data structure also
often result in loss os semantics, materials and textures. The two most common global repair
methods, Shrink wrapping and Voxelization, are covered in the following subsections.

32

3. Existing repair methods

Shrink wrapping
The concept of mesh wrapping has been around for some time. In 1998 Bernardini and Bajaj
proposed a method for wrapping manifolds using Alpha-shapes and in 1999 Kobbelt et al. pro-
posed a shrink wrap approach for re-meshing. However, these methods were not proposed for
flawed models with holes or intersections. Therefore, Lee et al. (2010) developed the Cartesian
shrink-wrapping technique. The method uses a Cartesian grid, which is adaptively refined
until the target resolution forms a watertight shell. Although this method is automatic Lee
et al. (2010) argued that complex geometries remains challenging and often requires significant
user intervention for the correct output. The algorithm also needed improvements for memory
efficiency. Zhao et al. (2013) proposed a new shrink-wrapping method based on graph theory,
where all the building vertices are graph vertices. The graph applies tetrahedralization on
all faces and its convex hull (Figure 3.6a). These method effectively repairs gaps, holes and
self-intersections, however it cannot repair overshoots (Figure 3.6b) and is very sensitive to
floating point errors.

(a) (b)

Figure 3.6.: Shrink wrap (a) method (b) example of a defect (taken from Zhao et al. (2013))

Alpha wrapping
Alpha wrapping is a derivative of the ”alpha shapes” concept (Edelsbrunner and Mücke, 1994).
Alliez et al. (2023b) implemented this function for CGAL, which could be used on point clouds
or triangulated meshes. The function CGAL::alpha wrap 3() uses shrink wrapping based on
two parameters. Alpha, the main parameter, determines which features will appear in the
output by controlling the size of the empty spaces. The second parameter, offset, controls the
tightness of the result. Figure 3.7 shows how both values affect the output mesh. Finding the
correct parameters to solve defects and preserve detail still often requires significant manual
user intervention for the proper output.

33

3. Existing repair methods

Figure 3.7.: Different alpha and offset values (taken from Alliez et al. (2023b))

Voxelization of Polygon Mesh
In 2015, another global repair method was proposed by Mulder. This method is called
Voxelization and is a voxel-based repair method. As shown in Figure 3.8 in this repair method,
input is converted into a binary 3D grid. This method is very robust but has two significant
drawbacks: potential shift of the geometry and potential loss of attributes. Also the slow
processing of voxelization is not ideal, to optimize this process Sindram et al. (2016) presented
an extension of this method introducing the use of an Octree. This approach significantly
reduces computation time while preserving the same robustness as the original algorithm.

34

3. Existing repair methods

Figure 3.8.: Voxelization (taken from Mulder (2015))

3.3 Simplifying meshes

A complicated geometry can degrade the mesh quality, which leads to errors (taken from
Park et al. (2020)). Therefore, simplification helps in the repair process. It is an additional
requirement for some use cases. Park et al. (2020) proposed a simplification methodology,
which can be seen in Figure 3.9. The prerequisite for this method is that a building consists of
one simple solid. Therefore, the preprocessing consists of repairing the geometry. Also, if the
geometry consists of multiple primitives, it is joined (boolean union)into one. The next step is
to classify the faces by marking the not-insignificant faces. The marked faces planes bound the
base of the simplified model, which is generated from the volume.

Figure 3.9.: Simplification methodology of Park et al. (2020)

35

3. Existing repair methods

3.4 Adding and/or repairing semantics

As discussed in Section 2.5, semantic surfaces can be validated against face normals of the
geometry. Boeters et al. (2015) proposed an method to automatically enhancing CityGML
LOD2 with surface semantics. This method is for Building and its sub-classes and has as a
prerequisite that the geometry is valid. It assumes that the geometry is bounded by surfaces
and based on the normals, it classifies the surfaces accordingly (Figure 2.19a). Although this
is not a repair method, the methodology can be used to add semantics to surfaces that are
now labeled None and change the nonvalid surfaces to the correct type. Diakité et al. (2014)
also proposed a method for automatic semantic labeling of buildings based on heuristic rules.
Although most heuristic rules are based on normal orientation checking, some are based on
the relationships between the components. These relationships also make it possible to classify
doors and windows. There is no prerequisite for the geometry to be valid, which makes the
program more robust. However, a big drawback is that the standardized names (Figure 3.10)
aren’t used. Therefore, the algorithm is not usable for CityGML and CityJSON, making it less
useful for this thesis.

Figure 3.10.: semantics CityJSON vs semantics Diakité

36

4 Methodology for automatic repair
of semantics 3D city models

The workflow of the proposed repair methodology is provided in Figure 4.1. The automatic
repair process is done in the repair loop. This chapter will focus on the methodology of
geometric repairs by explaining how val3dity can be used for the repair process (Section 4.1).
Followed by repair approaches for all val3dity errors divided per primitive level (Section 4.2,
Section 4.3, Section 4.4, Section 4.5, Section 4.6 and Section 4.7). Preserving semantics and
materials will also be discussed for each repair approach. The methodology for use case
implementation and user requirements and its repairs will be discussed in Chapter 5.

3D city model

Read the file Set the UserRequirements

for each single CityObject

convert to tu3dJSON

Repairloop

geometric

repairs

get val3dity report

Do validity repairs

false

valid?
true

use case

repairs

get use case Requirements

Do use case repairs

true

Repair needed
false

true

All (user) Requirements fulfilled?
false

convert Back to CityObject

Write the output Write Repair Report

UserRequirements

Repair Report in JSON

Mandatory Not mandatory

3D city Model Process User In/out put

In JSON or OBJ As UseCase name or in JSON

3D city model

In JSON or OBJ

Figure 4.1.: Flowchart of the methodology

37

4. Methodology for automatic repair of semantics 3D city models

4.1 Validation by val3dity

As explained in Section 2.4, val3dity could be used for validating geometries and finding
errors. val3dity is a command-line interface (CLI), but also has a web application. To use it in
other programs, val3dity can also be compiled as a library; when included, the API can validate
files and return a report with errors. Figure 4.2 shows the schema of a val3dity report, listing
errors at 3 levels:

1. errors with the input files (errors 9xx), which are not in the scope of this thesis.

2. errors with the features, e.g., Buildings in CityJSON (errors 6xx and 7xx), in light red

3. errors with the geometries (errors 1xx – 5xx), in red

When a primitive is validated, the report starts the repair process. By using the blue key
(Figure 4.2), the error and the location (id) of the error can be found. The report, therefore, can
be used to trigger doing the corresponding repair on the invalid location (which is explained
in the following subsections). Seeing that val3dity works hierarchically, it can be assumed that
its lower-level primitives are valid. Also, errors on the same level are made hierarchically (e.g.,
206 before 208), so those requirements can also assumed to be valid. These assumptions help
with the perquisites of local repair processes.

Based on geometry type and kind of error:

split by |

when interaction &&

one or multiple of:

coid={CityObject ID}

geom={index geometry}

face={index face}

shell={index shell}

solid={index solid}

Figure 4.2.: Val3dity report structure (used data in red, keys to get there in blue)

While both ISO 19017 and CityJSON mention that each Surface must be planar (i.e., all its
points, used for both the exterior and interior rings, must lie on a plane), the concept of

38

4. Methodology for automatic repair of semantics 3D city models

tolerance is not mentioned, which Biljecki et al. (2016a) believes is a shortcoming. Val3dity
uses the concept of tolerance to ignore small errors (Ledoux, 2018). Tolerance is used for three
situations, namely:

• Planarity of polygons, which is checked in two ways:

Are all vertices on the same plane? This is calculated by fitting a plane by the
least-square adjustment. For all vertices, the distance from the plane is calculated.
If the distance is less than the planarity d2p tol (whose default is 1 mm), the
polygon will be seen as planar.

Are all possible triangulation polygons in the same plane? This is calculated by
comparing the normals of all the triangles after triangulation. If the deviation of
the normals is less than planarity n tol (which default is 20 degrees), the polygon
will be seen as planar.

• Snapping close vertices, which is done by calculating the distance of two vertices. If they
are less than snap tol (which default is 1 mm) apart, the two vertices will be snapped
together.

• distance between primitives, which can be used in two situations:

Erosion, which can be used when two should not be overlapping. When the overlap
is less than overlap tol (which default is 0 mm), the two primitives do not overlap
(Figure 4.3).

Dilatation, which can be used when two are disjoint. When the overlap is less than
overlap tol (which default is 0 mm), the two primitives are not disjoint(Figure 4.3).

The values of these tolerances can inputted in val3dity by the user. Therefore, for the repair
methodology, the user should also be able to set these tolerances.

Figure 4.3.: Example of how the tolerance is applied when validating a Composite-Solid
containing 2 Solids(taken from Ledoux (2018))

39

4. Methodology for automatic repair of semantics 3D city models

4.2 Ring level repair approaches

As explained in Section 2.2.2, rings are simple and closed curves and have a few standards to
be considered valid. The following subsections delve into non-compliant standards (based on
the val3dity error codes Figure 2.17) and their corresponding repair approaches.

101 - Too few points - A (Linear)ring is a closed LineString, a composite of Lines. If there
is only 1 line (a curve with 2 points), there is no chance of repairing it, and therefore, only
deletion is an option (Figure 4.4). If the ring is an inner ring, it will be deleted, but if it is
the outer boundary of a polygon, all the inner rings will also be deleted. The semantics and
materials will also be deleted. Suppose the polygon was essential for the shell. In that case, it
will later in the process generate a too few polygons (repair 301) or a shell not closed (repair
302) error, for which repairs are explained in Section 4.4 (repairs shown in Figure 4.16 and
Figure 4.17).

A B

[A,B]
“delete”Delete

Figure 4.4.: Approach to repair: Too few points

102 - Consecutive points are the same - A ring is simple if it does not pass through the
same point twice. Two consecutive points can be the same on two occasions: (1) they are the
same point, (2) they are the same point because they are within the snap-tolerance (snap tol

explained in Section 4.1). To repair this error, only the first, in sequential reading order, of
the two vertices is kept (Figure 4.5). Note that only keeping one of the points could result in
having too few points afterward (repair 101). The semantics and materials of the geometry
will not be changed.

A

CB

D

[A,B,C,C,D]

A

CB

D

[A,B,C,D]

CB

D

[A,B,C,D,E]

E
A

Keep the first

Figure 4.5.: Approach to repair: Consecutive points same

40

4. Methodology for automatic repair of semantics 3D city models

103 - Ring not closed - For a ring to be closed, the start point must be the same as its endpoint.
In CityJSON and OBJ, this error cannot happen; seeing rings are not defined by ending it with
the start point. Therefore, this error and its repair are out of the scope of this thesis. If the
repair process is extended to formats such as GML rings and to JSON-FG, this repair could
be done by adding the first point to the end of the ring. The semantics and materials of the
geometry will not be changed.

104 - Ring self-intersection - A ring is simple if it does not pass though the same point twice,
therefor a ring should not self intersect, intersection can happen at an explicit point or with
edges that cross each-other. To decide how to repair the first check is if the points are not
co-linear, resulting in the ring collapsing into a line. If that is true (example 1 Figure 4.6), the
only repair option is deletion. Similarly to repair 101, if the ring is an inner ring, it will be
deleted, but if it is the outer boundary of a polygon, all the inner rings will also be deleted. If
the ring is not (completely) collapsed into a line, the convex hull of the points is used as a repair
(example 2,3,4 Figure 4.6). The convex hull, which is the smallest convex polygon possible to
describe a point set, is the most robust point-to-polygon algorithm available (Commandeur,
2012). The semantics and materials of the geometry will not be changed.

A

CB

D

[A,B,D,C]

A

C
B

D

[A,B,E,C,D,E]

E

[A,B,C,D,E,D]

DA

CB

E

[A,B,C,D]

A

CB

D

A

CB

D

[A,B,C,D,E]

E

[A,B,C,E,D]

EA

CB

D

Convex hull

[A,B,C]

A CB “delete”Delete

x

v

Collapsed into a line?

Figure 4.6.: Approach to repair: ring self-intersection

Another less robust option for repairing self-intersection could have been the calculation of a
concave hull (Da, 2023). Using a Concave hull instead of a convex hull could capture more
intricate details of a ring. For example, it could help get rid of dangling pieces (for example,
case 3 Figure 4.6)) by seeing those vertices as outliers. However, the drawback of using a
concave hull is that it is parameter-dependent; the alpha-value needs tuning for every ring of
every dataset to find the correct outlier detection and not splitting the ring into multiple rings.
Having to set the correct α-value makes the algorithm less robust comparing to a convex hull.

Ledoux et al. (2014) also proposed a repair solution using a constrained triangulation, which
is also robust and already implemented in the automatic repair tool prepair. However, the

41

4. Methodology for automatic repair of semantics 3D city models

drawback of this algorithm is that disconnected interiors (which happen with cases 2 and 4
of Figure 4.6) are handled by splitting the ring into multiple rings. For local-level repairs, this
thesis opted for the most straightforward method to ensure that rings remain intact, leading
to the choice of convex hull over constrained triangulation.

4.3 Polygon level repair approaches

As explained in Section 2.2.2, polygons are simple and planar surfaces and have a few
standards to be considered valid. The following subsections delve into non-compliant
standards (based on the val3dity error codes Figure 2.17) and their corresponding repair
approaches.

201 - Intersection rings - In a polygon, boundaries cannot cross, and the exterior of a polygon
with holes is not connected. When rings in a polygon intersect, neither standard is complied
with. This can happen in two situations: when an inner ring intersects with the exterior ring
(Figure 4.7a) or when two inner rings intersect (Figure 4.7b). This intersection could (partly)
have the same edge or overlap with the edge of another ring. Boolean operations are used to
repair this. When an inner ring intersects with the exterior ring (Figure 4.7a), the inner rings
needs to be subtracted from the exterior, therefore the difference is calculated. When two inner
rings intersect, they need to become 1, and therefore, the union is calculated (Figure 4.7b). The
semantics and materials of the geometry will not be changed.

(a) Intersection exterior and inner ring

A

CB

D

[[A,B,C,D][E,F,G,H][F,J,I,G]]

J

IGH

FE

Boolean union

A

CB

D

[[A,B,C,D][E,J,I,H]]

J

IH

E

A

CB

D

[[A,B,C,D][E,F,N,J,K,L,N,H]]

J

M

N

H

FE

KL

A

CB

D

[[A,B,C,D][E,F,G,H][I,J,K,L]]

JI

GH

FE

KL

(b) Intersection two inner rings

Figure 4.7.: Approach to repair: Intersecting Rings

202 - Duplicate rings - In a polygon, boundaries cannot cross, so boundaries can also not be
duplicates. This can happen when the same ring is used twice or when points are within the
snap tolerance (snap tol explained in Section 4.1). Preferably as the repair, only the first ring
should be kept (Figure 4.8), but at this moment, val3dity doesn’t make a difference between
201 and 202 anymore, so the boolean repairs as described in Figure 4.7 is used. For duplicate
inner rings, this doesn’t change the outcome, but when an inner ring is a duplicate of the
exterior, the whole outer ring will be deleted, which deletes the polygon as a whole. When a
polygon is deleted, its semantics and materials are also deleted; otherwise, the semantics and
materials of the geometry will not be changed.

42

4. Methodology for automatic repair of semantics 3D city models

A

CB

D

[[A,B,C,D][E,F,G,H][E,F,G,H]]

G

F

H

E

Keep the first

A

CB

D

G

F

H

E
E

I

[[A,B,C,D][E,F,G,H][I,F,G,H]]

A

CB

D

G

F

H

E

[[A,B,C,D][E,F,G,H]]

A

CB

D

G

F

H

E

[[A,B,C,D][E,F,G,H]]

Figure 4.8.: Approach to repair: Duplicated rings

203 - Non-planar polygon distance plane - Polygons need to be planar, so Val3dity validates
this by checking if all points are less than the planarity tolerance (planarity d2p tol explained
in Section 4.1). When points are not within the tolerance, the first check is if points are within
the Max projection tolerance given by the user (Section 6.3). Suppose one of the points is
above the projection tolerance; then The polygon will be triangulated (Figure 4.9). Otherwise,
the outlier points are projected onto a new plane (Figure 4.9) by these four steps:

1. Calculate the best-fitting plane for all the points in the polygon

2. Find the outliers that are outside of the planarity tolerance

3. Calculate a new plane without the outliers

4. Project the outliers on the new plane

When the points are projected, the semantics and materials of the geometry will not be
changed. However, when a polygon is triangulated, all the faces will inherit the semantics
and materials of the original polygon.

43

4. Methodology for automatic repair of semantics 3D city models

A

CB

D

[[A,B,C,D]]

C

D
A

Side view

B

Project on to best plane

A
B

Side view

E
C

A

CB

D

[[A,B,C,D]]

A

CB

D

[[A,B,C,D]]

C

D

A

Side view

B

A

CB

D

[[A,B,C]],[[A,C,D]]

C

D

A

Side view

B

Triangulatex

v
Within max projection

tollerance

Figure 4.9.: Approach to repair: Non-planar polygon distance plane

204 - Non-planer polygon normal Deviation - Polygons need to be planar, next to the planarity
tolerance Val3dity also validates that all possible planes, formed by (non co-linear) 3 points in
a polygon, have normals that do not deviate more than the tolerance for planarity based on
normals deviation (planarity n tol explained in Section 4.1). This validation is added when
all points are within the planarity tolerance, but there is a ”fold” in the polygon.

1. Triangulate the polygon

2. Calculate all the normals and compare those

3. Find the triangles with the deviation and mark their points as fold points

4. Calculate a new plane without the fold points

5. Project the fold points on the new plane

The semantics and materials of the geometry will not be changed.

A

CB

D

[[A,B,G,H,C,D,F,E]]

H

F

G

E

B
A

Side view

E
C

EE G

H

A

CB

D

[[A,B,G,H,C,D,F,E]]

H

F

G

E

B
A

Side view

E
C

EE
HG

Project “fold” vertices on

best plane

Figure 4.10.: Approach to repair: Non-planar polygon normal deviation

44

4. Methodology for automatic repair of semantics 3D city models

205 - Polygon interior disconnected - The interior of every Polygon needs to be a connected
point set; therefore, if one or more holes disconnect the interior, the polygon needs to be split
into two (or more) polygons (Figure 4.11). This can be done by subtracting the holes from the
interior and then looping over all the created (sub-)polygons that are formed. All the parts
will get the semantics and materials of the original polygon.

Split

A

CB

D

[[A,B,C,D][E,F,G]]

F

G

E

A

CB

D

[[A,B,G,E,F,D]],[[G,C,F]]

F

G

E

Figure 4.11.: Approach to repair: Polygon interior disconnected

206 - Inner ring outside - The exterior of a polygon with holes cannot be connected. Therefore,
inner rings cannot be outside of the polygon. When an inner ring is outside, the first check is
if the user wants to keep all introduced geometries (Section 6.3). If not, the inner ring, which
is outside, is deleted, and the semantics and materials of the geometry will not be changed.
Otherwise, the inner ring orientation is reversed and added as a separate polygon (Figure 4.12).
The added polygon will receive the same semantics and materials as the original polygon.

delete ring

A

CB

D

[[A,B,C,D][E,F,G]]

F

G

E

A

CB

D

[[A,B,C,D]]

seperate ring

A

CB

D

[[A,B,C,D]], [[G,F,E]]

F

G

E

x

v
User requirement to keep

everything?

Figure 4.12.: Approach to repair: Inner ring outside

207 - Inner rings nested - The exterior of a polygon with holes cannot be connected. Therefore,
inner rings cannot be nested. When an inner ring is nested, first, it is checked if the user wants
to keep all introduced geometries (Section 6.3). If not the nested inner ring is deleted, , also the
semantics and materials of the geometry will not be changed. Otherwise, the nested inner ring

45

4. Methodology for automatic repair of semantics 3D city models

orientation is reversed and added as a separate polygon (Figure 4.13) with the same semantics
and materials as the original polygon.

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

[A,D,C,B] [A,B,C,D]

Flip orientation

Figure 4.13.: Approach to repair: Inner ring nested

208 - Orientation rings same - The exterior ring must have the opposite orientation of its
interior ring(s). Exterior rings must be oriented counterclockwise and the interior(s) clockwise.
If rings have the same orientation, the orientation of the exterior ring is calculated, and all
inner rings are oriented in the opposite orientation by reversing them if they are the same
(Figure 4.14). If the exterior was the ring that was in the ”wrong” direction, the shell would
end up not being manifold (repair 303) or having a polygon with a wrong orientation (repair
307) and would be repaired accordingly. The semantics and materials of the geometry will not
be changed.

A

CB

D

[[A,B,C,D][E,H,G,F]]

G

F

H

E

Change orientation

of ring(s)

A

CB

D

G

F

H

E

[[A,B,C,D][E,F,G,H]]

Figure 4.14.: Approach to repair: Orientation rings same

4.4 Shell level repair approaches

As explained in Section 2.2.2, Shells are defined by a closed set of polygons and have a few stan-
dards to be considered valid. Some of these standards are also needed for CompositeSurfaces,
although they are not shells. The following subsections delve into non-compliant standards
(based on the val3dity error codes Figure 2.17) and their corresponding repair approaches.

300 - Not valid 2-manifold - This error happens when the exact error is unknown. Since we do
not know the problem, local repair methods are impossible. Therefore, a global method should
be used. Alpha wrap (as explained in Section 3.2.2) is the chosen repair approach (Figure 4.16),
seeing its robustness and easy-to-use implementation in CGAL (Alliez et al., 2023b). Seeing

46

4. Methodology for automatic repair of semantics 3D city models

alpha wrap outputs a triangulation, detriangulation can be done by re-meshing planar patches.
Preserving and materials can be done by checking overlap with original polygons. If a new
polygon is the same or entirely inside an original polygon, the semantics and materials of the
original polygon will be assigned. If multiple original polygons are (partly) inside a new
polygon, the largest overlap will be used for semantics and materials. If a new polygon
overlaps with no original polygons, its value will be NONE unless polygons surround it in
the same plane with all the same semantics and materials. The NONE values could later be
repaired with the methodology explained in Section 3.4.

A

C

B

D

G

I

F

E

LK

J

H

Alpha Wrap

E

G

C

D
E

G

C

D
A

B

I

F

LK

J

H

Figure 4.15.: Approach to repair: Not valid 2-manifold

An alternative methodology could be to fill the polygons with point samples and use point
cloud reconstruction methods (Section 2.1.1) to reconstruct and repair geometries. Methods
such as Polygonal Surface Reconstruction or Advancing Front Surface Reconstruction could be
useful, however alpha wrapping is preferred for its simplicity, speed, and robustness.

301 - Too few polygons - A shell needs to be closed. Therefore, a shell needs at least four
polygons. However, the only exception is a triangular pyramid with one missing triangle
Alam et al. (2014). If there is only one polygon or if there are 2 or 3, but they are on the same
plane, the shell can never be closed (first example of Figure 4.16). If the shell is an inner shell,
it will be deleted; otherwise, if the user requires all geometries to be watertight (Section 6.3),
the shell will be deleted, and with it, the whole solid. If the shell is the outer boundary, it
will be made into a MultiSurface, and all inner shells of the rest of the solid will be flipped
and become part of the multisurface. The semantics and materials will be the same as the
original.

To keep the repair as local as possible, secondly, hole filling (as explained with 302) is tried
(second example of Figure 4.16). The semantics and materials stay the same, and the new
polygons will get the value NONE. If the hole filling doesn’t work, alpha wrap, as explained
with 300, is used (third example of Figure 4.16), and also, the preservation of semantics and
materials of 300 is used.

47

4. Methodology for automatic repair of semantics 3D city models

DD

A

C

B

DD

A

C

B

DD

A

C

B

A

C

B

D

G

H

F

E A

C

B

D

G

H

F

E A

C

B

D

G

H

F

E

Find naked edges

Reconst

if reconstruction fails:

Alpha wrap

A

C

D

G

HF

E

B
Make MultiSurface

On the same plane?

x

v

Delete

A

C

D

G

HF

E

B

“delete”

Based on user requirements

Figure 4.16.: Approach to repair: Too few polygons

302 - Shell not closed - A shell needs to be closed; therefore, holes and gaps need to be filled.
To do this. First, naked edges need to be found, and from there, reconstruction of holes and
gaps can be done (first example of Figure 4.17). The semantics and materials of the original
polygons will stay the same. If a new polygon overlaps with no original polygons, its value
will be NONE unless it is surrounded by polygons in the same plane with all the same semantics
and materials. When reconstruction fails, alpha wrapping, as explained at 300, can be used
(second example of Figure 4.17), and also, the preservation of semantics and materials of 300
is used.

E

HF

G

F

A

CB

D

J

K
I

I

F

I

F

E

H

A

CB

D

G

J

E

HF

G

F

A

CB

D

J

K
I

I

F

I

F

E

H

A

CB

D

G

J

E

HF

G

F

A

CB

D

J

K
I

I

F

I

F

E

H

A

CB

D

G

J

Find naked edges

Reconst Hole(s)

if reconstruction fails:

Alpha wrap

Figure 4.17.: Approach to repair: Shell not closed

48

4. Methodology for automatic repair of semantics 3D city models

303 - Non-manifold case - A shell needs to be closed, and a composite surface needs to consist
of all connected surfaces. Therefore, there cannot be more than 2 polygons incident to an edge,
and the vertex cannot have ”umbrellas”. Sometimes, 303 is also returned when it is actually
307. The approach for this repair consists of the following steps:

• Find the edge(s) or vertexes which are overused

If none are found, it is a 307 error, and a polygon needs to be flipped

• separates the connected components by splitting on the edge or vertex

• If the new connected component(s) doesn’t have a volume (first example Figure 4.18)

For outer shells and CompositeSurfaces, if the user wants to keep all introduced
geometries (Section 6.3), the new components are added as a separate MultiSurface.
Otherwise, they are deleted.

For inner shells, the new components are deleted

• if the new connected components have a volume: (second example Figure 4.18)

For outer shells and CompositeSurfaces, if the user wants to keep all introduced
geometries (Section 6.3) as one component, the new component is added as part of
a CompositeSolid. Otherwise, the new component will be added as a separate solid

For inner shells, the shell will be split into 2 (or more) inner shells.

The polygons will all keep their original semantics and materials even if flipped.

E

HF

G

F

A

CB

D

I

J

K

I

M

J

NN

L

KE

HF

G

F

A

CB

D

Does it have a volume

Make non Manifolds

seperate Multi surface

Delete non manifold

part

Make Composite-Solid

with two solids

I

M

J

NN

L

KE

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

I

J

K

x

v

Based on user requirements

Based on user requirements

Split into 2 Solid

Figure 4.18.: Approach to repair: Non manifold case

305 - Multiple connected components - A shell needs to be closed, and a composite surface
needs to consist of all connected surfaces. Therefore, there cannot be disconnected parts. The
approach for this repair consists of the following steps:

• separate the connected components

49

4. Methodology for automatic repair of semantics 3D city models

• If the new connected component(s) doesn’t have a volume (first example Figure 4.19)

For outer shells and CompositeSurfaces, if the user wants to keep all introduced
geometries (Section 6.3), the new components are added as a separate MultiSurface.
Otherwise, they are deleted.

For inner shells, the new components are deleted

• if the new connected components have a volume: (second example Figure 4.19)

For outer shells and CompositeSurfaces, if the user wants all geometries to be water-
tight (Section 6.3), the new component is added as part of a MultiSolid. Otherwise,
the new component will be added as a separate solid

For inner shells, the shell will be split into 2 (or more) inner shells.

The polygons will all keep their original semantics and materials even if flipped.

Figure 4.19.: Approach to repair: Multiple connected components

306 - Shell self-intersection - for Shells and CompositeSurfaces interior should not overlap.
The local repair approach would be deleting the intersecting faces and patching the made holes
using the methodology of 302. The semantics and materials for new polygons are the same as
original polygons if a new polygon is the same or entirely inside an original polygon. When
the local repair approach fails, alpha wrapping, as explained at 300, can be used (the second
example of Figure 4.20), and the preservation of semantics and materials of 300 is used.

50

4. Methodology for automatic repair of semantics 3D city models

E

HF

G

F

A

CB

D

I

If not CompositeSurface

close holes

E

HF

G

F

A

CB

D

Find and delete

intersecting edges

E

HF

G

F

A

CB

D

Figure 4.20.: Approach to repair: Shell self-intersection

307 - Polygon wrong orientation - A closed shell needs to be constructed in such a way
that all polygons are counterclockwise for the outside, and CompositeSurfaces need to form
a connected surface and, therefore, need the same orientation as its neighbors. To repair the
wrong-oriented polygon needs to be flipped (Figure 4.21). The polygons will all keep their
original semantics and materials even if they are flipped.

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

[A,D,C,B] [A,B,C,D]

Flip orientation

Figure 4.21.: Approach to repair: Polygon wrong orientation

4.5 Solid level repair approaches

As explained in Section 2.2.2, Solids are defined by 0 or more shells and have a few standards
to be considered valid. The following subsections delve into non-compliant standards (based
on the val3dity error codes Figure 2.17) and their corresponding repair approaches.

401 - intersection shells - In a solid, boundaries cannot cross, and the exterior of a solid with
holes is not connected. When shells intersect in a solid, neither standard is complied with. This
can happen in two situations, with inner shells intersecting with the exterior ring (Figure 4.22a)
or with two inner shells intersecting (Figure 4.22b). This intersection could have (partly) the
same edge or overlap over the boundary of another shell. Boolean operations are used to repair
this. When an inner shell intersects with the exterior shell (Figure 4.22a), the inner shell needs
to be subtracted from the exterior. Therefore, the difference is calculated. When two inner
shells intersect, they need to become 1, and therefore, the union is calculated (Figure 4.22b).
The semantics and materials are kept for all the polygons. When a polygon results from two
merged polygons, it will get the semantics and materials of the largest, and when they are the
same size, it will get the semantics and materials of the first.

51

4. Methodology for automatic repair of semantics 3D city models

HFF

E G

A

CB

D

HFF

E G

A

CB

D

HFF

E G

A

CB

D

HFF

E G

A

CB

D

Boolean union

(a) Intersection exterior and inner shell

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

Boolean difference

(b) Intersection two inner shells

Figure 4.22.: Approach to repair: Intersecting Shells

402 - Duplicate Shells - In a solid, boundaries cannot cross, so boundaries can also not be
duplicates. This can happen when the same shell is used twice or when points are within the
snap tolerance (snap tol explained in Section 4.1). As a repair, only the first of the duplicates
are kept (Figure 4.23). For duplicate inner shells, this doesn’t change the geometry’s volume
or visual appearance, so the semantics and materials will stay the same. However, when an
inner shell is a duplicate of the exterior, the inner shell will be deleted, changing the volume
and the appearance. Also, the semantics and materials of this shell have been deleted.

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

Y
X

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

Keep the first

Figure 4.23.: Approach to repair: Duplicated Shells

52

4. Methodology for automatic repair of semantics 3D city models

403 - Inner shell Outside - The exterior of a solid with holes cannot be connected. Therefore,
inner shells cannot be outside of the polygon. When an inner shell is outside, first check if
the user wants to keep all introduced geometries (Section 6.3). If not, the inner shell, which
is outside, is deleted together with its semantics and materials. Otherwise, the inner ring
orientation is reversed and made into a solid (Figure 4.24). The semantics and materials will be
kept even though the polygons are flipped. If the user requires all geometries to be watertight
(Section 6.3), the new solid is added as a separate solid. Otherwise, the solid is added as part
of a multi-solid, changing the type when the original type was solid or composite-solid.

Delete shell

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

DMake shell

new solid

Add shell as

part of multi-solid

x

v
User requirement to keep

everything?

User requirement to be

watertight?

x
v

Figure 4.24.: Approach to repair: Inner Shell outside

404 - Solid interior disconnected - The interior of a solid needs to be a connected point set;
therefore, if one or more holes disconnect the interior of the solid, it needs to be split into two
(or more) solids (Figure 4.25). This can be done by subtracting the holes from the interior and
looping over all the created (sub-)solids that are formed. The polygons of the new solids will
keep their semantics and materials even if they are flipped. If the user requires all geometries
to be watertight (Section 6.3), the new solid is added as a separate solid. Otherwise, the
solid is added as part of a multi-solid, changing the type when the original type was solid or
composite-solid.

Split into 2 solids

split into solids in

Multi-solid

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

User requirement to be

watertight?

x
v

Figure 4.25.: Approach to repair: Solid interior disconnected

53

4. Methodology for automatic repair of semantics 3D city models

405 - Wrong orientation Shell - Boundary (shell) should be constructed of polygons oriented
that when viewed from the exterior, the points are ordered counterclockwise (the normal must
point to the exterior). To repair this, every shell needs to be checked for orientation, and
when wrong, the orientation needs to be flipped by reversing all the polygons of the shell
(Figure 4.26). The semantics and the materials are not changed when polygons are flipped.

Flip orentation

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

Figure 4.26.: Approach to repair: Wrong orientation shell

4.6 Solid interaction level repair approaches

As explained in Section 2.2.2, Composite solids are defined by 2 or more solids and need
to be connected but not overlapping to be considered valid. The following subsections
delve into non-compliant standards (based on the val3dity error codes Figure 2.17) and their
corresponding repair approaches.

501 - Intersection Solids - Interior of a Composite-Solid may not overlap. If two more solids
overlap, the overlap ratio is calculated by the overlap/first solid. This ratio is compared with
the merge tolerance (Section 6.3). If the ratio is above the tolerance, a Boolean union makes the
two solids into one (second and third example of Figure 4.27). The semantics and materials are
kept; however, when a polygon is a result of two merged polygons, it will get the semantics
and materials of the largest, and when they are the same size, it will get the semantics and
materials of the first. Otherwise, the first solid stays the same, but the second solid is changed
into the boolean difference (first example of Figure 4.27), where all polygons keep their original
semantics and materials.

54

4. Methodology for automatic repair of semantics 3D city models

Overlap above merge

tolerance

Make a union containing

one solid

Second solid only gets

the differencex

v
N O

P

J

E

HF

G

N

J

F

A

CB

D

M

K

LI

N O

P

J

E

HF

G

N

J

F

A

CB

D

M

K

LI

N

M

O

P

J

N

E

HF

G

J
F

A

CB

D

K

LI

N

HF

N

HF

O

P

E

J

A

CB

D

G

M

K

LI

N

M

O

P

N

R

E

HF

G

RF

A

CB

D

J K

LI
Q

N

HF

N

HF

O

P

E

J

A

CB

D

G

M

K

LI

Figure 4.27.: Approach to repair: Intersection solids

502 - Duplicate Solids - The Interior of a CompositeSolid may not overlap, so solids cannot be
duplicated. This can happen when the same solid is used twice or when points are within the
snap tolerance (snap tol explained in Section 4.1). As repair, only the first of the duplicates
is kept (Figure 4.28), and the semantics and materials are kept the same for the remaining
polygons.

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D
I

A

Keep first

Figure 4.28.: Approach to repair: Duplicated solids

55

4. Methodology for automatic repair of semantics 3D city models

503 - Disconnected Solids - Interior of a Composite-Solid should be connected. If the user
requires all geometries to be watertight (Section 6.3), the disconnected solid is added as a
separate solid. Otherwise, the geometry type is changed to Multi-solid. The semantics and
materials of the new geometries will be the same as the original.

E

HF

G

F

A

CB

D

N

M

O

P

N

I

KJ

L

Split disconnected to

other solids

Change type to

multi-solid

E

HF

G

F

A

CB

D

N

M

O

P

N

I

KJ

L

User requirement to be

watertight?

x

v
Figure 4.29.: Approach to repair: Disconnected solids

4.7 BuildingPart level repair approaches

The OGC states that BuildingParts are a physical or functional subdivision of a Building

(Kolbe et al., 2021). This suggests that BuildingParts should not overlap, which can be
validated by val3dity with the help of the overlap tolerance. As the OGC standards are not
clear about BuildingParts being allowed to be disjoint, this is not validated nor repaired.

601 - BuildingParts overlap - is conceptually the same error as 501, which repairs the over-
lapping Interior of a CompositeSolid. Therefore, the same approach is used, except that if
one or more BuildingParts are of geometry type Composite-Solid, the ratio of the overlap is
calculated by the volume of overlap divided by the volume of the Composite-Solid instead of
one of its solids. This ratio is also compared with the merge tolerance (Section 6.3). If the ratio
is above the tolerance, the two BuildingParts are made into one by a Boolean union (Likewise
to the second and third example of Figure 4.27). Otherwise, the first BuildingPart stays the
same, but the second BuildingPart is changed into the boolean difference (Likewise to the
first example of Figure 4.27). The semantics and materials will also be preserved in the same
way as the repair approach for 501.

4.8 Global approach

If the proposed approaches per error will not solve the defects for unknown reasons, a global
approach is needed. Users can stop the endless repair process of such defects with two
parameters: maxRepairDepth and TotalRepairDepth (as explained in Section 6.2.2). When
the repair tries to equal the depth of the parameters, the global repair will start, consisting
of four stages (Figure 4.30); after each stage is checked to see if the geometry is valid. If it
is still not valid, the next stage will be tried. While each stage is more robust, the geometric
difference increases. The four stages are: Alpha wrap on polygons, Alpha wrap on vertices,
Convex hull of geometry, and (oriented) bounding box.

56

4. Methodology for automatic repair of semantics 3D city models

A

C

B

D

G

I

F

E

LK

J

H

Alpha Wrap

on polygons

E

G

C

D
E

G

C

D
A

B

I

F

LK

J

H
1

A

C

B

D

G

I

F

E

LK

J

H

Alpha Wrap

on points

E

G

C

D
E

G

C

D
A

B

I

F

LK

J

H
2

A

C

B

D

G

I

F

E

LK

J

H

Convex hull

E

G

C

E

G

C

A

B

I

F

LK

H
3

A

C

B

D

G

I

F

E

LK

J

H

Bounding box

4

E

HF

G

F

A

CB

D

If invalid

geometry

If invalid

geometry

If invalid

geometry

Figure 4.30.: Approach for global repair

57

5 Repairing 3D city models for
specific applications

Although primitive validity is a step in the right direction, it does not necessarily mean that
a 3D city model is ready to be used for all applications. For example, Paden (2021) states
that Computational Fluid Dynamics (CFD) has some additional requirements not covered by
ISO19107. Additional requirements for the application of 3D city models are, according to
Coors et al. (2020), use-case-dependent. This results in not all requirements being mandatory
for all use cases and that requirements for a certain use case can contradict the requirements
of other use cases. This chapter consists of a broad overview of research for the 29 use cases
described by Biljecki et al. (2015) (Section 5.1), followed by four sections focused on the specific
use cases chosen for this thesis (Section 5.2, Section 5.3, Section 5.4 and Section 5.5).

5.1 Additional validity requirements for different use cases

The 29 distinct use cases of 3D city models described by Biljecki et al. (2015) have different
additional requirements, summarized in Table A.1. Some additional requirements can be
achieved by using the 3D model itself. Other needs to be done by collecting new and/or extra
data. Since this thesis focuses on automatic repair, the ones not repairable are outside the scope
and can be seen in italic. Two types of additional requirements remain, namely additional
geometric requirements (in black) and additional semantics requirements (in blue).

Additional requirements could also help in deciding how to repair invalid geometries. For
example, when a shell is not closed (error 302 and Figure 1.3a), changing a Solid into a
MultiSurface would make it valid for the ISO requirements. However, when you want to use
a 3D city model for Energy demand estimation, CFD, Volumetric density studies, or the 3D
cadastre watertight Solids are needed (Table A.1). This results in, for example, capping the
shell being a more logical repair solution for this use case than changing the geometry type.

5.2 Use case: Computational fluid dynamics (CFD)

Table 5.1 shows some of the validity issues and the importance of avoiding them in CFD
(Paden, 2021). Although they are all ISO19107 requirements, not all are needed for every
geometry type. Seeing non-watertight and intersections are only requirements for Solids and
CompositeSolids. These are the only possible geometry types for CFD. Therefore, Buildings
of type MultiSurfaces need to be converted into solids, and Buildings of type MultiSolid
need to become CompositeSolid or separate nonintersecting Solids to check and repair these
requirements.

58

5. Repairing 3D city models for specific applications

Issue Severity

Non-manifold Severe
Non-watertight Severe
Intersections Severe
Duplicated outer surfaces Severe
Wrong orientation Moderate
Duplicated vertices Moderate
Duplicated/missing inner surfaces None

Table 5.1.: Validity issues and problems it creates in CFD, according to Paden (2021)

Additionally, Paden (2021) requires that buildings can not have small features, small edges,
and also small gaps between buildings. The simplification method from Park et al. (2020) can
be used for the small features and edges, which is explained in Section 3.3. Another method
for simplification could be edge collapsing, which is also implemented in CGAL (Cacciola et al.,
2023). The simplification algorithm uses a cost-driven half-edge-collapse operation, which
involves removing an edge, a vertex, and two adjacent edges while optionally repositioning the
remaining vertex. Cacciola et al. (2023) method employs two methods for the edge collapsing.
The Lindstrom-Turk method performs ”memoryless simplification” by selecting edges with the
lowest collapse cost and computing replacement vertex positions based on shape, volume, and
boundary constraints without comparing each step to the original mesh (Lindstrom and Turk,
2000). In contrast, the Garland-Heckbert method uses quadric matrices to encode distances to
original mesh faces, selecting edges to collapse based on minimizing a quadratic error function,
with enhancements for maintaining sharp borders and handling probabilistic geometry to
tolerate noise (Heckbert and Garland, 1999). Figure 5.1 shows Sappho’s Head model (leftmost,
34882 vertices) with different simplified outputs (1745 vertices) or the four Garland-Heckbert
variations: plane (0.217912), probabilistic plane (0.256801), triangle (0.268872), and probabilistic
triangle (0.490846).

Figure 5.1.: Simplification option of ”Sapho’s head model” by the Garland-Heckbert method
(taken from Cacciola et al. (2023))

For the small gaps between buildings, Paden (2021) proposes generalizing building footprints.
Commandeur (2012) created a half-space method where weighted lines (of the boundaries)
decide the best fit. When parts of the boundary are parallel but within the threshold of
the distance (Figure 5.2a) or when not parallel in the threshold of the angle (Figure 5.2b),

59

5. Repairing 3D city models for specific applications

a weighted new generalized boundary will be formed. Instead of taking the two parts within
the threshold as weight (Figure 5.3 a), you could also take surrounding footprints as weight
for generalization (Figure 5.3 b).

(a) (b)

Figure 5.2.: Footprint generalisation thresholds (taken from Commandeur (2012))

Figure 5.3.: Footprint generalisation based on surroundings (taken from Commandeur (2012))

Lastly, Paden (2021) proposes that CFD input can not have small, sharp features and sliver
triangles. Alliez et al. (2023c) proposes that mesh optimization could remove these with The
ODT-smoother method. This method uses a perturber and exuder to target the worst mesh
elements. The perturber adjusts vertex positions to eliminate slivers while the exuder re-
weights mesh vertices to remove any remaining slivers.

5.3 Use case: Energy demand

According to Coors et al. (2020), the geometry of buildings influences energy demand. As-
suming Equation 5.1, for example, the building’s volume is used to estimate the internal
area, which affects internal gains and the specific heat demand. Therefore, Sindram et al.
(2016) proposes that building volume is essential and buildings should be watertight. In
the ISO19107, being watertight is a requirement for Solids and CompositeSolids. Therefore,
Buildings of type MultiSurfaces need to be converted into solids, and Buildings of type
MultiSolid need to become CompositeSolid or separate nonintersecting Solids to check and
repair these requirements.

Heating = ventilation losses + conduction losses− solar gain− internal gains (5.1)

60

5. Repairing 3D city models for specific applications

Equation 5.1 also prescribes that the polygon must be outwards oriented to calculate solar gain
and the total area (elaborated more in Section 5.5). Lastly, the exterior surfaces are used to
estimate ventilation and conduction losses. According to Willenborg et al. (2018), subdividing
the exterior faces into semantic parts (roof surface, wall surface, and ground surface) could lead
to better results, seeing component-related calculation could be used. Although Nouvel et al.
(2017) argues that it doesn’t make a significant change, the small impact allows a more realistic
simulation. To validate and repair semantics values, the normal-based method explained in
Section 3.4 could be used. Willenborg et al. (2018) also argues that knowledge of shared walls
could influence the calculation, but seeing this information is not semantics in CityJSON. This
is out of the scope of this thesis.

Lastly, seeing that Energy demand is calculated per building, it is essential that building(part)s
do not intersect, seeing the volume is used twice. Figure 5.4 shows how repaired buildings
using boolean operations on the geometry change the outcome of the energy demand. For
buildingparts, merging could be a solution, but between different buildings, taking the differ-
ence is preferable, seeing the calculation is often address-based.

Figure 5.4.: Intersecting buildings and their Energy Demand estimation

5.4 Use case: Visualization

According to Ledoux (2017), duplicated surfaces and wrong orientation of surfaces have the
most significant consequences for visualization purposes. Figure 5.5 shows how overlapping
surfaces of different materials cannot be rendered. Therefore, it is important that the geometry
of buildings are not only validated but also that different buildings are checked for intersec-
tions, and with boolean operations, overlapping surfaces will be prevented.

61

5. Repairing 3D city models for specific applications

Figure 5.5.: Overlapping surfaces rendered

The wrong orientation of surfaces is a problem for visualization when culling is used for
materials or textures. Culling prevents rendering surfaces facing away from the viewer, which
optimizes the process (Zhang and Hoff, 1997). It uses the principle that objects are closed and
only need to render the outside. When surfaces have the wrong orientation, the wrong side of
the object is rendered, resulting in missing faces (Figure 5.6). When visualization programs use
so-called double-sided shaders, this problem disappears. To repair this requirement, buildings
of type MultiSurface must also be checked on orientation. Although making a MultiSurface
into a solid of higher dimension is the only way to guarantee that the whole shell is oriented
correctly, it also requires the shell to be closed. Taking Figure 5.6 as a reference, only some
faces are oriented wrong; therefore, converting to a CompositeSurface can already solve this
error, with the risk that the whole shell will be oriented incorrectly.

Figure 5.6.: Wrong oriented faces not rendered (taken from Ledoux (2017))

Lastly, Biljecki (2017) argues that a higher LOD enhances the visualization quality because it
strongly benefits from more detail. Repairing for Visualisation asks for repairs as close to the
original as possible; therefore, local repairs are favorable over global repairs.

62

5. Repairing 3D city models for specific applications

5.5 Use case: Estimation of solar irradiation

Estimating solar irradiation aims to quantify the solar energy on surfaces, mainly for the
potential for solar panels and heat calculations (Section 5.3). In the case of solar panel potential,
seeing most solar panels are installed on roofs, the RoofSurface(s) extraction is favorable
(Biljecki et al., 2016a). Therefore, the normal-based method explained in Section 3.4 could
be used to validate and repair semantic roof face values. Ledoux (2017) also emphasizes the
importance of orientation of the roofs with Figure 5.7. To repair this requirement, buildings
of type MultiSurface must also be checked on orientation, which likewise to visualisation is
done by converting in to CompositeSurface, with the risk that the whole shell will be oriented
incorrectly.

Figure 5.7.: Solar potential example within black roofs with no value (taken from Ledoux
(2017))

For heat calculations, Biljecki et al. (2015) argues that the field extends towards vertical facades.
Still, most calculations need the surfaces’ materials and/or insulation, which are out of scope
for this thesis. As explained in Section 5.3, shared wall knowledge could influence building
heat calculation. However, when doing solar irradiation estimation on a 3D city model, this
is irrelevant, seeing walls can be occluded by the other building when they share a wall.
However, when buildings are apart, the occlusion of the shadow is significantly impacted by
the LOD (Figure 5.8). Biljecki (2017) argues that although having the same area, their symmetric
difference is considerable. Therefore, it could cast shadows on the wrong faces when detail
is lost. Repairing for solar irradiation requires repairs as close to the original as possible;
therefore, local repairs are favorable over global repairs.

Figure 5.8.: Shadow cast by a detailed building vs a LOD1 block (taken from Biljecki (2017))

63

6 Implementation of AUTOr3pair

In this chapter, the implementation details of the methodology of Chapter 4 are described.
Furthermore, the extra repairs and parameter tuning for Chapter 5 are discussed. The
implemented code can be found on the AUTOr3pair repository

6.1 How to use AUTOr3pair

AUTOr3pair can be executed via the command line interface or within an Integrated Develop-
ment Environment (IDE). Before running AUTOr3pair, you need to build the program using
CMake. AUTOr3pair depends on CGAL, val3dity, and Nlohmann-json:

• CGAL needs to be installed. AUTOr3pair works with 5.5 (the version where Alpha
wrap packages are introduced) and higher, and testing is done with 6.0. Using 6.0 is
recommended, as it gives fewer segmentation errors when using Nef polyhedrons and
surface meshes.

• Val3dity can be downloaded from their GitHub. AUTOr3pair depends on the ”new” re-
port structure, which has been implemented since 2.3.1, but the experiments (Chapter 7)
have been done with version 2.5.1. Val3dity is dependent on CGAL, and also on Eigen
(version used 3.4.0-4) and GEOS (version used 3.11.2)

• Nlohmann-json is included in the third-party directory and is on version 3.11.2.

Once AUTOr3pair is built, you can run it from the command line to repair 3D city models,
with:

[location /] AUTOr3pair [3D city model to repair] [Use Case (file)] [LOD to repair]

Listing 6.1: Format for running

[3D city model to repair] is the path to the 3D city model you want to repair. AUTOr3pair
supports CityJSON and OBJ file formats. Listing 6.2 shows how both file types can be run.
How the input is handled is explained in Section 6.2.1.

[location /] AUTOr3pair 3DCityModel_file_to_repair.json

[location /] AUTOr3pair 3DCityModel_file_to_repair.obj

Listing 6.2: Run input files

[optional: Use Case (file)]: helps with setting parameters. predefined use case can be
used, or users can define their composition of parameters by inputting a JSON. As shown
in Listing 6.3 the use cases discussed in Chapter 5 can be called with a keyword (e.g., CFD
for CFD, ENERGYDEMAND for Energy Demand, VISUALISATION for Visualization, SOLARPOWER for
Solar Power estimation). All the Standards are explained in Section 6.3. The default repair
settings are used if no use case (file) is provided.

64

https://github.com/Lkeurentjes/AUTOr3pair

6. Implementation of AUTOr3pair

[location /] AUTOr3pair [3D city model to repair] CFD

[location /] AUTOr3pair [3D city model to repair] ENERGYDEMAND

[location /] AUTOr3pair [3D city model to repair] VISUALIZATION

[location /] AUTOr3pair [3D city model to repair] SOLARPOWER

[location /] AUTOr3pair [3D city model to repair] User_preferences.json

Listing 6.3: Run Use case different use case parameters

[optional: LOD]: Can be used to specify a LOD to limit the repair process that LOD. To target
a specific LOD, -LOD[number] needs to be added after the 3D city model, and in the case of
the chosen use case behind the use case (Listing 6.4 shows an example where only geometries
with LOD 2.1 will be repaired). Likewise to CJIO users should specify the complete LOD, so for
example, 2 will not repair 2.0 or 2.1, the user should specify those.

[location /] AUTOr3pair [3D city model to repair] -LOD2.1

[location /] AUTOr3pair [3D city model to repair] [Use Case (file)] -LOD2.1

Listing 6.4: Run LOD as parameters

6.2 Program specifics

To test the proposed methodology of Chapter 4, AUTOr3pair was implemented in C++. C++
was chosen for its high performance and efficient memory management, which is needed for
large 3D city models. Also, C++ object-oriented programming makes dealing with different
kinds of geometries easier, making it easier to recreate, manipulate, and manage the objects.
Lastly, the choice of C++ was influenced by the necessary software libraries for this project,
which are the following:

• val3dity : can be used to validate 3D primitives against the ISO19107 Standards (as
explained in Section 4.1). It can be used in C++ as a library to guide what to repair.

• Nlohmann JSON is also an open-source library that provides a simple interface for pars-
ing, manipulating, and writing JSON. It is used for reading CityJSON and manipulating
tu3djson during the repair process.

• CGAL: fully known as the Computational Geometry Algorithms Library, it is an open-
source library that offers a wide range of robust geometric algorithms. AUTOr3pair uses
many packages for reading, writing, and repairing objects. In the next sections, you can
find which packages are used for what. The list below details a summarization of the
packages used and their purposes:

Geometric Objects: Geometries are translated into Lists of points, Polyhedron,
Nef polyhedron and surface meshes. Depending on the libraries used, the exact
kernel (Exact predicates exact constructions kernel.h)
or the inexact kernel(Exact predicates inexact constructions kernel.h)
is used to define precision.

Manipulating geometries: Depending on the repair libraries are used to give info
about or manipulate the geometries, these are:

* Polygon Mesh Processing: This set of libraries provides various tools for
manipulating polygon meshes, which are collections of polygons that define
the surface of 3D models.

65

6. Implementation of AUTOr3pair

* Surface mesh simplification: is used for reducing the complexity of meshes
while maintaining their overall shape.

* Boost and graph utilities are used for converting Nef polyhedra to polygon
meshes and performing Euler operations on polygonal surfaces.

* Delaunay triangulation is used for triangulating non-planar faces.

* Alpha wrap for generating alpha shapes in 3D.

* Kd tree utilities and Orthogonal neighbor search for efficient searching and
neighbor when using the Vertices list.

* Convex hull: is used for computing convex hulls.

* Linear least squares fitting: is used for fitting the best plane for nonplanar face
computations.

OBJ File I/O: is used for reading from and writing to OBJ files, enabling the import
and export of 3D models in the OBJ format.

6.2.1 Input
AUTOr3pair can repair 3D city models stored as CityJSON or OBJ. As explained in Sec-
tion 2.3.1, CityJSON can store semantic 3D city models as JSON, which can be parsed with the
help of Nlohmann JSON. It consists of at least five properties. However, only three are needed
for the repair process: transform, CityObjects, and vertices. The other properties will be stored
and copied to the output data, seeing they won’t be modified. The key Transform will only be
used to find the decompress factor for the tolerance (discussed more in Section 4.1), but does
not change and, therefore, will also be copied to the output data. The vertices will be placed
in a vector instead of the array they are in because a vector size can change dynamically. A
changeable size is needed; for the repair, new points may need to be added, or vertices may be
deleted in the post-processing step. The CityObjects are converted into tu3djson to be repaired
individually. As explained in Section 2.3.3 the properties differ slightly from those used in
CityJSON. Figure 6.1 explains how a CityJSON CityObject is converted in a tu3djson feature. The
GeometryObject gives the base for the feature. Boundary and type of the geometry are directly
copied into Geometry alongside the (transformed) vertices. All the semantic properties of the
GeometryObject are copied to the properties so they can be changed during the repair process.
After the repair process, an attribute AUTOr3paired to the attributes and the Geographical
extent (and possibly LOD) can be changed in the post-processing (Section 6.2.3).

As stated in Section 1.4, this thesis focuses on repairing Building and its sub-parts. During
the repair process, each City Object is checked to see if the type should be repaired. Users
can extend the types begin repaired with the parameter ExtendScope by adding those types
to the list. However, the correctness of these repairs is not guaranteed. Users can also opt for
repairing only one LOD during the repair process. This can be done by stating the LOD as one
of the inputs. This is so that datasets, such as the 3DBAG (Section 7.3.1), can repaired with
other repair parameters per LOD.

66

6. Implementation of AUTOr3pair

CityObjectVertices Transform

type GeometryObject GeographicalExtentChildren Parents Attributes

type LODBoundaries Semantics Material Texture AUTOr3paired

Geometry Properties

TU3DJSON

Figure 6.1.: Flowchart of translating CityObject to TU3dJSON feature

For the use case CFD also, 3D city models storage as OBJ can be repaired. As explained in
Section 2.3.2 does not contain semantics or metadata, but it could have materials or groups,
however for simplification they are now discarded. To parse the OBJ CGAL’s I/O stream
package is used (Fabri et al., 2023), which outputs the vertices and polygons in arrays. With
CGAL’s Polygon Mesh Processing package (Loriot et al., 2023), the faces are grouped into con-
nected components. CGAL also takes care of conversion between OBJ’s 1-based boundaries,
which are converted into 0-based boundaries. Figure 6.2 illustrates how the vertices and
faces are translated through a CityObject ”like” JSON array into tu3djson features on which
the repair process is done. The type of CityObject is always building, so it is always in the
scope of the repair process. The user standard OBJ geomtype tells what kind of geometry
primitive the faces form. The default value is Solid, but users could change it to other
primitives (Section 6.3). The value is set according to the type of GeometryObject, and the
boundary depth is set accordingly. Based on the OBJ geomtype also, parameters Watertight

and orientation are changed accordingly to the type, so no lower order geometry primitives
will be outputted. For example, when the type is Solid, repairs can not be done by adding
Mult-/CompositeSurfaces.

CGAL’s Polygon Mesh Processing package (Loriot et al., 2023) automatically deletes faces with
too few points (val3dity error 101) or faces with duplicate points (with the same index, same
point but different index is okay) behind each-other (val3dity error 102). Therefore, both errors
are repaired before finding the connected components by deleting the faces (with error 101) or
deleting the duplicate point (error 102).

67

6. Implementation of AUTOr3pair

Figure 6.2.: Flowchart of translating OBJ to TU3dJSON features

6.2.2 Repair framework
As shown in Figure 2.16, the repair method consists of two parts, which will be discussed
in the following subsections: the geometric repairs (as explained in Chapter 4) and the extra
use case repairs (as described in Chapter 5). An object is only considered fully repaired if
all (user) requirements are fulfilled. However, two parameters can stop the repair process
when stuck in an infinite loop (for example Figure 6.3) or if the repair method cannot repair
the geometry. The default value of maxRepairDepth is 50 and is used for how many times
repairs on the same level can be done (e.g.Ring level or Polygon level). On the otherhand
TotalRepairDepth has a default value of 500 and is the maximum repairs on one object. The
maxRepairDepth is used when repairs (for unknown reason) do not work on an object, while
TotalRepairDepth can be used when repairs form a loop, for example Figure 6.3 describes
how deleting duplicates points (when being in the snap tol) in a triangle leads to an infinite
loop. The chosen implementations of the repairs (as explained in the following subsections)
prevent this kind of loop (for my tested data (Section 7.1)). However, to make the code more
robust for unknown new loops, these parameters are helpful (Algorithm 1 (Appendix C) shows
how both are used in the Geometric Repair).

68

6. Implementation of AUTOr3pair

Figure 6.3.: Loop of errors while dealing with a sliver

The ShowProgress parameter can be used to allow users to follow the process in real-time. This
enables users to see which items have been validated and which repairs have been completed,
making it easier to monitor the progress of AUTOr3pair directly in the terminal. Meanwhile,
the Debugging parameter provides users with more detailed insights when needed. It gener-
ates extensive output, including the vertices list, which is particularly useful for debugging or
for users who wish to examine specific steps of the program in greater detail.

Geometric repairs
As explained in Section 4.1, val3dity could be used to validate geometries and find errors; with
the known errors, the specific repairs could be called. To implement this a Geometry Class is
used, which can save the tu3djson, validate it with val3dity and send the part that needs repair
into the correct repair function. Seeing different kinds of geometry primitives have different
boundary depths (Figure 2.15), the geometry class is inherited by the specific type (shown in
Figure C.1 (Appendix C)). The pipeline for the repair process is presented in Algorithm 1
(Appendix C). It uses the val3dity report summarized as a map (Algorithm 2 (Appendix C))
to order all the repairs per category. For validation, the four standards (i.e.Tollerances) are
used for the validation (Algorithm 2 of Algorithm 2) and can be changed according to user
preference (Section 6.3). To give the user options on what to do only some repairs, two
parameters (solveAll and ErrorsToRepair) are added (Line 10 of Algorithm 2). The default
value of solveAll is True, but when ErrorsToRepair gets input, the value is changed to False.
If a user wants to repair only specific errors, he can add the error code to the ErrorsToRepair

array (the default value is an empty array). This repair will not be added to the ordered map
if an error is not in the array (and solveAll is False).

69

6. Implementation of AUTOr3pair

The repairs on geometry are done in hierarchical order. It is possible to do multiple repairs in
the same category at the same time (e.g.repair multiple ring errors). However, the geometry
is validated again after all the repairs in the same category instead of doing the higher-order
repairs. Seeing changes could influence other repairs. Some repairs can split the geometry
into multiple parts (Line 33 of Algorithm 1) or change the type (Line 36 of Algorithm 1). If this
happens, the geometry repair process is stopped (also when not valid yet) and reinitialized as
multiple or other type Geometry repairs.

Implementation of ring level
To speed up the repair process for use cases where detail is not a main requirement, the
parameter SkipLowRepairs can be used. The default value is False, but when set to True,
it deletes the whole polygon instead of doing the local repairs on the rings. This is only
done for Solid and higher order primitives; seeing these deleted faces will be re-added in the
shell repairs. When a polygon is deleted, the semantic and material values are deleted from
their arrays. Still, the values and original polygons are kept for re-assigning semantics and
material values in later repairs. The following subsections explain the implementation of the
methodologies proposed in Section 4.2.

101 - Too few points - val3dity gives in the id on which face this Ring error appears. To delete
the incorrect rings, all rings must be checked. If the outer boundary had less than 3 points, the
whole polygon is deleted; otherwise, only the hole is deleted. When a polygon is deleted, the
semantic and material values are deleted from their arrays.

102 - Consecutive points are the same - val3dity gives in the id on which face this Ring error
appears. To find the consecutive points, all rings are checked. The index is the same when
two consecutive points are the same cause. The first is kept. However, when two consecutive
points are the same cause their distance is in the snap tol, the second point is snapped to
the location of the first point. This is done by changing the coordinate of the second point in
the vertices list and deleting the index (So other polygons using this vertex are also changed.
Although both follow the same approach of keeping the first vertex, the different approach
follows from Figure 6.3.

104 - Ring self-intersection - val3dity gives in the id on which face this Ring error appears.
To test which ring(s) self-intersect, each ring is projected to a 2DCGAL polygon (Giezeman
and Wesselink, 2023), projecting onto the best plane calculated by linear least squares fitting
of CGAL (Alliez et al., 2023d); this package can check if a polygon is simple. If the ring is
not simple, CGALs convex hull algorithm is used (Hert and Schirra, 2023a). When the ring is
collapsed into a line, the ring is deleted; when the ring is deleted is the outer boundary, the
whole polygon is deleted; otherwise, only the hole is deleted. When a polygon is deleted, the
semantic and material values are deleted from their arrays.

Implementation of polygon level
Likewise, to ring level, the parameter SkipLowRepairs can speed up the process by deleting the
polygon instead of doing the local repair per polygon. When a polygon is deleted, the semantic
and material values are deleted from their arrays. Still, the values and original polygons are
kept for re-assigning semantics and material values in later repairs. The following subsections
explain the implementation of the methodologies proposed in Section 4.3. Although polygons
are 2d objects, all repairs are done in 3d space to avoid floating point changes in the vertices.
This is more robust for the output, but it risks that, for example, boolean operations will not
work, seeing rings can be on slightly different planes.

70

6. Implementation of AUTOr3pair

201 - Intersecting rings - val3dity gives in the id on which face this polygon error appears.
To find the intersecting rings, all the rings are translated to (separate) CGAL Nef polyhedra
(Hachenberger and Kettner, 2023). Then, using the SetDiff paradigm (Section 3.1), the polygon
is made by subtracting the inner rings from the exterior ring:

Polygon = Ring0 \ (Ring1 ∪ Ring2 ∪ . . . ∪ Ringn)

This changes the outer boundary when it intersects with a hole and unions overlapping holes.
To ensure the repaired polygon is normal in the same direction as the original, the angle
between the normals is calculated. When the normals are opposed, the face is flipped by
reversing all rings.

202 - Duplicate rings - val3dity recognizes this error as 201, so implementation of 201 is
used.

203 - Non planar polygon distance - val3dity gives in the id on which face this polygon error
appears and in the info the distance to the fitted plane. If the distance exceeds twice the
planarity d2p tol, the face is triangulated; otherwise, outlier points are projected onto the
plane of the correct points. Triangulation (Loriot et al., 2023) is done by using a CGAL surface
mesh and when a projection is needed, a best-fitted plane is calculated, and outlier points are
adjusted accordingly.

204 - Non planar polygon deviation - val3dity gives in the id on which face this polygon
error appears. The face is made into CGAL Delaunay triangulation (Jamin et al., 2023) to
find the point which makes a fold in the polygon. For each pair of triangles, the angle
between the normals is calculated. The plane’s vertices are counted when the angle exceeds
the planarity n tol. The three vertices with the lowest count form the new plane, and all
other points are projected onto the new plane by changing the vertex coordinate.

205 - Interior Disconnected - val3dity provides the id of the face with this error. To find
the disconnected part(s), all rings of the surface are translated to (separate) CGAL Nef poly-
hedra (Hachenberger and Kettner, 2023). Then, using the SetDiff paradigm (Section 3.1), the
polygons are made by subtracting the inner rings from the exterior ring:

Polygon1, Polygon2 . . . Polygonn = Ring0 \ (Ring1 ∪ Ring2 ∪ . . . ∪ Ringn)

Seeing one (or more) inner ring split the exterior, more than one polygon can be retrieved.
Calculating the angles ensures correct orientation, likewise to 201. All the polygons get the
value of the original polygon for semantics and material.

206 - Inner Ring Outside - val3dity gives the id of the face with this error. The outer boundary
is converted into a 2d CGAL polygon (Giezeman and Wesselink, 2023), projecting onto the best
plane calculated by linear least squares fitting of CGAL (Alliez et al., 2023d). Using the even-odd
paradigm (Section 3.1) for each inner ring is checked if the first point is within the exterior ring.
When this is not true, parameter KeepEverything (default value False) decides what happens.
When False, the inner ring is deleted. When True, the ring’s orientation is reversed and added
as a new polygon.

207 - Inner Ring Nested - val3dity provides the id of the face with this error. All inner rings are
converted into a 2d CGAL polygon (Giezeman and Wesselink (2023)), projecting onto the best
plane calculated by linear least squares fitting of CGAL (Alliez et al., 2023d). Using the even-odd
paradigm (Section 3.1) for each inner ring is checked if the first point is within another inner

71

6. Implementation of AUTOr3pair

ring. When this is not true, parameter KeepEverything (default value False) decides what
happens. When False, the inner ring is deleted. When True, the ring’s orientation is reversed
and added as a new polygon.

208 - Orientation Rings Same - val3dity gives the id of the face with this error. The normal of
all rings is calculated, and each inner ring normal is used to calculate the angle with the outer
ring normal. If they are oriented the same the ring gets flipped by reversing the ring.

Implementation of shell level
The following subsections explain the implementation of the methodologies proposed in
Section 4.4.

300 - Non valid 2-manifold - val3dity provides the id of the shell with this error. All polygons
of the shell are converted into a polygon soup, which is converted into as CGAL surface mesh
(Botsch et al., 2023), with the help of CGALs Polygon mesh Processing (Loriot et al., 2023). On
this surface, Alpha wrap from CGAL is used (Alliez et al., 2023a), wrapping it with alpha
1.3 and offset 0.3. The selection of the Alpha and offset values was made following the
recommendations provided by my supervisor. The repaired mesh is then converted back into
a shell format by extracting the faces and corresponding vertices. The semantics and materials
are assigned as explained in Section 6.2.2.

301 - Too Few Polygons - val3dity provides the id of the shell with this error. First, it is checked
if all vertices of the shell are on the same plane. If this is the case, the shell is based on the user
requirement watertight, and the shell is deleted (if true) or changed into a CompositeSurface
(if false). If the shell is not on the same plane, the method from 302 is used. Likewise to 302,
when the holes/gaps cannot be patched, alpha wrap from CGAL is used (Alliez et al., 2023a)
as explained in 300, Non-valid 2-manifold. The semantics and materials are reassigned as
explained in Section 6.2.2, and the filled holes will get the Null value.

302 - Shell Not Closed - val3dity provides the id of the shell with this error. The shell is
converted to a CGAL triangulated surface mesh (Botsch et al., 2023). then, it iterates over all
the half edges to find if it is a boundary edge. If a boundary edge is found, the hole (of which
the boundary is) is triangulated with the help of acCGALs Polygon mesh Processing (Loriot
et al., 2023). Afterward, the repaired mesh is converted back into a shell format by extracting
the faces and corresponding vertices. When no boundary edge and no hole is found, alpha
wrap from CGAL is used (Alliez et al., 2023a) as explained in 300, Non-valid 2-manifold. The
semantics and materials are reassigned as explained in Section 6.2.2, and the filled holes will
get the Null value.

This implementation has some preconditions that cannot always be met; most importantly, the
border edges of the hole must not intersect, and shells should be manifold, but seeing those
(303 and 306) are checked later than this error/repair, this sometimes results in needing a
global repair (further discussed in Section 7.4.4). Also, holes smaller than 10E-3 cannot be
repaired with this CGAL function. However, the error will keep showing up, which also results
in the need for a global repair.

303 - Non-manifold Shell - val3dity gives the id of the shell and the index of the polygon
with this error. First, it is checked if there is a face ”double-sided” (two faces that are the same
but normal in different directions); if that is true, that face is left out. If that is not the case, all
the half edges are mapped to determine what kind of non-manifold problem there is. If none
of the half edges is used more than once, the problem is a non-manifold vertex. The repair is
done by region-growing shells over edges. Which ”cuts” shells on their non-manifold vertices.
If there are overused half edges, the same region growing of shells is done, but shells cannot

72

6. Implementation of AUTOr3pair

grow over the overused edges. When all shells are formed, it is tested if, by flipping, shells
can be combined. This implementation cannot solve unrepairable nonmanifolds as discussed
in Section 7.4.2, which results in those cases needing global repairs.

305 - Disconnected Components - val3dity provides the id of the shell with this error, which
is then converted into a CGAL triangulated surface mesh (Botsch et al., 2023). Using CGAL’s
connected components algorithm (Loriot et al., 2023), distinct shell regions are identified, and
each face is assigned to a connected component. Components are sorted by size, with the
largest prioritized. The function then checks if each component encloses a valid volume
using CGAL’s volume calculation (Loriot et al., 2023). Components with a volume, or if
KeepEverything is true, are retained. Depending on whether the shell is inner or outer and the
watertight parameter, extra components are added as separate geometries or inner shells.

306 - Shell self intersection - val3dity provides the id of the shell with this error, , which is then
converted into a CGAL triangulated surface mesh (Botsch et al., 2023). CGAL’s self-intersection
algorithm (Loriot et al., 2023) detects which faces self-intersect and those faces are removed.
The holes created by the removed faces are filled using the repair method of 302, Shell Not
Closed.

307 - Polygon Wrong Orientation - val3dity gives the id of the shell and the index of the
polygon with this error. The wrongly oriented polygon is flipped by reversing the rings. For
semantics and material, the value of the polygon will be reused after it has been flipped.

Implementation of solid level
The following subsections explain the implementation of the methodologies proposed in
Section 4.5.

401 - Intersection Shells - val3dity provides the id of the solid with this error and the info

provides which shells intersect. All shells in the solid are converted to CGAL Nef polyhedra
(Hachenberger and Kettner (2023)). Then, using the SetDiff paradigm (Section 3.1), the Solid
is made by subtracting the inner shells from the exterior shell:

Solid = Shell0 \ (Shell1 ∪ Shell2 ∪ . . . ∪ Shelln)

This changes the outer shell when it intersects with an inner shell and unions overlapping
inner shells. The original semantics and materials of the polygons will be reassigned to the
new (partly subtracted) polygons.

402 - Duplicated Shells - val3dity recognizes this error as 201, so implementation of 201 is
used.

403 - Inner Shell Outside - val3dity provides the id of the solid with this error and the
info provides which shell is outside. KeepEverything (default value False) decides what
happens with the incorrect shell. When False, the inner shell is deleted. When True, the
shell’s orientation is reversed, and Watertight (default value False) decides how it is added.
When the True the inner shell is added as a new solid, if false the geometry type is changed
to MultiSolid (or stays MultiSolid) and the shell is added as a solid of the MultiSolid. For
semantics and material, the value of the shell when it was an inner shell is reused for the new
solid.

404 - Solid Interior Disconnected - val3dity provides the id of the solid with this error.
To find the disconnected part(s), all shells are translated to (separate) CGAL Nef polyhedra

73

6. Implementation of AUTOr3pair

(Hachenberger and Kettner (2023)). Then, using the SetDiff paradigm (Section 3.1), the Solid
is made by subtracting the inner shells from the exterior shell:

Solid1, Solid2 . . . Solidn = Shell0 \ (Shell1 ∪ Shell2 ∪ . . . ∪ Shelln)

The inner shells are subtracted from the outer boundary. The volumes formed are retrieved
and Watertight (default value False) decides how it is added. When True the parts are split
into multiple solids, otherwise the parts become solids in a MultiSolid (and likewise to 403 the
geometry type is changed to/stays MultiSolid). The original semantics and materials of the
polygons will be reassigned to the polygons of the solids as explained in Section 6.2.2.

405 - Wrong Orientation Shell - val3dity provides the id of the solid with this error and the
info provides which shell is wrongly oriented. All the polygons of the wrongly oriented shell
are flipped by reversing the rings. For semantics and material, the value of the polygons will
be reused after they are flipped.

Implementation of solid Interaction level
The following subsections explain the implementation of the methodologies proposed in
Section 4.6.

501 - Intersection Solids - val3dity provides the id of the geometry with this error and the
info provides which solids intersect. The two solids are converted to CGAL Nef polyhedra
(Hachenberger and Kettner (2023)). If an intersection has a volume above MergeTol (default
value 0.1 (10% of the first encountered volume)), the solids are merged:

Solid0 = Solid0 ∪ Solid1

Otherwise, the intersecting volume is subtracted from the second solid:

Solid0 = Solid0 & Solid1 = Solid1 \ Solid0

The original semantics and materials of the polygons will be reassigned as explained in
Section 6.2.2.

502 - Duplicated Solids - val3dity provides the id of the geometry with this error and the
info provides which solids are duplicates. The first solid is kept, and the second is deleted
from the geometry.

503 - Disconnected Solids - val3dity provides the id of the geometry with this error. All solids
are converted to CGAL Nef polyhedra (Hachenberger and Kettner (2023)). A connectivity graph
represents the connections between solids based on their intersections. The graph is then used
to find connected components using a breadth-first search. Each connected component is
grouped together into a new geometry, being a MultiSolid when consisting of multiple solids
or otherwise a Solid. The original semantics and materials of the polygons stay the same.

74

6. Implementation of AUTOr3pair

Implementation of BuildingPart level
The following subsections explain the implementation of the methodologies proposed in
Section 4.7.

601 - Intersecting building parts - val3dity provides the id of the id and geometry which
intersect. The two geometries are converted to CGAL Nef polyhedra (Hachenberger and Kettner
(2023)). If an intersection has a volume above MergeTol (default value 0.1 (10% of the first
encountered volume)), the geometries are merged:

Geometry0 = Geometry0 ∪ Geometry1

Otherwise, the intersecting volume is subtracted from the second solid:

Geometry0 = Geometry0 & Geometry1 = Geometry1 \ Geometry0

The original semantics and materials of the polygons will be reassigned to the new (partly
subtracted) polygons as explained in Section 6.2.2.

Implementation when other repairs fail
When the repair depth is reached (maxRepairDepth and TotalRepairDepth), local repairs
do not have the desired effect. Therefore, a global approach is used, consisting of 4 steps,
becoming more radical with each step. The steps are done per shell to keep as much detail as
possible. After each step, the validity is tested; when invalid, the next step is done. Likewise
to the local repairs having codes for their specific error, the global repairs did get the codes
1000 t/m 1003, to be easily findable in the repair report (Section 6.2.4)

1. 1000 - CGAL’s Alpha wrap on the polygon soup based on the original boundary (Alliez
et al., 2023a). Similarly, to 300, the alpha and offset values used are 1.3 and 0.3.

2. 1001 - CGAL’s Alpha wrap on the original vertices (Alliez et al., 2023a). Similarly, to 300,
the alpha and offset values used are 1.3 and 0.3.

3. 1002 - CGAL’s Convex Hull Algorithm (Hert and Schirra, 2023b) is used to compute the
smallest convex polyhedron that encloses the set of points from the geometry.

4. 1003 - Making a bounding box around the shell always ensures geometric validity. When
a shell is one plane instead of a bounding box, a bounding plane is returned. CGAL’s
optimal bounding box (Katrioplas and Rouxel-Labbé, 2023) is used.

Preserving semantics and materials
To preserve semantics and material, their link to faces needs to be maintained. Therefore,
an unordered map containing all the surfaces is used to manage the semantics and materials
of each surface in the 3D city model. At the start of the repair per geometry, information
about semantics and materials is retrieved per surface and stored in the map (lower part of
Figure 6.4). After making changes or repairs to the geometry, modified faces need to be
re-associated with semantics and material information. The four methods to do this are as
follows:

• When a face is split into multiple parts, all parts get the original semantics and materials.

• When a face is flipped, it will retrieve the same semantics as the original.

75

6. Implementation of AUTOr3pair

• When a face as overlap with one original face it will get the same semantics and materials
as the overlapping face.

• When a face is merged from multiple faces or overlaps with multiple, the biggest
overlapping surface semantics and materials will be used. When multiple have precisely
the same size, the semantics and materials of the first found surface will be used (seeing
the faces are checked in adding order).

When no value can be assigned using these methods, the value null is used for the semantics
and materials. When the tu3djson is converted back to the CityObject per surface, the
semantics and materials are reassigned by writing their value to their corresponding JSON
array.

Etc.

split MergedFlipped Overlap

Figure 6.4.: Sementics and materials preservation

Extra use cases repairs
These repairs are not the result of a found error after validation but enhancements to make 3d
city models more usable for use cases as explained in Chapter 5.

Validate and repair semantics
The semantics repair function ensures that each face of the geometry is correctly classified as
either a ground, roof, or wall surface based on its orientation. The normal vector of each face
is calculated and compared to the Z-axis to determine the angle between them. If the angle is
close to 0°, the face is classified as a roof; if it’s close to 180°, the face is classified as ground;
otherwise, it is considered a wall. The angles used are based on Section 2.5.

The semantics repairs start by checking if the geometry already contains semantic information.
If semantics already exist, it tries to use existing surface type indexes by looking through the
list. If a matching surface is found (i.e., the ”type” field matches the surface type, and no other
fields are present), the index of that surface is used. A new surface with the specified surface
type is created and added to the list if no matching surface is found. If semantics do not exist,
a new surface-type list is made.

76

6. Implementation of AUTOr3pair

For (re-)assigning values, two parameter options exist: SemanticsAdd and SemanticsValidation

(Figure 6.5). When SemanticsAdd is used, only faces without a value are assigned new
semantics. When SemanticsValidation is used, all the faces are reassigned. Based on the
parameter, the function loops through the boundaries, and the normal is computed for each
face that needs repair. The corresponding semantic value (ground, roof, or wall) is assigned
based on its orientation. If the geometry does not have predefined semantics, a new value
assigns the correct semantic value to each face by evaluating its orientation for each boundary
in the geometry.

Validate

Add

- Keeps exsisting

- Fills in Null values

- Validate all

- Lose original

Figure 6.5.: Difference between semantic parameters

Watertight and Orientation Repairs
The watertight repair process ensures that all geometric primitives are closed and consist
of one volume. Transforming non-solid geometries into solids when necessary. Geometries
classified as ”MultiSurface” or ”CompositeSurface” have their type changed to ”Solid,” and
their boundaries are wrapped inside a new boundary array to ensure the CityJSON schema.
Similarly, if the geometry type is ”MultiSolid,” it is converted into ”CompositeSolid” to repair
a single cohesive volume. These changes ensure the geometry adheres to the watertight
standard, repairing defects such as holes and disconnected parts. The orientation repair
process focuses on converting any ”MultiSurface” types into ”CompositeSurface ” so that
those geometries are also checked for shell errors.

Triangulation, Mesh Simplification, and Mesh smoothing
The repairs are done per shell. Each shell is converted into a CGAL surface mesh (Botsch et al.,
2023), which is triangulated with the help of acCGALs Polygon mesh Processing (Loriot et al.,
2023).Border vertices are constrained to maintain the original shape for non-closed geometries
when a mesh is not closed. after that Mesh simplification is executed in two steps:

1. Edge colapse, using CGAL’s triangulated Surface Mesh Simplification (Cacciola et al.,
2023). The process targets collapsing edges, which are longer than 0.5 * the body diagonal
of the oriented bounding box (Katrioplas and Rouxel-Labbé, 2023). Edges that are needed
to preserve the structural integrity and intended geometry of the model are marked as
constrained edges if they are edges between two faces with normals with angles of 90
degrees or less. Retaining these edges ensures that essential contours and design features
remain intact during simplification.

77

6. Implementation of AUTOr3pair

2. Mesh smoothing is accomplished through CGAL’s Polygon mesh processing smoothing
function (Loriot et al., 2023), which moves vertices towards a weighted barycenter of their
neighbors based on the mean curvature flow. The process uses shape smoothing with
five iterations to refine the mesh while preserving the boundaries.

To lose slivers where possible, CGALs Polygon mesh Processing (Loriot et al., 2023) is used to
remesh planar patches. Which detects and simplifies planar regions of a mesh by merging
adjacent faces into fewer or larger triangular polygons.

6.2.3 Post-processing of the 3D City-model
Post-processing a 3D City model after repairs is essential to ensure the data is clean and
optimized for future use. This process involves two key steps: cleaning the file to remove
inconsistencies introduced during repairs and enhancing the data to improve its accuracy and
utility.

Cleaning the data
Cleaning CityJSON data is essential to ensure its validity according to the schema, especially
after repair processes that may introduce inconsistencies. This involves removing unnecessary
elements, correcting structural issues, and ensuring all objects and relationships correctly align
with the schema requirements.

Unused vertices - Due to the repair and reconstruction process, there could be duplicate or
orphan vertices. To clean up the vertices list before writing it in the new CityJSON, a C++
replica of the python method used in CJIO will be used. This method removes duplicate ver-
tices, checks all objects, renumber the ones that need to be changed, and deletes all the orphan
vertices, after which all the high vertices must be enumerated again in the boundaries.

Changing the scale - Repairs could add points to the vertices list during the repair process.
Seeing one vertex must be an array with 3 integers, all the vertices, even if they could be
doubles, are translated to integers. Only rounding the points to integers results in (floating)
point errors (mostly found in 203 and 204). Therefore, the scale is redefined by checking how
much bigger the scale must be (sizing up by 10) so floating point differences, resulting from
rounding to integers, are less than the snap tollerance. The maximum number of coordinates
is 0.1 * Maxint, which is 2147483647 assuming 32-bit system, or 0.1 *Minint (for negative
coordinates), which is -2147483648 assuming 32-bit system. The implementation works with
int64, which can be much higher, to find out how much the scale needs to change, but when the
number becomes above/below the 32-bit max, the points are rescaled till they are below 0.1*
Maxint. So, the 3D city models stay useable for all use cases, which may use 32-bit systems,
with the risk of keeping floating point errors.

Empty Boundaries - When, due to repairs, geometries are deleted, they end up with an
empty boundary. A geometry object must have one member with the name boundaries,
with a hierarchy of arrays so that an empty boundary would invalidate the CityJSON schema.
Therefore, the whole geometry object, which is not mandatory, is deleted.

Changing Multi-/CompositeSolids to Solid - When a MultiSolid or a CompositeSolid ends
up with only one solid. The type is changed to Solid, and the boundaries of the geometry
(and also semantics and material) are changed accordingly. This makes the file better readable
because the Solid geometries match their type.

78

6. Implementation of AUTOr3pair

Enhancing the data
Enhancing CityJSON data involves refining and optimizing it after the repair process to
improve its usability and ensure accuracy. This includes modifying geometric structures,
updating metadata, and improving the classification of city objects.

Detriangulation - For some of the repairs, geometries are converted to triangulated meshes,
which are repaired. However, to keep the data as close to the original, detriangulation is used.
Seeing no algorithm

Detriangulation is done in three steps (visualized in Figure 6.6):

1. Find coplanar patches: This is done by calculating and normalizing the normal for all
triangles. The triangles with the same normal are on the same plane and grouped.

2. Find connected components in coplanar patches: This is done by building a graph based
on triangles sharing edges.

3. Merging triangles into a face involves the identification and processing of the border half-
edges. These are half-edges in the mesh that do not have an opposite (paired) half-edge.
The procedure can be outlined as follows:

a) The first step is to detect all half-edges that do not have a corresponding opposite
half-edge. These edges form the boundary of the surface or hole within the triangle
mesh.

b) Starting from any border half-edge, the algorithm proceeds to walk over the con-
nected half-edges. The next half-edge in the sequence is found by following the
boundary. This process continues until the walk completes a closed loop, forming a
ring. Then, it starts from an unused other border edge if existing.

c) To find the order between the outer boundary and interior holes, the rings are sorted
based on the area they enclose. The ring with the largest enclosed area is considered
the outer boundary, while the smaller rings represent holes.

Triangulated (mesh) Group triangles on

same plane

Split groups in

connected components

Detriangulate connected

component to face

Figure 6.6.: Detriangulation approach

Changing geographical extent - When a CityObject has the geographicalExtent member, it
will be updated after repair. This is done by collecting all the object’s vertices and recalculating
the boundingBox. Also, geographicalExtent in the metadata is updated if it exists. These
values are in the real-world coordinate system of the dataset; the resulting bounding box is
scaled and translated by the values in transform before it is added.

LOD - For 3D city models, the classification of objects by LOD enhances the efficiency and
precision of data-driven applications (Dukai, 2018). Therefore, (re-)classifying the LOD after a
repair would enhance the data. However, the model Dukai (2018) is not yet transferable to the

79

6. Implementation of AUTOr3pair

real data set. Therefore, now only the LOD of geometry is changed when the last resort repair,
making a bounding box, is done. This method changes the LOD to 1.0.

6.2.4 Output
The output consists of the repaired 3D city model in its original format (CityJSON or OBJ) and
a detailed repair report. The report provides an overview of the repairs made and metadata
on the process, while the repaired model preserves its original structure.

Repaired 3D city model
The repaired 3D city models will be written back to their original file format (CityJSON or
OBJ). When no repairs are done (the file is the same as the original), no output 3D city model
will be written.

For CityJSON, the output is made by copying the original file so that untouched properties
(such as type, version, and transform) will be the same as the original. Copying the whole
CityJSON ensures that properties not obligatory (such as metadata and appearance) are in the
repaired 3D city model. The new array will replace the original vertices array, and the new
CityObjects array will be filled by converting the TU3dJSONs back to CityObjects (Figure 6.1).
An extra key, AUTOr3pair, is added (Figure 6.7), which shows when the model was repaired,
how many of each feature were repaired, and some information about the program and where
the Repair report (Section 6.2.4) is stored. When the parameter addrepair is used, there will
also be a key AUTOrepair added to every CityObject, showing which repair(s) are done on
it.

Figure 6.7.: AUTOr3pair key for repaired 3D city models

To write output, OBJ CGAL’s I/O stream package is used (Fabri et al. (2023)), which writes the
vertices and polygons from a range. The vertices will come from the repaired vertices array.
The polygons come from the CityObject ”like” Figure 6.2. CGAL also manages conversion
between 0-based boundaries to OBJ’s 1-based boundaries. Objects are not grouped in the OBJ
output at this moment.

Repair Report
In addition to the repaired 3D city model also a repair report is written. The repair report
is meant to give the user clarification of how the 3D city model is repaired. The repair
report is similar to val3dity in JSON format and is structured roughly the same. Figure 6.8
visualizes the used schema. The report consists of 14 properties, whose names are supposed
to be self-explanatory. The key Parameters shows which parameters are used for the re-
pair process (as explained in Section 6.3.1 so the user can see which influenced the repair
process. Data errors is used when a file is unreadable or if val3dity outputs a data error.
features overview and primives overview shows the number of repaired objects per type.
input file and output file and their types show which file is repaired and where the
repaired 3D city model is saved. To also give the user some metadata on the process the

80

6. Implementation of AUTOr3pair

key time shows the moment the file is repaired and the key version shows which version of
AUTOr3pair is used. The key type is always AUTOr3pairReport.

repaired is a boolean to show if there is something in the 3D city model repaired. Features
gives an array of all features and subkey repaired shows if this feature is repaired and
features repaired lists all the ids of repaired features. To find out more about the repairs
done, the user can see per Primitive which repairs are done in which order by checking
repairs. repairs show per round what kind of repair(s) is done and per repair, the id/name,
description, and change in boundary by showing the boundary before and boundary after.
To make the boundary change also clear for OBJ conversion between 0-based boundaries to
OBJ’s 1-based boundaries is done before the report is written.

Figure 6.8.: Repair report

6.3 Parameters

Parameters can influence the repair process. The parameters can be changed by users by
inputting a use case (explained in Section 6.3.1) or by inputting an input JSON. All the
parameters and their standard values are discussed below, and in Section 6.2, which processes
the parameter influences are mentioned. The parameters can be divided into six categories:
input parameters, output parameters, Repair depths, geometry repairs, val3dity tolerances,

81

6. Implementation of AUTOr3pair

and use case parameters. The first five can only be changed by using an input JSON, while the
use case parameters are grouped by their use case.

Input parameters influence how the 3D city models are handled during the repair process.
The parameters are:

• OBJ geomtype: "Solid", which decides what kind of geometric primitive the geometries
in an OBJ file are. Alternately, users can change the value to other geometric primitives
(MultiSurface, Compositesurfce, MultiSolid, CompositeSolid)

• ExtendScope: [] (empty list), can add other types of CityObjects to repair. For this thesis,
only building and its subparts are in the scope, but users can add other types by listing
them in this parameter.

Output parameters influence what the terminal shows during the repair process, and for
cityJSON, if extra attributes are added to explain the repair process. The parameters are:

• ShowProgress: TRUE, When the boolean is set to true, the terminal shows which items
it has validated and which repairs are done so that the user can follow the progress of
AUTOr3pair.

• Debugging: FALSE, When the boolean is set to true, the terminal shows more extensive
output, such as the vertices list. This can be used when debugging the program or when
a user wants to look further into specific steps.

• AddAttribute: FALSE, When the boolean is true, CityJSON CityObjects get an extra
attribute with what is repaired. This makes the file more significant (primarily for large
3D city models). This is only done when the user changes the parameter. The standard
attribute to the file says that it is repaired and when it will always be added.

Repair Depth(s) stop the repair process when their threshold is reached. The parameters
are:

• maxRepairDepth: 50, is the maximum times the same category repair can be done on a
CityObject, before doing the global approach, alpha wrap. Users can change the value
according to their time limitations.

• TotalRepairDepth: 500, is the maximum times the same CityObject is repaired before
doing the global approach alpha wrap. Users can set the value lower if they want the
repair process to be faster and higher if they want to give the repair process more tries.
However, manual testing did not yield better or different results with a higher value,
seeing when 500 is reached it was mostly because of repair bugs which could not be
solved by trying it more often.

Geometry repair Standards can help users exclude certain errors from the repair process. The
parameters are:

• solve all: TRUE, When the boolean is set to true, all errors found by val3dity will be
repaired.

• errors to solve: [] (empty list), When users want to exclude errors, they can add
them to the list, and repairs for those errors will not be done. Due to how val3dity
is implemented, higher order errors will also not be repaired, seeing those are not
checked. When users add errors to this parameter, solve all will be changed to False
automatically.

82

6. Implementation of AUTOr3pair

val3dity Tolerances are the tollerances of val3dity as explained in Section 4.1. The parameters
used for AUTOr3pair are:

• overlap tol: 0.001, which is the tolerance for testing the overlap between primitives in
CompositeSolids and BuildingParts. The maximum allowed distance for overlaps. It
helps to validate the topological relationship between Solids forming a CompositeSolid.
In contrast to val3dity, the overlap tolerance should always be the same or higher than
the snap tolerance. Otherwise, it results in the repair loop from Figure 6.9. When a user
chooses a lower value, an error is outputted, and the value is changed to the same as the
snap tolerance.

• planarity d2p tol: 0.01, which is the tolerance for planarity based on a distance to a
plane. The distance between every point forming a surface and a plane must be less than
the threshold.

• planarity n tol: 20, which is the planarity tolerance based on normal deviation. It helps
to detect small folds in a surface. the threshold refers to the normal of each triangle after
the surface has been triangulated

• snap tol: 0.001, which is the tolerance for how close vertices can be together before they
are snapped into the same point.

���

Building parts overlap

 !"#$%"&'()*+#&$(,"-.(&*(+#/'0'$

Points within snap tollerance

1*+#&$(2+&3+#($#")(&*%%'!"#-'

duplicate points

���������

��������

��
��
��
��
���
��
�

�����������

Figure 6.9.: Repair loop when overlap tolerance is smaller than snap tollerance

6.3.1 Use case parameters
As discussed in Chapter 5, some use cases have additional requirements for a 3D city model
to be valid. Therefore, a user can also add additional requirements to the repair process. Users
can give one of the four use cases. Then, a standard set of the parameters is used, shown in

83

6. Implementation of AUTOr3pair

Table 6.1. How they influence the repair process is per use case discussed below. User can also
make their own standard set using an input JSON to change the combination of parameters to
their use case.

Default
AUTOr3pair

CFD Energy
Demand

Visualization Solar
Power

Estimation
KeepEverything FALSE FALSE FALSE TRUE TRUE
SkipLowRepairs FALSE TRUE TRUE FALSE FALSE
Watertight FALSE TRUE TRUE FALSE FALSE
Orientation FALSE FALSE FALSE TRUE TRUE
MergeTol ↔ 0.1 ↔ 0.25 ↔ 0.75 ↔ 0.1 ↔ 0.5
Overlap TRUE FALSE FALSE FALSE FALSE
SemanticsAdd TRUE FALSE TRUE FALSE TRUE
SemanticsValidate TRUE FALSE FALSE FALSE TRUE
Triangulate FALSE TRUE FALSE FALSE FALSE
Simplification FALSE TRUE FALSE FALSE FALSE
RemeshSlivers FALSE TRUE FALSE FALSE FALSE

Table 6.1.: Use cases standards with default values

Use case : CFD requires that geometries are watertight and non-intersecting. Therefore,
Watertight is set to true, which converts all geometries to Solids or CompositeSolids, and
Overlap is set to False, which next to the overlap within a CityObject also validates and
repairs overlap between different CityObjects. Seeing small details is not very important
SkipLowRepairs is True, which deletes faces with Ring or Polygon errors and therefore starts
repairing on shell level. For the simulations, it does not matter if objects are merged or split;
the MergeTol is set to 25%, so geometries will be merged if their overlapping volume is 25%
of the first encountered. Additionally, CFD needs triangulated objects (Triangulates, with
no small features, sharp edges, and sliver triangles. Simplification and RemeshSlivers are
therefore set to True.

Use case: Energy demand requires buildings to be watertight for accurate volume calculations,
Watertight is set to true, converting all geometries to Solids or CompositeSolids. Objects also
must be non-intersecting; therefore, overlap is False. Additionally, external surfaces should
be subdivided into semantic parts (roof, wall, and ground surfaces) for more precise energy
demand estimation, so SemanticsAdd is set to true to add (missing) semantics. However,
existing semantics are not validated and repaired(SemanticsValidate); seeing windows and
doors can affect the energy calculation. Lastly, seeing energy demand is often done per
building MergeTol is adjusted to 75%, which makes the chance of buildings merging small,
and seeing small details is not very important SkipLowRepairs is True, which deletes faces
with Ring or Polygon errors and therefore starts repairing on shell level.

Use case: Visualization requires that building geometries have correctly oriented surfaces to
avoid rendering errors, so Orientation is set to true, converting MultiSurfaces to Compos-
iteSurfaces also to have orientation check on the shell. To prevent rendering issues caused by
overlapping surfaces, Overlap is set to False, ensuring that intersections between buildings
are validated and repaired. However, MergeTol is adjusted to 10%, seeing merging buildings
don’t change details. Lastly, local repairs are preferred to maintain a higher level of detail, so

84

6. Implementation of AUTOr3pair

KeepEverything is set to True to keep all (dangling) parts in geometries, and SkipLowRepairs

is set to False.

Use case: Estimation of solar power requires accurately oriented roof surfaces to estimate
solar irradiation correctly, so Orientation and SemanticsAdd and SemanticsValidate are set
to true to validate and repair roof face orientation and semantic values. Detailed local repairs
are preferred over global adjustments to ensure shadow accuracy, so KeepEverything is set to
true, and SkipLowRepairs is set to False. Additionally, to avoid intersecting roofs, overlap is
False. Lastly, seeing solar power potential is sometimes done per building MergeTol is adjusted
to 50%.

85

7 Experiments

This chapter has four parts. The first three discuss testing the program and assessing the
repaired output 3D (city) models. The last section discusses the strategies used and the
usability of AUTOr3pair.

7.1 Unit tests

To validate that AUTOr3pair is working correctly, a Python ”pytest” framework1 is imple-
mented. The tests run AUTOr3pair using the subprocess library and feed it with various files
and parameters. The framework tests, among others:

1. All geometry repairs per error code. For test data, the val3dity test data is converted into
CityJSON (where possible as multiple geometry primitive types) and OBJ and named
after the error. Figure 7.1 gives eight examples of these ”simple” unit tests. Each repair
is validated on:

• Is the error present when validating the 3D city model before repairing? Which is
done with the help of val3dity.

• Does the AUTOr3pair run correctly while repairing the 3D city model?

• Is the error not present when validating the 3D city model after the repair process?
Which is done with the help of val3dity

• Does the repair report yield the error and when possible is the new boundary correctly
changed.

• when applicable, do different parameters yield (correct) different results?

• when applicable, are the materials and semantics changed accordingly?

• Is the CityJSON schema of the output 3D city model file valid? Which is done with
the help of CJIO

2. Valid and invalid parameters, to check their use and influence on the repair process

3. All additional use case repairs per parameter, for example, converting MultiSurfaces to
watertight Solids and repairing all None value semantics.

4. Various invalid file formats and empty files to check if correct run errors are displayed

5. Various valid files to check no repairs will be done when not needed.

1Krekel et al. (2004)

86

7. Experiments

A

CB

D A

CB

D

JI

GH

FE

KL

A

CB

D

F

G

E

E

HF

G

F

A

CB

D

I

J

E

HF

G

F

A

CB

D

I

J
K E

HF

G

F

A

CB

D

I

E

HF

G

F

A

CB

D

N O

P

J

E

HF

G

N

J

F

A

CB

D

M

K

LI

104 201 205 303

305 306 401 501

Figure 7.1.: Eight example unit tests

All unit tests can run automatically to verify that the compilation went smoothly and that there
are no bugs. Writing and saving all output files require a lot of space; therefore, the output is
deleted after the tests. When users want to manually check the test output data, the marker
"keep" can be used, which skips the deleting step. The total number of tests done is 747, of
which 618 test repairs in different configurations (Figure 7.2).

Figure 7.2.: Number of tests per category

87

7. Experiments

7.2 Effect of (use cases) parameters

Various parameters are critical in geometry processing and repair. This section shows the effect
of parameters on simple repairs. Section 7.3 will also show some of the impact of parameters
on a larger scale.

KeepEverything: The KeepEverything parameter ensures that all elements of geometry are
retained during the repair process and prioritizes preserving geometric details. In Figure 7.3,
an inner shell that was outside is repaired. Without KeepEverything, the inner shell is deleted,
but with KeepEverytthing, the shell is flipped and added as a different geometry.

(a) Without KeepEverything (b) With KeepEverything

Figure 7.3.: Parameter KeepEverything

Watertight and Orientation: The Watertight parameter ensures that all geometries are con-
verted into watertight solids during the repair process, which is crucial for accurate vol-
ume calculations. The Orientation parameter ensures that all geometries are converted
into CompositeSurfaces during the repair process, adding orientation, connection, and self-
intersection checks. Figure 7.4 shows the difference between repairing a MultiSurface cube
with a wrongly oriented surface (in purple) as a MultiSurface or as a CompositeSurface
(parameter Orientation) or Solid (parameter Watertight)

88

7. Experiments

(a) Repaired as MultiSurface (b) Repaired as CompositeSurface or Solid

Figure 7.4.: Parameter Orientation and Watertight (in purple backside of surface)

Parameters Watertight and Orrientation also influence repairs when the geometry is split
into multiple parts. Figure 7.5 shows a non-manifold shell consisting of a cube and a separate
surface. When repairing this, the shell is split into two parts. When Watertight is used, the
surface will not be added as a different geometry, seeing it could never form a watertight solid.
Figure 7.6 also shows a non-manifold shell, but seeing they have a volume, they are both kept.
When watertight is used, the geometry is split into two solids instead of combining them in
a not watertight MultiSolid.

(a) Without watertight (b) With watertight

Figure 7.5.: Parameter Watertight when splitting a surface in geometry

89

7. Experiments

(a) Without watertight, one MultiSolid (b) With watertight, two Solids

Figure 7.6.: Parameter Watertight when splitting two solids in a geomerty

MergeTol: The MergeTol parameter controls the tolerance for merging overlapping geometries.
It determines how much two geometries can overlap before merging into a single entity. In
Figure 7.7, the repair of three cubes, of which two overlap, are shown with a high and low
MergeTol. With a low MergeTol, overlapping geometries are combined into a larger geometry.
Conversely, with a high MergeTol, geometries are kept separate, and the second one is changed
by taking the difference.

(a) With MergeTol of 0.1 (b) With MergeTol of 0.9

Figure 7.7.: Parameter Mergetol

Semantics: The semantics parameters SemanticsAdd and SemanticsValidate better the se-
mantics of objects. As shown in Figure 7.8 parameter SemanticsAdd only add semantic values
to Null values, which can cause wrong semantics (for example, the roof value on the wall) but
preserves values not in the validation (such as windows). The parameter SemanticsValidate
changes values of faces that already have values, repairing incorrectly labeled faces but also
labeling faces such as windows wrong.

90

7. Experiments

(a) Original
semantics

(b) Parameter
semanticsAdd

(c) Parameter
semanticsValidate

Figure 7.8.: Parameters semantics

Triangulate: The Triangulate parameter ensures that all surfaces are converted into triangles
during the repair process. In Figure 7.9a, a building consisting of multiple merged parts is
shown. When parameter Triangulate is used, the output geometry will consist of triangulated
faces (without holes); City objects that are not repaired are also triangulated (when in scope)
if this parameter is used.

(a) Without triangulation (b) With triangulation

Figure 7.9.: Parameter triangulation

RemeshSlivers: The RemeshSlivers parameter focuses on eliminating small triangles in the
geometry. In Figure 7.10, an object containing sliver triangles is shown before and after
re-meshing. Without RemeshSlivers, these narrow triangles remain in the model, potentially
affecting the quality of the analysis. When RemeshSlivers is enabled, the geometrical ”reso-
lution” is lowered by minimalizing the number of triangles on the same plane.

91

7. Experiments

(a) Without Remesh (b) With Remesh

Figure 7.10.: Parameter RemeshSlivers

Simplification: The Simplification parameter reduces the complexity of geometries by
removing unnecessary details, such as small features and small edges. The example in
Figure 7.11 shows a building with small column-like features attached to the facade. Without
Simplification, the model retains its intricate features. With Simplification enabled, the
geometry is simplified by collapsing small edges and smoothing the model, resulting in a
lower-resolution model that maintains the overall shape and structure.

(a) Without simplification (b) Triangulated (c) With simplification

Figure 7.11.: Parameter Simplification

Show progress: Although printing to the terminal slows down the execution, it could be
nice to see some progress in what is happening. When the Showprogress parameter is used,
Listing 7.1 shows an output example. Tabs space the Output to differentiate the main task from
the sub-tasks. The two biggest tasks are adding the vertices, which can be very time-consuming
with big data sets due to the search for duplicate vertices. And the Repair loop. For adding
the vertices, the % of how it is is shown in steps of 25%. In the repair loop, the repairs for
each building are shown per geometry. For geometric repairs, the location given by val3dity is
shown. For use case repairs, it shows which use case is being done.

92

7. Experiments

Start parsing the json file

Finished parsing the json file

Set the vertices and check for duplicates

At 25% of adding the vertices

At 50% of adding the vertices

At 75% of adding the vertices

Start the repair loop

Start the repair of: object

Pre processing: changing duplicate vertex indexes

CityObject with id object .0 geometry has the following errors: [203]

Repaired Geometery object -0 with error 203 on "id=1| geom =0| shell =0| face =6"

Repaired Geometery object -0 with error 203 on "id=1| geom =0| shell =0| face =7"

Repaired Geometery object -0 with Use Case repair: Validate semantics

CityObject with id object .1 geometry has the following errors: []

Repaired Geometery object -1 with Use Case repair: Validate semantics

Repair loop is done

Post processing: Parent child relations

Post processing: Orphan vertices

Post processing: Change Multi -/Composite -Solid to one solid

Post processing: Change Metadata

Write output file(s)

Listing 7.1: Example output

7.2.1 disadvantage of many parameters
Although using many parameters enhances the repair process’s flexibility, it can also result
in contradictions or recurring repair loops. An example that can result in contradictions is
KeepEverything and Watertight when splitting a non-manifold shell with a dangling surface.
KeepEverything says that everything needs to be preserved; however, Watertight argues that
everything needs to be watertight. So when repairing the surface, it is kept but added as Solid.
Then, the shell does not have enough surfaces, so the shell is deleted.

Another example of 2 conflicting parameters is SkipLowRepairs and snap tol. When
SkipLowRepairs is used, polygon repairs are done by deleting the face. But repair 302, shell
not closed, could bring back the error. This case happened a few times in the test data of
Section 7.3 when polygons report 104. Instead of adding the vertex to the new location, the
face is readded. When the face is the same as the original due to snap tol, the face will detect
104 again, which restarts the repair, creating a loop.

7.3 Repairing well-known 3D city models

In this section, open-data 3D city models are repaired and evaluated. For repairs, two factors
count: (1) the validity percentage and (2) the geometric difference from the original. The
validity percentage is evaluated with val3dity (Section 4.1). The file will be validated before
and after the repair process, and the valid percentage of buildings will be compared. the
parameters used for val3dity are the standard parameters except for overlap tol, which will
be the same as the snap tol as explained in Section 6.3. Also, for some cases, the remaining
errors will be evaluated, and hypotheses will be made on why these errors aren’t repaired/
are made.

The Hausdorf distance is used to evaluate the geometric differences. It reflects the most
significant distance one would travel to cover every point in both sets, making it useful in
shape comparison and computer vision tasks (Tang et al.). It is symmetric and non-negative,
providing a robust way to quantify spatial differences between two sets. Each geometry in a

93

7. Experiments

CityObject is compared with the geometry (or geometries if it is split). To give some context,
the distance is compared with the largest pairwise distance between vertices for the same
geometry. The Hausdorf distance calculation script can also be found in the GitHub repository
under tools.

7.3.1 3DBAG
The 3D BAG is an up-to-date data set containing 3D building models of the Netherlands. The
3D BAG is open data and can be downloaded from the 3D BAG Download site. It contains 3D
models at multiple levels of detail, which are generated by combining two open data sets: the
building data from the BAG and the height data from the AHN.

Although the 3DBAG is comprehensive in its inclusion of detailed geographic information, it
contains numerous (minor) geometric errors that can affect its precision and usability. These
errors stem from inconsistencies in data processing and limitations in capturing complex urban
environments. As test data for this thesis, the group of BAG tiles surrounding the old center
of Leiden was chosen (Figure 7.12). The set consists of 20 small tiles (file size between 1 and 7
MB) and one bigger tile (file size 17.7MB).

Figure 7.12.: 3DBAG tiles from Leiden and their names

Evaluating the validity of the tiles, the percentage of valid buildings is between 85% and 99%
(Figure 7.13). The geometries consist of MultiSurfaces as footprints and solids in 3 different
LODS. The existing errors are on the Ring, Polygon, and Shell levels. The Ring errors consist
of duplicate vertices and ring self-intersections. The polygon errors found are mostly planarity
issues and one intersecting ring. The shell errors consist primarily of closed shells and non-
manifold/orientation problems. For complicated buildings, there are also some shell self-
intersections.

94

https://github.com/Lkeurentjes/AUTOr3pair/blob/main/Tools/Hausdorf_distance/geometric_dif.py
https://3dbag.nl/nl/download

7. Experiments

Figure 7.13.: 3DBAG tiles from Leiden and their validity (in grey the percentage of valid
buildings and in blue the existing errors)

The 3DBAG tiles are repaired with the default parameters, except for changing "SemanticsValidate"

to false. This way, the file is repaired as efficiently as possible, and the existing semantics are
kept, but surfaces ending up with Null get a semantic assigned. After repair, the validity
percentages are all mostly 100% (Figure 7.14). Tile 10-316-630 has the lowest percentage, but
that is due to 3 buildingparts intersecting (only 1 error) and having only 64 buildings. The
remaining errors seem to come from rounding the vertices list of CityJSON to integers cause
the errors are only found after the new json is made. Although the scale is changed to avoid
this problem (Section 6.2.3), there will always remain small floating point errors.

Figure 7.14.: 3DBAG tiles from Leiden and their validity after repair (in grey the percentage of
valid buildings and in blue the existing errors)

95

7. Experiments

When evaluating the geometric difference(Table 7.1), most differences are lower than 1% of the
distance of the CityObject. However, there are some considerable differences, although often
not visible when comparing (Figure 7.15). The explanation for these differences comes from
repairing error buildingparts overlap (601) and deleting parts such as shell not closed (302),
multiple connected components (305), and self-intersections (306). When repair 601 merges
two objects or takes part of the object by taking the difference, the object and its size change
drastically. When part of an object is deleted because it is not manifold (302) or connected
(305) or when faces are deleted seeing they intersect (306), this results in original points being
”far” away from the end geometry. When the maximum difference is 0.001, the only geometric
difference is the snap tolerance, which snaps vertices together. The bounding boxes are, at the
moment, not taken into account when getting the Hausdorf per LOD; this is because using
the bounding box changes the LOD, which makes comparing to the original difficult, seeing
the original LOD is not saved. However, a Bounding box is only used one time in the whole
dataset. This bounding box in 10-324-624 results from one almost planar shell part, resulting
in non-manifold and self-intersecting in Alpha wraps and convex hulls.

Table 7.1.: Geometric difference after repair of the 3DBAG tiles
Tile Name Hausdorff

Distance
LOD 0

Hausdorff
Distance
LOD 1.2

Hausdorff
Distance
LOD 1.3

Hausdorff
Distance
LOD 2.2

Global
repair used

9-324-628 0.001 (0.0%) 0.48 (0.6%) 34 (22%) 37 (25%) 12 (0.01%)
10-316-624 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 9.8 (20%) 3 (0.01%)
10-316-626 0.001 (0.0%) 0.001 (0.0%) 23 (22%) 24 (24%) 2 (0.01%)
10-316-628 0.001 (0.0%) 0.001 (0.0%) 40 (28%) 39 (27%) 5 (0.1%)
10-316-630 0.0 (0.0%) 38 (32%) 38 (32%) 70 (24%) 14 (5%)
10-318-624 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 18 (24%) 5 (0.01%)
10-318-626 0.001 (0.0%) 0.001 (0.0%) 26 (28%) 27 (29%) 22 (0.5%)
10-318-628 0.001 (0.0%) 22 (29%) 26 (33%) 24 (30%) 23 (0.5%)
10-318-630 0.001 (0.0%) 0.001 (0.0%) 60 (32%) 40 (22%) 8 (0.3%)
10-320-624 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 16 (28%) 3 (0.01%)
10-320-626 0.001 (0.0%) 0.001 (0.0%) 5.5 (6%) 27 (33%) 14 (0.3%)
10-320-628 0.001 (0.0%) 0.001 (0.0%) 23 (26%) 27 (28%) 27 (0.5%)
10-320-630 0.001 (0.0%) 0.001 (0.0%) 12 (21%) 25 (23%) 13 (0.3%)
10-322-624 0.001 (0.0%) 0.001 (0.0%) 4.5 (23%) 4.7(29%) 10 (0.2%)
10-322-626 0.001 (0.0%) 0.001 (0.0%) 0.5 (2%) 30 (24%) 11 (0.3%)
10-322-628 0.001 (0.0%) 0.001 (0.0%) 28 (34%) 28 (34%) 15 (0.4%)
10-322-630 0.001 (0.0%) 0.001 (0.0%) 6.5 (35%) 6.5 (35%) 6 (0.01%)
10-324-624 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 10 (40%) 6 (0.1%)
10-324-626 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 6.8 (7%) 2 (0.01%)
10-326-624 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 8.9 (28%) 2 (0.01%)
10-326-626 0.001 (0.0%) 0.001 (0.0%) 0.001 (0.0%) 29 (30%) 2 (0.01%)

96

7. Experiments

(a) Before (b) After

Figure 7.15.: 3D bag tiles before and after repair to visually see geometric difference

To Evaluate the geometric difference not based on points, the last column of Table 7.1 shows
how often global repairs are used (which uses the points but usually changes the volume).
Global repairs are rarely required in lower LOD’s, and almost always come from acLOD 2.2.
Considering the percentage of the primitives on which global repairs are performed, it seems
negligible. Nonetheless, most global repairs are done on big buildings and well-known mon-
uments. Two examples of this are the LUMC (Figure 7.16) and the Pieterskerk (Figure 7.17),
which also in real life consist of lots of buildingparts ”glued” together. In higher LOD’s (above
2), these ”glued” parts result in shell errors. The shell errors, which cannot be solved, consist
of the shell not closed (302), Non-Manifold (303), and (self-intersections) 306. Not being able
to close the shell is a result of the hierarchical order of shell repairs (further explained in Sec-
tion 7.4.4) and being unable to solve tiny openings (around 10E-3 as explained in Section 6.2.2).
Unable to solve Non-manifolds comes partly due to the ”unrepairable non-manifolds” (as
described in Section 7.4.2) and partly due to the hard-coded decision to keep the first part when
there are no watertight parts (further discussed in Section 7.4.3). Unrepairable self-intersection
results from the snap tolerance, which, likewise to Figure 6.9 sometimes, snap points back to
the original location instead of the newly found non-intersecting location.

(a) Aerial photo (b) Before (c) After

Figure 7.16.: LUMC in Leiden

97

7. Experiments

(a) Aerial photo (b) Before (c) After

Figure 7.17.: Pieterskerk in Leiden

7.3.2 Brussel
Brussel also provides an open dataset of 3D buildings, similar to the 3DBAG. The 3D city
model used to be available in CityGML format. However, it is not available for downloading
anymore, so one of the old tiles is used. For this experiment, a found tile is converted
to CityJSOn using CJIO. In contrast, the 3DBAG buildings are not Solid but MultiSurface.
In addition to the many ring and polygon errors found, an additional complication with
this dataset is the orientation of the surface normals (Figure 7.15a). MultiSurfaces have no
orientation rules, so these problems will not be changed when repaired. To also repair these,
the dataset should be repaired with Orientation or Watertight. To compare the different
effects, both standards are tested.

At the start, only the ring and polygon errors already make the validity of the buildings in the
dataset only 62%. In Table 7.2, you can see that the validity improves in all cases. In contrast to
the 3DBAG, none of the datasets reach 100% validity, but the remaining errors are all caused
by floating point errors due to conversion to int. The high Hausdorf is caused by the decision
to keep the first found object in a Non-Manifold (303) and multiple connected components
(305). For example, in Figure 7.18, a building is seen with small building parts on the roof.
During the repair process, these parts are lost.

Table 7.2.: Result of Brussel tile after different repairs
Tile Name Validity af-

ter repair
Hausdorff
Distance

Global
repair used

Remaining
Errors

Default repair 99% 10 (10%) 23 (1%) 104, 203, 204
Orientation 99% 102 (80%) 237 (10%) 203
Watertight 99% 99 (78%) 83 (3%) 203, 302, 601

98

7. Experiments

(a) Before (b) After

Figure 7.18.: Building in Brussel which loses details

The use of more global repair than the 3DBAG has two reasons. The first is that the data
quality is lower at the start, which results in more repairs; these repairs add more points,
which results in more floating point errors. Also, there are many duplicate vertexes (102)
errors, which can’t always all be solved before the maxRepairDepth is reached. The second
reason is the conversion, which adds shell repairs to the repair process. Figure 7.19 shows one
geometry converted to a solid as one outer shell. Seeing the building consisting of multiple
buildings, there are almost always errors and a need to split geometries.

Figure 7.19.: Example of one building in Brussel data set (in orange one building geometry)

While visually comparing the output (Figure 7.20), the effect of the parameters can be seen.
None of the wrongly oriented faces are flipped using the default repair parameters. However,
most faces flip while using one of the parameters. As discussed in Section 5.4, the risk of the
parameter orientation is that it uses the first face in the array to decide how the rest of the
faces need to be oriented. Due to the high number of wrong orientations, the whole building
is often inside out (Figure 7.20c). In that regard, The watertight parameter is more robust, as
shown in Figure 7.20d.

99

7. Experiments

(a) Before repairing (b) Repairing with default parameters

(c) Repairing with Orientation (d) Repairing with Watertight

Figure 7.20.: Repairing Brussel dataset with in purple the backside of surfaces

7.3.3 Data-sets CityJSON website
Lastly, some experiments were done to compare the effect of different use cases on a dataset.
The example datasets from The CityJSON website are used. These datasets have a variety of
geometry types and LODs. Table 7.3 shows each dataset its validity before the repair process.
Its validity after the repair process and the Hausdorf distance (and the % of the geometry
distance) are shown.

Table 7.3.: Repairing the example CityJSON datasets from their website
Dataset Semantics Geometric

Validity
Buildings

Before

Repair Use Case Geometric
Validity

Buildings
After

Hausdorff
Distance

3DBAG True 98%

Default 100% 103 (34%)
CFD 94%2 259 (85%)

Energy demand 99% 259 (85%)
Visualisation 100% 259 (85%)

Solar power estimation 100% 270 (90%)
Continued on the next page

2Validated with overlap tolerance None due to segmentation error in val3dity

100

https://www.cityjson.org/datasets/#some-randomly-selected-cities

7. Experiments

Table 7.3 – continued from previous page
Dataset Semantics Geometric

Validity
Buildings

Before

Repair Use Case Geometric
Validity

Buildings
After

Hausdorff
Distance

Den Haag True 62%

Default 93% 0.1 (1%)
CFD 59%3 15 (30%)

Energy demand 99% 15 (30%)
Visualisation 93% 0.1 (1%)

Solar power estimation 93% 0.1 (1%)

Ingolstadt True 70%

Default 99% 19 (30%)
CFD Segmentation4 Error4

Energy demand Segmentation4 Error4

Visualisation Segmentation4 Error4

Solar power estimation Segmentation4 Error4

Montréal True 86%

Default 100% 0.36 (0.2%)
CFD 98% 52 (33%)

Energy demand 99% 167 (56%)
Visualisation 100% 71 (90%)

Solar power estimation 99% 71 (90%)

Railway False 99%

Default 100% 0.03 (3%)
CFD 50% 0.69 (72%)

Energy demand 91% 0.69 (72%)
Visualisation 100% 0.69 (72%)

Solar power estimation 93% 0.69 (72%)

Rotterdam True 76%

Default 100% 1.4 (2%)
CFD 99% 59 (55%)

Energy demand 99% 60 (55%)
Visualisation 100% 60 (55%)

Solar power estimation 99% 60 (55%)

Vienna True 49%

Default 59%5 15 (36%)
CFD 1%6 15 (36%)

Energy demand 1%7 15 (36%)
Visualisation 1%8 15 (36%)

Solar power estimation 52%9 15 (36%)

3Validated with overlap tolerance None due to CGAL exception in val3dity, resulting in many 601 errors within
tollerance

4Segmentation error in making of CGAL surface meshes
5validated with overlap tolerance None due to CGAL exception in val3dity, resulting in >120 601 errors within

tolerance, 99% of the primitives are valid
6Validated with overlap tolerance None due to CGAL exception in val3dity, resulting in >200 601 errors within

tolerance, 98% of the primitives are valid
7Validated with overlap tolerance None due to CGAL exception in val3dity, resulting in >300 601 errors within

tolerance, 99% of the primitives are valid
8Validated with overlap tolerance None due to CGAL exception in val3dity, resulting in >300 601 errors within

tolerance 99% of the primitives are valid
9Validated with overlap tolerance None due to CGAL exception in val3dity, resulting in >120 601 errors within

tolerance, 99% of the primitives are valid

101

7. Experiments

The data shows that different repair use cases impact the geometric validity of buildings and
the Hausdorff distance to varying extents. However, the general trend is that the geometric
validity improves after repairs across all datasets and use cases. There is a noticeable corre-
lation between CFD results and the lowest geometric val3dity. This is mainly because of the
simplification and smoothing resulting in snap tolerance differences in the outputted model,
which make a lot of shell intersections (306). On the other hand, the default parameters and
visualization tend to yield the best results in validity, with the default yielding slightly better
results regarding geometric differences. Likewise to the 3DBAG, global repairs are rarely
required in lower LOD’s and become more needed in higher detailed buildings.

3DBAG shows fairly good results concerning the geometric val3dity, but produces relatively
high hausdorf distances. These results mostly stem from the decision to keep the first found
object in a non-manifold (303) and multiple connected components (305). Figure 7.21 shows
that three of the biggest buildings needed global repair, resulting in the lower LOD 1.3 giving
a better result of the reality. These global repairs are needed in all the use cases.

(a) Before (b) After LOD1.3 (c) After LOD2.2

Figure 7.21.: 3DBAG results from use case EnergyDemand

Den Haag starts with one of the lowest geometric validity percentages (62%) and sees signifi-
cant improvements post-repair. The Hausdorff distances remain relatively low (e.g., 0.1 in the
default and visualization cases), which suggests repairs can be done very locally. This can also
be seen in Figure 7.22, which shows no large wraps or convex hulls for global repairs.

Figure 7.22.: Den Haag Visualization without global repairs

102

7. Experiments

Ingolstadt - The dataset is among the most detailed tested. However, the whole dataset is in
MultiSurface. Therefore, errors such as missing window frames (Figure 7.23) will not be re-
paired unless watertightness is needed. Because the shell is not closed (302), it is accompanied
by detriangulation; windows in the same plane as the wall disappear. In the tested version of
AUTOr3pair, all the use cases except the default result in segmentation errors, which is likely
a result of CGAL having problems with the complexity of the buildings. In the default repair,
it is noticeable that with the detailed semantic information, it is better not to use validation of
the semantics, seeing it downscales the semantic detail (Figure 7.24).

Figure 7.23.: Ingolstadt missing window frames

(a) Semantics before repair (b) Semantics after validation

Figure 7.24.: Semantic validation on Ingolstadt

103

7. Experiments

Montreal achieves high results in geometric val3dity by achieving (almost) 100% in all the use
cases, with only a few global repairs (Figure 7.25). However, it does show a high geometric
difference; in Visualization and Solar power estimation, these are the result of a deleted part,
but in Energy damnd, that building is wrapped, but it seems to take a wrong point resulting in
the trunk going to a point outside, the building (Figure 7.26a). Also, Montreal is the first data
set showing an error regarding preserving the semantics; the building shown in Figure 7.26b
shows that it has a wall surface on the place where the roof should be.

Figure 7.25.: Result from repairing Montreal

(a) Point problem in Energy Demand (b) Semantics problem in Solar power

Figure 7.26.: Errors after repairing Montreal

104

7. Experiments

Railway starts with a near-perfect geometric validity (99%). However, use cases (like CFD)
reduce its validity significantly (to 50%). Also, while there are only 50 buildings (parts) in the
file to repair, visually questionable repairs are done. For example, Figure 7.27 shows how a
building ends up with a missing wall, and Figure 7.28 shows how missing walls are solved
with a graceless wrap, losing all detail in the building.

Figure 7.27.: Building missing a wall

(a) House without wall in Visualization (b) Wrap in Energy demand

Figure 7.28.: Doing unrealistic wrap on building in Railway

105

7. Experiments

Rotterdam produces improved validity to (almost) 100% on all the use cases. However, in
contrast to the other datasets, many global repairs are used. As shown in Figure 7.29, these
global repairs are less noticeable in comparison to, for example, Figure 7.21. The many global
results from Non-manifold vertices in Composite solids, which are unrepairable due to being
one object (further discussed in Section 7.4.2.

(a) Before (b) After

Figure 7.29.: Many compact global repairs in Rotterdam

Vienna shows very low validity after repairing, primarily resulting from features with 601
errors (> 120 in Default and visualization, > 300 in Solar Power and Energy demand). Due to
a bug in val3dity, they are checked with an overlap tolerance of None, while they are repaired
with an overlap tolerance of 0.001; during the repair process, val3dity suggests that they are
repaired. Vienna does, however, vastly improve the validity of the primitives, which is around
95% at the start and almost 100% at the end. Figure 7.30 shows the result after energy demand
(which is only 1% valid), which shows no visible signs of being completely invalid.

Figure 7.30.: Vienna after Energy Demand repair

106

7. Experiments

7.4 Discussion

While AUTOr3pair offers robust solutions for common errors in 3D city models, several as-
pects of its design and functionality may lead to unintended results or reduce usability. The
following sections will discuss some flaws of AUTOr3pair.

7.4.1 Specific repair situations
AUTOr3pair uses strategies to address common errors in 3D city models. These strategies
work for common situations; however, they sometimes result in (maybe) unwanted results in
certain error situations. For example:

• 104 - Using outliers for the repair: When the convex hull of a ring is made, all vertices
are considered, which could result in using outliers as a base. Using a Concave hull
instead of a convex hull could capture more intricate details of a ring. For example, it
could help get rid of dangling pieces; however, setting the alpha-value needs tuning for
every ring of every dataset, therefore requiring manual help. Additionally, using Prepair
(Ledoux et al., 2014) could provide different results by offering more automated solutions
for repair, but it requires the use of WKT, introducing an additional geometry conversion
step.

• 201 - Deleting the Outer Boundary: When an inner ring is the same (or almost the same
by snapping), The used approach results in deleting the outer boundary of a polygon
and, therefore, the whole polygon. Losing an entire polygon could be unwanted, espe-
cially for MultiSurfaces and CompositeSurfaces, which do not have closing shells as a
repair, which can bring back polygons.

• 205 - Keeping small polygons: When splitting a polygon, seeing its interior is discon-
nected, all parts are kept. However, this could result in small (sliver) polygons. Using a
threshold could be a solution; however, setting an appropriate threshold is possibly dif-
ferent per model, as it directly impacts the accuracy of the repairs and would, therefore,
need manual help.

• 401 - Deleting the Outside Shell: When an internal shell is the same (or almost the
same due to snapping), the used repair strategy deletes the outside shell to preserve the
model’s validity. However, this can result in the loss of essential geometries.

• 404 - Keeping small shells: When splitting a shell, seeing its interior is disconnected,
all parts are kept. However, this could result in shells with a shallow volume. Using a
threshold could be a solution; however, setting an appropriate threshold is possibly dif-
ferent per model, as it directly impacts the accuracy of the repairs and would, therefore,
need manual help.

• 503 - Snapping Close Volumes: The used repair strategy splits the volumes into separate
parts. However, snapping together volumes could be a more logical solution when two
volumes are close but not perfectly aligned. However, the snapping distance needs to
be carefully managed to avoid unintended distortions; the snapping approach is not
implemented.

• 503 - Not filling inner holes when merging solids: The used repair implementation
for intersecting solids doesn’t fill inner holes when merging. This should happen when
following the SetDiff paradigm; however, to preserve geometric detail, this is not done.

107

7. Experiments

7.4.2 Unrepairable non-manifolds
Manifolds similar to the topology shown in Figure 7.31 cannot be repaired. The methodology
uses the splitting of objects on the non-manifold edges or vertices. When the non-manifold
edge/vertex is part of the same ”volume”, it cannot be split. This results in needing global re-
pairs. Alphawrap can also not repair this case, seeing it has the same non-manifold edge/ver-
tex. A solution for this would be to use a bigger offset. However, this changes the geometry
in places where it was correct. Therefore, a convex hull is mainly used, which loses the inner
”hole” of the torus shape.

N M

E

HF

G

A

CB

D

K J

I

The unrepairable Non-Manifolds

N M

E

HF

G

N M

F

A

CB

D

K J

L

I

I
L

I

Normally would break down in parts

By cutting over point By cutting over Edge

N M

F

MMMMMMMMMMMMMMMMN

F

E

H

G

A

CB

D

K J

L

I

N M

E

HF

G

A

CB

D

K J

I

But you cannot partition this shape by one cut

Figure 7.31.: Unrepairable non-manidfolds

Solutions to repair this more locally would be:

• Making an extra (plane) cut somewhere in the geometry, which results in 2 parts, but the
algorithm for where the second cut needs to come should be well thought out always to
yield the same results.

• splitting the nonmanifold edge/vertex into two parts and moving those away from each
other. This will solve the Non-Manifold problem, but where the edges/vertices need to

108

7. Experiments

move should be a well-thought-out algorithm. Moving could result in different topolo-
gies. For example when moving the non-manifold edge from Figure 7.31, it could move
more to the inside, so it will become a hole, which doesn’t touch the outer boundary, or
it could move the edge slightly apart to open the hole.

• The most robust solution would be to divide the volume in tetrahedrons, likewise to
using triangulation on surfaces. However, this will split the building into many parts
and introduce many new faces, which may not be optimal for all use cases.

• Lastly, the cutting and stitching method from (Gueziec et al., 2001) (discussed in Sec-
tion 3.2.1 could be used as a repair approach for this kind of manifolds.

7.4.3 ”Hardcoded” repair decisions
The AUTOr3pair framework incorporates several ”hardcoded” repair decisions to streamline
the process. For instance, when encountering duplicate geometries or overlapping features,
the framework is programmed always to retain the first instance and discard subsequent ones.
While this approach simplifies decision-making during repairs, it can also lead to unintended
consequences, such as losing potentially critical geometric details or user-preferred configu-
rations. Also, using the same parameters as thresholds and predefined snapping distances
may not benefit all geometries. Though effective for specific buildings, others would not
have the best repair. These choices limit the repair process’s flexibility and may require user
intervention to ensure the desired outcomes.

The hard-coded decision that is most striking for the geometric difference is to keep only
the first part when none of the parts have a volume and directly delete parts without a vol-
ume. This is done in Non-manifold (303) and multiple connected components (305). For big
buildings, which consist of numerous ”glued” parts, these often result in parts of the building
being deleted. For example, Figure 7.32 shows a church whose most prominent part is deleted
during the repair process, resulting in only a small side part remaining.

(a) Before (b) After

Figure 7.32.: Deleting a big not watertight part

7.4.4 Dependence on val3idty report schema
The AUTOr3pair framework relies heavily on val3dity and its report structure to validate the
file and identify errors and their locations (Section 4.1). When the structure of the val3dity
report changes by, for example, changing the schema or when the ID of the error changes, AU-
TOr3pair will not get the information it needs for the repair process. Therefore, changing the

109

7. Experiments

val3dity version requires corresponding adjustments in AUTOr3pair to maintain its function-
ality. This results in strict version dependencies, which make the program less user-friendly,
and when val3dity upgrades, AUTOr3pair will also need to upgrade.

Also, output choices and/or bugs of val3dity affect the repair process of AUTOr3pair. For
example, when a 302 (shell not closed) error is found, it can, depending on the number of
”holes” report the same error more than once (Figure 7.33). This first resulted in repairing the
same shell twice and adding it twice to the geometry before finding out this bug.

Figure 7.33.: val3dity reporting 302 error two times

Also, the hierarchical order of val3dity influences the repair process as mentioned in Sec-
tion 6.2.2 shell not closed (302) can not be repaired when there are shell self-intersecting
problems (306). However, when holes are filled, AUTOr3pair doesn’t know yet if the shell
has self-intersections, resulting in a repair loop that ends in a global repair.

7.4.5 Usability of repair report
While the repair report provides valuable insights into the repair process, it has several short-
comings. Firstly, when vertices are altered or removed due to being orphaned, the report
cannot reconstruct the boundaries using the output point set. One potential solution is to
output the boundaries as the actual vertices instead of their indexes, significantly increasing
the file size. Alternatively, the entire list of vertices could be added to the report before clean-
ing the orphaned vertices, but this approach still fails to indicate when and which points are
projected. Secondly, for 3D city models requiring extensive repairs, the report file can grow
up to four times the original model’s size, making it difficult to handle in terms of memory.
Lastly, when a geometry is split into multiple geometries or change types, the user must find
which of the primitive(s) is/are the next to follow for the repair trail.

7.4.6 User friendliness
The current AUTOr3pair framework, while powerful, is not particularly user-friendly. Its
command-line interface and reliance on technical knowledge make it challenging for non-
developer users to navigate and utilize effectively. Building and running the C++ is no easy
task, primarily due to installing prerequisites from CGAL libraries. Using a containerization
tool would have helped streamline this process and simplified deployment. The lack of a
graphical user interface (GUI) limits the ability to visualize the repair process, hindering un-
derstanding and slowing the workflow. This results in the program being less accessible to a
broader audience.

7.4.7 Losing original groups OBJ
When using AUTOr3pair to process OBJ files, the original grouping information within the
OBJ format is lost during the repair process. This can be problematic for users who rely
on these groups and their names to manage complex 3D city models. The repair process

110

7. Experiments

will disrupt the structure and hierarchy initially defined, resulting in loss of information,
particularly in applications where the grouping of objects is essential for tasks like rendering,
simulation, or further editing.

7.4.8 Testing preserving of semantics
Currently, no automated method exists for testing the preservation of semantics during model
repairs, making manual verification necessary. This manual process involves carefully inspect-
ing repaired models to ensure that semantic data, such as object classifications and attributes,
remain accurately aligned with their corresponding geometries. However, manual testing is
time-intensive and prone to oversight, especially in complex models.

7.4.9 Need for generalization for CFD
As explained in Section 5.2, applying simplification through the generalization of buildings
and their footprints would be highly effective for addressing small gaps between buildings.
Currently, the simplification parameter focuses solely on individual objects without consider-
ing their impact on the surrounding environment. To implement this, a function is required
that identifies and simplifies geometries based on predefined distance and angle thresholds be-
tween surfaces. This function would merge or remove minor surfaces that meet these criteria
while maintaining key structural elements.

7.4.10 Repair intersection between geometries
The overlap parameter is not functional at this moment. It should control the detection and
repair of overlapping surfaces between different geometries, even when they are of varying
geometry types. The original approach was to use CGALs AABB tree computations (Alliez
et al., 2023e) for finding intersections. The AABB tree allows for logarithmic time complexity
for many geometric queries by narrowing down potential intersecting areas through bounding
boxes. Combining triangles from different surface meshes into a single collection, the AABB
tree treats them as one geometric space, which helps with finding intersections faster.

Finding intersections was no problem; however, when intersections were found, the repair
process raised some questions that need further research. Geometrically, intersections between
”watertight” parts can be done using the same approach as building parts intersect (601),
and intersections between two surfaces can follow the approach of the intersection of rings
(201) when they are on the same plane. When a surface intersects with another surface on a
different plane, the solution becomes less straightforward, as you would need to cut parts of
the surfaces, raising the question of whether to keep all segments (allowing them to be split)
or retain only one part—and if so, which part to keep. And the same kind of problem would
happen when a surface intersects with a ”watertight” object.

Also, what to do with the semantics and attributes of the object is a point of discussion. For
example, building NL.IMBAG.Pand.0546100000041634 (Figure 7.34) in the 3DBAG intersects
with five other buildings (In Figure 7.34a, only three can be seen, the other two are stacked
below the big footprint). When only looking at the footprints, it would seem logical to merge
them into their own, but this loses all the attributes from the three other buildings connected
to the footprints. So, a more rational approach would seem to be to carve out the footprints
from the big footprint. But that approach doesn’t work when two footprints slightly overlap;
how can it be decided which will get the overlapping part? When looking in 3D, this decision-
making only becomes messier. How can you determine what part belongs to which building,
or should it just merge everything into one object? In both situations, which semantics and
materials are preserved and which are discarded? Also, the question merge approach has

111

7. Experiments

multiple options: should everything be merged into one volume, or should the building be-
come separate building parts glued together by their parent-child relationships? Also, again,
the question can be raised: does this approach work the same for two buildings that slightly
overlap?

(a) Footprint (b) LOD 2.2

Figure 7.34.: Overlap in 3DBAG

112

8 Conclusions

The main objective of this thesis was to Develop a framework for the automatic repair and recon-
struction of 3D city models to facilitate different use cases and implement a prototype. The made
framework AUTOr3pair serves as the proof of concept for this prototype. As shown with the
experiments (Chapter 7), AUTOr3pair repairs geometric errors to be valid according to the
ISO 19107 standards. The framework also integrates additional requirements for use cases,
as outlined in Chapter 5. and is implemented as explained in Chapter 6. In this chapter, the
thesis research questions are reviewed to assess the research behind the implemented proto-
type, AUTOr3pair. Based on this review, the contribution to the current state of the art and
the limitations of the used approach(es) are presented. Lastly, based on the limitations, future
work is recommended.

8.1 Research overview

To review the result of the research objective set in Section 1.3, each research question will be
answered with short answers based on the evidence presented in the previous chapters. Fur-
thermore, the answers will highlight the research contributions to developing the implemented
prototype.

What is needed to achieve geometric validity? - Achieving geometric validity requires ad-
hering to the ISO 19107 Standards. In the ISO standards, each geometric primitive has its
requirements, and for a primitive to be valid, all its lower-dimensional primitives must be
valid. Therefore, validity also needs to be achieved in a hierarchical order.

How to achieve geometric validity using automatic repair? - Achieving geometric validity
using automatic repair can involve local and global repair strategies. Local repairs are used
for specific repairs and, therefore, are less robust but preserve the model better. On the other
hand, global repairs work for all kinds of repairs, but they significantly alter the original
geometry. With the help of val3dity, validity errors can be identified, and the correct local
repair can be used. Identifying and repairing errors hierarchically ensures the least geometric
difference between the outputted model and the original. Global repairs can form the safety
net to achieve geometric validity when local repairs are insufficient.

Is it possible to achieve geometric validity using automatic repair? - Yes, the experiments
demonstrate that 100% validity is achievable but that global repairs are needed for some ge-
ometries. Based on the original data quality and LOD, how often global repair is required
differs. At this moment, not all datasets can achieve 100% validity, partly due to floating point
errors and partly due to data quality.

How to preserve semantics during automatic repair? - Semantics and materials can be pre-
served when they keep their link to the face (polygon). This is done by mapping the infor-
mation to the face instead of using the location of the face in the boundary. Using the SetDiff
paradigm, newly formed faces can be relinked to their original semantics if they are completely
or partly inside the original face.

113

8. Conclusions

How to achieve validity for different use cases? - Achieving validity for different use cases
involves tailoring the automatic repair process to meet specific application requirements. The
requirements for CFD, energy demand, visualization, and solar power estimation have been
explored, and with the help of parameters, the repair process is adjusted. Parameters can
affect pre and post-processing around repairs and help make repair decisions, resulting in the
usability of the 3D city model for a range of applications.

What degree of validity can be achieved? And to what extent does this improve current 3D
city models? - The degree of validity achieved through automatic repair is highly effective.
AUTOr3pair demonstrates an ability to repair almost all the errors that val3dity identifies.
The improvement to current 3D city models is substantial, as the repaired models are made
more reliable and usable for various applications, which minimizes manual pre-processing.
Additionally, maintaining semantic consistency throughout the repair process ensures that the
models are geometrically valid and retain their functional utility across different use cases.
Overall, the framework significantly enhances the quality, reliability, and application range of
3D city models.

In summary, this thesis successfully addresses the main research questions and demonstrates
the feasibility and effectiveness of an automatic repair framework for 3D city models by provid-
ing the prototype AUTOr3pair. The findings emphasize the potential of automated processes
to enhance the quality and usability of 3D city models, paving the way for more efficient
workflows in various geospatial applications by taking over the data pre-processing step.

8.2 Contributions

Throughout this thesis, the methodology formulates repair concepts. While most of these
concepts are not new, the combined approach offers valuable contributions to the current state
of the art. The most significant contributions include:

• Repairframework focussed on local repairs - Compared to other automatic local repair
frameworks, AUTOr3pair is more robust due to its approach of error identification and
matching the best local repair. The use of val3dity to identify errors hierarchically ensures
that all errors can be resolved locally, minimizing alterations to the model. This allows
for less geometric difference and better preservation of the original structure. The global
repair safety net ensures that the 3D city model will still be outputted with geometric
validity when local repairs are insufficient. This dual-step strategy, by prioritizing local
repairs but providing global repairs as a fallback option, enhances the reliability and
flexibility of the repair process. This improves the ability to maintain geometric accuracy
during the repair process.

• Preserving of semantics - Preserving semantics is a key advancement in AUTOr3pair.
Traditional methods solely focus on repairing geometric defects. AUTOr3pair ensures
that semantic information (and materials) remain linked to their corresponding faces
throughout the repair process. The framework ensures that repairs, whether involving
face splitting, merging, or flipping, do not disrupt the semantic integrity of the model,
allowing the model to remain functional for use cases that rely on semantics data. This
dual focus on geometry and semantics marks an important evolution in the field.

• Userinput on repair process - Allowing user input to influence the repair process in
AUTOr3pair adds significant flexibility and enhances its contribution to the state of the
art. By providing adjustable parameters—such as allowed geometry types and val3dity

114

8. Conclusions

tolerances—users can fine-tune the process to meet the specific needs of their use case.
These parameters enable users to control repair decisions, thus optimizing the repair
for use cases of choice. Additionally, AUTOr3pair includes premade sets of parameters
for CFD, energy demand, visualization, and solar power estimation based on research,
allowing users to apply optimal settings for these specific applications. This customiza-
tion ensures the repaired models are better suited to the specific use case requirements,
making AUTOr3pair more versatile and applicable.

• Detriangulation of (repaired) geometries - Detriangulation of repaired geometries sig-
nificantly advances the state of the art by addressing the limitations of working on tri-
angulated meshes. Most existing repair methods focus on triangular meshes, which
require converting the model into a triangular format and then back into the original
geometry after the repair, a process prone to errors. By implementing detriangulation
before the output, AUTOr3pair bypasses this error-prone conversion step and preserves
the model’s original structure more effectively. This approach ensures that the repaired
geometry retains its geometric integrity without needing further modifications, such as
semantic or material adjustments, that might otherwise occur during re-meshing. As a
result, detriangulation in AUTOr3pair reduces data loss and enhances model precision,
providing a reliable repair process across various use cases.

8.3 Limitations

Apart from the contributions to the current state of the art made by the methodology en de
prototype, some limitations have also been identified. These limitations, which impact both
the robustness and usability of the approach, are addressed in this section.

8.3.1 Global repairs are needed
Although the automatic approach focuses on local repairs, global repairs are still needed to
reach 100% geometric validity. These global repairs led to significant issues in buildings’
geometric integrity and visual quality, as shown in Figure 7.16 and Figure 7.17. A few reasons
why global repairs are needed are needed are:

Combination of self-intersection and nonclosed shell - The repair approach chosen for non-
closed shells (302) uses a CGAL method, which doesn’t work when there are, or if it creates
self-intersections. Figure 8.1 shows an example of a geometry that would need a global re-
pair.

115

8. Conclusions

E

H
F

G

F

A

C
B

D

I

Figure 8.1.: Global repair needed when nonclosed shell self intersects

Holes that are too small - The repair approach chosen for nonclosed shells (302) uses a CGAL
method, which cannot fill tiny holes. However, different methods have the same problem.
When, for example, geometries have a topology similar to Figure 8.2. Filling the hole results
in (almost) colinear triangles, which give segmentation errors in CGAL’s surface meshes and
CGAL’s Nef polyhedron, making AUTOr3pair unable to finish the repair process.

E

H
F

G

F

A

C
B

D

C

Figure 8.2.: Global repair needed when nonclosed shell opening is very small

Unrepairable non-manifolds - As discussed in Section 7.4, non-manifolds with topology con-
sisting of one volume (Figure 8.3) cannot be repaired with the chosen repair approach. There-
fore, these non-manifolds need Global repairs.

116

8. Conclusions

N M

F

MMMMMMMMMMMMMMMMN

F

E

H

G

A

CB

D

K J

L

I

N M

E

HF

G

A

CB

D

K J

I

Figure 8.3.: Global repair needed when unrepairable non-manifold

Snaptolerance - Although during the repair process, there are measures taken. For example,
by having the same overlap tolerance (Section 6.3) and projecting vertices when nonplanar
polygons are found not to create Figure 6.3. It could still be argued that repairing with a
snap tolerance is never a good idea. In the experiments, geometries sometimes still ended up
with, for example, ring or shell self-intersection (104 and 306) due to snapping to old points
(Figure 8.4).

��������������

Self intersection

 ���!���"������!�#�$%������&"'"!

Points within snap tollerance

(����!�)��*���!��������"���$"

duplicate points

�������������

��
��
��
��
���
��
�

�����������

Figure 8.4.: Global repair needed when unrepairable non-manifold

117

8. Conclusions

Skiplowrepairs - Although this parameter makes the repair process for most geometries much
faster, it results in repair loops for some geometries (Figure 8.5). This happens when a face
with an error is readded in shell not closed (302) repair. Re-adding a wrong face can occur due
to snap tolerance, when points are being snapped wrongfully to create, for example, 104, 203,
or 204 errors.

����������������������

with “SkipLowRepairs”

 !������"�#��$�%

hole where deleted face

��&'%%�"!��������'��('#�

For example due to snap_tol

�����������

��
���
�
��
�

�
�
���
�
�����

��

Figure 8.5.: Global repair needed when unrepairable non-manifold

8.3.2 What to keep
One notable limitation in the repair framework is the hard-coded approach for handling non-
manifold (303) and multiple connected components (305) errors. When objects lack volume,
AUTOr3pair automatically retains only the first part and deletes subsequent ones. While
simplifying the repair process, this approach can result in unintended deletions. As discussed
in Section 7.4.3, this mostly happens in large composed buildings that consist of numerous
interconnected parts. For example, Figure 7.32 shows how such a building loses a substantial
part of its structure. Although smaller, similar challenges happen also in smaller formats. Fig-
ure 8.6 is an outputted building of the de Ingolstadt dataset, where part of the outer boundaries
were deleted. Although the building ends were valid, the repair approach compromised the
building’s geometric accuracy.

118

8. Conclusions

Figure 8.6.: Valid building, which lost all its geometric intergrity

8.3.3 OBJ non-repairs
OBJ validation and repair are limited when fixing non-manifold geometries. For instance,
splitting a non-manifold object composed of two cubes (Figure 8.7) into separate objects may
resolve the initial problem, but upon revalidation, the same non-manifold issues reappear due
to OBJ’s file structure, which does not oblige faces to be grouped in geometries. The decision of
AUTOr3pair to make the groups with finding connected components limits the repair process
of non-manifold geometries, seeing each time the outputted file is repaired, it will output the
same results.

I

M

J

NN

L

KE

HF

G

F

A

CB

D

E

HF

G

F

A

CB

D

GG

E

HF

G

GGG

F

A

CB

D

Figure 8.7.: Non-manifold examples which don’t repair

8.3.4 Decisions per object
While tuning parameters can help refine the repair process for specific use cases, optimizing
parameters on a geometry or group basis would further enhance the output quality. Such an

119

8. Conclusions

approach allows tailored repairs that consider each object’s characteristics, improving the us-
ability of the outcomes for use cases. Applying individualized parameters per object increases
manual workload, which demands categorization or active user input for parameter assign-
ment. While this approach requires more effort, the potential benefits would be substantial.

8.3.5 Floating point errors
Floating-point errors are always a risk, mainly when working with automatic processes. In
the experiments, most output errors resulted from floating-point inaccuracies. Although the
approach of changing the scale when translating the vertices to integers (as discussed in Sec-
tion 6.2.3) tackles a lot of floating point errors, some inaccuracies still seem to be inevitable,
especially in highly detailed models.

8.3.6 File sizes
Repairing large datasets presents significant challenges due to memory and CPU constraints,
making the process very time-consuming. For efficient processing, the maximum suggested
file size for quick repairs is 10 MB, with tests indicating manageable repair times of up to
25 MB. Beyond this threshold, using all the vertices demands substantial memory, and repair
operations become markedly slower. This comes mostly due to the time constraint of the
kd-tree for the vertices, which is, on average, O(n log n), which, in the worst case, leads to
O(n) if the tree becomes unbalanced. Users aiming to repair larger datasets could better split
their files using tools like cjio than attempting to process the entire dataset simultaneously, as
this approach maintains efficiency and reduces resources.

8.3.7 Texture deletion
In this framework, textures are removed from repaired objects, as texture handling was beyond
the scope of this thesis. This limitation affects the visual quality of 3D city models, particularly
for applications that rely on accurate texture mapping. Addressing this would require methods
to track UV positions and adjust textures in alignment with geometric repairs, an area for
potential improvement in future work.

8.4 Recommendations for future work

Several research and development opportunities are recommended to develop further and
enhance the AUTOr3pair framework. These recommendations focus on expanding the tool’s
capabilities, increasing its versatility, and improving its overall user experience. Critical areas
for future work include supporting additional file formats, integrating val3dity more seam-
lessly, extending semantic validation, preserving textures during repairs, and developing a
comprehensive 3D GIS application.

8.4.1 More input and output file types
Supporting additional file formats of 3D city models would increase the usability for pre-
processing for more target platforms. Notably, since AUTOr3pair already uses the tu3djson
format internally, the support of more data file formats would be researching and developing
converters for features/geometries to tu3djson. The internal use of tu3djson format was done to
minimize the complexity of integrating new formats and ensure the repair process will stay
the same on different file types.

120

8. Conclusions

8.4.2 Additional repair for more use-cases
To further enhance the automatic repair framework, AUTOr3pair, future work should focus on
incorporating additional use cases. From the 29 use cases described in Section 5.1, only four are
implemented. Expanding the range of supported use cases would make the framework more
usable for a wider audience. New use cases could come from tuning the existing parameters
and researching and developing additional repair methods tailored to the unique requirements
of these new applications. Lastly, integrating feedback from new use cases could refine existing
methods and inspire new innovative repair techniques.

8.4.3 Intergrating val3dity and AUTOr3pair into one tool
As explained in the discussion, AUTOr3pair is heavily dependent on val3dity’s report struc-
ture (Section 7.4.4). Therefore, integrating val3dity and AUTOr3pair into one combined tool
would tackle the schema dependence, ensuring seamless interaction between validation and
repair processes. Also, combining these tools would optimize memory usage and computa-
tional resources, as both would utilize the same internal framework. This would streamline the
workflow and improve the repair framework efficiency by reducing memory needs for internal
data structures and exchange between those.

8.4.4 Automatic validation and repair for more semantic values
As explained in Section 3.4, existing semantic validation and repair methods can not vali-
date all existing semantic values. AUTOr3pair only validates and repairs three types of sur-
faces,Roofsurface, wallSurface, and FloorSurface (Section 6.2.2). More research should be
done to enhance validation and repair for semantic values further. The possibility of validat-
ing semantic values of doors and windows could help automatic repair for use cases such as
Routing and Navigation.

8.4.5 Validation for preserving of semantics
As discussed in Section 7.4.8, the absence of an automated method to validate semantic preser-
vation in repairs remains a critical gap. Future research should prioritize developing a vali-
dation tool that automatically checks if semantic data—such as classifications and attribute re-
lationships—are consistently maintained and accurately mapped to repaired geometries. This
tool could streamline the process by detecting and flagging misalignments, missing semantics,
or reassignments introduced during repair. Such a validation approach would standardize
semantic integrity, enhancing the reliability of repairs and ensuring models meet the high
semantic standards required for advanced applications like simulations and detailed urban
analysis.

8.4.6 Intergrating automatic validation and repair for LODs
As explained in Section 6.2.3, integration of the Level of Detail (LoD) classification should be
considered for further work. Seeing classification helps with categorizing data; it makes it eas-
ier to analyze and interpret 3D city models when the LOD is correct. The repairs which change
the data should, therefore, be re-classified. Some use cases would even require validation and,
if needed, re-classify all the existing geometries.

8.4.7 Research on keeping and extending textures
For this thesis, the textures of 3D city models were out of the scope. Therefore, the textures of
repaired objects are deleted. Developing methods to integrate texture preservation within the
existing repair algorithms will ensure that textures remain consistent and accurately aligned

121

8. Conclusions

with repaired geometries. Future work would need to focus on the UV positions of the corre-
sponding vertices and how they change depending on the repair process.

8.4.8 3D GIS application for preparing 3D City data
Currently, no single 3D GIS application can handle all aspects of 3D city model management.
Programs such as ArcGIS and QGIS are growing in their 3D data options but are still limited.
An ideal application would allow users to prepare data visually by collecting it through im-
ports, applications, or web services and then exporting it in multiple file formats. This would
make the repair process much more user-friendly.

Extra functions like splitting or combining datasets would make the pre-processing process
visually accessible. It could also provide robust repair capabilities—whether repairing entire
datasets at once or singling out specific objects for user-guided decisions. Developing such a
comprehensive tool would significantly enhance the efficiency and effectiveness of managing
and repairing 3D city models.

122

A Use case Requirements

Table A.1.: Additional requirements for different use-cases

Use-case Additional requirement(s) Source
Estimation of the solar
irradiation

Building needs to have an identifiable
surface(s) with type RoofSurface; Surfaces
need to be oriented outwards (also
when being a MultiSurface); Preferably
architecturally detailed models;

Biljecki
et al. (2015)
and Biljecki
et al. (2016a)
and Biljecki
(2017) and
Ledoux
(2017)

Energy demand
estimation

Buildings need to be consist of 1 (watertight)
solid (or composite solid); Buildings
and/or buildingparts may not intersect;
Preferably building needs to have
identifiable semantic surface(s);

Coors et al.
(2020),
Willenborg
et al. (2018)
and Sindram
et al. (2016)

Aiding positioning Detailed (≥ LOD3) preferably textured facades
for comparisons with images;

Coors et al.
(2000) and
Mao (2011)

Determination of the floor
space

Attribute with number of Storeys; Biljecki et al.
(2015)

Classifying building types Attribute with classification;
Geo-visualisation
and visualisation
enhancement

No overlapping polygons; correct
orrientation ofpolygons; Preferably
architecturally detailed models (≥LOD2.3);

Ledoux
(2017) and
Biljecki
(2017)

Visibility analysis Building needs to have an identifiable
surface(s) with type Windows; Architecturally
detailed models (≥LOD3) prefereably containing
interior (LOD4); Attribute with number of
Storeys;

Biljecki
et al. (2015)
and Biljecki
(2017)

Estimation of shadows
cast by urban features

Real world position and true north needs to be
correct; Materials for light reflection; Preferably
architecturally detailed models (≥LOD2.3);

Doellner
et al. (2005)
and Biljecki
(2017)

Continued on the next page

123

A. Use case Requirements

Table A.1 – continued from previous page

Use-case Additional requirement(s) Source
Estimation of the
propagation of noise in
an urban environment

Preferably building needs to have
identifiable semantic surface(s); Materials
for sound absorption; Preferably architecturally
detailed models (≥LOD2.3);

Biljecki et al.
(2015) and
Kurakula
and Kuffer
(2008)

3D cadastre Buildings need to be consist of 1 (watertight)
solid (or composite solid); Buildings
and/or buildingparts may not intersect;
Attributes about the physical counterparts of
the legal objects;

Stoter
and van
Oosterom
(2005) and
Biljecki et al.
(2015)

Visualisation for
navigation

Building needs to have an identifiable
surface(s) with type Windows and/or Door;
Textures for building facades; Materials for
building facades; Preferably architecturally
detailed models (≥LOD2.3);

Coors and
Zipf

Urban planning Preferably building needs to have
identifiable semantic surface(s); Materials
and textures for visualisation; Preferably
architecturally detailed models (≥LOD2.3);

Köninger
and Bartel
(1998) and
Mao (2011)

Visualisation for
communication of urban
information to citizenry

Building needs to have an identifiable
surface(s) with type Windows; Architecturally
detailed models (≥LOD3) prefereably containing
interior (LOD4); Attribute with number of
Storeys;

Biljecki
et al. (2015)
and Biljecki
(2017)

Understanding Synthetic
Aperture Radar (SAR)
images

none found

Facility management Architecturally detailed models containing
interior (LOD4);

Bleifuss et al.
(2009)

Automatic scaffold
assembly

Preferably architecturally detailed models
(≥LOD2.3); Materials for absorption;

Corre and
Lostanlen
(2009)

Emergency response Building needs to have an identifiable
surface(s) with type Door; Attributes
Information about building entry points
Preferably architecturally detailed models
containing interior (LOD4);

Biljecki et al.
(2015)

Lighting simulations none found
Radio-wave propagation Preferably architecturally detailed models

(≥LOD2.3); Materials and textures for
absorption;

Kolbe and
Donaubauer
(2021)

Continued on the next page

124

A. Use case Requirements

Table A.1 – continued from previous page

Use-case Additional requirement(s) Source
Computational fluid
dynamics

No small features, small edges, and small
gaps between buildings; Buildings need
to be consist of 1 (watertight) solid (or
composite solid) which don’t intersect;
Polygon triangles in triangulated objects
cannot be slivers;

Paden (2021)

Estimating the population
in an area

Attribute with number of residents; Attribute
with number of Storeys for per m2 calculations;

Biljecki et al.
(2015) and
Alahmadi
et al. (2016)

Routing Building needs to have an identifiable
surface(s) with type Door; Attributes
Information about building entry points
Preferably architecturally detailed models
containing interior (LOD4);

Jebur (2022)

Forecasting seismic
damage

Building needs to have an identifiable
surface(s) with type RoofSurface (and
preferably the type of roof);Metadata
containing geographic position, and relationship
to their immediate neighborhood; Attribute with
number of Storeys; Materials for vulnerability of
surface;

Redweik
et al. (2017)
and Mao
(2011)

Flooding City objects of type land-use as Digital terrain
model; Materials and textures for insights into
surfaces;

Jebur (2022)
and Mao
(2011)

Change detection Preferably Architecturally detailed models
(≥LOD2) for most detailed change

Biljecki et al.
(2015)

Volumetric density
studies

Buildings need to be consist of 1 (watertight)
solid (or composite solid); Buildings
and/or building parts may not intersect;
Preferably Architecturally detailed models
(≥LOD2) for roofs

Biljecki et al.
(2015)

Forest management City objects of type Vegetation Biljecki et al.
(2015)

Archaeology none found

125

B Schema‘s of file types used

B.1 CityJSON

Json With id-name as key

and a CityObject as value

scale [arrays with 3 values]

translate [arrays with 3 values]

Json With the following keys:

geographicalExtent

identifier

pointOfContact

referenceDate

referenceSystem

title

Json With extension name as key

and a json with keys 'url' & 'version' as value

materials [array of Material Objects]

textures [array of Texture Objects]

vertices-texture [array of UV vertex coordinates]

default-theme-texture string name of default theme

default-theme-material string name of default theme

Json With the following keys:

template

vertices-template

type CityJSON

version 2.0

CityObjects

vertices [array of [size 3 array containing X, Y, Z as int]]

transform

metadata

extensions

appearance

geometry-templates

other non prescribed keys can be anything

Figure B.1.: CityJSON keys

126

B. Schema‘s of file types used

type

lod string LOD

boundaries

semantics

Material

Texture

One of:

MultiPoint

MultiLineString

MultiSurface

CompositeSurface

Solid

MultiSolid

CompositeSolid

GeometryInstance

when type boundary looks like:

MultiPoint [array with indexes of vertices]

MultiLineString [array of [array with indexes of vertices]]

MultiSurface [array of [array(s) of [array with indexes of vertices]]]

CompositeSurface [array of [array(s) of [array with indexes of vertices]]]

Solid [array of [array(s) of [array(s) of [array with indexes of vertices]]]]

MultiSolid [array of[array(s) of [array(s) of [array(s) of [array with indexes of vertices]]]]]

CompositeSolid [array of[array(s) of [array(s) of [array(s) of [array with indexes of vertices]]]]]

when type Values looks like:

MultiPoint [array with indexes of SemanticsType]

MultiLineString [array with indexes of SemanticsType]

MultiSurface [array with indexes of SemanticsType]

CompositeSurface [array with indexes of SemanticsType]

Solid [array of [array with indexes of SemanticsType]]

MultiSolid [array of [array(s) of [array with indexes of SemanticsType]]]

CompositeSolid [array of [array(s) of [array with indexes of SemanticsType]]]

values when type Values looks like:

MultiPoint [array with indexes of MaterialType]

MultiLineString [array with indexes of MaterialType]

MultiSurface [array with indexes of MaterialType]

CompositeSurface [array with indexes of MaterialType]

Solid [array of [array with indexes of MaterialType]]

MultiSolid [array of [array(s) of [array with indexes of MaterialType]]]

CompositeSolid [array of [array(s) of [array with indexes of MaterialType]]]

values when type Values looks like:

MultiPoint [array with indexes of TextureType]

MultiLineString [array with indexes of TextureType]

MultiSurface [array with indexes of TextureType]

CompositeSurface [array with indexes of TextureType]

Solid [array of [array with indexes of TextureType]]

MultiSolid [array of [array(s) of [array with indexes of TextureType]]]

CompositeSolid [array of [array(s) of [array with indexes of TextureType]]]

json with properties

Can be anything

AUTOr3pair adds 'AUTOr3paired'

surfaces [array of Semantic Objects]

values

json object(S) with theme as key

json object(s) with theme as key

[Array containing 0 or more Geometry Objects]

type string CityObject Type (see list)

geometry

geographicalExtent [array with 6 values: minx, miny, minz, maxx, maxy, maxz]

attributes

children [array of id's]

parents [array of size 1 with id]

Figure B.2.: CityObject in a CityJSON

127

B. Schema‘s of file types used

Figure B.3.: CityObject types

128

B. Schema‘s of file types used

B.2 Wavefront OBJ

1 mtllib solids.mtl

2 o ThreeSolids

3

4 g Tetrahedron

5 usemtl Red

6 v 0.5773502691896258 0.5773502691896258 0.5773502691896258

7 v -0.5773502691896258 -0.5773502691896258 0.5773502691896258

8 v -0.5773502691896258 0.5773502691896258 -0.5773502691896258

9 v 0.5773502691896258 -0.5773502691896258 -0.5773502691896258

10 f 1 2 4

11 f 1 3 2

12 f 1 4 3

13 f 2 3 4

14

15 g Hexahedron

16 usemtl Green

17 v 0.5773502691896258 3.5773502691896257 0.5773502691896258

18 v 0.5773502691896258 3.5773502691896257 -0.5773502691896258

19 v 0.5773502691896258 2.4226497308103743 0.5773502691896258

20 v 0.5773502691896258 2.4226497308103743 -0.5773502691896258

21 v -0.5773502691896258 3.5773502691896257 0.5773502691896258

22 v -0.5773502691896258 3.5773502691896257 -0.5773502691896258

23 v -0.5773502691896258 2.4226497308103743 0.5773502691896258

24 v -0.5773502691896258 2.4226497308103743 -0.5773502691896258

25 f 5 6 10 9

26 f 5 7 8 6

27 f 5 9 11 7

28 f 6 8 12 10

29 f 7 11 12 8

30 f 9 10 12 11

31

32 g Octahedron

33 usemtl Blue

34 v 4.0 0.0 0.0

35 v 2.0 0.0 0.0

36 v 3.0 1.0 0.0

37 v 3.0 -1.0 0.0

38 v 3.0 0.0 1.0

39 v 3.0 0.0 -1.0

40 f 13 15 17

41 f 13 16 18

42 f 13 17 16

43 f 13 18 15

44 f 14 15 18

45 f 14 16 17

46 f 14 17 15

47 f 14 18 16

Listing B.1: Example .obj File with 3 groups

129

B. Schema‘s of file types used

B.3 TU3djson

Figure B.4.: TU3DJSON Object

130

131

C. Algorithm implementation

C Algorithm implementation

Figure C.1.: inheritance of the geometry class

132

C. Algorithm implementation

Algorithm 1 Geometry repair

Input:

• Geometry

• Standards (for val3dityReport and TotalRepairDepth, MaxRepairDepth)

Output: Repaired geometry/geometries
1: procedure GeometryRepair

2: RepairsNeeded, Valid← val3dityReport(Geometry, Standards)
3: RepairDepth← 0
4: ErrorTypes← {RingErrors, PolyErrors, ShellErrors, SolidErrors, SolidIErrors}
5: LastErrorCatogorie← RingErrors

6: for i← 1 toTotalRepairDepth do

7: if RepairDepth < MaxRepairDepth or Valid then
8: break
9: end if

10: for ErrorType in ErrorTypes do

11: if RepairsNeeded[ErrorType] is not empty then
12: if ErrorType is LastErrorCatogorie then
13: RepairDepth + 1
14: else
15: LastErrorCatogorie← ErrorType
16: RepairDepth← 0
17: end if

18: if ErrorType is RingErrors then
19: Repair the ring errors
20: else if ErrorType is PolyErrors then
21: Repair the polygon errors
22: else if ErrorType is ShellErrors then
23: Repair the shell errors
24: else if ErrorType is SolidErrors then
25: Repair the solid errors
26: else if ErrorType is SolidIErrors then
27: Repair the Solid interaction errors
28: end if

29: break

30: end if
31: end for

32: if Geometry is split into multiple geometries then
33: return Repaired geometries //GeometryRepair will be reinitialized
34: end if

35: if Geometry changed Primitive types then
36: return Repaired geometry //GeometryRepair will be reinitialized
37: end if

38: RepairsNeeded, Valid← val3dityReport(Geometry, Standards)

39: end for

40: return Repaired geometry

41: end procedure 133

C. Algorithm implementation

Algorithm 2 val3dityReport

Input:

• Geometry

• (standards for val3dity (snap tol, planarity d2p tol, planarity n tol, overlap tol)

• Standard with what to solve (solveAll, ErrorsToRepair)

Output:

• a map with errors sorted Repairsneeded

• Boolean Valid

1: procedure val3dityReport

2: report← val3dity::validate(tu3djson, snap tol, planarity d2p tol, planarity n tol, overlap tol)

3: Valid← false

4: if report[”validity”] = false then

5: for feature in report[”features”] do

6: for primitive in feature[”primitives”] do

7: for error in primitive[”errors”] do

8: errorCode← error[”code”]
9: errorInfo← error[”id”]

10: if solveAll or ErrorsToRepair contains errorCode then

11: if errorCode in RingErrors then
12: RepairsNeeded[”RingErrors”].push back({errorCode, errorInfo})
13: else if errorCode in PolyErrors then
14: RepairsNeeded[”PolyErrors”].push back({errorCode, errorInfo})
15: else if errorCode in ShellErrors then
16: RepairsNeeded[”ShellErrors”].push back({errorCode, errorInfo})
17: else if errorCode in SolidErrors then
18: RepairsNeeded[”SolidErrors”].push back({errorCode, errorInfo})
19: else if errorCode in SolidIErrors then
20: RepairsNeeded[”SolidIErrors”].push back({errorCode, errorInfo})
21: end if

22: end if

23: end for

24: end for

25: end for

26: if RepairsNeeded is empty then
27: Valid← true
28: end if

29: else
30: Valid← true
31: end if

32: end procedure

134

D Reproducibility and self-assessment

The methodology of this thesis required focusing on software development, resulting in an
open-source C++ framework. A significant amount of time was spent figuring out existing
repair approaches and C++ libraries like CGAL. To adhere to the FAIR principles (Wilkin-
son et al., 2016), the data used for the experiments were publicly accessible, and 3D city
models, such as those from the CityJSON website and the 3dBAG have formats that were
well-documented and licensed (Reproducibilty grade 3/3). Seeing that AUTOr3pair is meant
as a ”preprocessing tool” for users, data preprocessing was not done, and therefore, no repro-
ducibility is needed. The data used for the pytest is val3dity test data (.poly format) converted
to CityJSON and OBJ; all these files and the Python conversion code are findable on Git Hub.

The methodology applied in this thesis was comprehensive and built on existing approaches
in the field of 3D city model repair. Val3dity, an open-source geometric validation tool, is used,
and validation is built into the framework for semantic and additional use-case requirements.
Newly introduced repair approaches were implemented in the framework or done with the
help of CGAL, which is also open-source. This thesis’s combination of methodology docu-
mentation and an open-source framework with open-source libraries makes the methodology
easily reproducible (Reproducibilty grade 3/3).

Based on C++ (and Python for the pytest), the computational environment utilized gives the
best performance for large data sets. However, while the environment is fully functional, build-
ing and running the C++ is no easy task, primarily due to installing prerequisites from CGAL
libraries. Therefore, the Computational Environment’s reproducibility could benefit from a
containerization tool, which streamlines the installation of dependencies, ensures consistent
runtime configurations, and simplifies deployment across various platforms (Reproducibilty
grade 2/3).

Regarding results, the AUTOr3pair framework addressed the issues of geometric validity for
semantic 3D city models with promising results for multiple use cases. However, some limita-
tions, such as the loss of textures and certain ”hardcoded” repair decisions, can yield slightly
different results per 3D city model. Although there were good results, these minor issues
reduced the overall reproducibility and robustness of the framework (Reproducibilty grade
2/3).

This thesis, along with the development of the AUTOr3pair framework, has laid a founda-
tion for reproducibility by using publicly accessible test data, open-source tools, and detailed
methodology documentation. The methodology closely follows the principles and techniques
of the Master of Geomatics. Throughout this thesis and the implementation of the AUTOr3pair
framework, many challenges were encountered, enabling me to gain new knowledge in var-
ious topics. Automatic repair from AUTOr3pair extends beyond geomatics-specific use cases
by serving related disciplines, such as architecture, the game industry, and other geometry-
focused data sciences.

135

Bibliography

M. Alahmadi, P. M. Atkinson, and D. Martin. A Comparison of Small-Area Population Esti-
mation Techniques Using Built-Area and Height Data, Riyadh, Saudi Arabia. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5):1959–1969, May 2016.
ISSN 2151-1535. doi: 10.1109/JSTARS.2014.2374175. URL https://ieeexplore.ieee.org/

abstract/document/6987250. Conference Name: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing.

N. Alam, D. Wagner, M. Wewetzer, J. von Falkenhausen, V. Coors, and M. Pries. To-
wards Automatic Validation and Healing of CityGML Models for Geometric and Seman-
tic Consistency. In U. Isikdag, editor, Innovations in 3D Geo-Information Sciences, Lec-
ture Notes in Geoinformation and Cartography, pages 77–91. Springer International Pub-
lishing, Cham, 2014. ISBN 978-3-319-00515-7. doi: 10.1007/978-3-319-00515-7 5. URL
https://doi.org/10.1007/978-3-319-00515-7_5.

P. Alliez, D. Cohen-Steiner, M. Hemmer, C. Portaneri, and M. Rouxel-Labbé. 3D Alpha Wrap-
ping. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6 edition, 2023a. URL
https://doc.cgal.org/5.6/Manual/packages.html#PkgAlphaWrap3.

P. Alliez, C. Jamin, L. Rineau, S. Tayeb, J. Tournois, and M. Yvinec. 3D Mesh Generation. In
CGAL User and Reference Manual. CGAL Editorial Board, 5.6 edition, 2023b. URL https:

//doc.cgal.org/5.6/Manual/packages.html#PkgMesh3.

P. Alliez, C. Jamin, L. Rineau, S. Tayeb, J. Tournois, and M. Yvinec. 3D Simplicial Mesh Data
Structure. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6 edition, 2023c.
URL https://doc.cgal.org/5.6/Manual/packages.html#PkgSMDS3.

P. Alliez, S. Pion, and A. Gupta. Principal Component Analysis. In CGAL User and Refer-
ence Manual. CGAL Editorial Board, 5.6 edition, 2023d. URL https://doc.cgal.org/5.6/

Manual/packages.html#PkgPrincipalComponentAnalysisD.

P. Alliez, S. Tayeb, and C. Wormser. 3D Fast Intersection and Distance Computation. In
CGAL User and Reference Manual. CGAL Editorial Board, 5.6 edition, 2023e. URL https:

//doc.cgal.org/5.6/Manual/packages.html#PkgAABBTree.

M. Attene, M. Campen, and L. Kobbelt. Polygon mesh repairing: An application perspective.
ACM Computing Surveys, 45(2):15:1–15:33, 2013. ISSN 0360-0300. doi: 10.1145/2431211.
2431214. URL https://doi.org/10.1145/2431211.2431214.

H. Barki, G. Guennebaud, and S. Foufou. Exact, robust, and efficient regularized Booleans on
general 3D meshes. Computers & Mathematics with Applications, 70(6):1235–1254, Sept. 2015.
ISSN 0898-1221. doi: 10.1016/j.camwa.2015.06.016. URL https://www.sciencedirect.com/

science/article/pii/S0898122115003028.

F. Bernardini and C. Bajaj. Sampling and Reconstructing Manifolds Using Alpha-Shapes. Proc.
9th Canad. Conf. Comput. Geom., July 1998.

136

https://ieeexplore.ieee.org/abstract/document/6987250
https://ieeexplore.ieee.org/abstract/document/6987250
https://doi.org/10.1007/978-3-319-00515-7_5
https://doc.cgal.org/5.6/Manual/packages.html#PkgAlphaWrap3
https://doc.cgal.org/5.6/Manual/packages.html#PkgMesh3
https://doc.cgal.org/5.6/Manual/packages.html#PkgMesh3
https://doc.cgal.org/5.6/Manual/packages.html#PkgSMDS3
https://doc.cgal.org/5.6/Manual/packages.html#PkgPrincipalComponentAnalysisD
https://doc.cgal.org/5.6/Manual/packages.html#PkgPrincipalComponentAnalysisD
https://doc.cgal.org/5.6/Manual/packages.html#PkgAABBTree
https://doc.cgal.org/5.6/Manual/packages.html#PkgAABBTree
https://doi.org/10.1145/2431211.2431214
https://www.sciencedirect.com/science/article/pii/S0898122115003028
https://www.sciencedirect.com/science/article/pii/S0898122115003028

Bibliography

H. Bieri. Nef Polyhedra: A Brief Introduction. In H. Hagen, G. Farin, and H. Noltemeier,
editors, Geometric Modelling, Computing Supplement, pages 43–60, Vienna, 1995. Springer.
ISBN 978-3-7091-7584-2. doi: 10.1007/978-3-7091-7584-2 3.

F. Biljecki. Level of detail in 3D city models. 2017. doi: 10.4233/
uuid:f12931b7-5113-47ef-bfd4-688aae3be248. URL https://repository.tudelft.nl/

islandora/object/uuid%3A6fe1dea8-53b3-4734-9e0c-ff01ed393d79.

F. Biljecki and K. Arroyo Ohori. Automatic Semantic-preserving Conversion Between OBJ
and CityGML. Eurographics Workshop on Urban Data Modelling and Visualisation, page 6
pages, 2015. ISSN 2307-8251. doi: 10.2312/UDMV.20151345. URL https://diglib.eg.org/

handle/10.2312/udmv20151345. Artwork Size: 6 pages ISBN: 9783905674804 Publisher: The
Eurographics Association.

F. Biljecki, H. Ledoux, J. Stoter, and J. Zhao. Formalisation of the level of detail in 3D city
modelling. Computers, Environment and Urban Systems, 48:1–15, Nov. 2014. ISSN 0198-
9715. doi: 10.1016/j.compenvurbsys.2014.05.004. URL https://www.sciencedirect.com/

science/article/pii/S0198971514000519.

F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin. Applications of 3D City Models:
State of the Art Review. ISPRS International Journal of Geo-Information, 4(4):2842–2889, Dec.
2015. ISSN 2220-9964. doi: 10.3390/ijgi4042842. URL https://www.mdpi.com/2220-9964/

4/4/2842. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.

F. Biljecki, H. Ledoux, X. Du, J. Stoter, K. H. Soon, and V. H. S. Khoo. The most com-
mon geometric and semantic errors in cityGML. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, volume IV-2-W1, pages 13–22. Coperni-
cus GmbH, Oct. 2016a. doi: 10.5194/isprs-annals-IV-2-W1-13-2016. URL https://www.

isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/13/2016/. ISSN:
2194-9042.

F. Biljecki, H. Ledoux, and J. Stoter. An improved LOD specification for 3D building models.
Computers, Environment and Urban Systems, 59:25–37, Sept. 2016b. ISSN 01989715. doi: 10.
1016/j.compenvurbsys.2016.04.005. URL https://linkinghub.elsevier.com/retrieve/

pii/S0198971516300436.

R. Bleifuss, A. Donaubauer, J. Liebscher, and M. Seitle. Entwicklung einer CityGML-
Erweiterung für das Facility Management am Beispiel Landeshauptstadt München. In Ange-
wandte Geoinformatik 2009: Beiträge zum 21. AGIT-Symposium. Wichmann, 2009.

R. Boeters, K. Arroyo Ohori, F. Biljecki, and S. Zlatanova. Automatically enhancing CityGML
LOD2 models with a corresponding indoor geometry. International Journal of Geographical
Information Science, 29(12):2248–2268, Dec. 2015. ISSN 1365-8816. doi: 10.1080/13658816.
2015.1072201. URL https://doi.org/10.1080/13658816.2015.1072201. Publisher: Taylor
& Francis eprint: https://doi.org/10.1080/13658816.2015.1072201.

M. Botsch. Polygon mesh processing. A K Peters, Natick, Mass, 2010. ISBN 978-1-56881-426-1.
OCLC: ocn423214772.

M. Botsch, D. Sieger, P. Moeller, and A. Fabri. Surface Mesh. In CGAL User and Reference
Manual. CGAL Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.6/Manual/

packages.html#PkgSurfaceMesh.

p. bourke. Object Files (.obj). URL https://paulbourke.net/dataformats/obj/.

137

https://repository.tudelft.nl/islandora/object/uuid%3A6fe1dea8-53b3-4734-9e0c-ff01ed393d79
https://repository.tudelft.nl/islandora/object/uuid%3A6fe1dea8-53b3-4734-9e0c-ff01ed393d79
https://diglib.eg.org/handle/10.2312/udmv20151345
https://diglib.eg.org/handle/10.2312/udmv20151345
https://www.sciencedirect.com/science/article/pii/S0198971514000519
https://www.sciencedirect.com/science/article/pii/S0198971514000519
https://www.mdpi.com/2220-9964/4/4/2842
https://www.mdpi.com/2220-9964/4/4/2842
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/13/2016/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/13/2016/
https://linkinghub.elsevier.com/retrieve/pii/S0198971516300436
https://linkinghub.elsevier.com/retrieve/pii/S0198971516300436
https://doi.org/10.1080/13658816.2015.1072201
https://doc.cgal.org/5.6/Manual/packages.html#PkgSurfaceMesh
https://doc.cgal.org/5.6/Manual/packages.html#PkgSurfaceMesh
https://paulbourke.net/dataformats/obj/

Bibliography

J. Brodeur. Geosemantic Interoperability and the Geospatial Semantic Web. In W. Kresse
and D. M. Danko, editors, Springer Handbook of Geographic Information, Springer Handbooks,
pages 291–310. Springer, Berlin, Heidelberg, 2012. ISBN 978-3-540-72680-7. doi: 10.1007/
978-3-540-72680-7 15. URL https://doi.org/10.1007/978-3-540-72680-7_15.

H. Buchholz. Real-time visualization of 3D city models. PhD thesis, Universität Potsdam, 2006.
URL https://publishup.uni-potsdam.de/frontdoor/index/index/docId/1253.

H. Butler, M. Daly, A. Doyle, S. Gillies, T. Schaub, and S. Hagen. The GeoJSON Format.
Request for Comments RFC 7946, Internet Engineering Task Force, Aug. 2016. URL https:

//datatracker.ietf.org/doc/rfc7946. Num Pages: 28.

M. Buyukdemircioglu and S. Kocaman. Reconstruction and Efficient Visualization of Hetero-
geneous 3D City Models. Remote Sensing, 12(13):2128, Jan. 2020. ISSN 2072-4292. doi:
10.3390/rs12132128. URL https://www.mdpi.com/2072-4292/12/13/2128. Number: 13
Publisher: Multidisciplinary Digital Publishing Institute.

F. Cacciola, M. Rouxel-Labbé, B. Şenbaşlar, and J. Komaromy. Triangulated Surface Mesh Sim-
plification. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6 edition, 2023. URL
https://doc.cgal.org/5.6/Manual/packages.html#PkgSurfaceMeshSimplification.

T. J. F. Commandeur. Footprint decomposition combined with point cloud segmentation for
producing valid 3D models. 2012. URL https://repository.tudelft.nl/islandora/

object/uuid%3Ac0c665f7-0254-42c6-895b-cb59acc079f2.

V. Coors and E. Zipf. Mona 3d– Mobile Navigation Using 3d City Models.

V. Coors, T. Huch, and U. Kretschmer. Matching buildings: pose estimation in an urban
environment. In Proceedings IEEE and ACM International Symposium on Augmented Reality
(ISAR 2000), pages 89–92, Oct. 2000. doi: 10.1109/ISAR.2000.880928. URL https:

//ieeexplore.ieee.org/abstract/document/880928?casa_token=grlkzDkEARsAAAAA:

Nex1iFTgotVRc2KB5uW_lMgpL3iGixN5_qrGisPBZImNEs4ac4DzS_3nTR_D8SomWjIANnBUTA.

V. Coors, M. Betz, and E. Duminil. A Concept of Quality Management of 3D City Mod-
els Supporting Application-Specific Requirements. PFG – Journal of Photogrammetry, Re-
mote Sensing and Geoinformation Science, 88(1):3–14, Feb. 2020. ISSN 2512-2819. doi:
10.1007/s41064-020-00094-0. URL https://doi.org/10.1007/s41064-020-00094-0.

Y. Corre and Y. Lostanlen. Three-Dimensional Urban EM Wave Propagation Model for Radio
Network Planning and Optimization Over Large Areas. IEEE Transactions on Vehicular Tech-
nology, 58(7):3112–3123, Sept. 2009. ISSN 1939-9359. doi: 10.1109/TVT.2009.2016973. URL
https://ieeexplore.ieee.org/document/4798203. Conference Name: IEEE Transactions
on Vehicular Technology.

S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside. Geography Markup Language (GML)
Encoding Specification v3.1.1. Feb. 2004. doi: 10.13140/2.1.2846.2401.

T. K. F. Da. 2D Alpha Shapes. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6
edition, 2023. URL https://doc.cgal.org/5.6/Manual/packages.html#PkgAlphaShapes2.

A. Diakité, G. Damiand, and G. Gesquière. Automatic Semantic Labelling of 3D Buildings
Based on Geometric and Topological Information. 9th 3DGeoInfo Conference 2014 - Proceed-
ings, Nov. 2014.

138

https://doi.org/10.1007/978-3-540-72680-7_15
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/1253
https://datatracker.ietf.org/doc/rfc7946
https://datatracker.ietf.org/doc/rfc7946
https://www.mdpi.com/2072-4292/12/13/2128
https://doc.cgal.org/5.6/Manual/packages.html#PkgSurfaceMeshSimplification
https://repository.tudelft.nl/islandora/object/uuid%3Ac0c665f7-0254-42c6-895b-cb59acc079f2
https://repository.tudelft.nl/islandora/object/uuid%3Ac0c665f7-0254-42c6-895b-cb59acc079f2
https://ieeexplore.ieee.org/abstract/document/880928?casa_token=grlkzDkEARsAAAAA:Nex1iFTgotVRc2KB5uW_lMgpL3iGixN5_qrGisPBZImNEs4ac4DzS_3nTR_D8SomWjIANnBUTA
https://ieeexplore.ieee.org/abstract/document/880928?casa_token=grlkzDkEARsAAAAA:Nex1iFTgotVRc2KB5uW_lMgpL3iGixN5_qrGisPBZImNEs4ac4DzS_3nTR_D8SomWjIANnBUTA
https://ieeexplore.ieee.org/abstract/document/880928?casa_token=grlkzDkEARsAAAAA:Nex1iFTgotVRc2KB5uW_lMgpL3iGixN5_qrGisPBZImNEs4ac4DzS_3nTR_D8SomWjIANnBUTA
https://doi.org/10.1007/s41064-020-00094-0
https://ieeexplore.ieee.org/document/4798203
https://doc.cgal.org/5.6/Manual/packages.html#PkgAlphaShapes2

Bibliography

L. Dietze, U. Nonn, and A. Zipf. Metadata for 3D City Models. 2007.

J. Doellner, H. Buchholz, M. Nienhaus, and F. Kirsch. Illustrative visualiza-
tion of 3D city models. In Visualization and Data Analysis 2005, volume
5669, pages 42–51. SPIE, Mar. 2005. doi: 10.1117/12.587118. URL https:

//www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/

Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full.

B. Dukai. Exploring the automatic Level of Detail inference for the validation of buildings in 3D city
models | TU Delft Repository. PhD thesis, TU delft, Delft, 2018. URL https://repository.

tudelft.nl/record/uuid:5e9ed2f0-ec9e-4d9e-9a6b-57488ddd0222.

H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):
43–72, Jan. 1994. ISSN 0730-0301. doi: 10.1145/174462.156635. URL https://dl.acm.org/

doi/10.1145/174462.156635.

C. El Morr, M. Jammal, H. Ali-Hassan, and W. El-Hallak. Data Preprocessing. In C. El Morr,
M. Jammal, H. Ali-Hassan, and W. EI-Hallak, editors, Machine Learning for Practical De-
cision Making: A Multidisciplinary Perspective with Applications from Healthcare, Engineering
and Business Analytics, International Series in Operations Research & Management Science,
pages 117–163. Springer International Publishing, Cham, 2022. ISBN 978-3-031-16990-8. doi:
10.1007/978-3-031-16990-8 4. URL https://doi.org/10.1007/978-3-031-16990-8_4.

A. Fabri, G.-J. Giezeman, and L. Kettner. I/O Streams. In CGAL User and Reference Man-
ual. CGAL Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.6/Manual/

packages.html#PkgStreamSupport.

D. Flamanc, G. Maillet, and H. Jibrini. 3D City Models: An Operational Approach Using
Aerial Images and Cadastral Maps. 2003. URL https://www.semanticscholar.org/

paper/3D-CITY-MODELS%3A-AN-OPERATIONAL-APPROACH-USING-AND-Flamanc-Maillet/

29ec85ee8cb7c24f259fc06c139786a617a12978.

J. D. Foley. Computer Graphics: Principles and Practice. Addison-Wesley Professional, 1996. ISBN
978-0-201-84840-3.

A. Francois, R. Raffin, and M. Daniel. Geometric Data Structures and Analysis in GIS: ISO
19107 Case study. Nov. 2010.

C. Fruh and A. Zakhor. Constructing 3D city models by merging aerial and ground
views. IEEE Computer Graphics and Applications, 23(6):52–61, Nov. 2003. ISSN 1558-
1756. doi: 10.1109/MCG.2003.1242382. URL https://ieeexplore.ieee.org/abstract/

document/1242382. Conference Name: IEEE Computer Graphics and Applications.

T. D. D. geoinformation research group. Tudelft3d/tu3djson: description of the tu3djson stan-
dard (TU Delft 3D JSON). URL https://github.com/tudelft3d/tu3djson.

G.-J. Giezeman and W. Wesselink. 2D Polygons. In CGAL User and Reference Manual. CGAL Ed-
itorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.6/Manual/packages.html#

PkgPolygon2.

M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, M. Seel, G. Battista, and
U. Zwick. Boolean Operations on 3D Selective Nef Complexes: Data Structure, Algorithms,
and Implementation. Sept. 2003. doi: 10.1007/978-3-540-39658-1 59.

139

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full
https://repository.tudelft.nl/record/uuid:5e9ed2f0-ec9e-4d9e-9a6b-57488ddd0222
https://repository.tudelft.nl/record/uuid:5e9ed2f0-ec9e-4d9e-9a6b-57488ddd0222
https://dl.acm.org/doi/10.1145/174462.156635
https://dl.acm.org/doi/10.1145/174462.156635
https://doi.org/10.1007/978-3-031-16990-8_4
https://doc.cgal.org/5.6/Manual/packages.html#PkgStreamSupport
https://doc.cgal.org/5.6/Manual/packages.html#PkgStreamSupport
https://www.semanticscholar.org/paper/3D-CITY-MODELS%3A-AN-OPERATIONAL-APPROACH-USING-AND-Flamanc-Maillet/29ec85ee8cb7c24f259fc06c139786a617a12978
https://www.semanticscholar.org/paper/3D-CITY-MODELS%3A-AN-OPERATIONAL-APPROACH-USING-AND-Flamanc-Maillet/29ec85ee8cb7c24f259fc06c139786a617a12978
https://www.semanticscholar.org/paper/3D-CITY-MODELS%3A-AN-OPERATIONAL-APPROACH-USING-AND-Flamanc-Maillet/29ec85ee8cb7c24f259fc06c139786a617a12978
https://ieeexplore.ieee.org/abstract/document/1242382
https://ieeexplore.ieee.org/abstract/document/1242382
https://github.com/tudelft3d/tu3djson
https://doc.cgal.org/5.6/Manual/packages.html#PkgPolygon2
https://doc.cgal.org/5.6/Manual/packages.html#PkgPolygon2

Bibliography

G. Gröger and L. Plümer. CityGML – Interoperable semantic 3D city models. ISPRS
Journal of Photogrammetry and Remote Sensing, 71:12–33, July 2012. ISSN 0924-2716. doi:
10.1016/j.isprsjprs.2012.04.004. URL https://www.sciencedirect.com/science/article/

pii/S0924271612000779.

A. Gueziec, G. Taubin, F. Lazarus, and B. Hom. Cutting and stitching: Converting sets of
polygons to manifold surfaces. Visualization and Computer Graphics, IEEE Transactions on, 7:
136–151, May 2001. doi: 10.1109/2945.928166.

P. Hachenberger and L. Kettner. 3D Boolean Operations on Nef Polyhedra. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.

6/Manual/packages.html#PkgNef3.

R. Hajji and H. Jarar Oulidi. Development of the BIM Model. In Building Informa-
tion Modeling for a Smart and Sustainable Urban Space, pages 41–62. John Wiley & Sons,
Ltd, 2021. ISBN 978-1-119-88547-4. doi: 10.1002/9781119885474.ch3. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9781119885474.ch3. Section: 3 eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119885474.ch3.

P. S. Heckbert and M. Garland. Optimal triangulation and quadric-based surface sim-
plification. Computational Geometry, 14(1):49–65, Nov. 1999. ISSN 0925-7721. doi: 10.
1016/S0925-7721(99)00030-9. URL https://www.sciencedirect.com/science/article/

pii/S0925772199000309.

S. Hert and S. Schirra. 2D Convex Hulls and Extreme Points. In CGAL User and Reference Man-
ual. CGAL Editorial Board, 5.6 edition, 2023a. URL https://doc.cgal.org/5.6/Manual/

packages.html#PkgConvexHull2.

S. Hert and S. Schirra. 3D Convex Hulls. In CGAL User and Reference Manual. CGAL Edito-
rial Board, 5.6 edition, 2023b. URL https://doc.cgal.org/5.6/Manual/packages.html#

PkgConvexHull3.

J. Huang, J. Stoter, R. Peters, and L. Nan. City3D: Large-Scale Building Reconstruction from
Airborne LiDAR Point Clouds. Remote Sensing, 14(9):2254, Jan. 2022. ISSN 2072-4292. doi:
10.3390/rs14092254. URL https://www.mdpi.com/2072-4292/14/9/2254. Number: 9 Pub-
lisher: Multidisciplinary Digital Publishing Institute.

C. Jamin, S. Pion, and M. Teillaud. 3D Triangulations. In CGAL User and Reference Man-
ual. CGAL Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.6/Manual/

packages.html#PkgTriangulation3.

F. Javadnejad, R. Slocum, D. Gillins, M. Olsen, and C. Parrish. Dense Point Cloud Quality
Factor as Proxy for Accuracy Assessment of Image-Based 3D Reconstruction. Journal of Sur-
veying Engineering, 147:04020021–1, Feb. 2021. doi: 10.1061/(ASCE)SU.1943-5428.0000333.

A. K. Jebur. Application of 3D City Model and Method of Create of 3D Model- A Review Paper.
Saudi Journal of Civil Engineering, 6(4):95–107, Apr. 2022. ISSN 25232657, 25232231. doi:
10.36348/sjce.2022.v06i04.005. URL https://saudijournals.com/media/articles/SJCE_

64_95-107.pdf.

Y. Jun. A piecewise hole filling algorithm in reverse engineering. Computer-Aided Design, 37
(2):263–270, Feb. 2005. ISSN 0010-4485. doi: 10.1016/j.cad.2004.06.012. URL https://www.

sciencedirect.com/science/article/pii/S0010448504001320.

140

https://www.sciencedirect.com/science/article/pii/S0924271612000779
https://www.sciencedirect.com/science/article/pii/S0924271612000779
https://doc.cgal.org/5.6/Manual/packages.html#PkgNef3
https://doc.cgal.org/5.6/Manual/packages.html#PkgNef3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119885474.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119885474.ch3
https://www.sciencedirect.com/science/article/pii/S0925772199000309
https://www.sciencedirect.com/science/article/pii/S0925772199000309
https://doc.cgal.org/5.6/Manual/packages.html#PkgConvexHull2
https://doc.cgal.org/5.6/Manual/packages.html#PkgConvexHull2
https://doc.cgal.org/5.6/Manual/packages.html#PkgConvexHull3
https://doc.cgal.org/5.6/Manual/packages.html#PkgConvexHull3
https://www.mdpi.com/2072-4292/14/9/2254
https://doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3
https://doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3
https://saudijournals.com/media/articles/SJCE_64_95-107.pdf
https://saudijournals.com/media/articles/SJCE_64_95-107.pdf
https://www.sciencedirect.com/science/article/pii/S0010448504001320
https://www.sciencedirect.com/science/article/pii/S0010448504001320

Bibliography

K. Katrioplas and M. Rouxel-Labbé. Optimal Bounding Box. In CGAL User and Reference
Manual. CGAL Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.6/Manual/

packages.html#PkgOptimalBoundingBox.

L. P. Kobbelt, J. Vorsatz, and U. a. Labsik. A Shrink Wrapping Approach to Remeshing Polyg-
onal Surfaces. Computer Graphics Forum, 18(3):119–130, 1999. ISSN 1467-8659. doi: 10.1111/
1467-8659.00333. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.

00333. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00333.

T. Kolbe, G. Gröger, and L. Plümer. CityGML - Interoperable access to 3D city mod-
els. Geo-information for Disaster Management, Jan. 2005. ISSN 978-3-540-24988-7. doi:
10.1007/3-540-27468-5 63.

T. H. Kolbe and A. Donaubauer. Semantic 3D City Modeling and BIM. In W. Shi, M. F.
Goodchild, M. Batty, M.-P. Kwan, and A. Zhang, editors, Urban Informatics, The Ur-
ban Book Series, pages 609–636. Springer, Singapore, 2021. ISBN 9789811589836. doi:
10.1007/978-981-15-8983-6 34. URL https://doi.org/10.1007/978-981-15-8983-6_34.

T. H. Kolbe and G. Gröger. Towards unified 3D city models. 2003. URL https://mediatum.

ub.tum.de/1145769.

T. H. Kolbe, T. Kutzner, C. S. Smyth, C. Nagel, C. Roensdorf, and C. Heazel. OGC City
Geography Markup Language (CityGML) Part 1: Conceptual Model Standard, Sept. 2021.
URL http://www.opengis.net/doc/IS/CityGML-1/3.0.

H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, and F. Bruhin. pytest x.y,
2004. URL https://github.com/pytest-dev/pytest. original-date: 2015-06-15T20:28:27Z.

V. K. Kurakula and M. Kuffer. 3D Noise Modeling for Urban Environmental Planning and
Management. 2008. Meeting Name: REAL CORP.

A. Köninger and S. Bartel. 3d-Gis for Urban Purposes. GeoInformatica, 2(1):79–103, Mar.
1998. ISSN 1573-7624. doi: 10.1023/A:1009797106866. URL https://doi.org/10.1023/A:

1009797106866.

A. Labetski, K. Kumar, H. Ledoux, and J. Stoter. A metadata ADE for CityGML. Open
Geospatial Data, Software and Standards, 3(1):16, Nov. 2018. ISSN 2363-7501. doi: 10.1186/
s40965-018-0057-4. URL https://doi.org/10.1186/s40965-018-0057-4.

R. landsurveyors. Choosing the Right Technology: Lidar or Photogrammetry for
Accurate Drone Surveying, Apr. 2023. URL https://www.rvslandsurveyors.com/

lidar-or-photogrammetry.

H. Ledoux. On the Validation of Solids Represented with the International
Standards for Geographic Information. Computer-Aided Civil and Infrastructure
Engineering, 28(9):693–706, 2013. ISSN 1467-8667. doi: 10.1111/mice.12043.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12043. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12043.

H. Ledoux. How useful are current 3D city models?, Mar. 2017. URL https://speakerdeck.

com/hugoledoux/how-useful-are-current-3d-city-models.

H. Ledoux. val3dity: validation of 3D GIS primitives according to the international standards.
Open Geospatial Data, Software and Standards, 3(1):1, Feb. 2018. ISSN 2363-7501. doi: 10.1186/
s40965-018-0043-x. URL https://doi.org/10.1186/s40965-018-0043-x.

141

https://doc.cgal.org/5.6/Manual/packages.html#PkgOptimalBoundingBox
https://doc.cgal.org/5.6/Manual/packages.html#PkgOptimalBoundingBox
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00333
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00333
https://doi.org/10.1007/978-981-15-8983-6_34
https://mediatum.ub.tum.de/1145769
https://mediatum.ub.tum.de/1145769
http://www.opengis.net/doc/IS/CityGML-1/3.0
https://github.com/pytest-dev/pytest
https://doi.org/10.1023/A:1009797106866
https://doi.org/10.1023/A:1009797106866
https://doi.org/10.1186/s40965-018-0057-4
https://www.rvslandsurveyors.com/lidar-or-photogrammetry
https://www.rvslandsurveyors.com/lidar-or-photogrammetry
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12043
https://speakerdeck.com/hugoledoux/how-useful-are-current-3d-city-models
https://speakerdeck.com/hugoledoux/how-useful-are-current-3d-city-models
https://doi.org/10.1186/s40965-018-0043-x

Bibliography

H. Ledoux and D. Balazs. CityJSON Specifications 2.0.0, Sept. 2023. URL https://www.

cityjson.org/specs/2.0.0/.

H. Ledoux, K. Ohori, and M. Meijers. A triangulation-based approach to automatically repair
GIS polygons. Computers & Geosciences, 66, May 2014. doi: 10.1016/j.cageo.2014.01.009.

H. Ledoux, K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis. CityJSON:
a compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data,
Software and Standards, 4(1):4, June 2019. ISSN 2363-7501. doi: 10.1186/s40965-019-0064-0.
URL https://doi.org/10.1186/s40965-019-0064-0.

Y. K. Lee, C. K. Lim, H. Ghazialam, H. Vardhan, and E. Eklund. Surface mesh generation for
dirty geometries by the Cartesian shrink-wrapping technique. Engineering with Computers,
26(4):377–390, Aug. 2010. ISSN 1435-5663. doi: 10.1007/s00366-009-0171-0. URL https:

//doi.org/10.1007/s00366-009-0171-0.

B. Lei, R. Stouffs, and F. Biljecki. Assessing and benchmarking 3D city models. International
Journal of Geographical Information Science, 37(4):788–809, Apr. 2023. ISSN 1365-8816. doi:
10.1080/13658816.2022.2140808. URL https://doi.org/10.1080/13658816.2022.2140808.
Publisher: Taylor & Francis eprint: https://doi.org/10.1080/13658816.2022.2140808.

P. Liepa. Filling holes in meshes. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing, SGP ’03, pages 200–205, Goslar, DEU, June 2003. Eurographics
Association. ISBN 978-1-58113-687-6.

P. Lindstrom and G. Turk. Image-driven simplification. ACM Trans. Graph., 19(3):204–241,
July 2000. ISSN 0730-0301. doi: 10.1145/353981.353995. URL https://dl.acm.org/doi/10.

1145/353981.353995.

S. Loriot, M. Rouxel-Labbé, J. Tournois, and I. O. Yaz. Polygon Mesh Processing. In CGAL User
and Reference Manual. CGAL Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.

org/5.6/Manual/packages.html#PkgPolygonMeshProcessing.

B. Mao. Visualisation and Generalisation of 3D City Models. 2011. URL https://urn.kb.se/

resolve?urn=urn:nbn:se:kth:diva-48174. Publisher: KTH Royal Institute of Technology.

K. McHenry and P. Bajcsy. An Overview of 3D Data Content, File Formats and Viewers.
Technical Report, 2008.

A. Mikchevitch and J.-P. Pernot. Methodology for automatic recovering of 3D partitions from
unstitched faces of non-manifold CAD models. Engineering with Computers, 31:73–84, Sept.
2013. doi: 10.1007/s00366-013-0325-y.

D. T. Mulder. Automatic repair of geometrically invalid 3D City Building models using a voxel-
based repair method. 2015. URL https://repository.tudelft.nl/islandora/object/

uuid%3A8ef4459d-b940-4007-bc3c-d87349015129.

T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle Intersection. Journal of Graph-
ics Tools, 2(1):21–28, Jan. 1997. ISSN 1086-7651. doi: 10.1080/10867651.1997.10487468. URL
https://doi.org/10.1080/10867651.1997.10487468. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/10867651.1997.10487468.

142

https://www.cityjson.org/specs/2.0.0/
https://www.cityjson.org/specs/2.0.0/
https://doi.org/10.1186/s40965-019-0064-0
https://doi.org/10.1007/s00366-009-0171-0
https://doi.org/10.1007/s00366-009-0171-0
https://doi.org/10.1080/13658816.2022.2140808
https://dl.acm.org/doi/10.1145/353981.353995
https://dl.acm.org/doi/10.1145/353981.353995
https://doc.cgal.org/5.6/Manual/packages.html#PkgPolygonMeshProcessing
https://doc.cgal.org/5.6/Manual/packages.html#PkgPolygonMeshProcessing
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48174
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48174
https://repository.tudelft.nl/islandora/object/uuid%3A8ef4459d-b940-4007-bc3c-d87349015129
https://repository.tudelft.nl/islandora/object/uuid%3A8ef4459d-b940-4007-bc3c-d87349015129
https://doi.org/10.1080/10867651.1997.10487468

Bibliography

R. Nouvel, M. Zirak, V. Coors, and U. Eicker. The influence of data quality on urban heating
demand modeling using 3D city models. Computers, Environment and Urban Systems, 64:
68–80, July 2017. ISSN 0198-9715. doi: 10.1016/j.compenvurbsys.2016.12.005. URL https:

//www.sciencedirect.com/science/article/pii/S0198971516304306.

G.-A. Nys, F. Poux, and R. Billen. CityJSON Building Generation from Airborne LiDAR 3D
Point Clouds. ISPRS International Journal of Geo-Information, 9(9):521, Sept. 2020. ISSN 2220-
9964. doi: 10.3390/ijgi9090521. URL https://www.mdpi.com/2220-9964/9/9/521. Number:
9 Publisher: Multidisciplinary Digital Publishing Institute.

K. Ohori, H. Ledoux, and R. peters. 3D moddeling of the build enviroment. Feb. 2022. URL
https://github.com/tudelft3d/3dbook/releases.

K. A. Ohori, H. Ledoux, and M. Meijers. Validation and Automatic Repair of Pla-
nar Partitions Using a Constrained Triangulation. Photogrammetrie - Fernerkundung -
Geoinformation, pages 613–630, Oct. 2012. ISSN ,. doi: 10.1127/1432-8364/2012/0143.
URL https://www.schweizerbart.de/papers/pfg/detail/2012/78561/Validation_and_

Automatic_Repair_of_Planar_Partitio?af=crossref. Publisher: Schweizerbart’sche Ver-
lagsbuchhandlung.

I. Paden. Automatic reconstruction of 3D city models tailored to urban flow simulations.
page 59, June 2021.

G. Park, C. Kim, M. Lee, and C. Choi. Building Geometry Simplification for Improving Mesh
Quality of Numerical Analysis Model. Applied Sciences, 10(16):5425, Jan. 2020. ISSN 2076-
3417. doi: 10.3390/app10165425. URL https://www.mdpi.com/2076-3417/10/16/5425.
Number: 16 Publisher: Multidisciplinary Digital Publishing Institute.

H. Rashidan, A. Rahman, I. Musliman, and G. Buyuksalih. Triangular Mesh Approach for
Automatic Repair of Missing Surfaces in LoD2 Building Models. The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W3-2021:281–286,
Jan. 2022. doi: 10.5194/isprs-archives-XLVI-4-W3-2021-281-2022.

P. Redweik, P. Teves-Costa, I. Vilas-Boas, and T. Santos. 3D City Models as a Visual Support
Tool for the Analysis of Buildings Seismic Vulnerability: The Case of Lisbon. International
Journal of Disaster Risk Science, 8(3):308–325, Sept. 2017. ISSN 2192-6395. doi: 10.1007/
s13753-017-0141-x. URL https://doi.org/10.1007/s13753-017-0141-x.

B. Reitinger, C. Zach, and D. Schmalstieg. Augmented Reality Scouting for Interactive 3D
Reconstruction. pages 219–222, Jan. 2007. doi: 10.1109/VR.2007.352485.

B. Saeidian, A. Rajabifard, B. Atazadeh, and M. Kalantari. A semantic 3D city model for un-
derground land administration: Development and implementation of an ADE for CityGML
3.0. Tunnelling and Underground Space Technology, 140:105267, Oct. 2023. ISSN 0886-7798. doi:
10.1016/j.tust.2023.105267. URL https://www.sciencedirect.com/science/article/pii/

S0886779823002870.

M. Seel. 2D Boolean Operations on Nef Polygons. In CGAL User and Reference Manual. CGAL
Editorial Board, 5.6 edition, 2023. URL https://doc.cgal.org/5.6/Manual/packages.

html#PkgNef2.

M. Sindram, T. Machl, H. Steuer, M. Pültz, and T. Kolbe. Voluminator 2.0 – Speeding Up
the Approximation of the Volume of Defective 3D Building Models. ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, III-2:29–36, June 2016. doi:
10.5194/isprs-annals-III-2-29-2016.

143

https://www.sciencedirect.com/science/article/pii/S0198971516304306
https://www.sciencedirect.com/science/article/pii/S0198971516304306
https://www.mdpi.com/2220-9964/9/9/521
https://github.com/tudelft3d/3dbook/releases
https://www.schweizerbart.de/papers/pfg/detail/2012/78561/Validation_and_Automatic_Repair_of_Planar_Partitio?af=crossref
https://www.schweizerbart.de/papers/pfg/detail/2012/78561/Validation_and_Automatic_Repair_of_Planar_Partitio?af=crossref
https://www.mdpi.com/2076-3417/10/16/5425
https://doi.org/10.1007/s13753-017-0141-x
https://www.sciencedirect.com/science/article/pii/S0886779823002870
https://www.sciencedirect.com/science/article/pii/S0886779823002870
https://doc.cgal.org/5.6/Manual/packages.html#PkgNef2
https://doc.cgal.org/5.6/Manual/packages.html#PkgNef2

Bibliography

S. P. Singh, K. Jain, and V. R. Mandla. Virtual 3d City Modeling: Techniques and Appli-
cations. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, XL2:73–91, Aug. 2013. ISSN 2194-9034 The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences. doi: 10.5194/
isprsarchives-XL-2-W2-73-2013. URL https://ui.adsabs.harvard.edu/abs/2013ISPAr.

XL2b..73S. ADS Bibcode: 2013ISPAr.XL2b..73S.

A. Stadler and T. H. Kolbe. Spatio-semantic coherence in the integration of 3D city models.
2007. URL https://mediatum.ub.tum.de/1145757.

J. E. Stoter and P. J. M. van Oosterom. Technological aspects of a full 3D
cadastral registration. International Journal of Geographical Information Science, 19(6):
669–696, July 2005. ISSN 1365-8816. doi: 10.1080/13658810500106042. URL
https://doi.org/10.1080/13658810500106042. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/13658810500106042.

L. Subramaniam. PARTITION OF A NON-SIMPLE POLYGON INTO SIMPLE POLYGONS. PhD
thesis, 2003.

K. Takayama, A. Jacobsen, L. Kavan, and O. Sorkine-Hornung. A Simple Method for Cor-
recting Facet Orientations in Polygon Meshes Based on Ray Casting. Journal of Com-
puter Graphics Techniques (JCGT), 3(4):53–63, Dec. 2014. ISSN 2331-7418. URL https:

//users.cs.utah.edu/~ladislav/takayama14simple/takayama14simple.html.

M. Tang, M. Lee, and Y. J. Kim. Interactive Hausdorff Distance Computation for General
Polygonal Models.

L. Tekumalla and E. Cohen. A Hole-Filling Algorithm for Triangular Meshes. Jan. 2004.

the International Organization for Standardization and O. G. Consortium. ISO 19125-
1:2004(en), Geographic information — Simple feature access — Part 1: Common architec-
ture, 2004. URL https://www.iso.org/obp/ui/en/#iso:std:iso:19125:-1:ed-1:v2:en.

the International Organization for Standardization and O. G. Consortium. ISO 19115-1:2014,
2014. URL https://www.iso.org/standard/53798.html.

the International Organization for Standardization and O. G. Consortium. ISO 19107:2019(en),
Geographic information — Spatial schema, 2019. URL https://www.iso.org/obp/ui/en/

#iso:std:iso:19107:ed-2:v1:en.

the International Organization for Standardization and O. G. Consortium. ISO 19115-3:2023,
2023. URL https://www.iso.org/standard/80874.html.

J. N. H. van Liempt. CityJSON: does (file) size matter? 2020. URL https://repository.

tudelft.nl/islandora/object/uuid%3A4aad07f4-8f64-46b1-aad3-3d4abe36c5bf.

D. Wagner, N. Alam, and V. Coors. Geometric validation of 3D city models based on stan-
darized quality criteria. In Urban and Regional Data Management, UDMS Annual 2013 - Pro-
ceedings of the Urban Data Management Society Symposium 2013, pages 197–210. May 2013.
ISBN 978-1-138-00063-6. doi: 10.1201/b14914-24. Journal Abbreviation: Urban and Regional
Data Management, UDMS Annual 2013 - Proceedings of the Urban Data Management Soci-
ety Symposium 2013.

144

https://ui.adsabs.harvard.edu/abs/2013ISPAr.XL2b..73S
https://ui.adsabs.harvard.edu/abs/2013ISPAr.XL2b..73S
https://mediatum.ub.tum.de/1145757
https://doi.org/10.1080/13658810500106042
https://users.cs.utah.edu/~ladislav/takayama14simple/takayama14simple.html
https://users.cs.utah.edu/~ladislav/takayama14simple/takayama14simple.html
https://www.iso.org/obp/ui/en/#iso:std:iso:19125:-1:ed-1:v2:en
https://www.iso.org/standard/53798.html
https://www.iso.org/obp/ui/en/#iso:std:iso:19107:ed-2:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso:19107:ed-2:v1:en
https://www.iso.org/standard/80874.html
https://repository.tudelft.nl/islandora/object/uuid%3A4aad07f4-8f64-46b1-aad3-3d4abe36c5bf
https://repository.tudelft.nl/islandora/object/uuid%3A4aad07f4-8f64-46b1-aad3-3d4abe36c5bf

Bibliography

D. Wagner, N. Alam, M. Wewetzer, M. Pries, and V. Coors. Methods for Geometric Data
Validation of 3d City Models. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL15:729–735, Dec. 2015. ISSN 2194-9034 The In-
ternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences. doi: 10.5194/isprsarchives-XL-1-W5-729-2015. URL https://ui.adsabs.harvard.

edu/abs/2015ISPArXL15..729W. ADS Bibcode: 2015ISPArXL15..729W.

D. Wagner, H. Ledoux, C. Roensdorf, S. Thum, D. Hintz, F. Biljecki, J. Stoter, E. Casper,
B. Joachim, V. Coors, and L. Walstijn. OGC CityGML Quality Interoperability Experiment.
Aug. 2016.

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes,
T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-
Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t Hoen,
R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer,
B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sen-
gstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulli-
gen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons.
The FAIR guiding principles for scientific data management and stewardship. Scien-
tific Data, 3(1):160018, Mar. 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.18. URL
https://www.nature.com/articles/sdata201618. Publisher: Nature Publishing Group.

B. Willenborg, M. Sindram, and T. Kolbe. Semantic 3D City Models Serving as Information
Hub for 3D Field Based Simulations. June 2016.

B. Willenborg, M. Sindram, and T. H. Kolbe. Applications of 3D City Models for a Better
Understanding of the Built Environment. In M. Behnisch and G. Meinel, editors, Trends
in Spatial Analysis and Modelling: Decision-Support and Planning Strategies, Geotechnologies
and the Environment, pages 167–191. Springer International Publishing, Cham, 2018. ISBN
978-3-319-52522-8. doi: 10.1007/978-3-319-52522-8 9. URL https://doi.org/10.1007/

978-3-319-52522-8_9.

H. Zhang and K. E. Hoff. Fast backface culling using normal masks. In Proceedings of the 1997
symposium on Interactive 3D graphics, I3D ’97, pages 103–ff., New York, NY, USA, Apr. 1997.
Association for Computing Machinery. ISBN 978-0-89791-884-8. doi: 10.1145/253284.253314.
URL https://doi.org/10.1145/253284.253314.

W. Zhao, S. Gao, and H. Lin. A Robust Hole-Filling Algorithm for Triangular Mesh. volume 23,
pages 22–22, Nov. 2007. ISBN 978-1-4244-1579-3. doi: 10.1109/CADCG.2007.4407836.

Z. Zhao, H. Ledoux, and J. Stoter. Automatic repair of CityGML LOD2 buildings using shrink-
wrapping. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
II-2/W1:309–317, Sept. 2013. doi: 10.5194/isprsannals-II-2-W1-309-2013.

145

https://ui.adsabs.harvard.edu/abs/2015ISPArXL15..729W
https://ui.adsabs.harvard.edu/abs/2015ISPArXL15..729W
https://www.nature.com/articles/sdata201618
https://doi.org/10.1007/978-3-319-52522-8_9
https://doi.org/10.1007/978-3-319-52522-8_9
https://doi.org/10.1145/253284.253314

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main font
is Palatino.

	Introduction
	Introduction
	Motivation and problem statement
	Research Objectives
	The scope of this Thesis
	Thesis outline

	Background
	Acquisition of 3D city models
	LiDAR
	Photogrammetry

	Characterization of 3D City models
	Level of detail of 3D city models
	Geometry - ISO 19107
	Semantics
	Appearance - Materials & textures
	Metadata

	Storage of 3D city models
	Semantic 3D city models - CityGML and CityJSON
	Geometry file format - Wavefront OBJ format
	Simple 3D feature exchange - tu3djson

	Validation of geometries
	Validation of Semantics

	Existing repair methods
	Odd-Even Paradigm vs. SetDiff Paradigm
	Geometric repair
	Local repair methods
	Global repair methods

	Simplifying meshes
	Adding and/or repairing semantics

	Methodology for automatic repair of semantics 3D city models
	Validation by val3dity
	Ring level repair approaches
	Polygon level repair approaches
	Shell level repair approaches
	Solid level repair approaches
	Solid interaction level repair approaches
	BuildingPart level repair approaches
	Global approach

	Repairing 3D city models for specific applications
	Additional validity requirements for different use cases
	Use case: Computational fluid dynamics (CFD)
	Use case: Energy demand
	Use case: Visualization
	Use case: Estimation of solar irradiation

	Implementation of AUTOr3pair
	How to use AUTOr3pair
	Program specifics
	Input
	Repair framework
	Post-processing of the 3D City-model
	Output

	Parameters
	Use case parameters

	Experiments
	Unit tests
	Effect of (use cases) parameters
	disadvantage of many parameters

	Repairing well-known 3D city models
	3DBAG
	Brussel
	Data-sets CityJSON website

	Discussion
	Specific repair situations
	Unrepairable non-manifolds
	"Hardcoded" repair decisions
	Dependence on val3idty report schema
	Usability of repair report
	User friendliness
	Losing original groups OBJ
	Testing preserving of semantics
	Need for generalization for CFD
	Repair intersection between geometries

	Conclusions
	Research overview
	Contributions
	Limitations
	Global repairs are needed
	What to keep
	OBJ non-repairs
	Decisions per object
	Floating point errors
	File sizes
	Texture deletion

	Recommendations for future work
	More input and output file types
	Additional repair for more use-cases
	Intergrating val3dity and AUTOr3pair into one tool
	Automatic validation and repair for more semantic values
	Validation for preserving of semantics
	Intergrating automatic validation and repair for LODs
	Research on keeping and extending textures
	3D GIS application for preparing 3D City data

	Use case Requirements
	Schema`s of file types used
	CityJSON
	Wavefront OBJ
	TU3djson

	Algorithm implementation
	Reproducibility and self-assessment

