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Information exchange through the countless webservices is central
in the current age of technology, which increases the importance for
security in these developments. One such security feature is the
validation of data based on standardized data structures. The aim
of this thesis is to develop a flexible hardware-accelerated text-based
recognizer that provides this strict syntax validation.
To this end, a parsing machine architecture was adopted in order to
fulfill the flexibility and strict recognition requirements. The parsing
machine architecture was developed by formalizing the fundamental
PEG expressions and creating a micro-architecture based on these
PEG expressions, which led to the specification of the PPEG instruc-
tion set architecture. This architecture was then mathematically for-
malized and a proof for its strict adherence to the formalized PEG
behavior was provided. The parsing machine architecture was im-
plemented on an FPGA, a virtualization of the parsing machine was
implemented in Python for easy analysis of its behavior, and a PEG
compiler and assembler were developed for the PEG-PPEG transla-
tion. Finally, a memoization unit was developed as an extension to
the parsing machine for an improved parsing throughput.
By running benchmarks for CSV, XML, JSON, and Java files on

the PPEG parsing machine implementation, its parsing behavior was analyzed and compared to existing
solutions. This showed that the minimum stack sizes depend solely on the size and complexity of the PEG;
the percentage of clock cycles spent on jumps in instruction and data memory is substantial, ranging from
18% and 40%; the PPEG-compiled binary code size is relatively small compared to other solutions; and
the throughput of the PPEG parsing machine is comparable if not better than other solutions running on
faster hardware. Finally, the memoization unit was found to benefit large complex grammars more than
small grammars.
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Introduction 1
Information exchange through the multitude of today’s webservices is central in the
current age of technology and interconnectedness and security plays an increasingly im-
portant role in its development. Security on the network traffic level is implemented
universally in the form of filter applications such as firewalls. These intercept and filter
incoming and outgoing network packets based on a set of policies. Using deep packet
inspection techniques, the contents of these packets may be inspected and validated at a
surface level. However, these applications often implement a pattern matching matching
technique, which does not perform exact syntactic and semantic validation of its con-
tents. Moreover, software applications can be slow and are prone to existing exploits of
the hardware they run on. Finally, the lack of flexibility has held back the development
of hardware-oriented solutions in this space.

This project aims to investigate the possibilities for developing a flexible validation ma-
chine for text-oriented data, such as common data structures like XML, JSON, and CSV.
Applications for validating or recognizing this type of data based on a set of policies falls
under the field of formal grammar and parsing theory, which itself is a field of computer
science. Though much research has been done on general parsing algorithms, almost
none focus on implementations in hardware and even fewer are easily reconfigurable for
different data types.

To this end, this project focuses on the exploration of a new direction in hardware-
accelerated recognizers and parsers. Special attention is given to its flexibility. That is,
the recognizer must be easily reconfigurable such that different policies may be changed
without a complete redesign of the system. Moreover, the design must be extensible in
order to potentially enhance performance and add more filter capabilities.

1.1 Problem Statement and Goals

Main Research Question
The main research question that this thesis aims to answer is as follows:

• How can a flexible text-based recognizer be built with digital electronics?

In the context of this thesis, flexibility has two distinct meanings. First, the recog-
nizer needs to be able to be reconfigured for each set of policies without changing the
underlying hardware design. Second, minimal changes to the core architecture should
be required for adding new recognition functionalities, i.e., optimizations or additional
recognition expressivity.

1



2 CHAPTER 1. INTRODUCTION

Moreover, this project assumes that the text-based data is ASCII-encoded. However, to
facilitate the recognition of raw binary data, the smallest data unit is assumed to be 8
bits.

Additional Research Questions
The list below contains related additional research questions to be answered by this body
of work:

• What are the design considerations for choosing a hardware-oriented recognition
technique?

• How can performance be enhanced by extending an existing base design?

• How does an implementation in hardware compare to existing software implemen-
tations?

Goals
To answer the research questions posed above, the following goals are defined:

1. Define the recognition strategy for a hardware-based recognizer that satisfies flex-
ibility property defined in Section 1.1.

2. Define extensions that enhance the performance of a base design.

3. Implement the defined recognition strategy in hardware.

4. Evaluate the performance of the hardware implementation.

1.2 Methodology

In order to achieve the aforementioned goals, the following steps are taken towards the
completion of those goals:

• (Goal 1) Investigate existing implementations in software and hardware and deter-
mine their strengths and weaknesses.

• (Goal 1) Select the recognition strategy that best fits the flexibility constraint.

• (Goal 1) Mathematically formalize the selected recognition strategy to allow for a
rigid proof of correct operation.

• (Goal 1) Encapsulate the functionality of the envisioned hardware solution in a
micro-architecture to allow for extensibility and ease of implementation.

• (Goal 1) Mathematically formalize the functionality of the envisioned hardware
solution based on the micro-architecture formalization.

• (Goal 1) Proof that the selected recognition strategy is adhered to in all aspects
by the formally defined hardware solution.
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• (Goal 1) If time permits, implement a software emulator of the micro-architecture
design to perform functional testing and design-space exploration.

• (Goal 2) Investigate possible extensions that enhance performance of the base
design.

• (Goal 2) If time permits, implement the aforementioned extensions in the software
emulator.

• (Goal 2) Analyze the performance of the design with extensions.

• (Goal 3) Implement the micro-architecture design in an FPGA-based platform.

• (Goal 3) Implement necessary peripherals in the same FPGA-based platform for
communication with the implemented recognizer.

• (Goal 4) Define benchmarks that are representative of the use case.

• (Goal 4) Run the benchmarks on the implemented software emulator and design
implemented in the FPGA-based platform.

• (Goal 4) Analyze the benchmark results of the hardware design, software emulator,
and other similar existing recognition implementations.

Core Hardware Design Principles
Ideally, an engineer has time to iterate through several solutions of a problem in order
to ultimately reach a “good” final design. Unfortunately, time does not permit such an
extensive iterative design-implementation-measurement process. For this reason, when
following the methodology defined in this section, two main design principles are taken
into account when designing a first working hardware-accelerated recognizer. These core
design principles are as follows:

• Functionality over optimization.

• Simplicity over complexity.

1.3 Thesis Outline

The remainder of this thesis is divided into the five chapters. Chapter 2 presents the
necessary background information for understanding design choices and results in sub-
sequent chapters. The end of the chapter contains a detailed analysis of all design
considerations, which results in the selection of the best-fit recognition technique which
forms the basis of the eventual recognition design. Chapter 3 contains a complete ac-
count of the design process for the new hardware-accelerated recognizer. The design is
first implemented in software as an emulator, which is part of Chapter 4. This chap-
ter furthermore contains information about possible extensions to the base design and
about additional software tools that help development. Chapter 5 analyzes the results
that were obtained by running benchmarks on the new design and compares those with
existing solutions. Finally, Chapter 6 summarizes the work that was achieved and the
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results that it produced. Moreover, the main contributions and possible future work are
also listed in this chapter.



Background 2
The aim of this chapter is to provide background information on important theory that
forms the basis of the rest of this report. Because this work focuses on the analysis of
text, the background consists of theory of formal grammars as well as parsing algorithms.

Section 2.1 presents a general explanation of formal grammars and its relation to syntax
specification and text generation. Based on these fundamentals, syntax analysis is dis-
cussed in Section 2.2 in the form of parsing theory. Here, parse trees and general parsing
techniques are the focus. Next, due to a limitation in formal grammars, another type of
grammar, namely analytic grammars, are discussed in Section 2.3. Section 2.4 discusses
one type of analytic grammar in particular: parsing expression grammars. Because the
goal is to create a hardware-oriented recognition implementation, Section 2.5 discusses
hardware-accelerated parsers. Finally, Section 2.6 combines the information discussed
in previous sections to more precisely focus on a single grammar and parsing technique
that fits the requirements as discussed in the Introduction.

This chapter contains more information then strictly necessary for the reader who already
has a basic understanding of parsing. Readers already familiar with formal grammars
and parsing algorithms are recommended to read Sections 2.4, 2.5, and 2.6.

2.1 Formal Grammars

In the field of formal language theory, a grammar defines syntactic rules that describes
how valid strings should be formulated for a given language. More specifically, a formal
grammar defines a formal language (valid sets of strings) with finite means, while the
language itself may be infinite. Note that no meaning is attributed to components of
said language, only their syntax. [6]

Most formal grammars are written in such a way as to define how strings conforming
to that grammar must be formed, starting with a so-called “start symbol” from which
the formulation process starts. This way of thinking therefore aligns with the concept
of a language generator. Depending on the application, however, it might be better to
think of a formal grammar as a language recognizer. That is, a grammar can be used to
recognize whether a particular string adheres that grammar definition.

A formal grammar G, as defined by Chomsky [7], consists of four components [6] [8]:

1. A finite vocabulary of symbols that appear in strings of the language, also known
as terminals. A set of terminals is denoted by Σ.

5
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2. Another finite vocabulary of additional symbols called non-terminals. A set of
non-terminals is denoted by N . It holds that no elements of N are present in Σ
and vice versa. In mathematical notation: N ∩ Σ = ϵ, where ϵ is the empty set.

3. A special non-terminal called the start-symbol, which is represented by S, where
S ∈ N .

4. And finally a finite set of production rules, denoted by P . In general, these pro-
duction rules are of the form:

(Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗

Note the use of the Kleene closure in the above definition for production rules: a unary
operation applied to a set of strings, denoted by V ∗ with V a set of strings. In this
context, it defines a new set containing the empty string and all strings of finite length
consisting of one or more arbitrary elements of V . For example, if V = {a, b, c}, then
V ∗ = {ϵ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...}. [9]

In total, a grammar is formally defined as a tuple: G = (Σ, N, S, P ). Moreover, individual
elements of the sets contained in this tuple are often represented in literature by the
following symbols:

• a, b, c, ... represent terminals.

• A,B,C, ... represent non-terminals.

• α, β, γ, ... represent strings of terminals and/or non-terminals.

Using these conventions, production rules may be defined such as α → β, which states
that string α can be replaced by string β. The application of this rule to a string
means that any substring equal to α will be replaced by β. For instance, applying the
production rule α→ β to the string xαy, produces the new string xβy, which is formally
notated with xαy =⇒

G
xβy. The operator =⇒

G
thus relates two strings if the second string

is obtained when a single production rule defined in grammar G is applied to the first
string. If zero or more production rules, defined by the grammar, are applied to one
string in order to obtain a second, the

∗
=⇒
G

operator is used. Similarly, if one or more

production rules are applied, the
+
=⇒
G

operator is used instead.

Generation of string α, consisting only of terminals in Σ, with grammar G is only possible
when starting from start-symbol S, after which a finite sequence of production rules
defined in P are applied. The intermediate sequence of strings that originate from S and
end with α together form the derivation of α. An example of a derivation of α = abcdefg
is as follows.

Given G = (Σ, N, S, P ), with Σ = {a, b, c, d, e, f, g}, N = {S,X, Y, Z},
and P = {S → XY , Xc→ abc , Y → Zfg , Z → de}, the generation of α according to

S
∗
=⇒
G

α can be achieved via the following derivation:
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S ⇒ XcY ⇒ abcY ⇒ abcZfg ⇒ abcdefg

The complete set of strings that can be generated with grammar G is called the language
of G, which is notated as L(G). This can be formally defined as [9]:

L(G) =
{
w

∣∣∣ w ∈ Σ∗ , S
∗
=⇒
G

w
}

(2.1)

In other words, the language L(G) defined by grammar G is the set of all combinations
of string w, where w is of finite length consisting only of zero or more arbitrary terminals
from ΣG, and can be derived starting from non-terminal SG by applying a finite number
of production rules from PG.

2.1.1 Chomsky Hierarchy

In the 1950’s, Noam Chomsky introduced formalisms to identify and organize formal
languages into four hierarchical levels of complexity [7]. This formulation, called the
Chomsky hierarchy, was originally meant to organize natural languages such as English.
However, it became apparent that the Chomsky hierarchy could also be used in other
fields, like Computer Science, where it is useful to define programming languages with
formal grammars as basis, as this can be related to parsing algorithms (see Section 2.2).
[6]

The four levels of complexity that were defined by Chomsky are at its core based on the
application of increasingly strict constraints to the production rules of formal grammars.
From least restrictive to most restrictive we have type-0 grammars to type-3 grammars.
Over the years since the introduction of the Chomsky hierarchy, many additional (in-
between) grammar types have been proposed [6] [8], but in this section only the original
four will be discussed in more detail.

2.1.1.1 Type-0 Grammars

Type-0 grammars, also called recursively enumerable grammars, are completely without
constraints on its production rules. As such, the production rules can be defined simply
as:

P =
{
α→ β

∣∣ α ̸= ϵ
}

(2.2)

From this definition, it is apparent that if a language may be described by any formal
grammar, it is also a recursively enumerable language and likewise its grammar can be
classified as a recursively enumerable grammar. [6] [9]
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2.1.1.2 Type-1 Grammars

The second type of formal grammars is called type-1 grammars. Within this type, two
distinct subtypes can be identified, namely monotonic grammars and context-sensitive
grammars.

Monotonic grammars, also known as noncontracting grammars, are derived by restricting
the type-0 production rules P to the following definition:

P =
{
α→ β

∣∣∣ α ̸= ϵ , |α| ≤ |β|
}

(2.3)

In this context, the notation |x| represents the length of string x or, equivalently, the
number of symbols in string x. Monotonic grammars are therefore those grammars whose
production rules all have fewer or an equal number of symbols on the left-hand side as
on the right-hand side.

The other subtype of type-1 grammars is the so-called context-sensitive grammars, ab-
breviated by CSG. These have a slightly different set of constraints that apply to their
production rules, namely:

P =
{
αAβ → αγβ

∣∣∣ A ∈ N , γ ̸= ϵ
}

(2.4)

In other words, the production rules of a context-sensitive grammar only translate a
single non-terminal A into another symbol γ (string of terminals, non-terminals, or
both). The type of grammar is aptly named, as it may be noted that the application of
the grammar’s production rules is dependent on the context. In the case of the above
definition, the process of the translation A→ γ is dependent on the context of A, which
is α and β on the left and right-hand side of A respectively.

It is worth mentioning that the restrictions imposed on monotonic grammar production
rules also implicitly appear in the production rules of CSGs. That is, with regard to
production rules, the length of the string on the left-hand side is always equal to or
smaller than the length of the string on the right-hand side. CSGs differ from monotonic
grammars in that they impose one additional constraint, which is that only a single
non-terminal may be rewritten for each production rule. As an example, the following
production rule is allowed by both monotonic and context-sensitive grammars:

αAβ → αγβ

But the production rule below is allowed by monotonic grammars only:

αABβ → αγδβ

Nevertheless, it can be proven that monotonic grammars and context-sensitive grammars
are equally powerful, meaning that each language that can be generated by a monotonic
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grammar a context-sensitive grammar exists that can express the same language, and
vice versa. [8] [9]

2.1.1.3 Type-2 Grammars

As before, the third type of grammars in the Chomsky hierarchy, called type-2 grammars
or context-free grammars (CFG), impose even more restrictions on the grammar’s pro-
duction rules. The context-free part of the name of this grammar already gives away the
additional restrictions on production rules with respect to context-sensitive grammars.
Namely, the production rules of context-free grammars are defined as follows:

P =
{
A→ α

∣∣∣ A ∈ N , α ̸= ϵ
}

(2.5)

It can be observed that CFGs only allow a single non-terminal A on the left-hand side
of production rules, which can be rewritten into a string of terminals and non-terminals
shown on the right-hand side. Because no other terminals or non-terminals may surround
the non-terminal on the left-hand side of production rules, the process of rewriting a
substring by means of applying production rules is not dependent on its surrounding
context, thereby being “context-free”. A consequence of this is the so-called production
independence property of CFGs, which states that whatever a non-terminal is rewritten
into is independent of what its neighbors are rewritten into. [8] [9]

The production independence property also benefits the process of recognizing strings as
part of a given context-free grammar. This is because a substring can be easily matched
to any of the production rules’ right-hand side, which produces only a single non-terminal
in return without the need for checking the substring’s context.

Context-free grammars are often represented in the so-called Backus-Naur Form (BNF).
BNF notation compacts multiple alternative production rules for the same non-terminal
into a single production rule. For example,

A→ abc

A→ def

can be written in BNF notation as

A→ abc | def

Here, the ‘|’ operator signals an unordered choice between multiple possible derivations
for the non-terminal on the left-hand side. It must be stressed that this grammar notation
does not care about the order of the right-hand side expressions. [10]
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2.1.1.4 Type-3 Grammars

The fourth and final type of formal grammars introduced by Chomsky is called type-3
grammars or regular grammars (REG). The most important additional constraint with
respect to type-2 grammars is that this type of grammar only allows a single non-terminal
on the right-hand side of its production rules. This can be formalized as follows:

P =
{
A→ a , A→ aB

∣∣∣ {A,B} ∈ N ; a ∈ Σ
}

(2.6)

In other words, each production rule in a regular grammar can only rewrite a single
non-terminal at a time (left-hand side) into either a single terminal or a single terminal
followed by a single non-terminal (right-hand side). Note that the preceding definition
only describes right-regular grammars, as opposed to left-regular grammars in which
the single non-terminal precedes the single terminal. However, when referred to regular
grammars, usually right-regular grammars are intended due to the prevalence of right-
regular grammars over left-regular grammars in literature. [8] [11]

Production rules of regular grammars leave out one important property inherent to
context-free grammars, thereby making regular grammars easier to convert into parsers
(see Section 2.2). This property is the recollection of production rules that came before.
An example of this property is shown below. Here, a snippet of a simple context-free
grammar is shown. During the process of applying production A, we find ourselves
trying to produce output for non-terminal B. Thus, we apply the production rule of
non-terminal B. However, when this production rule for B has been successfully applied,
we somehow have to recollect our last position in the production rule for A, such that we
may continue applying the production rule starting at non-terminal C. By not having
to store or recall previous positions in production rules during the process of parsing
strings, a simpler parsing algorithm may be used. [8]

A→ aBCd

B → w

2.2 Parsing Theory

Section 2.1 discussed how natural languages were formalized by Chomsky by means of
formal grammars. These grammars can be used to generate syntactically valid sentences
belonging to the language which the grammar describes. Instead of generating sentences,
formal grammars can also be used to recognize or validate whether a given sentence
adheres to a particular grammar. Going one step further, analyzing sentences based on
a grammar could produce information about how the sentence is constructed from the
grammatical elements in the form of a hierarchical data structure. This process is called
parsing and the hierarchical data structure that is often used to represent a parsed string
based on a formal grammar is called a parse tree.
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This section discusses parse trees and how they may be constructed based on a number
of different techniques.

2.2.1 Parse Trees

An example of parse trees is as follows. Given the CFG shown in Equation (2.7), we
want to parse the string “a × (a + a)”. The result is the parse tree as shown in Figure
2.1. Note that from this tree representation, the derivation order can still be deduced
and even the grammar itself may be reproduced.

S → A× P

P → (B)

A→ a

B → A+A

(2.7)

×

B( )

A A

a a

S

A P×

Figure 2.1: Parse tree of input string “a × (a + a)” corresponding to the grammar
definition defined in Equation (2.7).

Unlike the previous example, in general there is not necessarily a single parse tree that
can be generated for a given grammar and input string. This is exemplified by the
grammar shown in Equation (2.8) with which the input string “a+a×a” can be parsed.
There are two possible derivations and thus two possible parse trees, as presented in
Figure 2.2. The difference between the two derivations is the derivation order. The
parse tree in Figure 2.2a is obtained when expanding non-terminals from left to right,
which is appropriately called a leftmost derivation. Similarly, expanding non-terminals
from right to left is called a rightmost derivation and can be observed in Figure 2.2b.
Generally, only a single derivation direction is used in parsers, which would in this case
not produce an ambiguous parse. [8] [12]
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A→ A+A | A×A | a (2.8)

×

a

a ×

A A

A A

a

A

(a) Leftmost parse tree derivation.

× a

A

×A A

A A

a a

(b) Rightmost parse tree derivation.

Figure 2.2: Parse trees of input string “a+a×a” corresponding to the grammar definition
defined in Equation (2.8).

If two or more parse trees can be generated from parsing an arbitrary string with a given
grammar, that grammar is said to be ambiguous. Often times, generated parse trees are
used to further process some text. Consequently, the generation of only a single parse
tree is intended per parse, which warrants the exclusive use of unambiguous grammars.

The problem of unintentional ambiguous grammars can be observed in the infamous
“dangling else” construct [12]. Given the context-free grammar below:

S → if b then S else S | if b then S | a (2.9)

We want to parse the following text:

“if b then if b then a else a” (2.10)

There are, however, two distinct (leftmost) derivations associated with this CFG, which
are represented as the two parse trees shown in Figure 2.3. The difference between the
two parse trees is the construct to which the “else a”-tail of the input string is bound.
In Figure 2.3a the tail is bound to the “outermost” construct / non-terminal S, which
is equivalent to the string “if b then (if b then a) else a”. In contrast, in Figure 2.3b
the tail is bound to the “innermost” construct / non-terminal S, which is equivalent to
the string “if b then (if b then a else a)”.

From this example it becomes clear that a context-free grammar G is ambiguous if there
exists a sentence in the set of valid sentences L(G) which can be produced by two or
more distinct (left- or rightmost) derivations and thus parse trees. Importantly, it is
generally undecidable if a context-free grammar G is ambiguous. [8] [12]
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if then else

S

a

b S S

if b then S

a

(a) Tail bound to outermost construct.

if then

else

S

a

b S

if then S Sb

a

(b) Tail bound to innermost construct.

Figure 2.3: Parse trees of input string shown in Equation (2.10) corresponding to the
grammar definition defined in Equation (2.9).

2.2.2 Parsing Techniques

As previously explained, the job of a parser is to reproduce the derivation of how a
sentence is generated given a formal grammar which is ultimately represented as a parse
tree. To this end, this section first introduces two basic parsing methodologies: top-
down parsing and bottom-up parsing. Thereafter, additional parsing considerations are
discussed, such as predictive parsing and memoization techniques.

2.2.2.1 Top-Down Parsing

The first technique follows the same procedure as the example derivation shown in Section
2.1, which started with the start symbol and from there rederived the original sentence
by exploring the grammar’s production rules. This technique is called top-down parsing,
because the parse tree is derived starting at the top (start symbol). [8] [12]

Consider an example of a simple and naive top-down parsing approach, which assumes
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the following context-free grammar:

S → aSbS | aS | c (2.11)

Furthermore, suppose that the input string we would like to parse is “aacbc” and that,
for this example, the parser always applies the productions for S in the order that they
are defined in Equation (2.11). That is, application of non-terminal S leads to first trying
to apply the first alternate aSbS. If that does not work, try the second aS, and then
the third alternate c.

Our top-down parser begins by creating the top node, or root, for the parse tree, namely
start symbol S. Moreover, an input pointer is initialized that points to the first character
‘a’ of the string and follows along the input string during the parsing process. Now, the
first production rule for S is invoked, creating nodes for each symbol in the production,
thus extending the single-node tree to the new partial parse tree shown in Figure 2.4a.
Because the first node of the production aSbS is a terminal, this terminal is directly
compared to the first character of the input string. The terminal and character in
question match, therefore advancing the input pointer by one character. Next, because
the second node of the first production is a non-terminal, the first alternate production
of this non-terminal is invoked, thus extending the partial parse tree to that shown in
Figure 2.4b. Here, the second character of the input string (as pointed to by the input
pointer) is matched to the first node ‘a’. Because they match, the input pointer is
once again advanced (now pointing to ‘c’). The second node is a non-terminal S once
more, but note that another invocation of the first alternate would result in a mismatch
between terminal a and input character ‘c’. The same is true when applying the second
alternate, but the third alternate is a correct match between character ‘c’ and terminal c,
as shown in Figure 2.4c, which allows for the advancement of the input pointer to point
to character ‘b’. This character matches with the next node, namely terminal b. Finally,
the top-down parser attempts to match productions for non-terminal S to extend its
bottom-right node in Figure 2.4c, which it does by matching character ‘c’ with the third
production rule consisting solely of terminal c. So far, the resulting partial parse tree
looks as shown in Figure 2.4d.

Unfortunately, at this point the input pointer is already all the way at the end of the
input string, but the top-right nodes b and S must still be evaluated in Figure 2.4d.
Because there is no more input character to match with these nodes, this parse tree is
no representation of the input string, and for this reason the parser undoes all steps
up until the point that an alternate production can be applied to a non-terminal which
has not been applied before. In this case, no alternate productions can be applied
correctly until we undo the steps up to the parse tree presented in Figure 2.4a with the
input pointer pointing at the second character, ‘a’. Instead of applying production rule
aSbS for bottom-left non-terminal node S, the parser tries application of production
aS, thereby obtaining the partial tree as shown in Figure 2.4e. Here, a match is found,
thus advancing the input pointer to character ‘c’. This character is correctly matched
by applying the third alternate for the next node, non-terminal S, thereby extending the
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parse tree to that shown in Figure 2.4f and advancing the input pointer to the second-
to-last character, ‘b’. The parser matches this character with next node in the parse
tree, terminal b, and advances the input pointer to once more point at the last character
‘c’. The only production that matches with this input character is the third alternate
production of S, which is applied to the right-most non-terminal S node in Figure 2.4f.
Ultimately, this results in the completed parse tree presented in Figure 2.4g. Because
the input pointer has reached the end of the input string and no more parse tree nodes
are left unmatched, the top-down parser stops.

S

a bS S

(a)

S

a bS S

a bS S

(b)

S

a bS S

a bS S

c

(c)

S

a bS S

a bS S

c c

(d)

Notice that the above-described parsing process is exactly the same as the derivation
process, if the non-terminals are expanded from left to right. The application of a
leftmost derivation is formally defined as:

αAβ
L
=⇒ αγβ

With A→ γ a production from the context-free grammar’s production rules P , and with

α ∈ Σ∗. This definition states that a derivation is a leftmost derivation
L
=⇒ if A is the

leftmost non-terminal in αAβ.
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S

a bS S

a S

(e)

S

a bS S

a S

c

(f)

S

a bS S

a S

c

c

SS

b

(g)

Figure 2.4: Top-down parsing process of input string “aacbc” corresponding to the gram-
mar definition defined in Equation (2.11).

In the example top-down parsing process, the parse tree derivation follows the equivalent
leftmost derivation process:

S
L
=⇒ aSbS

L
=⇒ aaSbS

L
=⇒ aacbS

L
=⇒ aacbc

In short, the top-down parsing (left-to-right) technique is a process in which the parse
tree is derived from the start symbol by recursively deciding which production to apply to
the leftmost non-terminal, thus being equivalent to a parse tree derivation by application
of left productions. Another common name for these top-down parsers are LL parsers,
where the first L stands for the left-to-right reading of the input and the second L stands
for the applications of left productions to create the parse tree. [12] [13] [14]
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2.2.2.2 Bottom-Up Parsing

The second technique follows a derivation procedure opposite to the top-down parsing
algorithm by starting at the leave nodes of the parse tree (i.e., the characters of the input
string) and building the tree upwards towards the root of the tree, the start symbol S.
Due to the tree building direction, this technique is called bottom-up parsing. [8] [12]

Consider this time an example of a simple and naive bottom-up parsing approach, for
which we again assume the context-free grammar presented in Equation (2.11). Further-
more, suppose that we would like to parse the same input string, “aacbc”. Moreover,
this example will explain bottom-up parsing by means of a simple shift-reduce parsing
algorithm. That is, at every instant, either the next character is shifted onto a stack
or a reduction (reverse of production) is applied to the rightmost input characters on
the stack. Note, however, that priority is given to a reduction over a shift if both are
possible.

We start by making each input character a separate node of the final parse tree and shift
the first input character ‘a’ on top of the stack. At this point, since the stack does not
match any of the right-hand side productions presented in Equation (2.11), no reduction
can be performed. For this reason, the next input character is pushed on the stack, now
containing the string “aa”. Again, there is no reduction possible, thus allowing only a
shift of the input character ‘c’. Finally, this allows the parsing algorithm to apply a
reduction to the rightmost character on the stack, namely c → S, and a new node is
created for non-terminal S as shown in Figure 2.5a. This reduction changes the stack
from “aac” into “aaS”. This allows another reduction, namely aS → S. The result is
a new tree node S, as shown in Figure 2.5b, and a change in stack value from “aaS”
to “aS”. The same reduction can be applied again, finally resulting in the partial parse
tree shown in Figure 2.5c and a stack value of “S”. Note that at this point the remaining
characters of the input string are “bc”. There are no more reductions possible to the
stack, so the parser shifts the next input character ‘b’ onto the stack. Still no reduction
is possible and thus the last character is shifted onto the stack too. Finally, one more
reduction, c→ S, is possible, changing the stack from “Sbc” into “SbS”.

Unfortunately, no more reductions or shifts are possible and, as the start symbol has
still not been reached, no complete parse tree can be derived. Therefore, the parser
backtracks to the last reduction, thus returning to the state before the last c → S
reduction. However, as no other reduction is possible, the parser backtracks even further,
thereby returning to the partial parse tree as in Figure 2.5b, with a stack containing the
characters “aS”, and the remaining characters in the input string “bc”. No reduction
other than the one applied before (aS → S) can be applied, so the parser shifts the next
input character ‘b’ onto the stack instead. No reduction is possible on the current stack
“aSb”, so the last character is shifted onto the stack once more resulting in the stack
value “aSbc”. Now, the reduction c → S can be applied, resulting in the partial parse
tree shown in Figure 2.5d. The stack contains the characters “aSbS”, which is exactly
the first alternate production of non-terminal S. Applying the corresponding reduction
(i.e., aSbS → S) at last produces the full parse tree as shown in Figure 2.5e. Note that
this parse tree is equivalent to the one shown in Figure 2.4g, which was obtained with
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the top-down parsing algorithm explained in the previous section.

a c

S

ba c

(a)

a c

S

ba c

S

(b)

a c

S

ba c

S

S

(c)

a c

S

ba c

S

S

(d)

a c

S

ba c

S

S

S

(e)

Figure 2.5: Bottom-up parsing process of input string “aacbc” corresponding to the
grammar definition defined in Equation (2.11).

Notice that the bottom-up process described in this section is exactly the same as the
reverse derivation process, assuming that non-terminals are expanded from right to left.
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Similar to the leftmost derivation process, application of rightmost derivation is formally
defined as:

αAβ
R
=⇒ αγβ

With A→ γ a production from the context-free grammar’s production rules P , and with

β ∈ Σ∗. This definition states that a derivation is a rightmost derivation
R
=⇒ if A is the

rightmost non-terminal in αAβ.

When applying this formalism to the example provided in this example, the following
derivation is obtained:

S
R
=⇒ aSbS

R
=⇒ aSbc

R
=⇒ aaSbc

R
=⇒ aacbc

Reading this derivation from right to left, the steps in this process are equivalent to those
in the bottom-up parser description to obtain the parse tree shown in Figure 2.5e.

Summarizing this section, the bottom-up parsing (left-to-right) technique is a process
in which the parse tree is derived by applying rightmost reductions according to the
grammar’s production rules, thus applying exactly the reverse process to a parse tree
derivation by application of right productions. Another name for these bottom-up parsers
are LR parsers, where the L again stands for the left-to-right reading of the input and
the R stands for the applications of reverse right productions to create the parse tree.
[13] [12]

2.2.2.3 Predictive Parsing

The examples presented in the previous two parsing methodologies used a naive back-
tracking approach. The reason for this is that those parsers arbitrarily applied one
of multiple non-terminal productions, but then had to backtrack and try an alternate
production if the first one failed to produce the correct parse tree. Unfortunately, this
backtracking approach results in a worst-case exponential time as a function of the length
of the input string. [12] [14]

To reduce backtracking, there are methods that attempt to make deterministic top-
down and bottom-up parsers. The idea is to remove the randomness of choosing which
production rule to apply and instead look ahead and “predict” which production would
match the next few characters. This way, only one correct next step is identified by the
parsers at any given time, removing the otherwise non-deterministic behavior.

S → A | B
A→ if

B → for

(2.12)
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To show how predictive parsing works in practice, consider the context-free grammar
shown in Equation (2.12). Using this grammar, we want a top-down parser to parse
the string “for”. The top-down parsing algorithm, as defined in Section 2.2.2.1, would
first invoke the production for non-terminal A before needing to backtrack and finally
invoke the production of non-terminal B, resulting in a successful parse. However, if
this top-down parser would be able to look ahead a single character, it would know
that invocation of non-terminal A leads to a failed match with terminal i and that
invocation of non-terminal B leads to a successful match with terminal f. The parser
can therefore predict that invocation of non-terminal A is illogical, because it would
result in backtracking, and that an invocation of non-terminal B results in successfully
parsing at least one character. A top-down parser that can look ahead 1 character would
therefore directly invoke non-terminal B.

This 1-character lookahead top-down parser is also called an LL(1) parser. Similarly,
a 1-character lookahead bottom-up parser is called an LR(1) parser. This prediction
technique could of course be extended to a parser that can look ahead an arbitrary
number of characters.

For some grammar it might be necessary to extend the number of lookahead characters to
keep the deterministic aspect for the parsing process. For example, the single character
lookahead top-down LL(1) parser would still have difficulties if the previous CFG was
changed to:

S → A | B | C
A→ if

B → for

C → foreach

(2.13)

The original LL(1) parser now cannot “predict” which non-terminal to invoke in order
to parse the string “for”, as both productions for non-terminal B and C start with
the same character ‘f’. This could be resolved, however, by a 4-character lookahead
top-down parser. In general, a k-character lookahead parser is called an LL(k) or LR(k)
parser for top-down and bottom-up parsers respectively.

The need for many-character lookahead parsers can be reduced by means of a lexical
analyzer (also known as a lexer). Instead of passing the input string directly to the
parser, a lexical analyzer reads the input string first and creates tokens of substrings that
match with predefined string patterns before passing those to the parser. As an example,
consider the context-free grammar as defined in Equation (2.13). If a lexical analyzer
defines the keywords in the CFG as lexical tokens t1 = if, t2 = for, and t3 = foreach,
the grammar can then be rewritten to make use of these tokens as follows:
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S → A | B | C
A→ t1

B → t2

C → t3

(2.14)

Then, if the input string “for” needs to be parsed based on this grammar, the string is
first passed to the lexical analyzer which converts “for” into the token t2. This token
is finally passed to the parser. Instead of a 1-character lookahead parser, a 1-token
lookahead parser can be used to immediately predict that invocation of non-terminal B
results in a successful parse. In this case it can be said that the language specified by
the lexical analyzer in combination with the token-based context-free grammar can be
deterministically parsed by a 1-token lookahead parser. [12] [14]

In order to predict which non-terminal can be applied successfully without invoking
said non-terminal, a so-called parse table is constructed for each non-terminal. For a
k-character lookahead parser, each parse table contains all possible character sequences
(up to k character in length) which can be derived from the associated non-terminal [8]
[12]. For example, in the case of a LL(1) parser for the CFG in Equation (2.12), the
parse table for S contains sequences ‘i’ and ‘f’, non-terminal A has only ‘i’, and likewise
non-terminal B has only ‘f’.

The method by which to construct parse tables is by finding the so-called FIRST and
FOLLOW sets for each non-terminal in the context-free grammar. However, this process
is quite involved and is therefore outside the scope of this chapter. Interested readers are
referred to sections 8 and 9 of [8] for a detailed account of deterministic top-down and
bottom-up parsers and the creation of parse tables by means of FIRST and FOLLOW
sets.

2.2.2.4 Tabular Parsing

As the name implies, tabular parsing methods implement a parsing strategy that makes
use of storing intermediate information in a tabular fashion. In this section, a general top-
down tabular parsing approach and two well-known general tabular parsing approaches
are discussed in short.

Top-Down Tabular Parsing
With the naive top-down parsing algorithm discussed in Section 2.2.2.1 it could happen
that a non-terminal production is applied at some position in the input string, which
had already been successfully applied some time before. For example, consider the case
of the following context-free grammar:
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S → A B | A C

A→ a

B → b

C → c

Then, if the simple string “ac” is to be parsed by the top-down parser, it would first
attempt to parse the text by applying production S → A B. Indeed, application of non-
terminal A does indeed parse the first character ‘a’, but the parser proceeds to backtrack
once it fails in applying non-terminal B. Next, the alternate production for S is applied,
i.e., S → A C. Notice that this requires the application of non-terminal A once more at
exactly the same position in the input string. For this rudimentary example it might not
require much additional time, but this situation can obviously occur for non-terminals
of any complexity.

Reapplication of a previous successfully applied non-terminal can be resolved by keeping
track of all successful non-terminal applications at all input string positions. Then,
instead of reapplying that non-terminal, a lookup operation can retrieve the associated
partial parse tree from a lookup table. This technique of storing results of computation
in a lookup table to save later recomputation is known as memoization. [8] [15]

Consider the previous example, where the initial successful application of non-terminal
A may thus be stored in a lookup table. Then, once non-terminal A is encountered
once more in the second production for non-terminal S, a lookup operation may be
performed based on the current non-terminal and the current position in the input
string. This returns the partial parse tree consisting of non-terminal A connected to
child node terminal a.

Note that the this lookup table implementation requires n×m memory elements, with n
the length of the input string and m the number of non-terminals in the used context-free
grammar.

Cocke-Younger-Kasami Parsing
The Cocke-Younger-Kasami (CYK) parsing algorithm – named after J. Cocke, D. H.
Younger, and T. Kasami, who independently developed the algorithm – consists of two
stages. During the first stage, the algorithm constructs a parse table that, for all possible
substrings of input string s, computes which non-terminal, if any, can derive it. Once
this table has been constructed, the algorithm steps through the table, starting at the
non-terminal that can derive the complete input string, and constructs the parse tree
accordingly. [8] [16]

The process of constructing the CYK parse table starts with finding non-terminals that
match with individual characters in the input string, and then moves on to finding
derivations for larger and larger substrings. For this reason, the CYK parsing algorithm
is classified as a non-directional bottom-up parser.
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Although construction of a CYK parse table is possible for a general context-free gram-
mar, the time complexity of such an algorithm is far too great to be of practical use.
For this reason, the context-free grammar is often restricted to the so-called Chomsky
Normal Form (CNF) grammars. Production rules of CNF grammars may only be of one
of two formats: A→ BC; A→ a. [16]

The worst-case time complexity of the CYK parsing method is O(n3), with n the length
of the input string. Moreover, because the CYK parse table needs to store data for
each substring, the required number of data elements is in the order of O(n2) (space
complexity). [16]

Earley Parsing
The Earley parsing algorithm – Named after its inventor [17] – is based on another tabular
parsing method. Earley recognized that tabular bottom-up parsers (e.g., CYK parsers)
that compute derivations for all substrings of an input string s are rather inefficient. This
is because many of these derivations could never be derived from the start non-terminal
by a general top-down parser, and thus would not be a part of the parse tree. [8] [12]
[17]

Earley parsing instead steps through the input string from left to right and applies
a bottom-up parsing algorithm by applying any non-terminal production that could
possibly match with the next character at each step. However, based on a top-down
parsing approach, at each step only non-terminal productions from the previous step are
considered, along with new productions that can be derived from those existing ones.
Each step produces a list of productions that are considered, which are stored in so-
called Earley items. After the last character has been parsed, the algorithm traverses
the Earley items from end to start, thereby constructing the parse tree. [17]

The Earley parsing process uses a combination of bottom-up and top-down parsing to
more efficiently parse a text, by only analyzing and storing those productions that could
possibly help in deriving the complete text. Therefore, Earley described his algorithm
as a breadth-first top-down parser with bottom-up recognition. [17]

Space complexity of the Earley parsing algorithm is also O(n2) and despite the added
efficiencies, the Earley parsing still has a worst-case time complexity of O(n3), with n
the length of the input string. However, in contrast to the CYK parsing algorithm,
Earley’s algorithm has O(n2) time complexity for unambiguous context-free grammars
and even O(n) time complexity for deterministic context-free grammars. It is also worth
considering that Earley parsers do not require the grammar to be transformed into
Chomsky Normal Form, thereby possibly reducing the number of grammar productions
and thus parse time. [8] [17]

2.3 Analytic Grammars

As discussed in Section 2.1, Chomsky formalized natural languages with a hierarchy of
formal grammars, such as context-free grammars and regular grammars. These types of
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formal grammars can be classified as being of a generative type, meaning that they define
rules for how to generate syntactically valid strings, which forms the grammar’s language
L(G). However, a side effect of the expressiveness provided by for example context-
free grammars is that there may be multiple derivations for the same sentence. As
shown in Section 2.2, grammars with this property are known as ambiguous grammars.
Ambiguities in a grammar G become a problem when parsing strings, because for some
sentences in the language L(G) there is a non-unique parse tree, which may not be
the intention of the grammar’s author. This problem is compounded by the fact that
it is generally undecidable whether a given context-free grammar contains ambiguities
[18]. Handling of ambiguities, also known as disambiguation, is therefore key in parsing
applications.

2.3.1 Disambiguation

There are multiple techniques to handle ambiguities in the context of parsing. The most
common three disambiguation methods are as follows [14]:

• Let the parser produce all possible parse trees and filter out the best parse tree
based on a set of rules or list of illegal parse trees.

• Change the parsing algorithm to deal with the ambiguities at run-time based on a
set of disambiguation rules.

• Rewrite the formal grammar to exclude any possibility for encountering ambigui-
ties.

The first of these techniques is very compute intensive, as all possible parsing paths have
to be followed to the end. Moreover, the process of matching illegal parse trees can be
quite complex as well. These problems become especially troublesome when ambiguities
are abundant in the grammar. [14]

The second disambiguation method is to let the parser choose a parsing path based on
disambiguation rules during runtime. These disambiguation rules can either be implicit
or explicit. Implicit disambiguation rules are directly integrated into the parsing algo-
rithm. In contrast, explicit disambiguation is achieved by annotating production rules
of formal grammars with declarative disambiguation rules. This provides the language
engineer with more control over parsing paths that are explored by the parser. [14]

A well-known example of both implicit and explicit disambiguation rules can be observed
in the parser generator tool called Yacc [19]. With Yacc, one can specify explicit disam-
biguation rules such as precedence and associativity associated with production rules,
while it handles all remaining encounters of ambiguities with a set of implicit disam-
biguation rules. Similar techniques are also applied by the ANTLR4 parser generator
tool [20]. Another example of the use of declarative disambiguation rules can be observed
by SDF [21], which includes explicit rules for both lexical and context-free syntax. In
general, however, there is no one standard for defining declarative disambiguation rules
like there is for formal grammars. Furthermore, because there exists no algorithm to
definitively determine if a given CFG is unambiguous, there is no guarantee that a set
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of disambiguation rules make a certain CFG unambiguous [18].

Finally, one could also rewrite the formal grammar G1 to one without ambiguities G2

while accepting the same language: L(G1) = L(G2). This might prove to be a difficult
exercise for complex grammars containing many ambiguities. [14]

However, the third option may be expanded upon by introducing a new type of gram-
mar. One which contains inherent disambiguation rules, such that it cannot be used to
define ambiguous grammars. The first instance of such a grammar was proposed and
conceptualized by Gilbert in 1966 when he noticed that the types of formal grammars
from the Chomsky hierarchy were difficult to work with when designing parsers [18].
Instead of using ad hoc techniques in parsers to deal with any encountered ambiguities,
Gilbert wanted a new type of formal grammar that was specifically targeted for parsing.
In other words, this new type of formal grammar is purposely written not in a generative
form, but instead with the recognition paradigm in mind. Gilbert termed this type of
formal grammars as analytic grammars. [18] [12]

The difference between the two types of grammars is exemplified by the difference in
notation. Whereas generative grammars use the A→ a notation, analytic grammars use
the notation A ← a instead. Notice that the direction of the arrows represent the flow
of information. The → operator signals an expansion from non-terminal A to a string a
of terminals. Conversely, the← operator signals a reduction from a string a of terminals
to a single non-terminal A. [10]

2.3.2 Examples of Analytic Grammars

This section serves to provide insights into how analytic grammars may differ from
Chomsky grammars by discussing several examples along with historical context. One
of the most recently introduced analytic grammars is presented in its own section (see
Section 2.4), as it is central to the rest of this body of work.

2.3.2.1 TDPL

The top-down parsing language, or TDPL, is an early adaption of the analytic grammar
paradigm that was first introduced by Birman and Ullman in 1970 [22]. Only, at the
time, this grammar was called TS (TMG recognition scheme), because it was based on
the 1965 TMG parser generator [23]. The TS grammar formalism was later refined by
Aho and Ullman [12] and renamed to TDPL, which aptly describes the underlying theory
of the grammar as it is based on a limited backtracking top-down parsing algorithm.

The TDPL grammar is formally defined by the tuple (Σ, N, S, P ) (see Section 2.1). Here,
the set of production rules P is formally defined below.

P =
{
A← a , A← BC / D

∣∣∣ {A,B,C,D} ∈ N , a ∈ {Σ, ϵ, f}
}

(2.15)

The first production rule in this definition represents the ability to match a string with
the specified terminals in Σ. In addition, a includes the empty string ϵ, which allows
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the unconditional reduction of a to A without matching to anything in particular, and a
symbol f representing parsing failure, which unconditionally fails the reduction of a to
A.

The second production rule consisting only of non-terminals exemplifies the ability of
TDPL to express an ordered choice between a set of right-hand side expressions [22] [12].
The second production rule consisting only of non-terminals exemplifies the deterministic
and algorithmic aspect of the TDPL grammar. That is to say, as the name implies, a
TDPL grammar essentially describes a deterministic top-down parsing algorithm. The
determinism part can be seen in the way that TDPL defines the order of how two possible
production rules are evaluated by means of the ordered choice operator ‘/’ shown in this
production rule. This is in contrast to a context-free grammar, whose choice operator |
does not specify the order of evaluation of possible production rules, which could thus
result in ambiguities.

Another important aspect of the TDPL grammar is that it exactly defines how the
parsing algorithm must backtrack if a failed match is encountered. As discussed in
Section 2.2.2.1, given the right-hand side of a rule AB | C, a normal top-down parsing
algorithm will backtrack to A to look for an alternative parse of A when it fails to evaluate
B. Only when no other successful parse is found will non-terminal C be evaluated. In
contrast, the parsing algorithm described by TDPL will not re-evaluate A if evaluation of
B fails, but will instead directly look at alternative rules, in this case C. This mechanism
is called limited backtracking, which is where the parsing algorithm will never look for
an alternative parse of a non-terminal if it was successfully evaluated before.

S ← A c

A← a / ab

The peculiarity that is limited backtracking can be readily observed from the fact that
the above example TDPL grammar cannot be used to successfully parse the string “abc”.
Starting with start symbol S, the algorithm jumps to the definition of non-terminal A.
Here, due to the ordered choice operator, first the terminal a will be matched with the
first character of the input string “abc”. This evidently succeeds, and thus the algorithm
returns back to non-terminal S, where it will then try to match terminal c with the next
character in the input string, namely b. This clearly fails, and thus the process of parsing
string “abc” fails entirely, as the TDPL algorithm will not re-evaluate non-terminal A
using its alternate production rule.

If instead a normal top-down parsing algorithm and an equivalent context-free grammar
was employed by replacing ‘/’ with the unordered choice operator ‘|’, the same input
string would be successfully parsed. This is because, unlike TDPL, a CFG in combination
with a normal top-down parsing algorithm has complete backtracking capabilities. This
means that when the parsing process fails trying to match input character b with terminal
c in the definition of non-terminal S as shown above, the CFG-based top-down parsing
algorithm will backtrack and try to match the alternate definition of non-terminal A,
namely ab.



2.3. ANALYTIC GRAMMARS 27

In order to parse the string “abc”, the rule for non-terminal A in the previous TDPL
program needs to be changed to the following:

A← ab / a

The only change with respect to the definition before is the order of the ordered choice
operands. In this case, a match for ab will be checked first, before checking the more
general case of only a. This example shows that the more general matching instances
should be at the end of the ordered choice operator and more specific instances at the
start. [12] [10]

Another example that clearly shows the difference between context-free grammars and
TDPL is presented by means of the infamous dangling else construct. Below is the
associated CFG in BNF format:

S → if b then S else S | if b then S | a

To see why this grammar is ambiguous, the sentence below is presented.

if b then if b then a else a

There are two distinct possibilities for deriving this string. With the CFG as defined
above, this string can be derived as:

S ⇒
if b then S else S ⇒
if b then if b then S else S ⇒
if b then if b then a else S ⇒
if b then if b then a else a

or as:

S ⇒
if b then S

if b then if b then S else S ⇒
if b then if b then a else S ⇒
if b then if b then a else a

As this example proves, there are two possible parse trees that can be derived from this
one sentence. Moreover, without any additional disambiguation rules implemented in the
grammar or parser, this sentence cannot be parsed deterministically. However, directly
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converting the grammar to a TDPL equivalent grammar would result in a practical non-
ambiguous grammar. In that case, the TDPL grammar would parse the sentence as in
the second derivation.

Both of the examples presented in this section show another important property of top-
down parsing language grammars, namely the natural support for the longest-match
disambiguation policy. That is, TDPL always tries to match as many terminals as
possible given any production rule. Due to this property, a TDPL grammar definition
as the one below would never correctly parse a string of a’s, as the invocation of non-
terminal A would always greedily consume all a. When finally no more a’s can be
consumed, the TDPL algorithm returns to the invocation of S at the start and try to
consume one last a. This would unfortunately always fail, as all a’s have consumed by
the non-terminal A in front of it. [10]

S ← A a

A← a A / a

2.3.2.2 GTDPL

The generalized top-down parsing language, or GTDPL, is another analytic grammar
paradigm adapter that was introduced in the same paper as TDPL by Birman and
Ullman [22]. Similar to TDPL, this grammar formalism was called gTS (generalized
TMG recognition scheme), but was instead based on another parser generator tool called
META II [24]. gTS was later refined by Aho and Ullman [12] and renamed to GTDPL,
as it was also designed for a limited backtracking top-down parsing algorithm.

The GTDPL grammar formalism is quite similar to the TDPL grammar discussed before.
Below the exact definition of production rules of the GTDPL grammar is presented.

P =
{
A← a , A← B [C,D]

∣∣∣ {A,B,C,D} ∈ N , a ∈ {Σ, ϵ, f}
}

(2.16)

The only difference between TDPL and GTDPL is the restriction on the second type
of production rule. Invoking A causes non-terminal B to be evaluated first. If B is
successfully evaluated, the GTDPL algorithm first tries to evaluate non-terminal C to
try and match the remaining input characters that are unconsumed by B. If C is then
successfully evaluated, the complete evaluation of A succeeds. On the other hand, if
evaluation of non-terminal C fails, the evaluation of A itself fails too. Finally, in the case
that B fails to match on the input string, the algorithm instead invokes non-terminal D
on the same input string as was tried for B, such that at that point successful evaluation
of A depends entirely on the successful evaluation of D.

In short, the invocation of non-terminal D in the TDPL production rule A ← BC / D
is independent of whether the evaluation of B or C failed, but instead only depends
on whether the sequence BC in its entirety failed. In contrast, the invocation of non-
terminal D in the GTDPL production rule A← B [C,D] is dependent only on whether
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the matching of B failed. This allows different evaluation results of non-terminal A de-
pending on whether B failed, or B succeeded and C failed, which increases the expressive
power of the grammar. [22] [12]

The original paper that introduces both TDPL and GTDPL [22] also shows that GT-
DPL is at least as powerful as TDPL by means of a proof that any TDPL grammar
can be rewritten as a GTDPL grammar. Moreover, because of the additional level of
expressiveness of GTDPL, it is thought that GTDPL is more powerful than standard
TDPL. However, this conjecture has not yet been proven. [10]

Another interesting property of both TDPL and GTDPL grammars is that every deter-
ministic context-free language (a proper subset of unambiguous context-free languages)
can be recognized by both TDPL and GTDPL grammars [22]. Moreover, it has been
proven that any pushdown automaton can be simulated by TDPL and GTDPL, meaning
that they can recognize any LL(k) and LR(k) language. [10]

Finally, although not formally proven, it appears to be the case that the set of languages
expressible by CFGs and TDPLs are incomparable. That is, there exist CFLs not ex-
pressible by a TDPL grammar and likewise there exist TDPL languages that are not
expressible by a CFG. An example of the latter assertion is presented below. This lan-
guage is expressible by a TDPL grammar, but not by any CFG. [22] [12] For an example
of the former assertion refer to Section 6.1.3 of [10].

L =
{
anbncn

∣∣n ≥ 1
}

2.4 Parsing Expression Grammars

As was mentioned previously in Section 2.3, formal grammars of the generative type
were adopted relatively early by programming language engineers, because of its use and
research by the field of linguistics. This, despite the fact that a programming language
compiler is by definition based on the analysis and not generation of text. Because of
this misalignment, various disambiguation techniques are employed by parser generators
such as Yacc [19], ANTLR4 [20], and SDF [21]. The recognition parsing paradigm in the
form of analytic grammars has only recently become of more frequent research and use.
One type of analytic grammar in particular has sparked much interest, namely Parsing
Expression Grammars (PEG) introduced by Ford [3].

2.4.1 PEG Definition and Properties

PEG is most similar to TDPL grammars as discussed in Section 2.3.2.1. Parsing Ex-
pression Grammars essentially describe a deterministic limited-backtracking top-down
parsing method. However, in contrast to both TDPL and GTDPL which are highly
limited in their production rule format, PEGs feature a rich expressiveness in their pro-
duction rules. A more in-depth discussion of PEG, parsing expressions, and its other
unique properties are summed up in the subsequent subsections.
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2.4.1.1 PEG and Parsing Expressions

Mirroring the notation of formal grammars, a parsing expression grammar is defined
by the tuple (Σ, N, S, P ), with the set of terminals Σ, the set of non-terminals N , the
start symbol S ∈ N , and production rules P . The latter have the format A← e, where
e is called an parsing expression. For any non-terminal in N there exists one parsing
expression, such that A← e ∈ P . [3]

Parsing expressions are fundamental to PEGs. They can be constructed with a number
of operations. Below follows an explanation of these operations and how they are inter-
preted by PEG [3]. A more formal approach of parsing expressions is discussed later in
Section 3.2. Moreover, a PEG that defines the PEG syntax has been defined by Ford in
[3] of which a copy can be found in Appendix B.

“s” or ‘s’ – Literal String
The parsing expression “s” represents any literal string, where {s0, s1, . . . , sn} ∈ Σ. If
the string starting at the current character position matches with s, the characters are
consumed and the character position is updated accordingly.

[s] – Character Class
The parsing expression [s] represents any character class, where {s0, s1, . . . , sn} ∈ Σ. If
the character at the current character position matches with any of the character elements
s0, s1, . . . , sn, that character is consumed and the character position is incremented by
one. s can include both individual characters and character ranges c1-c2.

. – Any Character
The parsing expression . (full stop or period character) represents any character in set N .
As long as the end of the string that is currently parsed has not been reached, consume
the next character and increment the character position by one.

(e) – Grouping
The parsing expression (e) is simply a grouping of expression e, which is used to give
precedence to the evaluation of e before evaluating any expression outside the parenthe-
ses, if present.

e? – Optional
Parsing expression e? is evaluated by evaluating expression e at the current character
position. Though evaluation of expression e can fail, evaluation of expression e? does
not. Characters are only consumed and the character position increased if evaluation of
e succeeded.

e∗ – Zero-Or-More
Parsing expression e∗ is evaluated by repeating the evaluation of expression e as many
times as possible starting at the current character position. On each successful evalua-
tion, consume the parsed characters and increase the character position.
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e+ – One-Or-More
Similar to expression e∗, parsing expression e+ is evaluated by repeated evaluation of
expression e as many times as possible from the current character position. Similarly, on
each successful evaluation, consume the parsed characters and increase the character po-
sition. However, at least one successful evaluation of e is expected, otherwise evaluation
of expression e+ fails. Parsing expression e+ is equivalent to e e∗.

&e – And-Predicate
Parsing expression &e is evaluated simply by evaluating expression e. However, on
successful evaluation of e, no characters may be consumed and the character position
thus must remain unchanged. Failure to evaluate expression e results in a failure to
evaluate &e.

!e – Not-Predicate
Parsing expression !e is also evaluated by evaluating expression e. If evaluation of e
fails, evaluation of !e succeeds, but, similar to expression &e, no characters may be
consumed and the character position must remain unchanged. If evaluation of e succeeds,
evaluation of !e fails.

e1e2 – Sequence
As the name suggests, the sequence parsing expression e1e2 is evaluated by evaluating
first expression e1 and then, if successful, evaluating expression e2. Evaluation of e1e2
only succeeds if the back-to-back individual evaluations succeed.

e1 / e2 – Prioritized Choice Parsing expression e1 / e2 is evaluated by first trying
to evaluate expression e1. Only if evaluation of e1 failed at the current character position
is expression e2 evaluated at the same character position. If either succeed, expression
e1 / e2 succeeds, but if both fail evaluation, e1 / e2 as a whole fails as well.

2.4.1.2 Unambiguous Grammars

A core idea of PEG is to remove the possibility to create ambiguous grammars. This
is achieved by changing the grammar specification to include disambiguation rules. The
result is that a PEG essentially describes how a string can be deterministically parsed
with a top-down parsing approach. This is in stark contrast with context-free grammars,
which leave out any description about how exactly to interpret a string, but instead how
to generate one, thereby possibly introducing ambiguities in the interpretation of strings.

The non-deterministic description of context-free grammars is exemplified by allowing
multiple production rules to be defined for a single non-terminal, all with equivalent
evaluation priorities. For example, context-free production rules A → a | ab and A →
ab | a are functionally equivalent, because the BNF production separator ‘|’ does not
impose a specific order of evaluation. In contrast, the PEG production rules A← a / ab
and A ← ab / a are not functionally equivalent, because the prioritized choice operator
‘/’ does impose an order of evaluation, as discussed in Section 2.4.1.1. [3] [10]
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2.4.1.3 Lexical Syntax Definition

Expressing the structural syntax of texts is key to context-free grammars and parsing
expression grammars alike. However, the latter additionally provides a means to express
lexical syntax in a stylistic likeness to regular expressions with Extended Backus-Naur
Form (EBNF) notation [25]. The integration of lexical syntax specification tools provides
PEGs with much more expressiveness than CFGs. Consequently, where CFGs required
a separate lexical analyzer that precedes the syntax analyzer or parser, PEG combines
the two.

Character classes, greedy repetition, and predicate expressions can be effectively com-
bined to define lexical syntax. For example, combining character classes and greedy
repetition, a PEG rule for integers can be easily constructed as shown below. It consists
of a leading non-zero digit followed by a greedy repetition of decimal digits.

Integer <- [1-9] [0-9]*

An example that shows how repetition and predicate expressions can be combined is
shown below. Here, the syntax of an XML tag is defined, which consists of a string of
arbitrary length and characters between the begin and end chevrons.

XmlTag <- "<" (!">" .)+ ">"

Finally, the PEG syntax specification as a PEG in Appendix B show a good example of
how larger grammars may readily combine lexical and the hierarchical elements.

2.4.1.4 Localized Backtracking

An important aspect of PEGs are its use of a localized backtracking strategy as opposed
to a global backtracking strategy assumed by CFGs. To see the difference, consider the
grammar shown in Equation (2.17). Here, a common start non-terminal S is defined,
but the production rule for non-terminal A has a CFG implementation and an “equiv-
alent” PEG implementation. Assume furthermore that a top-down parsing approach is
employed for both cases.

Consider the CFG-case, which can readily parse the string “abc” as follows: first it
attempts to evaluate non-terminal A, thereby trying to match with alternate ‘a’, which
succeeds; having successfully evaluated non-terminal A, it returns to non-terminal S and
tries to match terminal ‘c’ with character ‘b’ which obviously fails; it therefore backtracks
to re-evaluate non-terminal A by trying to match the alternate rule “ab”; this succeeds,
such that evaluation of A succeeds again; finally, terminal ‘c’ is successfully matched
with character ‘c’, thereby completing the parse of the entire string “abc”.

Now consider the PEG-case, which cannot parse the string “abc”: it attempts to evaluate
non-terminal A the same way as the CFG-case, thus initially succeeding matching with
the first alternate ‘a’; it returns to non-terminal S and then fails to match terminal ‘c’
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with character ‘b’. However, unlike the parser based on the CFG, the PEG states that
a previous successfully evaluated expression may not be re-evaluated. Therefore, in this
case the parser may not backtrack to non-terminal A in order to try alternate “ab”, but
instead must fail evaluation of non-terminal S entirely.

S ← A c

CFG: A← a | ab
PEG: A← a / ab

(2.17)

The CFG-versus-PEG example shows how a context-free grammar assumes that an ex-
haustive search is performed through all production alternatives in order to find an
alternate successful parse (global backtracking strategy). In contrast, PEG does not
allow such an exhaustive search and only looks for local alternate expressions (localized
backtracking strategy), i.e., once e1 in e1 / e2 succeeds, e2 will never be tried. [10] [26]

The localized backtracking strategy employed by PEG was inherited from the TDPL
grammar specification as discussed in Section 2.3.2.1. It also makes a memoization-based
PEG parser easier to implement, which is one of the reasons that PEG was originally
created to be used by a technique called packrat parsing (see Section 2.4.2.2) [10]. This
is one of the major reasons that suggests that the set of languages expressible by PEG
are incomparable with those of CFG [10]. That is, there are some languages expressible
by PEG and not by CFG, and vice versa.

A final remark on the disadvantage of localized backtracking is that PEGs can exhibit
a phenomenon called language hiding [27]. This can occur when an expression e2 is
prevented from ever being evaluated in an expression of the form e1 / e2. For example,
the expression a / aa could never be used to parse the string “aa”, as only the first
alternate is ever evaluated.

2.4.2 PEG Parsing Techniques

There are two common parsing techniques for implementing PEG-based parsers. These
are the normal naive top-down backtracking approach and a technique called packrat
parsing and are explained in more detail in the following sections.

2.4.2.1 Top-Down PEG Parsing

As stated earlier, PEGs essentially describe a deterministic top-down parsing approach,
which makes implementing a top-down parser for PEGs relatively straightforward. At its
core, the top-down parsing approach for PEGs is identical to that of CFGs as discussed
in Section 2.2.2.1. The exception to this is the ability to evaluate PEG-specific parsing
expressions and to implement localized backtracking rather than global backtracking
(see 2.4.1.4). Unlike CFGs, which only have the ability to express literal strings as
terminals, sequences of terminals and non-terminals, and (non-prioritized) choices, PEG
parsers additionally need to support the evaluation of character classes, repetitions, and
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syntactic predicates. Section 2.4.1.1 describes a general top-down parsing approach for
each parsing expression.

2.4.2.2 Packrat Parsing

Packrat parsing is a tabular top-down parsing algorithm developed specifically for TDPL
and PEG grammars [10]. Its advantage over a regular recursive-descent top-down pars-
ing approach is that it guarantees linear-time parses, but at the cost of linear space
complexity O(n), where n length of the input string.

Packrat parsing achieves linear-time parses by employing memoization to its extreme.
As discussed in Section 2.2.2.4, memoization can be used to prevent the re-evaluation
of previous successfully evaluated non-terminals at a specific character position. In
short, to achieve this, a table of m × n cells are needed, with m the number of non-
terminals in the grammar and n the number of characters in the input string. During
the top-down parsing process, whenever a non-terminal is correctly evaluated starting
at some character position, the cell corresponding to those unique parameters (i.e., non-
terminal identifier and character position) is filled with the parse result. At the same
time, before evaluating a non-terminal, the cell corresponding to that non-terminal and
current character position is checked: if empty, the non-terminal is evaluated as normal;
otherwise, the parse result stored in the cell is used to skip re-evaluation of the non-
terminal.

For context-free grammars the above approach poses a problem as ambiguous evalua-
tions are a real possibility. Therefore, in the case of ambiguous grammars, the parse
result for a non-terminal and character position pair can have a non-unique value, which
conflicts with memoization table having a single unique cell per non-terminal and char-
acter position pair. PEGs, however, do not have such a limitation, as the grammar
is always unambiguous and therefore guarantees that packrat parsing always generates
unique parse results for each cell. [10]

It has to be emphasized that linear space complexity of packrat parsing can be a real
problem, especially with limited memory environments. The actual storage requirements
are proportional to both the string length n and the number of PEG non-terminals m,
which is in contrast to the memory requirements of LL and LR parsers, which simply
grows with the non-terminal call stack depth. Packrat parsing thus proves great for
smaller texts when memory is limited, but is rather inefficient at parsing large quantities
of flat texts, such as is common with data structures (e.g., XML, JSON, YAML, CSV,
etc.). [10] [28]

2.5 Hardware-Accelerated Parsers

Because the aim of this project is to develop a hardware-accelerated parser based on
grammars, it is worth exploring existing hardware-oriented parsing solutions. The fol-
lowing sections summarize the most important existing research in this field. Note that
most of the development on parsing theory is done in software rather than hardware,
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though especially simple recognizers are popular among high-throughput data streaming
applications where such designs are used for data-validation and security applications.

2.5.1 Pattern Matching Engines

Many of the hardware-accelerated parsers are not true parsers, but rather pattern match-
ing engines that try to superficially verify compliance of a character stream to a (context-
free) grammar or otherwise extract some semantic information from a character stream.
This type of hardware development is usually aimed at high-speed data processing for
deep packet extraction or similar applications.

For example, Cho et al. [29] implemented a hardware-accelerated pattern matching
engine based on context-free grammars. The intention of the paper was to develop a
hardware component that can detect and extract semantic information from incoming
data streams. Rather than basing the pattern matching engine on regular expressions,
CFGs were used to deal with more complex syntactic structures. However, it simply
converts the CFG to a state machine, moving from state to state based on characters in
the input stream in order to determine when in reached text that needs to be extracted. It
therefore does not verify if the stream complies with the context-free grammar, but rather
assumes it complies to begin with. A similar hardware implementation was developed
by Moscola et al. [30], but their pattern matching engine is based on regular expressions
to extract semantic information.

The hardware-based recognizers discussed thus far are fixed for a particular grammar,
and cannot be reprogrammed. In contrast, a recognizer design, called the B-FSM, by
Lunteren et al. [31] is actually reprogrammable and is based on a state machine. The B-
FSM architecture consists of a fixed control unit that moves through a reprogrammable
states based on their specified input conditions and corresponding state transitions.
Although it is not able to exactly parse strings based on context-free grammars, the
programmability of the machine allows for an easily scalable recognizer solution.

2.5.2 Tabular Parsers

Tabular parsing approaches discussed in Section 2.2.2.4 are well-suited for parallelization
and thus for hardware-acceleration.

For example, multiple versions of an FPGA-based implementation of the CYK parsing
algorithm have been implemented by Ciressan et al. [32] [33]. Their implementations
feature a 1D-array of processors, which reduces the worst-case time complexity from
O(n3) (see Section 2.2.2.4) to O(n2), with n the length of the input string. 2D-parsing
arrays do exist [34] and provide a constant parse time of O(n), but such implementations
are even more difficult to scale for larger grammars and inputs. Unfortunately, as is the
case for any implementation of the CYK parsing algorithm, a space complexity of O(n2)
remains.

There have also been developments in hardware-oriented tabular parsing methods based
on Earley’s parsing algorithm. A major contributor in this setting was Chiang et al. [35],
who developed a parallel Earley algorithm that can be implemented as a 2D-array VLSI
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architecture. This particular design allows for O(n) parse time complexity as opposed
to he original O(n3) complexity for the original algorithm (see Section 2.2.2.4. However,
as with the CYK-based hardware implementation, the O(n2) space complexity makes it
difficult to scale in practice.

2.5.3 Virtual Machines

There also exist a number of virtual machine implementations that implement some
parsing algorithm. These virtual machines resemble conventional computer architec-
tures, consisting of instruction and data memory, a decoder and control unit, etc. The
instructions are generally specific to a certain parsing algorithm and a grammar is con-
verted to a program consisting of said parsing instructions.

Šaikūnas [36] presents one such virtual machine, which is based on the Earley parsing
algorithm. The so-called Earley Virtual Machine (EVM) consists of 6 basic instructions,
with additional instructions that can be added for more functionality outside normal
Earley parsing. A translation process is used to convert a grammar to a set of these
instructions, which can be sequentially executed by the EVM.

There exists also virtual machine implementations for executing regular expressions,
such as that presented by Cox [37]. This regular expression virtual machine supports
execution of 4 simple instructions, but is able to execute quite the subset of regular
expressions.

Finally, there are a number of PEG parsers based on virtual machines, such as MiniNez
[4], GPEG [5], and LPEG [38]. Of these, the most influential one is the virtual machine
implemented in the Lua programming language by Medeiros et al. called LPEG [38] [39].
The most basic version of the virtual machine consists of 8 instructions, with additional
instructions for some optimizations.

Note that the virtual machines discussed here are emulations of an equivalent hardware-
based machine, but are themselves implemented in software. However, for some, if not
all, implementation of the core in digital hardware might be feasible.

2.6 Design Considerations

From this chapter, it can be observed that there are many options for the implementation
of a text-based recognizer. In this section, based on the information detailed in the other
sections of this chapter, a single parsing technique is selected that will form the basis for
a new hardware-oriented parsing architecture that is explored in the rest of this report.
The following paragraphs explain the design considerations that ultimately lead to the
selection of a single parsing technique.

Grammar-Based vs. Handwritten Parsers
In general, parsers can either be written by hand or generated based on a formal gram-
mar. The first provides much more control to the author of the handwritten parser, and
can be more efficient than automatically generated parsers. However, the latter provides
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a formalized and deterministic method for generating parsers based on an easy-to-write
and high-level description of a language to be parsed.

The use case for this project specifies that the recognizer must be reconfigurable with a
set of policies. This can be achieved by means of a grammar, such that policies are syn-
onymous with grammar production rules. In contrast, having to write a completely new
parser for each possible set of policies is rather inefficient. For this reason, a grammar-
based implementation is warranted.

Grammar Selection
There are a variety of grammars that are continued to be researched and which allow
the generation of parsers. First, consider the set of Chomsky formal grammars discussed
in Section 2.1. Regular grammars and regular expressions do not provide the necessary
means for syntax analysis. On the other end of the spectrum, recursively enumerable
grammars and context-sensitive grammars are too expressive and are therefore difficult
to translate into parsers. That leaves context-free grammars (CFG), which are able to
express hierarchical syntax and, to some extent, lexical syntax. Moreover, there is a lot
of research about context-free grammars with respect to parsing theory. The other type
of grammars that were discussed in Section 2.3 is analytic grammars, the most prominent
of which is parsing expression grammars (PEG) which is described in detail in Section
2.4.

Though incomparable, CFG and PEG look similar and the set of languages they can
express overlaps greatly. A great advantage of CFG is that it has been the subject of
research for much longer and has been extensively used for generating grammars (see
Section 2.2). Moreover, PEG can be rather unintuitive due to a combination of localized
backtracking and repetition operators (see Section 2.4.1.4). However, one advantage of
PEG is its inherent disambiguation techniques as opposed to the undecidable ambiguous
nature of CFG (see Section 2.4.1.2). The use of PEG removes the need for ad hoc explicit
disambiguation rules and possibly ill-specified implicit disambiguation rules. Secondly,
PEG features a set of operators, such as repetition and syntactic predicates, which makes
the lexical syntax specification much simpler than it would be with CFG (see Section
2.4.1.3). Moreover, if the parser is built to support these operators, no external lexical
analyzer component is needed. This in turn reduces the parser architecture greatly,
as otherwise two separate parsing components need to be designed along with their
communication interface.

For the reasons specified in this paragraph, PEG is chosen as the basis for the eventual
parsing architecture.

Parsing Technique Selection
Finally, an appropriate parsing technique must be selected that satisfies the goals defined
in Section 1.1. Section 2.5 details three main types of hardware-accelerated parsers.

First, pattern matching engines, even those based on grammars, are not sufficient for
true syntax analysis. They are extremely fast, often being able to extract semantic
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information in real-time from data streams, but parse a superset of the valid sentences
specified by a grammar.

Second are hardware-based tabular parsers. These too are generally relatively fast due
to parallelization and validate input exactly as the grammar specified. However, this is
all at the cost of at minimum linear space complexity. Moreover, tabular parsers are
quite rigid and therefore not well-suited for potential extensions.

Lastly, there are the parsers implemented as virtual machines. Though non of the virtual
machines discussed before have been implemented in hardware, there is a definite poten-
tial for developing such a machine in hardware by designing it based on what is and what
is not possible in hardware. Moreover, due to the similarities between such machines
and conventional computer architectures, similar tools and hardware extensions could
be developed. Finally, the requirement to reconfigure the parser without a new design is
inherently satisfied by the use of instructions which can be stored in common memory
hierarchies.

Based on the arguments in the previous paragraphs, a parser implementation based on
virtual machines is chosen. However, rather than being virtual, the implementation ex-
plored by this work is in hardware and is referred to as a parsing machine. Though there
are multiple parsing algorithms that may be employed by a parsing machine (e.g., top-
down, bottom-up, Earley, etc.), PEG’s inherent limited backtracking top-down parsing
algorithm is chosen for this new parsing machine design. The reason for this is because
this top-down parsing algorithm has been studied extensively and has been used for
several other virtual parsing machines.

2.7 Conclusion

This chapter explained the information required to get a good understanding of the fun-
damentals on which the rest of this report builds forth. It walked through key elements of
formal grammars, which are used to define the syntax of a language with a varying level
of constraints and expressiveness (see Section 2.1). Context-free grammars especially
strike a good balance between the imposed constraints and its expressiveness, thereby
being often used by parser generators (see Section 2.2).

Unfortunately, the expressiveness of a context-free grammar still poses a problem when
two or more correct parses exist for any sentence in its associated language. For this
reason, analytic grammars might prove a better type of grammar, as it cannot define
ambiguous grammars (see Section 2.3). The most prominent analytic grammar is PEG
(parsing expression grammar), which additionally has the ability to define lexical syntax
and, unlike context-free grammars, is based on a limited backtracking top-down parsing
algorithm (see Section 2.4).

Though much research has been carried out for parsing techniques that are implemented
in software, few have been studied for implementation in hardware, namely: pattern
matching engines, tabular parsers, and virtual machines. However, the first does not
perform exact syntax validation and the second requires memory sizes proportional to
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the input string length. Only virtual machines, which model a conventional computer
architecture, has the potential to satisfy the required goals (see Section 2.5).

By studying existing grammars, parsing techniques, and hardware-oriented implemen-
tations, a combination of grammar and parsing technique was selected based on a best
fit with regard to the goals listed in Section 1.1. This lead to the decision to base the
recognizer design on parsing machines that implement a limited backtracking top-down
parsing approach based on parsing expression grammars (see Section 2.6).
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PPEG Architecture Design 3
Based on the design considerations discussed in Section 2.6, this chapter aims to design
a new parsing machine architecture that can syntactically analyze text based on parsing
expression grammars, but which is specifically optimized for implementation with digital
logic. The resulting design is called the ”Parsing machine PEG”, or simply PPEG,
architecture.

Section 3.1 first introduces the reader to fundamental parsing machine concepts and
components required to implement the top-down PEG parsing algorithm. Next, Section
3.2 provides a formalization for evaluating PEG expressions. This is followed by an ar-
chitectural description of the PPEG parsing machine in terms of microcode as presented
in Section 3.3. The microcode description is used in Section 3.4 to derive 13 PPEG
instructions with which any PEG expression may be evaluated. Finally, Section 3.5 ex-
plains how PEG expressions translate to PPEG code. This section also includes proofs
that the PPEG parsing machine behaves exactly as defined by the PEG formalization
defined earlier in Section 3.2.

The aim of this chapter is not merely to show the finalized architecture and simply explain
how it works, but rather to walk the reader through the complete design process with
step-by-step explanations of architectural details. However, if only the finalized PPEG
parsing machine architecture is of interest, the reader is suggested to read Section 3.1
and Section 3.4 in order to get an understanding of its design.

3.1 Parsing Machine Components

One of the advantages of using a parsing machine (see Section 2.5.3) to implement the
limited backtracking top-down PEG parsing algorithm is that it has many parallels with
the conventional Von Neumann computer architecture [40]. For example, the function
of a parsing machine is not hard-wired, but instead is dependent on an externally stored
set of instructions and data.

With conventional computer architecture terminology in mind, the components of the
PPEG parsing machine architecture developed in this project are discussed in more detail
in this section.

3.1.1 Memory Components

The memory architecture of the PPEG parsing machine is more akin to a Harvard com-
puter architecture in that it separates instruction memory and data memory instead of

41
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having one unified memory component. This solves the so-called Von Neumann bottle-
neck, which is when a single shared memory component is used to store both instructions
and data, such that either an instruction or data can be read at any one time [41].

The following subsections describe the instruction memory and data memory components
in more detail.

3.1.1.1 Instruction Memory

The instruction memory component contains a single parsing machine program consisting
of a set of instructions. In a parsing machine, a program is directly associated with a
single grammar definition. The instructions in such a program tell the parsing machine
what operations must be performed with respect to the input string in order to parse or
recognize it as specified by the grammar.

The instruction memory component has two separate address and data buses: one for
reading and one for writing. The read address bus sets the memory location whose
contents (a single parsing machine instruction) is put on the read data bus and feeds into
the control unit (see Section 3.1.3). The value on this address bus therefore determines
what instruction is currently executing on the parsing machine. The write address bus
sets the memory location whose contents are overwritten by the value on the write data
bus. This pair of buses is used to write a new parsing machine program to memory.
Note that the write address and write data buses are off-limits by the parsing machine
itself, as it may otherwise change its own program behavior. From the parsing machine
point of view, instruction memory is therefore read-only.

3.1.1.2 Data Memory

The data memory component in the PPEG parsing machine architecture only stores the
input string that needs to be parsed by the parsing machine. It stores the string in order,
starting at data memory address zero. Moreover, the string characters are stored as 8-bit
words. This facilitates the 7-bit ASCII encoding that is assumed for each character (see
assumptions in Section 1.1), but also allows any raw binary string composed of 8-bit
bytes to be stored for parsing.

The interface to the data memory component is constructed exactly as in the instruction
memory component, save for the data bus width. The read address bus sets the memory
location whose contents (a single 8-bit word) is put on the read data bus. The read
address bus value is therefore equal to the character position value and the read data
bus value is the character corresponding to that position. The write address bus sets
the memory location whose contents are overwritten by the value on the write data bus.
Similar to the instruction memory component, this bus pair is used to write a new string
to memory. Again, this cannot be under the control of the parsing machine itself, as then
it may change the input string during the parsing process. Data memory is therefore
also read-only and can only be written to externally.
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3.1.2 Stack Components

There are two important fundamental actions that must be supported by a parsing ma-
chine, namely non-terminal invocation and (limited) backtracking [13]. This is achieved
by the use of a return stack and backtrack stack respectively. These components are
discussed in the following subsections.

3.1.2.1 Return Stack

Because a parsing machine uses a top-down parsing approach for implementing parsing
expression grammars, support for non-terminal invocation (i.e., applying production
rules associated with the non-terminal) needs to be added. In many respects, there are
definite parallels between the call to a non-terminal and the call to a function.

Taking the x86 instruction set architecture as an example, A function call generally uses
the call instruction, which lets the CPU jump to the first instruction associated with
the called function. However, before this jump, the address of the instruction after call,
also known as the return address, is stored onto a stack. When the CPU has finished
executing the function, the return address is fetched from the stack after which the CPU
jumps to said address.

A stack, classified as a last-in-first-out (LIFO) queue, is a convenient component for
keeping track of return addresses. This is because it effectively models the sequence of
function calls, without the need for the user program to keep track of memory addresses.
This is accomplished by so-called push and pop operations. As the name suggests, a
push operation pushes a value to the top of the stack. A function call thus pushes the
return address onto the stack. In contrast, a pop operation returns and removes the
top-most value on the stack.

Internally, a stack needs to keep track of the location in memory of its top-most entry.
For this reason, a stack pointer is used, which contains the address of the top stack entry.
The procedure for the push and pop operations can be readily observed in the example
shown in Figure 3.1. Figure 3.1a shows a stack with the top-most entry represented as
return address 1, which is pointed to by stack pointer sp. If a new return address is then
pushed onto the stack, sp is decremented to sp− 1 so that return address 2 is stored at
the new address pointed to by the new stack pointer value. The resulting stack after the
push operation is shown in Figure 3.1b. Next, if a pop operation is initiated, the value
at address sp − 1, the top-most stack entry, is retrieved from the stack and the stack
pointer is incremented to its original value sp, as shown in Figure 3.1c.

Note that, by historical precedent, pushing items onto a stack actually grows the stack
from higher addresses to lower addresses or in other words from top to bottom. For
this reason the stack pointer is decremented on a push and incremented on a pop in the
example. Also note that in a true stack, push and pop operations only operate on the
top stack entry.

Getting back to parsing machines, invocation of non-terminals is implemented the same
as invocation of functions described in this section. That is, every call to a non-terminal
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(a) Original stack. (b) Stack after push operation. (c) Stack after pop operation.

Figure 3.1: Example of stack operations.

in a PEG expression pushes the address of the next instruction, the return address, onto a
return stack. Thereafter, the parsing machine jumps to the address of the first instruction
of the called non-terminal. Once the non-terminal has been evaluated successfully, the
top stack entry is popped and its value is used to jump to the instruction after the
successful non-terminal call.

3.1.2.2 Backtrack Stack

Similar to non-terminal invocation, the limited backtracking property of PEG also lends
itself well to a stack-based implementation. Consider the prioritized choice PEG ex-
pression below. As described in Section 2.4.1.4, the state of the parsing machine must
be stored before executing the first operand expression e1. Then, if a point of failure
is encountered during execution of e1, the last stored parsing machine state is used to
restore the machine and resume execution at the second operand of the ordered choice
operation e2.

A← e1 / e2

The parsing machine state that needs to be stored in the backtrack stack consists of the
following elements:

• Character position: If a point of failure is encountered during execution of some
expression, all characters that have been parsed since the last state store must
be undone in order to be reparsed via some other alternative expression. To that
end, the character position value, which is used as data memory read address as
discussed in Section 3.1.4, must be stored as part of the parsing machine state.

• Program counter: At a point of failure, execution must resume at some alter-
native expression. Taking the prioritized choice A ← e1 / e2 as an example, if
execution of expression e1 fails, the parsing machine must resume execution at
alternative expression e2. For this reason, the address of the first instruction after
backtracking must be stored as part of the machine state.

• Return stack pointer: Any active calls to non-terminals during execution of
some expression must be exited immediately when a point of failure is encountered.
This is achieved by storing the return stack pointer value as part of the parsing
machine state.
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To clarify backtracking by the parsing machine by means of a backtrack stack, an example
of this operation is provided. For this example, consider the PEG grammar as follows:

1. A← B / e2

2. B ← C

3. C ← e1

(3.1)

(a) Stack contents at start of
execution of non-terminal A.

(b) Stack contents after
evaluation of choice expression.

(c) Stack contents at start of
execution of non-terminal C.

Figure 3.2: Return stack and backtrack stack contents during backtrack operation as-
suming the PEG grammar presented in Equation (3.1).

Figure 3.2a shows both the return stack (left) and backtrack stack (right) contents at
the start of execution of non-terminal A.

Then the current parsing machine state is stored as on the backtrack stack, because
the first operation of the expression belonging to non-terminal A is a prioritized choice
operation. The resulting stack contents are shown in figure 3.2b. Here, cp represents
the current character position; pce2 represents the program counter value (instruction
address) of the first instruction of expression e2; and spr represents the current return
stack pointer, which points to the return address associated with the call to non-terminal
A as visualized by the arrow.

Next, the subroutine associated with non-terminal B is called, which in turn calls the
subroutine associated with non-terminal C. Their return addresses (Br and Cr respec-
tively) are sequentially stored in the return stack as shown on the left in Figure 3.2c.

If at this point execution of expression e1 fails, a backtrack operation is required. This
is achieved by popping the top backtrack stack entry and using its contents to restore
three key registers of the parsing machine (see Section 3.1.4 for a more detailed account
of the registers inside the parsing machine). Considering the contents of the backtrack
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stack presented in 3.2c, the character position register is restored to cp, the program
counter register is set to pce2 , and the return stack pointer register is set to spr.

After this backtrack operation, the stack contents have been reverted back to that at
the start of execution of non-terminal A, which can be seen in Figure 3.2a. However,
execution now resumes at the alternative expression e2 of the prioritized choice.

Note that in the presented example that a backtracking operation directly impacts the
value of return stack pointer. Because a backtrack operation can only cause active non-
terminal calls to be exited, the change in return stack pointer value is always positive
(stack grows down). It can therefore be stated that a backtrack operation can cause zero
or more return stack entries to be popped at once.

3.1.3 Control Unit

The control unit is one of the most important components in a computer architecture,
and so too in a parsing machine architecture. This component controls the flow of all
data within the parsing machine. It does so with only the currently executing instruction
as input. Each type of instruction has a unique code in a section of the instruction called
the operation code or opcode. During execution, this is decoded by the control unit and
all control signals that leave the control unit are configured, such that all data flows from
and to the parsing machine’s components as necessary.

3.1.4 Register File

Unlike the register file in a conventional computer architecture, this parsing machine has
no general-purpose registers, but only the following status registers:

• $pc: program counter register; directly connected to the read address bus of the
instruction memory component and therefore holds the address of the currently
executing instruction (see Section 3.1.1.1).

• $cpos: character position register; directly connected to the read address bus of the
data memory component and therefore holds the address of the character currently
being parsed (see Section 3.1.1.2).

• $fs: file size register; holds a constant positive integer representing the length of
the input string currently stored in data memory.

• $rsp: return stack pointer; holds the address of the top return stack entry (see
Section 3.1.2.1).

• $bsp: backtrack stack pointer; holds the address of the top backtrack stack entry
(see Section 3.1.2.2).

The file size register $fs is of special interest for the correct functioning of the parsing
machine architecture. From the point of view of the parsing machine, this is actually
a read-only register and contains the length of the input string. Part of its function is
to protect the parsing machine from reading characters outside the bounds of the input
string. Furthermore, the same way that files are stored on a Unix-based operating system,
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there is no end-of-file character that marks the end of the input string. Instead, the length
of the file is stored in this register, which can be checked by a grammar to determine if
the complete string has been parsed or only a substring. More implementation details
regarding register $fs are discussed in Section 3.3.

3.2 Operational Semantics of PEG

The aim of the following sections is to construct a formalism for translation of PEG
grammars to parsing machine program assuming the components described in Section
3.1 are used in the parsing machine architecture.

First, however, this section aims to formalize Parsing Expression Grammar (PEG) in
terms of the computational behavior of a top-down recognizer. This is achieved by defin-
ing operational semantics of PEG in the form of a match function. These formalisms are
used in later sections to verify correct PEG behavior of the parsing machine architecture.

Section 3.2.1 defines the necessary prerequisites for the formalisms of the operation
semantics. Finally, Section 3.2.2 defines and describes the operational semantics for
each fundamental PEG expression.

3.2.1 match Function Declaration

The operational semantics of PEG is defined as a function called match. This function
is formally declared as seen in Equation (3.2). Here, the sets before the arrow represent
the domain (function arguments) and the sets after the arrow represent the codomain
(function return values). The domain consists of the set of PEG grammars G; the set of
PEG expressions E ; the set of possible strings of terminals with arbitrary length Σ∗ (see
Section 2.1); and the set of natural numbers N (i.e., 0, 1, 2, ...). The latter represents the
character position at the start of the match operation. The result of match operation,
or the codomain, is either the new character position (set of natural numbers) if the
operation was successful, otherwise the result is ∅ (null).

match : G × E × Σ∗ × N→ N ∪ {∅} (3.2)

Equation (3.3) to Equation (3.9) show the exact definition of the set of expressions E .
The first four equations define the fundamental elements that are used in all expressions
of any size. These include the empty string ϵ, the “any character” element ‘.’, character
element c, and the character class [m]. Equation (3.7) shows how the set of expressions
also contains the result of the five unary PEG operations applied to its elements. In
order, these are the “optional” match expression e?; the “zero-or-more” expression e∗ and
“one-or-more” match expression e+; and the “and-predicate” and “not-predicate” match
expressions &e and !e respectively. Next, Equation (3.8) defines the set of expressions
contained in E resulting from application of binary PEG operations on its elements. In
order, these are the “sequence” match expression e1e2 and the “prioritized choice” match
operation e1/e2. Finally, the last type of expression, as defined in Equation (3.9), is a
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non-terminal match expression Ak, assuming Ak is an element of the set of non-terminals
N of grammar G.

ϵ ∈ E (3.3)

‘.’ ∈ E (3.4)

‘c’ ∈ E (3.5)

[m] ∈ E (3.6){
e? , e∗ , e+ , &e , !e

∣∣ e ∈ E} ∈ E (3.7){
e1e2 , e1/e2

∣∣ {e1, e2} ∈ E} ∈ E (3.8){
Ak

∣∣ Ak ∈ N , N ∈ G
}
∈ E (3.9)

3.2.2 match Function Definition

In this section, the declaration of the match function as defined in the previous section is
expanded to include a proper definition. Definition of the match function that properly
describes the parsing behavior of any PEG grammar is achieved by means of an inductive
definition. That is, for each type of expression (as in Equation (3.3) to Equation (3.9)),
the match function is defined based on a simpler set of definitions or rules, which together
form a so-called rule of inference. [42]

Equation (3.10) shows the form that is used for rules of inference. Here, P1 to Pn form
the premises and C represents the conclusion of the rule of inference. The equation can
be read as stating that the statement C holds true if and only if all statements P1, . . . , Pn

hold true. [42]

P1

· · ·
Pn

C
(3.10)

All concluding statements C of the inductive definitions for the match function have the
format match(G, e, s, i) = o, conforming to its declaration in Equation (3.2). Here, G is
any PEG grammar, e is the expression under evaluation, s is the input string that is to
be parsed with the given grammar, and i is the character position in string s from where
the current evaluation occurs. Finally o represents the result of the function, which can
either be of the form ∅ or i+n. The first is true if the match operation fails, whereas the
latter is true if the operation succeeds. Note that n can only be a non-negative number,
such that for any successful match, the character position advances forward only.

Furthermore, as will become apparent in the subsequent definitions, some PEG expres-
sions are defined as recursive statements. This is to say that one or more premises contain
an invocation of match themselves. In this case, it is important that those rules of in-
ference avoid infinite regress. In other words, such recursive statements must eventually
terminate for the conclusion to hold true.
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The rest of this section defines the match function for each PEG expression.

3.2.2.1 Empty String

The evaluation of any “empty string” PEG expression succeeds unconditionally, as no
characters are consumed. For this reason, the single rule of inference for an empty
string expression ϵ simply evaluates to the original character position i, as can be seen
in Equation (emp.1).

e = ϵ

match(G, e, s, i) = i
(emp.1)

3.2.2.2 Literal String

A literal string can be split up into a sequence of single character expressions. Therefore,
here only a literal string consisting of a single character is assumed.

The success of the match function for a single character expression ‘c’ depends on two
main premises: the current character position i and the character at position i of the
input string s. For the first, assuming zero-based string indexing, if the character position
i is equal or larger than the length of input string s, the match operation must fail and
evaluate to ∅, as the character position i is out of bounds of string s. This can be
observed in Equation (lit.3).

However, when i is within the bounds of input string s, the success of match depends on
the equality of character c and the currently indexed character of string s. If the equality
holds true, the character position is advanced by a single character. On the other hand,
if no equality holds, the operation fails and still evaluates to ∅. This is presented in
Equation (lit.1) and Equation (lit.2) respectively.

e = ‘c’
i < |s|
s[i] = ‘c’

match(G, e, s, i) = i+ 1
(lit.1)

e = ‘c’
i < |s|
s[i] ̸= ‘c’

match(G, e, s, i) = ∅
(lit.2)

e = ‘c’
i ≥ |s|

match(G, e, s, i) = ∅
(lit.3)

3.2.2.3 Character Class

Where the expression ‘c’ can only represent a single character, the “character class”
expression [m] matches with any input character contained in string m.

In this report, the character class PEG expression is formally defined as in Equation
(3.11). As can be seen, string m is composed of characters cx and so-called character
ranges or sets cx,1-cx,2. Recall from Section 3.1.1.2 that a character c is represented
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by an 8-bit value, such that c has a range of [0, 255]. A character range cx,1-cx,2 is
therefore equivalent to a sequence of characters with values ranging from cx,1 to cx,2,
e.g., 17-145 = 17 18 · · · 144 145.

m = C1C2 · · ·Cn (3.11)

where Cx = cx or Cx = cx,1-cx,2 given cx,1 ≤ cx,2

and 1 ≤ x ≤ n

Ultimately, [m] is defined as the set of characters contained in string m. Con-
sider for example a character class [m] = [ .0-9A-Za-z] representing ASCII-
encoded horizontal space character, full stop character, and alphanumeric char-
acters. Using Equation (3.11), m can be deconstructed into individual char-
acters C1 = ‘ ’ and C2 = ‘.’, and character ranges C3 = ‘0’-‘9’, C4 = ‘A’-‘Z’, and
C5 = ‘a’-‘z’. Then, writing out the ranges C3 to C5 into their equivalent se-
quence of characters, it holds that m = “ .0123456789abc · · · xyzABC · · ·XYZ”. Fi-
nally, as stated earlier that [m] is the set of characters contained in string m, it fol-
lows that [m] = {‘ ’, ‘.’, ‘0’, ‘1’, . . . , ‘8’, ‘9’, ‘a’, ‘b’, . . . , ‘y’, ‘z’, ‘A’, ‘B’, . . . , ‘Y’, ‘Z’}, which,
if these elements are converted to their equivalent ASCII-code [43], is equivalent to
[m] = {32, 46, 48, 49, . . . , 56, 57, 65, 66, . . . , 96, 97, 98, . . . , 121, 122}.

Similar to the literal string expression, the success of the match function for a character
class expression depends on both the character position i and the check of whether the
currently indexed character is contained in the set of [m]. The result for failure of the
out of bounds check for character position i can be observed in Equation (cls.3). The
second is formalized in Equation (cls.1) and Equation (cls.2). Equation (cls.1) states that
the match operation applied to a character class expression [m] advances the character
position by one character if the currently indexed character of the input string s is present
in the set of characters represented by [m]. Equation (cls.2) defines an evaluation to ∅
if the indexed character is not an element of [m].

e = [m]
i < |s|
s[i] ∈ [m]

match(G, e, s, i) = i+ 1
(cls.1)

e = [m]
i < |s|
s[i] /∈ [m]

match(G, e, s, i) = ∅
(cls.2)

e = [m]
i ≥ |s|

match(G, e, s, i) = ∅
(cls.3)

3.2.2.4 Any Character

As the name implies, evaluation of the match function with as argument the “any charac-
ter” PEG expression ‘.’ increments the character position i by one character, regardless
of the value of the currently indexed character of the input string s.
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However, the success of the match function still depends on the value of i. If the charac-
ter position value is lower than the input string length, the match function successfully
evaluates to the incremented character position value, as seen in Equation (any.1). Oth-
erwise, a null value is returned as in Equation (any.2).

e = ‘.’
i < |s|

match(G, e, s, i) = i+ 1
(any.1)

e = ‘.’
i ≥ |s|

match(G, e, s, i) = ∅
(any.2)

3.2.2.5 Optional

The “optional” match expression is the result of the unary PEG operation ‘?’ applied
to some expression e′. In short, an expression to which the optional PEG operation is
applied, does not need to be matched successfully itself. That is, if the match operation
on expression e′ fails, the match operation on e′? still succeeds, but simply evaluates to
the same character position i as it started with. This situation is formally defined in
Equation (opt.2).

If evaluation of the match operation applied to expression e′ does succeed, thereby ad-
vancing the character position by j characters, then the optional match expression e′?
succeeds too and evaluates to a new character position value i + j. This can be seen in
Equation (opt.1).

e = e′?
match(G, e′, s, i) = i+ j

match(G, e, s, i) = i+ j
(opt.1)

e = e′?
match(G, e′, s, i) = ∅
match(G, e, s, i) = i

(opt.2)

3.2.2.6 Zero-Or-More

The “zero-or-more” match expression is another result of a PEG unary operation, namely
by the ‘ ∗ ’ operator applied to some expression e′. Similar to the optional expression,
the expression e′ need not be matched successfully itself. That is, if e′ fails, the match

operation applied to e′∗ still succeeds, thereby returning the initial character position i,
as shown in Equation (zom.2)

If the match operation applied to e′ does succeed, it is assumed that it increases the
character position i by j characters. Thereafter, a new match operation is applied to the
same zero-or-more expression e′∗, only this time starting from character position i + j.
Assuming this operation increments the character position by another k characters, the
complete match operation succeeds and evaluates to the new character position i+ j+k.
This situation is presented in Equation (zom.1).

Note that the recursive match operation in Equation (zom.1) must eventually terminate
for any finite-length string s. Recursion terminates when the match operation applied to
e′ eventually evaluates to null for some character position i′ ≥ i according to Equation
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(zom.2).

e = e′∗
match(G, e′, s, i) = i+ j
match(G, e′∗, s, i+ j) = i+ j + k

match(G, e, s, i) = i+ j + k
(zom.1)

e = e′∗
match(G, e′, s, i) = ∅
match(G, e, s, i) = i

(zom.2)

3.2.2.7 One-Or-More

The “one-or-more” match expression is another repetition-based unary PEG operation
similar to the zero-or-more expression. This type of expression is indicated by the ‘ + ’
postfix operator applied to an expression e′. Unlike the zero-or-more operation, the
one-or-more PEG operation requires at least one successful match operation applied to
expression e′ in order for the complete expression e′+ to succeed. This can be readily
observed in Equation (oom.2).

However, when the match expression applied to e′ does succeed the first time and thereby
increments the character position by j characters, a subsequent match operation applied
to the zero-or-more expression e′∗ is invoked. This case is presented in Equation (oom.1).

e = e′+
match(G, e′, s, i) = i+ j
match(G, e′∗, s, i+ j) = i+ j + k

match(G, e, s, i) = i+ j + k
(oom.1)

e = e′+
match(G, e′, s, i) = ∅
match(G, e, s, i) = ∅

(oom.2)

3.2.2.8 And-Predicate

The “and-predicate” match expression is one of two predicate-based unary PEG oper-
ations and is identified by the ‘&’ prefix operator applied to some expression e′. The
predicate-based operations are unique in that they do not advance the character position
i when evaluated successfully.

The and-predicate match expression succeeds simply when evaluation of expression e′

succeeds. However, if that successful evaluation increments the character position by j
characters, this is not propagated to the evaluation result of &e′. Instead, the character
position is never advanced on successful evaluation of e′, which is the main property
of predicate-based operations. This behavior is shown in Equation (and.1). Moreover,
failure to evaluate expression e′ directly translates to a null-evaluation of &e′, which is
shown in Equation (and.2).
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e = &e′

match(G, e′, s, i) = i+ j

match(G, e, s, i) = i
(and.1)

e = &e′

match(G, e′, s, i) = ∅
match(G, e, s, i) = ∅

(and.2)

3.2.2.9 Not-Predicate

The “not-predicate” match expression is the only other predicate-based PEG operation
and is represented by the ‘!’ prefix operator applied to an expression e′.

The not-predicate match expression behaves opposite to that of the and-predicate ex-
pression. Successful evaluation of !e′ occurs only when expression e′ itself evaluates to
∅. That is, !e′ succeeds when e′ fails, which is formalized in Equation (not.1). When
application of the match operation to e′ succeeds, however, the evaluation of expression
!e′ fails, as can be observed in Equation (not.2).

e =!e′

match(G, e′, s, i) = ∅
match(G, e, s, i) = i

(not.1)

e =!e′

match(G, e′, s, i) = i+ j

match(G, e, s, i) = ∅
(not.2)

3.2.2.10 Sequence

The “sequence” match expression is the result of one of two binary PEG operations,
which concatenates the match operation behavior of two contiguous expressions e1 and
e2.

The only path to successful evaluation of a sequence expression is if both expressions
independently evaluate to success. That is, assuming evaluation of e1 results in a j-
character increment of the character position, and subsequent evaluation of e2, starting
at character position i+ j, results in a k-character increment of the character position,
then the expression e1e2 successfully evaluates to i + j + k. This case is presented in
Equation (seq.1).

There are two distinct ways for any sequence expression to fail evaluation. First, as-
suming expression e1 successfully evaluates to i+ j, failure to evaluate e2 to any natural
number leads to a null-evaluation of the sequence expression e1e2 (see Equation (seq.2)).
Second, if e1 evaluates to ∅, expression e2 need to be evaluated, and instead the match

operation applied to the sequence expression e1e2 directly evaluates to ∅ (see Equation
(seq.3)).

e = e1e2
match(G, e1, s, i) = i+ j
match(G, e2, s, i+ j) = i+ j + k

match(G, e, s, i) = i+ j + k
(seq.1)

e = e1e2
match(G, e1, s, i) = i+ j
match(G, e2, s, i+ j) = ∅

match(G, e, s, i) = ∅
(seq.2)

e = e1e2
match(G, e1, s, i) = ∅
match(G, e, s, i) = ∅

(seq.3)
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3.2.2.11 Prioritized Choice

The “prioritized choice” match expression is the second binary PEG operation and is
identified by the ‘/’ operator in the expression e1 / e2. As the name implies, its behavior
matches that of a choice between either successful evaluation of e1 or alternatively of e2
if the first fails.

There are two distinct paths to successful evaluation of application of the match operation
to the prioritized choice expression e1 / e2. First, if evaluation of e1 results in the
advancement of the character position by j characters, then evaluation of the prioritized
choice expression succeeds with the same increase in character position (see Equation
(prc.1)). Second, if evaluation of e1 fails, and the match operation applied to e2 does
succeed, thereby advancing the character position by k characters, then evaluation of
e1 / e2 succeeds also with a character position increase of k characters (see Equation
prc.2)).

The only case in which evaluation of the match operation applied to e1 / e2 does indeed
produce a null-result, is when, starting with character position i, evaluation of both
expression e1 and expression e2 independently fail (see Equation prc.3)).

Note from the inductive definition of the prioritized choice match expression that the
order of evaluation of expressions e1 and e2 matters. That is to say, evaluation of e1
has priority over evaluation of e2. This is unlike the normal choice operator ‘ | ’ in
BNF-syntax introduced in Section 2.1.1.

e = e1 / e2
match(G, e1, s, i) = i+ j

match(G, e, s, i) = i+ j
(prc.1)

e = e1 / e2
match(G, e1, s, i) = ∅
match(G, e2, s, i) = i+ k

match(G, e, s, i) = i+ k
(prc.2)

e = e1 / e2
match(G, e1, s, i) = ∅
match(G, e2, s, i) = ∅
match(G, e, s, i) = ∅

(prc.3)

3.2.2.12 Non-Terminal

The final PEG expression to be inductively defined is the “non-terminal” expression,
indicated by Ak. In the context of PEG, a non-terminal expression is nothing more than
a label attached to some expression e [3].

In order to recursively match an expression by means of the match function, all expres-
sions listed in Equation (3.7) to Equation (3.9) must in the end reduce to one of the
fundamental expressions listed in Equation (3.3) to Equation (3.6). Therefore, any non-
terminal expression Ak must map to an expression e as defined in its right-hand side
of its associated production rule in grammar G. That is, given a PEG production rule
Ak ← e, a match operation applied to the expression Ak is equal to the match operation
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applied to e. To this end, a partial function ntmap is declared as in Equation (3.12).
This can be read as stating that the function ntmap evaluates to the right-hand side
expression e of the production rule for non-terminal Ak, assuming this production rule
is defined in grammar G.

ntmap : G ×N → E (3.12)

ntmap(G,Ak) =
{
e
∣∣ (Ak → e) ∈ G

}
(3.13)

Using the mapping function ntmap, application of the match operation to the non-
terminal expression Ak successfully evaluates if and only if evaluation of expression e′

succeeds, where e′ is the result from the mapping of non-terminal Ak given grammar G.
Moreover, assuming evaluation of expression e′ resulted in a j-character increase of the
character position, evaluation of Ak results in the same increase. This is formalized in
Equation (nte.1).

Likewise, failure to evaluate expression e′ to a natural number results in an evaluation
of the non-terminal expression to ∅, as seen in Equation (nte.2).

e = Ak

ntmap(G,Ak) = e′

match(G, e′, s, i) = i+ j

match(G, e, s, i) = i+ j
(nte.1)

e = Ak

ntmap(G,Ak) = e′

match(G, e′, s, i) = ∅
match(G, e, s, i) = ∅

(nte.2)

3.2.2.13 Conclusion

In this section, the operational semantics of all PEG expressions were defined by means
of the match function. Assuming grammar G = (Σ, N, S, P ) and input string s, the
behavior of a top-down PEG parser must follow the operational behavior as determined
by the evaluation of match(G,S, s, 0) = i. Here, S represents the start-symbol of gram-
mar G and i represents the final character position after the successful parse of string
s. However, note that, unless specified in the grammar, it does not necessarily hold that
i = |s|, but instead more generally 0 ≤ i ≤ |s|.

3.3 Microcode of Parsing Machine Architecture

In the previous section a mathematical definition was provided for top-down PEG parsing
behavior. This section aims to describe the parsing behavior of the PPEG parsing
machine architecture for each of the PEG expressions formally defined in Section 3.2.
These behavioral descriptions are later used in subsequent sections to derive a dedicated
instruction set architecture.

3.3.1 Microcode Terminology

With the introduction of the main PPEG architectural components in Section 3.1, the
behavior of the parsing machine architecture can be described in terms of the movement
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of data between its various components. This is achieved by introducing a concept called
microcode [44].

In the context of this report, microcode consists of so-called micro-operations, or µops,
which are single atomic operations that operate on some data stored in a register, mem-
ory, stack, or constant. A µop is represented by a single statement with a C-like syntax
(C, the programming language). There are two types of operations that can be rep-
resented by µop. First is the comparison operation, indicated by the operators ‘==’
(equal-to), ‘<=’ (smaller-than-or-equal-to), and ‘>=’ (greater-than-or-equal-to). Second
is the data transfer operation, indicated by the ‘=’ operator, which represents a transfer
of data at right-hand side to the component indicated on the left-hand side.

The various PPEG components discussed in Section 3.1 are represented in microcode by
the following keywords:

Registers:

• $pc: program counter

• $cpos: character position

• $fs: file size

• $rsp: return stack pointer

• $bsp: backtrack stack pointer

Memory:

• imem: instruction memory

• dmem: data memory

Stacks:

• rs: return stack

• bs: backtrack stack

The addressing of memory and stack components is achieved by the index operation
notated by x[i]. Here, x is the component that is addressed and i is the address.
For example, the currently executing instruction is obtained by addressing instruction
memory as imem[$pc]. A special case of the index operation is the addressing of a single
backtrack stack entry. As discussed in Section 3.1.2.2, a backtrack stack entry consists
of a character position value, program counter value, and return stack pointer value.
Given backtrack stack entry x, in order to address these values individually, the index
operations x[0], x[1], and x[2] are used respectively.

Microcode programs can also include single-line labels. These are used as alias for an
address of the micro-operation on that same line. Any reference to a specific micro-
operation is therefore achieved by referring to its label. For example, the microcode in
this report may set the program counter register value to a label that references the next
micro-operation to be executed. The use of labels is highlighted in subsequent sections.

The microcode programs of many of the fundamental PEG expressions need to refer to
the microcode of other expressions. For example, in a subsequent section the microcode
for the optional PEG expression e? is provided. This code, however, also includes the
code of expression e. To refer to the microcode program for any expression e, a built-in
function c(e) is used.

Finally, although the C-like syntax might give the impression that microcode programs
are by definition executed sequentially, fundamentally it describes hardware behavior.
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As such, a sequence of contiguous micro-operations may in practice be implemented in
parallel. Which micro-operations happen in parallel is discussed in more detail in Section
3.4.

3.3.2 PEG Expressions to Microcode

In the subsections hereafter, each PEG expression as defined in Equation (3.3) to Equa-
tion (3.9) is translated to a microcode program. The program is constructed in accor-
dance with the operational semantics of the PEG expressions defined in Section 3.2.2.

3.3.2.1 Empty String

The empty string PEG expression, as functionally defined in Section 3.3, has zero lines
of equivalent microcode. The reason for this is that such an expression succeeds uncon-
ditionally and does not change any of the status registers.

3.3.2.2 Literal String

Similar to the operational semantic definition of the literal string PEG expression, the
microcode translation of the literal string expression only focuses on a single-character
length string. Microcode for a literal string of arbitrary length “c1c2 · · · cn” is equiv-
alent to microcode for a PEG sequence expression of single-character literal strings
‘c1’ ‘c2’ · · · ‘cn’.

Listing 3.1 presents the microcode implementation for a single-character literal string
PEG expression ‘c’. The first thing to notice is the greater-than-or-equal-to comparison
between the contents of the character position register and file size register in line 1.
This comparison is a translation from the operational semantics definition in Equation
(lit.3), where the character position i is compared against the input string length |s|. As
dictated by the operational semantics, if the character position, stored in $cpos, is equal
to or larger than the input string length, stored in $fs, a backtrack operation must be
invoked.

The microcode for a backtracking operation can be seen in lines 2 to 6 of Listing 3.1. In
line 2, the top backtrack stack entry value bs[$bsp] is temporarily stored in a variable
t0, after which the backtrack stack pointer $bsp is incremented in line 3. These two
micro-operations together are equivalent to a stack pop operation as discussed in Section
3.1.2.1. The character position, return stack pointer, and program counter are then set
to the values contained in the popped backtrack stack entry as seen in lines 4, 5, and
6 respectively. The setting of the program counter in line 6 results in a jump to the
instruction address stored in the popped backtrack stack entry.

If the comparison in line 1 fails, the microcode in lines 9 to 19 is executed. Line 9 in-
troduces yet another comparison, this time between the current character of the input
string dmem[$cpos], addressed by the character position register $cpos, and the charac-
ter c from the expression ‘c’ under evaluation. If the comparison proves true, the parsing
machine behavior should adhere to the PEG definition specified in Equation (lit.1). This
entails incrementing the character position by a single character (line 10) and jumping
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to the first micro-operation after the microcode for this expression at the address labeled
L0 (line 11).

If the comparison in line 9 fails too, lines 14 to 18 are executed and directly reflect the
PEG behavior defined in Equation (lit.2). That is, a backtrack operation is invoked,
because the active character of the input string dmem[$cpos] does not match character
c. The backtracking microcode is exactly the same as that in lines 2 to 6 discussed
previously.

1 if ($cpos >= $fs) {

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]

5 $rsp = t0[2]

6 $pc = t0[1]

7 }

8 else {

9 if (dmem[$cpos] == c) {

10 $cpos = $cpos + 1

11 $pc = L0

12 }

13 else {

14 t1 = bs[$bsp]
15 $bsp = $bsp + 1

16 $cpos = t1[0]

17 $rsp = t1[2]

18 $pc = t1[1]

19 }

20 }

21 L0: ...

Listing 3.1: Microcode implementation for literal string PEG expression ‘c’.

3.3.2.3 Character Class

As explained in Section 3.2.2, the character class PEG expression [m] represents a set
of valid characters that can match with the input character at that moment. One way
to implement the microcode for this expression is to replicate the code for the literal
string expression in Listing 3.1 and extend it to compare all elements of string m with
the current input character. This approach can be observed in Listing 3.2.

Lines 1 to 7 are exactly the same as in Listing 3.1 in that the input string length is com-
pared against the current character position value, which causes a backtrack operation
if proven equal.

In lines 9, 13, and 18 the comparison between the active character dmem[$cpos] and each
character in string m can be observed. Note that the number of comparisons is equal to
the number of elements n in string m. If any of these comparisons result in a positive
match, the character position $cpos is incremented and the parsing machine jumps to
the first micro-operation after the microcode for this character class expression, which
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has the address labeled L0 (line 28). This parsing machine behavior is in accordance
with the operational semantics presented in Equation (cls.1).

On the other hand, if none of the comparisons result in a positive match, the microcode
in lines 22 to 26 is executed, which represents the backtrack routine seen earlier in lines
2 to 6. This case is a translation of the operational semantics of the character class
expression shown in Equation (cls.2). In short, only if the character class comparison
succeeds is the character position incremented and the program resumed at the next
micro-operation. Otherwise a backtrack operation is initiated.

1 if ($cpos >= $fs) {

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]

5 $rsp = t0[2]

6 $pc = to[1]

7 }

8 else {

9 if (dmem[$cpos] == m[0]) {

10 $cpos = $cpos + 1

11 $pc = L0

12 }

13 else if (dmem[$cpos] == m[2]) {

14 $cpos = $cpos + 1

15 $pc = L0

16 }

17 ...

18 else if (dmem[$cpos] == m[n-1]) {

19 $cpos = $cpos + 1

20 $pc = L0

21 }

22 t1 = bs[$bsp]
23 $bsp = $bsp + 1

24 $cpos = t1[0]

25 $rsp = t1[2]

26 $pc = t1[1]

27 }

28 L0: ...

Listing 3.2: Microcode implementation for character class PEG expression [m].

One other microcode implementation, which may sometimes reduce the number of char-
acter comparisons, is to change the single-value comparison to a range comparison. Recall
from Section 3.2.2.3 that string m is defined as a sequence of arbitrary length consisting
of individual characters and character ranges (see Equation (3.11)). Therefore, instead
of comparing the active character value dmem[$cpos]) against each element in set [m],
one may check if this value is either equal to any of the individual characters or if it is
within the range of any of the character ranges.

This can be achieved by substituting the comparisons in lines 9, 13, and 18 of Listing
3.1 by the following range comparison:
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dmem[$cpos] >= c_1 && dmem[$cpos] <= c_2

Consider the alphanumeric character class expression [0-9A-Za-z] as an example to show
how this new comparison reduces the number of comparisons. Instead of having 62
equality comparisons in microcode to check against each character in the character class,
this could be reduced to 3 range comparisons as follows: ‘0’ ≤ dmem[$cpos] ≤ ‘9’,
‘A’ ≤ dmem[$cpos] ≤ ‘Z’, and ‘a’ ≤ dmem[$cpos] ≤ ‘z’.

The practicality of the two microcode implementations is discussed further in Section
3.4.3.8.

3.3.2.4 Any Character

Like the microcode programs for the literal string and characters class PEG expressions,
the microcode for the any character PEG expression presented in Listing 3.3 starts with a
check for the character position value in line 1. If this check fails, a backtrack operation
is initiated by executing lines 2 to 6, as dictated by operational semantics defined in
Equation (any.2).

If the current character position value is below the file size value, the any character
expression automatically succeeds as defined in Equation (any.1). In microcode, this
entails incrementing the character position value and moving to the microcode for the
next PEG expression in the sequence, which can be observed in lines 9 and 10 respectively
of Listing 3.3.

1 if ($cpos >= $fs) {

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]

5 $rsp = t0[2]

6 $pc = t0[1]

7 }

8 else {

9 $cpos = $cpos + 1

10 $pc = L0

11 }

12 L0: ...

Listing 3.3: Microcode implementation for any character PEG expression ‘.’.

3.3.2.5 Optional

Parsing machine behavior for the optional PEG expression e? involves the unconditional
execution of microcode associated with expression e, which is similar to how its opera-
tional semantics are defined as the result of the match function applied to expression e
(see Equation (opt.1) and Equation (opt.2)).

The main property of the optional expression e?, however, is that it evaluates successfully
regardless of the successful or unsuccessful evaluation of e. Unfortunately, only executing
the microcode for expression e could invoke a backtrack operation, which would make
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the parsing machine jump to some ‘unknown’ instruction address. Instead, if evaluation
of e fails, the parsing machine should simply continue its execution with the next PEG
expression in the sequence, while retaining the original character position and return
stack before execution of the microcode for e.

The above description for correct parsing machine behavior is achieved in the microcode
presented in Listing 3.4. Before execution of microcode for expression e, lines 1 and 2
show that a new backtrack stack entry is pushed onto the backtrack stack, consisting
of the current character position value, return stack value, and also the address of the
microcode for the next in-sequence PEG expression indicated by label L0.

After the new backtrack stack entry, microcode for expression e is executed, which is
represented by the built-in function c(e) employed in line 3. If execution fails here, the
recently added and top-most backtrack stack entry is popped from the backtrack stack
and used to restore the character position, program counter, and return stack pointer to
the values shown in line 2 of Listing 3.4, which results in a jump by the parsing machine
to the next instruction in line 5. If execution of c(e) succeeds, backtrack stack entry
added in line 2 is popped from the backtrack stack, but without using any of its stored
values. This is achieved in line 4 by simply incrementing the backtrack stack pointer.
Thereafter, the machine resumes execution as normal in line 5.

As defined in the operational semantics of the optional PEG expression, the microcode
for such an expression never fails and always ends up resuming execution at microcode
for the next in-sequence expression. In other words, the parsing machine always ends up
in line 5 of Listing 3.4.

1 $bsp = $bsp - 1

2 bs[$bsp] = {$cpos , L0 , $rsp}
3 c(e)

4 $bsp = $bsp + 1

5 L0: ...

Listing 3.4: Microcode implementation for optional PEG expression e?.

3.3.2.6 Zero-Or-More

Like the optional PEG expression, the zero-or-more PEG expression cannot fail eval-
uation. For this reason, the first 3 lines of microcode for the zero-or-more expression
in Listing 3.5 are the same as that of Listing 3.4. If execution of the microcode for
expression e fails in line 3, the backtrack stack entry pushed in lines 1 and 2 cause a
backtrack, which jumps program execution to line 7. This behavior is in accordance with
the operational semantics defined in Equation (zom.2).

The difference in microcode between that of the zero-or-more expression and optional
expression how successful execution of expression e is handled. Rather than simply
executing the next expression in the sequence, Equation (zom.1) dictates the repeated
evaluation of expression e, until evaluation finally fails. This is mirrored in lines 4 to
6 of Listing 3.5. Here, the top backtrack stack entry, which was pushed in lines 1 and
2, is updated to reflect the change in character position value after successful execution
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of expression e. Line 4 obtains the top backtrack stack entry; line 5 overrides the top
backtrack stack entry with the new character position, but keeps the same program
counter value as the original backtrack stack entry (address at label L1); and line 6 sets
the program counter to the address of the first instruction of microcode for expression
e, whose address is labeled as L0.

In short, the microcode for expression e is executed repeatedly until finally a parse fail
is encountered, at which point the parsing machine jumps to the microcode for the next
expression in the sequence.

1 $bsp = $bsp - 1

2 bs[$bsp] = {$cpos , L1 , $rsp}
3 L0: c(e)

4 t0 = bs[$bsp]
5 bs[$bsp] = {$cpos , t0[2], $rsp}
6 $pc = L0

7 L1: ...

Listing 3.5: Microcode implementation for zero-or-more PEG expression e∗.

3.3.2.7 One-Or-More

Microcode for the one-or-more PEG expression e+ as shown in Listing 3.6 consists solely
of the microcode for expression e in sequence with the microcode for the zero-or-more
expression e∗. The reason for this is because the behavior of the PEG expression e+ is
equivalent to that of ee∗, which can be observed from its inductive definition in Equation
(oom.1) and Equation (oom.2).

Note that, in contrast to the zero-or-more expression, the one-or-more expression can fail
evaluation and cause a backtrack. This is due to the unprotected execution of expression
e in line 1 of Listing 3.6.

1 c(e)

2 c(e*)

Listing 3.6: Microcode implementation for one-or-more PEG expression e+.

3.3.2.8 And-Predicate

Behavior for the and-predicate PEG expression execution must comply to the opera-
tional semantics in Equation (and.1) and Equation (and.2). Execution of the microcode
translation of &e always starts by saving the current machine state. This is important
for two reasons: saving the character position and saving the instruction address in case
of failure to evaluate expression e.

If a execution of microcode for expression e in line 3 fails, the machine jumps to label
L0 in line 8. Here, it initiates another backtrack sequence, thereby failing execution of
expression &e entirely.

If execution of expression e is successful, microcode in line 4 and 5 is executed, which
pops the top backtrack entry and uses it only to restore the character position. This is
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in line with Equation (and.1) that states that evaluation of an and-predicate expression
cannot advance the character position. Finally, the micro-operation in line 7 lets the
parsing machine jump to the next in-sequence expression.

1 $bsp = $bsp - 1

2 bs[$bsp] = {$cpos , L0 , $rsp}
3 c(e)

4 t0 = bs[$bsp]
5 $cpos = t0[0]

6 $bsp = $bsp + 1

7 $pc = L1

8 L0: t1 = bs[$bsp]
9 $bsp = $bsp + 1

10 $cpos = t1[0]

11 $rsp = t1[2]

12 $pc = t1[1]

13 L1: ...

Listing 3.7: Microcode implementation for and-predicate PEG expression &e.

3.3.2.9 Not-Predicate

The microcode of a not-predicate PEG expression !e behaves similar to that of an and-
predicate expression, although the result is the inverse. Lines 1 to 3 of Listing 3.8
are the same as that of Listing 3.7: push a new backtrack entry and attempt to execute
expression e. However, if the latter fails, execution simply continues at microcode for the
next expression in the sequence labeled by L0, thereby restoring the character position
as specified in Equation (not.1).

If execution of expression e in line 3 fails, a double backtrack sequence is initiated.
That is, the top backtrack entry that was pushed in lines 1 and 2 is removed in line
4 by incrementing the backtrack stack pointer. Next, a regular backtrack operation is
invoked in lines 5 to 9. This mirrors the semantic definition in Equation (not.2).

1 $bsp = $bsp - 1

2 bs[$bsp] = {$cpos , L0 , $rsp}
3 c(e)

4 $bsp = $bsp + 1

5 t0 = bs[$bsp]
6 $bsp = $bsp + 1

7 $cpos = t0[0]

8 $rsp = t0[2]

9 $pc = t0[1]

10 L0: ...

Listing 3.8: Microcode implementation for not-predicate PEG expression !e.

3.3.2.10 Sequence

Microcode for the sequence PEG expression e1e2 is shown Listing 3.9 and simply con-
sists of two consecutive microcode blocks of expression e1 followed by expression e2. If
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the microcode of both expressions is executed successfully, program execution continues
with the microcode following expression e2, which complies to the operational semantics
defined in Equation (seq.1).

If execution of microcode for expression e1 fails or if execution of expression e1 succeeds
but that of expression e2 fails, then the sequence expression as a whole fails, which
matches Equation (seq.3) and Equation (seq.2) respectively.

1 c(e1)

2 c(e2)

Listing 3.9: Microcode implementation for sequence PEG expression e1e2.

3.3.2.11 Prioritized Choice

If the sequence PEG expression e1e2 is analogous to an and-operation between execution
of expressions e1 and e2, then the prioritized choice expression e1 / e2 is analogous to an
or-operation between execution of expressions e1 and e2. That is, the prioritized choice
expression only results in a backtrack operation if the microcode for neither expression
e1 nor e2 can be successfully executed.

Lines 1 and 2 of Listing 3.10 save the current state of the parsing machine, before
attempting to execute expression e1 in line 3. If successful, line 4 removes the entry
pushed in lines 1 and 2, and line 5 initiates a jump to the microcode of the next expression
in the sequence. This execution path is in accordance with the operational semantics in
Equation (prc.1).

If execution of microcode for expression e1 fails, the backtrack entry pushed in lines 1
and 2 is used to restore the character position and return stack pointer, after which
the program resumes execution in line 6 labeled by L0. If execution of microcode for
expression e2 then succeeds, the prioritized choice expression still succeeds as defined in
Equation (prc.2). If not, another backtrack operation is invoked such that evaluation of
the expression as a whole fails, which happens as defined in Equation (prc.3).

1 $bsp = $bsp - 1

2 bs[$bsp] = {$cpos , L0 , $rsp}
3 c(e1)

4 $bsp = $bsp + 1

5 $pc = L1

6 L0: c(e2)

7 L1: ...

Listing 3.10: Microcode implementation for prioritized choice PEG expression e1 / e2.

3.3.2.12 Non-terminal

The microcode for a non-terminal PEG expression Ak with production rule Ak ← e is
shown in Listing 3.11. As explained in Section 3.1.2.1, a non-terminal call is functionally
equivalent to a function call in conventional architectures. For example, lines 1 and 2
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push a new stack entry onto the return stack containing the address of the first micro-
operation, which is labeled by L0, after the non-terminal call. Line 3 then initiates a
jump to the first micro-operation of expression e labeled by Ak. Line 6 represents the
microcode of expression e, which is pointed to by ntmap(G, Ak) as defined in Equation
(3.13).

If execution of the microcode of non-terminal Ak in line 6 succeeds, lines 7 to 9 are
executed. These pop the top entry from the return stack and uses it to jump back to the
micro-operation labeled by L0 after the non-terminal call of line 3. The character position
advancement resulting from this successful execution matches the behavior detailed in
Equation (nte.1).

If execution of the microcode of non-terminal Ak in line 6 fails, the top backtrack entry
is used in order to backtrack to some previously saved state. This is in accordance with
the operational semantics defined in Equation (nte.2).

1 $rsp = $rsp - 1

2 rs[$rsp] = L0

3 $pc = Ak

4 L0: ...

5 ...

6 Ak: c(ntmap(G, Ak))

7 t0 = rs[$rsp]
8 $rsp = $rsp + 1

9 $pc = t0

Listing 3.11: Microcode implementation for non-terminal PEG expression Ak.

3.3.2.13 Grammar

In the previous sections the microcode for all PEG expressions were outlined. These can
be used to form the microcode of a complete PEG grammar definition, which results
in the microcode of Listing 3.12. The microcode for a grammar is divided into two
parts: lines 1 to 9 contains the setup code, and lines 10 to 22 contain the non-terminal
definitions.

The microcode for any grammar starts by pushing a partially empty backtrack entry
apart from an instruction address labeled by L1. This is the first backtrack entry, which
is only used in case the grammar as whole did not match with the input string. Next, a
call to non-terminal A1 is prepared by pushing the address of the micro-operation after
the call onto the return stack pointer in line 2. Line 3 initiates the jump to the microcode
associated with non-terminal A1 starting at line 10.

In the case that the grammar is successfully evaluated with respect to the input string,
program execution returns to the microcode starting at label L0 in line 4. Here, a status
flag indicating its failure to parse is reset and a flag indicating its success in parsing the
input string is set, after which the parsing machine ends up in an infinite loop in line
6. At the opposite end of the spectrum, if the grammar fails the match with the input
string, the bottom backtrack stack entry created in line 1 is used to jump to the address
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labeled by L1 in line 7. Here, the parsing machine is instructed to set a status flag
indicating its failure to parse the input string and reset the flag indicating a successful
parse. Thereafter, the parsing machine still ends up in an infinite loop in line 9. Note
that the infinite loops in lines 6 and 9 can only be exited by an external reset of the
parsing machine.

The microcode for all non-terminal productions are listed from line 10 onward. This
microcode listing assumes a grammar G with n non-terminals A1, A2, ..., An and their
associated production rules. The non-terminals are translated to microcode in no partic-
ular order. However, do note that the start non-terminal is represented as non-terminal
A1, which is the first non-terminal that is called in line 3. The microcode for each
non-terminal is the same as presented earlier in Listing 3.11: first the microcode for
the expression belonging to the respective non-terminal and then three micro-operations
that pop the top return stack entry to jump back to after the respective non-terminal
call.

The complete microcode mirrors the expected behavior when evaluating
match(G,S, s, 0) as discussed in Section 3.2.2.13. Here it is assumed that the
start symbol S equates to non-terminal A1 and that the character position register
$cpos is reset before execution of Listing 3.12 starts.

1 bs[$bsp] = {null , L1 , null}

2 rs[$rsp] = L0

3 $pc = A1

4 L0: fail = 0

5 success = 1

6 $pc = $pc
7 L1: fail = 1

8 success = 0

9 $pc = $pc
10 A1: c(ntmap(G, A1))

11 t0 = rs[$rsp]
12 $rsp = $rsp + 1

13 $pc = t0

14 A2: c(ntmap(G, A2))

15 t0 = rs[$rsp]
16 $rsp = $rsp + 1

17 $pc = t0

18 ...

19 An: c(ntmap(G, An))

20 t0 = rs[$rsp]
21 $rsp = $rsp + 1

22 $pc = t0

Listing 3.12: Microcode implementation for an arbitrary PEG grammar.
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3.4 PPEG Instruction Set Architecture

So far, the architectural components, formalized PEG behavior, and microcode programs
for each PEG expression have been explained in detail in previous section. These are
finally combined in this section in order to develop a coherent PPEG instruction set
architecture or ISA.

This section consists of three parts. Section 3.4.1 lays out the design principles that form
the basis of the PPEG ISA. Next, Section 3.4.2 explains the instruction encoding that
is followed by the PPEG instructions. Lastly, Section 3.4.3 defines the instructions and
how they fit into the microcode programs from Section 3.3.

3.4.1 ISA Design Principles

In order to get from the microcode programs introduced in Section 3.3 to an ISA, several
design principles are needed in order to construct a coherent instruction set architecture.
These principles are only guidelines and may reflect conflicting goals. Resolution of
these conflicts is based on assumptions that are explained when encountered. Although
a better design may be possible with an iterative design-implementation-measurement
process, time constraints limit an iterative practice.

As stated in the goals (see Section 1.1), this new PEG parsing machine architecture
is developed with the foremost goal to be implemented on hardware. Consequently,
the functionality and simplicity core principles, as listed in Section 1.2, of the PPEG
architecture and ISA is key and forms the basis for how these design principles were
derived.

The following five ISA design principles are used:

1. The logic required for fetching and decoding instructions must be kept simple.

2. An instruction must have its fetch-, decode-, execute-, and write-back-phase finish
in a total of 1 clock cycle.

3. Only a single memory read and write operation per instruction is allowed for each
individual memory component, which includes stack components.

4. Only contiguous micro-operations can form a single instruction.

5. An instruction must pack as much functionality as possible.

Principle 1 mirrors the simplicity over complexity core design principle as stated in
Section 1.2. Although speed and design footprint are not the primary design goals,
these can be welcome consequences by reducing the complexity of both the fetching and
decoding process.

Principle 2 is a consequence of the simplicity core design principle. Although a pipelined
architecture may be realized to gain speed, the increase of complexity is unwarranted
for this architecture. Moreover, as will become apparent later, the number of jumps in
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parsing machine programs due to backtracks and non-terminal calls make it much harder
to reap the benefits of a simple pipeline due to the excessive number of required flushes.

The reason for inclusion of Principle 3 is because of a combination of hardware limi-
tations and an extension of Principle 2. The hardware that is used to implement this
parsing machine architecture on has internal memory components which in turn have
synchronous write ports. That is, these components allow only a single write per com-
ponent per clock cycle. The result is that a read-write-read operation cannot occur in a
single clock cycle.

Principle 4 is based on the microcode definitions of each PEG expression listed in Section
3.3. The micro-operations have been written sequentially, as the parsing machine is
expected to execute these operations in order. For this reason, when grouping the micro-
operations from these listings, only contiguous operations may form a single PPEG
instruction.

Principle 5 may appear counter to the core simplicity principle, but is meant as guideline
to be followed only when the other design principles are adhered to. This principle only
serves to prevent the creation of more instructions than is absolutely necessary.

3.4.2 Instruction Encoding

The instruction encoding format is core of any instruction set architecture, as it deter-
mines the complexity of the fetching and decoding units in the architecture. Therefore,
Principle 1 drives the choices hereafter behind the instruction encoding formats for the
PPEG architecture.

First, in order to facilitate a simple instruction fetching process, it is determined that
all instructions must have the same length. Although variable length instructions might
result in more efficient storage of instructions in memory and would enable the existence
for long instructions with many operands, it would certainly require more complex logic.
For example, instruction alignment and multi-cycle fetch phases are problems that would
arise if variable-length instructions are realized.

Second, extending the previous point, it is determined that PPEG instructions must all
be 32 bits in length. The reason for this seemingly arbitrary number is mostly due to
the careful balance between functionality and memory cost saving. Specifically, some
instructions will need to store an absolute instruction address for a branching operation.
If those instructions have few bits for an address, the number of total instructions in
a compiled PEG is severely limited and therefore the length of the PEG itself. If in-
structions are too long, however, many bits are wasted by instructions that have few
or no operands at all. Furthermore, it is common for memory components to have
data bus widths of a power-of-two number of bits. For these reasons, the choice for 24
bits is chosen as address length. This allows the PPEG programs to at most consist
of 224 ≈ 16.8 × 106 instructions, or 224 instructions × 32 bits

instruction/8
bits
B = 64 MiB of

instruction memory.

Finally, three distinct types of instruction encoding format are introduced: E-type (Sec-
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tion 3.4.2.1), I-type (Section 3.4.2.2), and J-type (Section 3.4.2.3). The two most signif-
icant bits are used to identify the format of any instruction, i.e., the binary sequence 00
identifies the E-type, 01 the I-type, and 10 the J-type. Bits 27 up to 29 that precede the
two format bits identify the function of an instruction, thereby uniquely identifying an
instruction within a specific encoding format. Together these 5 bits represent the opcode
of an instruction. These bits are used by the decoder to determine which instruction is
currently executing and what values its output control lines should have.

3.4.2.1 E-Type

The E-type format or empty format is one that contains no operand fields. Only the
mandatory five opcode bits contain useful information. The instructions that use this
format either do not operate on any data or the data is implicitly specified in the in-
struction.

31 30 29 27 26 0

00 func -

3.4.2.2 I-Type

The I-type format or immediate format consists of three separate 8-bit fields. The first
eight bits are to be used for any instruction that requires an address offset operand, such
as used for relative jumps. The two consecutive 8-bit fields can be used for storing any
immediate value. Note too that there are three bits (bit 24 to 26) left between opcode
and operand fields which are reserved.

31 30 29 27 26 24 23 16 15 8 7 0

01 func - immediate1 immediate0 offset

3.4.2.3 J-Type

The J-type format or jump format consists of a single 24-bit address field. As explained
earlier in this section, this is to be used by instructions that require an absolute instruc-
tion address for direct or future jumps in program execution.

31 30 29 27 26 24 23 0

10 func - address

3.4.3 ISA Definition

With all ISA design principles and instruction encoding information introduced in the
previous sections, this section provides the complete definition and explanation of the 13
PPEG instructions. Their definition is threefold. First, each instruction has its behavior
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defined in terms of micro-operations explored in Section 3.3. Second, a logic diagram is
presented that shows the logic required to implement the instruction in digital hardware.
Finally, an inductive definition is provided that defines the instruction in terms of a
change in parsing machine state.

The inductive instruction definition follows the notation introduced earlier in Section 3.2.
Above the horizontal line are the premises, and, if they all hold true, the conclusion below
the line then holds true too. The first premise and the conclusion are the initial and next
parsing machine state respectively; the second premise is always the instruction that is
defined; and all other premises (if any) are additional conditions for a certain conclusion
to hold true.

The parsing machine state ⟨pc , cp , rs , bs , t⟩ is declared as N×N×R∗×B∗×T . The
first two natural numbers represent the current program counter value pc and character
position value cp respectively. The return stack rs is declared as R∗, which represents
the set of possible return stack entry sequences. Each entry is notated as a single-
element tuple consisting of a natural number (pcr), which represents the return address
pcr associated with that entry. The backtrack stack bs is declared as B∗, which represents
the set of possible backtrack stack entry sequences. Each entry is notated as a 3-element
tuple (pcb, cpb, rsb) declared as N × N × R∗, which consists of a program counter and
character position value and a return stack. Finally, the state variable t is declared as
T = {−1, 0, 1}. This variable represents the status of the parsing machine, i.e., t = −1
translates to “failed parse” status, t = 1 translates to “successful parse” status, and
t = 0 translates to “active parse” status. Before the parsing machine starts execution,
it is assumed that this state variable is externally reset to t = 0.

Note that the parsing machine state does not include the return stack and backtrack
stack pointers. Instead, these are implicit to the return stack and backtrack stack entry
sequences rs and bs, as it would otherwise be much more difficult to read. A consequence
of this decision is that, instead of explicitly storing only a return stack pointer in a
backtrack stack entry, now the total return stack entry sequence is seemingly stored in
such an entry. In practice, however, still only the return stack entry is stored.

Lastly, one final comment about the written-form of the instruction operands. If a
PPEG instruction uses the character position register $cpos in any way, it is listed as
an operand for that instruction, in contrast to any of the other status registers. The
reason for this is that, in the context of parsing text, only a change in character position
is assumed to be of interest to the user. To this end, the format of the character position
register as operand reflects the type of operation performed on that register.

The following subsections define the PPEG instruction set architecture.

3.4.3.1 set fail

As the name implies, the function of the set fail instruction is to set the parsing
machine status to indicate failure. Its microcode definition in Listing 3.13 is the result
of grouping lines 4 to 7 in the microcode for a PEG grammar in Listing 3.12. The choice
for grouping these specific lines into an instruction is based on design principles 4 and
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5: the micro-operation before these lines has unrelated behavior and micro-operations
after these lines cannot be executed due to the infinite loop before them.

1 fail = 1

2 success = 0

3 $pc = $pc

Listing 3.13: Microcode for the set fail instruction.

The instruction is implemented in terms of digital logic as is shown in Figure 3.3. The
only interesting part is the setting and setting of the “fail” and “success” blocks in the
logic diagram, which each represent a single bit register or flip-flop that can be set, reset,
or left unchanged.

The inductive definition of the set fail instruction is presented in Equation (set fail.1).
Note that the only state change is the change in value of the parsing machine’s status
to t = −1, representing a failed parse, which is indeed the intended function of this
instruction.

Finally, as can be seen in the second premise of its inductive definition, the written
instruction format has no apparent operand, such that the instruction encoding follows
the E-type format (see Section 3.4.2.1). The instruction’s opcode consists of the following
binary format and function values: fmt = 00, func = 001.

⟨pc , cp , rs , bs , t⟩
imem[pc] = set fail

⟨pc , cp , rs , bs , −1⟩
(set fail.1)

$pc imem$pc imem

fail1

success0

Figure 3.3: Logic diagram for the set fail instruction.

3.4.3.2 set success

The instruction set success is almost entirely the same as set fail, except for indi-
cating a successful parse as opposed to a failed parse. Its microcode definition in Listing
3.14 is result of grouping lines 7 to 9 of Listing 3.12, which is based on entirely the same
principles and reasons as outlined in Section 3.4.3.1.

1 fail = 0

2 success = 1

3 $pc = $pc

Listing 3.14: Microcode for the set success instruction.
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The digital logic diagram in Figure 3.4 and inductive definition in Equation
(set success.1) are also extremely similar to those of the set fail instruction, with
only the value for the status flags reversed.

The set success instruction also follows the E-type instruction encoding format (see
Section 3.4.2.1). Moreover, the instruction’s opcode consists of the following binary
format and function values: fmt = 00, func = 010.

⟨pc , cp , rs , bs , t⟩
imem[pc] = set fail

⟨pc , cp , rs , bs , 1⟩
(set success.1)

$pc imem$pc imem

fail0

success1

Figure 3.4: Logic diagram for the set success instruction.

3.4.3.3 ret

The ret instructions is used as a successful return from non-terminal call operation,
which is achieved by jumping to the return address at the top of the return stack. Its
definition in terms of microcode is shown in Listing 3.5 and is the result of grouping
together lines 7 to 9 from the non-terminal PEG expression microcode in Listing 3.11.
The reason for grouping these micro-operations is again a consequence of principles 4
and 5: unlike these grouped micro-operations, the microcode preceding these operations
are independent and unrelated.

1 t0 = rs[$rsp]
2 $rsp = $rsp + 1

3 $pc = t0

Listing 3.15: Microcode for the ret instruction.

The microcode definition translates into the digital logic seen in Figure 3.5. Here, it can
be observed that the current return stack pointer addresses the return stack for the top
return address, which is then directly fed into the program counter register. Moreover,
the return stack pointer register is increased by 1 by means of a adder component.

Equation (ret.1) presents the inductive definition of the parsing machine state translation
for the ret instruction. Note that the first premise presents the return stack entry as
(pcr) : rs, which is a concatenation of the top return stack entry with return address pcr
and the rest of the return stack rs. If the two premises hold, the parsing machine state
changes, such that the new program counter value is equal to pcr and the return stack
is now only equal to rs, which is the result of popping the top entry.

Similar to the previous two instructions, the written format of the ret instruction has
no operands as shown in the second premise of Equation (ret.1). This instruction thus
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uses the E-type instruction encoding format (see Section 3.4.2.1), whose opcode consists
of the following binary format and function values: fmt = 00 , func = 011.

⟨pc , cp , (pcr) : rs , bs , t⟩
imem[pc] = ret

⟨pcr , cp , rs , bs , t⟩
(ret.1)

$pc imem $rsp rstack

   +
1

$pc imem $rsp rstack

Figure 3.5: Logic diagram for the ret instruction.

3.4.3.4 any

As the name suggests, the any instruction is a one-to-one mapping of the any PEG
expression, thereby able to correctly parse any character as long as the character position
is within the bounds of the input string length. Its microcode in Listing 3.16 is the result
of grouping all lines of the any expression microcode in Listing 3.3, which is a direct result
of applying Principle 5: packing as much functionality in a single instruction.

1 if ($cpos == $fs) {

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]

5 $rsp = t0[2]

6 $pc = t0[1]

7 }

8 else {

9 $cpos = $cpos + 1

10 $pc = $pc + 1

11 }

Listing 3.16: Microcode for the any instruction.

Despite the relatively many micro-operations in its microcode, the any instruction should
still be able to execute in a single single clock-cycle as stated by Principle 2. This is
achieved by the digital logic presented in Figure 3.6. It should be observed that the
values on the right hand-side of all micro-operations in Listing 3.16 are all obtained in
parallel by this logic. However, the writing these values depends on the comparison
in line 1. This comparison is manifests itself into a equal-or-greater-than comparator,
which takes the current character position and file size values as input. The single bit
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result is then fed into four multiplexers, which route the correct values to the input of
their respective registers.

The parsing machine state changes are inductively defined in Equation (any.1) and Equa-
tion (any.2), where the former present the state change for a successful character parse
and the latter for a backtrack operation after a failed character parse. If successful, both
the program counter and character position registers are incremented as in Equation
(any.1). If unsuccessful, the top backtrack stack entry (cpb, pcb, rsb) is popped and the
program counter, character position, and return stack are set to the values within, as is
shown in Equation (any.2).

Unlike the previously defined instructions, the any instruction does have an operand,
namely the $cpos register. However, as explained in the introduction of this section, the
reason for this is because the any instruction operates on $cpos register. Still, no other
operands are used by the instruction and therefore it too is encoded with the E-type
encoding format (see Section 3.4.2.1). The associated opcode consists of the following
binary format and function values: fmt = 00, func = 100.

⟨pc , cp , rs , bs , t⟩
imem[pc] = any $cpos
cp < fs

⟨pc+ 1 , cp+ 1 , rs , bs , t⟩
(any.1)

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = any $cpos
cp ≥ fs

⟨pcb , cpb , rsb , bs , t⟩
(any.2)
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$pc Instruction 
Memory $bsp bstack

   +
1

$cpos

$fs
   ≥

   +
1

0
1

   +
1

$bsp

$rsp

imem

0
1

0
1

0
1

Figure 3.6: Logic diagram for the any instruction.

3.4.3.5 s bktr

As can be observed in the microcode definition for the s bktr instruction in Listing 3.17,
this instruction simply performs a single backtrack operation. These micro-operations
together are a common occurrence in microcode programs for PEG expressions, but can
often be combined with other micro-operations to create another instruction, such as the
case of the any instruction. However, this is not the case for the same group of micro-
operations in lines 8 to 12 of Listing 3.7 for the and-predicate PEG expression, where
the preceding micro-operation is a jump and the micro-operation after is independent
of these micro-operations. The five micro-operations in Listing 3.17 therefore pack the
maximum functionality that is needed according to Principle 5.

1 t0 = bs[$bsp]
2 $bsp = $bsp + 1

3 $cpos = t0[0]

4 $rsp = t0[2]

5 $pc = t0[1]

Listing 3.17: Microcode for the s bktr instruction.

The logic that is required to implement the s bktr instruction is presented in Figure 3.7.
It simply shows that the backtrack stack pointer addresses the top backtrack stack entry,
whose three values are fed into the character position, program counter, and return stack
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pointer registers. At the same time, the backtrack stack pointer itself is incremented and
fed back into itself.

This behavior can also be observed in the inductive definition shown in Equation
(s bktr.1), which is the same as Equation (any.2), except for the removal of the character
position condition as a third premise.

Finally, as the backtrack instruction also operates on the character position register, it
is included as only operand in the written format of said instruction. The instruction
encoding is therefore also of the E-type format (see Section 3.4.2.1), with the following
binary format and function values: fmt = 00, func = 101.

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = s bktr $cpos

⟨pcb , cpb , rsb , bs , t⟩
(s bktr.1)

$pc imem $bsp bstack

   +
1

$cpos

$rsp

Figure 3.7: Logic diagram for the s bktr instruction.

3.4.3.6 s rmv bktr

Listing 3.18 shows the microcode of the s rmv bktr instruction, which adds only the first
micro-operation with respect to the microcode definition of the s bktr instruction. This
is apparent from the name of the s rmv bktr instruction, which combines the removal
of the top backtrack stack entry (line 1) with a succeeding backtrack operation (lines 2
to 6). Its use can be observed in lines 4 to 9 of microcode Listing 3.8, which defines the
microcode for a not-predicate PEG expression. Once again, any surrounding microcode
is independent of these micro-operations, which means that, by definition of Design
Principle 5, the functionality of the s rmv bktr instruction is maximally packed.

1 $bsp = $bsp + 1

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]
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5 $rsp = t0[2]

6 $pc = t0[1]

Listing 3.18: Microcode for the s rmv bktr instruction.

The difference in logic for the s rmv bktr and s bktr instructions is reflected by the
insertion of an additional adder between the backtrack stack pointer register and the
backtrack stack component, as shown in Figure 3.8. This additional adder is used to
directly address the second backtrack stack entry from the top.

Dismissal of the top backtrack stack entry can also clearly be observed in the parsing
machine state change inductively defined in Equation (s rmv bktr.1) for the s rmv bktr

instruction. Instead of attaining the values contained in the top backtrack stack entry
(cpb1, pcb1, rsb1), the state machine changes its state variables to the values contained in
the second entry from the top.

The s rmv bktr has only the character position register $cpos as operand, meaning
that it too is encoded according to the E-type encoding format (see Section 3.4.2.1). Its
opcode consists of the following binary format and function values: fmt = 00, func =

101.

⟨pc , cp , rs , (cpb1, pcb1, rsb1) : (cpb2, pcb2, rsb2) : bs , t⟩
imem[pc] = s rmv bktr $cpos

⟨pcb2 , cpb2 , rsb2 , bs , t⟩
(s rmv bktr.1)

$pc imem $bsp bstack

   +
1

$cpos

$rsp

   +
1

Figure 3.8: Logic diagram for the s rmv bktr instruction.

3.4.3.7 char set

The microcode for parsing a single character is covered in Section 3.2.2.2 and microcode
for the char set instruction, as presented in Listing 3.19, is therefore almost a direct
copy. The only difference is in line 9, which consists of two comparisons, effectively check-
ing if the current character is between character range [c1-c2]. This type of comparison



78 CHAPTER 3. PPEG ARCHITECTURE DESIGN

was already proposed in the microcode section for the character class PEG expression,
Section 3.2.2.3. By using this comparison, the char set instruction can be used to both
parse a single character (i.e., c1 = c2) and a single character range (i.e., [c1-c2]).

The reason for substituting the simple comparison for equality into a range comparison
is because it enables fast evaluation of literal strings and single range character classes
alike, thereby packing more functionality in a single instruction (see Principle 5.

1 if ($cpos >= $fs) {

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]

5 $rsp = t0[2]

6 $pc = t0[1]

7 }

8 else {

9 if (dmem[$cpos] >= c1 && dmem[$cpos] <= c2) {

10 $cpos = $cpos + 1

11 $pc = $pc + 1

12 }

13 else {

14 t1 = bs[$bsp]
15 $bsp = $bsp + 1

16 $cpos = t1[0]

17 $rsp = t1[2]

18 $pc = t1[1]

19 }

20 }

Listing 3.19: Microcode for the char set instruction.

Regardless of the complex microcode for a single instruction, the char set instruction
can still be executed in single cycle according to Principle 2. The hardware that achieves
this feat is presented in Figure 3.9. On the left, the $pc and $cpos registers are used
to fetch the current instruction and character respectively. At the same time, the top
entry is fetched from the backtrack stack is fetched in case a backtrack operation is
necessary. Next, the two opcodes c1 and c2 are compared against the active character
and the $cpos register is compared against the file size register $fs. Finally, the two
new possible values for each register are fed through multiplexers, which routes only one
to their respective register based on the comparison results (output of the and-gate).

The microcode paths for instruction char set are formally defined in Equation
(char set.1), Equation (char set.2), and Equation (char set.3). The first represents the
only path to successful evaluation of a single character literal string, which results in
a simple increment of the program counter and character position registers. The latter
two equations define two different conditions with the same outcome, namely a backtrack
operation. The cause is either that the active character is not in the specified range or
that the character position is outside the input string bounds.

As stated earlier, the char set instruction has at least two operands: the outer range
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character values c1 and c2. However, because this instruction also operates on the char-
acter position (albeit conditionally), the operand ($cpos)+ is used. This specific format
is used to indicate that the register is used to index data memory, after which the register
contents are automatically incremented.

The need to store two 8-bit immediate operands in a 32-bit instruction is satisfied by the
immediate or I-type instruction encoding format as seen in Section 3.4.2.2. Note that the
lower 8-bits are unused and that immediate0 = c1 and immediate1 = c2. Finally, the
opcode associated with the char set instruction consists of the following binary format
and function values: fmt = 01, func = 000.

⟨pc , cp , rs , bs , t⟩
imem[pc] = char set ($cpos)+, c1, c2
cp < fs
c1 ≤ dmem[cp] ≤ c2

⟨pc+ 1 , cp+ 1 , rs , bs , t⟩
(char set.1)

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = char set ($cpos)+, c1, c2
cp < fs
(dmem[cp] < c1) ∨ (dmem[cp] > c2)

⟨pcb , cpb , rsb , bs , t⟩
(char set.2)

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = char set ($cpos)+, c1, c2
cp ≥ fs

⟨pcb , cpb , rsb , bs , t⟩
(char set.3)
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$pc Instruction 
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Figure 3.9: Logic diagram for the char set instruction.

3.4.3.8 char set beq

Microcode for the char set beq instruction, as presented in Listing 3.20, is similar to
the microcode definition of char set (See Listing 3.19). The main difference is the code
for the condition when the character position is inside the input string bounds but the
active character is outside the specified character range [c1-c2]. Instead of initiating a
backtrack operation, the program counter is simply incremented by one, which can be
observed in line 14. The other difference is in line 11, which shows that the program
counter is increased by an offset o if the active character is within the character range
[c1-c2]. This is the reason for the suffix -beq, meaning branch or jump on equality.

1 if ($cpos >= $fs) {

2 t0 = bs[$bsp]
3 $bsp = $bsp + 1

4 $cpos = t0[0]
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5 $rsp = t0[2]

6 $pc = t0[1]

7 }

8 else {

9 if (dmem[$cpos] >= c1 && dmem[$cpos] <= c2) {

10 $cpos = $cpos + 1

11 $pc = $pc + o

12 }

13 else {

14 $pc = $pc + 1

15 }

16 }

Listing 3.20: Microcode for the char set beq instruction.

This instruction is specifically designed for evaluation of character class PEG expres-
sions. Listing 3.21 shows an example of how the alphanumeric character class expression
[0-9A-Za-z] can be evaluated using a combination of char set beq and s bktr instruc-
tions. The written instruction format is similar to that of the char set instruction, only
adding an additional fourth operand representing an instruction address offset. The
code can be read as follows. Assuming execution of line 1, if the active character is not
between ‘0’ and ‘9’, the program counter is incremented by one; otherwise the program
counter is increased by 4, thereby jumping to the instruction after line 4. Any time the
active character does not fit within the specified range, this process is repeated for any
char set beq instructions thereafter. Finally, if the active character does not match
with any of the three ranges compared in lines 1 to 3, the parsing machine ends up in
line 4, where the s bktr instruction initiates a backtrack operation (see Section 3.4.3.5)
in order to fail evaluation of the complete character class expression. A more detailed
account of the character class expression translation is provided in Section 3.5.2.2.

1 char_set_beq ($cpos)+, ‘0’, ‘9’, 4

2 char_set_beq ($cpos)+, ‘A’, ‘Z’, 3

3 char_set_beq ($cpos)+, ‘a’, ‘z’, 2

4 s_bktr $cpos

Listing 3.21: PPEG program for alphanumeric character class PEG expression.

Note that there is no direct translation from the microcode for the character class PEG
expression in Listing 3.2 and the microcode definition of the char set beq instruction.
Although Principle 5 states that as much functionality must be packed in any instruc-
tion, an instruction that could parse any character class expression requires many more
operands than can be stored in a 32-bit instruction. This could possibly be circum-
vented by creating a multi-cycle instruction, but this would go against both Principle 1
and Principle 2. For this reason, the character class PEG expression is split up into one
or more character ranges that can each be parsed with only a single instruction.

The microcode definition of the char set beq instruction translates to the digital logic
domain as presented in Figure 3.10. Compared to the logic diagram for the char set

instruction, only a few additions have been made. As can be observed in microcode List-
ing 3.20, there are three distinct actions for each of the three conditions. The significant
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change compared to the logic in Figure 3.9 is the additional possible values for the char-
acter position and program counter, as the former could now remain unchanged and the
latter could be incremented by an arbitrary 8-bit offset stored in the 32-bit instruction
word. These optional values are routed through two additional multiplexers.

The formal inductive definitions of the char set beq instruction can be observed in
Equation (char set beq.1), Equation (char set beq.2), and Equation (char set beq.3).
Compared to the inductive definition of the char set instruction, only the outcome
of the conditions presented in Equation (char set beq.1) and Equation (char set beq.2)
are different.

The written format of the char set beq instruction that can be seen in the inductive
definitions is also similar, except for the additional 8-bit offset as fourth operand. The
I-type instruction encoding format (see Section 3.4.2.2) is used to store the two 8-bit
character values and the 8-bit offset in the 32-bit instruction word. The 5-bit instruction
opcode consists of the following binary format and function values: fmt = 01, func =

001.

⟨pc , cp , rs , bs , t⟩
imem[pc] = char set beq ($cpos)+, c1, c2, o
cp < fs
c1 ≤ dmem[cp] ≤ c2

⟨pc+ o , cp+ 1 , rs , bs , t⟩
(char set beq.1)

⟨pc , cp , rs , bs , t⟩
imem[pc] = char set beq ($cpos)+, c1, c2, o
cp < fs
(dmem[cp] < c1) ∨ (dmem[cp] > c2)

⟨pc+ 1 , cp , rs , bs , t⟩
(char set beq.2)

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = char set beq ($cpos)+, c1, c2, o
cp ≥ fs

⟨pcb , cpb , rsb , bs , t⟩
(char set beq.3)
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Figure 3.10: Logic diagram for the char set beq instruction.

3.4.3.9 call

The call instruction is used to initiate a non-terminal call and is therefore part of
the non-terminal PEG expression. The call microcode in Listing 3.22 is a grouping
(following principles 4 and 5) of the first three lines of the non-terminal expression
microcode presented in Listing 3.11. Lines 1 and 2 push the return address (address
of the next instruction) onto the return stack, after which the program counter is set
to instruction address pcj in line 3. Note that the address pcj is intended to be only
the first instruction of a non-terminal subroutine, but can in practice be any instruction
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address.

1 $rsp = $rsp - 1

2 rs[$rsp] = pc + 1

3 $pc = pc_j

Listing 3.22: Microcode for the call instruction.

Figure 3.11 presents the digital logic associated with the microcode of the call instruc-
tion. Note the direct connection from instruction memory imem to the program counter
register $pc, which represents the 24-bit address that is directly written to the program
counter register. The other part of the logic is the data transfer of $pc + 1 to the return
stack at address $rsp - 1, the new top stack entry address.

The translation from logic diagram behavior to the formal definition of the cal instruc-
tion is shown in Equation (call.1). Here, the conclusive parsing machine state has the
program counter value set to the jump address operand pcj . Moreover, the original
return stack sequence rs is concatenated with the incremented program counter value,
representing the return address.

The call instruction is the first instruction in this section to use the J-type instruction
encoding, as introduced in Section 3.4.2.3. This instruction format type most promi-
nently features the single 24-bit address operand, which stores the first instruction of
the called non-terminal subroutine, or in other words the jump address pcj . The binary
format and function values of the call instruction’s opcode field are as follows: fmt =

10, func = 000.

⟨pc , cp , rs , bs , t⟩
imem[pc] = call pcj

⟨pcj , cp , (pc+ 1) : rs , bs , t⟩
(call.1)

$pc imem $rsp

   +
-1

$pc imem $rsp rstack

   +
1

Figure 3.11: Logic diagram for the call instruction.

3.4.3.10 s push

As the name implies and most similar to the call instruction, the s push instruction
pushes a new stack entry onto the backtrack stack. Listing 3.23 presents the microcode
associated with this instruction, which contains only three micro-operations: two to push
the new entry, consisting of the current character position and return stack pointer values
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and an absolute backtrack instruction address pc b; the last operation simply increments
the program counter by one.

1 $bsp = $bsp - 1

2 bs[$bsp] = {$cpos , pc_b , $rsp}
3 $pc = $pc + 1

Listing 3.23: Microcode for the s push instruction.

The grouping of these particular micro-operations is no coincident, as they can be found
at the start of the microcode for the optional, zero-or-more, and-predicate, not-predicate,
and sequence PEG expressions (see Section 3.3). Because of principles 4 and 5, only these
micro-operations have been grouped.

The digital logic required for the execution of the s push instruction can be seen in
Figure 3.12. Note that the new backtrack stack entry is created from values coming out
of the character position register, return stack register, and the 32-bit instruction word.

The inductive definition of the s push instruction can be found in Equation (s push.1).
The main change in parsing machine state is the concatenation of the new backtrack
stack entry.

The only information besides the opcode that the s push instruction needs to provide
is the backtrack instruction address pcb, or in other words the address that the parsing
machine jumps to in case of a backtrack operation. However, because the instruction
also stores the current character position in the backtrack stack, the character position
register is the other operand of the s push instruction. In conclusion, this instruction uses
the J-type encoding format (see Section 3.4.2.3), whose opcode consists of the following
binary format and function values: fmt = 10, func = 100.

⟨pc , cp , rs , bs , t⟩
imem[pc] = s push $cpos, pcb

⟨pc+ 1 , cp , rs , (cp, pcb, rs) : bs , t⟩
(s push.1)

$pc imem $rsp

   +
-1

$pc imem $bsp bstack

   +
1

$rsp

$cpos

Figure 3.12: Logic diagram for the s push instruction.
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3.4.3.11 s upd

The s upd instruction, whose microcode is presented in Listing 3.24, is a contraction of
the s rmv and s push instructions. Though the result is the same, instead of explicitly
removing the top backtrack stack entry and pushing a new one, the s push fetches the
top stack entry, updates the character position and return stack pointer fields to the
current values, and writes the updated entry to the same backtrack stack address. This
process can be observed in lines 1 and 2 of Listing 3.24. Lastly, line 3 lets the parsing
machine jump to an absolute instruction address pcj .

The microcode definition of this instruction is the result of grouping lines 4 to 6 of
microcode Listing 3.5 for the one-or-more PEG expression. The reason for grouping
these lines are Principle 4 and Principle 5, as surrounding microcode is independent of
the this grouping. Note that the reading from and writing to the same stack entry is
allowed according to Principle 3.

1 t0 = bs[$bsp]
2 bs[$bsp] = {$cpos , t0[1], $rsp}
3 $pc = pc_j

Listing 3.24: Microcode for the s upd instruction.

Figure 3.13 shows the digital logic required in order to execute the s upd instruction.
The backtrack stack component is addressed by the unchanging backtrack stack pointer
register, such that the read and write addresses are the same. Note also that only
the instruction address field of the top backtrack stack entry remains unchanged when
writing the new entry.

The s upd instruction behavior is formalized in Equation (s upd.1). Here, the original
top backtrack entry is changed into (cp, pcb, rs). Moreover, the program counter value
is set to the last instruction operand pcj .

Besides the $cpos operand, the s upd has an absolute instruction address pcj as operand
which requires the instruction to be encoded with the J-type instruction encoding format
(see Section 3.4.2.3. The opcode field of the same instruction consists of the following
binary format and function values: fmt = 10, func = 101.

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = s upd $cpos, pcj

⟨pcj , cp , rs , (cp, pcb, rs) : bs , t⟩
(s upd.1)

$pc imem$pc imem

$bsp
bstack

$rsp

$cpos

Figure 3.13: Logic diagram for the s upd instruction.
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3.4.3.12 s res

The s res instruction, unlike the s bktr instruction, does not initiate a complete back-
track operation, but only uses the top backtrack stack entry to restore the character
position register to some saved value. This is achieved by the microcode implementation
shown in Listing 3.25. Like the s bktr instruction, lines 1 and 2 fetch the top backtrack
stack entry, transfer the character position therein to the character position register, and
increment the backtrack stack pointer. However, the return stack pointer and program
counter are not restored to the backtrack stack values. Instead, the program counter is
set to an arbitrary absolute instruction address pcj .

The use of the s res instruction is in the execution of the and-predicate PEG expression,
whose microcode is presented in Listing 3.7. Here, the s res microcode can be found
in lines 4 to 7, which are grouped according to principles 4 and 5. Recall from Section
3.2.2.8 that after successful evaluation of expression e in and-predicate expression e?, the
character position needs to be restored to its value before evaluation of e. The restore
operation is thus achieved by the s res instruction.

1 t0 = bs[$bsp]
2 $cpos = t0[0]

3 $bsp = $bsp + 1

4 $pc = pc_j

Listing 3.25: Microcode for the s res instruction.

The microcode behavior of s res directly translates to the digital logic shown in Figure
3.14. The main observation is that the top entry is read from the backtrack stack, after
which only the character position field is written to its respective register $cpos.

The equivalent inductive definition is presented in Equation (s res.1), where it can be ob-
served that only the character position and program counter state variables are changed
to the value in the top backtrack stack entry and the absolute address operand respec-
tively.

The unconditional jump to instruction address pcj is facilitated by means of storing the
address in the 24-bit operand field in the J-type instruction encoding format (see Section
3.4.2.3). The opcode of the s res instruction consists of the following binary format and
function values: fmt = 10, func = 110.

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = s res $cpos, pcj

⟨pcj , cpb , rs , bs , t⟩
(s res.1)
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$pc imem $bsp bstack

   +
1

$cpos

Figure 3.14: Logic diagram for the s res instruction.

3.4.3.13 s rmv

The s rmv instruction is used to remove the top backtrack stack entry without restoring
the parsing machine with the values within, which is achieved with the microcode shown
in Listing 3.26. Line 1 increments the backtrack stack pointer, thereby discarding the top
backtrack stack entry. Line 2 sets the program counter register to an absolute instruction
address pcj . The origin of the two micro-operations is the result from combining behavior
in line 4 of the optional expression microcode (see Listing 3.4) and lines 4 and 5 of the
sequence expression microcode (see Listing 3.9). These micro-operations are independent
from surrounding micro-operations, which, combined with principles 4 and 5 is the reason
for grouping the s rmv microcode.

1 $bsp = $bsp + 1

2 $pc = pc_j

Listing 3.26: Microcode for the s rmv instruction.

Figure 3.15 shows the rather simple logic diagram in order to support execution of the
s rmv instruction and Equation (s rmv.1) presents its equally simple inductive definition.
Note that, though the top backtrack entry is removed in the conclusive parsing machine
state, none of its values are used said conclusive state.

Because the s rmv instruction does not modify the character position register $cpos, its
only operand is the absolute instruction address pcj that the parsing machine uncondi-
tionally jumps to on execution. As before, this operand is stored based on the J-type
instruction encoding format (see Section 3.4.2.3) with the following binary format and
function values: fmt = 10, func = 111.

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩
imem[pc] = s rmv pcj

⟨pcj , cp , rs , bs , t⟩
(s rmv.1)
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$pc imem $rsp

   +
1

$pc imem $bsp

Figure 3.15: Logic diagram for the s rmv instruction.

3.4.4 PPEG Architecture

The presented logic diagrams for the PPEG instructions can be combined to form the
complete PPEG architecture logic diagram. This can be observed in Appendix A. Note
the addition of the control unit, which contains all digital logic required to control the
multiplexers, registers, and memory components. It does this based on the instruction
opcode and three comparator outputs (2 character comparators + 1 string length com-
parator). For readability, the control signals for the multiplexers (select signals), registers
(reset and write enable signals), and memory components (read enable and write enable)
are not drawn in this schematic.

3.5 Translating PEG to PPEG Code

In the previous section the PPEG instruction set architecture was defined based on the
microcode implementations of PEG expression as discussed in Section 3.3. The next step
is to formalize the translation from PEG expression to PPEG code, which is the aim of
this section. Finally, a proof is given that shows that the translation is coherent with
the PEG recognizer formalization by means of the match function introduced in Section
3.2.

The section is divided into two parts. First an introduction and declaration of the PEG-
PPEG translation formalism is provided in Section 3.5.1. Then in Section 3.5.2 the
translation function is defined and proven for each PEG expression.

3.5.1 PEG-PPEG Translation Declaration

The translation of PEG to PPEG assembly code is defined as a function Π, whose
declaration is provided in Equation (3.14). In order, the domain of Π consists of the set
of PEG grammars G; the set of natural numbers N, which represents the initial program
counter or instruction memory address at which to store the resulting PPEG code; and
the set of PEG expressions E . The latter has been previously defined in Section 3.2. The
set C∗ after the arrow is the codomain of Π, where C represents the set of valid PPEG
instructions.

Π : G × N× E → C∗ (3.14)

Invocation of the PEG-PPEG translation function is of the form Π(G, pc, e). The result-
ing PPEG assembly code consists of zero or more instructions which are delimited by
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line feeds. Moreover, each instruction corresponds to a single program counter value pc.
Assuming a function call Π(G, pc, e), the first instruction is corresponds to address pc,
the second to pc+ 1, the third to pc+ 2, etc.

3.5.2 PEG-PPEG Translation Definition and Proof

Where the previous section formalized a declaration of the PEG-PPEG translation func-
tion Π, this section aims to formalize its definition. Similar to the match function defined
in Section 3.2.2, Π is inductively defined for each fundamental PEG expression. There-
fore, the same notation is used with premises above a horizontal line and conclusion
below. Note that the resulting PPEG code translations closely follow the microcode
listings for each PEG expression as presented in Section 3.3.

After the definition of Π for a fundamental PEG expression, a proof is provided that the
parsing machine behavior is in accordance with the PEG match recognizer behavior for
that expression. Specifically, assuming the match definition of a PEG expression with
an expected increase in character position, it is proven that the parsing machine state
(see Section 3.4.3) is transformed to attain the same character position increase. These
transformations are dictated by the PPEG instructions, as defined in the PPEG ISA,
that are associated with the PEG expression under analysis or, in other words, by the
PPEG instructions resulting from application of Π for the given PEG expression.

The following subsections define and explain the PEG-PPEG translation and proofs for
all fundamental PEG expressions.

3.5.2.1 Literal String

The translation of the literal string PEG expression to a PPEG program is defined in
Equation (3.15). As before, here a single-character literal string ‘c’ is assumed. A multi-
character literal string is then a sequence PEG expression consisting of one or more of
these single-character literal strings. Moreover, as discussed in Section 3.4.3.7, only a
single char set instruction is needed to evaluate a PEG expression ‘c’. The handling of
literal strings by the PPEG architecture

e = ‘c’

Π(G, pc, e) = char set ($cpos)+, c, c
(3.15)

Equation (3.16) shows a proof for correct parsing machine behavior in the case of a
successful literal string expression evaluation. According to the operational semantics
in Equation (lit.1), the expected final parsing machine state shows an increase in char-
acter position by 1 character, which is the same condition presented in the first line of
Equation (3.16). Indeed, the second line shows that increase as cp + 1 in the parsing
machine state transformation when executing the char set instruction. Note that the

notation
char set−−−−−→ represents a shorthand notation for the use of the inductive definition

in Equation (char set beq.1), which assumes the associated conditions.
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Equation (3.17) shows the proof for parsing behavior in the case of unsuccessful eval-
uation of a literal string. Recall that the null symbol ∅ represents an unsuccessful
expression evaluation in terms of operational semantics (see Section 3.2). The equiv-
alent parsing machine behavior is the initiation of a backtrack operation. Indeed, a
backtrack operation is initiated by executing a char set instruction when s[i] ̸= ‘c’ or
the character position exceeds the string length. The result in state behavior is that the
top backtrack stack entry (cpb, pcb, rsb) is popped and its fields are used to restore the
parsing state.

if match(G, ‘c’, s, i) = i+ 1 then

⟨pc , cp , rs , bs , t⟩ char set−−−−−→ ⟨pc+ 1 , cp+ 1 , rs , bs , t⟩
(3.16)

if match(G, ‘c’, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ char set−−−−−→ ⟨pcb , cpb , rsb , bs , t⟩
(3.17)

3.5.2.2 Character Class

The translation of character class PEG expressions have already been discussed in some
detail in Section 3.4.3.8. This explained how a combination of char set beq and s bktr

instructions can be used to evaluate this type of expression. This translation is formalized
in Equation (3.18). Recall that the notation for the character class expression [m] and
its components Cx were introduced in Equation (3.11).

The PPEG code in the conclusion consists of n char set beq instructions, which corre-
spond to individual character ranges (i.e., cx,1-cx,2) and elements (i.e., cx). If the active
character is within one of these ranges, the offset n− (k−1)+1 is used to jump past the
s bktr operation at the end, where k is the position of the char set beq instruction in
the list of n other such instructions.

e = [m]

m = C1C2 · · ·Cn

n > 1

(Cx = cx = cx,1 = cx,2) ∨ (Cx = cx,1-cx,2)

Π(G, pc, e) = char set beq ($cpos)+, c1,1, c1,2, n+ 1

...

char set beq ($cpos)+, ck,1, ck,2, n− (k − 1) + 1

...

char set beq ($cpos)+, cn,1, cn,2, 2

s bktr $cpos

(3.18)
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Equation (3.19) proves that the parsing machine state behavior for a successful character
class expression evaluation matches that of the expression’s operational semantics defined

in Equation (cls.1). The notation
char set beq+−−−−−−−−−→ represents the execution of one or more

char set beq instructions, until one initiates the jump past s bktr. Note in the final
parsing machine state the increase in program counter value to pc+n+1, which rightfully
addresses the instruction after s bktr.

Equation (3.20) proves the same match in parsing machine state behavior and operational
semantics for an unsuccessful evaluation of character class expressions. The parsing ma-
chine ends up executing the s bktr instruction either after executing all n char set beq

instructions or after executing only the first one, and finding the character position value
to be outside the allowable range dictated by $fs (see Section 3.4.3.8).

if match(G, [m], s, i) = i+ 1 then

⟨pc , cp , rs , bs , t⟩ char set beq+−−−−−−−−−→ ⟨pc+ n+ 1 , cp+ 1 , rs , bs , t⟩
(3.19)

if match(G, [m], s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ char set beq+−−−−−−−−−→ ⟨pc+ n , cp , rs ,

(cpb, pcb, rsb) : bs , t⟩
s bktr−−−−→ ⟨pcb , cpb , rsb , bs , t⟩

(3.20)

It must be noted that the formal translation definition in Equation (3.18) intentionally
contains the premise n > 1, thereby indicating that this translation is only valid for
character classes with more than one element. The reason for this is that, in the case of
a character class consisting only of a single element (i.e., either [c] or [c1-c2]), the PPEG
code can be simplified to a single char set instruction. This is formalized in Equation
(3.21).

e = [C1]

(C1 = c1 = c1,1 = c1,2) ∨ (C1 = c1,1-c1,2)

Π(G, pc, e) = char set ($cpos)+, c1,1, c1,2
(3.21)

The use of the char set instruction for a single range character class PEG expression
is proven to be correct for successful evaluation in Equation (3.22) and for unsuccessful
evaluation in Equation (3.23). Note that, in comparison with the translation in Equa-
tion (3.18), using this implementation only saves a single clock cycle in the case of an
unsuccessful evaluation of the single-element character class expression.

if match(G, [C1], s, i) = i+ 1 then

⟨pc , cp , rs , bs , t⟩ char set−−−−−→ ⟨pc+ 1 , cp+ 1 , rs , bs , t⟩
(3.22)
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if match(G, [C1], s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ char set−−−−−→ ⟨pcb , cpb , rsb , bs , t⟩
(3.23)

3.5.2.3 Any Character

As previously discussed in the any instruction specification (see Section 3.4.3.4), only
the this instruction is used to evaluate an any PEG expression, which is indeed what the
translation definition in Equation (3.24) shows.

e = ‘.’

Π(G, pc, e) = any $cpos
(3.24)

Equation (3.25) and Equation (3.26) prove that the evaluation behavior of an any PEG
expression is matched by execution of the any instruction. That is, on successful evalu-
ation, Equation (3.25) shows that the character position in the parsing machine state is
incremented by one character, following the any inductive definition in Equation (any.1).
In contrast, if evaluation fails, a backtrack operation is performed according to the state
transformation in Equation (any.2), which matches with the expected PEG behavior as
observed in Equation (3.26).

if match(G, ‘.’, s, i) = i+ 1 then

⟨pc , cp , rs , bs , t⟩ any−−→ ⟨pc+ 1 , cp+ 1 , rs , bs , t⟩
(3.25)

if match(G, ‘.’, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ any−−→ ⟨pcb , cpb , rsb , bs , t⟩
(3.26)

3.5.2.4 Optional

Equation (3.27) presents the translation of an optional PEG expression, which follows
the microcode behavior seen in Listing 3.4. First an s push instruction is issued to
store the current parsing machine state if evaluation of expression e′ fails. Note that the
absolute backtrack instruction address is pc+ |Π(G, x, e′)|+2. The notation |Π(G, x, e)|
represents the number of instructions resulting from the translation of expression e,
regardless of initial program counter value as indicated by x. This particular backtrack
address therefore points to the instruction after s rmv. Next, the translation Π(G, pc, e?)
evidently involves the translation of expression e itself, which is represented by the
second line. Finally, only if e′ is successfully evaluated, s rmv is needed to remove the
previously pushed backtrack stack entry. Note that its jump operand is the same absolute
instruction address: simply the address of the next instruction.
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e = e′?

Π(G, pc, e) = s push $cpos, pc+
∣∣Π(G, x, e′)

∣∣+ 2

Π(G, pc+ 1, e′)

s rmv pc+
∣∣Π(G, x, e′)

∣∣+ 2

(3.27)

As stated in the previous paragraph, the PEG match behavior of an optional expression
has two possible outcomes depending on evaluation of (see also Section 3.2.2.5). Using
the PPEG code translation defined in Equation (3.27), proof of correct parsing machine
behavior for a successful evaluation is presented in Equation (3.28). Similar to the
operational semantics in Equation (opt.1), it assumes execution of code generated by
Π(G, pc+ 1, e) results in a character position increase of j.

Unsuccessful evaluation of e? defined in Equation (opt.2) is also correctly mirrored by
the parsing machine model as made evident by Equation (3.29). Here it is assumed that
a backtrack operation is initiated somewhere during execution of PPEG code generated
by Π(G, pc+ 1, e), which indeed happens when evaluation of e fails.

if match(G, e?, s, i) = i+ j then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 1 , cp+ j , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
s rmv−−−→ ⟨pc+ |Π(G, x, e)|+ 2 , cp+ j , rs , bs , t⟩

(3.28)

if match(G, e?, s, i) = i then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 2 , cp , rs , bs , t⟩

(3.29)

3.5.2.5 Zero-Or-More

Equation (3.30) defines the translation from zero-or-more PEG expression to PPEG
code according to the microcode behavior seen in Listing 3.5. Much the same way
as the optional PEG expression translation, the PPEG code starts out pushing the
current parsing machine state, with a backtrack address pointing to the instruction
after s upd. Next, given expression e′∗, the PPEG code of expression e′ represented
as Π(G, pc + 1, e′) is executed in order to evaluate said expression. Only if it succeeds,
will the final instruction s upd be executed, which updates the character position in the
previously pushed backtrack stack entry and jumps back to the first PPEG instruction
resulting from Π(G, pc+ 1, e′), as indicated by absolute address pc+ 1.
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e = e′∗
Π(G, pc, e) = s push $cpos, pc+

∣∣Π(G, x, e′)
∣∣+ 2

Π(G, pc+ 1, e′)

s upd $cpos, pc+ 1

(3.30)

A zero-or-more expression e∗ always evaluates successfully, but has two distinct evalua-
tion behaviors depending on the evaluation outcome of expression e, which can clearly be
observed in Section 3.2.2.6. On successful evaluation of e, the PEG operational semantics
in Equation (zom.1) states that e∗ must then be evaluated at the new increased charac-
ter position. Equation (3.31) proves that the parsing machine adheres to this behavior.
After the initial successful evaluation of e by executing Π(G, pc+ 1, e), which increased
the character position by j characters, execution of s upd causes the backtrack stack en-
try to be updated with the new character position value and a jump is initiated back to
pc+1. Next, the notation

∗−→ represents the indefinite execution of the former two lines,
until at last execution terminates due to a backtrack operation, which lets the machine
jump to pc + |Π(G, x, e)| + 2 (instruction after s upd). The result in a final character
position increment of j + k, matching the expected behavior by match(G, e∗, s, i).

The other e∗ expression evaluation behavior is proven to be correct in Equation (3.32)
and matches the expected operational semantics defined in Equation (zom.2). That is,
due to an unsuccessful evaluation of e by executing Π(G, pc+1, e), the previously pushed
backtrack stack entry is restored, which lets the parsing machine jump to the instruction
after s upd.

if match(G, e∗, s, i) = i+ j + k then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 1 , cp+ j , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
s upd−−−→ ⟨pc+ 1 , cp+ j , rs ,

(cp+ j, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
∗−−→ ⟨pc+ |Π(G, x, e)|+ 2 , cp+ j + k , rs , bs , t⟩

(3.31)

if match(G, e∗, s, i) = i then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 2 , cp , rs , bs , t⟩

(3.32)



96 CHAPTER 3. PPEG ARCHITECTURE DESIGN

3.5.2.6 One-Or-More

Translation of the one-or-more PEG expression e′+ shown in Equation (3.33) is straight-
forward, as this involves the concatenation of a translation of e′ and of e′∗, the latter
of which has been handled in the previous section. The same substitution can also be
observed in the microcode for the one-or-more expression in Listing 3.6.

e = e′+

Π(G, pc, e) = Π(G, pc, e′)

Π(G, pc+
∣∣Π(G, x, e′)

∣∣ , e′∗)
(3.33)

Similar to the zero-or-more PEG expression, there are two distinct evaluation behaviors
for a given one-or-more expression e+, namely one successful and the other unsuccessful.
Equation (3.34) presents the case for successful evaluation and shows that the resulting
increase in character position is exactly as expected by the operational semantics defined
in Equation (oom.1). It can be seen that the proof uses the execution behavior of the
zero-or-more expression as observed in Equation (3.31).

The proof for correct behavior when expression e+ is unsuccessfully evaluated is pre-
sented in Equation (3.35). Note that the only process by which a one-or-more PEG
expression may fail is when the initial evaluation of expression e fails, as defined in
Equation (oom.2). This too can be seen in the proof in the form of a backtrack opera-
tion during execution of code produced by Π(G, pc, e).

if match(G, e+, s, i) = i+ j + k then

⟨pc , cp , rs , bs , t⟩ Π(G,pc,e)−−−−−−→ ⟨pc+ |Π(G, pc, e)| , cp+ j , rs , bs , t⟩
Π(G,pc,e∗)−−−−−−→ ⟨pc+ |Π(G, pc, e)|+ |Π(G, pc, e∗)| ,

cp+ j + k , rs , bs , t⟩

(3.34)

if match(G, e+, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ Π(G,pc,e)−−−−−−→ ⟨pcb , cpb , rsb , bs , t⟩
(3.35)

3.5.2.7 And-Predicate

The translation of the and-predicate PEG expression presented in Equation (3.36) follows
directly from its microcode behavior shown in Listing 3.7 and the PPEG ISA specification
discussed in Section 3.4.3. Evaluation of and-predicate expression &e′ is not-unlike
evaluating e′ itself, except for the fact that it may not increase the character position.
To this end, an s push instruction is issued to store the initial character position value.
Thereafter, e′ itself is evaluated by executing the PPEG code Π(G, pc + 1, e′). On
successful evaluation, the s res instruction restores the character position as stored by
the s push instruction and jumps past s bktr. On failed evaluation of e′, the machine
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state pushed by the initial s push instruction is used to jump to s bktr, which initiates
a backtrack operation, thereby failing the entire evaluation of &e′

e = &e′

Π(G, pc, e) = s push $cpos, pc+
∣∣Π(G, x, e′)

∣∣+ 2

Π(G, pc+ 1, e′)

s res $cpos, pc+
∣∣Π(G, x, e′)

∣∣+ 3

s bktr $cpos

(3.36)

The proof for correctness of the described parsing machine behavior can be observed for
both successful evaluation and unsuccessful evaluation in Equation (3.37) and Equation
(3.38) respectively. Indeed, Equation (3.37) shows that on successful evaluation of ex-
pression e and thus by extension &e, the character position state variable of the parsing
machine is restored to its original value cp, matching the operational semantics defined in
Equation (and.1). On the other hand, Equation (3.38) shows that a backtrack operation
is initiated on failed evaluation of e when executing Π(G, pc+ 1, e). This in turn results
in the occurrence of a backtrack operation as initiated by s bktr, thereby failing the
evaluation of &e as a whole, which is exactly as indicated by the operational semantics
defined in Equation (and.2).

if match(G,&e, s, i) = i then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 1 , cp+ j , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
s res−−−→ ⟨pc+ |Π(G, x, e)|+ 3 , cp , rs , bs , t⟩

(3.37)

if match(G,&e, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) :

(cpb, pcb, rsb) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 2 , cp , rs ,

(cpb, pcb, rsb) : bs , t⟩
s bktr−−−−→ ⟨pcb , cpb , rsb , bs , t⟩

(3.38)

3.5.2.8 Not-Predicate

The not-predicate PEG expression !e is opposite to the and-predicate expression &! in
that it fails on successful evaluation of e and succeeds otherwise, but similar in that
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the character position may not be increased on successful evaluation of !e. This has
previously been described in terms of microcode in Listing 3.8 and, together with the
PPEG ISA specification in Section 3.4.3, forms the basis of the translation presented in
Equation (3.39).

The not-predicate expression !e′ translation starts with storing the current parsing ma-
chine state by issuing a s push instruction. Thereafter, the PPEG code for expression e′

is executed. If evaluation fails, the stored state is used to recover the character position
and to jump past s rmv bktr. Otherwise, the second to top backtrack stack entry is used
by s rmv bktr to initiate a backtrack operation, indicating an unsuccessful evaluation
of !e′.

e =!e′

Π(G, pc, e) = s push $cpos, pc+
∣∣Π(G, x, e′)

∣∣+ 2

Π(G, pc+ 1, e′)

s rmv bktr $cpos

(3.39)

The correctness of the description in the previous paragraph is proven for both success-
ful evaluation and unsuccessful evaluation of the not-predicate expression in Equation
(3.40) and Equation (3.41) respectively. Similar to the parsing machine behavior of
and-predicate evaluation, the proof for successful evaluation of !e shows that the initial
character position is retained by the parsing machine, which matches the operational
semantics in Equation (not.1). The operational semantics for unsuccessful evaluation of
!e in Equation (not.2) is also matched by the parsing machine behavior, as seen by the
backtrack operation at the end.

if match(G, !e, s, i) = i then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 2 , cp , rs , bs , t⟩

(3.40)

if match(G, !e, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) :

(cpb, pcb, rsb) : bs , t⟩
Π(G,pc+1,e)−−−−−−−−→ ⟨pc+ |Π(G, x, e)|+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e)|+ 2, rs) :

(cpb, pcb, rsb) : bs , t⟩
s rmv bktr−−−−−−→ ⟨pcb , cpb , rsb , bs , t⟩

(3.41)
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3.5.2.9 Sequence

The translation of a sequence PEG expression e1e2 to PPEG code is presented in Equa-
tion (3.42) and is simply the concatenation of code from translating e1 and e2.

e = e1e2

Π(G, pc, e) = Π(G, pc, e1)

Π(G, pc+ |Π(G, x, e1)| , e2)

(3.42)

The behavior of the parsing machine when executing the code in the conclusion of Equa-
tion (3.42) depends on the evaluation results of both e1 and e2. For this reason there
are three distinct execution paths, which mirror the three results discussed in the opera-
tional semantics of the sequence expression (see Section 3.2.2.10). First, Equation (3.43)
proves that if both expressions e1 and e2 evaluate successfully, the parsing machine ends
up in the same state as by the match function, namely an increase of j + k in character
position. Similarly, if either e1 succeeds and e2 fails or e1 fails evaluation directly, then
Equation (3.44) and Equation (3.45 respectively prove that the parsing machine behavior
is in accordance with the operational semantics with the same conditions, i.e., Equation
(seq.2) and Equation (seq.3).

if match(G, e1e2, s, i) = i+ j + k then

⟨pc , cp , rs , bs , t⟩ Π(G,pc,e1)−−−−−−→ ⟨pc+ |Π(G, x, e1)| , cp+ j , rs , bs , t⟩
Π(G,pc+|Π(G,x,e1)|,e2)−−−−−−−−−−−−−−→ ⟨pc+ |Π(G, x, e1)|+ |Π(G, x, e2)| ,

cp+ j + k , rs , bs , t⟩

(3.43)

if match(G, e1e2, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ Π(G,pc,e1)−−−−−−→ ⟨pc+ |Π(G, x, e1)| , cp , rs ,

(cpb, pcb, rsb) : bs , t⟩
Π(G,pc+|Π(G,x,e1)|,e2)−−−−−−−−−−−−−−→ ⟨pcb , cpb , rs , bs , t⟩

(3.44)

if match(G, e1e2, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ Π(G,pc,e1)−−−−−−→ ⟨pcb , cpb , rs , bs , t⟩
(3.45)

3.5.2.10 Prioritized Choice

The prioritized choice PEG expression e1 / e2 also involves the possible evaluation of two
sub-expressions e1 and e2. However, it differs from the previously discussed sequence
expression in that only one of these expressions has to be successfully evaluated for the
entire expression to be successfully evaluated. This behavior is translated to PPEG code
as defined in Equation (3.46).
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At the start, a s push instruction is issued to be able to possibly reset the parsing machine
state to the current one before trying the evaluate e2 if e1 failed evaluation, which is why
the backtrack address corresponds to the address of the first instruction of Π(G, x, e2).
Second, the code corresponding to expression e1 is executed. Here, the execution path
may split. If e1 is successfully evaluated, s rmv is executed, which removes the initially
pushed backtrack entry and jumps past the code for expression e2. Otherwise, the same
backtrack entry allows the parsing machine to jump to the code for expression e2.

e = e1 / e2

Π(G, pc, e) = s push $cpos, pc+ |Π(G, x, e1)|+ 2

Π(G, pc+ 1, e1)

s rmv pc+ |Π(G, x, e1)|+ |Π(G, x, e2)|+ 2

Π(G, pc+ |Π(G, x, e1)|+ 2, e2)

(3.46)

As with the sequence PEG expression, three execution paths can followed corresponding
to the three operational semantics definitions defined in Section 3.2.2.11. The proof in
Equation (3.47) shows the parsing machine behavior when expression e1 is successfully
evaluated, which matches the expected result defined in Equation (prc.1). The proof for
correct behavior when evaluation of e1 fails but evaluation of e2 succeeds is presented
in Equation (3.48) and also matches the expected result from the operational semantics
defined in Equation (prc.2). Finally, if both expressions are unsuccessfully evaluated,
the parsing machine behavior still correctly follows the expected behavior presented in
Equation (prc.3), as is proven in Equation (3.49). That is, the parsing machine is restored
to some previous stored state by means of a backtrack operation.

if match(G, e1 / e2, s, i) = i+ j then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e1)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e1)−−−−−−−−→ ⟨pc+ |Π(G, x, e1)|+ 1 , cp+ j , rs ,

(cp, pc+ |Π(G, x, e1)|+ 2, rs) : bs , t⟩
s rmv−−−→ ⟨pc+ |Π(G, x, e1)|+ |Π(G, x, e2)|+ 2 ,

cp+ j , rs , bs , t⟩

(3.47)

if match(G, e1 / e2, s, i) = i+ k then

⟨pc , cp , rs , bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e1)|+ 2, rs) : bs , t⟩
Π(G,pc+1,e1)−−−−−−−−→ ⟨pc+ |Π(G, x, e1)|+ 2 , cp , rs , bs , t⟩

Π(G,pc+|Π(G,x,e1)|+2,e2)−−−−−−−−−−−−−−−−→ ⟨pc+ |Π(G, x, e1)|+ |Π(G, x, e2)|+ 2 ,

cp+ k , rs , bs , t⟩

(3.48)
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if match(G, e1 / e2, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ s push−−−−→ ⟨pc+ 1 , cp , rs ,

(cp, pc+ |Π(G, x, e1)|+ 2, rs) :

(cpb, pcb, rsb) : bs , t⟩
Π(G,pc+1,e1)−−−−−−−−→ ⟨pc+ |Π(G, x, e1)|+ 2 , cp , rs ,

(cpb, pcb, rsb) : bs , t⟩
Π(G,pc+|Π(G,x,e1)|+2,e2)−−−−−−−−−−−−−−−−→ ⟨pcb , cpb , rsb , bs , t⟩

(3.49)

3.5.2.11 Non-Terminal

In Section 3.9 the operational semantics of the non-terminal PEG expression Ak was
discussed, from which it followed that its evaluation is directly related to the evaluation
of the expression e′ associated with the production rule Ak ← e′. Following the microcode
behavior presented Listing 3.11, the non-terminal expression translates to a single call to
the PPEG subroutine associated with non-terminal as shown in Equation (3.50). Note
that the absolute address of this subroutine is represented by evaluation of a function
o(G,Ak). The exact meaning of this function is discussed later in Section 3.5.3.

e = Ak

G = (Σ, N, S, P )

Ak ∈ N

Π(G, pc, e) = call o(G,Ak)
(3.50)

Based on the formalized translation of the non-terminal expression, Equation (3.51) and
Equation (3.52) provide proofs for correct parsing machine behavior when evaluating
such expressions. Both proofs shows that after the call instruction, the parsing ma-
chine jumps to absolute address o(G,Ak). Here, the parsing machine starts execution
of PPEG code associated with e, where e = ntmap(G,Ak) (see Equation (3.13)). In
Equation (3.51) it can be seen that, assuming successful evaluation of e, execution ends
up at the instruction after the last instruction belonging to e. That is, execution re-
sumes at instruction address o(G,Ak) + |Π(G, x, ntmap(G,Ak))|, where the latter term
represents the number of PPEG instructions with the translation of expression e. There,
a ret instruction is executed (see Section 3.5.3), which takes the machine back to the
instruction after the initial call instruction by means of the top return stack entry.

In contrast, if evaluation of e fails, by extension evaluation of non-terminal expression
Ak fails too. For this reason, a backtrack operation is initiated, which restores the state
variables to values stored in the top backtrack stack entry as presented in Equation
(3.52). The result of such an operation is that the return stack entry pushed by the
initial call instruction is discarded. Moreover, the parsing machine program execution
jumps out of the currently executing PPEG subroutine associated with non-terminal Ak.
This is in accordance with the operational semantics of the non-terminal PEG expression
presented in Equation (nte.2).
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if match(G,Ak, s, i) = i+ j then

⟨pc , cp , rs , bs , t⟩ call−−−→ ⟨o(G,Ak) , cp , (pc+ 1) : rs , bs , t⟩
Π(G,o(G,Ak),ntmap(G,Ak))−−−−−−−−−−−−−−−−−→ ⟨o(G,Ak) + |Π(G, x, ntmap(G,Ak))| ,

cp+ j , (pc+ 1) : rs , bs , t⟩
ret−−→ ⟨pc+ 1 , cp+ j , rs , bs , t⟩

(3.51)

if match(G,Ak, s, i) = ∅ then

⟨pc , cp , rs , (cpb, pcb, rsb) : bs , t⟩ call−−−→ ⟨o(G,Ak) , cp , (pc+ 1) : rs ,

(cpb, pcb, rsb) : bs , t⟩
Π(G,o(G,Ak),ntmap(G,Ak))−−−−−−−−−−−−−−−−−→ ⟨pcb , cpb , rsb , bs , t⟩

(3.52)

3.5.3 PEG Grammar Translation

The translation of fundamental PEG expressions discussed in Section 3.5.2 pave the way
for a formalization of the translation of entire PEG grammars. The parsing machine
behavior for evaluation of a PEG grammar has already been discussed to some extent
in Section 3.3.2.13, but was limited to the microcode level. Here, the parsing machine
behavior is defined in terms of PPEG code by introducing a PEG grammar translation
function Π′(G).

Π′ : G → C∗ (3.53)

Equation (3.53) presents the declaration of the grammar translation function. The do-
main of Π′, which is simply a subset of Π as declared in Equation (3.14), solely consists
of the set of PEG grammars G. Its codomain C∗ represents PPEG code consisting of an
arbitrary number of PPEG instructions.

Finally, the definition of the partial PEG grammar translation function Π′ is presented
in Equation (3.54). The premises of its inductive definition set the conditions for a valid
translation, which is to say those PEG grammars with at least one non-terminal and its
production rule. The grammars that adhere to these conditions are translated to the
PPEG code seen in the conclusion.

At the start of any PEG grammar evaluation, a backtrack stack entry is pushed in order
to have a defined execution path for when the evaluation of the grammar fails. Specif-
ically, the s push instruction stores the absolute address of the set fail instruction,
which sets a status flag indicating that grammar evaluation failed. Next, a call to the
start non-terminal is invoked, whose code is always stored starting at address 4. Recall
from Section 3.5.2.11 that if evaluation of a non-terminal succeeds, program execution
returns to the instruction following its call. Therefore, if evaluation of the grammar suc-
ceeds, the set success instruction is executed next, which sets a status flag indicating
that grammar evaluation succeeded.
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An important observation from the translated PPEG code is how the code for the gram-
mar’s non-terminals, i.e., the code for e = ntmap(G,Ak) (see Section 3.2.2.12), is stored.
First, it is expected that the code for non-terminals is stored in the order that they
were defined, which ensures that the start non-terminal S = A1 is always stored starting
at address 4. Second, code for non-terminals are always followed by a ret instruction.
As was explained in Section 3.5.2.11, the result is that program execution returns to
just after a non-terminal was initially called, provided evaluation of said non-terminal
succeeds.

G = (Σ, N, S, P )

S = A1

N = {A1, A2, . . . , An}
n > 0

Π′(G) = s push $cpos, 3

call 4

set success

set fail

Π(G, 4, ntmap(G,A1))

ret

...

Π(G, 4 + Σk−1
j=1 {|Π(G, x, ntmap(G,Aj))|+ 1} , ntmap(G,Ak))

ret

...

Π(G, 4 + Σn−1
j=1 {|Π(G, x, ntmap(G,Aj))|+ 1} , ntmap(G,An))

ret

(3.54)

Finally, observe the notation used to indicate the start address of each non-terminal
translation. In general given the grammar G, the start address for translation of the
expression associated with non-terminal Ak is computed with a function o(G,Ak) defined
in Equation (3.55). The first non-terminal is located at address 4, which is the reason
for that constant in the definition of o. Thereafter, the location of an arbitrary non-
terminal translation depends only on the sum of the number of instruction for each
non-terminal translation before it plus one. The “plus one” originates from the fact that
each non-terminal translation is extended with a single ret instruction.

G = (Σ, N, S, P )

N = {A1, A2, . . . , An}
1 ≤ k ≤ n

o(G,Ak) = 4 + Σk−1
j=1 {|Π(G, x, ntmap(G,Aj))|+ 1}

(3.55)
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At this point it may be proven that any PEG grammar G that can be translated to
PPEG code by Π′(G) can be used to parse any input string as is expected by the PEG
operational semantics defined in Section 3.2. Execution of a grammar’s equivalent PPEG
code must follow the operational semantics according to the result of match(G,A1, s, 0) =
i. Note that the initial parsing machine state assumes a total reset of the parsing
machine before execution starts. to this end, the program counter points to address 0;
the character position is set to 0; both the return stack and backtrack stack are empty,
as indicated by the null-symbol ∅; and the parsing machine status is set to 0, indicating
an “active parse” status.

The proofs for successful and unsuccessful evaluation of a grammar G and input string
s are provided in Equation (3.56) and Equation (3.57) respectively. Both start with the
initial backtrack entry that is stored and a call to the start non-terminal. Next, Equation
(3.56) assumes that evaluation of this non-terminal, and thus the grammar as a whole,
evaluates to success, which in has increased the character position by i characters. By
executing the ret at the end of the non-terminal code it gracefully returns to execute
the set success instruction. Note the final parsing machine state, which consists of
the character position set to i as expected by the operational semantics. Moreover, in
contrast to the return stack, the backtrack stack still contains a single entry, namely
the one pushed at the start. This entry is only used when the complete grammar fails
evaluation as can be observed in Equation (3.57). Lastly, the set success instruction
has set the parsing machine status flag to 1, indicating a successful parse.

If evaluation of the start non-terminal, and thus the complete grammar, fails evaluation,
the parsing machine behaves as presented in the proof shown Equation (3.57). The
initial backtrack stack entry is used to restore the parsing machine state to an empty
return stack; the character position value set to 0; and, most importantly, the program
counter to point to the set fail instruction. After executing this instruction, the parsing
machine status flag is set to -1, thereby indicating a failed parse.

if match(G,A1, s, 0) = i then

⟨pc = 0, cp = 0, rs = ∅, bs = ∅, t = 0⟩ s push−−−−→ ⟨1 , 0 , ∅ , (0, 3,∅) , 0⟩
call−−−→ ⟨4 , 0 , (2) , (0, 3,∅) , 0⟩

Π(G,4,ntmap(G,A1))−−−−−−−−−−−−−→ ⟨4 + |Π(G, x, ntmap(G,A1))| ,
i , (2) , (0, 3,∅) , 0⟩

ret−−→ ⟨2 , i , ∅ , (0, 3,∅) , 0⟩
set success−−−−−−−→ ⟨2 , i , ∅ , (0, 3,∅) , 1⟩

(3.56)
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if match(G,A1, s, 0) = ∅ then

⟨pc = 0, cp = 0, rs = ∅, bs = ∅, t = 0⟩ s push−−−−→ ⟨1 , 0 , ∅ , (0, 3,∅) , 0⟩
call−−−→ ⟨4 , 0 , (2) , (0, 3,∅) , 0⟩

Π(G,4,ntmap(G,A1))−−−−−−−−−−−−−→ ⟨3 , 0 , ∅ , ∅ , 0⟩
set fail−−−−−→ ⟨3 , 0 , ∅ , ∅ , −1⟩

(3.57)

3.6 Conclusion

In order to design a suitable parsing machine that operates according to a PEG, the most
basic components and concepts required for its implementation were explored, such as
how limited backtracking and non-terminal calls are handled (see Section 3.1). These
concepts were employed for an inductive formalization of the top-down parsing algorithm
inherent to PEG (see Section 3.2).

The design of the parsing machine itself begun with a description of its micro-
architecture, which resulted from translating the formalized PEG expressions into mi-
crocode describing the flow of data between its fundamental components (see Section
3.3). The microcode was then split and grouped in such a way, that a minimal instruc-
tion set could be defined. The microcode definition of these instructions then translated
to a mathematical formalization, which defines a parsing machine state transition for
each PPEG instruction (see Section 3.4).

Based on the PPEG instruction set and the original microcode, the translation from
PEG expression to PPEG assembly code is formalized. Finally, the PEG-PPEG trans-
lation formalization combined with the PPEG instruction set formalization were used
to verify the parsing machine’s operation with respect to the earlier defined inductive
formalization of PEG expressions (see Section 3.5).
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Software Tools 4
Due to the similarities of the PPEG parsing machine presented in Chapter 3 with con-
ventional computer architectures, similar tools can be developed to analyze its function
and to enhance user experience. This chapter discusses three of such tools developed for
the PPEG parsing machine architecture.

Section 4.1 introduces a software-based implementation of the PPEG architecture, which
is developed to analyze the internal processes when parsing a given text. Section 4.2
explains PEG compiler and PPEG assembler tools to transform a PEG into an equivalent
binary program that can be run on the PPEG architecture.

4.1 PPEG Virtual Parsing Machine

Before attempting to implement the PPEG architecture directly into (reconfigurable)
hardware, a proof-of-concept was developed in the Python programming language. The
term virtual parsing machine (VPM) is used to refer to this PPEG architecture imple-
mentation. Its implementation in Python is explained in short in Section 4.1.1. Besides
working as a proof-of-concept, the VPM is useful as a profiling tool, which is discussed
in Section 4.1.2. Finally, its implementation in Python allows for rapid development of
additional features, the most interesting of which is explored in Section 4.1.3.

4.1.1 VPM Implementation

The Python implementation of the PPEG parsing machine closely follows the design
outlined in Chapter 3. For this reason, no complex Python constructs and libraries are
employed, but only simple imperative code is used in its implementation.

The VPM is implemented as a single class consisting of only five methods, namely:

• Class Constructor : creates and initializes class properties that represents the pars-
ing machine state. As can be observed in the formal parsing machine state def-
inition in Section 3.4.3, this contained five state variables (i.e., ⟨pc, cp, rs, bs, t⟩).
Therefore, the constructor defines program counter and character position vari-
ables; two lists of parameterized lengths representing the return stack and back-
track stack, along with two variables for the return stack pointer and backtrack
stack pointer; and one state variable that represents parse state having one of
three values: failed parse, successful parse, and active parse. Finally, two binary
arrays of parameterized lengths are initialized, one with 8-bit elements and the
other with 32-bit elements, which represent data memory and instruction memory
respectively.

107
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• reset: resets the parsing machine state variables. This entails setting the program
counter and character position variables to zero; setting the return and backtrack
stack pointers to their respective stack sizes minus one; and setting the parse state
variable to “active parse”.

• load bytecode: reads the raw binary contents of a file representing PPEG byte-
code, or binary machine code, of a compiled PEG grammar. The binary contents
are read as 32-bit words, each representing a single PPEG instruction (see Sec-
tion 3.4.2). The binary words are written directly to the binary array variable
representing the instruction memory starting at index 0.

• load data: reads the raw binary contents of a file representing the input string
that will be parsed by the VPM. The binary contents are read as 8-bit words
(bytes), each representing a single (ASCII) character (see Section 3.1.1.2). Similar
to the load bytecode method, these bytes are written directly to the binary array
variable representing the data memory starting at index 0.

• advance clock cycle: executes the PPEG instruction pointed to by the current
program counter value according to its definition in Section 3.4.3. The instruction
decoding process is performed based on the instruction encoding format discussed
in 3.4.2, such that program state can be transformed based the opcode and operand
fields. For the purpose of analysis, a boolean value is returned indicating if the
execution of the current “clock cycle” resulted in a backtrack operation.

The first four methods of the VPM are used to set everything up before parsing a file
with a compiled PEG grammar. The final method can then be called in a loop, thereby
continuously executing instructions, until the parse state variable is no longer set to
“active parse”. The parse result can finally be read from the parse state variable, which
is either “successful parse” or “failed parse”.

4.1.2 VPM as Profiling Tool

The fact that the PPEG parsing machine is implemented in software makes it much
easier to dissect ongoing internal processes during a parse. For this reason, the VPM
codebase is interspersed with counter and flag variables to keep track of a number of
possibly important events.

For example, the number of passed clock cycles are tracked as well as the total execution
time. These can be used for comparison with the hardware-based PPEG parsing machine
implementation. The final clock cycle count must naturally be equivalent between both
implementations, but the execution time should in theory be higher for the hardware-
based implementation.

Other parse results cannot so easily be compared between software and hardware im-
plementations. However, if both follow the expected behavior defined in the PPEG
ISA specification, these are transferable to the hardware-based implementation. These
parse results are the number of backtracks, number of non-terminal calls, the maximum
used backtrack stack entries and return stack entries, and the farthest jump in character
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position value caused by a backtrack operation.

Of special attention are the maximum used backtrack stack entries and return stack
entries. The reason is that the size of the backtrack stack and return stack is not easily
determined without reference. By parsing files that are common for a specific use case,
these values can be used make a good estimate for the required sizes of the stacks.

During the parsing process, the VPM also keeps track of successfully evaluated non-
terminals, thereby creating the parse tree. On successful parses, the VPM can then
report the parse tree for post processing and visualization of the parsed files (see Listing
4.2). Furthermore, the VPM keeps track of the longest path. On successful parses, this
is obviously equal to the length of the parsed input file. However, on failed parses, this
provides the user with insights into where the parser got stuck and therefore where the
parsed file is possibly invalid with regard to the compiled PEG.

4.1.3 Memoization Unit

As mentioned earlier, the implementation of the PPEG parsing machine in the Python
programming language allows for rapid prototyping. For this reasons, extensions to the
base PPEG architecture can be quickly realized and analyzed for potential improvements
in parsing. One such extension is the memoization unit.

Memoization is the process of storing non-terminal evaluation results in a lookup table
to save later re-evaluation after a backtrack operation, and was introduced in Section
2.2.2.4. At worst, all non-terminals can have a successful or unsuccessful parse at any
character position in the input string, thereby requiring a m × n lookup table, where
m is the number of non-terminals and n is the length of the input string. The memory
required to implement this lookup table is too much for any reasonable string lengths in
a hardware-based implementation.

To solve this problem, the lookup table is implemented as a p-way set-associative cache
with m sets and least-recently used (LRU) replacement policy. Assuming p = 1, each
non-terminal in the PEG has only one cell in the lookup table to store the most recent
evaluation result. Consider the following PEG production rule:

A← B C / B D

A successful evaluation of non-terminal B stores the resulting new character position
at the single cache set for non-terminal B. If evaluation of non-terminal C fails, a
new call to non-terminal B is prevented by checking the cache set for B and checking
if the current character position matches with the set’s character position (cache tag
field). In this case, the positions match and non-terminal B therefore does not need to
be re-evaluated. Note the importance to check the cache set’s character position with
the current character position, as otherwise the following PEG production rule would
wrongly result in a cache hit:

A← B C / a B D
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For the previous PEG example, a 1-way set-associative cache would suffice. However,
consider this time the the following PEG production rule:

A← B B C / B B D

In this case, the second call to non-terminal B would overwrite the result of the first
call in cache for the 1-way cache. Therefore, on failure to evaluate non-terminal C, non-
terminal B needs to be re-evaluated twice before reaching non-terminal D. This can be
solved by extending the cache to a 2-way set-associative cache configuration, such that
two evaluation results of non-terminal B can be stored at a given time.

Storing indications of failed non-terminal evaluations in memoization cache can also
readily speed up the parsing process. Take the following PEG production rule as an
example:

A← B C / B D / E

If evaluation of non-terminal B at the current character position fails, an indication of
this failed evaluation is written to cache at the cache set for non-terminal B. Thereafter,
the second alternate rule is evaluated. Here, instead of re-evaluating non-terminal B
a second time at the same character position, a cache read finds the failed evaluation
result for that non-terminal and position and initiates an immediate backtrack operation.
Finally, the last alternate rule is evaluated, namely non-terminal E.

Note that caching failed non-terminal calls is not as straightforward as caching successful
non-terminal calls. For example, take the following PEG production rules:

A← a B

B ← b C

Evaluation of non-terminal A leads to evaluation of non-terminal B, which in turn leads
to evaluation of non-terminal C. Assuming evaluation of non-terminal C fails, evaluation
of non-terminals B and A fail by association. Following the previous example, this
requires three separate writes to cache: an indication of failed evaluation for each of the
three non-terminals.

In general, on a backtrack operation, a cache write is required for each non-terminal
associated with the top return addresses in the return stack up to (but excluding) the
return address in the top backtrack stack entry. This might be difficult to implement
in hardware as the number of memory writes per clock cycle is limited. This could be
solved by stalling the parsing machine until all cache writes have been performed, but
such pauses in parsing may inhibit the parsing more than the cache is able to speed it
up.

Finally, it is important to observe that for any given PEG withm non-terminals and input
string with length n, the worst case scenario requires an n-way set-associative cache with
m sets. However, in practice due to the principle of locality, even a set associativity of 1
of the memoization cache can result in significant speedups [26], although the speedup
differs per PEG and input string. An optimal cache configuration with respect to speedup
and hardware requirements can be obtained by analyzing the results for varying cache
configurations in the VPM. indicates that a
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4.2 Compilation and Assembly Tools

The process of translating a PEG grammar definition into a binary executable file that
can be run on the PPEG architecture consists of two subprocesses: compilation and
assembly. The first is the process of translating a PPEG grammar definition into a
PPEG assembly program and the latter is the translation of this assembly program into
a binary executable file. The compilation process is discussed in Section 4.2.1 and the
assembly process is discussed in Section 4.2.2.

4.2.1 PEG Compiler

Construction of the PEG compiler is not much different from conventional compilers. A
PEG grammar can be viewed as a programming language and PPEG assembly is not
much different than general-purpose computer assembly. For this reason, the compilation
approach is similar as presented in the ubiquitous Dragon Book [45]. A diagram outlining
this process is shown in Figure 4.1, which shows the components in the compiler pipeline
(boxes) and the intermediate representations (arrows).

In the following subsections, the compiler components and intermediate representations
are discussed in more detail. The explanations are supported by means of an example
of PEG grammar compilation.

Syntax 
Analyzer

Semantic 
Analyzer

Code 
Generator

AST Annotated 
AST

PPEG 
Assembly 

PEG

Figure 4.1: PEG compilation steps and intermediate representations.

4.2.1.1 Syntax Analyzer

The first stage in the PEG compiler is the parsing of a PEG grammar and constructing
a corresponding parse tree or abstract syntax tree (AST) (see Section 2.2.1), which is
the job of the syntax analyzer. In the PEG compiler, the parser that is used by the
syntax analyzer is the virtual PEG parsing machine discussed in Section 4.1. The PEG
grammar that is used to parse a PEG grammar is the PEG grammar listed in Appendix
B, which is the PEG grammar that describes the PEG syntax in the original paper about
PEG [3].

Note that, because this syntax analyzer is based on PEG, which can inherently describe
lexical syntax, there is no need for a separate lexical analyzer component before the
syntax analyzer in the compiler pipeline diagram shown in Figure 4.1.
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Grammar

0

20

|

+-------------------------------------------+

| |

Definition Definition

0 8

8 20

| |

+--------------------+----------+ +--------------------+----------+

| | | | | |

Identifier LEFTARROW Expression Identifier LEFTARROW Expression

0 2 5 8 10 13

2 5 8 10 13 20

| | | | | |

+-----------+ + + +-----------+ + +

| | | | | | | |

IdentStart Spacing Spacing Sequence IdentStart Spacing Spacing Sequence

0 1 4 5 8 9 12 13

1 2 5 8 9 10 13 20

| | | | | |

+ + + + + +

| | | | | |

Space Space Prefix Space Space Prefix

1 4 5 9 12 13

2 5 8 10 13 20

| |

+ +

| |

Suffix Suffix

5 13

8 20

| |

+ +

| |

Primary Primary

5 13

8 20

| |

+ +

| |

Identifier Class

5 13

8 20

| |

+-----------+ +-----------+

| | | |

IdentStart Spacing Range Spacing

5 6 14 18

6 8 17 20

| | |

+ +-----+ +

| | | |

Space Char Char Space

6 14 16 18

8 15 17 20

| |

+ +

| |

EndOfLine EndOfLine

6 18

8 20

Listing 4.1: Abstract syntax tree of PEG grammar from Listing 4.2.
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For an example of the compilation process, the PEG grammar presented in Listing 4.2
is used. The start non-terminal A simply defines a non-terminal PEG expression B.
In turn, non-terminal B defines a single character class PEG expression consisting only
of the lowercase ASCII characters. When this grammar is parsed by the virtual PEG
parsing machine, the AST shown in Listing 4.1 is generated. In top-to-bottom order, the
AST nodes consist of: non-terminal identifier; position of the first character of the parsed
substring with regard to the complete input string; position of the last character plus
one of the parsed substring. The printed character positions are in accordance with the
PEG example grammar as character stream shown in Listing 4.3, where the ‘\r’ and ‘\n’
symbols represent the ASCII escape codes for carriage return and line feed respectively.

A <- B

B <- [a-z]

Listing 4.2: PEG grammar example.

position: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

string: A < - B \r \n B < - [ a - z ] \r \n

Listing 4.3: PEG grammar from Listing 4.2 as character stream.

Note that the AST in Listing 4.1 as generated by the syntax analyzer only provides in-
formation regarding the syntactic and hierarchical structure of the parsed PEG grammar
in Listing 4.2. For example, it specifies that the expression belonging to non-terminal B
spans character positions 13 up to, but not including, 20. The Expression node itself
presents a path to a Range node, containing the two characters at position 14 and 16,
which match to ‘a’ and ‘z’ respectively according to Listing 4.3.

4.2.1.2 Semantic Analyzer

The second stage in the PEG compiler is the semantic analyzer component, which takes
an AST as input and produces an annotated AST as output. This achieved by applying
a depth-first search through the abstract syntax tree. During this traversal, the nodes
and child nodes are matched with predefined patterns that translate to partial annotated
abstract syntax trees representing PEG expressions. The location of these matches are
used to construct a new annotated abstract syntax tree that thus contains semantic
information regarding the parsed PEG grammar.

A subset of AST match patterns is shown in Listings 4.4 to 4.6. The partial AST on the
left represents the AST pattern which, when matched, translates to the partial annotated
AST on the right.
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| |

Sequence Sequence

| |

+-------+-------+----- --> +---+---+--

| | | | | |

Prefix Prefix Prefix

| | |

Listing 4.4: Sequence PEG expression AST translation.

| |

Prefix --> AndPredicate

| |

+----+

| |

AND Suffix

|

Listing 4.5: And-predicate PEG expression AST translation.

| |

Suffix --> Optional

| |

+--------+

| |

Primary QUESTION

|

Listing 4.6: Optional PEG expression AST translation.

| |

Primary --> LiteralString

| {literal = "c1 c2 c3 ..."}

+

|

Literal

|

+-----+-----+---

| | |

Char Char Char

Listing 4.7: Literal string PEG expression AST translation.

Some AST patterns are translated to an annotated AST with additional semantic infor-
mation. An example of this can be seen in the annotated AST associated with a literal
string PEG expression presented in Listing 4.7. The LiteralString node in the anno-
tated AST has a literal property that contains the string of characters associated with
the Char nodes in the AST. Other annotated AST nodes that include an additional prop-
erty are the non-terminal definition and expression, which both store the non-terminal
identifier, and the character class expression, which stores the character class itself.



4.2. COMPILATION AND ASSEMBLY TOOLS 115

Continuing with the example of compiling the PEG grammar in Listing 4.2, the semantic
analyzer takes the AST in Listing 4.1 produced by the syntax analyzer as input. By using
the process described earlier, the annotated AST shown in Listing 4.8 is produced.

Grammar

|

+------------+

| |

Definition Definition

{id = "A"} {id = "B"}

| |

NonTerminal CharacterClass

{id = "B"} {class = [[97, 122]]}

Listing 4.8: Annotated abstract syntax tree of PEG grammar from Listing 4.2.

4.2.1.3 Code Generator

The last stage in the PEG compiler is the PPEG assembly code generation, which is
the job of the code generator. This component applies a depth-first search through an
annotated AST and uses the recursive PEG expression to PPEG code translation func-
tion Π(G, pc, e), which was introduced in Section 3.5, in order to generate the associated
PPEG code. The depth-first search traversal causes the code to be generated linearly
with respect to the line numbers. In short, the code generator component is a practical
implementation of the formal grammar translation function Π′(G).

For the example PEG grammar in Listing 4.2, the code generator takes the annotated
AST in Listing 4.8 produced by the semantic analyzer and produces the PPEG assem-
bly program shown in Listing 4.9. Here, the translation from PEG grammar to PPEG
instructions can be readily observed. For example, the first 4 instructions are as defined
by Π′(G) in Section 3.5.3, which precede the PPEG code associated with non-terminals
starting in lines 6 and 10. Similarly, the the NonTerminal and CharacterClass anno-
tated AST nodes translate to line 6 by means of Π(G, x, B) and to line 9 by means of
Π(G, x, [a-z]) respectively.

1 s_push $cpos, L0

2 call A

3 set_success

4 L0: set_fail

5
6 A: call B

7 ret

8
9 B: char_set ($cpos)+, 97, 122

10 ret

Listing 4.9: PPEG assembly program of PEG grammar from Listing 4.2.

Note that, though the Π′ and Π translation functions are defined such as to generate
PPEG assembly code with absolute instruction addresses, the assembly code generated
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by the code generator substitutes these with labels. The reason is simply the increase in
legibility for the user.

4.2.2 PPEG Assembler

The final process in the path to generating a binary executable file that can be run on a
PPEG parsing machine is the job of the PPEG assembler. Its input is any valid PPEG
assembly program.

The generation of the binary machine code is achieved by two linear passes over the
PPEG assembly code. The first pass is used to resolve any label references into their
corresponding absolute or relative instruction memory address. The second pass trans-
lates each line from PPEG assembly word to its 32-bit binary equivalent according to
the PPEG ISA specification in Section 3.4.

addr | 31 PPEG binary 0 | PPEG assembly

------+---------------------------------------+------------------------------

0 | 10100000 00000000 00000000 00000011 | s_push $cpos, 3

1 | 10000000 00000000 00000000 00000100 | call 4

2 | 00010000 00000000 00000000 00000000 | set_success

3 | 00001000 00000000 00000000 00000000 | set_fail

4 | 10000000 00000000 00000000 00000110 | call 6

5 | 00011000 00000000 00000000 00000000 | ret

6 | 01000000 01111010 01100001 00000000 | char_set ($cpos)+, 97, 122

7 | 00011000 00000000 00000000 00000000 | ret

Listing 4.10: PPEG binary program of PEG grammar from Listing 4.2.

The assembly process is clarified with a continuation on the example presented in Section
4.2.1. Consider the PPEG assembly program shown in Listing 4.9. After the first pass
that resolves the labels A, B, and L0, the assembly program in the right-most column of
Listing 4.10 is obtained. Thereafter, using the PPEG ISA specification during the second
pass, the assembler translates the assembly program on the right to the PPEG binary
program shown in the middle column of Listing 4.10. The left-most column shows the
instruction memory address associated with the binary and assembly instruction words
on the right.

4.3 Conclusion

This chapter explained three main software tools developed for use with the PPEG
architecture. The first is a VPM or virtual parsing machine. That is, a software emulator
of the PPEG parsing machine architecture was built based on the microcode definitions
of the PPEG ISA. The emulator is extended with tools to analyze internal processes and
ongoing events. Moreover, parse tree visualization and parse error reporting are included
in the VPM. Finally, a memoization extension was added in order to analyze its effect
on parses while accounting for the required hardware complexity (see Section 4.1).

The other two tools that were developed are the PEG compiler and PPEG assembler
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(see Section 4.2). The first takes an arbitrary PEG and compiles it into an equivalent
PPEG assembly program. This is achieved by a number of transformations by means
of a PEG syntax analyzer, PEG semantic analyzer, and finally PPEG code generator
which translates an annotated AST into a PPEG assembly program according to the
PEG translation model discussed in Section 3.5. Finally, the PPEG assembly program
is transformed to a binary file by means of the PPEG assembler tool, which is based on
the PPEG ISA specification discussed in Section 3.4.
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Results and Analysis 5
Based on the PPEG architecture design presented in Chapter 3, this chapter aims to
measure and analyze the performance and parse behavior of the PPEG parsing ma-
chine. This is achieved by running benchmarks on the virtual parsing machine profiling
tool discussed in Section 4.1.2 and on an FPGA-based implementation of the PPEG
architecture.

Section 5.1 discusses the the hardware setup for both the virtual parsing machine and
FPGA-based implementation, the benchmarks, and the measurement procedures. There-
after, the benchmark measurement results are analyzed in Section 5.2, which includes
analysis of parsing throughput, stack size, and clock cycle distribution. Finally, the ef-
ficacy of a memoization cache in the virtual parsing machine is measured and discussed
in Section 5.3.

5.1 Test Setup

In order to analyze the behavior and performance of the PPEG parsing machine designed
in Chapter 3, a number of important elements need to be specified first, such as the
hardware that is used to run the benchmarks on, the construction of the benchmarks,
and the measurement procedure. This section aims to provide a complete overview of
these elements.

5.1.1 Hardware Setup

Virtual Parsing Machine
For the purpose of benchmark measurements, the PPEG virtual parsing machine runs
on a Dell Latitude 5580 laptop with an Intel Core i7-7600U CPU at 2.80GHz and 16GB
of RAM. The operating system is Windows 10 version 21H1. Finally, the virtual parsing
machine is implemented in Python and runs on Python version 3.10.1.

FPGA-based PPEG Parsing Machine
The PPEG parsing machine architecture, as specified in Chapter 3, is implemented
on an FPGA (field-programmable gate array) for the purpose of running benchmark
measurements. The specific FPGA that was used is the Intel Arria 10 (product code:
10AS027E4F29E3SG) on the Mercury+ AA1 SoC module from Enclustra.

PPEG architecture was implemented on the FPGA with the following configuration:

• 28 = 256 return stack entries.

119
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• 26 = 64 backtrack stack entries.

• 12-bit instruction memory address width; equivalent to 212 = 4096 instruction
words or 4096× 4 = 16KB.

• 18-bit data memory address width; equivalent to 218 = 262,144 bytes or, equiva-
lently, 262,144 characters.

The return and backtrack stack size were selected based on VPM benchmark results.
The instruction memory size was selected based on the binary code size of the largest
benchmark grammar. The data memory size was set as large as possible, while keeping
the target system clock frequency at 100MHz.

Table 5.1: Usage of FPGA resources for implementation of PPEG core.

Resource Usage

ALMs 2040

Combinational ALUTs 1394

Dedicated Logic Registers 2589

DSP Blocks 0

Block Memory Bits 5504

Using this PPEG configuration, synthesis and implementation for the Intel Arria 10
FPGA results in the resource usage presented as reference in Table 5.1. Note that
this only accounts for the PPEG core, which excludes instruction memory and data
memory. Because of this, the number of block memory bits represents the com-
bined bit-size of the return stack and backtrack stack. A single return stack en-
try requires 12 bits (instruction memory address). Therefore, the complete return
stack requires 28 entries × 12 bits = 3072 bits. Similarly, a single backtrack entry re-
quires (return stack address + instruction memory address + data memory address) =
8 bits + 12 bits + 18 bits = 38 bits. Therefore, the complete backtrack stack requires
26 entries×38 bits = 2432 bits. The total required block memory bits is therefore indeed
3072 bits + 2432 bits = 5504 bits.

Besides the PPEG core and instruction and data memory, the FPGA-based implemen-
tation also includes a so-called system controller, which provides an interface between
the PPEG system and the outside. Communication between the outside is based on
read and write commands via the UART serial protocol. The PPEG status register,
file size register, enable pin, and restart pin are all memory mapped, together with the
instruction and data memory. This way, to for example set the enable pin, a simple
write command to its corresponding memory address is needed. Likewise, reading the
PPEG core status simply requires a memory read command to its memory address. The
system controller provides an easy and intuitive method for communication between the
PPEG system and an external controller. The complete FPGA-based PPEG system can
be seen in Figure 5.1.
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Figure 5.1: FPGA-based system overview.

5.1.2 Reference Implementations

In order to suitably analyze the performance and operation of the PPEG parsing ma-
chine, the ability to compare to similar existing implementations is key. Although no
parsing machine has been designed for and implemented on hardware, solutions that
come close are parsing machines implemented as virtual machines. Of these, LPEG,
MiniNez, and GPEG are the most notable ones, as discussed in 2.5.3.

Unfortunately, LPEG is not a parsing machine based on compiling PEG into binary
machine code [38]. Instead, grammars are constructed as Lua code with the LPEG
library. Moreover, the LPEG virtual machine is intended as a pattern matching device
and not an actual parser. For these reasons, only MiniNez and GPEG implementations
are considered when comparing benchmark results, as both these implementations are
compiled and intended as recognizers or parsers.

5.1.3 Benchmark Files

In order to obtain useful data about the performance and operation of the PPEG parsing
machine, a set of grammars and files for parsing are needed. Preferably, these grammars
and files are used by the reference implementations in order to more easily compare
benchmark measurement results.

Regarding the file sets used by the benchmarks, the MiniNez paper performs tests on
a CSV data set and JSON data set obtained from an unspecified repository at the
USGS (United States Geological Survey) website. Furthermore, its synthetic XML file
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set was generated by the xmlgen data generator tool, originally created for the XMark
benchmark project [46]. The MiniNez paper also uses a syslog data set and email data
set, but the data sets for these file types could not be reproduced. The GPEG paper only
performs tests on an unspecified synthetic JSON data set and on a Java dataset obtained
from the OpenJDK7 source code. Because the source code for OpenJDK7 could not be
found, instead a Java dataset was constructed from the Oracle JDK5 source code [2].

Regarding the grammars used by the benchmarks, the MiniNez paper specifies PEGs
for CSV, XML, JSON. The open source code for the GPEG project contains a PEG for
Java 1.7, which was originally written by Redziejowski [47].

In the end, 6 separate data sets were created with 4 unique file types: CSV, XML, JSON,
and Java. The The single CSV data set was obtained from the USGS Earthquake Hazards
Program, which keeps a catalog of past earthquakes from which data can be requested in
various file formats. Similar to the CSV data set, one XML data set and one JSON data
set were also obtained from the USGS Earthquake Hazards Program. Another XML
data set was obtained using the xmlgen data generator tool. This XML data set was
then converted to JSON data using a Python script to produce a second JSON data set.
Finally, as mentioned earlier, a Java data set was constructed from the Oracle JDK5
source code. Each data set consists of 60 files with file sizes ranging between 1KiB and
256KiB, the maximum that fits in instruction memory as specified in Section 5.1.1.

The 6 data sets that are used for the benchmarks provide a reasonable mix of smaller
and larger PEGs. Moreover, the XML and JSON files generated by the xmlgen tool
provide synthetic data sets, whereas the CSV, XML, and JSON files obtained from the
USGS Earthquake Hazards Program provide good data sets with real-world data.

5.1.4 Measurement Procedure

The virtual parsing machine and FPGA-based parsing machine have two completely
different ways to measure performance and other metrics, which are discussed below.

Virtual Parsing Machine
As previously discussed in Section 4.1.2, the VPM can be used as a profiling tool in
order to gather as much data regarding parsing flow, memory utilization, throughput,
and more. After loading the binary machine code and data file into separate binary
arrays in Python, the following metrics are measured during each parse and used for the
benchmarks:

• file size

• number of clock cycles

• number of backtrack operations

• number of non-terminal calls

• number of redundant non-terminal calls

• maximum return stack size
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• maximum backtrack stack size

• parse time

Of these, only the measurement of the parse time requires a more detailed account for
the purpose reproducibility. Because the VPM is implemented in Python, the time

module is used from the Python Standard Library. More specifically, the function
time.process time() is called right before and after the parse of the file in question.
This function returns the sum of the system and user CPU time of the current process
in fractional seconds. By subtracting the return value at the end of the parse with that
at the beginning of the parse, the total parse time is computed.

Note that he VPM parse time is not very accurate, in part because it includes the small
measurement time of other benchmark metrics, but also because the measured parse
time seems to be influenced by the CPU’s utilization at the moment of running the
benchmarks. However, the VPM parse time can still be used for comparisons in e.g.
orders of magnitude.

FPGA-based PPEG Parsing Machine
Before running the parsing machine on the FPGA, the binary machine code and data file
for the grammar and file in question are written to memory using the UART command
interface as discussed in 5.1.1. Thereafter, the parsing machine is restarted and enabled,
which starts its execution at instruction memory address zero. Because most benchmark
metrics can be measured by means of the VPM as mentioned before, the only metric that
is measured in order to obtain the parsing machine’s performance is number of executed
clock cycles. An internal counter is included in the PPEG system, which only counts
when the PPEG core is enabled and until the status changes from ”busy” to some other
status. At the end of the parse the total number of executed clock cycles can be obtained
by means of a read command to the corresponding address.

Because the clock speed is fixed to 100MHz, the parse time can be easily determined by
the following formula:

Parse Time = Clock Cycles/Clock Frequency

Note that, because the PPEG parsing machine is completely deterministic, the number
of clock cycles spent on parsing a particular file is always the same. Therefore, each file
only needs to be parsed once.

5.2 Benchmark Measurements

Using the virtual parsing machine analytics as discussed in Section 4.1.2, a number of
interesting benchmark metrics come to light, such as parsing time, stack sizes, clock
cycle distribution, and more. Moreover, this section discusses the performance of the
FPGA-based PPEG implementation, as described in Section 5.1, and compares it with
the virtual implementation as well as other parsing machine implementations.
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5.2.1 Parse Time

As is to be expected, the discrepancy in parse time when running the benchmark files
on the FPGA-based implementation and VPM is substantial. Across all benchmarks, a
2 - 2.5 magnitude difference is found between these implementations.

Figure 5.2a shows the parse time distribution for the 60 JSON benchmark files sourced
from the USGS Earthquake Hazards Program. The dashed gray lines are linear pro-
jections obtained by applying least-squares regression to the measurement data. From
this it can be observed that the parse time appears to be linear with increasing input
file size. Appendix C contains the parse time versus input size plots for the other five
benchmarks.

5.2.2 Stack Size

When running the benchmarks on the VPM, it keeps track of the maximum number
of return and backtrack stack entries that were stored per file. The resulting maximum
stack size distribution for the JSON benchmark files sourced from the USGS Earthquake
Hazards Program is presented in Figure 5.2c. It can be observed that the required stack
size is almost constant for all input file sizes and from which it can be concluded that
stack size does not directly depend on input file size. Similar stack size versus input file
size plots are presented for the other five benchmarks in Appendix C.

Table 5.2 reports the maximum return and backtrack stack values across all files per
benchmark. As might be expected, smaller less complex grammars like the PEG for CSV
requires fewer stack entries than a large and complex grammar like the PEG for Java.
Note too that, though required stack size does not depend on input file size, files with
the same file type but different structure can have wildly different stack requirements.
For example, though both the USGS data repository and xmlgen tool provide a XML
data sets, the xmlgen XML files require almost twice the stack size than the USGS XML
files. The same is true for JSON files.

Another interesting result from the stack size measurements is their distribution in case
of heterogeneous file sets. The CSV, XML, and JSON data sets are rather homogeneous,
which can be observed from the fact that their stack sizes do not deviate much from the
mean. This is unlike the heterogeneous Java file set selected from the JDK5 project.
The table reports a maximum of 134 return stack entries and 45 backtrack stack entries.
However, the mean stack sizes when parsing this file set are only 68 and 27 entries for the
return and backtrack stack respectively, or about half of the maximum reported sizes.

From these results it can be concluded that the required return and backtrack stack
sizes depend mostly on the size and complexity of the grammar at hand. The file that
is parsed determines how much of the complexity is needed for the parse, and therefore
the maximum required stack size. In the case of the PPEG parsing machine, if the use
case and grammar are known, analysis with the VPM can determine a good estimate for
initial stack sizes.

On a final note, it is important to consider that the stack size is given in number of stack
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Figure 5.2: Benchmark results for JSON files sourced from USGS Earthquake Hazards
Program [1].

entries and not in bytes. In the case of the test setup listed in Section 5.1, a single return
stack entry consists of 12 bits, whereas a single backtrack stack entry consists of 38 bits.
The size of the stack entries depends on maximum input file size, grammar size, and, in
the case of the backtrack stack, on the size of the return stack.
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Table 5.2: Maximum return stack and backtrack stack sizes required when parsing the
benchmark files.

Benchmark USGS xmlgen JDK5

File Type CSV XML JSON XML JSON Java

Return Stack 4 16 15 28 40 134

Backtrack Stack 6 15 20 27 47 45

5.2.3 Clock Cycle Distribution

Non-terminal calls and backtrack operations heavily influence the execution flow of the
PPEG parsing machine. This influence is clearly visible in the clock cycle distribution
shown in Figure 5.2b, which presents the data for the JSON benchmark files sourced
from the USGS Earthquake Hazard Program. It can be observed that about 10% of
the clock cycles are spent on non-terminal calls, which are simply jumps to some other
part of instruction memory. Additionally, about 16% of the clock cycles are spent on
backtrack operations, each being a combination of a jump in instruction memory and
data memory. In total, about 26% of all clock cycles, and therefore parse time, is spent
on jumps.

Appendix C presents similar plots showing the clock cycle distribution of the other five
benchmarks. Table 5.3 presents the same data as percentage of clock cycles spent on
non-terminal calls and backtrack operations for all six benchmarks. Similar to the stack
size data presented in Table 5.2, this data varies for different grammars, but also for
different file structures with the same file type. Furthermore, the benchmark with the
largest fraction of clock cycles spent on executing jumps is the Java JDK5 benchmark
with a total of 40.4%.

Table 5.3: Average percentage of clock cycles spent on backtracks and non-terminal calls
when parsing the benchmark files.

Benchmark USGS xmlgen JDK5

File Type CSV XML JSON XML JSON Java

Bactracks 15.7 16.3 16.1 19.5 15.0 29.2

Calls 2.1 4.0 9.6 3.8 4.3 11.2

The importance of these statistics lies in the parsing machine memory interface. As
explained shortly in Section 5.1.1, the current system uses a limited amount of instruc-
tion and data memory in order to fit the entire design, including memory, on a single
FPGA. No cache is used to enable faster access to instructions and data as this de-
sign already supports single-cycle memory reads and writes at 100 MHz system clock
frequency. However, if future designs want to allow parsing larger files with possibly
larger grammars, external memory might be needed. This leads to an increase in cost of
jumps in instruction memory and data memory to above one clock cycle. It is therefore
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important to consider the clock cycle distribution when designing new grammars and for
future extensions to the parsing machine.

5.2.4 Code Size

Though reducing the binary code size of the compiled PEGs is not necessarily an ob-
jective of this project, a comparison between the PPEG binary code and that of the
two other parsing machine implementations that are considered, namely MiniNez and
GPEG, is still provided in Table 5.4. The MiniNez values were obtained from [4], the
GPEG values were generated by running its open source compiler [5] on the five indi-
cated grammars, and the PPEG values were generated by running the PPEG compiler
and assembler (see Section 4.2) on the same five grammars. Unfortunately, the MiniNez
paper did not provide values for PEG and Java grammars and no compiler was found in
its open source repository.

Table 5.4: Code size in bytes of various PEG specifications compiled for three parsing
machine implementations.

Grammar MiniNez GPEG PPEG

CSV 84 26 96

XML 366 228 692

JSON 368 478 728

PEG - 2178 840

Java - 25740 10980

It can be observed that the PPEG binaries are much larger for the smaller CSV, XML,
and JSON grammars, whereas the binaries for the larger PEG and Java grammars are less
than half that of the GPEG binaries. This can be attributed to the effect of separately
stored character set tables. Both MiniNez and GPEG parsing machines store character
sets as 256-bit words, where each bit represents a single 8-bit character. This allows
for a single 256-bit comparison when a character must be compared against a character
class. However, the code sizes in the table do not include the memory allocation for
these character sets.

Taking the JSON grammar as an example, the GPEG compiler reports the allocation
for 6 character sets in the character set table. However, GPEG optimizes character
sets consisting solely of (7-bit) ASCII characters by storing only the lower 128 bits.
Because 5 of the 6 character sets consist of ASCII characters only, the character set
table for the JSON grammar requires the allocation of 5× 128+1× 256 = 896 bits. The
character set table in addition to the binary size of the GPEG-compiled JSON grammar
requires a total of 896 + 478 = 1374 bits of memory. Likewise, the GPEG-compiled
CSV grammar requires an additional 256-bit word for its single character set, thereby
requiring 256 + 26 = 282 bits of memory. MiniNez requires similar allocation sizes for
its own character sets.
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Another effect that adds to the binary sizes is padding required for misaligned instruction
words. This does not pose a problem in the case of MiniNez and PPEG, because both
implementations use a fixed instruction word length (16-bit and 32-bit respectively).
However, GPEG instructions have many different lengths, ranging from 8 to 48 bits. By
design, these instructions need to be 16-bit aligned, which sometimes requires additional
8-bit padding, which is not included in Table 5.4.

5.2.5 Parsing Throughput

Finally, the parsing throughput is the metric that provides good insight of parser per-
formance, irrespective of input file size, assuming parsing speed increases linearly with
increasing file size as seen in Section 5.2.1. Table 5.5 reports the parsing throughput
in mebibytes per second [MiB/s] for 4 different file types and 4 implementations, which
include the VPM-based and FPGA-based PPEG implementation. The MiniNez [4] and
GPEG [5] throughput values were obtained from their respective papers, which unfortu-
nately do not report figures for all file types. The PPEG throughput values for XML and
JSON are the average of the data sets obtained from the USGS repository and xmlgen

tool.

Though discussed before in Section 5.2.1, note the substantial difference in through-
put between VPM-based and FPGA-based PPEG implementations. Moreover, the the
FPGA-based PPEG implementation reports an approximately 3× higher throughput
than the MiniNez implementation for the CSV, XML, and JSON grammars. Only the
GPEG implementation outperforms the FPGA-based PPEG architecture, namely for
the JSON file with a 5× higher throughput.

Table 5.5: Parsing throughput in MiB/s of various benchmarks for four parsing machine
implementations.

Grammar MiniNez GPEG
PPEG

(VPM)

PPEG

(FPGA)

CSV 6.18 - 0.06 14.88

XML 5.88 - 0.06 15.82

JSON 2.99 54.50 0.05 11.44

Java - 7.34 0.04 9.50

Unfortunately, because the MiniNez and GPEG parsing machine implementations are
based on virtual machines, the hardware used to run these virtual machines on de-
termines much of the throughput. For example, the throughput values for the MiniNez
implementation were obtained by running its virtual machine on a Raspberry Pi 2 Model
B (4-core Cortex-A7 running at 900MHz), whereas the GPEG virtual machine ran on a
AMD Ryzen 5 1600 (6-core CPU running at 3.2GHz). Assuming the virtual machines
ran uninterrupted on a single core of their respective processors at the indicated base
frequency, Table 5.6 reports the benchmark throughput in bytes per clock cycle. These
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values were computed based on the values in Table 5.5 using the following formula:

Throughput [B/clock cycle] = Throughput [MiB/s]× 220 [B/MiB]/Clock Frequency [Hz]

From this table it can be observed that throughput by the PPEG implementation is
almost a magnitude larger than that of GPEG and 1.5 magnitude larger than that
of MiniNez. However, note that these throughput values for the MiniNez and GPEG
implementations depend on some naive assumptions and furthermore still depend on the
target hardware (ISA, instructions per clock cycle, etc.).

Table 5.6: Parsing throughput in bytes per clock cycle [B/clock cycle] of various bench-
marks for three parsing machine implementations.

Grammar MiniNez GPEG PPEG

CSV 0.0072 - 0.156

XML 0.0069 - 0.166

JSON 0.0035 0.0179 0.120

Java - 0.0024 0.100

In general, it is difficult to accurately compare the throughput of the PPEG parsing
machine with the two virtual machine implementations, because of their dependence
on existing hardware. Only if they were to be implemented in hardware similar to the
PPEG parsing machine would such a comparison be possible. However, the MiniNez
and GPEG architectures were both designed as a virtual machine, and their design is
therefore not optimized for an implementation in hardware.

5.3 Memoization Measurements

Section 4.1.3 discussed a possible performance optimization methodology called memo-
ization that involves caching non-terminal cache results. Using the benchmark files that
were introduced in Section 5.1.3, the effectiveness of memoization may be measured for
a number of PEG grammars and a variety of cache configurations.

5.3.1 Memoization Metrics

To provide meaningful insight into the effectiveness of memoization agnostic of PEG
parser implementation, the number of redundant non-terminals calls is measured during
benchmark execution. A non-terminal call is redundant if that same non-terminal has
been called at the same character position at least once before. Therefore, with complete
memoization – i.e., all non-terminal call results at every character position are stored
– there would be no redundant calls. The percentage of redundant calls is thus a good
measure for determining how much the parser wastes on re-evaluating past results.

Though the percentage of redundant calls gives a good implementation-agnostic insight
into wasted parse time, the number of clock cycles spent by non-terminal calls can vary
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wildly. Therefore, a more accurate metric is the exact number of clock cycles that
were wasted by this specific parsing machine implementation. For this reason, the total
number clock cycles spent on parsing is also measured and provides an implementation-
specific measure of parsing speedup.

The measurements for memoization effectiveness are performed for increasing cache as-
sociativity. The baseline implementation is represented by a cache associativity of zero.
The measurements for each file type also include the results for a cache with maximum set
associativity. Assuming an input string length of n characters, an n-way set-associative
cache is thus used when a maximum cache associativity is mentioned.

Finally, as indicated in Section 4.1.3, caching failed non-terminal evaluation results due
to caching might prove to be difficult to implement in hardware. For this reason, a mem-
oization unit with backtrack caching and without backtrack caching was implemented
in the virtual parsing machine and both are explored in the measurements.

5.3.2 Benchmark Results

Table 5.7 shows the memoization results for increasing cache associativity values when
parsing XML benchmark files from the USGS repository [1]. Here, a cache associativity
of zero means that no memoization was used, whereas max indicates that an n-way
set-associative cache with m sets was used, where n is the input string length and m is
the number of non-terminals used by the XML PEG grammar, namely m = 12 (refer to
Section B.2). Furthermore, the number of clock cycles reported in the table represents
the total number of clock cycles when parsing all 60 XML benchmark files. Regarding
memoization without caching backtrack results, it can be observed that the redundant
calls and number of clock cycles do not decrease at all for any cache associativity con-
figuration. Apparently, the redundant calls in the XML grammar are only caused by
re-evaluating previously failed non-terminals. Memoizing these failed non-terminals with
only a direct-mapped cache (1-way set associative) already results in the removal of all
redundant non-terminal calls, which simply requires a small cache with only 12 entries,
one for each non-terminal. However, the total performance gain is barely measurable in
both percentage of redundant calls (a 0.1% drop) and number of clocks cycles (a drop
of 300 cycles).

Table 5.7: Percentage of redundant calls for various memoization configurations when
parsing XML benchmark files [1].

Cache

Associativity

No Backtrack Caching Backtrack Caching

Redundant Calls

[%]

Clock Cycles

(×106)
Redundant Calls

[%]

Clock Cycles

(×106)

0 0.1 31.7 0.1 31.7

1 0.1 31.7 0 31.7

max 0.1 31.7 0 31.7
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Table 5.8 presents the memoization results for the JSON benchmark files from the USGS
repository [1]. In contrast to the memoization results for XML, caching failed non-
terminal evaluations is not needed, as a direct-mapped cache without backtrack caching
already removes all redundant non-terminal calls. Moreover, a more significant speedup
is gained by memoizing successful non-terminal evaluations as the original 6.1% redun-
dant non-terminal calls are removed, resulting in a total decrease of 1 million clock cycles.
In total, a direct-mapped cache with only 17 sets is enough for a 2.9% decrease in clock
cycle executions when parsing JSON files with the JSON PEG found in Section B.3.

Table 5.8: Percentage of redundant calls for various memoization configurations when
parsing JSON benchmark files [1].

Cache

Associativity

No Backtrack Caching Backtrack Caching

Redundant Calls

[%]

Clock Cycles

(×106)
Redundant Calls

[%]

Clock Cycles

(×106)

0 6.1 34.5 6.1 34.5

1 0 33.5 0 33.5

max 0 33.5 0 33.5

Lastly, Table 5.9 shows the memoization results for the Java benchmark files from the
JDK [2]. Both caching and not caching failed non-terminal evaluations result in reduc-
tions in redundant calls and clock cycles. However, if only successful evaluations are
cached, the number of redundant calls is at best limited to 11.5%, which is only a 2.3%
reduction. For a direct-mapped cache, this is only a 2.0% reduction in redundant calls
and 3.9% reduction in clock cycles. On the other hand, if failed evaluations are also
cached, the percentage of redundant calls drops to 1.4% for even a direct-mapped cache,
giving a 12.5% reduction. Similarly, the number of clock cycles drops by 8.6%. Note
that a higher cache associativity does decrease the number of redundant calls and clock
cycles, but only by an insignificant amount. In conclusion, the Java PEG found in [47] a
direct-mapped cache is optimal considering the trade-off between cache size and perfor-
mance gain, preferably with caching of failed evaluations enabled. Do consider, however,
that 225 sets are needed in order implement a direct-mapped cache for this Java PEG:
one for each non-terminal definition.

Only the CSV file type remains to be discussed with regard to memoization. However,
it was found that no redundant non-terminal calls occur when parsing CSV benchmark
files from the USGS repository [1] according to the CSV PEG defined in Section B.4,
even without memoization enabled.

5.3.3 Discussion

From the results presented in this section, it can be concluded that an increase in parsing
performance by means of a memoization unit highly depends on the grammar. Analysis
of the results for the four grammars used in this section indicates that a larger and
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Table 5.9: Percentage of redundant calls for various memoization configurations when
parsing Java benchmark files [2].

Cache

Associativity

No Backtrack Caching Backtrack Caching

Redundant Calls

[%]

Clock Cycles

(×106)
Redundant Calls

[%]

Clock Cycles

(×106)

0 13.8 30.4 13.8 30.4

1 11.8 29.2 1.4 27.8

2 11.8 29.2 1.4 27.8

4 11.8 29.2 1.3 27.8

max 11.5 28.8 0 27.0

more complex grammar benefits from this optimization more than smaller grammars do.
This makes sense intuitively, as the conditions for redundant calls (see Section 4.1.3) are
probably more likely to appear in large complex grammars. Moreover, if a memoization
unit is to be used by the parsing machine, increasing its set associativity leads to sharp
diminishing returns in terms of performance gain. Therefore, a simple direct-mapped
cache is often enough for sufficient speedup.

In regard to caching failed non-terminal evaluation results, its benefit is clearly visible
when parsing Java benchmark files, while parsing JSON benchmark files did not perform
any different with or without this feature. The use of backtrack caching therefore also
highly depends on the grammar at hand.

The use of a memoization unit depends entirely on the use case, as does the use of
the backtrack caching feature. To this end, the virtual parsing machine can be used to
determine their efficacy for specific use cases.

5.4 Conclusion

To determine the operational behavior and performance of the PPEG parsing machine, a
test setup was constructed which consists of an implementation of the PPEG architecture
in software (virtual parsing machine) and hardware (FPGA). Benchmarks were created
consisting of PEGs for CSV, XML, JSON, and Java files, thereby creating a diverse
set of PPEG programs with varying size and complexity. These four grammars cover 6
different data sets, of which 2 were synthetically generated, 3 were obtained from real-
world data sets, and 1 was selected from an open-source code repository (see Section
5.1).

By running these benchmarks, it was found that the maximum return and backtrack
sizes are mostly independent of input file size, but dependent on the size and complexity
of the grammar at hand (see Section 5.2.2). Another observation was that a significant
number of clock cycles is spent on backtrack operations and non-terminal calls, ranging
anywhere from a total of 18% up to 40% percent for these benchmarks. The consequent
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large number of jumps in instruction and data memory must be kept into account if a
more complex memory hierarchy is ever considered (see Section 5.2.3). By comparing
the binary code size of PPEG-compiled grammars with other existing implementations,
it was observed that the PPEG binaries are generally smaller than those of other im-
plementations if the size of their character set table is taken into account (see Section
5.2.4). Finally, though an attempt was made to compare the performance of the PPEG
implementation in hardware with other existing implementations, this proved difficult
because their sole implementation in software is dependent on the hardware on which
they run. However, it appears that because the PPEG architecture is optimized to run
on hardware, it reaches comparable if not better parsing throughput when running the
benchmarks than the other reference parsing machine implementations running on much
faster hardware (see Section 5.2.5).

The benchmarks were additionally run on the virtual parsing machine with various mem-
oization cache configurations. From the results it can be concluded that large complex
grammars benefit more from memoization than smaller grammars, because the conditions
for redundant calls appear more for increasing grammar sizes. Moreover, due to dimin-
ishing speedup for increasing memoization cache associativity values, a direct-mapped
cache is often enough for sufficient speedup (see Section 5.3).
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Conclusion 6
6.1 Summary

Chapter 2 explained the information required to get a good understanding of the funda-
mentals on which the rest of this report builds forth. It walked through key elements of
formal grammars, which are used to define the syntax of a language with a varying level
of constraints and expressiveness (see Section 2.1). Context-free grammars especially
strike a good balance between the imposed constraints and its expressiveness, thereby
being often used by parser generators (see Section 2.2).
Unfortunately, the expressiveness of a context-free grammar still poses a problem when
two or more correct parses exist for any sentence in its associated language. For this
reason, analytic grammars might prove a better type of grammar, as it cannot define
ambiguous grammars (see Section 2.3). The most prominent analytic grammar is PEG
(parsing expression grammar), which additionally has the ability to define lexical syntax
and, unlike context-free grammars, is based on a limited backtracking top-down parsing
algorithm (see Section 2.4).
Though much research has been carried out for parsing techniques that are implemented
in software, few have been studied for implementation in hardware, namely: pattern
matching engines, tabular parsers, and virtual machines. However, the first does not
perform exact syntax validation and the second requires memory sizes proportional to
the input string length. Only virtual machines, which model a conventional computer
architecture, has the potential to satisfy the required goals (see Section 2.5).
By studying existing grammars, parsing techniques, and hardware-oriented implemen-
tations, a combination of grammar and parsing technique was selected based on a best
fit with regard to the goals listed in Section 1.1. This lead to the decision to base the
recognizer design on parsing machines that implement a limited backtracking top-down
parsing approach based on parsing expression grammars (see Section 2.6).

In order to design a suitable parsing machine that operates according to a PEG, the most
basic components and concepts required for its implementation were explored, such as
how limited backtracking and non-terminal calls are handled (see Section 3.1). These
concepts were employed for an inductive formalization of the top-down parsing algorithm
inherent to PEG (see Section 3.2).
The design of the parsing machine itself begun with a description of its micro-
architecture, which resulted from translating the formalized PEG expressions into mi-
crocode describing the flow of data between its fundamental components (see Section
3.3). The microcode was then split and grouped in such a way, that a minimal instruc-
tion set could be defined. The microcode definition of these instructions then translated

135
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to a mathematical formalization, which defines a parsing machine state transition for
each PPEG instruction (see Section 3.4).
Based on the PPEG instruction set and the original microcode, the translation from
PEG expression to PPEG assembly code is formalized. Finally, the PEG-PPEG trans-
lation formalization combined with the PPEG instruction set formalization were used
to verify the parsing machine’s operation with respect to the earlier defined inductive
formalization of PEG expressions (see Section 3.5).

Chapter 4 explained three main software tools developed for use with the PPEG archi-
tecture. The first is a VPM or virtual parsing machine. That is, a software emulator of
the PPEG parsing machine architecture was built based on the microcode definitions of
the PPEG ISA. The emulator is extended with tools to analyze internal processes and
ongoing events. Moreover, parse tree visualization and parse error reporting are included
in the VPM. Finally, a memoization extension was added in order to analyze its effect
on parses while accounting for the required hardware complexity (see Section 4.1).
The other two tools that were developed are the PEG compiler and PPEG assembler
(see Section 4.2). The first takes an arbitrary PEG and compiles it into an equivalent
PPEG assembly program. This is achieved by a number of transformations by means
of a PEG syntax analyzer, PEG semantic analyzer, and finally PPEG code generator
which translates an annotated AST into a PPEG assembly program according to the
PEG translation model discussed in Section 3.5. Finally, the PPEG assembly program
is transformed to a binary file by means of the PPEG assembler tool, which is based on
the PPEG ISA specification discussed in Section 3.4.

To determine the operational behavior and performance of the PPEG parsing machine,
a test setup was constructed which consists of an implementation of the PPEG archi-
tecture in software (virtual parsing machine) and hardware (FPGA). Benchmarks were
created consisting of PEGs for CSV, XML, JSON, and Java files, thereby creating a
diverse set of PPEG programs with varying size and complexity. These four grammars
cover 6 different data sets, of which 2 were synthetically generated, 3 were obtained from
real-world data sets, and 1 was selected from an open-source code repository (see Section
5.1).
By running these benchmarks, it was found that the maximum return and backtrack
sizes are mostly independent of input file size, but dependent on the size and complexity
of the grammar at hand (see Section 5.2.2). Another observation was that a significant
number of clock cycles is spent on backtrack operations and non-terminal calls, ranging
anywhere from a total of 18% up to 40% percent for these benchmarks. The consequent
large number of jumps in instruction and data memory must be kept into account if a
more complex memory hierarchy is ever considered (see Section 5.2.3). By comparing
the binary code size of PPEG-compiled grammars with other existing implementations,
it was observed that the PPEG binaries are generally smaller than those of other im-
plementations if the size of their character set table is taken into account (see Section
5.2.4). Finally, though an attempt was made to compare the performance of the PPEG
implementation in hardware with other existing implementations, this proved difficult
because their sole implementation in software is dependent on the hardware on which
they run. However, it appears that because the PPEG architecture is optimized to run
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on hardware, it reaches comparable if not better parsing throughput when running the
benchmarks than the other reference parsing machine implementations running on much
faster hardware (see Section 5.2.5).
The benchmarks were additionally run on the virtual parsing machine with various mem-
oization cache configurations. From the results it can be concluded that large complex
grammars benefit more from memoization than smaller grammars, because the conditions
for redundant calls appear more for increasing grammar sizes. Moreover, due to dimin-
ishing speedup for increasing memoization cache associativity values, a direct-mapped
cache is often enough for sufficient speedup (see Section 5.3).

6.2 Main Contributions

The aim of this section is to answer the research questions and elaborate on the goals
that were introduced in Section 1.1, after which the main contributions are listed.

The main research question was as follows:

• How can a flexible text-based recognizer be built with digital electronics?

The answer to this question is found in a combination of Chapter 2 and Chapter 3.
Text-based recognition is usually achieved by means of a parser. Next, a parsing machine
approach was chosen, as that allows the creation of a fixed machine that is implemented in
hardware, while still allowing to flexibly load different grammars to parse any file type. In
order to avoid ambiguity and integrate the lexical syntax analysis part into one parsing
machine, the machine is based on parsing expression grammar. Based on a general
stack approach for non-terminal calls and backtrack operations, a micro-architecture
was constructed, which in turn led to the design of the final instruction set architecture.
The simplicity of the architecture allows for possible future extensions in order to enhance
recognition behavior and performance.

• What are the design considerations for choosing a hardware-oriented recognition
technique?

Section 2.6 details the various design considerations for choosing a hardware-oriented
parsing machine approach. Other hardware-based solutions do exist, but are either
not strict enough in their recognition approach (e.g., pattern matching engines), or
have substantial memory requirements (e.g. tabular parsing approaches). Therefore,
both strictness of the recognition approach and memory requirements are important
considerations for hardware. Moreover, as the aim is to design a flexible recognizer, the
process of loading new file templates or grammars into the recognizer must be as easy as
possible, which is why the parsing machine uses a simple instruction and data memory
design.

• How can performance be enhanced by extending an existing base design?

The main enhancement that was investigated during this project was the addition of a
memoization unit, as discussed in Section 4.1.3. In short, intermediate parse results are
stored in a cache in order to minimize the number of non-terminal re-evaluations after
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backtrack operations. In Section 5.3 it was found that the performance enhancement
that such a memoization unit provides depends on the complexity of the grammar at
hand. For the benchmarks used in this project, the decrease in parse time reached up
to 8.6%

• How does an implementation in hardware compare to existing software implemen-
tations?

In Section 5.2, both the parsing throughput and binary code size were measured for
the benchmarks used in this project and were compared to the results reported by the
MiniNez and GPEG virtual machine implementations. It was observed that the binary
code size of PPEG is generally smaller than that of the other implementations, assuming
that the size of the character set table employed by those implementations are taken into
account. The parsing throughput reaches comparable results to the reference virtual
machine implementations running on faster hardware.

The main contributions of this thesis are as follows:

• Designed and implemented a hardware-accelerated PEG parsing machine.

• Developed a mathematical formalism for a PEG-based recognizer.

• Developed a mathematical formalism for the behavior of the PPEG architecture.

• Developed a mathematical formalism for the translation from PEG to PPEG code.

• Developed a proof that the PPEG architecture implements all fundamental PEG
expressions.

• Created compiler and assembler that translates PEG to PPEG assembly and binary
machine code respectively.

• Compared the performance of the PPEG parsing machine with existing similar
implementations.

• Investigated the performance improvement when adding memoization to the pars-
ing machine.

6.3 Future Work

The developments on the PPEG parsing machine architecture presented in this work
have proven that hardware-accelerated recognizers are indeed possible, achieve good
performance compared to existing software-based solutions, and can be optimized in
performance by integrating caching techniques. There are, however, a multitude of ad-
ditional developments that can improve performance or add more interesting recognizer
behavior. The most interesting future work is summarized hereafter.

Error Detection and Handling
The current PPEG architecture design does not include any fail-safe mechanism for
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handling undefined behavior. Such behavior might be cause by, but is not limited to,
the following erroneous events:

• Return stack or backtrack stack push operation when these are completely filled.

• Return stack or backtrack stack pop operation when these are completely empty.

• Overflow of character position.

• Overflow of program counter.

• Character position out of bounds.

• Program counter out of bounds.

In the future, these, and other events, must be caught and handled gracefully instead
of producing undefined parsing behavior. In the case of the above events, this entails
stopping the current parse and setting the parsing machine status register to indicate
the specific error that caused the interrupt.

Character Set Table and Character String Table
Similar to the MiniNez and GPEG virtual machines, the PPEG architecture may be
extended to use a character set table to store complex character classes. When such a
character class is then encountered during the parse, the table can be used to perform
a character class comparison with a single instruction. Additionally, a character string
table might be constructed to store the relatively long constant string literals specified
by the grammar. When encountering this string during the parse, the table can be
used to perform multiple character comparisons at a time by means of multiple 8-bit
comparators in parallel.

It is recommended to first implement these changes in the virtual parsing machine in
order to analyze the benefit of these additions for the intended use case, similar as was
done for the memoization unit in Section 5.3.

Memory Hierarchy
As was discussed in hardware test setup presented in Section 5.1.1, the current FPGA-
based implementation of the PPEG parsing machine only utilizes as much available
on-chip memory, which is of course limited. In order to parse larger input files with
larger grammars, this flat memory structure needs to be replaced by a better memory
hierarchy, similar to those implemented in conventional computer architectures. For
example, external work memory can be added to store these larger files and binaries.
However, this can affect memory read and write times significantly. To this end, separate
or combined instruction and data cache can be considered for speeding up these memory
operations. The efficacy of these caches rely heavily on the jump behavior of the parsing
machines as spatial and temporal locality of instructions and data are affected by this.

It is again recommended to implement and analyze the exact effect of any new memory
hierarchy on the parsing behavior by means of the virtual parsing machine. This al-
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lows for rapid prototyping, reducing the long development time on the target hardware
platform.

Semantic Analysis
One of the most interesting topics for future work on the PPEG architecture is the
inclusion of semantic analysis. Because the PPEG parsing machine is based on PEG,
lexical syntax and general syntax analysis are already included in the machine. However,
because the goal is to build a flexible text-based recognizer, which can include the ability
to recognize and validate specific data types by means of semantic analysis.

Although attempted in Appendix B, in general PEG cannot exactly specify the correct
syntax for XML files. The following snippet presents the PEG expression for a simple
XML element:

Element <- ’<’ Name ’>’ Content ’</’ Name ’>’)

XML requires the start tag and closing tag to have the same name. However, the above
PEG does not and cannot set this constraint. If support for string type comparisons
was added to the PPEG architecture, this PEG specification can be extended to set this
necessary constraint as follows:

Element <- ’<’ {Name} ’>’ Content ’</’ {Name} ’>’)

{{ assert x0.string() == x1.string() }}

Here, the two Name non-terminals are surrounded by curly brackets to indicate that they
are the subject of a semantic check. The part between double curly brackets contains
these semantic checks, in this case a simple assert. x0 refers to the first element in single
curly brackets, x1 to the second element in curly brackets, etc. The suffix .string()

indicates that the parsed elements between brackets are operated on as strings. In this
case, the assert statement means to verify that the opening and closing tags are the
same string, which results in a backtrack operation if this is not the case.

Another example that shows the benefit of adding a semantic analysis component to the
parsing machine is as follows. Assume that a 16-bit unsigned integer needs to be parsed,
or in other words a number ranging anywhere from 0 to 65,535. Though this appears
simple, an implementation in PEG is not trivial, as can be seen from the following 16-bit
integer definition:

UINT16 <- [0-9] /

[1-9] [0-9] /

[1-9] [0-9] [0-9] /

[1-9] [0-9] [0-9] [0-9] /

[1-5] [0-9] [0-9] [0-9] [0-9] /

6 [0-4] [0-9] [0-9] [0-9] /

6 5 [0-4] [0-9] [0-9] /

6 5 5 [0-2] [0-9] /

6 5 5 3 [0-5]
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As can be seen, parsing a 16-bit integer can result in a significant number of backtrack
operations. If the PPEG parsing machine supported integer conversion and semantic
checks, the previous PEG can be reduced to the following simple grammar:

UINT16 <- {[0-9]+}

{{ assert x0.uint() <= 65535 }}

Similar to the .string() suffix, the suffix .uint() indicates that the parsed element
between curly brackets is operated on as an unsigned integer. During the syntactic parse
of the UINT16 non-terminal, the parsed characters need to be converted to integers and
accumulated to compute the integer value that has been parsed. Thereafter, a simple
integer comparison can be performed to check if the parsed value is equal to or lower
than 65,535.

In conclusion, adding a semantic analysis component can extend the basic abilities of
the PEG recognizer and possibly speed up the parsing process at the same time. The
exploration of such a component is therefore an interesting next step in this project.
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PEG Definitions B
B.1 PEG Syntax Definition

# Hierarchical syntax

Grammar <- Spacing Definition+ EndOfFile

Definition <- Identifier LEFTARROW Expression

Expression <- Sequence (SLASH Sequence)*

Sequence <- Prefix*

Prefix <- (AND / NOT)? Suffix

Suffix <- Primary (QUESTION / STAR / PLUS)?

Primary <- Identifier !LEFTARROW

/ OPEN Expression CLOSE

/ Literal / Class / DOT

# Lexical syntax

Identifier <- IdentStart IdentCont* Spacing

IdentStart <- [a-zA-Z_]

IdentCont <- IdentStart / [0-9]

Literal <- "’" (!"’" Char)* "’" Spacing

/ ’"’ (!’"’ Char)* ’"’ Spacing

Class <- ’[’ (!’]’ Range)* ’]’ Spacing

Range <- Char ’-’ Char / Char

Char <- ’\\’ [nrt’"\-\[\]\\]

/ ’\\’ [0-2][0-7][0-7]

/ ’\\’ [0-7][0-7]?

/ !’\\’ .

LEFTARROW <- ’<-’ Spacing

SLASH <- ’/’ Spacing

AND <- ’&’ Spacing

NOT <- ’!’ Spacing

QUESTION <- ’?’ Spacing

STAR <- ’*’ Spacing

PLUS <- ’+’ Spacing

OPEN <- ’(’ Spacing

CLOSE <- ’)’ Spacing

DOT <- ’.’ Spacing

Spacing <- (Space / Comment)*

Comment <- ’#’ (!EndOfLine .)* EndOfLine

Space <- ’ ’ / ’\t’ / EndOfLine

EndOfLine <- ’\r\n’ / ’\n’ / ’\r’

EndOfFile <- !.

Listing B.1: PEG definition of the PEG syntax (obtained from [3]).
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B.2 XML Syntax Definition

TopLevel <- PROLOG? _* DTD? _* Element _*

PROLOG <- ’<?xml’ (!’?>’ .)* ’?>’

DTD <- ’<!’ (!’>’ .)* ’>’

Element <- ’<’ Name (_+ Attribute)* (’/>’ / ’>’ Content ’</’ Name

’>’) _*

Name <- [A-Za-z:] (’-’ / [A-Za-z0-9:._])*

Attribute <- Name _* ’=’ _* String

String <- ’"’ (!’"’ .)* ’"’

Content <- (Element / CDataSec / CharData)*

CDataSec <- ’<![CDATA[’ (!’]]>’ .)* ’]]>’ _*

COMMENT <- ’<!--’ (!’-->’ .)* ’-->’ _*

CharData <- (!’<’ .)+

_ <- [ \t\r\n]

Listing B.2: PEG definition of the XML syntax (obtained from [4]).

B.3 JSON Syntax Definition

doc <- JSON !.

JSON <- S_ (Number / Object / Array / String / True / False / Null)

S_

Object <- ’{’ (String ’:’ JSON (’,’ String ’:’ JSON)* / S_) ’}’

Array <- ’[’ (JSON (’,’ JSON)* / S_) ’]’

StringBody <- Escape? ((!["\\\00-\37] .)+ Escape*)*

String <- S_ ’"’ StringBody ’"’ S_

Escape <- ’\\’ (["{|\\bfnrt] / UnicodeEscape)

UnicodeEscape <- ’u’ [0-9A-Fa-f] [0-9A-Fa-f] [0-9A-Fa-f] [0-9A-Fa-f]

Number <- Minus? IntPart FractPart? ExpPart?

Minus <- ’-’

IntPart <- ’0’ / [1-9] [0-9]*

FractPart <- ’.’ [0-9]+

ExpPart <- [eE] [+\-]? [0-9]+

True <- ’true’

False <- ’false’

Null <- ’null’

S_ <- [\11-\15\40]*

Listing B.3: PEG definition of the JSON syntax (obtained from [5]).

B.4 CSV Syntax Definition

File <- CSV*

CSV <- Value (’,’ Value)* ’\n’

Value <- (![,\n] .)*

Listing B.4: PEG definition of the CSV syntax (obtained from [4]).
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(f) Java files sourced from Oracle JDK 5.0 [2].

Figure C.1: Parse times by FPGA implementation and VPM for files from five bench-
marks. The dashed gray lines are linear projections obtained by applying least-squares
regression.

0.5 1 1.5 2 2.5

Input Size [B] 105

0

5

10

15

C
lo

ck
 C

yc
le

s

105

Backtracks
Non-Terminal Calls
Other

(a) XML files generated with xmlgen [46].
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(b) JSON files generated with xmlgen [46].
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(c) XML files sourced from USGS Earthquake
Hazards Program [1].
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(d) JSON files sourced from USGS Earthquake
Hazards Program [1].
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(e) CSV files sourced from USGS Earthquake
Hazards Program [1].
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(f) Java files sourced from Oracle JDK 5.0 [2].

Figure C.2: Number of clock cycles spent on backtracks, non-terminal calls, and other
activities when parsing files from five benchmarks.
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(a) XML files generated with xmlgen [46].
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(b) JSON files generated with xmlgen [46].
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(d) JSON files sourced from USGS Earthquake
Hazards Program [1].
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(e) CSV files sourced from USGS Earthquake
Hazards Program [1].
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(f) Java files sourced from Oracle JDK 5.0 [2].

Figure C.3: Maximum return stack and backtrack stack entries required when parsing
files from five benchmarks.
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