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METHOD FOR NONLINEAR MODEL PREDICTIVE CONTROL*
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Abstract. Projected gradient descent denotes a class of iterative methods for solving optimiza-
tion programs. In convex optimization, its computational complexity is relatively low whenever the
projection onto the feasible set is relatively easy to compute. On the other hand, when the problem
is nonconvex, e.g., because of nonlinear equality constraints, the projection becomes hard and thus
impractical. In this paper, we propose a projected gradient method for nonlinear programs that only
requires projections onto the linearization of the nonlinear constraints around the current iterate,
similar to sequential quadratic programming (SQP). The proposed method falls neither into the class
of projected gradient descent approaches, because the projection is not performed onto the original
nonlinear manifold, nor into that of SQP, since second-order information is not used. For nonlinear
smooth optimization problems, we assess local and global convergence to a Karush—Kuhn—Tucker
point of the original problem. Further, we show that nonlinear model predictive control is a promising
application of the proposed method, due to the sparsity of the resulting optimization problem.
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1. Introduction. The projected gradient method is an established approach for
solving convex optimization problems. The subject has been extensively investigated
over the last decades, developing algorithms that guarantee best performance for
convex and strongly convex problems; see [32, 1]. Recently, the Nesterov’s accelerated
gradient method has been applied to linear model predictive control (MPC), and a
priori worst-case bounds for finding a solution with prespecified accuracy have been
derived [31, 40]. When the optimization problem is a general nonlinear program,
the gradient method can still be used for finding a Karush-Kuhn-Tucker (KKT)
point [42]. In particular, for general nonconvex constraints in the form of a nonlinear
manifold, the projection onto the feasible set is performed in two stages. First, the
projection is derived onto the tangent space to the nonlinear manifold, which in general
is a polyhedron. Then, the determined point is projected again onto the original
nonlinear manifold, via some strategy guaranteed to determine a feasible point that
improves the objective function. While ensuring convergence, this second projection
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is in general computationally expensive, hence the method is not recommended in
practice for solving nonlinear MPC problems.

In this paper, we analyze a gradient method for nonlinear programs (NLPs) that
only requires projections onto the tangent space, obtained by linearization of the
nonlinear manifold around the current iterate. Note that this determines a sequence of
points that are not necessarily feasible for the original NLP. Thus, standard projected
gradient method results do not apply to prove convergence.

Linearized constraints are instead considered in sequential quadratic program-
ming (SQP), which is an established method to determine a local solution to a smooth
nonconvex NLP. The solution is determined via a sequence of iterates, each obtained
as the solution to a quadratic program (QP), that are usually called the major it-
erations. In turn, each QP is solved via so-called minor iterations using available
convex optimization methods [35, 41, 2]. Typically, each QP has as objective function
a second-order approximation of the Lagrangian function of the nonlinear problem
and as constraints the linearization of the nonlinear manifold, both computed at the
current iterate. The solution of the QP updates the current iterate, and then the next
QP is formulated.

When considering programs with only equality constraints, the basic SQP method
is equivalent to the Newton’s method applied to the KKT conditions of the original
nonlinear optimization problem; thus it is locally quadratically convergent [43]. Since
the required Hessian of the Lagrangian is expensive to compute and it is not guar-
anteed to be positive definite on every subspace far from the solution, a suitable
approximation of the Hessian of the Lagrangian is typically used, e.g., quasi-Newton
or Broyden—Fletcher—Goldfarb—Shanno (BFGS) updates, that guarantee local super-
linear convergence [5, 3, 7, 33]. Global convergence is usually obtained via a line-search
approach. Merit functions are considered that comprise both the objective and the
constraint functions, e.g., in the form of an augmented Lagrangian [19, 22, 38]. Then
by appropriate tuning of some penalty parameters, the solution to the QP is proven
to be a descent direction for the merit function. A line search then determines a step
size for the convergence of the method. Several contributions in the literature have
discussed different reformulations that trade off theoretical convergence guarantees
and computational complexity; see the review in section 2 [2, 38, 24, 37, 22]. Indeed,
commercial numerical solvers use this technique for approaching a KKT point of an
NLP [21]. An alternative approach for establishing global convergence is the trust-
region method, where additional constraints are included in the optimization program
[2, 12, 45].

The proposed gradient algorithm in this paper can be seen as an incomplete SQP
where, instead of solving each generated QP, only one gradient step is computed
for the QP and then projected onto the linearized constraint. Some literature has
proposed solving the QP program inexactly, e.g., by bounding the suboptimality of
the estimated solution to the QP to recover some rate of convergence for the SQP
[10, 27, 30]. However, our approach does not fall into this class of methods, as only
one gradient step for each QP is in general not enough for reaching the desired level
of suboptimality. Moreover, for these approaches second-order information on the
Lagrangian is necessary, which in contrast is not required for our proposed algorithm.

An approach that is widely considered in the literature is the real-time iteration
(RTI), specifically oriented to MPC applications [13]. It basically yields an approx-
imation to the NLP solution based on the SQP method. Instead of iterating the
solution to the QPs until a KKT point is encountered, only one QP is solved. Further
technical differences concern the computation of the Jacobian matrices—the QPs are
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formed using the Jacobian matrices from the previous time step—and how the initial
state is embedded into the optimization problem. These refinements allow the next
control input to be rapidly calculated before the linearization is found for the up-
coming time step. Suboptimality and closed-loop considerations of RTT are discussed
in [14].

An approach based on a first-order update can be found in [26]. The update is
determined based on a convex combination of all of the previously computed gradient
steps. The approach also works for a nondifferentiable objective function, even though
this needs to be convex and the constraint function affine, thus its linearization is
always feasible. Via duality theory it is also possible to find an equivalence between
our projected gradient and constraint linearization step and the update step in [26].
An alternative method is the successive linear programming, which iteratively solves
linear programs rather than QPs to determine a critical point of a NLP [36]. For
this method though there is not a general convergence theory and the theoretical
guarantees are derived only in the case with only linear constraints.

In this paper we show local and global convergence properties of the proposed gra-
dient algorithm, leveraging established SQP results in the literature. Local conditions
are derived when each gradient step is directly employed to update the current iter-
ate. As in standard gradient method, ensuring convergence of the algorithm requires
that some conditions have to be set on the gradient step size, typically depending
on second-order information of the considered problem—in our case, the Lipschitz
constant of the Lagrangian function. Under a particular assumption on the Hessian,
the algorithm converges with linear rate, as expected for first-order methods for NLPs
[20]. This is guaranteed to work close to a local optimum only. For the practical use
of the algorithm, global convergence is required instead. Since updating the current
iterate with this gradient step might not guarantee convergence, a variable step size
is considered. Analogously to SQP, a merit function in the form of an augmented
Lagrangian function weights the optimality and unfeasibility of the iterates and is
employed in the line search for determining the step size.

Finally, we notice that sparsity considerably reduces the computational complex-
ity of the problem. In particular, we show that nonlinear MPC is particularly well
suited for applying the proposed method, due to the structure of the constraints
generated by causal model dynamics. Similarly to the gradient method for linear
MPC, easy-to-project constraints can be efficiently included in the nonlinear MPC
formulation [40]. Furthermore, in the presence of a quadratic terminal cost and con-
straints that ensure closed-loop stability [29, 6, 9], we show that the projection can be
computed in closed form, making the proposed algorithm computationally efficient.

Preliminary results have been published in [49], where the global convergence of a
similar algorithm employing only primal iterates is proven. In this work, instead, the
combined use of primal and dual variable iterates and other technical improvements
in the considered augmented Lagrangian function reduce considerably the resulting
computational complexity. In [49] the effect of some heuristics is also analyzed, that
yield an interesting speed-up in the computational time specifically for MPC problems.

The remainder of this paper is organized as follows. Given the similarity of the
proposed method to SQP, the standard SQP method is reviewed in section 2. Then,
the proposed algorithm is presented in section 3. In section 4 we show the convergence
of the algorithm, and then in section 5 we discuss the practical implementation for
general problems and nonlinear MPC. Section 6 shows numerical experiments on a
benchmark example.
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2. Iterative methods for nonlinear optimization problems. We consider
the constrained nonlinear optimization problem (NLP)

e
(2.1) sit. g(z) <0,
h(z) =0,

where the functions J : R* — R, g: R* — R™, and h: R®™ — RP? are twice
continuously differentiable functions, possibly nonconvex.
Let us define the Lagrangian function of the NLP in (2.1) as

L(z,Av) = J(2) +g(2) A+ h(2) v,

with Lagrange multiplier vector A € R, and v € RP.

We call z* a critical point of (2.1) if it satisfies the first-order conditions with
strict complementarity [4], i.e., there exist A* € RZ, and v* € R? such that

VL(z*, X, v*) = VJ(2*) + Vg(2*)N\* + Vh(z*)v* =0,
diag(A\*)g(z*) = 0,

) iag(\)g(=")
Af > 0if gj(2*) =0,

h(z*) = 0.

Let us assume that the NLP in (2.1) has a finite number of critical points.

Iterative methods generate a sequence (z(i))z1 (major iterations) to determine
a critical point z*. In subsection 2.1, the state-of-the-art SQP is reviewed [22]. To
generate each z(9), a sequence of minor iterations is required, and each involves solving
a QP. In section 3, we propose an alternative method to determine a critical point
z* by computing major iterations only. At the ith major iteration, zt1 is directly
derived via a projected gradient step onto a linearization of the constraint around the
current iterate z(%).

2.1. Sequential quadratic programming. The SQP method updates the se-

quence (z(i))ieN via the solution of a sequence of QPs. Given the current z(¥, the

method generates the QP

d$) := argmin %dZTH(i)dZ +VJ(z)Td,
(2.3) st g(2%) + Vg(z)Td, <0,
h(z®D) + Vh(z)Td, =0,

where H is either the exact Hessian of the Lagrangian £ of the NLP in (2.1) or

an appropriate approximation. The dual variables /\S)P € RY, and Vgl)) € RP are
associated with the inequality and equality constraints, respectively. The resulting
KKT conditions for the QP in (2.3) are

HOdD + VI (29) + V(D) A& + VR(zD) v} =0,
(2.4) diag()\g)P) (g(z(i)) + Vg(z(i))ng)> — 0,
h(z(i)) + Vh(z(i))'l'd;i) —0.
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Based on the solution d;i) to (2.3), the sequence is updated as
(25) Z(i+1) = Z(Z) —+ t(")dgl)’

where t() € (0,1] is a step size to be determined.

To prove convergence results for the SQP methods, some regularity and bound-
edness assumptions are typically considered [22, Assumptions (i)—(iii)]. Some of these
assumptions will additionally hold throughout the paper, and they will be denoted as
standing assumptions.

Consider a generic optimization problem, indicated in the form of (2.1), a feasible
solution z, and the set of the active inequality constraints as

Tnw(2) = {5 € {1...,m} [ g;(:) = 0}

Then, the vector z is said to be regular if the equality constraint gradients Vh;(z),
for all 4 € 1,...,p, and the active inequality constraints Vg,(z), for all j € Inp(2),
are linearly independent.

Assumption 2.1. The matrices { H() 122, are positive definite, with bounded con-
dition number, and smallest eigenvalue uniformly bounded away from zero, i.e., 3y > 0
such that, for all i € N, dT H@d > ~||d|)3 for all d € R™.

Standing Assumption 2.2. For all ¢ € N, the QP in (2.3) is feasible.

Assumption 2.3. Foralli € N, let IQp(dé“, 2()) denote the index set of the active
inequality constraints in (2.3) parametric in 2(9, i.e.,

Tap(d?,20) = { G € {1,...,m} | g; (=) + Vg, (=) Td =0 }.

s is regular, i.e., the matrix made up of Vi(2(9) along with the columns ng(z(i)),
je IQp(dgl), 2), has full column rank. Strict complementarity holds.
Boundedness and uniqueness of the dual variables )\gig, ug%, in (2.4) then follow.
Standing Assumption 2.4. For all i € N, z(), 2() 4 e Q, for some compact
set 2 C R™.

Standing Assumption 2.5. The functions J, g, h and their first and second deriva-
tives are uniformly bounded in norm in €.

Several choices for the Hessian H(*) have been considered in the literature. By
setting H(®) as the Hessian of the Lagrangian of (2.1) and unit step size, local conver-
gence to the desired z* is achieved with a quadratic rate [23, 43, 44]. Other choices
make the computation of H® less expensive, but deteriorate the convergence speed—
see [7] for an overview of superlinear convergence theorems for SQP methods.

To ensure global convergence to a critical point, step sizes t() # 1 are employed
in SQP, together with a merit function as an augmented Lagrangian:

(26) ﬁaug (Z7 A v, 8, p) = J(Z) + (g(Z) + S)T)‘ + h(z)TV
+ £l9(2) + sl + 5 10(:)]3

where p > 0 is a penalty parameter to be determined and s € R} is a vector of slack
variables, defined at the beginning of each iteration ¢ such that its jth component
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satisfies the following equation [22, equation (2.8)]:
max {0, —g; (") ifp=0,

(@ ._
@7 kA max {0, —g;(2) — A—pj} otherwise.
Whenever p # 0, the vector s in (2.7) yields the value of L,z minimized with respect
to the slack variables only, subject to the nonnegativity constraint, s > 0.

For the design of the dual variables, diverse options are possible, e.g., least square
estimate, dependent on z and on the Jacobian matrices of objective and constraints
[2, 38], or constant estimates [24, 37]. The latter reduces the computational burden
but leads to technical difficulties for proving global convergence.

In this paper, we build upon the approach in [22], where A and v are considered
as additional variables, updated with step size (V) along with the primal sequence
(Z(i))ieN' Specifically, in view of [22], we consider the iterative update

2+ 20 d’
AGHD) A o al?
o (2) A
(2.8) e | = e | g |

where d%*Y is from (2.3), dg\i) = )\8%) -\, d® .— 1/81)3 — v and the slack variation
dgi) satisfies

(29 9(=9) + gz Tdf) + 50+ df9 = .
Then, we define the function ¢ : R — R as
(2.10) O(t) == Lang (2 +tdy, A+ tdy, v + td,, s + tdg, p)

to determine the step size t, e.g., via a backtracking line search starting from ¢t = 1,
that satisfies the Wolfe conditions [12, 34]:

(2.11a) o(t) — ¢(0) < o1t ¢'(0),
(2.11b) |¢'(t)| < —o2¢'(0) or (t=1and ¢'(1) < —02¢'(0))

for some 0 < 01 < 09 < % For ease of notation, we avoid making explicit the
dependence of ¢ on the arguments z, A, v, s of the augmented Lagrangian Layg.

Note that if the derivative ¢/ (0) is negative, then there exists a step size t) € (0, 1]
such that the conditions in (2.11) hold. The condition on the derivative ¢'(0) is
checked numerically at every iteration ¢ € N via the inequality condition

1 ) . .
(2.12) ¢'(0) < —5 (") THD .

If this latter inequality does not hold true, then the parameter p is adjusted. In
particular, there exists a lower bound p € Rx( such that the inequality in (2.12) holds
for all p > p [22, Lemma 4.3].

For the practical implementation, the line search in (2.11) is typically simplified
in order to check only the first condition in (2.11a) [11, 35]. This has the effect of
reducing the computational burden required to compute the derivative ¢'(¢), and it
does not impede convergence of the algorithm in practice. To derive the step size t, a
backtracking line search is employed with safeguarded polynomial interpolation [28].

The SQP steps for the NLP in (2.1) are summarized in Algorithm 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Algorithm 1. sequential quadratic programming,.

INITIALIZE i + 0, 2(0) € R and p(® =0
repeat 4 4
COMPUTE dt as in (2.3) and /\S)P,

it di” =0 then 4 4
SET 2% = 20, \* = /\8%), v = 1/81)D and STOP

1/&)D such that (2.4) holds

else
if i =0 then
SET AO =\, @ = 1)
end if
SET df) = AGp — A, dY) = vl — 0@
end if

DeTERMINE s and d{” from (2.7) and (2.9)
SET p® > 0 such that (2.12) holds
DETERMINE the step size t(?) that satisfies (2.11), e.g., via line search
UPDATE z0FD A (41 [5(i41) a5 in (2.8)
1 1+1
until Convergence
return z*, \* and v*

3. Proposed variant to SQP. The SQP method presented in section 2 requires
the computation of the primal and dual optimal solutions to each of the QPs in (2.3).
Therefore, for all ¢ € N, each QP has to be exactly solved to determine the updates
d, d?, and d”.

In this paper, we propose determining dgl) through one projected gradient step
onto the linearization of the constraints around z(¥, i.e., the feasible set of the QP in
(2.3). This is formalized by

(3.1) A = e <fa(i)VJ(z(i))) ,

with bounded gradient step size oY) € Ry, and Tloa (1) : R* — CY C R™ being the
Euclidean projection onto the set

(3.2) €W .= {d, eR" ‘ g(z) + Vg2 Td, <0, h(zD) + Vh(z)Td, =0 }.

Note that the algorithm step in (3.1) is equivalent to computing only one gradient
step of the QP in (2.3) with null initialization di™:

dD =T | d™ —a® | HO@™ v 7(zD) | | = e (—a“)VJ(z(i))) .
~—~ ~——
=0 =0

In section 4, more detail is given about the choice of a for the convergence of the
algorithm. Note that the projection in (3.1) is equivalent to solving the following
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optimization problem.

, e
d, + aIvJI(z") H2

. 1
() _ oL
dj’ = arg min - oo

st. g(z)+Vg(z)Td, <0,
h(z9) + Vh(z)Td, = 0.

(3.3)

Therefore, there exist dual multipliers )\g) € RY,, I/g) € RP such that

1
a®

(34) ding(A)) (9(=) + Vg (=) Tdf?) =0,
h(z®) + Vh(zD)TdD = 0.

A9 +VJ(zD) + Vg(zAD + Va0 =0,

The dual variables increments then are

d(;) — )\g) YO
d9 =y

— I/G

(3.5)

)

while we define the slack variable s(*) and variation dgi) as in the SQP method, i.e.,
from (2.7) and (2.9), respectively.

Analogously to the SQP method reviewed in subsection 2.1, the augmented La-
grangian function in the form (2.6) is considered. The dual variables are updated
along with the primal variables according to the update equation in (2.8), with step
size t) € (0, 1] defined such that the conditions in (2.11) hold.

We choose the penalty parameter p € R such that the condition

1 2
_ (4)
50 ||

z

(3.6) ¢'(0) <

is satisfied with ¢(-) defined as in (2.10). Later, in Lemma 4.4, we provide a lower
bound p such that (3.6) holds for all p > p.
Our proposed approach is summarized in Algorithm 2.

4. Proof of convergence of the proposed algorithm. In this section, we
show the convergence properties of the proposed approach in Algorithm 2, under
the standing assumptions of the SQP method in subsection 2.1 and the following
assumption that replaces Assumption 2.3.

Assumption 4.1. For all i € N and 2()| let Zg (algi)7 2()) denote the index set of
the active constraints in (3.3), i.e.,

(4.1) Ig(dg), z(i)) = {j e{l,...,m} gj(z(i)) + ng(z(i))ngi) =0 } .

Then dgi) is regular, i.e., the matrix made up of Vh(z(i)) along with the columns
ng(z(i)), Vj e IG(dS), Z(i)), has full column rank. Furthermore, strict complemen-
tarity holds. O

Note that Assumption 4.1 implies that the dual variables (/\8), l/g)) in (3.4) are
bounded and unique. Also note that the problem in (3.3) has the same feasible set as
(2.3), thus by Standing Assumption 2.2, the projection in (3.1) is always feasible.
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Algorithm 2. Variant to SQP.

INITIALIZE i < 0, 2(9 € R™, and p(® =0
repeat 4
CoMmpUTE d) with step size a(¥) as in (3.1)
DETERMINE )\8), ug) such that (3.4) holds

if d’ =0 then _ _
SET 2% = 20, \* = )\8)7 v* = Vg) and STOP

else
if i =0 then
SET A0 = /\(6?)7 v(0) = Vg))
end if
SET d =AY — A0, df) = v§) — v
end if

DeTERMINE () and di” from (2.7) and (2.9)
SET p® > 0 such that (3.6) holds
DETERMINE the step size t(?) that satisfies (2.11), e.g., via line search
UPDATE 20FD A+ (41 [s(41) a5 in (2.8)
11+ 1
until Convergence
return z*, \* and v*

This section is organized as follows: in subsection 4.1, we derive conditions for
local linear convergence (setting ¢ = 1 in (2.11)) under additional assumptions on the
Hessian at the critical point and on the step size a. These conditions are not required
to prove the global convergence of the algorithm in subsection 4.2, albeit for t < 1 the
convergence can be theoretically slower than linear. We finally show that the linear
convergence rate is not precluded close to the solution, since ¢ = 1 is admissible by
the line search in subsection 4.3.

4.1. Local convergence. According to [8, 41], we define the general recursive
algorithm as a method to determine a critical point for the NLP in (2.1) via in-
termediate iterates w(?) = (z(i), @) u(i)), whose update w(tY) is determined as the
KKT triple of a specific optimization problem P(w(). Given the generic optimization
problem,

P(w®): 20tY = argmin J(z,w®)
(4.2) s.t. g(z,w?) <0,
h(z,w®) =0,
the updates \(t1) and v(**1) are the dual variables associated with the KKT condi-
tions for P(w®). Asin [41], and in line with the original NLP in (2.1), we assume that

the functions J, g, and h are twice continuously differentiable in their first argument.
Let us define a KKT triple as w := (z, A, v) and the function
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(43) U (w, ) i= [7y 3(5,0) + 2TV g(z,w®) + 179y Bz, w);
Algl(zv w(i)); s )\mgm(za w(i))§ Ihl(Z, '(U(Z))a R ;]hp(z, w(l)) .

The SQP methods and the proposed algorithm can be recast as general recursive
algorithms of the form in (4.2). Let us first consider the SQP in Algorithm 1. A local
version of this algorithm, which is not guaranteed to converge for any initialization
209 takes step t®) =1 for all i € N.

Tt follows from (2.3) that the update w1 = (204D \C+D) 1,(+1)) associated
with (4.2) is the KKT triple of the problem Pqp(w (l))

(4.4)
. . 1 .
Pop(w®): 20D = argmin 5(2 —2NTHO(z — 20y L V1T (2 - 2)
st. g(zD)+ Vg (z - 29) <o,
h(zD) + V()T (z — 20) = 0.

In fact, since t() = 1, by (2.8) and (3.5), the update of the dual variables is given by

(A(i+1),y(i+1)) (Agij’ (z))

Analogously, if we fix t()) = 1 for all i € N, it follows from (3.3) that the proposed
algorithm determines the update w1 as the KKT triple of the problem Pg (w(i)):
1 . . . .

—_ LNT(, _ @) T (5 — @
2a(i)(z 2V) (2 =2")+VI(EY) (2 —2")
(4.5) st g(2) +Vg(z)T(z - 29) <o,

h(zD) + V()T (z — 20) = 0.

Po(w®): 207D = argmin

Again, by (2.8) and (3.5), the update of the dual variables is ()\(H‘l), V(“‘l)) =
(A vd).

The following result establishes some basic properties of the general recursive
algorithm in (4.2) that will be necessary to establish local and global convergence of
the proposed algorithm.

LEMMA 4.1 (see [41, Theorem 2.1]). Let w € R"™*P and suppose that
(z,A\,7) € R" x R™ x RP is a KKT triple of P(w) from (4.2), at which the first-
order conditions with strict complementarity slackness and linear independence of the
gradients to the active constraints hold.

Then, there exist open neighborhoods W = W (w) and V = V(z,\,7), and a
continuous function Z : W — V, such that Z(w) = (2,\,p) for allw € W, Z(w)
is the unique KKT triple in V of P(w) and the unique zero in V of the function
U ((+), w) in (4.3). Furthermore, if Z(w) =: (z(w), A(w), v(w)), then for eachw € W,
z(w) is a critical point of P(w) at which the first-order KKT conditions are satisfied
with strict complementarity slackness and linear independence of the gradients to the
active constraints. U

Specifically, the same inequality constraints active at z(w) will be active at z(w),
which is in accordance with [41, proof of Theorem 2.1]. However, since we assume
first-order conditions with slack complementarity at z(w), then at z( ) the first-order
conditions will hold with slack complementarity. The existence of the continuous
function Z is guaranteed in our case by the implicit-function theorem, given our
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assumptions that the functions J,g, and h are continuously differentiable and the
fact that the matrix %“;’w) is invertible under the considered linear independence
and strict complementarity assumptions [18, p. 292]. We refer to [48] for a weaker
technical result without the strict complementarity assumption.

As in [2], for the analysis of local convergence, we assume that the correct active
set at z* is known. This is justified by Lemma 4.1, since the proposed algorithm will
eventually identify the active inequality constraint for (2.1). Therefore, we define as
ha(z) = [ga(2); h(2)] the set of active inequality and equality constraints at z* and
indicate with £ := [\, ; v] the corresponding dual variables.

The following result establishes the local convergence properties of the algorithm
and applies SQP arguments to establish linear convergence to a critical point. In fact,
the problem in (4.5) can be seen as an SQP program with Hessian L7 - 0.

THEOREM 4.1. Assume that (2*,£*) is a critical point such that V2L(z*,£*) is
positive definite, and let the initialization z(©) be close enough to z*. Then, there
exist positive step sizes (a'));cy such that the sequence (z(i))ieN defined as in (4.5)
converges to z* with linear rate.

Proof. The proof is similar to [3, proof of Theorem 3.3], albeit the result obtained
is different. For ease of notation, we use no superscript for the iteration ¢ and the
superscript “4” for the iteration 7 + 1.

Then the proposed algorithm has the following update when ¢ = 1:

X =E+de =€+ (&c(2) — &) =& (2)
= (tha(z)TVha(z)) (ha(z) — aVha(2)VJ(2)).

From (2.2), we have the optimal dual variable
& =—(Vha(z")" 4 Vha(z*))_1 (Vha(2*) AV J(2Y)),

where A is any nonsingular matrix that is positive definite on the null space of
Vha(z*)T. In particular, with A = o, the following holds:

Véa(2*) = (aVha(z*) " Vha(z *))’I(Vh( T —aV2J(z%)) — aV2h(z*) VI (2*)
— a (Vha(2") " Vha(z >+V2 a(2)TVha(2")) €)
= (aVha(2*) TVha ()" (Vho(z*) T (I = aV2I(2*)) + aV?ha(2*) T Vha(2*)€*
— o (Vha(z )Tv2 oz )+v2 a(2)TVha(27)) €)
= (aVha(z*) ' Vha(z%)) Vha(z )T (I —aV2J(z%) — aV2ha(2*)€")
= (aVha() T Vha(2%) T Vho(z*)T (I — aV2L(2%, %),
where the first equality follows from (2.2). Thus
(4.6)
£t - € =¢a(2) — €alz") = VEa(z)(z = 2) + O (Ilz = 2”13

= (tha(z*)TVha(z*))_104Vha(z*)T (;I - VQ,C(Z*,g*)) (z — 2940 (Hz - Z*Hg)
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From (3.4), we have the update d, = —aVL(z,£a(2)); therefore,

(4.7)
dt— =2 4d, - 2" =2 — 2" —a(VL(z,€a(2) — VL(2*,£Y))
—_———

=0
+IVEEE (6ot - ) 40 (I - 1)

=z—2 —« (VQL’(Z*,f*)(z —2%) 4+ Vha(2)(&a(z) — f*)) +0 (HZ - Z*Hg)

—a (2= 92260 (-2 Vi 6ol - ) + O (I - 1)

=z—2"—a (V2£(z*7§*)(z —2)

Now, by substituting (4.6) into (4.7),
o =a <<;1 _V2L(, g*)) (2 — 2*) — Vha(2*) (aVha(z*) " Vha(z*) "
V()T (51 V6 ) - ) + 0 I - 1)
— aT(z) (;1 _ v%(z*,g*)) (=) +0 (Il - #I2)
= T(z*) (I = aV2L(4,€") (= ) + O (Il = #'[})
with T(2*) = I — Vha(2*) (Vha(2*) TVha(2*)) "' Vha(z*)T being the orthogonal

projector onto the tangent space to the constraints h,(z*) at z*.
Then by considering the norms of the above quantities we conclude that

7 = 2|, < |76 (T = aV?L(z",€) (2 = )|, + 7 12 = =*13
< (1= V2L &), + 71z = 211y 12 = 21l

=

for all sufficiently large iterations and some v > 0, independent of the iteration.
Here we have used the property of the orthogonal projector ||T'(z*)v|, < [Jv||, for

any vector v. Since V2L(z*,£*) = 0, by choosing o < ),_the term

max eig V2L(z*,£*
||I — aVQE(z*,f*)HQ can be made strictly smaller than 1. Thus, for a sufficiently
small initialization distance Hz(o) — Z*Hz’ we have n < 1, and the sequence (z(i))i

converges at a linear rate due to the contraction mapping theorem.

4.2. Global convergence. Before showing the convergence result of the paper,
some technical lemmas are presented that show the properties of the proposed algo-
rithm. In particular, we will show that a sufficient decrease of the merit function can
be obtained at every iteration whenever we are not at a critical point. This argument
will require some technical lemmas showing boundedness of some quantities and giv-
ing a tuning rule for the penalty parameter p(). We start with the following lemma,
which ensures that the desired algorithm determines the correct active set at a critical
point of (2.1).

LEMMA 4.2. The following properties hold for Algorithm 2:
(1) ||d;z)||2 =0 if and only if 29 is a critical point for (2.1);
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i) there exists € € Ry such that if ||d,||, < &, then the active set g in (4.1) o
ii) th ists € € R h that if ||d,||, < &, then th ti tZg in (4.1
(3.3) coincides with the set of constraints that are active at a critical point z*

for (2.1).

Proof. (i) We first prove that, if ||d( )||2 =0, then 2() is a KKT point for (2.1).
Note that ||d(z)||2 = 0 implies d =0, ie. , that there exist )\(G) and 1/8) such that (3.4)
holds with dg D —0. Therefore, by setting z* = 2, \* = /\(é), and v* = Vg), the KKT
conditions in (2.2) are satisfied. Strict complementarity follows from Assumption 4.1.

Conversely, if () is a critical point for (2.1), then (2.2) holds for z* = 2() A\* =
)\é), and v* = 1/( 9 Now, suppose that the vector d( 2 resulting from the projection

n (3.1) is nonzero, i.e., there exist )\é) € RY, and Z/G € R? such that (3.4) holds for
some d_” # 0, with strict complementarity by Assumption 4.1. On the other hand,
because of (2.2), the KKT conditions in (3.4) hold also for d, = 0, with dual variables
S\g) € RY, and 7, _(1) € RP. This generates a contradiction, because the projection (3.1)

onto the convex set €™, which is nonempty by Standing Assumption 2.2, is unique.
(ii) This result follows from Lemma 4.1 since the proposed method can be rewritten
as a general recursive algorithm in the form of (4.2). |

The following lemma derives a bound for the dual variables A(¥) and v(®).

LEMMA 4.3. For all i € N, it holds that

)

2

H/\(HDH < max
2 7 keo,i]

|

‘V(HI)H < max
2 7 ke[0,i)

k
Vé)HQ'

In addition, Hdg\i)Hg and de,i)Hg are uniformly bounded for all i € N.

Proof. First note that the dual variables )\(é) and z/g) defined in (3.4) are bounded
in norm, since by Assumption 4.1 the active set is linearly independent and strong
duality holds.

Then the proof follows the same argument of [22, Lemma 4.2], where the structure
of (3.5) is exploited. We equivalently define the dual variable for the inequality
constraints as

A0 = 0

(4.8) ; ) 140 (0 /
ACFD = A OB A0y e N

We proceed by induction. The result holds for A(?). Now we assume that the result
holds for A®). Then, since t(*) € (0,1] we have that

e, -
2

(1—¢®) HW

< t(l) ‘/\(Z) 1— t(i) H/\(k) H
= G, + ( )ker[%%_fl] el
<1 M|+ = |
S e e, ¢ )z el
— |

weto 176 2

,» since both /\8) and df\i) are bounded by (3.5).
The proof for the boundedness of the dual variables associated to the equality
constraints is analogous. 0
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The following lemma serves as a tuning rule for the parameter p(*).

LEMMA 4.4. There exists p{*) € R>o such that

1
sup ¢'(0,p) < ——
p=p® 0= =5

2

&

)

2

where ¢ is as in (2.10) and o'V and ds? are from (3.1).
Proof. For a given p € R>, the gradient of L,z in (2.6) is
VJ(z) + Vg(2)A + Vh(z)v + pVg(2)(9(2) + s) + pVh(z) h(z)
9(z) +s
A+p(9(2) +5)
Therefore, using a simplified notation, we have
¢'(0) = d] (VJ+VgA+Vhv +pVg (g+ )+ pVhh)
+d (g+s)+d h+d] (A+p(g+9))
=d;VJ+ (Vg d,+ds)" N+ p(Vg'd, +ds)" (g +s)
+d]Vhw+d (g+s)+d h+p(VhTd,) h
=d)VJ—(g+9) (A=dr) —plg+s) (g+5)
—h'(v—d,) - ph'h,

where the last step follows from (2.9) and the last equation in (3.4), as these imply
that d, satisfies

(4.9a) Vg'd, +ds = —(g+s),
(4.9b) Vh'd, = —h.

By rearranging the first equation in (3.4) and using the definition of Ag and vg we
have

VJ = —édz — Vgie — Vhvg,
which, combined with (4.9a), yields
¢'(0) = —%d;dz —dVgic —d, Vhve —(g+5) (A —dy)
—plg+s) (g+s)—h'(v—d)—ph'h
= ldld A+ (94 9) A6 — (g +5) T~ dy)
—plg+s) (g+s)+hTvg—h"(v—d,)—ph'h.
By (3.5) and the right-hand side of (3.6), we want to prove that

dida +2(g+s) dy—plg+s) (g+s)+2h'd, —ph'h

=d \g +2 [(g—ks)T hT} [Z)‘] —plg+s) (g+s)—ph'h
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for a specific choice of p. Note that d] A\g < 0 because of (2.9) and the complemen-
tarity conditions in (3.4). The determination of p is nontrivial only if

dy

(4.10) 2[(g+S)T hT} ldv

1 2
> — |ldall3;
‘|—2 || ||2

otherwise we can take p = 0. Hence, if (4.10) holds, then we take p such that

2

d g+s dy Al g+s

T 37T

2[(9+5) h}[d”1§2 h 2 ld”] 2_ h 2

This is equivalent to

(4.11) p=2 (L2 ,) /101 0

Therefore, we can define the penalty parameter at the beginning of each iteration
i as follows:

9|

(4.12) p(i) — p(ifl) if qi)/(O,p(i*l)) < _QO}U)

2,
max{p(¥, 2p(~D}  otherwise,

where p() = j as in (4.11) with dy, d,, z, and s evaluated at the current iteration 1.

Remark 4.1. Note that the parameter p(*) can possibly diverge for i — oo, if
there exists an infinite set of iterations {i;}; where the parameter strictly increases.
The statements given next consider this possibility and prove convergence in a general
case.

LEMMA 4.5. Suppose {i1},cy is the set of iterations in which the penalty parameter
p) increases. Then,

. NP
(4.13a) pli0) \dgm <N,
(i1) (i1)
an || 19(z") + s
(4.13b) P [ h(z0) <N,
2

for some N, € Ry.

Proof. The argument of the functions and the index i, are dropped for ease of
notation. In order for the penalty parameter to increase, the conditions in (4.10) must
hold; that is,

1 2 dx g+s dx
— |ld, |5 <2 T BT <2
5 Iz <2 (9 + ) h}M_ . e
2 2
and hence
2
g+s || o 1 lal
L >

) 4o dy
d,
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By substituting this last inequality into the definition of p, we have that

d d ?
9 A A
d, ) d, )
p= < Salt " ol2,
g+s [zl
h
2

and the desired result in (4.13a) holds due to Lemma 4.3. The following relation
proves (4.13b):

(4.14) pH g5 <) g;:s
2 2
d
—o 1LY 2|9;:‘9 4[2*] 0
g+s 2 v 1lle
h
2

The following two lemmas, provided without proofs, give intermediate technical
results that are required for the main results. Their proofs follow the same arguments
in [22] with minor adjustments to reflect the update rule in Algorithm 2.

LEMMA 4.6 (see [22, Lemma 4.6]). Let {i;}ien denote the set of iterations for
which the parameter p™) increases. Then, there exists M € Rsq such that, for all
leN,

i41—1

(4.15) P 3 ‘

=1

t@0dl) ‘oM
2

(]

LEMMA 4.7 ([22, Lemma 4.9]). The step size t) defined according to (2.11)
satisfies ¢(t)) — ¢(0) < o1t/ (0), where o1 < & and t© > &, for some t > 0
independent of i. O

We are now ready to state the main result of the paper, that is, the global con-
vergence of our proposed algorithm.

THEOREM 4.2. Algorithm 2 is such that lim;_, Hd;i)Hg =0.

Proof. The proof is similar to [22, proof of Theorem 4.1]. If Hd;Z)HQ = 0 for a
finite 4, then the algorithm terminates and the statement is true. We assume in the
following that ||dS” || # 0 for all i € N.

If there is no upper bound on p, then the uniform lower bound ¢ > 0 from
Lemma 4.7 and (4.15) implies that, for all § > 0, there exists 1 € N such that
Hdgl) |2 < 6 for all i > 7, which proves the statement.

In the bounded case, there exists a value p and an index ¢ such that p(¥) = j for
all i > i. The proof is then by contradiction. We assume that there exist ¢ > 0 and
i € N such that Hd;l) |2 > ¢ for all i > i. Now, every subsequent iteration must yield a
decrease in the merit function in (2.6) with p = p, since because of (2.11), Lemma 4.4,
and Lemma 4.7, we have

. . 1 _
¢(t(1)) —¢(0) < Ult(l)¢’(0) < _maltEQ <0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/16/18 to 131.180.131.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1984 TORRISI, GRAMMATICO, SMITH, AND MORARI

where the step size a(® > 0 is designed to be bounded. The addition of the slack vari-
able s() in (2.7) can only lead to a further reduction in the merit function. Therefore,
since the merit function with p( = j decreases by at least a fixed quantity at every
iteration, it must be unbounded from below. Since by Lemma 4.3 the dual variables
A9 and v are bounded, the merit function in (2.6) can be unbounded from below
only if the objective, or the constraints functions, are unbounded from below. This
leads to a contradiction, since due to Standing Assumptions 2.4 and 2.5 all the iterates
lie in a region 2, where the objective and constraints functions are bounded in norm.
Therefore, the result follows. a

Finally, we can show convergence of the algorithm of the primal and dual iterates
to a KKT triple of (2.1).

THEOREM 4.3. It holds that the primal and dual iterates in Algorithm 2 converge
to the KKT triple associated to a critical point z* of (2.1). That is,

=0.
2

i—00

— lim HW) O

2 1—>00

= lim Hy(i) —v*

lim Hz(i) -z ,
2 1—00

Proof. The proof follows the line of [22, proofs of Corollary 4.1 and Theorem 4.2].
See Appendix A for the proof details. ]

4.3. Asymptotic linear convergence. In this section we show that step sizes
t = 1 are not precluded by the Wolfe conditions in (2.11) when the iterates are
sufficiently close to the solution. Therefore local convergence at a linear rate (Theo-
rem 4.1) can be recovered. The following standard SQP assumption is considered in
the analysis [22, 38].

Assumption 4.2. For all sufficiently large 4, the following holds:

)
)
)

20 4 d) = (Hz(i) o

AD 4 dlD) — \F = (HW a

V0 £ — = (HV(i) o

] =0 ([],).

This assumption implies that

7 i)

2

)

Hdu)
z 2

@

= i -] o~ -
2 2 2

2

“ »

where the notation “~” indicates that the quantities are of similar order as i ap-
proaches infinity. Note that this assumption may be restrictive, as it implies a faster
convergence (superlinear) than that assessed in Theorem 4.1. However, we observe
that this holds true in some practical situation, in particular if the Hessian of the
Lagrangian at the solution is a multiple of the identity matrix.

Next, we show that the penalty parameter p is bounded.

LEMMA 4.8. If Assumption 4.2 holds, then there exists a finite p such that p® < p
for all i € N.

Proof. The proof follows the same argument as [22, Lemma 5.1]. Assume that
the parameter p is unbounded. Then, by Lemma 4.4, the condition in (4.10) must
hold over an infinite subsequence of iterations. Thus, using simplified notation,
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2
1 el

‘ 4o dy
d,

and in turn, by Assumption 4.2, there exists a constant M such that
2
h ldally _ M

dy dy, 27 4o
dy d,
for all sufficiently large iterations ¢, hence the constraints are bounded from below in

norm. By Lemma 4.5, the penalty parameter p must be bounded over the infinite
subsequence of iterations, contradicting the unboundedness assumption. ]

g+s

>
h =z

2

)

2

g+s

T 4o

2 2

LEMMA 4.9. Under Assumption 4.2, the condition in (2.11b) holds with step size
t =1 for sufficiently large i, i.e.,

¢(1) — $(0) < 01¢/(0),

where 0 < o1 < %

Proof. The proof is similar to [22, Lemma 5.2] and [38, Lemma 4.2]; see Ap-
pendix A for the proof details. ]

LEMMA 4.10. Under Assumption 4.2, the condition in (2.11a) holds with step size
t =1 for sufficiently large i, i.e.,

|6/ (1)] < 02¢/(0)]

where oo < %

Proof. The proof is similar to [22, Lemma 5.3]. See Appendix A for the proof
details. ]

5. Practical implementation. In section 4 we have proven the convergence
of the proposed method for general inequality and equality constrained, smooth, op-
timization problems. On the other hand, it is known that the projected gradient
method is inefficient if the feasible set is a general polytope [1].

In the following, we outline two methods for simplifying the computation of the
projection. In section 5.1 we transform the general nonlinear problem into an equality
constrained problem via squared-slack variables and compute the projection onto the
resulting affine subspace in closed form.

In section 5.2, we apply the method to nonlinear MPC problems with box con-
straints on the input variables and terminal quadratic constraints on the state vari-
ables. As in standard gradient method for linear MPC, by writing (condensing) the
state variables as an explicit function of the input, the equality constraints are directly
embedded into the objective function. Then, the considered constraints are shown to
be easy to project for the proposed algorithm by the introduction of the squared-slack
variables.
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5.1. General optimization problems. The problem in (2.1) can be reformu-
lated as the equality constrained problem

min J(2)
(z,y)ER™ xR™
1
st. g(z)+ B diag(y)y =0
h(z) =0,

hence more generally as

min  J(v)
(5.1) vERmm™
st. pv) =0

with primal variable v := [z;y] and p : R*™™ — R™*? defined as p([z;9]) := [g(2) +
1diag(y) y; h(z)]. Let us define y := [X;v] as the dual variables associated to the
constraints p(v) = 0 (u), g(z) + % diag(y)y = 0 (A), and h(z) = 0 (v), respectively.
The equivalence between (2.1) and (5.1) is shown in technical details in Appendix B.

In Algorithm 2, the primal update d, is computed in (3.1) as a function of the
current v, i.e.,

dV = H{dveRner | Vp(v)Tdy=—p(v)} (—O(VJ(’U)),

where
g(2) + L diag(y) y Vg(z) Vh(z
h(z) diag(y) 0
The projection admits a closed form solution. In fact, we can determine the dual
variable pg := [Ag; V] as the solution of the dual problem [4]:

(5.2) pg = [ij = (avp(v)Tvp(v))*l (p(v) — Vp(v)TaVJ(v))

-1

_|Va(2)"Vg(2)+diag(y)® Vg(z)" Vh(z)
Vh(z)"Vyg(2) Vh(z)TVh(z)

1 59(2)+gqdiag(y)y—Vg(2) TV I(2)
Lh(z) — Vh(z)TVJ(2)

Then, the primal solution is given by

o
dv = ‘| = *OZVJ(’U) — an('U)NJG
_dy
(5.3) _[meVIE)| | Ve VRG] A
0 diag(y) 0 1 Z¢’

_ -*O‘VJ(Z) —aVg(z)Aag — aVh(z)vg

R —adiag(y)Ac ’
and dual increments d,, from (3.5) are d, := [22] = ug — .
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By Assumption 4.1, the matrix Vp(v) can be proven to be full rank; therefore,
the matrix (aVp(v) " Vp(v)) is invertible. For this to hold, the squared-slack variable
initialization, y(*), has to be set different from zero; otherwise y() = 0 for all i. Also
note that by (5.2), the squared-slack variables do not increase the dimension of the
matrix, thus the complexity of the matrix inversion does not increase.

The matrix inversion in (5.2) is commonly obtained via Cholesky factorization,
which for a general dense matrix has a computational complexity of O ((m + p)?’)
floating point operations (FLOPS). Therefore, for the factorization to be efficient, the
sparsity of the gradients Vg and Vh should be exploited. In the following section,
we consider a general nonlinear MPC problem for which the matrix inversion can be
computed symbolically, thus avoiding the Cholesky factorization.

5.2. MPC problems. Sparsity patterns naturally arise in MPC problems, due
to the causality of the dynamics and the structure of the constraints.

Let us consider a typical nonlinear MPC problem with box input constraints and
a quadratic terminal state constraint,

=1 1 1
min Z {:I:,—'C—ka + ugRuk} + —zNPry

(1k+1>“k)k1-v:70 k=0 2 2 2
(5.4) st @py1 = f (@p,ur) Yk € Z[0,N — 1],
uy, € |ag, by] Vk € Z[0,N — 1],

1.7
styPry <c,

where the index k spans the predicted state xx41 and input wy in the horizon N.
The bounds satisfy ar < by € R™ componentwise, ¢ > 0, and @Q,P,R > 0. The
discrete-time dynamics, f, are nonlinear; hence the program in (5.4) is in general
nonconvex.

For ease of notation, let us first define the vectors u := [ug;...;un—_1] for the
control input sequence, with bounds a := [ag;...;ay-1] and b = [bg;...;bn—1]
and the corresponding state evolution x := [z1;...;2n], and stack the state and

input cost matrices @ = blockdiag (@, ...,Q, P) and R = blockdiag (R,...,R). We
recast the dynamics in a compact form as x = 1(u), where for a fixed initial state
xo, the function ¢ : RN™ — R¥™ maps the sequence of inputs u to the predicted
sequence of states x according to the nonlinear dynamics 21 = f(2, ug). Thus, by
including the nonlinear dynamics within the objective and by adding the nonlinear
slacks y.,yp € RV™ and 3. € R as in (5.1), the MPC problem in (5.4) reads as

min 3¢ ()’ Q¢ (u) + JuTRu=: J(u)

W, Yar¥Yb,Yc

1
st. —u+a-+ B diag(ya)ya =0,

1
u—>b+ 3 diag(yn)yn = 0,
%wN(u)TPwN(u) —c+ %yf =0.

This formulation, albeit unusual compared to other approaches when solving non-
linear MPC problems [13, 45], leads to computational advantages for the proposed
Algorithm 2.

The primal and dual variable updates of Algorithm 2 are determined as explained
in subsection 5.1. Note that the matrix inversion in (5.2) can be computed analytically
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offline. In fact, since the gradient of the constraint is Vg(u) = [ —1 | I | q ], where
q € RN™ is the gradient of the terminal constraints with respect to u, the matrix is
inverted as follows:

(Vg(u) " Vg(u) + diag([ya; yv; ve])?)

-1

[ 7+ diag(ya)? I —q
= —I I + diag(yp)? q
—q" q" q"q+y?

D+B+r(Bq)(Bg)"  D-r(Bq)(Adg)"  rBgq
= D —r(Aq)(Bq) T D+ A+7r(Aq)(Aq)T —rAq |,
r(Bg)" —r(Ag)" r

with
. 1 . Ya j
D = diag , A =diag o
<y§,j + b T yg,jyg,) Yaj + b T VeV
1

v, o 2R,
B = dlag 5J , T = a,] 5J q2 + y2
(mtrms) (S b

Under Assumption 4.1, we can guarantee that the denominators in D, A, B are always
nonzero and r is finite. Because of the diagonal structure of A and B, the vectors Agq
and Bq are cheap to compute, and this allows one to compute the matrix multiplica-
tion in (5.2) in only O (Nn,) FLOPS. Moreover, since the terminal constraint in (5.4)
has the same structure of the terminal cost in the objective function, the computation
of ¢ is inexpensive when performed together with the computation of VJ(u).

The primal variable updates d, and the slack updates dy ., dy1,, and dy,. follow
from (5.3). The computation of the gradient of the objective function can also be
done efficiently by exploiting the causality of the nonlinear dynamics, f. Let us define
the following auxiliary functional .J,(u):

N-1
1 1 1
Ja(u) := Z {2x2ka + iu;—Ruk + 01 (f(r, ug) — xk+1)} + §xLPxN,
k=0

with 2, = ¥ (u) and multipliers 6, Vk. Note that, regardless the value of the multi-
pliers, J(u) = J,(u) since Yp41(u) = f(¢r(u), uy). Differentiating J,(u) with respect
to u yields

(5.6)
N—-1 g
;;) {wk )Qxy + (wk(u)F,j + 8—UG2 — vwkﬂ(u)) ekﬂ} + Ru
N-1 N—

0
Z Vwk Ql’k — 0, + Fk 9k+1 Z < Uk Gk) 0k+1 + Ru

k=1
+ Vi (u) (Pzy — 0n) + Vibo(u )(Qwo+Fo 01),
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where the partial derivative % results in a block matrix of zeros for j # k and
the identity otherwise, and the matrices Vi, (u) contain the standard linearization
matrices of the nonlinear dynamics

F, = %(ajk,uk), G = %(xk,uk),
and Vo(u) = 0 because of the causality of the dynamics. By choosing
Oy = Pxy, Op = F 01 + Qup VE € {1,...,N — 1},
then

N-1
VJ() = V() = Ru+ 3 (%GZ) Ops1,
k=0

which can be efficiently determined by backward substitution. For diagonal cost
matrices @, R and full P, the number of FLOPS required to compute the last vector
GA_10n = G} _, Pz is upper bounded by 2(n2+nyn,) FLOPS. By not recomputing
the term 6y, the computation of 8 _1 requires a number of FLOPS upper bounded
by 2(n2 + nyn, + nx) FLOPS. Since every multiplier 6; can be computed from the
successive one and by also considering the term Ru, the computational complexity
of computing the gradient step is O (N(nZ 4+ nxn,)). Since the subsequent steps of
Algorithm 2 to determine p(® from (2.10) and ¢ from (2.11) have lower complexity,
including the computation of the merit function ¢(t) and its derivative ¢'(¢), this is
the resulting complexity of the algorithm. Note that this complexity is comparable to
standard gradient method for linear MPC [40], O ((Nn,)?), and since the Hessian H
never needs to be computed, the complexity depends linearly (instead of quadratically)
on the prediction horizon, N. Further, the complexity of the SQP method depends
on the complexity of the QP solver. The active set method for the presented MPC
problem requires O ((N nu)2) FLOPS [17], while an interior point method exploiting
sparsity of the MPC requires O (N (n2 + n2n,)) FLOPS [16].

The terminal constraint %:UEPx ~ is a level set of a (local) control Lyapunov func-
tion. To ensure recursive feasibility, the control Lyapunov function must be defined
such that there exists a local (constraint admissible) control law such that the level
set is positively invariant. Several classes of control Lyapunov functions have been
considered in the MPC literature, e.g., quadratic in [6]. Such a constraint need not
necessarily act on the terminal state: an alternative formulation such as contractive
MPC, employing quadratic Lyapunov conditions in time steps other than the last
one [9], can be analogously considered. On the other hand, similar to the projected
gradient method for MPC, stage-wise state constraints cannot be efficiently included
in the formulation. In fact, because of the nonlinear dynamics, the state constraints
will turn into nonlinear constraints of all the inputs up to the considered stages. This
makes the matrix inversion in (5.2) no longer analytically computable.

The proposed method applies to a more general class of MPC problems than
that in (5.5). We refer to the open-source software FalcOpt [47] for the automatic
generation of efficient C code interfaced with MATLAB via generated MEX interfaces.
FalcOpt exploits the sparsity of the problem and can be deployed on embedded de-
vices. Note that the matrix inversion is performed analytically, hence consists of
algebraic instructions only.

Finally, we emphasize that, if applied to continuous-time systems, the proposed
method is best suited for nonstiff systems that can be approximated via explicit
methods with a sufficiently small sampling time. For stiff problems that require a
refined integration routine, we refer to [39, 13].
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6. Numerical example: Nonlinear MPC of an inverted pendulum. We
consider an inverted pendulum as a rod of length I = 0.3 m with mass m = 0.2
kg concentrated at the tip and no friction acting on the cart and swing. The mass
of the cart is M = 0.5 kg, and the gravitational acceleration is ¢ = 10 m/s?. The
states r1 and o are respectively the cart position and velocity, and x3 and x4 are the
pendulum angle and angular velocity. The input w is the applied force on the cart,
and it is subject to box constraints. We discretize the continuous-time dynamics

T1 = Z2,
. 2 .
. mgsin xs cos xg — mlzrysinzs + u
T2 = . )
M + msin®(x3)
I.g = T4,

. g . mgsin x3 cos? x3 + u cos 3 — mlx? sin r3 cos w3
T4 = =>sinzg + )
l l (M + msin :vg)

with the explicit Euler method with sampling time Ty = 0.1 s, and hence obtain an
MPC problem of the form (5.4), with model Jacobians computed symbolically. The
desired closed-loop performance is achieved with a prediction horizon of N = 8 and
the cost matrices are @ = diag([10; 0.1; 100; 0.1]) and R = 1. The terminal cost
matrix, P, is determined by the algebraic Riccati equation using linearized dynamics
around the desired equilibrium. The constant ¢ in the terminal constraint is set to
c = 1.5, so that such constraint is active at the first iteration.

The system has two sets of unforced equilibria, the unstable ones [p; 0; 2k; 0] and
the stable ones z = [p; 0; m + 2km; 0], with p € R and k € Z. Physically, the former
correspond to the pendulum in the upright position, while the latter correspond to
the pendulum in the natural upside-down configuration. The goal of the controller is
to stabilize the system around the origin, that is, to the unstable equilibrium, starting
from the stable one at xg := [0; 0; m; 0].

For many nonlinear problems, the RTT yields a sufficiently good approximation
of the nonlinear solution [13]. This consists of solving only one QP in (2.3) at every
time step. For the specific problem considered here, the RTI effectively stabilizes
the pendulum, but its closed-loop cost is much larger than that obtained by a full
nonlinear solution, as shown in Figure 6.1 and Table 6.1, and it has the advantage
of requiring low computational times [15]. Further, the linearization of the terminal
constraint may result to be unfeasible, even though the terminal constraint is feasible
for the original nonlinear problem. Thus, a reformulation with soft constraints is
required.

The nonlinear solution is determined via the proposed method and with the SQP
approach in Algorithm 1, and the computational times obtained are in Table 6.1.
Specifically, the solver SNOPT is used, running in Fortran and interfaced via TOM-
LAB to MATLAB, and the computational time is measured internally by the solver
[21, 25]. We do not observe a significant difference in the computational time with
direct calls to SNOPT. The proposed algorithm has been coded in C, and the time
indicated comprises both the preparation of the problem, i.e., building the Jaco-
bian matrices, and solving the optimization problem. The calculations have been
performed on a commercial off-the-shelf Windows PC with processor Intel Core i7-
3740QM 2.70Ghz. A pure sequential C code was used, compiled by Intel Composer
2016 with the optimization flag /0x enabled.

In the implementation we have noticed that the solver SNOPT requires an overly
long time to solve the first optimization problem. As the level of optimality does

)
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=
o

, Pendulum angle [rad]

Force on the cart [N]
o] (o2} S N o N S o o]

[uN
'
=
o

Fic. 6.1. Swing-up simulation of an inverted pendulum: (a) state dynamics, where the angle
is in blue and the cart position in light green; (b) input: force applied on the cart. The solid lines
show the proposed gradient algorithm solution, and they overlap with those of the SQP solution.
The dash-dot lines show the RTI solution.

TABLE 6.1
Computational times.

Method Avg. time (ms) Best (ms) Worst (ms) Cost
Proposed Algorithm 2.39 0.06 4.15 318
SQP (SNOPT) 9.66* 4.00 370* 318
RTI (FORCES Pro) 0.13 0.10 0.17 527

* The first MPC optimization in SNOPT exceeds the maximum number of
major iterations and is not considered in the average and worst case times.

not reach the desired tolerance, the solver exceeded the maximum number of major
iterations (150) in the first MPC instance, thus requiring more than 1 second for the
solution of the problem. The average and worst case times reported in Table 6.1 for
the SQP solver do not account for this first MPC instance. The problem does not
occur in the proposed algorithm with the same initialization.

The computational times obtained make the proposed algorithm competitive with
the solver SNOPT. The average time is 80% faster than the SQP, while the best and
worst cases are significantly better. Warm starting makes the algorithm particularly
effective when it is initialized close to the optimal solution, as only a few gradient
steps are required for convergence. The proposed algorithm is slower than the RTI
by around one order of magnitude, as the RTT requires only the solution to one QP
at each time step.

Additional benefits in terms of computational speed can be obtained by acceler-
ating the proposed algorithm via a specific heuristic that modifies (3.1). More details
and computational times for a similar example are given in [49].

We remark that the computational benefit yielded by the proposed algorithm is
possible only thanks to the sparsity of the problem, which allows us to compute the
matrix inversion in (5.2) analytically. If this were not the case, the computational
benefit of the proposed method would be lost.
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6.1. Computational considerations. We consider standard convergence con-

ditions to terminate the algorithm. Instead of considering an exact null dgi) as in

Algorithm 2 for terminating the optimization routine, we relax the condition to a
small enough value. Leveraging (3.4), if feasibility of the constraint is achieved, by
bounding appropriately ||d,||, we can equivalently impose that the iterate 2 is a
KKT point for the nonlinear problem with a desired tolerance. Another condition in-
volves the derivative of the augmented Lagrangian function, ¢'(0). By (3.6), setting a
negative lower bound to the derivative ¢’(0) corresponds to checking that the iterate
lld||, is small. As usual in gradient methods, a limit on the maximum number of
iterations is also set. We discuss this last criterion in the considerations listed next.
The theoretical results presented in section 4 show that guarantees on the con-
vergence speed can be derived only when the iterate is close to the solution and the
correct active set is determined, achieving linear rate. In fact, by Theorem 4.1, linear
convergence is achieved via a specific tuning of «, based the maximum eigenvalue of
Hessian of the Lagrangian at the optimum. This would allow for ¢ = 1 as shown in
subsection 4.3. On the other hand, such a value is unknown a priori, and an approxi-
mation based on the Hessian of the current iterate can be overly expensive to compute.
From our numerical experience, we recommend instead to set an « (not necessarily
linked to the problem Lagrangian) and let the line-search variable ¢ become smaller
than 1 in the line search. In fact, this approach achieves a comparable convergence
speed to the linear rate obtained with the specific a of subsection 4.3 and ¢t = 1.
From our numerical experience we also observe that the convergence rate might
be faster than linear when the solution is far from optimality, albeit theoretically
the convergence rate is unknown, and then slow down to linear once it is close to
the optimal point. Figure 6.2 shows, as an example, the KKT optimality, computed
via the iterate norm d,, as a function of the iteration number for a particular MPC
instance. Analogous to standard convex optimization theory, the linear rate factor
depends on second-order information, and, in our case, a large condition number of
the Hessian of the Lagrangian at the solution can yield a slow linear convergence in
practice [1]. This means that most of the iterates might be employed to reach the

10°
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£
& 107
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%
104
10
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# iterations

Fia. 6.2. Level of optimality (derivative of the Lagrangian) as a function of the iteration number
for a particular MPC instance. The desired tolerance is set to 1e—6.
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desired tolerance. In the particular example considered here, we set as a limit 3000
iterations. In our numerical experience, mildly nonlinear problems, e.g., due to poly-
nomial system dynamics, result in a significantly smaller number of total iterations
required for convergence; see [46, sections 7-9] for other applications.

Combining the method with standard SQP would be a convenient solution for a
general purpose solver, since using second-order information once the correct active
set is determined speeds up the convergence rate to superlinear.

Appendix A. Proofs of section 4.

Proof of Theorem 4.3. The convergence of the primal variable z(9 follows in a
straightforward manner from Theorem 4.2 and Lemma 4.2. It also follows from The-

orem 4.2 and Lemma 4.2 that if ||d£i)|\2 = 0, then, by (2.2), (2.8), and (3.4), )\8) = \*
and Vg) = v*, and the algorithm terminates. Thus, we will assume henceforth that
[d$7]]5 # 0 for all i € N. By defining, for all k <i € N,

o 76) if k=1,
Vi,i 1= 7(k) Hjﬂ:k-i-l (1 _ E(m)) otherwise,

with £(0) := 1 and £®) = t(®) the definition in (4.8) implies that
(A1) D = 3 AW
k=0

for all i > 0, because of the initial condition \(9) = )\g)). Then, by Lemma 4.7 we
have

(A.2a) 0<t<i¥ <1 VieN,
(A.2b) Z Vi = 1,
k=0
(A.2¢) i < (L =1k vk <.
Since z(¥) — 2*, the iterates will reach a neighborhood of z* where the problem in

(3.3) identifies the correct active set (Lemma 4.2) and the active constraint will have
full column rank. Assume that the property holds for ¢ > i. From (3.4), the definition

of /\g)7 and Standing Assumption 2.4, for i > i there exists M > 0 such that

(A.3) AD =\ MDDy

with [M®] < M, d9 = max{[|d]|s, ||z* — 29|} and [[v@|], = 1. For any given
€ > 0, Theorem 4.2 implies that i; can be chosen such that for all ¢ > i1, we have

(A.4) IMDd®)| < /2.

Then, we define the iteration index i such that for all ¢ > i, we have

9

(A.5) O T DU e s )
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with Ag being an upper bound to ||)\((§)||2 for all i. Now let i := max{i1,is}. Then,
from (A.1) and (A.3), for all 4 > ¢ we have

i i
AGHD = Z%,Mg) + D e ()\* + M(k)d(k)v(k)) :
k=0 k=i+1

Hence it follows from (A.2b) that

% %
AGHD oy = Z'Yk,i(/\gf) — ) + Z ’Yk,iM(k)d(k)U(k)-
k=0 k=i+1

Since the dual variable )\(Gk ) and v(® are bounded in norm, it follows that

(A.6) Hwn — A

, S (Aa + IA1l,) Z%,i + Z Yii| M*B d®)|.
k=0 k=i+1

For all iterations i > 21, it follows from (A.2a) and (A.2¢) that
Do < (=DTE AT < G+ 1) -0
k=0 k=0 k=0

By using (A.5), we derive the bound (Ag + [|[A*]],) Zi:o Yi,i < 3¢ on the first term
on the right-hand side of (A.6), and to bound the second term in (A.6), we use (A.2b)
and (A.4):

! o1 1
(A.7) g vk,i|M(k)d(k)| < 5¢ E Vi < 3¢
k=i+1 k=i+1

Finally, by combining (A.6) and (A.7), we obtain that for all ¢, there exists i such
that

o

<eVi>2i+1,
2

which implies that lim; e [\ — M|, = 0. The convergence of the dual variables
for the equality constraint is analogous. 0

Proof of Lemma 4.9. By continuity of the second derivative we can derive the
relation between the objective function evaluations,

(A.8)
1 1 1
Je+d) = J(=) + 5VI(E) d, + 5VI(E) T d, + 5d] V2 (2)d, + o (Hdzug)

1 1 1
= J(2)+ 5VI() dy+ 5 (VI(z+dy) - V2J(2)d,) d,+ 54 V2I(2)d,

+o (Il 13)
= J(2) + %(VJ(Z) +VJ(z+4d,)) " d, +o0 (Hdzlli) ;
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and analogously for the constraint functions g and h:
(A9) 0( i) = g(2) + 5(Vg(z) + Volz +d) Tds + o (I]12)
(A.10) h(z+d,) = h(z) + %(Vh(z) +Vh(z+d,)) d, +o (||dZH§) :

By Assumption 4.2 we have that

VJ(z 4 d) = VI(*) + V2I() (2 4+ dy — 2*) + 0 (12 + dy — 2]ly)
= VI + o (ldyly)
A0 ot 4 d) = V) + o (ldall)
Vh(z +dy) = Vh(=*) + 0 (|dy )

hence substituting into (A.8), (A.9), (A.10) we obtain
J(z4d,) = J(2) + %(VJ(Z) +VJ(*) d, 4o (||dzl\§) )
(A12) gz 4d) = 6(2) + 5 (Vg() + Vo) T +0 (I])
Bzt i) = h(z) + 5(Vh(:) + Vh() Tdy + o (ldal3).

Let us use the simplified notation and denote J(z) as J, J(z +d,) as J*, and J(z*)
as J* (and similarly for g and h and their gradients). By (2.8), (2.9), and (3.5), ¢(0)
and ¢(1) are
o(0) =T+ A" (g+s)+v h+ %p(g +35) (g +s)+ %phTh,
6(1) = J* 428 (9" — g VgTd) +vin*
+ %p (6" —9-Vg"d) (g —g—Vg'd,) + %ph”fﬁ
=Tt 40 (g -9 - VgTd) + vkt +o (dl3)
where the last step follows by (3.1) and Taylor’s expansions:
9" —9-Vg'd=0(ldl,),
ht = @ﬂ/fﬁ_dzﬁO(HdzHg) = o (lldell,) -
=0(3.1)

By (A.12), ¢(1) can be written as
1 1
o(1) = J +5(VJ + vJ*)'d, + EAE (Vg* —Vg)d,
T 1 *\\ T 2
+vg | h+ 5(Vh + Vi) 'd, | +o (HdzH2> .
This implies

(A.13)
#(1) — ¢(0) = %(VJ +VJ*)d, + 1/\g (Vg* =Vg) d,— AT (g+s)—v'h

. 1 1
08 (e 5O04 900 Ta,) = Jpllg+ sl = S 0IE +o (14.18)
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By Lemma 4.4, the derivative ¢’(0) can be recast as
¢0)=d VI —2(g+s)A\= (Vg d,+do) Aa —pllg+ 5|5 —2nTv+hTug
2
—pllinl,
which when substituted in (A.13) yields

1 1 1
6(1) = 6(0) = 56/(0) + 5 (VJ" + Vg Ao + Vhva) d, + 57de +0 (,3)

Next we note that Assumption 4.2 implies specific conditions on the convergence of
the variables Aq and vg. That is,

(A14) )\G - /\* — d>\ =+ A— )\: = O(”)\ _ )\*||2) = 0(||d>\H2) = O(Hdz||2)’
v = v = o(ldl,)

Therefore, by using the KKT conditions in (2.2) we have
VJ(z") + Vg(z")Aa + Vh(z")vg = VJ(z") + Vg(z*)A\* + Vh(z")v*
+Vg(z") (Aa = A") + VA(z") (va —v") = o ([|del,) -

Since )\gds < 0 (where equality holds when the correct active set is identified; see the
proof of Lemma 4.10),

1 1 1
B(1) = 6(0) < 50/(0) + 57Eds +0 (d,]13) < 50'0) +o (1d13)

To prove that eventually ¢(1) — ¢(0) — 01¢'(0) < 0 with o1 € (0,1/2), from the
previous inequality we have that

6(1) = 6(0) — 71 (0) < (;—al)@+o(||dz||§) <0

—— <0
>0

for all sufficiently large ¢, since by Lemma 4.4 the term ¢’(0) is upper bounded by a
negative term proportional to HCZZHE7 and the term 0(||dZ||§) vanishes at least quadrat-
ically fast as ¢ approaches infinity. ]

Proof of Lemma 4.10. Let us use the simplified notation and denote J(z) as J,
J(z+d,) as JT, and J(2*) as J* (and similarly for g and h and their gradients).
By definition, the derivative ¢'(1) is

¢ (1) =d, (VJIT +Vg*rc+Vhtvg +pVg" (97 —g—Vg'd,) +pVhth')
+d\ (g7 —g—Vg'd)+d hT +d] Aa+plg" —g—Vg'd,)),
and by (A.11) we have
¢'(1) = d) (VJ* +Vg* g + Vh*vg) + pd) Vgt (47 —g—Vg'd,)
+d] (o +plg" —9-VgTd) +o(l4l3)

where we have used the fourth condition in Assumption 4.2 and the following relations
resulting from (3.1) and Taylor expansions:

9" —9-Vg'dy=o(ldsl,), B =h+Vh'd,+o(lldsly) = 0 (ldall,) -

=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/16/18 to 131.180.131.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

GRADIENT & CONSTRAINT LINEARIZATION METHOD IN NMPC 1997
Moreover, by (2.9) dy = —Vg'd, — (g + s); hence,
¢(1) =d, (VJ*+Vg*Ac + Vh*ve) +d] Ag
+p(d] (Vg" = V)~ (g+5)7) (g% — 9~ Vg"d) +o(ldl3)

From (2.7) and Assumption 4.2, ||g + s||, = O (||d,||,) and d] Ag = 0 when the correct
active set is determined; see Lemma 4.2. In fact, if g; < 0 for some j at z* then
Ag,; = 0. Then, if p =0, s; = —g;. Otherwise, if p > 0, as A; converges to A7 =0,
for sufficiently large iterates ¢ we have that 0 < A; < —pg;. Then, by (2.7) we have

Aj A ATA
s5j=—g;j—— = gj+ts=—"=——""—==0(|d,[,)-
j it its = 5 (lldxll2)
If g;j = 0, then s; = 0 and Ag,; > 0 by Assumption 4.1. By the complementarity
conditions in (3.4) and (2.7) it results that Aq ;(sj+ds ;) = 0, thus ds ; = 0. Therefore,
in any case we conclude that

(A.15) IP(d] (Vg™ = Vg) = (9+9) (57— 9= Vg d,) | =0 (I,]3)

Since by Assumption 4.2 the quantity VJ*+Vg*Aq+Vh*vg is o(||d,]],), then ¢'(1) =
o(||d,||3)- By Lemma 4.4, |¢/(0)| > 5= [|d,||3; thus (2.11b) will eventually be satisfied
at every iteration. 0

Appendix B. Equivalence of the squared-slack problem. The following
statement shows the equivalence properties between problems (2.1) and (5.1).

LEMMA B.1 (see [43, Proposition 1], [1, section 3.3.2]). The following hold:
(i) 2* is a regular solution to (2.1) if and only if [2*;y*] is a regular solution to
(5.1);

(ii) of (z*, A%, v*) is a KKT triple for (2.1), then ([z*;y*],[\;v*]) is a KKT
double for (5.1);

(iii) of ([*;9*], [N\;v7*]) is a KKT double for (5.1) and A* > 0, then (z*, \*,v*) is
a KKT triple for (2.1).

Note that by the feasibility of the optimal solution to (5.1), y* is such that y; =
(—2g; (z*))l/2 for all j € {1,...,m}.

For the proof of part (iii), it is necessary to assume A* > 0; in fact, the first-order
conditions for (5.1) may in principle have negative dual variables A\* associated with
the squared-slack equality constraints. Note that the first-order conditions, derived
with respect to y, already guarantee complementarity slackness, i.e., A7 = 0 for all
indexes j of the active inequality constraints at z* for (2.1).

The following lemma shows that the assumption A\* > 0 of part (iii) can be
dropped if the solution [z*;y*] is a local minimum.

LEMMA B.2. If [2*;y*] is a local minimum of (5.1) with dual variables [\*;v*],
then (2*, \*,v*) is a KKT triple for (2.1).

Proof. By the second-order necessary condition for (5.1), we have

|=0

(B.1) [f ng]

V2, L(z%, A%, v¥) 0 1 l

z
0 diag(\) | |9
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for all Z € R™, § € R™ such that
(B.2) Vh(z*)"z =0, Vg;(2*) 2+ y;y; =0 forall je{l,...,m}. O

Let j be the index of an arbitrary active constraint of z*. We can choose z = 0,

with g; # 0, and g = 0 for all k # j. Therefore, by (B.1), we obtain \¥ g7 > 0,
thus AY > 0. By the complementarity slackness, implied by the first-order conditions
derived with respect to y, we conclude that A* > 0. The result then follows from
Lemma B.1, part (iii).

Acknowledgment. We thank the anonymous reviewer for suggesting the use

of the adjoint functional J,(u) to compute in a compact form the derivative of the
objective function for the MPC problems.
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