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Abstract
The high susceptibility of ultrathin two-dimensional (2D) material resonators to force and
temperature makes them ideal systems for sensing applications and exploring thermomechanical
coupling. Although the dynamics of these systems at high stress has been thoroughly investigated,
their behavior near the buckling transition has received less attention. Here, we demonstrate that
the force sensitivity and frequency tunability of 2D material resonators are significantly enhanced
near the buckling bifurcation. This bifurcation is triggered by compressive displacement that we
induce via thermal expansion of the devices, while measuring their dynamics via an
optomechanical technique. We understand the frequency tuning of the devices through a
mechanical buckling model, which allows to extract the central deflection and boundary
compressive displacement of the membrane. Surprisingly, we obtain a remarkable enhancement of
up to 14× the vibration amplitude attributed to a very low stiffness of the membrane at the
buckling transition, as well as a high frequency tunability by temperature of more than 4.02% K−1.
The presented results provide insights into the effects of buckling on the dynamics of free-standing
2D materials and thereby open up opportunities for the realization of 2D resonant sensors with
buckling-enhanced sensitivity.

1. Introduction

A flat mechanical plate subjected to a sufficiently high
in-plane compressive stress becomes unstable, as its
out-of-plane stiffness gradually reduces to zero [1].
When this happens, the plate experiences a buck-
ling bifurcation. Even the slightest imperfection in
the device, like a very small initial deformation, can
determinewhether the plate buckles up or downward.
This high sensitivity to initial conditions offers excit-
ing prospects, both for studying material properties
[2–4] and for realizing new sensing applications [5].
Therefore there has been a growing interest for buck-
ling in nano-electromechanical systems (NEMS) and
resonators such as phononic waveguides [6], carbon
nanotubes [7] and SiNx drumheads [8], showing

reversible control of signal transmission, high sensit-
ive switching, as well as remarkable nonlinear effects
and high tunability of resonance frequencies. These
properties of buckled resonatorsmake themvery suit-
able for applications as actuators, sensors, and energy
harvesters [9, 10].

Nanomechanical resonators made of free-
standing 2D materials are stiff within the plane, due
to their high Young’s modulus, but extremely flex-
ible out-of-plane due to their atomic thickness [11–
13]. As a result, free-standing 2D materials buckle at
relatively low compressive stress values and thereby
present an ideal platform for studying the buckling
bifurcation in nanoscale systems. In fact, the buckling
bifurcation provides a sensitive method to determine
the bending rigidity of 2Dmaterials [2, 14]. However,
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Table 1. Characteristics of the fabricated devices including radius R, thickness h, Young’s modulus E, Poisson ratio ν, mass density ρ,
initial resonance frequency f0(T0), temperature at turning point Tt , resonance frequency at turning point ft, central deflection without
boundary displacement loading zfree, initial displacement U0, and pre-strain ϵ0. D1 and D2 are from the same nanoflake (see figure 1(a).

R (µm) h (nm) E (GPa) f0(T0) (MHz) Tt (K)

D1 4 33.9 69.9 5.89 302.0
D2 4 33.9 70.3 5.52 303.0
D3 3 34.5 93.1 11.18 307.5

ft (MHz) zfree (nm) U0 (nm) ϵ0 × 10−5

D1 5.53 20.1 0.08 1.84
D2 3.97 6.2 0.08 1.99
D3 6.89 4.3 0.04 1.32

most of thework on 2DNEMS resonators has focused
on flat 2D mechanical resonators under tensile stress,
because these can be more reproducibly fabricated
[15, 16]. Moreover, the experimental detection of the
buckling bifurcation in 2D NEMS remains difficult,
as it requires a methodology to induce symmetric in-
plane compression in suspended 2D materials while
measuring their mechanical motion with high spatial
resolution.

In this work, we study the effect of the buck-
ling bifurcation on the dynamics of optothermally
driven nanomechanical resonators made of FePS3
membranes. By varying temperature, the mem-
branes expand, causing a compressive displacement
that triggers the membranes to deflect out-of-plane.
Interestingly, this buckling bifurcation does not only
cause a large change in the temperature-dependent
resonance frequency, but also gives rise to a signific-
ant enhancement of vibration amplitude of the res-
onators when driven on-resonance. To account for
these observations and relate them to the device para-
meters, we fit a mechanical buckling model to the
experiments that quantifies centralmembrane deflec-
tion and boundary compressive displacement of the
membrane. Based on themodel we attribute the force
response to a significantly reduced out-of-plane stiff-
ness at buckling transition. The large frequency tun-
ing and high responsivity to forces of 2D resonat-
ors near the buckling bifurcation might be utilized
to enhance sensitivity in future designs of 2D NEMS
devices like microphones and pressure sensors.

2. Fabrication andmethodology

We fabricated 2D nanomechanical resonators by
transferring exfoliated 2D flakes over etched circu-
lar cavities with a depth of dp = 285 nm and varying
radius R in a Si/SiO2 substrate (Methods). In total, we
made three FePS3 devices D1−D3. Figure 1(a) shows
a schematic cross-section and a top view (optical
microscope) of the fabricated devices D1 and D2
with R= 4 µm. Using tapping mode atomic force
microscopy (AFM), we measure the height difference

between the membrane and the Si/SiO2 substrate.
As figure 1(b) shows, we find a membrane thickness
h of 33.9 nm for devices D1 and D2. To determine
the Young’s modulus E of the resonators, we indent
the membrane centre by an AFM cantilever while
measuring its deflection [17]. We fit the applied force
F versus indentation δ, as depicted in figure 1(c)
(orange points), to a model for point-force loading
of a circular plate given by F= ( 16πD

R2 δ)+ n0πδ+

Ehq3( δ
3

R2 ), where D= Eh3/(12(1− ν2)) is the bend-
ing rigidity of the membrane, ν is Poisson ratio, n0 =
Ehϵ0/(1− ν) is the pre-tension in the membrane,
and ϵ0 is the built-in strain. From the fit (black line,
figure 1(c) we extract E= 69.9 GPa for device D1. The
AFM measurements on devices D2 and D3 can be
found in SI section 3. The extracted Young’s moduli
of all devices are listed in table 1 and are similar to
values reported in the literature [18].

To probe the thermodynamic properties of the
fabricated devices, we use a laser interferometer (see
methods) [19, 20]. As shown in figure 1(d), we place
the samples in a vacuum chamber with a pressure
below 10−5mbar during themeasurements. A power-
modulated diode laser (λ= 405 nm) photothermally
actuates the resonator, while the reflection of a He-
Ne laser (λ= 632 nm) from the cavity with the sus-
pended membrane captures its motion. The reflec-
tion is measured by a photodetector (PD) and pro-
cessed by a Vector Network Analyzer (VNA) and then
converted to the response amplitude |zf| of the res-
onator in the frequency domain. Figure 1(e) shows
the measured frequency response around the funda-
mental resonance (green points) and a fit to a har-
monic oscillator model (black line), given by |zf|=

Aresf
2
0

Q
√

( f 20−f 2)2+( f0f/Q)
2
, where f 0 is resonance frequency,

Ares is the vibration amplitude at resonance and Q
is quality factor. Here, we extract f0 = 5.57 MHz,
Q= 195.93 and Ares = 1.64 VV−1 for device D1.
We will now outline how the characteristics of the
resonance frequency (f 0 and Ares) can be used to
provide information about the temperature depend-
ent properties of 2Dmaterial resonators, in particular
near the buckling bifurcation.
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Figure 1. Sample characterization and optomechanical measurement. (a) Top, cross-section of a FePS3 membrane suspended on
the substrate with etched cavities. Bottom, optical images of the fabricated devices D1 and D2. Scale bar is 15 µm. (b) Height
histogram of the substrate (red), as well as FePS3 membrane (cyan), measured by AFM. Insert, AFM scanning image on the
boundary of FePS3 flake. (c) AFM indentation results for device D1 (orange points), where the Young’s modulus E of the
membrane is extracted by fitting the measured force F to the cantilever deflection δ (black line). (d) Intereferometry setup, where
the chip is fixed inside a vacuum chamber (VC). VNA, vector network analyzer; PBS, polarized beam splitter; PD, photo diode;
DM, dichroic mirror. (e) Measured signal |zf| around fundamental resonance mode (green points), which is fitted with a
harmonic oscillator model to extract the resonance frequency f 0, quality factor Q and the vibration amplitude Ares (black line).

3. Results and discussion

Figure 2(a) shows the measured |zf| as a function of
actuation frequency and temperature (in the range
from 300 to 316 K) for device D1. Interestingly, the
resonance frequencies, including fundamental mode
(indicated by the blue arrows) and secondmode, first
decrease and then increase as temperature increases,
with a turning point at temperature Tt = 302 K (see
figure 2(b). Similarly, the measured vibration amp-
litude Ares for device D1 also reaches to its max-
imum at Tt (see figure 2(c). These behaviors are also
experimentally observed in devices D2 and D3 (see
SI section 3). We attribute the turning of f 0 versus
T to the mechanical buckling of the nanomechan-
ical resonators under critical compressive loading,

which has been reported before in carbon nanotube
resonators [7] and arch MEMS devices [21]. In fact,
the bulk thermal expansion coefficients (TEC), αm,
of the measured FePS3 membranes in this work is
much larger than the TECαSi of the Si/SiO2 substrate.
Hence, heating induces compressive displacement in
the resonators and buckling is a natural consequence.

Due to the buckling, we cannot use the stand-
ard equation for the resonance frequency of a pre-
tensioned plate or membrane for further analysis.
Therefore, we use a mechanical buckling model for
clamped circular plate, as illustrated in figure 2(d).
Using a Galerkin method from literature [22, 23], we
obtain an expression of f 0 under thermally induced
compressive displacement:

f0 (T) =
10.33h

πd2

√
E

3ρ(1− ν2)

(
1+β (1− ν2)

3z2 − z2free
h2

+
3

8
(1+ ν)

Ud

h2

)
, (1)

where U is the in-plane edge displacement of the
plate, ρ is the mass density, z is the central deflec-
tion of the plate, zfree is the central deflection of
free plate without loading (when U = 0), and β is
a fitting constant and equal to 0.52 when ν= 0.304

(see SI section 1). Both U and z depend on tem-
perature T. The details of derivation of equation (1)
can be found in SI section 1. In contrast to the
standard equation for the resonance frequency of a
pre-bending plate [24], we now find that not only

3



2D Mater. 11 (2024) 025028 H Liu et al

Figure 2. Thermally induced buckling in 2D nanomechanical resonator. (a) Mechanical response |zf| of device D1 as the function
of frequency f and temperature T. The fundamental resonance frequency f 0 first decreases and then increases with increasing T
(blue arrows). (b) f 0 versus T (red points). The minimum in f 0 is indicative of the temperature Tt at around 302 K. Drawn line, f 0
versus T fitted with the mechanical buckling model to the measurement, using αm = 1.1× 10−5 K−1. The deviation at high T
indicates that αm is T-dependent. (c) Vibration amplitude Ares at resonance and quality factor Q as a function of T for device D1,
respectively. (d) Mechanical buckling illustration for a clamped circular membrane, where a boundary compressive displacement
U causes a central deflection z of the membrane. (e) z versus U in the membrane estimated by equation (2). Lines, results under
different values of free deflection zfree of the membrane. Dotted line, supercritical bifurcation at the critical buckling load when
zfree = 5 nm. (f) f 0 of the resonator versus U. Black dots, resonance frequency ft at the turning point.

the bending rigidity determine f0(T), but also the
thermally-induced boundary displacementU and the
center deflection z of the membrane.

To find the relation betweenU and z, we consider
a uniformly-clamped plate as depicted in figure 2(d).
By studying the static state of the plate using Gakerkin
method (see more details in SI section 1), we obtain
an analytic solution:

32

3

(
1− zfree

z

)
− 10.7β

(
1− ν2

)( z2free − z2

h2

)
+ 4(1+ ν)

Ud

h2
= 0. (2)

Therefore, the change of central deflection z of the
plate versus U as buckling happens can be extrac-
ted from equation (2). We further use COMSOL sim-
ulation method to obtain z and f 0 as the function
of U, showing good agreements with the analytical
solution obtained from equations (1) and (2) (see
figure S2). By substituting the parameters R= 4 µm,
E= 69.9 GPa, h= 33.9 nm, ρ= 3.375 gcm−3 and
ν= 0.304 into equation (2), we can evaluate z as
a function of U for different zfree. As plotted in
figure 2(e), z gradually increases with increasing U.
The dotted black line in figure 2(e) represents a super-
critical bifurcation at the critical buckling load when
zfree = 5 nm. This physically indicates an unstable
equilibrium that the plate will either buckle up or

down when it is slightly perturbed. For nonzero zfree
in this work, the 2D membrane always buckles in the
direction of its pre-deflection.

In order to investigate the effect of buckling on
the resonance frequency f 0, we substitute the rela-
tion between z and U into equation (1). This res-
ults in a relation between f 0 and zfree, as plotted in
figure 2(f). When decreasing the displacement U by
compression, f 0 reduces to aminimal value (the turn-
ing point) and then starts to increase. At this turn-
ing point, the minimum resonance frequency ft of the
resonator is reached (marked as dots in figure 2(f).
Both the experimental curves in figure 2(a) and the
theoretical curves in figure 2(f) clearly show this
frequency minimum, which we take as qualitative
evidence for the occurrence of buckling in the 2D
resonators.

Let us now quantifyU and z as a function of T for
device D1, using a model that follows the flow chart
depicted in figure 3(a). First, we need to determine
the value of zfree in the mechanical buckling model.
For this, we use the specific feature in the measured
f 0 versus T data, which is df0

dT |T=Tt = 0 at the turning
point (figure 2(b)). Assuming the Young’s modulus
of themembrane remains constant within the probed
temperature range [25], zfree can be determined by ft
(see derivation in SI section 2). Here, using the para-
meters in table 1 and the measured value of ft(Tt) =
5.53 MHz, we extract zfree = 20.1 nm for device D1.

4
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Figure 3. Change in boundary displacement and central deflection of device D1. (a) Flow chart of the mechanical buckling
model, which allows to extract the boundary displacement U and central deflection z of the membranes as the function of
temperature T. (b) U versus T. Orange line, the result obtained from mechanical buckling model; black lines, calculation with
fixed values of TEC αm. (c) z versus T. Orange line, the result obtained from mechanical buckling model; points, measurement by
white light interferometry. (d) Top, images of FePS3 flake under white light interferometry. Bottom, surface profile of the
membrane as T increases (corresponding to the black arrow in top insert).

By substituting the obtained zfree into
equations (1) and (2), we further extract U and z
as a function of T from the measured f 0 at each
temperature for device D1. In figure 3(b), we observe
that the compressive displacement U becomes more
than 10 times larger than its initial tensile value
U0 = 0.08 nm (table 1) by heating the membrane
by only 16 K. To validate the extracted U(T), we
determine the TEC αm of the membrane. Using
the TEC of the substrate αSi, we can use the rela-
tion 1

R
dU
dT =−(αm −αSi) to determine αm [18]. We

thus fit this relation to the obtained ϵ as shown in
figure 3(c) (orange line) and find αm is approxim-
ately 1.1× 10−5 K−1, which is in good agreement
with values reported in the literature for FePS3[18,
26]. The fitting deviation for f0(T) in figure 2(b) is
thus attributed to the temperature dependence of αm

of FePS3, or the irregular deflection of the membrane
as buckling happens.

To experimentally validate the extracted z(T)
from the bucklingmodel in figure 3(c), we use a white
light interferometer to image the surface profile of the
suspended FePS3 membranes as a function of tem-
perature. As shown in figure 3(d), we observe from
the height profiles (black arrows, top panel) that the
membrane deformation increases as T goes up (bot-
tom panel). As a measure for z(T), we take the dif-
ference between the maximum and minimum height
for two height profiles and take the average value. As
plotted in figure 3(c), the extracted z(T) (points) for
device D1 quantitatively matches the estimated z(T)
(orange line), which confirms that device D1 exhibits

mechanical buckling. In addition, the total strain in
the FePS3 membrane also changes from the initial
tensile strain to a strong compressive strain. From
the obtained U0 = 0.08 nm and zfree = 20.1 nm, we
extract the initial strain ϵ0 = 1.84× 10−5 for device
D1 using equation (S26) and the relation Nr =

Ehϵ
1−ν .

All obtained ϵ0 for devices D1 to D3 are listed in
table 1.

We now focus on the vibration amplitude of the
fundamental mode of the membrane. As shown in
figure 2(c), we observe a remarkable enhancement
of up to 14× the vibration amplitude Ares at the
turning point Tt = 302 K. This is attributed to the
reduction of out-of-plane stiffness, keff =meff(2π f0)2,
of the membrane near the buckling transition.
Furthermore, we also find the thermally induced
buckling in devices D2 and D3 during optomechan-
ical measurements (see SI section 3). We quantify the
frequency turning of these devices with the mechan-
ical buckling model, and extract their z0, ϵ0 and ϵt
as listed in table 1. Similar to what was observed for
device D1 (figure 2(c)), Ares for devices D2 and D3
also showmore than 14 times enhancements near the
buckling transition (figure S6). However, although
the quality factor Q(T) reaches to its maximum at
turning point for device D1, we observe completely
different results ofQ(T) for devices D2 and D3. Since
Q is related to the TEC and thermal properties of 2D
materials [27], it is of interest to investigate the T-
tuning Q of buckled 2D resonators in future work.

The implications of the observed phenom-
ena extend beyond FePS3 resonators. Even for 2D

5
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materials with a negative TEC such as graphene,
buckling might occur if it is cooled down and the
initial tensile stress is low enough. A key assumption
in equations (1) and (2) is a uniform compressive
force at the boundary of the membrane and a con-
stant Young’s modulus over the measured temperat-
ure range. In reality, inhomogeneities due to uneven
adhesion between membrane and substrate could
lead to multiple smaller corrugations and wrinkles
superimposed in the membrane when buckling
occurs. This potential limitation, which we did not
observe for the devices studied in this work, deserves
future study as the buckled mode shape as well as the
Young’s modulus depend on it [28, 29]. Possibly, the
experimental quantification of the Young’s modulus
for each device with AFM, as we did in figure 1(c),
compensates for some of the effects of corrugations
and wrinkles on the buckling bifurcation.

Despite the fact that the temperature-dependence
of resonance frequency has been investigated in
earlier works on 2Dmembranes [30–32], mechanical
buckling has not been reported yet. It seems that one
study onMoS2 resonators might have almost reached
the buckling point ( df0dT → 0) at around 373 K [30].
In this work it was relatively straightforward to reach
the buckling bifurcation due to the large TECs of the
selected 2D materials. It is of interest to speculate on
the ultimate limits of buckling induced resonance fre-
quency decrease. As indicated in figure 2(d), theoret-
ically it might be possible to have the resonance fre-
quency approaching zero for a deflection zfree = 0 nm.
However, in practice it will be difficult to reach that
point. Nevertheless, by making the membranes flat-
ter and with low pre-stress, the zero resonance fre-
quency might be approached, which allows for an
extremely high tunability and therefore a high force,
stress and temperature sensitivity of f 0 near the min-
imum ft. For such flat and low stress membranes, we
expect the bending rigidity of 2Dmaterials to domin-
ate the performance and resonance frequency versus
temperature curve near the buckling bifurcation
point.

Also from an application perspective, the
thermally induced buckling in 2D nanomechanical
resonators deserves further exploration. First, the fre-
quency tuning with temperature is considerable. As
shown in figure 4, we obtain a tunability,∆f0/( ft∆T),
more than 4.02% K−1 for device D1, which is at least
2.3 times higher than reported in earlier studies [30,
31, 33]. The slope of frequency tuning for device D1
is ∆f0/(∆T) = 194.3 kHzK−1, which, when consid-
ering an accuracy of 1 kHz in determining f 0, results
in a temperature resolution of 5.1mK. This value is
comparable to state-of-the-art temperature sensors
[34] and thus highlights the application buckled 2D
resonators as bolometer [35] and NEMS resonant
infrared detector [36]. Furthermore, precise con-
trol over the buckling bifurcation can be obtained
by tailoring the initial deflection of the membrane

Figure 4. Frequency tunability by varying temperature for
2D nanomechanical resonators.

by applying, among others, electrostatic gating on
the resonators [12], a gas pressure difference [37], or
straining the resonators by MEMS actuators [38].

4. Conclusion

In summary, we reported the experimental observa-
tion of thermally-induced buckling in 2D nanomech-
anical resonators made of suspended FePS3 mem-
branes. Using an optomechanical method, we probed
their dynamic responses as a function of temperat-
ure. A mechanical buckling model was developed to
explain the observed large turning of the resonance
frequency with temperature, which allows to determ-
ine the boundary compressive displacement and cen-
ter deflection of the fabricated devices. Using white
light interferometer, we independently validated the
extracted deflection of the membrane versus temper-
ature from buckling model. We found an enhance-
ment of up to 14× vibration amplitude near buck-
ling bifurcation, which we attributed to the decrease
in out-of-plane stiffness of themembrane. The gained
insight not only advances the fundamental under-
standing of buckling bifurcationmembranes made of
2Dmaterials, but also enables pathways for buckling-
enhanced designs and applications such as temperat-
ure detectors, thermoelectric and NEMS devices.

5. Methods

Sample Fabrication. A Si wafer with 285 nm dry
SiO2 is spin coated with positive e-beam resist and
exposed by electron-beam lithography. Afterwards,
the SiO2 layer without protection is completely etched
using CHF3 and Ar plasma in a reactive ion etcher.
The edges of cavities are examined to be well-defined
by scanning electron microscopy and AFM. After
resist removal, FePS3 nanoflakes are exfoliated by
Scotch tape, and then separately transferred onto the

6
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substrate at room temperature through a determin-
istic dry stamping technique. More details about the
fabrication of etched substrate with circular cavities,
as well as the Scotch tape transfer method can be
found in [13]. Detailed descriptions of the FePS3 crys-
tal growth and characterization is reported in earlier
work [39]. We choose FePS3 flakes due to its large
value of TEC, which allows to experimentally observe
the buckling phenomenon of 2D resonators within a
small range of temperature increase.
Laser Interferometry Setup. We present
temperature-dependent optomechanical measure-
ments in a laser interferometry setup [18]. The fab-
ricated devices is fixed on a sample holder inside the
vacuum chamber. A PID heater and a temperature
sensor are connected with the sample holder, which
allows to precisely monitor and control the temper-
ature sweeping. A piezo-electric actuator below the
sample holder is used to optimize the X-Y position
of the sample to maintain both the blue and red laser
in the center of the 2D resonators. We use a red and
blue laser power of 0.9 and 0.13 mW respectively.
Note we verified that the resonators vibrate in linear
regime and the temperature raise due to self-heating
is negligible [40]. The real picture of experimental
setup on the optical table can be found in figure S8.
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Esteras D L, Baldoví J J, Coronado E, Castellanos-Gomez A
and Calvo M R 2021 Ultra-broad spectral photo-response in
FePS3 air-stable devices npj 2D Mater. Appl. 5 1–9

[40] Dolleman R J, Lloyd D, Lee M, Bunch J S, Van Der Zant H S
and Steeneken P G 2018 Transient thermal characterization
of suspended monolayer MoS2 Phys. Rev. Mater. 2 114008

8

https://doi.org/10.1088/2053-1583/acf58a
https://doi.org/10.1088/2053-1583/acf58a
https://doi.org/10.1002/adma.201807150
https://doi.org/10.1002/adma.201807150
https://doi.org/10.1021/acs.nanolett.1c02369
https://doi.org/10.1021/acs.nanolett.1c02369
https://doi.org/10.1002/adma.201103965
https://doi.org/10.1002/adma.201103965
https://doi.org/10.1038/s41467-020-16430-2
https://doi.org/10.1038/s41467-020-16430-2
https://doi.org/10.1021/acs.nanolett.1c03010
https://doi.org/10.1021/acs.nanolett.1c03010
https://arxiv.org/abs/2204.06877
https://doi.org/10.1016/j.ijnonlinmec.2019.103328
https://doi.org/10.1016/j.ijnonlinmec.2019.103328
https://doi.org/10.1016/0022-460X(81)90327-8
https://doi.org/10.1016/0022-460X(81)90327-8
https://doi.org/10.1016/S0022-460X(86)80139-0
https://doi.org/10.1016/S0022-460X(86)80139-0
https://doi.org/10.1002/adma.201303569
https://doi.org/10.1002/adma.201303569
https://doi.org/10.1088/0022-3727/48/39/395303
https://doi.org/10.1088/0022-3727/48/39/395303
https://doi.org/10.1016/j.jmmm.2003.12.621
https://doi.org/10.1016/j.jmmm.2003.12.621
https://doi.org/10.1109/JMEMS.2008.916316
https://doi.org/10.1109/JMEMS.2008.916316
https://doi.org/10.1103/PhysRevB.93.115407
https://doi.org/10.1103/PhysRevB.93.115407
https://doi.org/10.1038/ncomms9789
https://doi.org/10.1038/ncomms9789
https://doi.org/10.1039/D1NR03286K
https://doi.org/10.1039/D1NR03286K
https://doi.org/10.1021/acs.nanolett.7b04685
https://doi.org/10.1021/acs.nanolett.7b04685
https://doi.org/10.1038/s42005-020-00433-y
https://doi.org/10.1038/s42005-020-00433-y
https://doi.org/10.1088/2053-1583/aad864
https://doi.org/10.1088/2053-1583/aad864
https://qd-uki.co.uk/lake-shore/temperature-sensors/ultra-low-temperature-rox/
https://qd-uki.co.uk/lake-shore/temperature-sensors/ultra-low-temperature-rox/
https://doi.org/10.1038/s41467-019-12562-2
https://doi.org/10.1038/s41467-019-12562-2
https://doi.org/10.1038/micronano.2016.26
https://doi.org/10.1038/micronano.2016.26
https://arxiv.org/abs/2212.05464
https://doi.org/10.1021/acs.nanolett.8b02036
https://doi.org/10.1021/acs.nanolett.8b02036
https://doi.org/10.1038/s41699-021-00199-z
https://doi.org/10.1038/s41699-021-00199-z
https://doi.org/10.1103/PhysRevMaterials.2.114008
https://doi.org/10.1103/PhysRevMaterials.2.114008

	Enhanced sensitivity and tunability of thermomechanical resonance near the buckling bifurcation
	1. Introduction
	2. Fabrication and methodology
	3. Results and discussion
	4. Conclusion
	5. Methods
	References


