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Reply to “Comment on ‘Fully device-independent conference key agreement’ ”

Jérémy Ribeiro , Gláucia Murta,* and Stephanie Wehner
QuTech, Delft University of Technology, Lorentzweg 1, NL-2628 CJ Delft, Netherlands

(Received 3 July 2019; published 26 August 2019)

In this Reply we correct a mistake that we made in the correctness proofs of our protocol. Specifically, the
Bell inequality we used ensures security but does not allow us to produce a key. In this Reply we explain and
correct this mistake by adjusting the Bell inequality we used in the proof. Incidentally, this correction leads to
slightly better asymptotic key rates. Importantly, none of the conclusions of the article are affected.
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I. THE ISSUE

In this Reply, we address the concerns raised in the
Comment [1] and correct the mistake in the proof of our
protocol [2]. In our article we presented a protocol for
device-independent conference key agreement (CKA) be-
tween N parties, Alice, Bob1, . . . , BobN−1, using an N-partite
Greenberger-Horne-Zeilinger (GHZ) state [(|0〉⊗N + |1〉⊗N )/√

2]. The protocol, aiming to be secure in the device-
independent settings, relies on a statistical Bell test. In par-
ticular, in our article we presented the N-partite Mermin-
Ardehali-Belinskii-Klyshko (MABK) inequality. However,
using this inequality with the GHZ state leads to a protocol
that is secure but does not produce a key. The intuition for
that is the following.

(i) In order to ensure security, the protocol requires that the
state and the measurement are such that they can achieve a
sufficiently high violation of the MABK inequality. To do so
using the GHZ state, Alice’s observables A0 and A1 need to be
in the XY plane of the Bloch sphere.

(ii) In order to generate a key that is correlated with those
of the Bobs, Alice needs to have at least one of her observables
(either A0 or A1) that is equal to the Pauli Z operator.

The two above conditions for A0 and A1 cannot simultane-
ously be true.

Moreover, even if there is no noise in the protocol, if
Alice measures the GHZ state with a measurement in the
XY plane, her outcomes will be completely uncorrelated
with Bobs’ outcomes. Therefore, no key can be produced,
even though violation of the MABK inequality ensures that
Alice’s outcomes have high entropy conditioned on Eve. As
a consequence, the protocol of the article will abort at almost
every honest execution, and hence, no key is produced. Of
course, one could consider measuring the GHZ state in a basis
in between the Z basis and the XY plane. However, this would,
at best, lead to a very low key rate, and it would, at worst,
not be sufficient to get any key at all, causing the protocol to
always abort.

*Present address: Institut für Theoretische Physik III, Heinrich-
Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düssel-
dorf, Germany.

The new inequality [the parity–Clauser-Horne-Shimony-
Holt (CHSH) inequality] we introduce in the next section is
such that a violation can be achieved by measuring in the Z ba-
sis, which ensures that entropy conditioned on Eve in Alice’s
measurement outcomes in the Z basis is high. Furthermore,
when all the parties measure the GHZ state in the Z basis,
they should get the same outcome (in the noiseless scenario),
which allows for the production of a shared bit string (the
key). If a small amount of noise is present, the errors it induces
can be corrected by an error correction procedure, as already
presented in the protocol in [2].

Remark 1. We point out that the lower bound we derived
in [2] on the smoothed min-entropy as a function of the
MABK violation is correct [see Eq. (5) of that article] and
can therefore be considered a result of independent interest.
It is, however, not sufficient to produce a secure key between
Alice and the Bobs, as it says nothing about the correlations
between Alice and the Bobs.

II. THE SOLUTION

To solve the problem, we choose to replace the MABK
inequality by a new N-partite inequality, which we will call
the parity-CHSH inequality and which is closely related to the
well-known CHSH inequality. Note that the MABK we used
in [2] is also closely related to the CHSH inequality but in a
slightly different way.

The CHSH inequality can be formulated as a bound on
the winning probability of the following bipartite game. Let
Alice and Bob be the two players in this game, called the
CHSH game. At the beginning of the game, they are both
asked a uniformly random binary question, x ∈ {0, 1} and
y ∈ {0, 1}, respectively. They then have to answer bits a and
b, respectively. They win the game if and only if

a + b = xy mod 2.

No communication is allowed between Alice and Bob during
the game. They can, however, agree on any strategy before the
start of the game. The CHSH inequality states that by using a
classical strategy (a nonquantum strategy),1 Alice and Bob’s

1Strategies that can be modeled with local hidden variables.
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winning probability must satisfy the following:

PCHSH
win � 3

4
. (1)

Our new parity-CHSH inequality extends the CHSH inequal-
ity to N parties as follows. Let Alice, Bob1, . . . , BobN−1 be
the N players of the following game (the parity-CHSH game).
Alice and Bob1 are asked uniformly random binary questions
x ∈ {0, 1} and y ∈ {0, 1} respectively. The other Bobs are each
asked a fixed question, e.g., always equal to 1. Alice will
answer bit a, and ∀ i ∈ {1, . . . , N − 1}, Bobi answers bit bi.
We denote by b̄ := ⊕

2�i�N−1 bi the parity of all the answers
of Bob2, . . . , BobN−1. The players win if and only if

a + b1 = x(y + b̄) mod 2.

As for the CHSH inequality, classical strategies for the parity-
CHSH game must satisfy

PParity−CHSH
win � 3

4
. (2)

Remark 2. Note that if we condition on b̄ = 0, the game
is essentially the CHSH game. When conditioned on b̄ = 1,
the parity-CHSH game reduces to a game equivalent to the
CHSH up to relabeling the question y. We will use this to later
prove that the function f̂ defined in Eq. (3) lower bounds some
entropy of interest.

Interestingly, for both the CHSH and parity-CHSH games,
if the players use a quantum strategy, e.g., by sharing an
entangled state before the beginning of the game and then
measuring it, they can violate the above inequality, meaning
that their winning probability can be higher than 3/4. In fact,
quantum mechanics can lead to a winning probability up to
≈0.85 for both games. The GHZ state allows us to reach
the maximum winning probability achievable by quantum
mechanics for the parity-CHSH game. Importantly, this can
be done with Alice’s observables being A0 = Z and A1 = X .

We can then use this new inequality to prove the security
of our protocol. The only changes that need to be made in [2]
is replacing the MABK inequality by the parity-CHSH and,
accordingly, modifying the so-called min-tradeoff function
[see Eq. (10)]. This corresponds to modifying step 2 in Sec. II
of [2]. Let A′i

1 be Alice’s measurement outcomes, X i
1 and

Y(1,...,N−1)
i
1 respectively encode the bases that Alice and the

Bobs have used for their measurements until round i, T i
1

encodes which of the rounds in rounds 1 to i are test rounds,
and E is a quantum resister held by Eve (see Protocol 1 of [2]).
The min-tradeoff function is a function that lower bounds the
von Neumann entropy H := H (A′i

1|X i
1Y1,...,N−1

i
1T i

1 A′i−1
1 E ) as

a function of the winning probability of the Bell game we
consider, which in our case will be the parity-CHSH game.
Then Eq. (10) of [2] has to be replaced by

f̂ (pw ) :=
(

1 − μ

2

){
1 − h

[
1

2
+ 1

2

√
(4pw − 2)2 − 1

]}
,

(3)

where pw is shorthand notation for PParity−CHSH
win .

To see why f̂ lower bounds H we follow the same rea-
soning as in [2], simply adapting the proof to the use of the
parity-CHSH inequality [see the Appendix of [2] between
Eqs. (A50) and (A60)].

We first notice that since Pr(Xi = 0) = (1 − μ

2 ),

H =
(

1 − μ

2

)
H

(
A′

i|X i−1
1 Y(1,...,N−1)

i
1A′i−1

1 T i
1 E , Xi = 0

)
+ μ

2
H

(
A′

i|X i−1
1 Y(1,...,N−1)

i
1A′i−1

1 T i
1 E , Xi = 1

)︸ ︷︷ ︸
�0

�
(

1 − μ

2

)
H

(
A′

i|X i−1
1 Y(1,...,N−1)

i
1A′i−1

1 T i
1 E , Xi = 0

)
.

The above inequality holds since A′
i is a classical regis-

ter. Conditioned on Xi = 0, A′
i is independent of Y(1,...,N−1)i

and of Ti, and in the following, R denotes the registers
X i−1

1 Y(1,...,N−1)
i−1
1 A′i−1

1 T i−1
1 E so that

H
(
A′

i|X i−1
1 Y(1,...,N−1)

i
1A′i−1

1 T i
1 E Xi = 0

) = H (A′
i|R Xi = 0).

It remains to lower bound H (A′
i|R, Xi = 0). We first lower

bound it by

H (A′
i|R Xi = 0) � H (A′

i|R, Xi = 0, b̄),

where b̄ is the register that contains the parity bit of the
outcome of Bob2, . . . , BobN−1. We can then expand the von
Neumann entropy as

H (A′
i|R Xi = 0, b̄) = pb̄=0H (A′

i|R, Xi = 0, b̄ = 0)

+ pb̄=1H (A′
i|R, Xi = 0, b̄ = 1).

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

QBER Q

0.0

0.2

0.4

0.6

0.8

1.0

A
sy

m
p
.

ke
y

ra
te

r ∞

Asymptotic key rate as function of Q

3-DICKA

2xDIQKD

4-DICKA

3xDIQKD

5-DICKA

4xDIQKD

6-DICKA

5xDIQKD

7-DICKA

6xDIQKD

FIG. 1. Asymptotic key rate for N-DICKA (dashed lines) and for
the distribution of a secret key between N parties through (N − 1)-
DIQKD protocols (solid lines), when each qubit experiences inde-
pendent bit errors measured at a bit error rate (QBER) Q. For both
types of protocols and from top to bottom, the lines correspond
to the number of parties N = {3, 4, 5, 6, 7}. We observe that for
the low-noise regime it is advantageous to use device-independent
conference key agreement (DICKA) instead of (N − 1) × DIQKD
(DIQKD = device-independent quantum key distribution). In gen-
eral, the comparison between the two methods depends on the
cost and noisiness of producing GHZ states over pairwise Einstein-
Podolsky-Rosen pairs.
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From Ref. [3] we have that (1− μ

2 )H (A′
i|R, Xi = 0, b̄ = 0) �

f̂ (pw|b̄=0) and (1 − μ

2 )H (A′
i|R, Xi = 0, b̄ = 1) � f̂ (pw|b̄=1).

Indeed, from Remark 2 we have that conditioned on b̄ = 0,
the parity-CHSH game is simply a CHSH game; therefore,
pw|b̄=0 is equal to PCHSH

win when evaluated on the state shared
between Alice and Bob1 conditioned on b̄ = 0. Moreover,
Ref. [3] precisely lower bounds (1 − μ

2 )H (A′
i|R Xi = 0, b̄ =

0) by f̂ (PCHSH
win ). The same reasoning holds for b̄ = 1.

As a consequence,(
1 − μ

2

)
H (A′

i|R Xi = 0, b̄)

� pb̄=0 f̂ (pw|b̄=0) + pb̄=1 f̂ (pw|b̄=1).

By convexity of the function f̂ , we get(
1 − μ

2

)
H (A′

i|R Xi = 0, b̄)

� f̂ (pb̄=0 pw|b̄=0 + pb̄=1 p̂w|b̄=1) = f̂ (pw ),

and therefore, H � f̂ (pw ). �

III. HOW DOES THIS AFFECT OUR RESULTS?

The claims of our article [2] remain essentially unchanged.
(i) Our main theorem, Theorem 1, is still valid: One needs

to use only the new expression for f̂ given in Eq. (3) of this
Reply.

(ii) The protocol is essentially unchanged. The only modi-
fications we have to make are small adaptations regarding the
use of the parity-CHSH inequality:

(a) Step 1(c) of Protocol 1 becomes “If Ti = 0 Al-
ice and the Bobs choose (Xi,Y(1,...,N−1),i ) = (0, 2, 0, . . . , 0)
and if Ti = 1, Alice chooses Xi ∈R {0, 1} uniformly at ran-
dom, Bob1 chooses Y(1),i ∈R {0, 1} uniformly at random, and
Bob2, . . . , BobN−1 choose (Y(2,...,N−1),i ) = (1, . . . , 1).”

(b) Step 4 of Protocol 1 becomes “If Ti = 1, Alice uses
A′

i and her guess on B′
(1,...,N−1),i to set Ci = 1 if they have

won the N-partite parity-CHSH game and to set Ci = 0 if they
have lost it. If Ti = 0, she sets Ci = ⊥. She aborts if

∑
i Ci <

δ · ∑
i Ti, where δ ∈]pmin, pmax[.”

In particular we see from the first modification that using
the parity-CHSH game, Bob1 is now the only player who
needs to use three settings for his measurement device: Y(2),i ∈
{0, 1, 2}. All the other players need to use only two settings.

(iii) The asymptotic key rate is slightly improved compared
to that in [2]. This is because the parity-CHSH inequality
is somehow easier to violate than the MABK inequality.
Figure 1 of [2] then has to be replaced by Fig. 1 of this Reply.
The global behavior of the key rates remains the same. The
asymptotic key rate as a function of the quantum bit error
rate(QBER) is now given by

rN−CKA,∞ = 1 − h

⎡
⎢⎣1

2
+ 1

2

√√√√16

(√
1 − 2Q

N

2
√

2
+ (1 − 2Q)

(
1 − √

1 − 2Q
N−2)

8
√

2

)2

− 1

⎤
⎥⎦ − h(Q). (4)
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