
Delft University of Technology
Faculty of Electrical Engineering, Mathematics & Computer Science

An Exploration of a Hierarchical Approach
for MacDec-POMDPs

Kees Fani

to obtain the degree of Master of Science in Computer Science
to be defended publicly on the 14th of July 2021.

Thesis advisor:
Dr. Frans. A. Oliehoek

Daily supervisor:
Ir. Rolf A. N. Starre

Thesis committee:
Dr. Frans. A. Oliehoek

Prof dr. Catholijn M. Jonker
Dr. Matthijs T.J. Spaan

Ir. Rolf A. N. Starre

Student Number: 4437179

Acknowledgements

I would like to thank my Thesis Advisor Dr. Frans Oliehoek for this challenging but ultimately
satisfying master thesis. Your expertise and intuition has been indispensable during this master project.
Your insights and valuable feedback has vastly deepened my understanding and has greatly improved
this thesis.
I would also like to thank my Daily Supervisor and PhD student Rolf Starre for all of his consistent
and concrete feedback and for always making time for me. You have made me feel like my thesis was
a priority. You have shown patience and bore with me during times where I was not able to work as
hard as I wanted to. Thank you.
Furthermore I would like to thank my parents, my sister Lana and her husband Marco who have always
supported me and were always there for me. I am incredibly lucky to have close family that is this
warm and kind.

1

Contents

1 Introduction 5
1.1 Planning . 5
1.2 Uncertainty . 6
1.3 Decentralization . 6
1.4 Abstraction . 7
1.5 Research Questions . 8
1.6 Outline . 8

2 Related Work 9
2.1 Model-Based Reinforcement Learning . 9
2.2 Model-Free Reinforcement Learning . 10
2.3 Approaches Using Communication . 10

3 Background 11
3.1 Markov Decision Process . 11
3.2 Partially Observable MDPs . 12
3.3 Decentralized POMDPs . 14

3.3.1 Dec-Tiger . 15
3.4 Macro Dec-POMDPs . 16

3.4.1 Macro Components . 16
3.4.2 MacDecPOMDP Definition . 17
3.4.3 2-Agent Value Function . 18

4 A Critical Analysis of the MacDecPOMDP Framework 19
4.1 Macro-Observation Definition Issue . 19
4.2 Trivialized MacDec-POMDP Example . 20

4.2.1 Problem Description . 20
4.2.2 Trivializing The Problem . 20
4.2.3 Formal Definition for Invalid-MacDec-Tiger . 20
4.2.4 Discussion . 22

4.3 Replacing States with Histories in the Macro-Observation Probability Function 22
4.4 Adding a Base Case to the Value Function . 23
4.5 Integrating Histories with the Value Function . 23
4.6 Integrating Macro-Observations and Macro-Histories . 24
4.7 Generalizing the 2-Agent Value Function to n Agents . 25

4.7.1 n-Agent Value Function Parameters . 25
4.7.2 Component Generalization . 25
4.7.3 Superset of Terminating Agents . 26

4.8 Mac-DecPOMDP Value Function . 27
4.8.1 Notation Comments . 27
4.8.2 Value Function . 27

4.9 Linking the New MacDecPOMDP Value Function to Other Value Functions 28
4.9.1 Value Function Rewrite Formulation . 28
4.9.2 Explanation of this Rewrite . 29
4.9.3 The Link Between Value Functions . 30

2

4.10 Limited Abstraction . 32

5 Hierarchical MacDec-POMDP 33
5.1 Conceptual Idea . 33
5.2 Abstraction Levels . 34
5.3 Macro Action Termination . 35
5.4 Higher Level Histories . 35
5.5 Utilizing null-Observations for Termination . 36
5.6 Full Formal Definition . 37

5.6.1 Histories and Outer Level Macro-actions . 38
5.6.2 Notation Comments . 38

5.7 Value Function Overview . 38
5.7.1 Overview Explanation . 39

5.8 Action Selection Phase . 41
5.9 Observation Processing Phase . 42
5.10 Reward Determination . 44
5.11 State Transition . 44
5.12 Value Function Recursion . 45
5.13 H-MacDec-POMDP Value Function Formulation . 46
5.14 H-MacDecPOMDP Value Function Proof . 47

5.14.1 Base Case . 47
5.14.2 Inductive Step . 47

6 Solving H-MacDecPOMDPs 48
6.1 Brute Force Planning . 48
6.2 Transforming H-MacDec-POMDPs Into DecPOMDPs 48

6.2.1 Transformation I/O . 49
6.2.2 Transformation Overview . 49

6.3 Transformation Algorithm . 51
6.3.1 Transform Function . 51

6.4 State Grounding . 52
6.4.1 Grounded States Definition . 52
6.4.2 Notation Comments . 54
6.4.3 State Initialization Grounding . 54
6.4.4 State Grounding Algorithm . 54

6.5 Transition Grounding . 57
6.6 Observation Grounding . 58
6.7 Reward Grounding . 59
6.8 Initialization and Termination Heuristics . 60

7 H-MacDecPOMDP Example and Analysis 61
7.1 Hierarchical MacDecTiger Problem . 61

7.1.1 Summary . 61
7.1.2 States . 62
7.1.3 Ground Level Actions . 62
7.1.4 Transition Function . 63
7.1.5 Ground Level Observations . 64

3

7.1.6 Reward . 64
7.1.7 Macro-Observations . 65
7.1.8 Macro-Actions . 66

7.2 Policy Search Space . 68
7.2.1 Policy Search Space Calculation . 68
7.2.2 H-MacDecTiger Policy Search Space . 68

7.3 Benefits and Drawbacks of Using H-MacDecPOMDPs 70
7.3.1 Policy Search Space Reduction . 70
7.3.2 Improved Human Interpretability . 71
7.3.3 Requirement of Additional Structure . 71
7.3.4 Lack of Existing Efficient or Approximate Planning Methods 71

7.4 Benefits and Drawbacks of Transforming H-MacDecPOMDPs into Dec-POMDPs 71
7.4.1 Enable the Use of Existing Planning Methods . 72
7.4.2 Increased State Complexity . 72

7.5 Experiment . 72

8 Conclusion 73
8.1 Future Work . 74

4

1 Introduction

In order to do something useful, you should know what to do and how to do it. The same goes for robots
or other machines. Entities such as robots or other devices are generally referred to as agents within
the field of Artificial Intelligence [1]. We see more and more of these agents in all kinds of different
sectors. Examples of such sectors include but are not limited to; manufacturing [2], agriculture [3] and
transport [4], a more specific example within the transport section are autonomous cars [5]. Advances
in e.g. technology and science have made such agents more and more sophisticated and capable. This
opens up a plethora of possibilities for solving problems or automating processes.
However, as agents and the problems they solve become more and more sophisticated, the software
that controls these agents naturally also becomes more complex. Especially when considering systems
of multiple cooperating agents. Agents receive information from their environments, and use such
information to determine what to do. With rapidly increasing amounts of agents, observations and
capabilities to take into account, the plans used to come to decisions become increasingly infeasible to
create by hand.
Thus automated methods are necessary to create such plans. This motivates the overarching goal of
this thesis, which is to advance such methods so difficult problems involving many agents can be solved
more efficiently.
The approach this thesis uses is inspired by the ability of human intelligence to abstract away pedantic
details when planning. We do not for example include which muscles we will utilize, when we make a
plan for picking up groceries. Deciding to get groceries is on a completely different level than deciding
how many centimeters we want to move a limb in a particular direction. Abstracting away such details
greatly reduces the size of any potential plan. Which makes plans easier to construct, while the scope
of the problem remains the same. Thus, utilizing this notion of different levels of abstraction during
planning, is the approach this thesis uses to improve planning for agents.

1.1 Planning

According to the Cambridge Dictionary, a plan is defined as “a set of decisions about how to do
something in the future” [6]. This is very much in line with how planning is done in the field of
Artificial Intelligence. A set of decisions can be seen as a function, which would look like so:

Information from the environment→ Action

In other words, if the agent encounters information from the environment it is in, it executes a corre-
sponding action. For example, a very rudimentary plan could be to swat a fly if a fly is seen. Seeing a
fly in this case triggers the action of swatting this fly. In the field of AI, The representation of all the
information of the environment is called the state (of the environment).
This thesis chooses an approach based on Markov Decision Processes (MDPs) [7]. This approach is
chosen because it is widely used and studied. It has also already been extended in a number of useful
ways [8–10].

5

1.2 Uncertainty

Uncertainty is everywhere. All the way from fundamental physics phenomena like quantum mechanics,
to interactions between humans. The real world is messy and too infeasible to perfectly simulate. Un-
certainty must be accounted for, this also goes for agents with artificial intelligence. Agents encounter
uncertainty in a number of ways. First, we must consider that the actions do not always affect the
environment in the same way. For example, performing the action of flipping a coin could result in an
environment with the coin facing either heads or tails with a 50% chance. This is actually accounted
for in the Transition function in MDPs.
Other types of uncertainty are not, such as uncertainty pertaining to understanding the environment
itself. Humans do not have perfect information about its environment. To make up for this, people
rely on the subjective information they perceive from the environment using their senses, such as sight,
smell or touch. In other words, humans rely on their own observations. Machines or robots similarly
can use their sensors to make observations, which are not always perfectly accurate. To have a more
realistic artificial intelligence model, this lack of objective environment model should thus also be mod-
eled for its agents. This is why this thesis builds upon Partially Observable MDPs (POMDPs) [11],
which is a framework which extends MDPs to model individual subjective observations of agents, in-
stead of assuming perfect information.
Another source of uncertainty is the unpredictability of others. This is the case for people as well as
for other agents. It is impossible to predict with certainty what another fully independent human or
agent will do. Thus, once again, to have a more realistic planning framework, multiple agents and
their interactions with the environment must be modelled. This will be elaborated on in section 1.3.

1.3 Decentralization

Using a framework that models multiple agents has more benefits besides dealing with the uncertainty
that comes from the addition of multiple agents. Systems that model multiple agents are called
Multiagent Systems (MAS). MASs have been researched to reap the following potential benefits [12,13].
Greater opportunities for scalability, parallelization and flexibility, as adding additional agents could
speed up the rate at which problems are solved. This would also increase robustness and reliability,
as the failure or removal of a few agents would not necessarily result in a system failure. Also, the
reusability and modularity of such agents and systems could reduce the cost of developing a MAS
solution. These potential benefits are another reason why a MAS approach is used for this thesis.

There are multiple ways to control groups of agents. One of which is a centralized approach, where
a central server gives orders to multiple agents. In this case, the POMDP framework could suffice [14].
As the observations from the agents are all given to the central server, which could then on its own
determine the appropriate actions to take. However, this type of system would require very fast, noise
free communication, which is often infeasible.
Alternatively, each agent could have its own plan for how to solve a particular problem, without a
central server dictating what actions these agents should take at each point in time. These individual
plans can however still be made in a centralized manner. The lack of a central decision maker would
however still make this system a decentralized system. This would remove the necessity of commu-
nication during run-time and thus alleviate the requirement of centralized systems which was stated
above. I.e. not requiring communication makes such a system applicable in more situations, which is
an important reason why this thesis uses a decentralized approach.

6

In a decentralized solution, agents could each construct their own plan on their own. To make such
a plan separately, the agents are required to consider what the other agents will do. However, this
leads to an potentially infinite recursive process, as considering the actions of all other agents requires
considering the actions of all other agents, for each agent. This thesis avoids this issue by constructing
plans for all agents in the same process, at the same time. This is done by using a solution based on
Decentralized POMDPs (Dec-POMDP) [15], which is an extension of POMDPs which does not require
communication.

1.4 Abstraction

Solving large instances of Dec-POMDPs still remains a very difficult or infeasible task. A huge con-
tributor to this problem is the fact that planning over many time-steps causes the number of potential
solutions to increase exponentially. Thus using abstraction to allow for planning using shorter but
more high-level plans would exponentially reduce the number of potential solutions. Dec-POMDPs
do not use any form of abstraction when creating plans. Instead, plans are built using ground-level
actions and observations. Imagine planning a holiday for a group of people by only considering muscle
movements and sensory observations; it is not feasible.
If more complicated tasks must be solved, the plan must use actions that are more abstract. Executing
such an abstract action, would result in a plan of low level actions to be carried out. Another way to call
such an abstract action, is a macro action, or in other words; an action that consists of other actions.
Luckily this already exists, it is called an Option [16]. The Macro DecPOMDP (Mac-DecPOMDP)
framework [17], incorporates such options into the Dec-POMDP framework, this enables planning over
macro-actions.
Although this work has shown that very large problems can be effectively modeled, it however does
limit the model to a single layer of abstraction. An agent will execute a macro-action which will
immediately start executing ground-level actions. Mac-DecPOMDPs do not allow macro-actions to
include other macro-actions in their policies. This could potentially be a limiting factor, as humans
for example also do not always limit themselves to a single level of abstraction when making a plan.
It would be incredibly infeasible for example to have only a single level of abstraction that separates
business operations to human muscle movements when making a business plan. Thus, this thesis in-
troduces the Hierarchical Mac-DecPOMDP model, which enables planning using an arbitrary number
of levels of abstraction.

7

1.5 Research Questions

The main research question of this thesis is the following:

How can the MacDecPOMDP Framework be extended to higher levels of abstraction, can existing
Dec-POMDP solution methods be employed to solve such a model, and what are the resulting benefits

and drawbacks?

This research question consists of smaller sub-questions. The main theme of this thesis is abstraction.
Thus the first sub-research question is:

(1) How can the MacDecPOMDP Framework be extended to higher levels of abstraction?

Extending MacDecPOMDPs to arbitrary numbers of abstraction levels is not trivial, thus this question
is answered by creating a model which will be called the Hierarchical MacDecPOMDP model (H-
MacDecPOMDP). Thus, because creating the H-MacDecPOMDP model was part of this thesis, there
does not exist a toolbox or other software implementations for H-MacDecPOMDPs. However, there
does exist such software for Dec-POMDPs [18]. Thus it is very useful to know whether it is possible to
transform H-MacDecPOMDPs into DecPOMDPs. This question is answered by providing an algorithm
which transforms H-MacDecPOMDPs into Dec-POMDPs. Thus the second sun-research question is:

(2) Can H-MacDecPOMDPs be transformed into DecPOMDPs?

After constructing the H-MacDecPOMDP model, it should become more clear what some of the
benefits and drawbacks of this approach are, which leads to this research question:

(3) What are the drawbacks and benefits of using H-MacDecPOMDPs as opposed to a
(Mac-)Dec-POMDPs?

1.6 Outline

Chapter 2 will be a related work section which includes a brief comparison of this thesis to other works.
In chapter 3, the background information will be given. This will consist of an explanation of MDPs,
POMDPs, Dec-POMDPs and Mac-DecPOMDPs.
Then in chapter 4 an analysis of Mac-DecPOMDPs will be given, as it must be thoroughly understood
and refined to fit with a possible extension.
In chapter 5, the H-MacDecPOMDP model will be constructed and explained. Then a new value
function for H-MacDecPOMDPs is also given and explained. A proof of correctness for this value
function will also be given. This chapter will thus give the answers to research question 1. Then in
chapter 6, the transformation from H-MacDecPOMDPs to Dec-POMDPs is given and explained, which
answers research question 2. Then in chapter 7 the drawbacks and benefits of H-MacDecPOMDPs
and the transformation from H-MacDecPOMDPs to Dec-POMDPs are explained. This will also be
done by constructing and analyzing a new problem; the H-MacDecTiger problem, which builds on the
DecTiger problem from chapter 3. This problem will also be used for an experiment to further validate
the correctness of the H-MacDecPOMDP framework. This chapter will thus answer research question
3.
Then the conclusion will summarize and briefly discuss what is done. There will also be a future work
section, which will among other things mention some thoughts on further improvements to performance.

8

2 Related Work

This thesis presented H-MacDecPOMDPs, a hierarchical artificial intelligence model. There are how-
ever more hierarchical AI models. Namely in the field of Reinforcement Learning (RL), which is a
branch of AI where the reward function is not given to the agents. Instead, the agents must learn
to solve problems on the go, which is trained by reinforcing good behavior and/or penalizing bad
behavior. The papers and approaches mentioned in this section are types of Reinforcement Learning.
Here a distinction will be made between model-based and model-free hierarchical approaches, which
will be explained in their respective subsections.

2.1 Model-Based Reinforcement Learning

In model-based reinforcement learning, the agent(s) knows a representation of the states it can be in,
and also what states it might be in as a result of taking actions (i.e. the transition function is known).
In this section, model-based approaches will be discussed.
First there is Kaelbling Lozano-Prez’s paper [19] which integrates task planning and motion planning.
This approach involves explicit modeled task abstraction as there are actions that are explicitly marked
as ”abstract” which may need to have previously defined conditions met before they can be executed.
The similarity here is that a vertical hierarchy of abstraction is being built, i.e. actions that rely on
lower level actions which rely on even lower level actions, etc. The difference is that the actions in these
hierarchies are not options, instead they are defined using (a variation of) the STRIPS method [20].
Another hierarchical approach is Multi-Phase Learning which is used in the paper by Kroemer and
Daniel [21]. As the name may suggest, this approach divides tasks into phases. The paper considers
a set of robotic arms and hands that learns from watching humans manipulate objects. Human
demonstrations are used by the robot to learn a probabilistic model of the phases and their transitions.
This is done using State-Based Transitions Autoregressive Hidden Markov Model (STARHMM) [22]. A
huge difference between H-MacDecPOMDPs and Multi-Phase learning is that in Multi-Phase learning,
the actions themselves change per phase, i.e. an action may work completely differently from one
phase to another. A phase in Multi-Phase learning can thus not be compared to an abstraction level
of H-MacDecPOMDPs, instead a sequence of phases are conceptually more similar to the top level
macro-actions in H-MacDecPOMDPs.
Multi-level learning is another hierarchical RL approach shown in the paper by Levy et al. [23]. Multi-
level hierarchies are formed by dividing a problem into a set of problems that have a shorter horizon.
These sets of problems are then solved simultaneously using Hierarchical RL approach. Hierarchies in
this approach use nested levels of so-called goal-conditioned policies. These goal-conditioned policies
are short sequences of actions that achieve a subgoal of the main task. The main similarity between
Multi-level learning and H-MacDecPOMDPs is that hierarchies of policies are made that have shorter
horizons. A big difference is the manner in which states are passed through these abstraction levels.
H-MacDecPOMDPs pass information through abstraction levels using macro-actions, and Multi-level
learning approaches use goal orientated states.
The paper [24] by J. Yang, et al. describes a a two-level hierarchical multi-agent reinforcement learning
algorithm. This approach is different from H-MacDecPOMDP in that there are only two levels, and
the hierarchy itself is structured differently. The highest of the two levels allow the agents to choose a
different “skill” from which lower level actions are taken. This makes for an interesting interpretation
of higher level thinking, which conceptually is more comparable to humans who choose different skill
sets to work with in real life.

9

2.2 Model-Free Reinforcement Learning

In model-free reinforcement learning, the agent(s) does not know what states the agent(s) can be in,
and also do not know what states it can transition to as a result of taking action(s). In this section,
model-free approaches will be discussed.
The paper [25] by J. Cboi extends Relative Entropy Inverse RL [26] which involves learning reward
functions from policies This approach is then used to provide hierarchical reasoning to reward functions.
This method is different to that of H-MacDecPOMDPs in that here a hierarchy of reward functions is
constructed, instead of a hierarchy of actions.
A paper by C. Daniel et al. uses Relative Entropy Policy Search [27] by Peters et al. which reduces
data-loss that occurs in policy search while still approaching optimal policies. Hierarchical Relative
Entropy Policy Search exploits task structures consisting of sub-tasks to find hierarchical policies
consisting of sub-policies and gating networks using an Expectation Maximization [28] based method.
The main similarity between this and H-MacDecPOMDPs is of course the use of ”sub-policies” or
policies of actions that have policies themselves. The biggest difference is the use of gating networks.
Another approach for building hierarchical reinforcement learning agents, is to build a hierarchy of sub-
goals by hand for a specific problem. This is done in Dietterich et al. [29]. These sub-goals are then used
to constrain the sub-policies required to reach that specific sub-goal. This is done by decomposing the
single value function that used in Q-Learning and transform it into a hierarchy of value functions. The
main difference with H-MacDecPOMDPs is of course that a hierarchies of subgoals (value functions)
is created instead of a hierarchy of actions. This MAXQ approach can also be combined with R-MAX.
R-Max, as described in R-max-a General Polynomial Time Algorithm for Near-Optimal Reinforcement
Learning [30], forces the agent to explore unexplored states by assigning the maximum reward possible
to unexplored states. The paper Hierarchical Model-Based Reinforcement Learning: R-max + MAXQ
by N. K. Jong and P. Stone [31] combines both the R-MAX and then MAXQ for a different hierarchical
approach.

2.3 Approaches Using Communication

In this section, approaches are discussed which involve communication between the agents.
The paper by Ghavamzadeh et al. [32] is an approach based on MDPs where there is also a hierarchy
of actions. This approach features an arbitrary amount of abstraction levels, however it does not make
use of options. Instead, this approach uses a hierarchy of so called ‘cooperative tasks’.
Then the approach of the paper [33] by R. Li, et al. describes the Dec-RAE-UPOM system. This is
a partially observable and decentralized system, just like the MacDecPOMDP and by extension, H-
MacDecPOMDP frameworks. This approach uses hierarchical operational models which specify how
the tasks at hand can be solved cooperatively.
The paper [34] by H. Tang, et al., uses deep leaning, along with temporal abstraction to create
hierarchies of actions. Temporal abstraction is conceptually quite similar to options, as it involves
actions that take multiple time-steps to complete. Options are used by H-MacDecPOMDPs, which
makes these hierarchical approaches more similar to each other. This approach allows agents to
communicate with each other using a so called “Hierarchical Communication Network” (h-Comm).

10

3 Background

This chapter contains the background information necessary to understand this thesis. The H-
MacDecPOMDP model that is presented in this thesis builds upon a number of other models.
First in section 3.1, an explanation of the Markov Decision Process (MDP) is given, which is a frame-
work for single agent decision planning in fully observable environments. Then an extension of MDP
called the Partially Observable MDP (POMDP) is explained in section 3.2, which as the name im-
plies allows for partially observable environments. This is followed by section 3.3 which explains an
extension of POMDP called the Decentralized POMDP (DecPOMDP), which adds support for multi
agent planning. The DecPOMDP section also contains an example of a DecPOMDP problem called
the Dec-Tiger problem (section 3.3.1), which is built upon in section 7.1 of the thesis. Then finally,
section 3.4 explains an extension of DecPOMDP called Macro DecPOMDP (MacDecPOMDP), which
introduces abstraction in the decision process by planning over macro-actions (or Options).
Recall that thesis extends the MacDecPOMDP framework to form the Hierarchical MacDecPOMDP
framework (H-MacDecPOMDP), which supports arbitrary amounts of abstraction levels (chapter 5).

3.1 Markov Decision Process

A Markov Decision Process (MDP) [35], is a Markovian Stochastic Process, which provides a framework
for modeling single agent decision making in a fully observable environment.
In this process, a plan is made which uses representations of the state of the environment to determine
what actions to take. Such a plan is called a policy. This is where a useful property of MDPs come
in to play, namely the Markov Property named after Russian mathematician Andrey Markov [36].
This property states that it is sufficient to only know the present state, as opposed to (all) previously
encountered states, to predict what the future state(s) will be. Thus because states represent all of
the necessary information of the environment and these states are fully observable, a policy (π) merely
consists of a sequence of decision rules (e.g. π = (δ0, δ1, δ2, δ3)). Every time-step (t), has its own
decision rule (δt). Such a decision rule is a function which takes in the present state and returns the
probability of taking any given action. The signature of this function is shown in equation 3.1, where
S represents the set of all states, and A represents the set of all actions the agent can take.

δt : S ×A→ [0, . . . , 1] (3.1)

The goal of the agent is to achieve the highest possible sum of expected rewards. Rewards are given
whenever an agent takes an action. The size of the reward is determined by the reward function.
The reward function contains the reward for each state and action tuple. The signature of the reward
function (R) is given in equation 3.2.

R : S ×A→ R (3.2)

Thus, the agent starts out in a state s0, where the 0 superscript denotes the time-step. Then the
agent takes an action (a0) which is determined by the policy (π). Then the reward function returns a
reward r0 = R(s, a). The agent will have interacted with the environment, which can change the state
of the environment, this is called a state transition. After reaching the next state, the agent takes
another action and the process continues until the horizon (h) of the problem is reached. The horizon
represents the amount of time-steps the problem goes on for, i.e. the amount of actions the agent will
take.

11

The probability of reaching a particular state st+1 from state st after taking action at is determined
by the Transition Function (T), which is shown in equation 3.3.

T : S ×A× S → [0, . . . , 1] (3.3)

Thus an MDP consists of 4 components, the set of states (S), the set of actions (A), the reward
function (R) and the transition function (T), i.e. 〈S,A, T,R〉.
An overview of what happens in every time-step is given in equation 3.4 for 4 time-steps.

s0, a0, r0, s1, a1, r1, s2, a2, r2, s3, a3, r3 (3.4)

The agent’s goal is to maximize the sum of expected rewards, i.e. maximize the sum of the rt values
given in every time-step (t) as shown in equation 3.5.

E

[
h−1∑
t=0

rt

]
= E

[
h−1∑
t=0

R(st, at)

]
(3.5)

The agent does this by optimizing its policy to make sure that the agent takes the actions that lead
to the best rewards. The value function can be used to calculate the value of a policy when starting
from a given state. The value function calculates the expected reward for the actions of the current
time-step (

∑
at∈A π(at|st)R(st, at)), and will then add the expected value of the next time-step. In

the next time-step the environment may be in a different state, thus the expected value of the next
time-step accounts for this (

∑
st+1∈S T (st+1|st, at)V πt+1(st+1)). The value function is shown in equation

3.6.

V πt (st) =
∑
at∈A

π(at|st)

[
R(st, at) +

∑
st+1∈S

T (st+1|st, at)V πt+1(st+1)

]
(3.6)

When the horizon (h) of the problem is reached, the expected value of the next time-step is omitted.
This base-case is shown in equation 3.7.

vπh−1(sh−1) =
∑

ah−1∈A

π(ah−1|sh−1)R(sh−1, ah−1) (3.7)

The initial state the environment can be in when the process starts may also need to be specified. The
initial state distribution (b0) is used to do this. The initial state distribution returns the probability
of starting at any given state. E.g. if b0(sb) = 0.5, there is a 50% chance of starting at state sb.
Thus a MDP can be ‘solved’ by finding a policy which maximizes the value function as shown in
equation 3.8.

arg max
π

∑
s0∈S

b0(s0)V π0 (s0) (3.8)

3.2 Partially Observable MDPs

In Partially Observable MDPs (POMDPs) [37] [11], the state cannot be directly observed by the
agent. Instead, the agent receives so called observations. Observations are designed to communicate
information about the state of the environment.
These observations are observed whenever an agent takes an action. The sequence of actions, states,

12

rewards and observations for POMDPs looks like equation 3.9 as opposed to equation 3.4 for MDPs
(when h = 3). In equation 3.9, ot represents the observations.

s0, a0, r0, s1, o1, a1, r1, s2, o2, a2, r2, s3, o3, a3, r3 (3.9)

The set of observations is denoted by Ω. The probability of receiving an observation is determined
by the Observation probability Function (O). The observation probability function returns the prob-
ability of observing the given observation after taking an action (a) which leads to a state (s). The
signature of the observation probability function is shown in equation 3.10. POMDPs thus contain the
following components: 〈S,A,R, T,O,Ω〉.

O : A× S × Ω→ [0, . . . , 1] (3.10)

The agent will use these observations to estimate what states the environment could be in and thus
what actions the agent should take. Such an estimation of the state of the environment is known as a
belief. The policies of agents thus take beliefs as input instead of states. A belief (b) is a vector which
for every state contains the probability for the given state to be the actual state of the environment.
At first the belief equals the initial state distribution (b0). Afterwards a belief update is performed
whenever the agent observes an observation. During the belief update, the belief for each state is
updated. Some states are more likely to lead to particular observations than other states, the belief
update exploits this information to calculate an updated belief, which is shown in equation 3.11.

bt+1
ao (st+1) =

O(ot+1|at, st+1)
∑
st∈S T (st+1|st, at)bt(st)∑

st+1∈S O(ot+1|at, st+1)
∑
st∈S T (st+1|st, at)bt(st)

(3.11)

A POMDP can be modeled as a belief-state MDP, where the beliefs form the states. This helps in
constructing a value function. Such a belief MDP value function must specify the transition and reward
functions for beliefs instead of states.
The belief reward function shown in equation 3.12, calculates the expected reward of the belief with
respect to the states.

R(bt, at) =
∑
st∈S

b(st)R(st, at) (3.12)

In the belief observation function shown in equation 3.13 gives the probability of observing the next
observation by taking an action when having a particular belief. If the current belief as well as the
current action and the next observations are known, the belief update will always yield the same
updated belief. Thus, a separate ”belief transition function” is not necessary.

Pr(ot+1|bt, at) =
∑

st+1∈S

O(ot+1|at, st+1)
∑
st∈S

T (st+1|at, st)b(st) (3.13)

Thus the value function of such belief MDPs is similar to that of MDPs (equation 3.6), however the
summation over all states is replaced with a summation over all observations. Another difference is
that the policy of the agent, the reward function and transition function use beliefs instead of states.
The Belief MDP value function is shown in equation 3.14.

V πt (bt) =
∑
at∈A

π(at|bt)

[
R(bt, at) +

∑
ot+1∈Ω

Pr(ot+1|bt, at)V πt+1(bt+1
ao)

]
(3.14)

13

3.3 Decentralized POMDPs

In Decentralized POMDPs (DecPOMDP) [15], there are multiple agents which take actions indepen-
dently from each other. The identifier of each agent is put into the set I. These agents cannot share
their local information, and thus must all decide separately on which actions to take based on the
observations it has seen and actions it has taken. In DecPOMDPs, the agents are unable to estimate
what the current state of the environment is, because the transition probability from state to state
depends on the actions that all agents take, and the agents do not know what actions the other agents
take. Thus the agents can no longer form beliefs about the state, which results in these agents having
to take actions based only on the history of actions and observations the agent themselves keep track
of.
Equation 3.15 shows an example of a history for agent 1 after 3 time-steps. The timesteps are put as
the superscript to avoid confusion with specifying the agent which is done using the subscript.

h1 = a0, o1, a1, o2, a2, o3 (3.15)

The vector of all actions that are taken at the same time are referred to as a joint action. In this
thesis, this is written with a bold typeface like so: aaa. The action of a specific agent (i) is referred to
like so: ai. Each agent has its own set of actions and observations (Ai and Ωi), without the subscript,
the sets denote the sets of all joint actions (A) and joint observations (Ω).
The observations are all given at the same time to each agent. Thus the Observation Probability
function (O) provides the probability of a joint observation (ooo) given that a joint action (aaa) is taken,
which leads to a state (s). Similarly, the Transition function (T) gives the probability of transitioning
to a state when taking a joint action when in the current state. Finally the reward function (R) will
also take joint actions as inputs.
Thus a DecPOMDP consists of 6 components, the set of states (S), the set of actions (A), the reward
function (R) and the transition function (T), the set of observations (Ω) and the observation probability
function (O) and the set of agents (I) i.e. 〈S,A, T,R,Ω, O, I〉.
Although the execution of the model is decentralized, the agents can still be planned at the same time
using a value function. This value function must keep track of the joint history (hhh) of the agents as well
as the current state. In every time-step these histories will be appended with the joint action taken
and joint observation that is observed. This model is decentralized, thus the policies of the agents do
not use joint actions and joint histories. Instead, regular histories and actions are used in the policies
of agents (e.g. π1(a1|h1)). The probabilities of taking each separate actions are then multiplied with
those of the other agents to calculate the probability of taking a joint action (

∏
i∈I π(ai|hi)). Further,

the value function will also loop over all joint observation probabilities. This way all possible cases for
the next joint histories can be taken into account. Thus the Dec-POMDP value function is given in
equation 3.16, in this equation ′ will be used to denote that the component is of the next time-step
(e.g. next joint observation ooo′ instead of ooot+1).

V π(s,hhh) =
∑
aaa∈A

∏
i∈I

πi(ai|hi)

[
R(s,aaa) +

∑
s′∈S

T (s′|s,aaa)
∑
ooo′∈Ω

O(ooo′|aaa, s′)V π′(s′,hhh′)

]
(3.16)

Although finite-horizon Dec-POMDP have at least one optimal deterministic joint policy [38], non-
deterministic policies are used here as they are also used in the remainder of this thesis.

14

3.3.1 Dec-Tiger

In this subsection, an example of a DecPOMDP problem is given. This problem is the Dec-Tiger
problem [39]. Dec-Tiger is a problem where two agents try to maximize their rewards by finding
treasure. The treasure is hidden behind one of two doors. The door to the room without the treasure
has a tiger in it, which will devour the agent if let free, i.e. give a big negative reward (a penalty). In
each time-step, an agent will either open the left door (aOL), open the right door (aOR) or listen for
the location of the tiger (aLi). Thus the actions are shown in equation 3.17 and the observations are
shown in equation 3.18.

A1 = A2 = {aOL, aOR, aLi} (3.17) Ω1 = Ω2 = {oHL, oHR} (3.18)

If both agents decide to listen, no doors will be opened leading to the tiger and treasure to always
remain in the same place. Equation 3.19 shows the transitions where both agents listen. In all other
cases, the transition will randomly lead to one of the two states, e.g. T (sr|〈aOL, aLi〉, sl) = 0.5.

T (sl|〈aLi, aLi〉, sl) = T (sr|〈aLi, aLi〉, sr) = 1.0 (3.19)

If both agents perform the listen actions (aLi), both agents will separately have a probability of 0.85
of hearing (observing) the tiger location correctly, an example is shown in equation 3.20.

O(〈oHL, oHR〉|〈aLi, aLi〉, sl) = 0.85 · (1− 0.85) (3.20)

The content of the reward function (R) is exhaustively shown in figure 1.
The optimal policy for a horizon of 3 (h = 3) consists of listening in the first two steps, and opening the
door on the opposite side of where the tiger was observed. If the two observations are contradictory,
e.g. an agent receives oHL and oHR, the agent performs the listen action again. The decision tree for
this policy is shown in figure 2.

aaa sl sr
〈aLi, aLi〉 -2 -2
〈aLi, aOL〉 -101 +9
〈aLi, aOR〉 +9 -101
〈aOL, aLi〉 -101 +9
〈aOL, aOL〉 -50 +20
〈aOL, aOR〉 -100 -100
〈aOR, aLi〉 +9 -101
〈aOR, aOL〉 -100 -100
〈aOR, aOR〉 +20 -50

Figure 1: The rewards for each joint action and
state combination in the DecTiger problem.

Figure 2: Dec-Tiger Optimal Policy Decision
Tree [40]

15

3.4 Macro Dec-POMDPs

Macro DecPOMDPs (MacDecPOMDPs) [17] are DecPOMDPs where the agents have policies of Macro-
Actions (also called Options [16]) instead of regular actions. These macro-actions allow the agents
to plan with one level of abstraction. I.e. it allows agents to abstract away details when making
a plan. These macro-actions control what “regular” actions (also referred to as primitive or ground
level actions) will be executed. Imagine baking a cake, a macro-action could be to add an egg to the
mixture, a ground level action could to pick up the egg, followed by another ground-level action which
cracks open the egg, etc. MacDecPOMDPs consist of the following: 〈I, S, T,R,O,M,Ω, Z, h〉, where
M and Z are the two added sets of macro components.

3.4.1 Macro Components

The letter mi is used to represent a macro-action of agent i and the capital letter Mi refers to the set of
macro-actions of agent i. Macro-actions consist of three parts (mi = (βmi , Imi , πmi)), the termination
function (βmi), the initiation set (Imi) and the policy (πmi). The termination function decides when
the current macro-action of an agent should stop executing (i.e. terminate). The termination function
does this by returning the probability of a given macro-action to terminate when reaching a given
history of ground level actions and observations (HA). Equation 3.21 shows the signature of the
termination function. The histories of ground level actions and observations (hAi) are identical to the
action-observation histories in DecPOMDPs.

βmi : HA
i → [0, . . . , 1] (3.21) Imi : HM

i (3.22)

πmi : HA
i ×Ai → [0, . . . , 1] (3.23)

The policy (πmi) of a macro-action mi of agent i determines what ground level macro-actions will be
taken. Such a policy is equivalent in structure to policies of DecPOMDPs, its signature is given in
3.23.
The initiation set (Imi) of a macro-actionmi of agent i contains all macro-action and macro-observation
histories (Imi ⊆ HA

i) that permit the agent to take that particular macro-action. I.e. before a macro-
action can be taken hAi ∈ Imi must hold. The signature of Imi is given in equation 3.22.
Macro-observations (zi) are observations where details irrelevant to the overarching goal are abstracted
away. ζ is the set of macro-observations (zi ∈ ζi). The macro-observation probability function (Zi)
uses the current macro-action and next state to determine the probability of observing the given macro-
observation. The function signature of the macro-observation probability function (Zi) is shown in
equation 3.24.

Zi : M × S × ζi → [0, . . . , 1] (3.24)

As the name implies, macro-action and macro-observation histories (shortened to macro-histories) are
histories consisting of the sequence of macro-actions and macro-observations that have been taken by
the agent. Equation 3.25 shows an example of a macro-history where the agent has taken 3 macro-
actions.

hMi = [m0
i , z

1
i ,m

1
i , z

2
i ,m

2
i , z

3
i] (3.25)

The amount of macro-actions taken in macro-histories does not have to be equal to the amount of
time-steps that have passed. This is because macro-actions can take multiple time-steps before they
terminate. Macro-actions also do not all have to take the same amount of time-steps to terminate.

16

Thus agents can have different amounts of macro-actions in their macro-histories at the same time-
step.
The overarching policy that determines what macro-actions an agent takes is called the macro-policy
(µi). Macro-policies use macro-histories (hMi) to determine what the probability of taking a macro-
action is. The signature of a macro-policy is given in equation 3.26.

µi : HM
i ×Mi → [0, . . . , 1] (3.26)

3.4.2 MacDecPOMDP Definition

This section consists of an overview of the components of MacDecPOMDPs. Every component in
MacDecPOMDPs is given and briefly described to give a birdseye overview of MacDecPOMDPs.
Model = 〈I, S, b0, T,R,O,M,Ω, Z, h〉 where;

I : the finite set of agents. e.g.: {1, 2, 3, 4, ...}

S : the set of states. e.g.: {state1, state2, ...}

b0 : the distribution of the initial states; S → [0, 1].

Ai : the set of actions for agent i. E.g. ai ∈ Ai.

T : the state transition probability function holds the probabilities of reaching any state s′ from
any state s by having the agents perform a ground-level joint action aaa.
(T : S ×A× S → [0, 1] and T (s′|s,aaa) = Pr(s′|s,aaa)).

R : the reward function. R(s,aaa) is the reward given for a joint ground-level action aaa when in a
state s. (R : S ×A→ R)

Ωi : the set of observations for agent i. E.g. oi ∈ Ωi.

O : the set of joint observation probability functions for the ground level holds the probabilities of
getting the joint observation ooo from reaching state s by having the agents perform a joint ground
action aaa. (O : A× S × Ω0 → [0, 1] and O(ooo|aaa, s) = Pr(ooo|aaa, s))

Mi : the set of macro-actions for agent i. Where mi ∈Mi and mi = (βmi , Imi , πmi).
Imi is the initiation set (Imi ⊆ HM

i), βmi is the termination function (βmi : HA
i → [0, 1]) and

πmi is the policy of macro-action mi (πmi : HA
i ×MA

i → [0, 1]).

ζi : the set of macro-observations for agent i. E.g. zi ∈ ζi.

Zi : the set of macro-observation probability functions for agent i holds the probabilities of getting
the observation zi when reaching state s′ by taking macro-action mi. (Zi : Mi × S × ζi → [0, 1]
and Zi(zi|mi, s

′) = Pr(zi|mi, s
′))

h : the problem horizon, the amount of steps (primitive actions executions), before the problem
terminates.

17

3.4.3 2-Agent Value Function

A MacDecPOMDP value function is given in the MacDecPOMDP paper [17], it is shown in equation
3.27. This value function is a 2-agent value function, meaning that it works for two agents.
In this value function the macro-actions that are being taken are given as inputs for the value function
(V µt (m1,m2, s)). The policies of these macro-actions are then used to determine the probabilities of
taking the ground-level actions. Although the execution of macro-actions often span multiple ground
level time-steps (t), the value function considers all ground level time-steps separately. This is the case
because the reward function takes ground-level actions as inputs, another reason is that the macro-
actions do not all terminate or start execution at the same ground level time-step.
There are two summations over observation probabilities (

∑
o1,o2

O(o1, o2|a1, a2, s) and
∑
o′1,o

′
2
O(o′1, o

′
2|a1, a2, s

′)),

section 4 explains that the first is not necessary. After determining the probabilities of taking the
ground level actions, the expected value of the next time-step over the states and next observations is
calculated. This is similar to how this is done in the DecPOMDP value function (equation 3.16), ex-
cept that the probabilities of taking new macro-actions and having macro-actions persist is calculated.
With two agents, there are four cases: both macro-actions terminate, m1 terminates, m2 terminates
and neither terminates. The probability of termination is determined by the termination function, thus
the probability of a macro-action persisting is equal to one minus the probability of it terminating. If
a macro-action terminates, a new macro-action (m′i) must be chosen. This is done by the macro-policy
(µi). Finally, if the next macro-actions are chosen or the old macro-actions have been determined to
persist, the next time-step is considered with these (new) macro-actions (V µt+1(m′1,m

′
2, s
′)).

This value function is further explained and built upon in chapter 4.

V µt (m1,m2, s) = ∑
o1,o2

O(o1, o2|a1, a2, s)
∑
a1,a2

πm1(o1, a1)πm2(o2, a2)[
R(s, a1, a2) +

∑
s′

T (s′|a1, a2, s)
∑
o′1,o

′
2

O(o′1, o
′
2|a1, a2, s

′)

(
βm1(o′1)βm2(o′2)

∑
m′1,m

′
2

µ1(o′1,m
′
1)µ2(o′2,m

′
2)V µt+1(m′1,m

′
2, s
′) (both terminate)

+ βm1
(o′1)(1− βm2

(o′2))
∑
m′1

µ1(o′1,m
′
1)V µt+1(m′1,m2, s

′) (agent 1 terminates)

+ (1− βm1(o′1))βm2(o′2)
∑
m′2

µ2(o′2,m
′
2)V µt+1(m1,m

′
2, s
′) (agent 2 terminates)

+ (1− βm1
(o′1))(1− βm2

(o′2))V µt+1(m1,m2, s
′)

)]
(neither terminates)

(3.27)

18

4 A Critical Analysis of the MacDecPOMDP Framework

The MacDecPOMDP framework discussed in background section 3.4 extends the DecPOMDP frame-
work to allow for a level of abstraction. This section’s purpose is to provide an analysis, which consists
of the following parts:

• A problem that arises from the current definition of macro-observations is shown.

• An example of a MacDecPOMDP that displays the above issue with macro-observations is shown.

• The definition of Macro-Observations is changed to address this problem.

• The base case of the value function is defined.

• The value function is made to incorporate ground-level histories.

• The value function is made to incorporate all macro components.

• The value function is generalized to work with an arbitrary amount of agents instead of two.

• This new value function is linked to Dec-POMDP value functions.

4.1 Macro-Observation Definition Issue

As it stands, Macro-observations in MacDecPOMDPs are defined just like regular observations. They
are both defined as a function from states and actions to observations as shown in background section
3.4.
This is formalized as follows:

Zi : Mi × S × ζi → [0, 1]

Where ζi represents the macro-observation, Mi represents the macro-action and S represents the state.

Defining Macro-observations this way, implies that the information gained from macro-observations
cannot necessarily be derived from just ground level observations or actions. This is because the macro-
observation probability function uses states to output a macro-observation probability. This may lead
to extra information because states cannot always be derived from action/observation histories.
The extra information that is provided by macro-observations can lead to misleading results. MacDecPOMDP
variants of DecPOMDP problems could be performing unreasonably well, because MacDecPOMDPs
could be made to give the solver extra information through macro-observations. This is shown in
section 4.2.
Thus to avoid this issue, it should be made impossible to garner information from macro-observations
that is not contained in the history of actions and observations.

19

4.2 Trivialized MacDec-POMDP Example

In this section, we will consider the Dec-Tiger example problem which was explained in background
section 3.3.1. We will show that by adding macro-observations, this problem can be trivialised. We
will see that adding macro-observations, as they are defined now, can give more information to the
agents than they would have without macro-observations. This example is provided to demonstrate
the issue laid out by section 4.1.

4.2.1 Problem Description

Although the Dec-Tiger problem was also explained in background section 3.3.1, the full modified
trivialized Dec-Tiger problem will be given for the convenience of the reader.
In the Dec-Tiger and the MacDecTiger problem, there are two rooms and two agents, one room contains
treasure, while the other room has a tiger. They both either pick one of two doors, or listen to one of
two doors for a tiger. Listening is an action, opening the left door is an action, and opening the right
door is an action. When both agents perform the listening action, an observation is transmitted to
both agents that says which door the tiger is behind. There is a 85% chance that the information in
this observation is correct.

4.2.2 Trivializing The Problem

This problem can be made ‘invalid’ or rather, extremely trivial by defining macro-observations that
contain more information than the ‘primitive’ observation. Here we do this by defining a macro-
observation that just tells the agents where the treasure is with certainty. This macro-observation
can then be used to select one of two macro-actions. One of these macro-actions picks the left door,
the other picks the right door. I.e. these macro-actions have a policy that only chooses the primitive
actions associated with opening the specified door. The whole point of the DecTiger problem is to
reason over what doors should be opened. Here this reasoning becomes extremely trivial because the
macro-observations just plainly state which door should be opened.
Thus, the only change is the addition of the macro-action (M) and macro-observation (ζ) components
as well as the macro-observation probability function (Z) and macro-policies (µ).

4.2.3 Formal Definition for Invalid-MacDec-Tiger

I : The two agents called 1 and 2 ({1, 2}).

S : The two states, state for having the tiger be at the left, and one for having the tiger on the
right. ({sl, sr})

A1,2 : The set of actions for both agents; Opening the left door, opening the right door, and listening.
({aOL, aOR, aLi})

Ω1,2 : This set denotes the possible observations, one for hearing the tiger at the left door, and one
for hearing the tiger at the right door. ({oHL, oHR)}

T : The transition function; when listening for a door, the state does not change. If an agent does
not listen, (and thus opens a door), the state is randomized (one of the two states is chosen).
See table 1.

20

Actions/Transition sl → sl sl → sr sr → sr sr → sl
< aLi, aLi > 1.0 0.0 1.0 0.0
otherwise 0.5 0.5 0.5 0.5

Table 1: Transition function for the trivialized MacDecTiger problem.

Actions/Reward sl sr
< aLi, aLi > -2 -2
< aLi, aOL > -101 +9
< aLi, aOL > +9 -101
< aOL, aLi > -101 +9
< aOL, aOL > -50 +20
< aOL, aOR > -100 -100
< aOR, aLi > +9 -101
< aOR, aOL > -100 -100
< aOR, aOR > +20 -50

Table 2: Reward function for the trivialized MacDecTiger problem.

R : Table 2 denotes the rewards given for every joint action.

O : Given the action and state, the odds of receiving each observation is given. See table 3.

sl sr
Actions/Observation oHL oHR oHL oHR
< aLi, aLi > 0.85 0.15 0.15 0.85
otherwise 0.5 0.5 0.5 0.5

Table 3: Observation function for the trivialized MacDecTiger problem.

ζ1,2 : The macro-observations for both agents; one for the tiger being behind the left door, and one
for the tiger being behind the right door. ({zl, zr})

M1,2 : The set of macro-actions for both agents. For each agent i, these macro-actions always terminate
after every step; βmi : HA

i → 1, they can be executed at any time; Imi : HM
i . The first macro-

action has a policy where the left door is always opened. The second macro-action has a policy
where the right door is always opened.

mi = (βmi , Imi , πmi)

Mi =

{
ml = (HA

i → 1, HM
i , π(al|any history) = 1 and π(ar|any history) = 0,

ml = (HA
i → 1, HM

i , π(ar|any history) = 1 and π(al|any history) = 0,

}
Z1,2 : The macro-observation probability function for both agents. If the tiger is behind the left

door, the corresponding macro-observation is sent. Similarly, if the tiger is at the right door, its
respective macro-observation is sent. See table 4.

21

sl sr
Actions/Observation zl zr zl zr
m ∈Mi 1.0 0.0 0.0 1.0

Table 4: Macro-Observation function for the trivialized MacDecTiger problem.

µ1,2 : The macro-policy of agent 1; if its macro-history ends with observing that the tiger is behind
the left door, then open the right door. If the tiger is observed to be behind the right door, then
open the left door. This is defined as follows, note that the default value is 0;

– µi(mr|{HM
i | last item zl}) = 1

– µi(ml|{HM
i | last item zr}) = 1

4.2.4 Discussion

In the non-macro variant, always opening a door cannot lead to a positive expected reward, the odds
of opening a door with the tiger and being severely punished for it is just too big. In the macro-action
case, the macro-observations will give away the location of the tiger with certainty, thus a reward of
+20 will be achieved in every round. This is because the macro-action that corresponds to the correct
door will always be chosen.
+20 is the maximum reward that can be given in a single round. This maximum reward is always
reached in this example.
Thus caused by the problem of not being sure whether to trust the observation is now completely triv-
ialized. To solve This, receiving ”extra” information about the state from macro-observations should
avoided.

4.3 Replacing States with Histories in the Macro-Observation Probability
Function

As it stands, the macro-observation function is defined as follows:

Zi : ζi ×Mi × S → [0, 1] (4.1)

To solve the issue of receiving ”extra” information about the state from macro-observations, the
state as a parameter of the macro-observation probability function must be removed. The next clos-
est thing to a state are the agent’s action/observation-histories. This also explains why agents use
action/observation-histories as the parameter in their policies.
This new observation probability function definition is formally written in equation 4.2. This new
macro-observation probability function will return the probability of any macro-observation z ∈ ζi to
occur, given macro-action m ∈Mi and ground level history hi ∈ HA

i .

Zi : ζi ×Mi ×HA
i → [0, 1] (4.2)

These macro-observations thus do not give the agents any information about the state that would
not be given by the action/observation histories. This is because the new definition (equation 4.2)
only differs in that states are replaced by an action/observation history.

22

4.4 Adding a Base Case to the Value Function

The 2-agent value function shown in section 3.4.3 does not have a base case. A base case is necessary
because eventually the last time-step to consider is reached and the next time-step does not need to
be calculated.
The last timestep is timestep h − 1, as horizon h denotes the amount of timesteps the problem has,
and timesteps are counted starting from 0. The base case consist of only the expected reward of the
current macro-actions. This is calculated by looping over every possible ground-level action and their
probabilities and multiplying their rewards. This is expressed in equation 4.3.

V µh−1(m1,m2, s
t) =

∑
a1,a2

πm1
(o1, a1)πm2

(o2, a2)R(s, a1, a2) (4.3)

4.5 Integrating Histories with the Value Function

As per the macro-action policy definition, macro-action policies are supposed to take ground level
histories as inputs. The ground level history is not used in the 2-agent value function. In this subsection,
the history is integrated into the 2-agent value function.
Histories are not included as parameters in the V µ function. This is rectified like so:

V µt (m1,m2, s)→ V µt (m1,m2, s, h
A
1 , h

A
2) (4.4)

The termination function (β) and the policies (π) do not use histories. Instead they just take an
observation as input. These two functions are however defined to use histories like so: πmi : HA

i ×Ai →
[0, 1] and βmi : HA

i → [0, 1]. Thus histories should be added to policies and termination functions.
These changes are written as follows:∑

a1,a2

πm1
(o1, a1)πm2

(o2, a2)→
∑
a1,a2

πm1
(a1|hA1)πm2

(a2|hA2)

βmi(o
′
i)→ βmi(h

A′
i)

There is an additional summation over the observations their probabilities of from the current time-
step. This observation presumably uses ground actions of the previous time-step, along with the
current state as inputs. This is written as follows:∑

o1,o2

O(o1, o2|a1, a2, s)

According to the paper that this 2-agent value function is from, these calculations were added to
simplify the value function [17]. In a value function of form of equation 4.4, this calculation is not
necessary. This is because the observation of time-step t is part of the history of time-step t, which is
already given as input of the value function. The probability calculation for these observations would
also be performed twice for each chosen observation, once in the current time-step and once in the one
after it. Thus, I choose to remove this part of the equation.

23

4.6 Integrating Macro-Observations and Macro-Histories

The 2-agent value function also does not incorporate all macro-components. Macro-histories and
macro-observations are not used. This is a problem because one of the main advantages of using
MacDecPOMDPs, is that the plans (macro-policies (µ)) can rely on histories of macro-observations
and macro-actions, and thus will not have to take every small ground level observation into account.
The macro-histories are not included as parameters in the V µ function. This is rectified like so:

V µt (m1,m2, s, h
A
1 , h

A
2)→ V µt (m1,m2, s, h

A
1 , h

A
2 , h

M
1 , hM2)

The regular components should be used in places where macro-observations or macro-histories are
used. For example, consider the macro-action policy µ; in the 2-agent value function it is used as
follows: ∑

m′i∈Mi

µi(m
′
i|o′i)

Even though it is defined as follows in section 3.4.1: µi : HM
i ×mi → [0, 1]. Thus to rectify this, the

macro-history hM ′i should be used instead of the regular observation o′i.
In order to construct this new macro-history, the current macro-action (mi) and a new macro-
observation (z′i) must be appended to the previous macro-history (hMi). The current macro-action
is already known, but the new macro-observation is not. Thus every new macro-observation must be
considered. This is done by summing over each possible next macro-observation and their probabilities.
This is written as follows: ∑

z′i∈ζi

Zi(z
′
i|mi, h

A′
i)

Implementing these changes results in the following notation in the case where agent 1’s macro-action
terminates and agent 2’s macro-action persists:

βm1(hA′1)(1− βm2(hA′2))
∑

m′1∈M1

µ1(m′1|o′1)V µt+1(m′1,m2, s
′, hA′1 , hA′2)

⇓

βm1(hA′1)(1− βm2(hA′2))
∑
z′1∈ζ1

∑
m′1∈M1

Z1(z′1|m1, h
A′
1)µ1(m′1|hM ′1 ,)V µt+1(m′1,m2, s

′, hA′1 , hA′2 , hM ′1 , hM ′2)

Where:
hM ′i = (hMi ,mi, z

′
i)

24

4.7 Generalizing the 2-Agent Value Function to n Agents

The value function shown so far only allows for 2 agents. MacDecPOMDPs however do not inherently
have this limit. Thus the value function should be adjusted to accommodate for arbitrary amounts of
agents.

4.7.1 n-Agent Value Function Parameters

First the value function parameters must be changed to allow for arbitrary amounts of agents. To
do this, joint variables will be used. Joint macro-actions, joint histories and joint macro-histories will
replace the separate ones. Joint variables are written in bold. This change is shown as follows:

V µt (m1,m2, s, h
A
1 , h

A
2 , h

M
1 , hM2)→ V µt (s,mmm,hhhA,hhhM)

As is the case in the original 2-agent value function, ground level actions are not given as inputs in
this function.

4.7.2 Component Generalization

In order to generalize the agent amount, it would be useful to be able to use joint ground-level actions
as inputs to policies. However, joint variables cannot be put into the policy function (π), this is because
the agents choose actions for themselves with what they themselves know. Thus a probability function
Pr(aaa|hhhA) is used to denote the probability of the joint action that is being taken.
This change is shown as follows:∑

a1,a2

πm1
(hA1 , a1)πm2

(hA2 , a2)→
∑
aaa∈A

Pr(aaa|hhhA)

This joint action probability function is defined using a product notation which is used to go through
all agents and multiply the probabilities of taking specific actions per agent. This is written as follows:

Pr(aaa|hhhA) =

(∏
i∈I

πmi(h
A
i , ai)

)
The reward-, observation- and transition functions do accept joint variables, thus joint variables are
passed into these functions. This is written as follows:

R(s, a1, a2) +
∑
s′∈S

T (s′|a1, a2, s)
∑

o′1∈Ω1,o′2∈Ω2

O(o′1, o
′
2|a1, a2, s

′)

⇓

R(s,aaa) +
∑
s′∈S

T (s′|s,aaa)
∑
ooo′∈Ω

O(ooo′|aaa, s′)

25

4.7.3 Superset of Terminating Agents

All cases of terminating macro-actions must be considered. To this end, the powerset of the set of
agents is used IT ∈ 2I (e.g. 2{1,2} = {{}, {1}, {2}, {1, 2}}). IT represents the set of terminating agents
that is being considered. For each of these cases, different calculations are necessary. In the 2-agent
value function, each of these cases are summed over separately like so:

(both terminate) + (1 terminates) + (2 terminates) + (neither terminate)

Here we will sum over these cases using the summation notation like so:∑
IT∈2I

The calculation of each of these cases consists of three parts, the termination calculation, the macro-
action and macro-observation calculations and the recursive calls.
The termination calculation is done like so:∏

i∈IT

βmi(h
A′
i)

∏
i∈I\IT

(
1− βmi(hA′i)

)
The first product calculates the combined probability of the agents to terminate their macro-actions,
and the second product calculates the probability of the remaining agents to not terminate their macro-
actions.
The value function must consider every possible macro-observation and macro-action for each agent
with terminating macro-actions. This is done using the following expression:∑

zzz′IT
∈ζIT

∑
mmm′IT

∈MIT

zzz′IT and mmm′IT are joint variables for only the agents with terminating macro-actions. The probabilities
of choosing these macro-actions and macro-observations are expressed like so:

Pr(zzz′IT |mmmIT ,hhh
A′
IT)Pr(mmm′IT |hhh

M ′
IT)

Where both Pr(zzz′IT |mmmIT ,hhh
A′
IT

) and Pr(mmm′IT |hhh
M ′
IT

) are defined as products of the macro-observations

(Z(z′i|mi, h
A′
i)) and macro-action probabilities from the macro policy (µi(m

′
i|hM ′i)) respectively for the

terminating agents (IT).
The recursive call to the value function contains the new joint macro-action and macro-histories, this
is expressed like so:

V µt+1(s′,mmm′,hhhA′i ,hhh
M ′)

Do note that mmm′ and hhhM ′ includes the macro-actions and macro-histories of the previous time-step,
for the agents with macro-actions that had not terminated. Refer to section 4.8.1 for a more precise
explanation.

26

4.8 Mac-DecPOMDP Value Function

In this section new value function is shown in its entirety.

4.8.1 Notation Comments

The timestep after t is t+ 1 this continues until t ≥ h, h denotes the amount of time-steps we evaluate
the policy for. Thus t counts the amount of timesteps the evaluation has calculated for, and not
the amount of timesteps left. The apostrophe (x′) is used to denote the next (t + 1) (macro-)action,
(macro-)observation or (macro-)history.
The upcoming histories are equal to the previous history, appended by the current (macro-)action and
upcoming (macro-)observation. This is written like so:

hA′i = [hAi , ai, o
′
i]

hM ′i = [hMi ,mi, z
′
i]

To reiterate; If the macro-action of agent i does not terminate, the macro-history remains the same:
hM ′i = hMi .

4.8.2 Value Function

V µt (s,mmm,hhhAi ,hhh
M
i) =

∑
aaa∈A

Pr(aaa|hhhA)

[
R(s,aaa) +

∑
s′∈S

T (s′|s,aaa)
∑
ooo′∈Ω

O(ooo′|aaa, s′)

∑
IT∈2I

∏
i∈IT

βmi(h
A′
i)

∏
i∈I\IT

(
1− βmi(hA′i)

) ∑
zzz′IT
∈ζIT

Pr(zzz′IT |mmmIT ,hhh
A′
IT)

∑
mmm′IT

∈MIT

Pr(mmm′IT |hhh
M ′
IT)V µt+1(s′,mmm′,hhhA′i ,hhh

M ′)

]
(4.5)

Base case (t = h− 1):

V µh−1(s,mmm,hhhAi ,hhh
M
i) =

∑
aaa∈A

Pr(aaa|hhhA)R(s,aaa) (4.6)

Where:
Pr(aaa|hhhA) =

∏
i∈I

πmi(ai|hAi)

Pr(zzz′IT |mmmIT ,hhh
A′
IT) =

∏
i∈IT

Z(z′i|mi, h
A′
i)

Pr(mmm′IT |hhh
M ′
IT) =

∏
i∈IT

µi(m
′
i|hM ′i)

27

4.9 Linking the New MacDecPOMDP Value Function to Other Value Func-
tions

In this section, the MacDecPOMDP value function (equation 4.5) will be linked to Dec-POMDP value
functions. This is done to better understand the MacDecPOMDP value function. In order to help
with this, the MacDecPOMDP value function should be rewritten to make the link with the Dec-
POMDP more clear. Thus the MacDecPOMDP will be rewriten. Afterwards the link between the
value functions will be explained. The reason that there are two value function formulations is that
the formulation of section 4.8.2 was derived from the 2-agent value function and was thus made to
resemble the 2-agent value function. The value function of this section is made to resemble the value
functions that it is compared to.

4.9.1 Value Function Rewrite Formulation

The rewrite of the MacDecPOMDP value function is given in this section. An explanation of this
rewrite, which includes an explanation of how termination and persistence of macro-actions is checked
(as seen in

∏
{i∈I|mi terminates} and

∏
{i∈I|mi persists}), will be given in section 4.9.2.

V µt (s,mmm,hhhA,hhhM) =
∑
aaa∈A

Pr(aaa|mmm,hhhA)

[
R(s,aaa) +

∑
s′∈S

∑
ooo′∈Ω

Pr(s′, ooo′|s,aaa)

∑
z′z′z′∈
∗
ζ

∑
m′m′m′∈M

Pr(z′z′z′,m′m′m′|mmm,hhhA′,hhhM ′, s′)V µt+1(s′,m′m′m′,hhhA′,hhhM ′)

]
(4.7)

Where:
Pr(aaa|mmm,hhhA) =

∏
i∈I

πmi(h
A
i , ai) (4.8)

Pr(z′z′z′,m′m′m′|mmm,hhhA′,hhhM ′, s′) =
∏

{i∈I|mi terminates}

βmi(h
A′
i)Zi(z

′
i|mi, h

A′
i)µi(h

′M
i ,m′i)

∏
{i∈I|mi persists}

{
(1− βmi(hA′i)) If m′i = mi

0 Otherwise

(4.9)

Pr(s′, o′|s, a) = T (s′|s, a)O(o′|a, s′) (4.10)

Base case (t = h− 1):

V µh−1(s,mmm,hhhA,hhhM) =
∑
aaa∈A

Pr(aaa|mmm,hhhA)R(s,aaa) (4.11)

28

4.9.2 Explanation of this Rewrite

The state and ground level observation are grouped into one:

Pr(s′, o′|s, a) = T (s′|s, a)O(o′|a, s′)

The calculation of the probability of the joint ground level action to be taken is also grouped into a
single probability function like so:

Pr(aaa|mmm,hhhA) =
∏
i∈I

πmi(ai|hAi)

Another change is that the whole calculation of any subsequent macro-action and macro-observation
pair is abstracted away like so:

Pr(z′z′z′,m′m′m′|mmm,hhhA′,hhhM ′, s′) =
∏

{i∈I|mi terminates}

βmi(h
A′
i)Zi(z

′
i|mi, h

A′
i)µi(h

′M
i ,m′i)

∏
{i∈I|mi persists}

{
(1− βmi(hA′i)) If m′i = mi

0 Otherwise

If the agent’s macro-action does not terminate, the macro-action must not change. Thus a check must
be made to eliminate cases where the macro-action does change when it should not.

And finally, the approach of using a powerset notation to determine which agents terminate their
macro-actions is changed. Instead, the information within the joint macro-observation is used to

determine which agents terminate. This is made possible by introducing a
∗
ζ set, which contains every

element of ζ, along with the addition of null-observations for each agent. These new null-observations
signify that the last macro-action of that specific agent has not terminated. In the powerset notation
approach (section 4.7.3), there are no macro-observations that follow a persisting macro-action, thus
all that is done here is filling this void by adding a macro-observation that signifies macro-action
persistence. Thus, if the macro-action of agent i persists, the next macro-observation will equal null
(z′i = null). ∑

z′z′z′∈
∗
ζ

∑
m′m′m′∈M

If the next macro-action terminates, the next macro-observation will not equal null (z′i 6= null). The
effect on the macro-action-observation history (hMi) is thus merely that sometimes, the history can
end with a null-observation (when the macro-action persists). There will not be null-observations
at any other point in the history, as null-observations are replaced with regular (non-null) macro-
observations when the last macro-action in this history does terminate. The macro-action-observation
histories (hM) thus still will not have a fixed length with respect to t (unlike the ground level action-
observation histories (hA)).
The base case is calculated in exactly the same way. Except that the Pr(aaa|mmm,hhhA) notation instead of
the

∏
i∈I Pr(ai|mi, h

A
i) notation is used for the action probability calculation. This is written like so:

V µh−1(s,mmm,hhhAi ,hhh
M
i) =

∑
aaa∈A

Pr(aaa|mmm,hhhA)R(s,aaa)

29

4.9.3 The Link Between Value Functions

The value functions 3.4.2 and 4.1.3 from the book ’A Concise Introduction to Decentralized POMDPs’
[40] will be used in this section. Here the connection between these two value functions and value
function (equation 4.7) above will be explained.
The two value function equations (3.4.2 & 4.1.3) do however assume deterministic policies. Thus the
value function (equation 4.7) and its base case (equation 4.11) must be rewritten to account for that.
This is done by first redefining the policies like so:

πmi : HA
i ×Ai → [0, 1]

⇓

πmi : HA
i → Ai

Now that the policies are deterministic, it is no longer necessary to loop over all possible joint ground
level actions, as only the macro-action that the policy dictates will be taken. E.g.

∑
aaa∈A Pr(aaa|mmm,hhhA) in

equation 4.7 and Pr(aaa|mmm,hhhA) in equation 4.11 are no longer necessary. Instead, the ground level action

can be determined directly through the new deterministic policies
(
aaa =

[
π(hA1), π(hA...), π(hA|I|)

])
.

Thus equation 4.7 now looks like so:

V µt (s,mmm,hhhA,hhhM) = R(s,aaa) +
∑
s′∈S

∑
ooo′∈Ω

Pr(s′, ooo′|s,aaa)∑
z′z′z′∈
∗
ζ

∑
m′m′m′∈M

Pr(z′z′z′,m′m′m′|mmm,hhhA′,hhhM ′, s′)V µt+1(s′,m′m′m′,hhhA′,hhhM ′) (4.12)

With base case:
V µh−1(s,mmm,hhhA,hhhM) = R(s,aaa) (4.13)

Equation 3.4.2

Equation 3.4.2 from [40] is shown in equation 4.14. Do note that the equations from the book are
written here using the notation used in this thesis. E.g. joint actions are written in bold for equations
cited from the book.

V π(s,hhh) = R(s, π(hhh)) +
∑
s′∈S

∑
ooo′∈Ω

Pr(s′, ooo′|s, π(hhh))V π(s′,hhh′) (4.14)

with the following as base case:

V π(sh−1,hhhh−1) = R(sh−1, π(hhhh−1)) (4.15)

The hhh represents the joint observation history of the agents instead of a joint action-observation history.
This is because the actions between observations in a history can be determined with certainty because
deterministic policies are used here. Histories are fed into policies π to retrieve a joint action aaa. I.e.:

π(hhh) = aaa

30

Thus, substituting aaa into this value function yields the following:

V π(s,hhh) = R(s,aaa) +
∑
s′∈S

∑
ooo′∈Ω

Pr(s′, ooo′|s,aaa)V π(s′,hhh′) (4.16)

with the following as base case:

V π(sh−1,hhhh−1) = R(sh−1, aaah−1) (4.17)

Equation 4.1.3

Equation 4.1.3 from [40] is as follows:

V (s, qτ) =

{
R(s,aaa) if t = h− 1,

R(s,aaa) +
∑
s′∈S

∑
ooo′∈Ω Pr(s

′, ooo′|s,aaa)V (s, qτ ⇓o) otherwise
(4.18)

A different notation is used here for the separation of the recursive and base cases. For completeness
sake, this function can be rewritten like so:

V (s, qτ) = R(s,aaa) +
∑
s′∈S

∑
ooo′∈Ω

Pr(s′, ooo′|s,aaa)V (s, qτ ⇓o) (4.19)

with the following base case:
V (sh−1, qτ) = R(sh−1, aaah−1) (4.20)

In equation 4.1.3, qτ represents a sub-tree policy. The progression through this policy, by assuming that
joint observation ooo is encountered, is represented like so: qτ ⇓o. qτ implicitly contains the information
for both the histories, as well as the policies.

Connection

We can see that all three equations (MacDecPOMDP Value Function, equation 3.4.2 and 4.1.3) consist
of first calculating:

R(s,aaa) +
∑
s′∈S

∑
ooo′∈Ω

Pr(s′, ooo|s,aaa)

This is followed by performing a recursive call. The only difference here is that equation 4.7 also
contains the calculations for macro-actions/observations;∑

z′z′z′∈
∗
ζ

∑
m′m′m′∈M

Pr(z′z′z′,m′m′m′|mmm,hhhA′,hhhM ′, s′)

We can also see that the base cases for all three equations consist of just returning the reward for the
given joint action at the last time-step; R(sh−1, aaah−1).
Finally, all three equations have a state and some form of histories and policies information in their
value function calls. In equation 4.7 the histories/policies are represented by mmm, hhhA and hhhM . In
equation 3.4.2, the policies/histories are represented by π and hhh, and finally in equation 4.1.3, this is
represented by qτ .

31

4.10 Limited Abstraction

Abstraction is a core principle of this thesis. This is particularly clear in the research question:

(2) How can we extend the Mac-Dec-POMDP model to higher levels of abstraction?

Unfortunately, MacDecPOMDPs only supports a single level of abstraction. To achieve higher
levels of abstraction, e.g. macro-actions that have policies for other macro-actions, etc, another model
is needed. This is what the Hierarchical MacDecPOMDP model described in chapter 5 provides.

32

5 Hierarchical MacDec-POMDP

This chapter answers the following research question taken from section 1.5;

How can the MacDecPOMDP Framework be extended to higher levels of abstraction?

In order to add layers of abstraction of planning to MacDecPOMDPs, the model must be extended.
Extending the model is not trivial, thus a new recursively hierarchical variant of the MacDecPOMDP
model (H-MacDecPOMDP) will be given in this section. This is a model with an arbitrary amount
of abstraction levels in its hierarchy. This model uses macro-actions, which are actions that exe-
cute a lower level policy when the macro-action is taken. This makes macro-actions in Hierarchical
MacDecPOMDP different to those in MacDecPOMDP, as MacDecPOMDP have policies that plan
over ground-level actions, instead of other macro-actions. The arbitrary amount of abstraction levels
is achieved by allowing macro-actions to contain policies of other lower level macro-actions which them-
selves consist of policies of even lower level macro-actions. The lowest level of macro-actions will then
lead to the execution of ground level actions. Section 7.1 provides an example of an H-MacDecPOMDP
which can be used to help understand the model presented in this chapter (5). This section contains
the following:

• A conceptual explanation of abstraction in Hierarchical MacDecPOMDPs.

• A definition of Hierarchical MacDecPOMDPs.

• An explanation of Hierarchical MacDecPOMDPs and its value function.

• A proof of correctness for the H-MacDecPOMDP value function.

5.1 Conceptual Idea

Human planning is often done explicitly in different levels of abstraction. For example, consider a plan
for a holiday trip. First on the highest abstraction level, the decision is made to plan the trip, this is
done using a history of macro-observations and macro-actions in their own personal life. An example
of such macro-observations is noticing that they are often tired while having sufficient sleep and thus
construing the macro-observation that they are overworked.
In this human example, ground-level observations would be observations gathered from human senses;
i.e. smell, touch, sight, kinesthetic, hearing or taste. While macro-observations would be observed by
looking at the history of lower level observations (or actions).
After the decision to go on a trip is made, i.e. after inserting the high level history containing the
’overworked’ macro-observations into a top-level policy and choosing the macro-action to go on a
holiday; The main holiday activity is chosen such as skiing or lying on the beach. These decisions
are also made using a history of macro-observation/actions(s) such as noticing that the last time they
chose a particular type of holiday, it was effective in replenishing their motivation or happiness. Then
to go down further in plan abstractions, the duration of the holiday is chosen, the location and all the
activities are chosen. Then comes the logistics, and the plan of leaving for this holiday which involves
moving to the correct locations and interacting with other people is executed. This would lead to the
ground level plan of moving muscles and perceiving human senses.
Every task here has its own subtasks, it seems to be a naturally recursive process. This recursive
planning process is what we aim to emulate using the H-MacDecPOMDP model.

33

5.2 Abstraction Levels

To better understand the notion of multiple abstraction levels, we should take a closer look at abstrac-
tion levels in Dec-POMDPs and MacDecPOMDPs.

(a) DecPOMDPs (b) Mac-DecPOMDPs

Figure 3: Overview of the (lack of) abstraction levels.

This thesis uses l to denote the amount of abstraction levels a model. Not every level is an
abstraction level. A MacDecPOMDP has 3 levels, of which 1 abstraction level (l = 1). As shown
in figure 3a, there are no levels of abstraction between the top and ground level in DecPOMDPs
(l = 0). The actions are chosen using a top level policy of ground level actions. As shown in figure 3b,
Mac-DecPOMDPs have one level of abstraction (l = 1) as macro-actions have policies which choose
ground-level actions. H-MacDecPOMDPs can have unlimited levels of abstraction, as macro-actions
recursively have policies leading to other macro-actions until ground-level actions are reached. This is
shown in figure 4.

Figure 4: Overview of the of abstraction levels in H-MacDecPOMDPs (l = 5). (1) shows an example
of the state of the abstraction levels during execution. And (2) shows the more general descriptions

of the abstraction levels.

34

5.3 Macro Action Termination

Figure 5: Overview of the macro-action
termination. The cross represents
macro-action termination, and the

checkmark represents non-termination.

Macro-actions in abstraction levels do not execute indef-
initely. If they did, all of the abstraction levels above it
would become meaningless. For example, when on a holi-
day, you might walk on the beach, but you do not do this
forever. Eventually you stop and grab dinner, or go on
to do another activity. The macro-action of walking on
the beach eventually terminates, and the abstraction level
above it should be used to choose a new macro-action.
Termination of macro-actions cannot happen arbitrarily.
Thus it is impossible for a macro-action to terminate while
macro-actions in levels below it do not terminate. Intu-
itively, the reason for that design choice is that subtasks
(lower level macro-actions) that are meant to complete a
macro-action, are no longer relevant when a higher level
macro-action does not need to be completed anymore or
has already been completed.
Thus termination happens in a bottom-to-top fashion, as
shown in figure 5. In every timestep, the first level macro-
action checks whether it should terminate based on the ac-
tions and observations on the level below. If it does not
terminate, no other macro-action can terminate. If it does
terminate, we must recursively consider the abstraction lev-
els above until we reach an abstraction level on which the
macro-action does not terminate. This always happens be-
cause the top level macro-action never terminates. This
whole system of termination is walked through in every
timestep of planning and executing policies.
The ground level action always terminates because it al-
ways takes one time-step to complete. This action is akin
to taking a step or saying a word in a real world example.

5.4 Higher Level Histories

The histories of the ground level are not different from those in DecPOMDPs. However, the histories
on levels above the ground level are different, as they do not exist in DecPOMDPs. Macro-histories
contain macro-actions and macro-observations instead of ground-level actions and observations. The
higher level histories are shorter (or equal in length if each macro-action leads to a single action on the
level below). It is impossible within an agent, for a higher level history to be longer than a history of
a level under it. Although there are differences in length, i.e. amount of macro-actions/observations
per abstraction level, the amount of ground level time-steps that have passed between these histories
remains equal. This can also be seen in 6.
The macro-observations after each macro-action depend on the histories up till that point of time
of the level under it. Thus it is only the observations on the ground level that directly depend on
the underlying state. Because the macro-observations only depend on the history under this macro-
observation, macro-observations only indirectly depend on the state of the environment.

35

Figure 6: Overview of histories for an agent. Each layer represents a
(macro-)action-(macro-)observation history. Each rectangle/square represents a (macro-)action,

while each border between two rectangles/squares represents a (macro-)observation.

You may have noticed in figure 6 that the top level macro-action never terminates. This is because
the top level macro-action is more or less just a top-level policy. An example of a history of abstraction
level j and agent i is given in equation 5.1, here θ0

i and θ1
i are respectively equivalent to hAi and hMi

of MacDecPOMDPs. θ is used instead of h to avoid confusion with the horizon of the problem (h).

θj′i = [θji ,m
j
i , z

j′
i] (5.1)

5.5 Utilizing null-Observations for Termination

Figure 7: An overview of the initial
history (θθθstart), with l = 3.

Similar to the approach in section 4.9, null observations
are used to denote that the last macro-action has not ter-
minated. However, in H-MacDecPOMDPs null can also
be found at the end of a history. Adding the null ob-
servations to histories enables histories to signify macro-
action persistence. This simplifies the transformation from
H-MacDecPOMDPs to DecPOMDPs described in chapter
6. It also allows the calculations of the value function re-
lating to actions and macro-actions to be grouped, which
in turn leads to a simpler formulation.
As became apparent in section 5.4, the top level macro-
action never terminates and is always present. Thus the
history the value function is initially executed with; the
initial history, consists of an empty joint history for every
level, except for the top level (level l+1). This level will al-
ways contain the macro-action which contains the top level
policy, which was called µ in MacDecPOMDPs. This top
level macro-action is also always non-terminating, thus it
is always unchanged and followed by a null-observation.

36

5.6 Full Formal Definition

This section consists of the formal definition of H-MacDecPOMDPs. Every component in H-MacDecPOMDPs
are given and briefly described. Model = 〈I, S, b0, T,R,O,M,Ω, Z, h, l〉 where;

I : the finite set of n agents. e.g.: {1, 2, 3, ...n}

S : the set of states. e.g.: {state1, state2, ...}

b0 : the distribution of the initial states; S → [0, 1].

T : the state transition probability function holds the probabilities of reaching any state s′ from
any state s by having the agents perform a ground-level joint action aaa.
(T : S ×A× S → [0, 1] and T (s′|s,aaa) = Pr(s′|s,aaa)).

R : the reward function. R(s,aaa) is the reward given for a joint ground-level action aaa when in a
state s. (R : S ×A→ R)

O : the set of joint observation probability functions for level 0 holds the probabilities of getting
the joint observation ooo from reaching state s by having the agents perform a joint ground action
aaa. (O : A× S × Ω0 → [0, 1] and O(ooo|aaa, s) = Pr(ooo|aaa, s))

M j
i : the set of (macro)-actions for agent i on level j. Where mj

i ∈M
j
i .

– Macro-actions consist of three parts: mj
i = (βmji

, Imji , πmji) ∈M
j
i

Imji The initiation conditions, the set of macro-action/observation histories in which the

corresponding agent (i) must be to start performing macro action mj
i . (Imji ⊆ H

j
i)

βmji
The termination conditions, the probability of terminating a running macro-action,

given θj−1
i on agent i and level j (βmji

: Hj−1
i → [0, 1]).

πmji
The action policy of a macro-action on agent i and level j. I.e. the probability of taking

an action given a history of actions and observations. (πmji
: Hj−1

i ×M j−1
i → [0, 1])

Ωji : the set of (macro)-observations for agent i on level j. E.g. zji ∈ Ωji .

If an asterisk is put above such a set (e.g.
∗
Ω), then null is included in the sets of observations in

its abstraction/top levels. Thus for
∗
Ω: ∀

i∈I,j∈{1,...l+1}
null ∈

∗
Ωji holds.

Zji : the set of observation probability functions for level j (> 0) on agent i holds the probabilities

of getting the observation zji from history θj−1
i .

(Zji : Hj−1
i ×M j

i × Ωji → [0, 1] and Zji (zji |m
j
i , θ

j−1
i) = Pr(zji |m

j
i , θ

j−1
i))

h : the problem horizon, the amount of steps (primitive actions executions), before the problem
terminates.

l : the amount of abstraction levels in the macro-action/observation hierarchy. As written in
section 5.2, l excludes both the ground level (level 0), and the top level (l + 1). There are thus
l+ 2 levels in total. L represents the set of all levels from 0 up to and including l (L = {0, ..., l}),
i.e. all levels excluding the top level.

37

5.6.1 Histories and Outer Level Macro-actions

Histories in H-MacDecPOMDPs are similar to those in MacDecPOMDPs, except numbers are used
instead of letters to denote the levels, E.g. H0 = HA. And as discussed in section 5.5, at most a single
null observation can be present in macro-histories (histories of all levels except the ground level). If a
null-observation is present, it can only be at the end of a macro-history.
The top level macro-action and the ground level action have trivial initiation and termination sets.
The top and ground level actions can be initiated from all histories (Iml+1

i
= H l+1

i for all agents i).

The ground level actions always terminate (βm0
i
→ 1 for all agents i). The ground level action has a

trivial policy which only executes its ground level action in the environment.

5.6.2 Notation Comments

There are two useful ways to group (macro-)actions, (macro-)observations and (macro-)histories,
namely by agent or by levels. To reiterate; prefix joint is used to refer to grouping all these elements
for all agents, e.g. m1 is the level 1 joint macro-action, or in other words; the selected macro-actions
for every agent on level 1.
The stack suffix is used to refer to grouping elements for every level, e.g. m1 is the action stack of
agent 1, or in other words; the selected macro-actions for every level of agent 1.
Finally, these two terms can also be combined. When the two are combined, the bold notation is
used to accentuate that the element is a joint stack. The joint and stack prefixes can also be used for
(macro-)observations and (macro-)histories. The same notation can also be used for their sets, e.g.
M2 is the set of level 2 joint macro-actions.

m0 = aaa (5.2) z0 = ooo (5.3)

The bold notation is also used for joint ground level actions (aaa) and observations (ooo), where aaa = m0

and ooo = z0. As the ground level actions and observations can be represented using the letters a and o
respectively as shown in equations 5.2 and 5.3. Refer to equations 5.4, 5.5 and 5.6 for examples of a
joint stack macro-actions, a joint macro-action and a macro-action stack respectively.

mmm =

∣∣∣∣∣∣∣∣
m3

1 m3
2 m3

3

m2
1 m2

2 m2
3

m1
1 m1

2 m1
3

m0
1 m0

2 m0
3

∣∣∣∣∣∣∣∣ (5.4)
m1 =

∣∣m1
1 m1

2 m1
3

∣∣ (5.5)
m2 =

∣∣∣∣∣∣∣∣
m3

2

m2
2

m1
2

m0
2

∣∣∣∣∣∣∣∣ (5.6)

5.7 Value Function Overview

In order to check the effectiveness of the chosen policies of the agents, a value function is needed to
evaluate policies. This value function should take the state of the world, the histories so far and the
policies of the agents as inputs. With this information the value function will return the expected
value of the policies of the model. The state is needed so that the effects and rewards of the actions
of the agents can be evaluated. The histories are needed to determine what actions will be chosen
according to the policies of the agents.

38

5.7.1 Overview Explanation

Figure 8: High-level overview of the execution of a single time-step in a H-MacDecPOMDP Value
Function.

The value function explained in this chapter (equation 5.8) will calculate the expected value which
consists of the probability-adjusted sum of all (future) rewards. In each time-step the same calculations
will recursively perform until the final timestep (h− 1) that we want to consider is reached. Thus the
calculation of a single time-step in the value function boils down to the following (equation 5.7):

V alue(state,histories) = (For every joint-action-stack

calculate its probability

× (the reward given by taking this action)

+ For every resulting state

and each resulting joint-observation-stack,

calculate their probabilities

× the expected value of the next time-step)

(5.7)

The base case of this value function is identical to that of the MacDecPOMDP value function.
A diagram for the overview of the value function can be found on figure 8 and 9. The inner workings
of this value function will be thoroughly explained in sections 5.8 to 5.12, the figure will then also be
thoroughly explained. The value function for Hierarchical H-MacDecPOMDPs is shown here (5.8):

V πt (s,θθθ) =
∑
mmm∈M

Pr(mmm|θθθ)

R(s,aaa) +
∑
s′∈S

T (s′|s,aaa)
∑
zzz′∈
∗
Ω

Pr(zzz′|θθθ,mmm, s′)V πt+1(s′, θθθ′)

 (5.8)

Each phase of figure 8 corresponds to a number of the lines of equation 20. Each phase is matched
with a part of equation 5.7 below. Aside from this, the link between these phases and the parts of the
actual value function is also be shown here. Once again, note that the details of these equations will
be explained in sections 5.8 to 5.12.

• Start: V aluet(state,histories): V πt (s,θθθ)

• Action Selection Phase: For every joint-action-stack calculate its probability:
∑
mmm∈M Pr(mmm|θθθ)

• Reward Phase: × the reward given by taking this action: R(s,aaa)

• State Transition Phase: For every resulting state:
∑
s′∈S

• Observation Processing Phase: and each resulting joint-observation-stack,:
∑
zzz′∈
∗
Ω

• For both the state and observation Phases: calculate their probabilities: T (s′|s,aaa)Pr(zzz′|θθθ,mmm, s′)

• End: × the expected value of the next time-step: V πt+1(s′, θθθ′)

39

F
ig

u
re

9:
T

h
is

d
ia

gr
am

sh
ow

s
an

ov
er

v
ie

w
of

th
e

ex
ec

u
ti

o
n

o
f

a
si

n
g
le

ti
m

e-
st

ep
in

th
e

H
-M

a
cD

ec
P

O
M

D
P

va
lu

e
fu

n
ct

io
n

.
In

th
is

ca
se

th
er

e
ar

e
3

ab
st

ra
ct

io
n

le
ve

ls
(l

=
3)

w
h

er
e

fo
r

a
n

a
g
en

t
i,

fi
rs

t
a
b

st
ra

ct
io

n
la

ye
r

o
n

e
a
n

d
tw

o
te

rm
in

a
te

,
a
n

d
la

te
r

ju
st

th
e

fi
rs

t
te

rm
in

at
es

.
T

h
e

m
in

u
s

su
p

er
sc

ri
p

t
(e

.g
.
m

1
−
i

)
d

en
o
te

s
th

a
t

th
e

(m
a
cr

o
-)

a
ct

io
n

is
fr

o
m

th
e

p
re

v
io

u
s

(t
im

e-
)s

te
p

.

5.8 Action Selection Phase

In the Action Selection Phase, all joint action stacks are looped over. This is shown in equation 5.9.∑
mmm∈M

Pr(mmm|θθθ) (5.9)

To reiterate; a joint action-stack, written as mmm, represents a configuration of (macro-)actions that
are chosen for each level and each agent. In figure 10, the right rectangle is meant to represent a joint
action-stack, the action-stacks of the other agents in this figure can be imagined as being ‘behind’ the
action-stack of agent i. The i ∈ I expression should help make this more clear, as I represents the set
of agents, which are numbered starting from 1.
The probability of executing a joint action stack is calculated using equation 5.10. Here we can see
that the probabilities of actions for every agent and every level are multiplied together.

Pr(mmm|θθθ) =
∏
i∈I

∏
j∈L

Pr(mj
i |θ

j
i ,m

j+1
i) (5.10)

In order to calculate the probability of taking a macro-actions, equation 5.11 is used.

Pr(mj
i |θ

j
i ,m

j+1
i) =

1 If zji = null ∧mj

i = mj,t−1
i

πmj+1
i

(mj
i |θ

j
i) Else if zji 6= null ∧ θji ∈ Imji

0 Otherwise

(5.11)

Figure 10: An Overview of the Action Selection Phase with agent 0 and lT0 = 2, excluding the
probability calculations.

41

The minus symbol (−) in the superscript of (macro-)actions in figure 10 denotes that it is from
the previous time-step. Macro-actions m4−

i and m3−
i persist (i.e. do not terminate). Thus these

macro-actions must also be used in the current time-step. This is reflected in the first case of equation
5.11, where the probability of taking a macro-action equals 1 when the macro-action persists. This
can also be seen in figure 10, here m4−

i and m3−
i are reused.

Recall that persisting macro-actions are followed by null-observations. The rest of the (macro-)actions
must then be considered. All terminating macro-actions must be followed by a macro-action that
adheres to the initiation set constraint (Imji) which is also present in MacDecPOMDPs. Recall that

this constraint states that the current history must be an element of the initiation set of the chosen
macro-action (θji ∈ Imji). If any macro-action does not adhere to either of these cases, the chosen joint

action stack is invalid. Invalid macro-actions have a probability of 0 to occur, because in the third
case of equation 5.11 multiplies the probability with 0.

5.9 Observation Processing Phase

Similarly to the action selection phase, the observation processing phase loops over all possible joint
observation-stacks and their probabilities of occurring. This is expressed in equation 5.12.∑

zzz′∈
∗
Ω

Pr(zzz′|θθθ,mmm, s′) (5.12)

This probability is calculated using equation 5.13.

Pr(zzz′|θθθ,mmm, s′) = O(ooo′|aaa, s′)
∏
i∈I

∏
j∈{1,...,l}

Pr(zj′i |m
j
i , θ

j−1′
i) (5.13)

Here the probability of the ground level joint observation to occur is first calculated using O(ooo′|aaa, s′).
This is also shown in figure 11 for observation o0′

i , but here it must be remembered that the ground
level observations of the other agents is also put into O(ooo′|aaa, s′).
Afterwards, this probability is multiplied with the probabilities of all other macro-observations for each
agent and each abstraction level. The probability of a macro-observation to occur is calculated using
equation 5.14.

Pr(zj′i |m
j
i , θ

j−1′
i) =

1 If zj−1′

i = null ∧ zj′i = null

0 Else if zj−1′
i = null ∧ zj′i 6= null

(1− βmji (θ
j−1′
i)) Else if zj−1′

i 6= null ∧ zj′i = null

βmji
(θj−1′
i)Zji (zj′i |m

j
i , θ

j−1′
i) Else if zj−1′

i 6= null ∧ zj′i 6= null

(5.14)

The probability calculation depends on whether the macro-observation of the current level and the level
below equal null. In figure 11 it can be seen that any null observation above another null observation
does not have a probability calculation associated with it, i.e. it has probability 1. This is because
any macro-action above a persisting macro-action must also persist. This is reflected in the first two
cases of equation 5.14, where a probability of 1 is given if a null-observation occurs above another
null-observation, and a probability of 0 is given when the macro-observation above a null-observation
is not equal to null. This also avoids the issue shown in figure 12, where the invalid situation is shown
where a non-null macro-observation is sandwiched between two null-observations.

42

If the macro-observation is not null, and the (macro-)observation under it is also not null, the
current macro-action terminates while it was not forced to terminate. If a macro-action terminates, a
non-null macro-observation must be chosen. Thus the probability of obtaining that macro-observation
is equal to the probability of taking that macro-action termination times the probability of newly
receiving that macro-observation. This is written as: βmji

(θj−1′
i)Zj′i (zj′i |m

j
i , θ

j−1′
i). This is reflected in

the third case of equation 5.14 and macro-observation z1′
i in figure 11.

If the macro-observation is equal to null and the (macro-)observation under it is also not equal to null,
the macro-action does not terminate while it was not forced to. If a macro-action does not terminate,
the null-observation is always given. Thus the probability of receiving this observation equals the
probability of termination of the macro-action. Thus this probability equals: (1 − βmji (θ

j−1′
i)). This

is reflected in the fourth case of equation 5.14 and the null-observation above z1′
i in figure 11.

Figure 11: An overview of an example of the calculations of probabilities of (macro-)observations
during the observation processing phase for an agent i.

Figure 12: This diagram shows examples of valid and invalid termination configurations for
observation stacks.

43

5.10 Reward Determination

As is done in DecPOMDPs, the reward is determined by taking the joint ground-level action, and
inserting this into the reward function along with the current state. There also is no difference between
this and how it is done in MacDecPOMDPs.

R(s,aaa)

In diagrams 9 and 13a, this is represented by drawing arrows from the ground-level actions to R(s,aaa).
Along with an arrow from the current state to R(s,aaa).

(a) Reward phase. (b) Transition phase.

Figure 13: Overview of the Transition and Reward Phases of H-MacDecPOMDP.

5.11 State Transition

The transition from one state to another in Hierarchical MacDecPOMDPs is also done in the same
manner as how this is done in Dec-POMDPs and MacDecPOMDPs. First all possible next states are
considered:

∑
s′∈S , and then the probability of making this transition is determined: T (s′|s,aaa).∑

s′∈S
T (s′|s,aaa)

In figure 13b we can see that first all possible next states are considered with this expression: ∀s′∈S .
With the old state, the new state and the ground-level action, the probability of making this state
transition is determined. This is done in T (s′|s,aaa), using the information that is gathered from the
arrows leading into it.

44

5.12 Value Function Recursion

Figure 14: An overview of the input of
V πt+1(s′, θθθ′).

The input to the next recursive call in the value function
consists of the next state and next history, as can be seen
in figure 14. This is shown in equation 5.15.

V πt+1(s′, θθθ′) (5.15)

The next state is determined in the transition phase. The
next history is constructed by combining the previous
history and the current joint action stack and next joint
observation-stack using formula 5.16.

θj′i =

{
replace null in θji with zj′i if θji = (..., null)

(θji ,m
j
i , z

j′
i) otherwise

(5.16)

Equation 5.16 must be performed for each level j and
agent i to construct the next joint history-stack.
In the first of the two cases the macro-action of the previous time-step for agent i and level j persisted.
This resulted in a history which ends with null-observation (i.e. which has a null-observation at the
current time-step). To construct the next history in this case, the null-observation must be replaced
with the (macro-)observation of the next time-step. Do note that this new (macro-)observation can in
turn also be a null-observation if it still did not terminate.
In the other case, the current (macro-)action and the next (macro-)observation can just be concatenated
to the history.
Do note that a component with a prime (e.g. zj′i) denotes the next time-step, and without a prime
denotes the current time-step.

45

5.13 H-MacDec-POMDP Value Function Formulation

Here we find a complete overview of the value function and its helper functions.
As you may recall from earlier in this chapter, null macro-actions/observations are used to denote

non-terminating macro-actions. To reiterate; the ∗ in
∗
Ω indicates that a null entry has been added to

every abstraction- and top-level macro-observation set (Ω) for every agent.

V πt (s,θθθ) =
∑
mmm∈M

Pr(mmm|θθθ)

R(s,aaa) +
∑
s′∈S

T (s′|s,aaa)
∑
zzz′∈
∗
Ω

Pr(zzz′|θθθ,mmm, s′)V πt+1(s′, θθθ′)

Where:

Pr(mmm|θθθ) =
∏
i∈I

∏
j∈L

Pr(mj
i |θ

j
i ,m

j+1
i)

Pr(mj
i |θ

j
i ,m

j+1
i) =

1 If zji = null ∧mj

i = mj,t−1
i

πmj+1
i

(mj
i |θ

j
i) Else if zji 6= null ∧ θji ∈ Imji

0 Otherwise

Pr(zzz′|θθθ,mmm, s′) = O(ooo′|aaa, s′)
∏
i∈I

∏
j∈{1,...,l}

Pr(zj′i |θ
j−1′
i ,mj

i)

Pr(zj′i |θ
j−1′
i ,mj

i) =

1 If zj−1′

i = null ∧ zj′i = null

0 Else if zj−1′
i = null ∧ zj′i 6= null

(1− βmji (θ
j−1′
i)) Else if zj−1′

i 6= null ∧ zj′i = null

βmji
(θj−1′
i)Zji (zj′i |m

j
i , θ

j−1′
i) Else if zj−1′

i 6= null ∧ zj′i 6= null

θj′i =

{
replace null in θji with zj′i If θji = (..., null)

(θji ,m
j
i , z

j′
i) Otherwise

Base case:
V πh−1(s,θθθ) =

∑
mmm∈M

Pr(mmm|θθθ)R(s,aaa)

46

5.14 H-MacDecPOMDP Value Function Proof

This section contains a proof by induction of the value function given in section 5.13, does indeed
return the expected value of the given joint top level policy.
This proof consists of two parts, the base case and the inductive step. In the base case, the value for
the last time step (t = h− 1) is proven to be equal to:∑

mmm∈M
Pr(mmm|θθθ)R(s,aaa)

Then in the inductive step, the value for the remaining time-steps (t) is proven to be equal to:

∑
mmm∈M

Pr(mmm|θθθ)

R(s,aaa) +
∑
s′∈S

T (s′|s,aaa)
∑
zzz′∈
∗
Ω

Pr(zzz′|θθθ,mmm, s′)V πt+1(s′, θθθ′)

5.14.1 Base Case

Lemma 5.1. For the last time step t = h−1, the value (V πh−1(s,θθθ)) is given by
∑
mmm∈M Pr(mmm|θθθ)R(s,aaa).

Proof. For the last time step the value is determined only by the reward function, thus it depends
on the state the agent is in and the joint ground level action that is taken. Given the joint stack of
histories (θθθ), the execution of the joint action stack (mmm) depends on Pr(mmm|θθθ) as defined in equation
5.10. The reward must be defined as R(s,aaa) given the joint ground level action aaa, defined as a = m0

in equation 5.2.
∑
mmm∈M must be performed if every possible joint action stack must be considered.

Putting this together, we get:
∑
mmm∈M Pr(mmm|θθθ)R(s,aaa).

5.14.2 Inductive Step

Lemma 5.2. For the remaining time-steps 0 < t < h− 1, the value (V πt (s,θθθ)) is given by:∑
mmm∈M Pr(mmm|θθθ)

[
R(s,aaa) +

∑
s′∈S T (s′|s,aaa)

∑
zzz′∈
∗
Ω
Pr(zzz′|θθθ,mmm, s′)V πt+1(s′, θθθ′)

]
.

Proof. Per induction hypothesis, assume that the value of the next timestep (t + 1) is given by:

V πt+1(s,θθθ) =
∑
mmm∈M

Pr(mmm|θθθ)

R(s,aaa) +
∑
s′∈S

T (s′|s,aaa)
∑
zzz′∈
∗
Ω

Pr(zzz′|θθθ,mmm, s′)V πt+2(s′, θθθ′)

We can divide this into two terms, the immediate reward

∑
mmm∈M Pr(mmm|θθθ)R(s,aaa) and the future value,∑

s′∈S T (s′|s,aaa)
∑
zzz′∈
∗
Ω
Pr(zzz′|θθθ,mmm, s′)V πt+1(s′, θθθ′). Here

∑
mmm∈M Pr(mmm|θθθ)R(s,aaa) is constructed in the

same way as in the proof of lemma 5.2. The future value is based on the state that we reach after
taking joint ground level action (aaa) and the next stack of histories (θθθ).
Given the state s, the next state s′ depends on T (s′|s,aaa). This must be done for every next state,
which must be done using:

∑
s′∈S . Given that the joint ground level observations (z0) depend on aaa

and s′, and given that the macro-observations (zzz1,...,l) depend on mmm1,...,l and θθθ1,...,l, the probability of
zzz’ is Pr(zzz′|θθθ,mmm, s′) as defined in equation 5.13. This must be done for every next joint observation
stack:

∑
zzz′∈Ω.

Given that every time-step must be considered, the value of the next time-step is determined: V πt+1(s′, θθθ′).

Putting this together, we get:
∑
mmm∈M Pr(mmm|θθθ)

[
R(s,aaa) +

∑
s′∈S T (s′|s,aaa)

∑
zzz′∈
∗
Ω
Pr(zzz′|θθθ,mmm, s′)V πt+1(s′, θθθ′)

]
.

47

6 Solving H-MacDecPOMDPs

This chapter is about solving H-MacDecPOMDPs. First a brute force solution is briefly described,
and afterwards a research question related to solving H-MacDecPOMDPs is answered. This research
questions is:

Can H-MacDecPOMDPs be transformed into DecPOMDPs?

As stated in section 1.5, this research question is relevant to solving H-MacDecPOMDPs because
it allows existing Dec-POMDP solving methods to be used to solve H-MacDecPOMDPs. Thus the
main goal of this chapter is to answer the research question above by providing and explaining the
transformation algorithm from H-MacDecPOMDPs to DecPOMDPs, along with giving the pseudocode
for this transformation procedure.

6.1 Brute Force Planning

Solving H-MacDecPOMDPs comes down to finding a top level joint policy π that results in the highest
expected value. Equation 6.1 gives a mathematical representation of this.

arg max
π∈Π

∑
s∈S

b0(s)V πt (s,θθθstart) (6.1)

The top joint policy is a part of the top level joint macro-action (ml+1), i.e. π = {×πml+1
i
}i∈I . Here

Π is defined as the set of all joint top level policies. The set Π is finite if the top level policies are
deterministic, similarly Π is infinite if the top level policies are non-deterministic. The goal is to find
the best top level policy (π ∈ Π), which maximizes the expected value of the given H-MacDecPOMDP,
this is what equation 6.1 expresses.
Furthermore, all non-top level macro-actions are fixed. All possible states must be considered;

∑
s∈S .

For each of these states, the probability of having that state as the initial state must be determined:
b0(s). Finally, this state along with the initial history are put into the value function: V πt (s,θθθstart).
Recall from section 5.5 that the initial history (θθθstart) consists of a joint history-stack, which is empty
except for the top level (level l+1). The top level will always contain the macro-action which contains
the top level policy, which was called µ in MacDecPOMDPs. This is the policy that is being optimized.
The macro-action on the top level will never terminate, thus the top-level history will always remain
unchanged.

6.2 Transforming H-MacDec-POMDPs Into DecPOMDPs

There are useful tools that can be used to solve DecPOMDPs. Thus it would be desirable to transform
H-MacDec-POMDPs into Dec-POMDPs, as there are currently no tools or frameworks to solve H-
MacDecPOMDPs. This transformation should be done in such a way that the optimal policy that
results from planning the resulting Dec-POMDP, should be equivalent to the optimal top level macro
policy acquired by solving the H-MacDec-POMDP.
In this section, an overview of the transformation algorithm will be given. This will be followed by a
detailed explanation of the Dec-POMDPs that result from applying this transformation.

48

6.2.1 Transformation I/O

To better understand what this transformation entails, the input and output of the transformation
must be made clear. A simple overview of this is found in figure 15.

Figure 15: High-level overview of the transformation procedure.

The input of such a transformation is any H-MacDecPOMDP. The full formal definition for H-
MacDec-POMDP can be found in section 5.6.
The output of this transformation is a Dec-POMDP that is functionally equivalent to the given H-
MacDec-POMDP. Functionally equivalent in this case means that the same optimal policy is achieved
when planning the given problem as both H-MacDec-POMDPs and Dec-POMDPs.
As described in the background section 3.3, Dec-POMDP consist of the following components: model =
〈I, S, b0, {Ai}i∈I , T,R, {Ωi}i∈I , O, h〉. Thus these components also need to be present in Dec-POMDPs
that were generated from H-MacDecPOMDPs.

6.2.2 Transformation Overview

The transformation algorithm transforms a H-MacDecPOMDP to a DecPOMDP by “grounding” ab-
straction levels. I define grounding abstraction levels as merging abstraction levels with the ground
level. In figure 16, this is shown by the G (Grounding) function, which produces a new grounded level
when given the ground level and an abstraction level.
When an abstraction level is grounded, the states set, the states initialization-, transition-, observation-
and reward functions (S, b0, T,O,R) get modified. These modifications allow these functions to use
macro-actions, macro-states and macro-histories as of a higher abstraction level as their inputs. An
overview of this can be seen in figure 16. In figure 16, the arrow upwards (↑) represents that the set
or function has been modified as a result of a grounding, the number (↑n) represents how often this
has occurred.

After j groundings, the newly modified set of macro-states (S↑j) consists of every possible macro-
state that can be reached by performing level j macro-actions. Macro-states are explained in section
6.4.1. The new transition functions (T ↑j) consist of every transition between macro-states, resulting
from executing level j macro-actions. The new ground level observations function (O↑j) contains the
probabilities of receiving every joint level j macro-observation given the current macro-action and next
macro-state. Finally, the new reward function (R↑j) returns the expected value of every joint level j
macro-action and level j macro-state pair. These new grounded Dec-POMDP components are further
explained in sections 6.4 to 6.7. Components M j ,Ωj , I, h do not use the ↑j notation in figure 16,
because these components are not modified when grounded.

49

Figure 16: This diagram shows an overview of the H-MacDecPOMDP to Dec-POMDP
transformation. In every step, a level of abstraction is grounded.

The transformation happens in a bottom-to-top fashion. First abstraction level one is grounded,
then two, all the way to abstraction level l. In figure 16, grounding is represented using a function called
G, which encompasses the two levels that are being merged; the abstraction level and the ground level.
After each grounding, the resulting model is a completely valid H-MacDecPOMDP, containing the
same information as it did before the grounding. The difference is that this information is represented
with one abstraction layer fewer. In figure 16, each of the five ”blocks” represents one of these H-
MacDecPOMDPs.
Each ground(ed) level (Mj) is functionally equivalent to a Dec-POMDP, As these components can
form a Dec-POMDP. This is done as follows:

S ← S↑j , b0 ← b
↑j
0 , T ← T ↑j , R← R↑j , A←M l↑j ,Ω← Ωl↑j , O ← O↑j

The more often groundings have taken place, the more of the H-MacDecPOMDP abstraction levels
will be incorporated into the grounded level. Eventually, after grounding all abstraction levels, only
the ground level and top level will be left. When this is the case, the original H-MacDecPOMDP
becomes a Dec-POMDP.

50

6.3 Transformation Algorithm

The transformation algorithm goes over each abstraction level and grounds it. To ground an abstraction
level, five steps must be completed. An overview of these steps are shown in figure 17. a more detailed
explanation of these steps will be given in subsections 6.4 to 6.7. The ×l in figure 17 specifies that the
arrow under it is followed l times, once for each abstraction level.

Figure 17: This diagram shows an overview of the steps in the H-MacDecPOMDP to DecPOMDP
transformation.

6.3.1 Transform Function

The pseudocode below executes the grounding procedures for the State Initialization function, States
set, Transition Function and Observation function l times, once for each abstraction level. Then the
reward grounding function is executed once. Finally the components that result from these grounding
procedures are returned. These resulting components form a Dec-POMDP as described in section 6.2.2.

function transform(I, S, b0, T,R,M,Ω, {Zji }
j∈{1,..,l}
i∈I , O, h, l)

b↑00 ← b0, S
↑0 ← S, T ↑0 ← T,O↑0 ← O,R↑0 ← R

while j ∈ {1, ..., l} do

b
↑j
0 ← StateInitializationGrounding(b

↑j−1

0 , S↑j−1)

S↑j ← StateGrounding(I, S↑j−1 , O↑j−1 , b
↑j
0 , T

↑j−1 ,M j−1,j ,Ωj−1, h)
T ↑j ← TransitionGrounding(M j−1,j ,Ωj−1, S↑j−1,j , O↑j−1 , T ↑j−1)
O↑j ← ObservationGrounding(I, S↑j−1,j ,M j ,Ωj−1,j , Zj , O↑j−1)

end while
R↑l ← RewardGrounding(I, S↑l ,M,R↑0)

return 〈I, S↑l , b↑l0 , T
↑l , R↑l ,M l,Ωl, O↑l , h〉

end function

51

6.4 State Grounding

This section describes what grounded states are and why they are needed. Then the algorithm for
grounding states is given and explained. These states are referred to as macro-states in the remainder
of this thesis.

6.4.1 Grounded States Definition

In the given H-MacDec-POMDP, the reward function, the ground level observation probability func-
tion and the state transition function do not accept macro-actions and macro-observations as inputs.
Instead, they use ground level actions and ground level observations.
Thus in order to define a state transition and reward function that does allow for macro-actions to
be used instead of ground actions, more information needs to be given to these functions. Namely,
information that can be used to determine what the next ground-actions will be. In Dec-POMDPs,
there are no other parameters that can be used in these functions to convey this ground-action in-
formation. T and R only take an action and a state, while the observation function only takes an
observation and a state. Since the actions and observations are being replaced with macro-actions
and macro-observations, the only solution here is to embed the necessary additional information into
the state. The ground-level actions that are taken are determined by the policies of macro-actions.
Policies use histories to decide what actions should be taken. Thus states should contain histories.
This results in the following new set of states:

S1 = {(s, θ0)|s ∈ S, θ0 ∈ H0}

These new states (s1 ∈ S1) could then be used in functions that use macro-actions or macro-observations
of abstraction level 1. This description is similar to the NOMDP [41] formulation of a DecPOMDP,
however this description is generalized to hierarchical settings.
Generalizing over the amount of abstracted levels (j), these abstracted states are defined as follows:

sj = (sj−1, θj−1) ∈ Sj

These sets of states (Sj) can grow to be very large, section 8.1 elaborates on a possible solution.
The notion of abstracting away levels will be further explained in subsection 6.2.2. Such a grounded
state sj , will be referred to as a level j macro-state. So for example, if 4 levels are abstracted away,
the level 4 macro-state would look like so:

s4 = ((((s, θ0), θ1), θ2), θ3) ∈ S4

Macro-states are defined recursively because this eases the process of constructing macro-states with
more grounded levels.
The Sj sets contain all level j macro-states, even those that are not possible. For example, it is
impossible for the level 2 macro-history (θ2) of a macro-state to contain more macro-actions and
macro-observations than its level 1 macro history. The reasoning for this is the same as in section 5.4.
However, such unreachable states are still present in Sj sets. Such a set (Sj) is referred to as a total
level j macro-state set.
The definition of Sj sets is necessary in order to define S↑j ; the grounded level j macro-state set. The
grounded level j macro-state set (S↑j), is a subset of the total level j macro-state set (Sj).

S↑j ⊂ Sj

52

However, each element of S↑j must be reachable, this is because non-reachable macro-states see no
use in H-MacDecPOMDPs. A macro-state sj is considered reachable if there is a joint history of level
j macro-actions and a history of level j macro-states that has a greater than 0 chance of reaching sj .
An example of this is shown in figure 18. The history of level j macro-actions thus does not rely on
any top level policy.

Figure 18: This diagram shows an example of a reachable state consisting of three time-steps.

These two histories are defined as follows:

• S̄j represents the set of all histories of macro-states in Sj . This history has a state for each
time-step.

• M̄ j represents the set of all joint histories of level j macro-actions (M j). This history has a level
j joint macro-action for each time-step.

A macro-state sj is considered reachable if it can be reached by performing a series of joint level j
macro-actions (m̄j).
Termination and initiation conditions of the level j macro-actions are not considered here, the reasoning
for this is explained in section 6.8. The level j grounded transition function (T ↑j) does however
implicitly deal with the termination and initiation conditions for levels under j, this will become
apparent in sections 6.4 and 6.5.
Thus, equation 6.2 shows the formal definition for the set of level j grounded states (S↑j) (i.e. all
reachable level j macro-states).
The probability of reaching a particular level j macro-state (sj) is calculated by multiplying the
probabilities of transitioning to all level j macro-states (s̄j,t) that are reached along the way to the
desired level j macro-state (sj). The probability of reaching all level j macro-states (sj,t) in the
given macro-state history (s̄j) is calculated by first determining the probability of starting at the first

macro-state in the history (b
↑j
0 (sj,0)) and multiplying this by the probabilities of transitioning to each

subsequent level j macro-state (T ↑j (s̄j,t|m̄j,t−1, s̄j,t−1)). If the resulting probability is greater than 0,
the level j macro-state (sj) in question is deemed reachable.

S↑j =

sj ∈ S↑j
∣∣∣∣∃m̄j∈M̄j∃s̄j∈S̄↑j |s̄j,|sj :θ0|−1=sj b

↑j
0 (s̄j,0)

|sj :θ0|−1∏
t=1

T ↑j (s̄j,t|m̄j,t−1, s̄j,t−1) > 0

 (6.2)

53

6.4.2 Notation Comments

The second superscript of a macro-state history (m̄j) or joint macro-action history (s̄j) is used to point
to a particular macro-state or joint macro-action of that time-step (t) (e.g. s̄j,t or m̄j,t).
The |sj : θ0| notation, returns the amount of level 0 actions that were taken on the ground level history
(θ0). The amount of actions that are taken is equal for all agents in the ground level, thus the agent
subscript (i in θ0

i) can be omitted here. This notation can be generalized for the amount of level k
(0 < k < j) (macro-)actions of any agent i for any level j macro-state, this is done in equation 6.3.

|sj : θki | (6.3)

∃s̄j∈S̄↑j |s̄j,|sj :θ0|−1=sj in equation 6.2 states that there must exist a history of level j macro-states (s̄j),

such that the last macro-state of this history (s̄j,|s
j :θ0|−1) equals the level j macro-state that is being

examined (sj). This must be true because sj is the macro-state that must be reachable.

6.4.3 State Initialization Grounding

The State Initialization Function is grounded by creating new initial states from old initial states, and
setting the probability of receiving the new initial state equal to the probability of receiving the old
initial state. This new initial (grounded) state is equal to the initial state of the level under it, packaged
with an empty history, such that the sj = (sj−1, θj−1) format is achieved. Note that an initial state
refers to a state where 0 steps have been taken. The pseudocode for this procedure is given below.

function StateInitializationGrounding(b
↑j−1

0 , S↑j−1)

b
↑j
0 ← ∅

for all sj−1 ∈ S↑j−1 s.t. |sj−1 : θ0| = 0 do
sj ← (sj−1, ∅)
b
↑j
0 (sj)← b

↑j−1

0 (sj−1) . Which equals b0(s0)
end for
return b

↑j
0

end function

6.4.4 State Grounding Algorithm

Figure 19: This diagram shows an overview of the state grounding step in the H-MacDecPOMDP
transformation. If a time-step has been exhausted, St+1 becomes St because t increments.

During the state grounding procedure, every reachable state is constructed. This is done by consid-
ering every known macro-state (sjt), and determining what other macro-states (sjt+1) can be reached

from each considered macro-state (sjt). Thus if S
↑j
t refers to all level j macro-states where the ground

level history length equals t, the goal is to find S↑j ← ∪h−1
t=0 S

↑j
t .

54

First every initial macro-state gathered from the state initiation function is considered ({s ∈ S↑j |b↑j0 (s) >
0}), then combined with every possible macro-action (mj) that can be taken (without any regard for a
top level policy), every possible resulting macro-state (sjt+1) that can be reached is constructed. Every
newly constructed macro-state is then stored after which the process starts again but with every newly
constructed macro-state as the starting points, this process will thus iteratively construct even more
new macro-states. This is repeated until horizon h is reached. Figure 19 shows an overview of this
process.
The NextStepStates procedure is used to determine every macro-state that can be reached from another
macro-state when given a macro-action (blue square 4 in figure 19). To understand how the NextStep-
States procedure does this, recall that a macro-state sj consists of a lower level macro-state and a lower
level macro-history (sj = (sj−1, θj−1)). Thus every possible (sj = (sj−1, θj−1)) pair must be found.
To do this, the next histories will be constructed (θj−1′

i = (θj−1
i ,mj−1

i , zj−1′
i)). This is done by first

considering every j − 1 level macro-action (mj−1) that has a greater than 0 probability to be taken.
This level j − 1 macro-action (mj−1) is then used to find every level j − 1 macro-state (sj−1′) with a
transition probability that is greater than 0. Then every possible level j−1 macro-observation that has
a greater than 0 probability of occurring is considered. Then these new level j−1 macro-states (sj−1′)
are combined with their respective level j − 1 joint macro-actions (mj−1) and macro-observations
(zj−1′) histories (θj−1′) to return as new macro-states (sj′ = (sj−1′, θj−1′ = (θj−1,mj−1, zj−1′))).

55

The pseudocode for these procedures is given below:

function StateGrounding(I, S↑j−1 , O↑j−1 , b
↑j
0 , T

↑j−1 ,M j−1,j ,Ωj−1, h)

S0 ← {s ∈ S↑j |b
↑j
0 (s) > 0} . S0 is set equal to all possible initial states.

S↑j ← S0

for all t ∈ {0, ..., h− 1} do
St+1 ← ∅
for all sj ∈ St do

for all mj ∈M j do
St+1 ← St+1 ∪ nextStepStates(sj ,mj ,M j−1,Ωj−1, S↑j−1 , T ↑j−1 , O↑j−1)

end for
end for
S↑j ← S↑j ∪ St+1

end for
return S↑j

end function

function nextStepStates(sj ,mj ,M j−1,Ωj−1, S↑j−1 , T ↑j−1 , O↑j−1)
Snew ← ∅
for all mj−1 ∈M j−1 s.t.

∏
i∈I Pr(m

j−1
i |θj−1

i ,mj
i) > 0 do . θj−1

i is taken from sj

for all sj−1′ ∈ S s.t. T ↑j−1(sj−1′|mj−1, sj−1) > 0 do

for all zj−1′ ∈
∗
Ωj−1 s.t. O↑j−1(zj−1′|mj−1, sj−1′) > 0 do

θj−1′ ← appendHistory(θj−1,mj−1, zj−1′)
sj′ ← (sj−1′, θj−1′)
Snew ← Snew ∪ {sj′}

end for
end for

end for
return Snew

end function

The Pr(mj−1
i |θj−1

i ,mj
i) calculation is the same as in equation 5.11 of section 5.8.

The appendHistory given below works in the exact same way as in equation 5.16 of section 5.12.

function appendHistory(θj−1,mj−1, zj−1′)
θj−1′ ← θj−1

for all i ∈ I do
if θj−1

i = (..., null) then . The last level j − 1 action had persisted.

Replace null in θj−1′
i with zj−1′

i

else . The last level j − 1 action had terminated.
θj−1′
i ← (θj−1

i ,mj−1
i , zj−1′

i)
end if

end for
return θj−1′

end function

56

6.5 Transition Grounding

The new transition probabilities for the transition function of these newly generated Dec-POMDPs
now also incorporate the probability of reaching a new history θj−1′. This is because the probability
of appending history θj−1 to form θj−1′ is now part of state transitions as these histories are inside
macro-states;

T ↑j (sj′|sj ,mj) = T ↑j ((sj−1′, θj−1′)|(sj−1, θj−1),mj)

Thus the probability of transitioning from sj to sj′ is equal to the transition probability of sj−1 → sj−1′

multiplied with the probability of reaching history θj−1′ from θj−1.
In the transitionGrounding function, the states sj in S↑j are considered as starting points in the tran-
sition. However, the states in the last time-step (t = h− 1) must be excluded, as they cannot be the
starting point of a transition as there are no macro-states in S↑j that they can transition to.
Thus we can see that the transitionGrounding procedure goes through each macro-state, each macro-
action and each possible state that can be transitioned to using the previously discussed nextStepStates
procedure. Afterwards the probability of making this transition is calculated and assigned to the rel-
evant transition entry of the new grounded transition function.

function TransitionGrounding(M j−1,j ,Ωj−1, S↑j−1,j , O↑j−1 , T ↑j−1)
for all sj ∈ S↑j s.t. |sj : θ0| < h− 1 do

for all mj ∈M j do
for all sj′ ∈ nextStepStates(sj ,mj ,M j−1,Ωj−1, S↑j−1 , T ↑j−1) do

T ↑j (sj′|sj ,mj)← calculateTransition(sj ,mj , sj′, O↑j−1 , T ↑j−1)
end for

end for
end for
return T ↑j

end function

The calculateTransition function calculates the probability of transitioning from macro-state sj to
sj′, this is shown in equation 6.4. The probability of appending the history within the given macro-
states (equation 6.5) is calculated by first calculating the probability of adding the relevant j− 1 joint
macro-action to this history, and multiplying this by the probability of retrieving the relevant level
j − 1 macro-observation.

T ↑j ((sj−1′, θj−1′)|(sj−1, θj−1),mj) = T ↑j−1(sj−1′|sj−1,mj−1)Pr(θj−1′|θj−1,mj , sj−1′) (6.4)

Pr(θj−1′|θj−1,mj , sj−1′) =

[∏
i∈I

Pr(mj−1
i |θj−1

i ,mj
i)

]
O↑j−1(zj−1|mj−1, sj−1′) (6.5)

The pseudocode for the transition probability is given below;

function calculateTransition(sj ,mj , sj′, O↑j−1 , T ↑j−1)

Phistory ←
[∏
i∈I

Pr(mj−1
i |θj−1

i ,mj
i)

]
O↑j−1(zj−1′|mj−1, sj−1′) . Pr(θj−1′|θj−1,mj , sj−1′)

return T ↑j−1(sj−1′|sj−1,mj−1) · Phistory
end function

57

6.6 Observation Grounding

The grounded observation function determines the probability of receiving macro-observation z using
histories under it. It is possible for z to be a null-observation, as the probability of termination is also
accounted for in the probability calculation of z. This means that unlike in the normal O function,
O↑j where j ≥ 1, null-observations can have a probability that is greater than 0.
The Observation Grounding procedure works by going over every possible (Joint macro-action, state,
valid joint macro-observation) tuple and calculating the probability of receiving that macro-observation.
An overview of this can be found in figure 20.

Figure 20: This diagram shows an overview of the Observation Grounding function.

The observation probability calculation works by multiplying the macro-observation probability for
each agent, this is shown in equation 6.6. The Pr(zj′i |θ

j−1′
i ,mj

i) here is the same as equation 5.14 in
section 5.9.

O↑j (zj′|mj , sj′) =
∏
i∈I

Pr(zj′i |θ
j−1′
i ,mj

i) (6.6)

The pseudocode for the Observation Grounding phase is found here:

function ObservationGrounding(I, S↑j−1,j ,M j ,Ωj−1,j , Zj , O↑j−1)
O↑j ← ∅
for all mj ∈M j do

for all sj′ ∈ S↑j do . sj′ = (sj−1′, θj−1′)

for all zj′ ∈
∗
Ωj do

O↑j (zj′|mj , sj′)←
∏
i∈I Pr(z

j′
i |θ

j−1′
i ,mj

i)
end for

end for
end for
return O↑j

end function

58

6.7 Reward Grounding

The grounded reward function returns the expected value of the ground-level rewards achieved when
in a level l macro-state and when taking a level l macro-action. This is done by multiplying the
probabilities of taking each possible joint action-stack mmm constrained by taking macro-action mj , with
the reward achieved when taking joint ground level action aaa in mmm.
The Reward Grounding phase works by going through every l level macro-state and every level l joint
macro-action and calculating its expected reward. This is also shown in figure 21. This is sufficient
because R↑j still returns the expected reward for a single time-step, and time-steps are never skipped,
even if no macro-actions terminate.

Figure 21: This diagram shows an overview of the Reward Grounding function.

The expected reward calculation works by summing the probability of performing every single valid
joint (macro-)action stack and multiplying each of these probabilities by its respective reward. Do note
that these joint action stacks excludes layer l, because the probability of it being chosen is 1 when it
is given as a parameter to the grounded R↑l function.
The calculation of the probability of taking a joint macro-action stack is the same as in section 5.8(∑

mmm∈M Pr(mmm|θθθ) and Pr(mmm|θθθ) =
∏
i∈I
∏
j∈L Pr(m

j
i |θ

j
i ,m

j+1
i)

)
, except that the abstraction level l is

omitted.
To calculate the reward of a joint-action stack, its ground level joint action along with the ground level
state is put into the old reward function. The equation for the calculation of the expected reward of
a level l macro-state and level l joint macro-action stack is given in equation 6.7. U stands for every
underground level, i.e. L (L = {0, ..., l}) but excluding l (U = L \ {l} = {0, ..., l − 1}).

R↑l(sl,ml) =
∑

mU∈MU

∏
i∈I

∏
j∈U

Pr(mj
i |θ

j
i ,m

j+1
i)R↑0(s0, aaa) (6.7)

The pseudocode for the Reward Grounding procedure is found below;

function RewardGrounding(I, S↑l ,M,R↑0)
R↑l ← ∅
U ← {0, ..., l − 1}
for all sl ∈ S↑l do

for all ml ∈M l do
R↑l(sl,ml)←

∑
mU∈MU

∏
i∈I
∏
j∈U Pr(m

j
i |θ

j
i ,m

j+1
i)R↑0(s0, aaa)

end for
end for
return R↑l

end function

59

6.8 Initialization and Termination Heuristics

DecPOMDPs do not have any built in mechanisms to enforce termination and initiation constraints.
Thus, these constraints will be enforced by using heuristics. In this section, other alternative ways of
enforcing these constraints are explained, along with the reasoning behind not choosing these methods.
Recall that when a macro-action does not terminate, the same macro-action must be executed for an-
other time-step. Additionally, if the previous macro-action did terminate, a macro-action can only be
executed if the current history is part of this macro-action’s initiation set. These two constraints are
inherent to macro-actions and are called the Termination and Initiation Constraints respectively.
In underground (< l) abstraction levels, these constraints are upheld by the transition function. The
transition function assigns a probability of zero to any macro-state where its histories do not satisfy
these constraints. Empty histories are also histories which can be present in initiation sets, so this
also works for initial macro-states. Recall that any macro-state of level j (sj) consists a tuple of an-
other level j − 1 macro-state and history. When calculating the transition from sj = (sj−1, θj−1) to
sj′ = (sj−1′, θj−1′), the probability of appending a level j − 1 macro-action is calculated. This is done

using equation 5.11 from section 5.8
(
Pr(mj−1

i |θj−1
i ,mj

i)
)

. Equation 5.11 checks for the initiation and

termination constraint, which by induction results in all underground initiation and termination con-
straint to be enforced. However, the resulting level l grounded transition function

(
T (sl′|sl,ml

i)
)

does

not have
(
Pr(ml

i|θli,m
l+1
i)

)
calculations embedded in them, leading to the termination and initiation

constraint of level l macro-actions to not be automatically enforced in DecPOMDPs transformed from
H-MacDecPOMDPs. H-MacDecPOMDPs however do enforce these constraints in Pr(mj

i |θ
j
i ,m

j+1
i)

(equation 5.11), see section 5.8.
The level l macro-states in the level l grounded transition function only have access to the histories
under l, thus the transition function simply does not have the means necessary (θli) to check whether
the initiation constraint holds for level l. The same goes for the termination constraint, the level l
macro-state is also not supplied with the level l macro-action that persisted in the previous time-step.
In H-MacDecPOMDPs, the macro-action probability function (Pr(mj

i |θ
j
i ,m

j+1
i)) checks whether these

constrains are satisfied. Dec-POMDPs however do not have this notion of Termination and Initiation
constraints and thus do not do such checks. One way to solve this is to embed the level l action-
observation history into the level l macro-states, and make entries that do not satisfy the Termination
and Initiation constraints transition to an error state with probability 1. Reaching such an error state
would then lead to an enormous penalty dealt by the reward function.
However, such a solution is incredibly unwieldy, as the amount of macro-states would in the worst
case be multiplied by the amount of possible level l histories. As section 7.2 will show, the amount of
histories increases exponentially with the square of the horizon. Each possible joint history would be
considered many different times for each state, this macro-state complication would thus be much more
expensive than solving the resulting DecPOMDP. Thus, this thesis chooses not to further complicate
macro-states. Any efficient planner for these DecPOMDPs would have to implement the heuristics
that are shown below, thus it is much more efficient and painless to assume that these few simple
heuristics are in place when planning policies. These heuristics are the following:

1. Termination Heuristic: If the previous level l grounded observation equals null, always choose
the previous level l grounded action.

2. Initiation Heuristic: If the previous level l grounded observation does not equal null, the level l
history must be present in the initiation set of the newly chosen level l grounded action.

60

7 H-MacDecPOMDP Example and Analysis

This chapter is about analyzing H-MacDecPOMDPs and providing an example of an H-MacDecPOMDP.
An explanation of the effectiveness of the H-MacDecPOMDP approach, along with its transformation
to Dec-POMDPs will be provided, which answers research question 3;

What are the drawbacks and benefits of H-MacDecPOMDPs as opposed to (Mac-)Dec-POMDPs?

Thus the goal of this chapter is to answer this research question. This is done by first defining an
example problem (the H-MacDecTiger problem), to be analyzed. Then an approach of determining
the policy search space is provided. Afterwards the policy search space of the example problem is
analyzed. Afterwards, other benefits and drawbacks of H-MacDecPOMDPs and their transformation
to Dec-POMDPs are described. Afterwards, an experiment using the H-MacDecTiger example problem
is given to further validate the correctness of the H-MacDecPOMDP model.

7.1 Hierarchical MacDecTiger Problem

In this section, a variant of the DecTiger problem is defined. This problem is defined as a H-
MacDecPOMDP, and will be further referred to as the H-MacDecTiger Problem. In this problem,
the two agents still have the same top level actions as the original Dec-Tiger problem. However, the
agents also have a location and orientation and ground-level actions that allow agents to move and
rotate. Orientation and location are of course ripe for abstraction, as these two properties of the agent
are not relevant when making the high level decision of whether to open a door or listen for the tiger.
The H-MacDecTiger problem will be formally defined in this section.

7.1.1 Summary

The H-MacDecTiger problem is a H-MacDecPOMDP based on the Dec-Tiger problem. The DecTiger
problem has no levels of abstraction, while the H-MacDecTiger problem has two. The second level
of abstraction can be seen as the original Dec-Tiger problem, where the actions and observations are
limited to listening and opening doors. The level of abstraction under that (level 1) abstracts away
the locations of the agents. A second abstraction level macro-action such as ”Open the left door” will
have a policy of first abstraction level macro-actions which move the agent to the correct location. The
first abstraction level macro-actions consist of moving left, right or interacting with the environment.
Reasons to use multiple abstraction levels can be found in section 7.3.
In order to take a step to the left or right, the agent must rotate to the correct orientation and take a
step forward. Rotate and Go are the two ground level actions. The rotate action will rotate the agent.
The Go action will move the player forward or interact with the environment if it is facing a contraption
it can use. Such a contraption can be lever to open a door, or a headphone to listen for the tiger,
which will be further explained in section 7.1.3. Thus the second abstraction level macro-observations
are the tiger location sounds. The first abstraction level macro-observations consists of both the tiger
sounds, but also the location of the agent. The ground level observations consists of the tiger sounds
and the orientation of the agent. Thus, in order to construct a first level macro-observation about the
location, the ground level history of orientation observations, rotate actions and go actions must be
examined to determine the current location macro-observations, this is done by the macro-observation
probability function of the first abstraction level (Z1). The observations that relay the location of the
tiger can be trivially passed upwards when the agents open doors or listen.

61

7.1.2 States

This section describes the states of the H-MacDecTiger Problem. The states must be able to hold the
information of behind which door the tiger is and what the location and orientation of both agent are.
The amount of states in the set of states (S) equals 800 instead of 2. This is the case because there
are 2 locations of the tiger (locT), 5 possible locations for each of the 2 agents, and 4 orientations for
each of the 2 agents. This leads to 2 · 52 · 42 = 800. The positions of the agents (loc1 and loc2) go from
1 to 5 (as can be seen in figure 22). The directions go from 0 to 3. The location of the tiger is either
L (left) or R (right). The mathematical representation of the states can be found in equation 7.1.

〈locT , loc1, loc2, dir1, dir2〉 = 〈{L,R}, {1, ..., 5}, {1, ..., 5}, {0, ..., 3}, {0, ..., 3}〉 (7.1)

Figure 22 shows the graphical representation of the two initial states. State 〈L, 2, 4, 0, 0〉 of figure 22a
has a 50% chance of being the initial state (b0(〈L, 2, 4, 0, 0〉) = 0.5). State 〈R, 2, 4, 0, 0〉 of figure 22b
has a 50% chance of being the initial state (b0(〈R, 2, 4, 0, 0〉) = 0.5). Thus there is one initial state per
possible tiger location.

(a) 〈L, 2, 4, 0, 0〉 (b) 〈R, 2, 4, 0, 0〉

Figure 22: A graphical representation of the two initial states in the H-MacDecTiger problem.
The blue person represents agent 1, and the orange person represents agent 2.

(a) aro (b) af (c) ali (d) apull

Figure 23: A graphical representation of the four actions in the H-MacDecTiger problem.

7.1.3 Ground Level Actions

The set of actions for both agents; rotate, forward, listen or pull (M0
i = {aro, af , ali, apull}). These

actions are shown in figure 23. The rotate action (aro), will rotate the agent 90° in the clockwise
direction. The forward action (af) will move the agent a step forward into the direction it is facing.
The listen action (ali) will make the agent use the headphone it is facing to listen for the tiger. The
pull action (apull) will make the agent pull a lever it is facing to open a door. Both agents need to
either use listen using headphones or pull a lever at the same time for it to have any effect.

62

7.1.4 Transition Function

This section describes the transition function of the H-MacDecTiger problem. The rotate action aro
rotates the agent clockwise. This is done by incrementing the direction parameter of the agent. If the
direction parameter goes over 3, it should go back to 0. Mathematically this is represented like so:
direction+ 1 mod 4. Equation 7.2 shows an example where both agents rotate from east to south on
locations 2 and 4 respectively, with the tiger being on the left.

T
(
〈L, 2, 4, 2, 2〉

∣∣∣〈L, 2, 4, 1, 1〉, 〈aro, aro〉) = 1 (7.2)

If an agent is facing east or west and performs the forward action (af), the agent’s location moves one
position east or west respectively. However, left of location 1 and right of location 5, there are walls.
These walls make it impossible to move further than 1 or 5 westwards or eastwards respectively. Math-
ematically this is written as max(location− 1, 1) and min(location+ 1, 5) respectively. An example is
shown in equation 7.3, where both agents go to the west from location 1 and 5 with the tiger on the left.

T
(
〈L, 1, 4, 3, 3〉

∣∣∣〈L, 1, 5, 3, 3〉, 〈af , af 〉) = 1 (7.3)

Moving to the north or south is impossible, thus performing such actions does not change the location
parameter. This is mathematically represented in equation 7.4 where agent one tries to move to the
north, and agent 2 tries to move south.

T
(
〈L, 2, 4, 0, 2〉

∣∣∣〈L, 2, 4, 0, 2〉, 〈af , af 〉) = 1 (7.4)

Finally there are the actions that involve listening or opening doors. These are ali for listening and
apull for pulling a lever to open a door. The ali action will only work if the agent is directly facing
headphones it can use. An agent is directly facing headphones when it is facing north in location 3.
Similarly, performing the apull action is only effective if the agent is facing a lever it can pull. These
levers can be found in locations 1 and 5 when facing north.
Both agents need to either use headphones to listen or pull a lever to open a door at the same time
for it to have any effect. If for example agent 1 pulls the lever in location 1 and agent 2 is rotating,
pulling a lever will do nothing. This is expressed in equation 7.5

T
(
〈L, 1, 4, 0, 2〉

∣∣∣〈L, 1, 4, 0, 3〉, 〈apull, aro〉) = 1 (7.5)

If both agents at the same time face north and listen at location 3 or pull while at location 1 or 5, the
environment will reset. Resetting the environment entails putting the state back into one of its two
initial positions. An examples is given in equation 7.6, in this example the tiger is left and agent 1
pulls the left lever while agent 2 listens, a hashtag (#) is used to denote that the transition probability
here does not depend on the tiger’s location.

T
(
〈#, 2, 4, 0, 0〉

∣∣∣〈#, 1, 3, 0, 0〉, 〈apull, ali〉) = 0.5 (7.6)

However, there is an exception. If both agents listen using the headphones, the location of the tiger
does not change. This is expressed in equation 7.7.

T
(
〈L, 2, 4, 0, 0〉

∣∣∣〈L, 3, 3, 0, 0〉, 〈ali, ali〉) = T
(
〈R, 2, 4, 0, 0〉

∣∣∣〈R, 3, 3, 0, 0〉, 〈ali, ali〉) = 1 (7.7)

63

7.1.5 Ground Level Observations

The ground level observations of the H-MacDecTiger problem consists of only the orientation infor-
mation and the location of the tiger. This leads to 6 observations; one for facing north, one for east,
south, west, one for hearing the tiger on the left and one for hearing the tiger on the right. Both agents
have the same set of observations (Ω0

1 = Ω0
2 = {o0, o1, o2, o3, ohl, ohr}).

If both agents listen using headphones or open door(s) by pulling lever(s), they will hear the location
of the tiger by observing either ohl or ohr. However, these observations are not accurate. If both agents
listen, there is a probability of 0.85 per agent that the correct tiger location is observed. Thus, in that
case the probability of both agents receiving the correct tiger location equals 0.852. In equation 7.8,
you will find an example where both agents listen, and agent 1 observes the correct location, while
agent 2 does not.

O
(
〈ohl, ohr〉

∣∣∣〈ali, ali〉, 〈L, 3, 3, 0, 0〉) = 0.85 · 0.15 = 0.1275 (7.8)

In all other cases where both agents either pull a lever or listen to headphones, there is a probability
of 0.5 to receive the correct observation per agent. I.e. in these cases it is random whether the correct
tiger location observation is observed. An example is shown in equation 7.9, where agent 1 listens and
agent 2 pulls a lever.

O
(
〈ohl, ohr〉

∣∣∣〈ali, apull〉, 〈L, 3, 5, 0, 0〉) = 0.52 = 0.25 (7.9)

In all other cases, there is a probability of 1 that the agents will receive an observation containing the
orientation it ends up at. An example of this is shown in equation 7.10, here agent 1 tries to listen
while facing a lever, and agent 2 rotates.

O
(
〈o0, o2〉

∣∣∣〈ali, aro〉, 〈L, 1, 4, 0, 2〉) = 1 (7.10)

7.1.6 Reward

Figure 24 denotes the rewards given for every joint action. It is the same as for the DecTiger problem,
except that the states also account of the correct location and orientation of the agents.

Joint Actions States Rewards

〈apull, ali〉 〈L, 1, 3, 0, 0〉, 〈R, 5, 3, 0, 0〉 −101

〈ali, apull〉 〈L, 3, 1, 0, 0〉, 〈R, 3, 5, 0, 0〉 −101

〈apull, apull〉 〈L, 1, 5, 0, 0〉, 〈L, 5, 1, 0, 0〉, 〈R, 1, 5, 0, 0〉, 〈R, 5, 1, 0, 0〉 −100

〈apull, apull〉 〈L, 1, 1, 0, 0〉, 〈R, 5, 5, 0, 0〉 −50

〈ali, ali〉 〈L, 3, 3, 0, 0〉, 〈R, 3, 3, 0, 0〉 −2

〈apull, ali〉 〈R, 1, 3, 0, 0〉, 〈L, 5, 3, 0, 0〉 9

〈ali, apull〉 〈R, 3, 1, 0, 0〉, 〈L, 3, 5, 0, 0〉 9

〈apull, apull〉 〈R, 1, 1, 0, 0〉, 〈L, 5, 5, 0, 0〉 20

Otherwise Otherwise 0

Figure 24: The rewards for the H-MacDecTiger Problem.

64

7.1.7 Macro-Observations

In this section, all macro-observations and their probabilities of occurring are explained. In figure 25
an overview of all observations and macro-observations are given. At the right of this diagram, the
main responsibility of the (abstraction) level is given. E.g. Orientation is the responsibility of the
ground level, which is abstracted away by the level above.

Figure 25: An overview of the (macro-)observations in the H-MacDecTiger problem.

In the set of level 1 macro-observations there are 5 macro-observations for each of the possible
locations of the agent, one for hearing the tiger at the left door, and one for hearing the tiger at the
right door.

Ω1
1 = Ω1

2 = {z1
1 , z

1
2 , z

1
3 , z

1
4 , z

1
5 , z

1
hl, z

1
hr}

The macro-observation probability functions of the H-MacDecTiger problem mainly uses the history of
the level below to determine the probabilities of their macro-observations to occur, which is determin-
istic in this problem. First the hearing observations are passed upwards if they are the last perceived
observations. If the ground level history passed into Z1

i ends with ohl, there is a probability of 1 that
z1
hl is perceived. The same goes for a history ending with ohr which leads to macro-observation z1

hr.
For the location observations i.e. z1

1 , z
1
2 , z

1
3 , z

1
4 , z

1
5 , the agent’s steps are retraced to determine the lo-

cation. This is done by first only looking at the observations and actions after the last reset (i.e. all
observations and actions up to and including those of the time-step of the last ohl and ohr observa-
tions). The agent knows that a reset has occurred when it receives either the ohr or ohl ground level
observations. Only the actions and observations after the last reset are considered because all move-
ments before resets are no longer relevant when it comes to determining the current location. Thus,
to determine the current location of an agent, this shortened history is looped over and every time a
movement is done, the location parameter is updated to reflect this change. Recall that a movement
is successfully done if an agent faces west or east while performing the forward action (af). Note that
the macro-action that is given as a parameter to the first level macro-observation probability function
remains unused. This is because the ground level actions and observations are sufficient when it comes
to determining the current location of the agent or the observation of the location of the tiger.
The second level macro-observations are the same as those in the original Dec-Tiger problem. These
macro-observations correspond to hearing the agents on either the left or the right.

Ω2
1 = Ω2

2 = {z2
l , z

2
r}

Thus, the z2
l observation should be given when the tiger is heard on the left, and z2

r should be given
when the tiger is heard on the right. The second level macro-observation probability function just
looks at the first level history and returns z2

l with a probability of 1 if this macro-history ends with
ohl and z2

r if the macro-history ends with z1
hr. Thus the macro-action is also not used in Z2

i . This is
shown in equations 7.11 and 7.12. All other values of Z2

i result in a probability of 0.

Z2
i (z2

l |θ1
i ends with z

1
hl,m

2) = 1 (7.11) Z2
i (z2

r |θ1
i ends with z

1
hr,m

2) = 1 (7.12)

65

The pseudocode for the first level macro-observation probability function (Z1
i) is given below;

function Z1
i (z1|θ1

i ,m
1)

if θ1
i ends with ohl then
return z1 = z1

hl . This returns 1 if z1 = z1
hl holds and 0 if it does not.

else if θ1
i ends with ohr then

return z1 = z1
hr

else
short θ1

i ← all observations and actions from time-steps after the last ohl and ohr from θ1
i

location← 2i . Set location to starting position (2 for agent 1, 4 for agent 2).
for all (o, a) ∈ short θ1

i do . Every observation and action per time-step.
if (o, a) = (o1, af) then . If the agent is facing and then moving east.

location← min(location+ 1, 5)
else if (o, a) = (o3, af) then . If the agent is facing and then moving west.

location← max(location− 1, 1)
end if

end for
return z1 = zlocation . This returns 1 if z1 = z1

location holds and 0 if it does not.
end if

end function

7.1.8 Macro-Actions

In this section, macro-actions and their components are explained. In figure 26 all actions and macro-
actions are shown.

Figure 26: An overview of the (macro-)actions in the H-MacDecTiger problem.

At the bottom there are the ground level actions that were explained in section 7.1.3. Then there
are the level 1 macro-actions, of which two are related to movement, namely the move left and move
right macro-actions (m1

ml,m
1
mr). These macro-actions abstract away the rotation (aro) and forward

(af) ground level actions. The concept of orientation is abstracted away, and the concept of the
location of the agent remains. Then there is the level 2 macro-action of pulling a lever (m1

pull), which
no longer requires the agent to be facing a particular direction to function. Instead the level 1 pull
macro-action (m1

pull) will automatically rotate the agent to the correct orientation before performing

the ground level pull action (apull). The same holds for the level 1 listening macro-action (m1
li).

Equation 7.13 defines the set of level 1 macro-actions and equation 7.14 defines the set of level 2
macro-actions. The set notations used in the macro-action components (β, I, π) contains the macro-
observations the relevant history must end with.

66

The level 1 macro-actions for moving left or right (m1
ml,m

1
mr) work by performing the forward

action if the correct direction is being faced and rotating if that is not the case. These macro-actions
terminate if the forward action has been taken while facing the correct direction. These two macro-
actions can be taken from any location, because walking into a wall is well-defined.
The level 1 listening action can only be performed at the location of the headphones. The agent will
rotate until it is facing north and then take the listen ground level action (ali). If the agent hears the
tiger (i.e. receives either the ohl or ohr observations), the listening macro-action terminates. The level
1 macro-action for pulling a lever works in a similar manner. The agent must be in a location with
a lever (i.e. 1 or 5) and it will rotate to the correct orientation before taking the apull action. The
termination condition is the exact same as that of the level 1 listening macro-action (m1

li).

M1
1 = M1

2 =

m1
ml =

 βm1
ml

: Any level 0 history ending with (af , o3)

Im1
ml

: Any level 1 history

πm1
ml

: {o3} → af else aro

m1
mr =

 βm1
mr

: Any level 0 history ending with (af , o1)
Im1

mr
: Any level 1 history

πm1
mr

: {o1} → af else aro

m1
li =

 βm1
li

: {ohl, ohr}
Im1

li
: {z1

3}
πm1

li
: {o0} → ali else aro

m1
pull =

 βm1
pull

: {ohl, ohr}
Im1

pull
: {z1

1 , z
1
5}

πm1
pull

: {o0} → apull else aro

(7.13)

The level 2 macro-actions are the same as those of the original Dec-Tiger problem. The compo-
nents of these macro-actions are similar to each other. They all have the exact same initiation and
termination conditions. The level 2 macro-action can be taken at any time. The termination condition
is that the last observation in the history is a tiger location observation (i.e. z1

hl or z1
hr). All level

2 macro-action policies first involve moving to the correct locations. Then the m1
pull macro-action is

taken if a door must be opened and m1
li will be taken if the level 2 listen macro-action was taken.

M2
1 = M2

2 =

m2
l =

 βm2
l

: {z1
hl, z

1
hr}

Im2
l

: Any level 2 history

πm2
l

: {z1
1} → m1

pull else m1
ml

m2
r =

 βm2
r

: {z1
hl, z

1
hr}

Im2
r

: Any level 2 history
πm2

l
: {z5

1} → m1
pull else m1

mr

m2
li =

βm2

li
: {z1

hl, z
1
hr}

Im2
li

: Any level 2 history

πm2
li

:

{z1

1 , z
1
2} → m1

mr

{z1
3} → m1

li

{z1
3 , z

1
4} → m1

ml

(7.14)

67

7.2 Policy Search Space

When given any kind of MDP, generally the goal is to find the best possible policy. There are many
policies, of which many are objectively better or worse than others. In order to ease the process of
finding a good policy, it would help to (greatly) reduce the amount of policies that can be considered.
The amount of policies that must be searched through is referred to as the policy search space. In
this section, a method is derived which can be used to determine the size of the policy search space.
Afterwards, the size of the policy search space is calculated for the H-MacDecTiger problem of section
7.1.

7.2.1 Policy Search Space Calculation

This section describes how the amount of deterministic joint policies can be calculated. There is always
an infinite amount of non-deterministic policies, so these are not considered in this thesis. Equation
3.4.5 from [40] can be used to calculate the amount of deterministic joint policies. This equation is also
shown in equation 7.15. Here n refers to the amount of agents (|I|), |A†| denotes the largest individual
action set and |O†| denotes the largest individual observation sets.

O

(
|A†|

n(|O†|
h−1)

|O†|−1

)
(7.15)

7.2.2 H-MacDecTiger Policy Search Space

The size of the top level policy search space can be calculated using equation 7.15. As an example, it
will be assumed that 3 level 2 macro-actions will be taken. This will simulate a regular (see section
3.3.1) DecTiger problem with horizon 3. Agent 1 has three level 2 macro-actions, agent 2 idem. Thus
|A†| will be equal to 3. Similarly, there are two level 2 macro-observations, leading to |O†| = 2 level 2
macro-observations. Putting this in equation 7.15 results in:

|A†|
n(|O†|

h−1)

|O†|−1 = 3
2(23−1)

2−1 = 4782969

h = 3 can be used here because we assume only three macro-actions will be taken. The actual
underlying horizon dealing with ground level actions and observations is much higher, as these ground
level actions and observations are abstracted away by using H-MacDecPOMDPs. In order to find the
required size of the ground level horizon, the maximum amount of ground level actions used in the
optimal policy must be found.
As is written in section 3.3.1, the optimal joint policy for the (h = 3) DecTiger problem has both
agents perform the listen action twice, followed by having each agent either open the door on the side
where the tiger is heard twice, or listening again for a third time if the tiger is heard on both sides.
In the H-MacDecTiger problem, the second level macro-actions all involve rotating 4 times and taking
either 1 or 3 steps. The full rotation is necessary because any agent must first rotate from the starting
position in order to move, and must then complete the rotation in order to use either a lever or
headphones. An agent needs to take just one step forward when it either listens, or goes to pull a lever
it spawned next to. The other lever that is further away requires three steps forward to reach.
Thus, in the optimal joint policy for solving the H-MacDecTiger problem where three level 2 steps are
taken, the third macro-action takes longest to terminate if at least one agent must walk to the lever
that is furthest away from it. Such policies take 20 ground level actions to complete. This can also

68

be seen in the policy of agent 1 and 2 shown in figures 28 and 29 respectively where both agents are
forced to open the levers furthest from themselves. Agent 1 hears the location of the tiger correctly
and pulls the correct lever while agent 2 misheard the tiger twice, leading him to pull the wrong lever.
Figure 27 shows the sequence of states that correspond to these histories. As becomes apparent in
these figures, 20 actions must be taken (on timesteps 0 to 19), leading to a horizon of 20 for the longest
optimal policy.
If there were no abstraction levels, and policies were planned directly using ground level actions and
observations, the policy search space would be much greater. There are four ground level actions per
agent, leading to |A†| = 4 actions. Similarly there are 6 ground level observations per agent, leading
to |O†| = 6 observations. Filling in these parameters in equation 7.15, leads to the following policy
search space size:

|A†|
n(|O†|

h−1)

|O†|−1 = 4
2(620−1)

6−1 = 41462463376025190

Figure 27: This diagram shows the longest history of states for an optimal policy where three second
level macro-actions are taken.

69

Figure 28: This diagram shows the longest ground action-observation history of agent 1 for an
optimal policy where three second level macro-actions are taken.

Figure 29: This diagram shows the longest ground action-observation history of agent 2 for an
optimal policy where three second level macro-actions are taken.

7.3 Benefits and Drawbacks of Using H-MacDecPOMDPs

With the concept of policy search space in mind (section 7.2), this section answers research question
three, namely:

(3) What are the drawbacks and benefits of using a H-MacDecPOMDP as opposed to a
(Mac-)Dec-POMDP?

Sections 7.3.1 and 7.3.2 describe two benefits, and sections 7.3.3 and 7.3.4 describe two drawbacks.

7.3.1 Policy Search Space Reduction

As shown in section 7.2.2, the policy search space of a problem can be greatly reduced by using a
H-MacDecPOMDP. Reducing the amount of policies to look through, greatly speeds up the process of
finding the optimal policy. The H-MacDecTiger problem example had a top level policy search space
size of 4782969 due to the defined macro-actions on levels below. Without abstraction levels and these
macro-actions and macro-observations, the policy search space size of the remaining Dec-POMDP
would have been at least 41462463376025190. The addition of more than 1 abstraction levels can enable
the horizons of macro-action policies to be smaller. In the H-MacDecTiger example, removing the
first abstraction level would have forced the level 2 abstraction level macro-actions to make ground
level policies that take orientation into account. These policies must use a much larger portion of
the ground level history. This is because much of the information processing work that is done in
the macro-observation probability function, must then be done by these policies themselves. Thus
the addition of multiple abstraction levels can be beneficial in reducing the size of the total policy
search space (i.e. the sum of the policy search space sizes of each level), however the top level policy
search space remains unaffected. This could be useful in future research where policies are found for
macro-actions.

70

7.3.2 Improved Human Interpretability

Policies that work with long histories are much harder for humans to understand. It may be hard to
understand why certain actions were planned as DecPOMDPs do not offer any additional information
to help interpret such policies. Macro-actions and macro-observations can be given clear purposes
and very understandable descriptions. Which may help future engineers or scientists to more easily
diagnose problems or make better design decisions for their AIs. The first level macro-observations
in the H-MacDecTiger problem for example translate orientation and movement data into location
data, which is easier to work with. Perceiving a macro-observation that states the location of an
agent conveys much more useful information of the state than an observation that contains the agent’s
orientation. Abstracting away details such as the orientation or even the location of the agent makes
it much easier to focus on solving overarching problems.

7.3.3 Requirement of Additional Structure

H-MacDecPOMDPs require constructing macro-actions and macro-observations. Designing such com-
ponents may require more knowledge of the problem at hand than designing equivalent Dec-POMDPs.
This thesis does not provide any automated method to design H-MacDecPOMDP macro-actions and
macro-observations. This leads to greater upfront costs in the design phase of the model, as this is done
manually, although there is research being done to learn macro-observation probability functions [42]
and macro-actions [43]. E.g. the amount of abstraction levels and the amount of macro-action, macro-
observations and their purposes are determined manually. Although, if done correctly, these upfront
costs should lead to a good return on investment during the planning phase of the model, this greater
upfront effort must be kept in mind.

7.3.4 Lack of Existing Efficient or Approximate Planning Methods

The H-MacDecPOMDP model is new and thus does not have any efficient planning methods, the same
goes for approximation methods. It is however reasonable to suspect that (variants) of methods used
to solve MacDecPOMDPs could also be used to solve H-MacDecPOMDPs. Thus more research should
be done to find approaches to more efficiently solve H-MacDecPOMDPs directly. In order to help
mitigate this issue, an algorithm is given that can transform H-MacDecPOMDPs into Dec-POMDPs.
This algorithm and its explanation can be found in section 6.2. Section 7.4 further discusses this
transformation.

7.4 Benefits and Drawbacks of Transforming H-MacDecPOMDPs into Dec-
POMDPs

This section answers research question four, namely:

(4) What are the drawbacks and benefits of transforming H-MacDecPOMDPs into Dec-POMDPs?

Subsection 7.4.1 describes a benefit, and section 7.4.2 describes a drawback.

71

7.4.1 Enable the Use of Existing Planning Methods

The main benefit to the transformation from H-MacDecPOMDPs to Dec-POMDPs is of course en-
abling the use of existing methods of solving Dec-POMDPs that were created by transforming H-
MacDecPOMDP problems. Such methods may include: the use of the MADP Toolbox [18], MAA* [44]
Dynamic Programming [45], evolutionary approaches [46] and approximate Q value functions [38].

7.4.2 Increased State Complexity

Dec-POMDPs that are transformed from H-MacDecPOMDPs contain many more states than a run-
of-the-mill Dec-POMDP. This is because the transformation procedure generates a new state for every
reachable tuple of states and level 0 to l joint histories. Thus the planner that is used to solve the
resulting Dec-POMDP has many more states to go through. In other words, the policies that must
be planned are much shorter, however the amount of states is much larger than it was in the original
H-MacDecPOMDP. The benefits of an exponential increase in performance due to having to find much
shorter policies is still there, however it is likely that this benefit is lower than it could be due to the
great amount of states in such Dec-POMDPs. It may be possible to reduce this problem, which will
be elaborated on in the future work section (section 8.1).

7.5 Experiment

In this section an experiment is desribed which was performed to further validate the correctness of the
H-MacDecPOMDP model. In this experiment, a prototype of the H-MacDecTiger problem (section
7.1) is built, which is tasked with finding the best possible deterministic top level joint policy. The
brute force approach explained in section 6.1 is used in this experiment, which also explains why the
policies had to be deterministic.
Measuring performance of the planner or model is not a goal of this experiment, thus these types of
metrics were not gathered. The only relevant result here is whether the optimal top joint policy has
indeed been found. The value of a the top joint policy is measured using a deterministic version of the
value function given in section 5.13.
The optimal joint policy is the same as that of section 3.3.1 (figure 2), the top level horizon that was
used in this experiment was also equal to 3.
The prototype was built in Java, and a link can be found in the footnote of this page 1.
The result of this experiment is that the correct top level joint policy can indeed be found using the
H-MacDecPOMDP model.

1https://github.com/keesfani/hmacdectiger

72

8 Conclusion

To conclude, this thesis’ findings are given in the form of answers to the research questions.

(1) How can the MacDecPOMDP Framework be extended to higher levels of abstraction?

The MacDecPOMDP Framework can be extended to higher levels of abstraction using the H-MacDecPOMDP
Framework explained in this thesis. In this framework, the MacDecPOMDP framework is extended in
such a way that macro-actions have policies that lead to other macro-actions. This leads to a hierarchy
of macro-actions, which allows planning with an arbitrary number of abstraction levels.

(2) Can H-MacDecPOMDPs be transformed into DecPOMDPs?

H-MacDecPOMDPs can be transformed into DecPOMDPs, to allow the use of existing DecPOMDP
solving methods on H-MacDecPOMDPs. This transformation is done by abstracting away levels, this
process is referred to as ”grounding” levels. In this grounding procedure, macro-states are formed
which contains both the state and the histories of all agents of the level below. These macro-states are
necessary because they allow the transition, reward and observation functions to take macro-actions
as their inputs. If macro-actions are used as inputs to these functions, the histories of the levels below
must be known, because these histories determine what the behavior of these macro-actions will be.
When all abstraction levels are grounded, the resulting model only needs a few simple heuristics and
is then equivalent to a Dec-POMDP.

(3) What are the drawbacks and benefits of H-MacDecPOMDPs as opposed to (Mac-)Dec-POMDPs?

The benefits of H-MacDecPOMDPs are that the policy search space can be greatly reduced. This
was shown by comparing the policy search space size of a H-MacDecPOMDP (the H-MacDecTiger
problem), which was equal to 41462463376025190, to the policy search space of the same problem but
without the levels of abstraction (4782969). This may significantly increase performance, because H-
MacDecPOMDPs exploit and explicitly construct inherent hierarchical structures present in problems
the model tackles. The structure that H-MacDecPOMDPs provide can also make H-MacDecPOMDP
policies much easier for humans to comprehend than their Dec-POMDP counter parts. This is in part
because macro-observations give higher level information where irrelevant details are abstracted away.
Another reason is that shorter policies are themselves easier to comprehend. The requirement of this
additional structure can also be a drawback for H-MacDecPOMDPs. More time and effort must be
put in to model the problem. Although the solutions to these problems will be found quicker if the
problem is well designed, the extra effort required for designing these problems should be thoroughly
considered. Another drawback of H-MacDecPOMDPs is that there are of course no designs or imple-
mentations of efficient or approximate solving methods.
A drawback of transforming H-MacDecPOMDPs into Dec-POMDPs is that states become more nu-
merous and complex. Ground level states are generally easy to comprehend in DecPOMDPs, but
integrating multi-level histories into them does make these resulting Dec-POMDPs more complex
than other run-of-the-mill Dec-POMDPs. The benefit is of this transformation is that it allows the
use of existing DecPOMDP solution methods to be employed for H-MacDecPOMDPs.

73

8.1 Future Work

There is still plenty of room for additional research regarding H-MacDecPOMDPs. This thesis defines
a value function for H-MacDecPOMDPs, however it does not define an efficient approach for solving H-
MacDecPOMDPs directly, i.e. without first transforming it into a Dec-POMDP. Useful places to start
would be adapting the planning methods for MacDecPOMDPs discussed in Amato, et al. [17]. These
include their Dynamic Programming, Memory-Bounded Dynamic Programming and Direct Cross En-
tropy Policy Search planning methods.
It would also be useful to research whether efficient direct planning methods for H-MacDecPOMDPs
outperform approaches where the H-MacDecPOMDP is first transformed into a Dec-POMDP. The
same goes for approximate planning approaches.
Another useful direction to research would be planning policies for macro-actions, and even auto-
matically finding structures ripe for exploitation using macro-actions and macro-observations in Dec-
POMDPs, it is not unthinkable that useful macro-actions and macro-observations could be found
automatically.
If a H-MacDecPOMDP has already been transformed into a Dec-POMDP, it is impossible to change
the policy of a macro-action in an abstraction level without having to do the transformation all over
again. It would be useful to create some kind of update procedure that can modify a Dec-POMDP
created from a H-MacDecPOMDP to reflect changes that were done to a single macro-action.
The transformation from H-MacDecPOMDPs to Dec-POMDPs can also be done partially, i.e. by not
grounding every abstraction level. It could be useful to find out whether performing the grounding
procedure on only a few abstraction levels could be beneficial in any sort of way.
Transforming H-MacDecPOMDPs into Dec-POMDPs leads to an explosive increase in the amount
of states. It would be beneficial to reduce this. One way this might be done is by researching ap-
proaches where entire histories do not need to be included in macro-states. Instead, only the parts of
histories that can change the behavior of the agent would really need to be included in macro-states.
Recall that the only reason histories are in macro-states at all, is that histories change the behavior
of macro-actions and macro-observations, thus it makes sense to only keep the parts of histories that
actually do change this behavior. For instance, in the H-MacDecTiger example, the first level history
could be almost completely omitted from macro-states. In this case only the last macro-action and
macro-observation are necessary because these are the only parts of the history that are looked at by
termination conditions and policies of second level macro-actions, as well as the macro-observation
probability function of the second abstraction level. The first level macro-states could probably also
work if the parts of histories that store observations and actions before ”resets” were removed. Re-
call that states in the H-MacDecTiger problem ”reset” when both agents either pull a lever or listen
using headphones. Thus the history of actions and observations before histories could be removed
from macro-states because the first level macro-observation function does not look any further into the
history than that, and termination functions and policies only look at the last action and observation
of the histories on the ground level.
It might be possible to remove unnecessary histories from macro-states automatically. This could be
done by modifying the appendHistory function per abstraction level inside the State Grounding pro-
cedure. Every abstraction level would have its own appendHistory function which could implement
these rules. These new appendHistory functions however do need to be made manually per problem
per abstraction level, however it is not unthinkable that it might be detectable that parts of histories
in macro-states remain unused. Reducing the complexity of states in Dec-POMDPs made from H-
MacDecPOMDPs is thus another promising aspect of H-MacDecPOMDPs that should be researched
in the future.

74

References

[1] Stuart Russell and Peter Norvig. A modern, agent-oriented approach to introductory artificial
intelligence. ACM SIGART Bulletin, 6(2):24–26, 1995.

[2] John G Everett and Alexander H Slocum. Automation and robotics opportunities: construction
versus manufacturing. Journal of construction engineering and management, 120(2):443–452,
1994.

[3] Fred Sistler. Robotics and intelligent machines in agriculture. IEEE Journal on Robotics and
Automation, 3(1):3–6, 1987.

[4] Mahyar Amirgholy, Mehrdad Shahabi, and H Oliver Gao. Traffic automation and lane manage-
ment for communicant, autonomous, and human-driven vehicles. Transportation research part C:
emerging technologies, 111:477–495, 2020.

[5] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic decision-making un-
der uncertainty for autonomous driving using continuous pomdps. In 17th international IEEE
conference on intelligent transportation systems (ITSC), pages 392–399. IEEE, 2014.

[6] Plan — meaning in the cambridge english dictionary. https://dictionary.cambridge.org/

dictionary/english/plan. (Accessed on 01/13/2021).

[7] Chelsea C White III and Douglas J White. Markov decision processes. European Journal of
Operational Research, 39(1):1–16, 1989.

[8] Aurélie Beynier and Abdel-Illah Mouaddib. Applications of dec-mdps in multi-robot systems. In
Robotics: Concepts, Methodologies, Tools, and Applications, pages 143–165. IGI Global, 2014.

[9] Eitan Altman. Applications of markov decision processes in communication networks: a survey.
2000.

[10] Shun-Pin Hsu and Aristotle Arapostathis. Safety control of partially observed mdps with appli-
cations to machine maintenance problems. In 2004 IEEE International Conference on Systems,
Man and Cybernetics (IEEE Cat. No. 04CH37583), volume 1, pages 261–265. IEEE, 2004.

[11] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[12] Nikos Vlassis. A concise introduction to multiagent systems and distributed artificial intelligence.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 1(1):1–71, 2007.

[13] Katia P Sycara. Multiagent systems. AI magazine, 19(2):79–79, 1998.

[14] David V Pynadath and Milind Tambe. The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of artificial intelligence research, 16:389–423,
2002.

[15] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):819–
840, 2002.

75

https://dictionary.cambridge.org/dictionary/english/plan
https://dictionary.cambridge.org/dictionary/english/plan

[16] Doina Precup, Richard S Sutton, and Satinder Singh. Theoretical results on reinforcement learning
with temporally abstract options. In European conference on machine learning, pages 382–393.
Springer, 1998.

[17] Christopher Amato, George Konidaris, Leslie P Kaelbling, and Jonathan P How. Modeling and
planning with macro-actions in decentralized pomdps. Journal of Artificial Intelligence Research,
64:817–859, 2019.

[18] Matthijs TJ Spaan, Frans A Oliehoek, et al. The multiagent decision process toolbox: software
for decision-theoretic planning in multiagent systems. In Proc. of the AAMAS Workshop on
Multi-Agent Sequential Decision Making in Uncertain Domains (MSDM), pages 107–121, 2008.

[19] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the
now. in 2011 ieee icra, 2011.

[20] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[21] Oliver Kroemer, Christian Daniel, Gerhard Neumann, Herke Van Hoof, and Jan Peters. To-
wards learning hierarchical skills for multi-phase manipulation tasks. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1503–1510. IEEE, 2015.

[22] Oliver Kroemer, Herke Van Hoof, Gerhard Neumann, and Jan Peters. Learning to predict phases
of manipulation tasks as hidden states. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 4009–4014. IEEE, 2014.

[23] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight.

[24] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical cooperative multi-agent reinforce-
ment learning with skill discovery. arXiv preprint arXiv:1912.03558, 2019.

[25] Jaedeug Choi and Kee-Eung Kim. Hierarchical bayesian inverse reinforcement learning. IEEE
transactions on cybernetics, 45(4):793–805, 2015.

[26] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 182–189, 2011.

[27] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[28] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

[29] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decom-
position. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[30] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

76

[31] Nicholas K Jong and Peter Stone. Hierarchical model-based reinforcement learning: R-max+
maxq. In Proceedings of the 25th international conference on Machine learning, pages 432–439.
ACM, 2008.

[32] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical multi-agent
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 13(2):197–229, 2006.

[33] Ruoxi Li, Sunandita Patra, and Dana Nau. Decentralized acting and planning using hierarchical
operational models. 2020.

[34] Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu
Ren, Yan Zheng, Zhaopeng Meng, Changjie Fan, et al. Hierarchical deep multiagent reinforcement
learning with temporal abstraction. arXiv preprint arXiv:1809.09332, 2018.

[35] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, 6(5):679–
684, 1957.

[36] Andrei Andreevich Markov. The theory of algorithms. Trudy Matematicheskogo Instituta Imeni
VA Steklova, 42:3–375, 1954.

[37] Richard D Smallwood and Edward J Sondik. The optimal control of partially observable markov
processes over a finite horizon. Operations research, 21(5):1071–1088, 1973.

[38] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value
functions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

[39] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. Taming de-
centralized pomdps: Towards efficient policy computation for multiagent settings. In IJCAI,
volume 3, pages 705–711, 2003.

[40] Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized pomdps. In
A concise introduction to decentralized POMDPs, volume 1, chapter 2.3.1, pages 17–19. Springer,
2016.

[41] Frans A Oliehoek and Christopher Amato. Dec-pomdps as non-observable mdps. 2014.

[42] Shayegan Omidshafiei, Shih-Yuan Liu, Michael Everett, Brett T Lopez, Christopher Amato, Miao
Liu, Jonathan P How, and John Vian. Semantic-level decentralized multi-robot decision-making
using probabilistic macro-observations. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 871–878. IEEE, 2017.

[43] Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference for
determining options in reinforcement learning. Machine Learning, 104(2-3):337–357, 2016.

[44] Daniel Szer, François Charpillet, and Shlomo Zilberstein. Maa*: A heuristic search algorithm for
solving decentralized pomdps. arXiv preprint arXiv:1207.1359, 2012.

[45] Sven Seuken and Shlomo Zilberstein. Memory-bounded dynamic programming for dec-pomdps.
In IJCAI, pages 2009–2015, 2007.

[46] Barış Eker and H Levent Akın. Using evolution strategies to solve dec-pomdp problems. Soft
Computing, 14(1):35–47, 2010.

77

	Introduction
	Planning
	Uncertainty
	Decentralization
	Abstraction
	Research Questions
	Outline

	Related Work
	Model-Based Reinforcement Learning
	Model-Free Reinforcement Learning
	Approaches Using Communication

	Background
	Markov Decision Process
	Partially Observable MDPs
	Decentralized POMDPs
	Dec-Tiger

	Macro Dec-POMDPs
	Macro Components
	MacDecPOMDP Definition
	2-Agent Value Function

	A Critical Analysis of the MacDecPOMDP Framework
	Macro-Observation Definition Issue
	Trivialized MacDec-POMDP Example
	Problem Description
	Trivializing The Problem
	Formal Definition for Invalid-MacDec-Tiger
	Discussion

	Replacing States with Histories in the Macro-Observation Probability Function
	Adding a Base Case to the Value Function
	Integrating Histories with the Value Function
	Integrating Macro-Observations and Macro-Histories
	Generalizing the 2-Agent Value Function to n Agents
	n-Agent Value Function Parameters
	Component Generalization
	Superset of Terminating Agents

	Mac-DecPOMDP Value Function
	Notation Comments
	Value Function

	Linking the New MacDecPOMDP Value Function to Other Value Functions
	Value Function Rewrite Formulation
	Explanation of this Rewrite
	The Link Between Value Functions

	Limited Abstraction

	Hierarchical MacDec-POMDP
	Conceptual Idea
	Abstraction Levels
	Macro Action Termination
	Higher Level Histories
	Utilizing null-Observations for Termination
	Full Formal Definition
	Histories and Outer Level Macro-actions
	Notation Comments

	Value Function Overview
	Overview Explanation

	Action Selection Phase
	Observation Processing Phase
	Reward Determination
	State Transition
	Value Function Recursion
	H-MacDec-POMDP Value Function Formulation
	H-MacDecPOMDP Value Function Proof
	Base Case
	Inductive Step

	Solving H-MacDecPOMDPs
	Brute Force Planning
	Transforming H-MacDec-POMDPs Into DecPOMDPs
	Transformation I/O
	Transformation Overview

	Transformation Algorithm
	Transform Function

	State Grounding
	Grounded States Definition
	Notation Comments
	State Initialization Grounding
	State Grounding Algorithm

	Transition Grounding
	Observation Grounding
	Reward Grounding
	Initialization and Termination Heuristics

	H-MacDecPOMDP Example and Analysis
	Hierarchical MacDecTiger Problem
	Summary
	States
	Ground Level Actions
	Transition Function
	Ground Level Observations
	Reward
	Macro-Observations
	Macro-Actions

	Policy Search Space
	Policy Search Space Calculation
	H-MacDecTiger Policy Search Space

	Benefits and Drawbacks of Using H-MacDecPOMDPs
	Policy Search Space Reduction
	Improved Human Interpretability
	Requirement of Additional Structure
	Lack of Existing Efficient or Approximate Planning Methods

	Benefits and Drawbacks of Transforming H-MacDecPOMDPs into Dec-POMDPs
	Enable the Use of Existing Planning Methods
	Increased State Complexity

	Experiment

	Conclusion
	Future Work

