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SUMMARY

Deep learning is the core algorithmic tool for automatically processing large amounts of
data. Deep learning models are defined as a stack of functions (called layers) with millions
of parameters, that are updated during training by fitting them to data. Deep learning mod-
els have show remarkable accuracy gains on visual problems in video and images. Yet at
the same time, this comes at a considerable computational cost that raises concerns about
energy consumption. The escalation in the number of parameters and the surging demand
for extensive data exacerbate these concerns. This thesis delves into the core of these con-
cerns, proposing innovative techniques to enhance the efficiency of deep learning models.
This thesis starts with exploring efficient deep learning models for video data, followed by
efficient models for image data.

For video data, efficiently identifying and localizing objects across consecutive frames in
videos – video object detection, has useful applications in everyday life such as safer traffic,
or medical assisted systems. This thesis leverages the inherent motion within videos, intro-
ducing a method that anticipates object locations from a single video frame over multiple
future frames. By limiting the frames processed in the deep learning model to only a subset
of frames, it markedly reduces computational overhead. This approach leads to not only en-
hanced efficiency, but also higher precision by implicitly incorporating motion smoothness
constraints. Furthermore, while still in the context of video data, this thesis investigates
action recognition in video sequences. Existing prior methods often resort to sub-sampled
video frames to reduce deep learning computations. In contrast, this thesis advocates us-
ing of all video frames during deep learning model fitting. This novel approach reduces
model computational demands by making the observations that similar video frames should
contribute similarly to the deep model parameter updates, and therefore their function re-
sponses can be accumulated. My work on efficient video analysis has led to great speed
improvements, and serves as a good starting point for future work.

For image data, this thesis focuses on two tasks: cross-domain image matching, and im-
age classification. Cross-domain image matching is the task of matching images coming
from two different recording settings (domains) such as day-time and night-time. Deep
models for realistic image data need to be able to recognize semantics in images across do-
mains. Moreover deep models rely on annotations — tags naming the categories present in
the images: e.g. ‘dog’, ‘car’, ‘person’, etc., which are expensive to obtain. This thesis ad-
dresses both these challenges. The proposed method introduces a robust strategy blending
deep models for image matching with methods that adapt across multiple domains. And it
deftly handles domain disparities and outliers, and more notably is data-efficient as it only
needs sparse image annotations. Finally, in the context of recognizing image categories,
this thesis defines a new type of deep model layer to be used for normalization that is
data-efficient. This stands in contrast to standard normalization layers such as BatchNorm,
which makes deep model fitting efficient, however require many data samples at once. The
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proposed new normalization layer sidesteps the dependency on sample statistics and oper-
ates independently of the number of input data samples yielding memory efficiency. My
work on efficient image analysis has demonstrated great data-efficiency, and it represents
valuable inspiration for future work.

Taken together, this thesis is a comprehensive exploration of deep learning efficiency,
spanning image and video data. The proposed approaches have shown valuable reduction
in computational and data demands. The work presented here has raised the standards of
what useful deep models should accomplish, and helped the field move in a better, more
responsible direction.



SAMENVATTING

Diep leren is de belangrijkste algoritmische tool voor het automatisch verwerken van grote
hoeveelheden gegevens. Deep learning-modellen worden gedefinieerd als een stapel func-
ties (lagen genoemd) met miljoenen parameters, die moeten worden bijgewerkt door ze aan
te passen aan de gegevens. Dit ontwerp maakt ze opmerkelijk, vooral voor het oplossen
van visuele problemen met video- en beeldgegevens. Maar tegelijkertijd brengt dit aan-
zienlijke rekenkosten met zich mee die zorgen baren over het energieverbruik. De escalatie
van het aantal parameters en de stijgende vraag naar uitgebreide gegevens verergeren deze
zorgen. Dit proefschrift gaat dieper in op de kern van deze zorgen en stelt innovatieve tech-
nieken voor om de efficiëntie van deep learning-modellen te verbeteren. Dit proefschrift
begint met het verkennen van efficiënte deep learning-modellen voor videodata, gevolgd
door efficiënte modellen voor beelddata.

Voor videogegevens heeft het efficiënt identificeren en lokaliseren van objecten over op-
eenvolgende frames in video’s - detectie van video-objecten, nuttige toepassingen in het
dagelijks leven, zoals veiliger verkeer of medische ondersteunde systemen. Dit proefschrift
maakt gebruik van de inherente beweging in video’s en introduceert een methode die object-
locaties anticipeert vanuit een enkel videoframe over meerdere toekomstige frames. Door
de frames die in het deep learning-model worden verwerkt te beperken tot slechts een sub-
set van frames, wordt de rekenkundige overhead aanzienlijk verminderd. Deze aanpak leidt
niet alleen tot verbeterde efficiëntie, maar ook tot hogere precisie door impliciet beperkin-
gen voor de soepelheid van bewegingen op te nemen. Bovendien, nog steeds in de context
van videodata, onderzoekt dit proefschrift de herkenning van menselijke acties in videose-
quenties. Bestaande eerdere methoden nemen vaak hun toevlucht tot sub-sampled videofra-
mes om deep learning-berekeningen te verminderen. In tegenstelling hiermee pleit dit werk
voor het gebruik van alle videoframes tijdens het aanpassen van deep learning-modellen.
Deze nieuwe benadering vermindert de rekeneisen van het model door de waarnemingen
te doen dat vergelijkbare videoframes op dezelfde manier zouden moeten bijdragen aan de
diepe modelparameterupdates, en daarom kunnen hun functiereacties worden geaccumu-
leerd. Mijn werk aan efficiënte video-analyse heeft geleid tot grote snelheidsverbeteringen
en dient als een goed startpunt voor toekomstig werk.

Voor beelddata richt dit proefschrift zich op twee taken: cross-domein beeldmatching
en beeldclassificatie. Cross-domain image matching is de taak om beelden te matchen die
afkomstig zijn van twee verschillende opname-instellingen (domeinen), zoals overdag en ’s
nachts. Diepe modellen voor realistische beeldgegevens moeten semantiek in beelden over
domeinen heen kunnen herkennen. Bovendien vertrouwen diepe modellen op annotaties
— tags die de categorieën in de afbeeldingen benoemen: bijv.. hond, auto, persoon, etc.,
die duur zijn om te verkrijgen. Dit proefschrift behandelt beide uitdagingen. De voorge-
stelde methode introduceert een robuuste strategie die diepe modellen voor het matchen van
afbeeldingen combineert met methoden die zich over meerdere domeinen aanpassen. En
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het gaat behendig om met domeinverschillen en uitschieters, en is met name data-efficiënt
omdat het slechts schaarse beeldannotaties nodig heeft. Tot slot, in de context van het
herkennen van afbeeldingscategorieën, definieert dit proefschrift een nieuw type diepe mo-
dellaag die gebruikt kan worden voor normalisatie en die data-efficiënt is. De standaard
normalisatielagen versterken de diepe modelaanpassing, maar ze vereisen veel gegevens-
monsters tegelijk. De voorgestelde nieuwe normalisatielaag omzeilt de afhankelijkheid van
steekproefstatistieken. Door dit te doen, werkt de methode onafhankelijk van het aantal
invoergegevensmonsters en bereikt zowel betrouwbaarheid als geheugenefficiëntie. Mijn
werk op het gebied van efficiënte beeldanalyse heeft een grote gegevensefficiëntie aange-
toond en vormt een waardevolle inspiratie voor toekomstig werk.

Alles bij elkaar genomen, is dit proefschrift een uitgebreide verkenning van de efficiëntie
van diep leren, verspreid over het ingewikkelde tapijt van beeld- en videogegevens. De
voorgestelde benaderingen hebben geleid tot een waardevolle vermindering van de reken-
en gegevensvereisten. Het hier gepresenteerde werk heeft de normen verhoogd van wat
bruikbare diepe modellen zouden moeten bereiken, en heeft het veld geholpen om in een
betere, meer verantwoorde richting te gaan.
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2 1. INTRODUCTION

Automatically processing visual data (image and video) has countless applications
in every day life: from medical image analysis, to assisting systems and autonomous
driving. For analyzing visual data, researchers have started from edge analysis [1–3] and
grouping based on Gestalt principles [4–6] and extended this to probabilistic models
[7, 8] and image descriptors [9–12]. However, in the past ten years a new set
of algorithms [13–15] decisively showed great accuracy gains on visual data. These
algorithms learn from example and are inspired by neural networks in the human brain
and are generally referred to as: Deep learning. These deep networks allow vision
researchers to move away from pre-defined visual cues, and learn to automatically
extract the useful visual information directly from the visual input data. This thesis
focuses exclusively on solving vision tasks with deep networks.

Deep networks have been used primarily for solving visual tasks such as: (1) image
recognition [16–18] – recognizing the category of the objects present in an image, out of
a predefined set of categories, called annotations or labels: e.g. ‘car’, ‘person’, ‘plant’,
etc.; (2) object recognition [19–21] – localizing objects in images or frames of a video,
typically by drawing a bounding-box around the objects, and recognizing the category of
the object; (3) action recognition [13, 22–24] – recognizing the action present in a video
out of a set of predefined action categories: e.g. ‘jumping’, ‘running’, ‘swimming’, etc.
This thesis discusses image recognition in Chapter 4 and Chapter 5, object recognition
on video-data in Chapter 2, and action recognition in Chapter 3, where I focus both
on network training strategies and network architectures. I shortly introduce below
the typical deep network building blocks (network architecture), and the deep learning
training procedure.

L
o

ss

Batched inputs

Labels

- convolutional layer - BatchNorm normalization layer - non-linear layer

'dog'          'cat'

'dog'          'cat'

Output

Fig. 1.1: An example of typical building blocks of a deep network architecture. The network
starts from batches of inputs, and computes convolutions (in convolutional layers) or
linear functions of the inputs (in the linear layers). The linear/convolutional layers
contain the learnable parameters. These layers are typically followed by normalization
layers such as BatchNorm [25] and non-linear layers such as ReLU [26].

A typical convolutional deep network architecture starts from input samples (here,
images or video sequences), split into groups of a fixed size, called batches. The network
is composed of multiple layers, as in Figure 1.1. The layers compute convolutions
over the layer inputs (convolutional layer), or compute a linear function of the layer
inputs (linear layer). The convolutional/linear layers are typically followed by layers
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that compute input statistics, knows as normalization layers (such as BatchNorm [25],
LayerNorm [27], InstanceNorm [28], and GroupNorm [29]). And the normalization
layers are followed by non-linear functions (activation functions/non-linear layers), of
which the most popular is the ReLU [26]. The convolutional layers and linear layers
contain learnable parameters, also called weights. The parameters are fitted to the
training data, and the more layers, the larger the number of parameters. The output of
each layer is called an activation or feature map. The network predicts an output which,
then, is optimized with respect to the labels, by minimizing a function called the loss. In
this thesis, I analyze the normalization layers in Chapter 5.

With regard to deep network training, this involves optimizing the deep network
parameters so that they fit well to the training data, after which such a trained network
is evaluated on unseen test data. The training data consists of examples images
or videos and associated labels. When not every training image has an associated
label, the annotations are called sparse. This is generally the case with data for
real-world applications, and this thesis analyzes the sparse data annotations in Chapter 2.
Additionally, when the training data is recorded in a different setting than the test data
(e.g. day-time and night-time), then the training setting is called the source domain
and the test setting is called the target domain. In Chapter 4 I focus on deep learning
methods that can extract information useful for both source and target domain (called
cross-domain), and can adapt the source domain to the target domain (known as domain
adaptation). The deep learning training procedure is composed of 2 steps called passes:
the forward pass computes the results of all the network operations starting from the
inputs and going towards the outputs; the backward pass computes the gradients of the
loss function with respect to the parameters of the network and updates the network
parameters. In Chapter 3 I focus on speeding up the training procedure, and rethink the
complete forward and backward pass as well as how activations are computed.

1.0.1. EFFICIENCY IN DEEP LEARNING

Deep networks achieve impressive results on visual problems [16, 17, 31, 32]. However,
these results come at a great computational cost, leading to great energy consumption
being associated with deep learning. Deep learning models have become increasingly
complex, with growing numbers of layers, requiring substantial computational resources
when fitted to the training data (training) and when used to make predictions on
unseen testing data (inference), as shown in Figure 1.2. The training of large-scale
models often involves running computations on high-performance hardware, such as
graphics processing units (GPUs) or specialized accelerators. These hardware devices
consume significant amounts of power, which contribute to a high carbon footprint [33].
Additionally, the increasing demand for large-scale training datasets and cloud-based
infrastructure further adds to the energy consumption and environmental impact. To
address the efficiency and energy consumption concerns, researchers are exploring
new techniques such as removing (pruning) redundant network parameters [34–36],
or quantizing the network parameters [37–39], or devising efficient training strategies
[40–42]. Given its urgency, this thesis also focuses on efficient deep learning and
specifically on the efficiency of deep models for image and video data. Below I review
the current efficient deep learning approaches for image and video data.
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4 1. INTRODUCTION

ViT-base
ViT-large

Fig. 1.2: Top-1 accuracy v.s. model sizes defined by the number of operations on the standard
ImageNet dataset [30] for deep visual networks over the years 2014-2023. Deep
learning models have become increasingly complex, needing more computational
resources both when fitted to the data (training) and when making predictions
(inference) to reach a high accuracy.

Deep learning efficiency in images is primarily done by network pruning [34–36] and
parameter low-rank factorization [43–45]. These methods aim to reduce the number of
parameters of deep neural networks by eliminating redundant parameters and exploiting
sparsity. Lightweight architectures, such as MobileNet [46] and EfficientNet [47], have
been designed to strike a balance between model size (number of parameters) and
accuracy, making them suitable for deployment on mobile and edge devices. Knowledge
distillation [48, 49] is another effective approach where a large model (the teacher) is
trained to transfer its activations to a smaller, more efficient model (the student) by
exploiting the teacher’s predictions during training. Additionally, domain adaptation
[50–52] techniques facilitate the efficient use of pre-trained models by adapting the
knowledge learned from a source domain to a target domain, and thus reducing the
training data requirements. Furthermore, methods for learning sample statistics (e.g.
mean and variance), such as GroupNorm [29], have been proposed to enhance model
efficiency by decoupling the model’s behavior from batch statistics, allowing for faster
training. In the context of deep learning efficiency on image data, this thesis focuses
on domain adaptation in Chapter 4 and normalization layers that are efficient by being
sample-independent in Chapter 5.

While efficiency is well explored for images, it is not as well investigated for videos.
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Videos typically contain around 20-30 images per second, thus making deep models for
videos computationally intensive. Architectural efficiency plays a crucial role in deep
models for videos, where 3D convolutional networks, like C3D [53], extend traditional
2D convolutions with an extra dimension: time. 3D convolutional networks model the
time dimension but increase the computation cost and introduce extra parameters. To
make 3D convolutions efficient shifting activations over the temporal dimension in TSM
(temporal shift module) [54] is extremely efficient. Recent advances in efficient video
architectures, such as SlowFast [55], propose to process the videos on a fast path (where
the video frames are greatly subsampled) and a slow path (processing dense frames). In
terms of training strategy, augmenting the training data with different transformations,
such as RandAugment [56], provide efficient yet diverse data augmentations that boost
model generalization. Also, frame sampling strategies, like Temporal Segment Network
(TSN) [24], efficiently sample video segments during training, striking a balance between
computational efficiency and model performance. Building on these successful prior
works, in this thesis, I propose two training strategies to address the training efficiency
for video object detection Chapter 2 and video action recognition in Chapter 3.

The following sub-sections start by giving a brief introduction of each task in each of
the individual thesis chapters. Finally, I conclude with the contributions of the thesis.

1.1. EFFICIENCY IN VIDEOS
Here, I briefly introduce this thesis’s focus on building and training efficient deep
learning models for video data. For this, I focus on two video understanding tasks:
video object detection, and video action recognition.

1.1.1. CHAPTER 2: EFFICIENT VIDEO OBJECT DETECTION

Fig. 1.3: Chapter 2: Efficient video object detection. The proposed video object detection
method starts from individual video frames at timestep t and detects the object
locations via a convolutional neural network (CNN). Subsequently, the novelty of the
method comes from anticipating the future object locations (highlighted in green, here)
over the next T frames. Thus, the frames between timestep t and t +T do not need to
be processed in the network, leading to efficiency.
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Video object detection involves identifying and localizing objects of interest within a
sequence of video frames. Unlike image object detection, where objects are detected in
individual images, video object detection focuses on detecting objects across consecutive
frames in a video, as shown in Figure 1.3. Previous works on video object detection
either perform temporal post-processing of single-frame object detectors [57–60] to align
the object detection results from each frame along the temporal dimension, or aggregate
temporal information in different ways [61–65] through feature maps of sampled frames
from a video. These post-processing steps and featuremaps aggregations make these
methods computationally expensive. In contrast, I propose a method in Chapter 2 to start
from individual frames sampled at different timesteps, t , and detect the objects present
in these frames and then subsequently anticipate the detected object locations over the
subsequent T frames, as shown in Figure 1.3. By anticipating future object locations
over T frames from a single static frames at time t , the network does not need to
process all the frames between t and t +T , leading to efficiency.

1.1.2. CHAPTER 3: EFFICIENT VIDEO ACTION RECOGNITION

Action recognition entails identifying and classifying human actions or activities from a
sequence of video frames, as illustrated in Figure 1.4 This task is challenging due to the
ambiguity of describing activities at the appropriate timescales [66]. Even though many
actions can be recognized without reasoning about the long-term temporal relations,
such as video actions in datasets such as UCF101 [67] and THUMOS [68], deep neural
networks still struggle in situations where data and observations are limited, or where
the underlying structure is characterized by long-term temporal relations, rather than the
appearance of certain entities [69, 70]. To represent the long-term temporal relations of
a full video, prior methods train by using sub-sampled video frames [13, 24, 71, 72].
Sub-sampling is needed because realistic videos contain thousands of frames and these
cannot be fit in the GPU memory. Furthermore, instead of computationally-intensive
representations learned from 3D convolutions or optical flow, recent video action
recognition methods [13, 22–24, 42, 71–73] rely on efficient 2D CNNs. However,
even with 2D CNNs, the number of input sub-sampled frames that can be fit in the
memory is only 16 to 64 frames, due to the large networks that also occupy GPU
memory. Furthermore, since not all video frames are equally informative for recognizing
an action, sub-sampling can miss crucial frames for video action recognition.

To address the issues above, I propose to do away with sub-sampling heuristics and
argue for leveraging all video frames: use all video frames during training, as shown
in Figure 1.4. My method overcomes the memory limitation by reconsidering the
forward pass and backward pass computations. The method starts by computing frame
activations ( fmaps in Figure 1.4) for all frames, and then aggregates the activations over
frames such that fewer gradients are computed. If the network would be linear, a huge
memory reduction could be gained by first summing all frame activations in the forward
pass, which would reduce to having just a single frame-gradient in the backward pass.
Yet, deep networks are non-linear and have non-linearities in the activation function
and in the loss function. The differences between the linear assumption and the actual
non-linearity of the network introduce gradient updating errors. I propose to reduce
these errors by aggregating the approximately linear parts of the activations along the
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Fig. 1.4: Chapter 3: Efficient video action recognition. The proposed method aggregates the
feature maps ( fmaps ) of the input N frames and reduces the number of feature maps
from N to K (where K ≪ N ) in the forward pass. It largely saves computation memory
for video action recognition and makes it possible to input more frames from a video.

temporal dimension (video frames), leading to memory savings in the backward pass
while still approximating the full video gradient.

1.2. EFFICIENCY IN IMAGES
My work on the efficiency on image data focuses on domain adaptation with limited
annotations, and on learning a normalization layer that is independent of data sample
statistics. I briefly discuss these below.

1.2.1. CHAPTER 4: DATA EFFICIENT CROSS DOMAIN IMAGE
MATCHING

Cross domain image matching implies matching two images that are collected in
different settings (i.e. domains): for instance, photos of the same building captured at
day-time and at night-time. Here I focus on the challenging setting where the source
domain is labeled while the target domain data is unlabeled, thus paired-image examples
from the two domains are not available during training. Therefore, I consider both image
matching and domain adaptation techniques for solving this task. For image matching,
prior work uses a special type of network where the weights are shared between 2
branches, called ‘siamese networks’ [74]. In Chapter 4, I also adopt the siamese
network architecture as part of my framework. To match the unlabeled target domain
images with the source domain images, I employ domain adaptation. Domain adaptation
has been widely researched in diverse classification tasks, and the empirical multi-kernel
maximum mean discrepancy (MK-MMD) [75] is the most used metric, which is a
statistical method for comparing and measuring the similarity between two sets of data.
In my proposed approach I also use this metric to assess the similarity of the source
domain and the target domain. Additionally in Chapter 4 I address another challenge:
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Image matching

CNN

Labeled - source domain

Unlabeled - target domain

Domain adaptation
+

Outlier detection

Class 1

Class 2

Outlier

Fig. 1.5: Chapter 4: Data efficient cross-domain image matching. The proposed method
learns domain invariant and representations for matching the images in the target
domain with images in the source domain. By doing this it efficiently uses the source
and target domain data without extra annotation needed in the target domain.

the image samples in the two domains may not fully overlap due to the existence of
outlier images, as shown by the example in Figure 1.5. If left undetected, the outliers
may affect the matching performance. Putting everything together, I propose a network
using three constraints incorporating solutions for the three challenges mentioned above.
The proposed method efficiently uses the source and target domain data without extra
effort in labeling the target domain data.

1.2.2. CHAPTER 5: DATA EFFICIENT ACTIVATION NORMALIZATION
INDEPENDENT OF SAMPLE STATISTICS

Normalization layers in deep networks are designed to stabilize the training process
by avoiding gradients that have too large or too small magnitudes. They do this by
normalizing the input activations within the layers. The most popular normalization layer
is Batch Normalization [25] (BatchNorm). BatchNorm computes featuremap statistics
(mean and standard deviation) across the sample dimension, N , and then normalizes
the feature maps with these statistics. Thus, the performance of BatchNorm greatly
depends on the number of input samples. Using large batch sizes is not feasible in
applications such as object detection, segmentation, and video recognition, where just
one or a few samples can be fit in the GPU memory due to the high-resolution/large
number of frames. Using only a few or just one sample per batch is possible
if the normalization is independent of the sample statistics. Various normalization
techniques have been proposed to overcome the dependency on large batches, such as
Layer Normalization [27], Instance Normalization [28], and Group Normalization [29].
These methods are applied per sample and are efficient, but they are less reliable than
BatchNorm. Thus, there is a need for a method that is both reliable and efficient.

In Chapter 5, I propose WeightAlign, as shown in Figure 1.6, which normalizes
activations without using sample statistics. This chapter proposes re-parameterizing the
weights within a filter to arrive at correctly normalized activations. The proposed method
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Fig. 1.6: Chapter 5: Data efficient activation normalization independent of sample statistics.
The proposed WeightAlign arrives at correct featuremap normalization by normalizing
the weights by the mean and scaled standard deviation computed within a filter.
WeightAlign achieves the same purpose as normalizing the featuremap but does not
rely on the featuremap. WeightAlign is independent of the sample statistics because it
only normalizes the filter weights, which leads to data efficiency.

is independent of batch size, and achieves stable performance over a wide range of tasks
with various batch sizes. Because the proposed method is independent of the sample
statistics, it is data efficient.

1.3. CONTRIBUTION
The main contribution of this thesis is developing efficient deep learning models for
video understanding tasks, and using image data in an efficient way towards the tasks.
I propose novel methods for efficient video understanding: i.e. memory-efficient video
action recognition, and computationally efficient video object detection. And I explore
image data efficiency with a cross-domain image matching task on unlabeled target
domain data, and sample-statistics independent activation normalization layers.

Chapter 2 exploits the continuous smooth motion of objects in videos for video
object detection in two ways: 1) Improved accuracy by exploiting object motion as
an additional source of supervision, which is exploited by anticipating motion from a
static keyframe. And 2) Improved efficiency by only performing the expensive feature
computations on a small subset of all frames. Because neighboring video frames are
often redundant, features can be computed only for a single static keyframe, and the
object positions can be predicted in subsequent frames. In addition, this work also
explore a sparse annotation setting here, where only keyframe annotations are used and
between keyframes the model relies on smooth pseudo-motion for training. The proposed
model demonstrates computational efficiency, annotation efficiency, and improved mean
average precision when compared to state-of-the-art methods.
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Chapter 3 proposes an efficient method to use all video frames during training
for video action recognition. Assuming the network would be linear, then a huge
memory reduction is gained by first summing all frame activations in the forward
pass. This reduces to just a single update in the backward pass. Yet, deep networks
have non-linearities in the activation function and in the loss function. Thus, treating
the non-linear network as linear would introduce considerable approximation errors.
However, subsequent frames in a video are strongly correlated, and it’s this correlation
that makes it possible for the proposed method to process all frames and exploit the
frame correlations to create groups of frames, where the network is approximately linear.
By aggregating the approximately linear parts in a video in the forward pass, the method
achieves large memory savings while still approximating the full video gradient.

Chapter 4 addresses the problem of domain adaptation for feature learning in a cross
domain matching task when outliers are present. As is common in domain adaptation,
only labeled image pairs from the source domain are available, but no labels from the
target domain. To resolve the domain disparity between the train and the test data,
the model relies on Siamese network [74] for image matching and domain adaptation
used in image classification [76–80]. I propose a triplet constraints network to learn
the domain invariant and identity distinguishable representations of the samples. This
is made possible by utilizing the paired-image information from the source domain, a
weighted multi-kernel maximum mean discrepancy (weighted MK-MMD) method and
an entropy loss. Given the lack of publicly available datasets for the problem setting,
this work introduces two new synthetic datasets. The proposed method gives a practical
solution for the cross domain image matching task with outliers present.

Chapter 5 studies the normalization of the network activation. Unlike BatchNorm,
whose performance critically depends on the quality of the sample statistics, this work
proposes WeightAlign: normalizing activations without using sample statistics. Instead
of relying on sample statistics, the model re-parameterizes the weights within a filter
to arrive at correctly normalized activations. The proposed method is based on weight
statistics and is thus orthogonal to sample statistics. This allows it to exploit two
orthogonal sources to normalize activations: the normalization based on sample statistics
in combination with the proposed new one based on weight statistics. The proposed
WeightAlign is data efficient because it is a sample statistics independent normalization.
WeightAlign also achieves stable performance over a wide range of tasks with various
batch sizes.
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2
OBJECTS DO NOT DISAPPEAR:

VIDEO OBJECT DETECTION BY
SINGLE-FRAME OBJECT

LOCATION ANTICIPATION

Objects in videos typically have continuous smooth motion. We exploit continuous
smooth motion in two ways: 1) Improved accuracy by exploiting object motion as an
additional source of supervision, which we can exploit by anticipating motion from
a static keyframe. And 2) Improved efficiency by only doing the expensive feature
computations on a small subset of all frames. Because neighboring video frames are
often redundant we only compute features for a single static keyframe and predict
object positions in subsequent frames. In addition, we also explore a sparse annotation
setting, where we only annotate the keyframe and use smooth pseudo-motion between
keyframes. We demonstrate computational efficiency, annotation efficiency, and improved
mean average precision when compared to state-of-the-art methods on three common
datasets: ImageNet VID, EPIC KITCHENS-55, and YouTube-BoundingBoxes. We will
make our code publicly available.

This chapter is published as: Xin Liu, Fatemeh Karimi Nejadasl, Jan C Van Gemert, Olaf
Booij, Silvia L Pintea. Objects do not disappear: Video object detection by single-frame
object location anticipation. International Conference on Computer Vision (ICCV), 2023. arXiv:
https://arxiv.org/abs/2308.04770
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2.1. INTRODUCTION
Humans assume object permanence; blink your eyes: and the world is still there.
Similarly, video frames are redundant, and missing some frames when watching a movie
does not drastically change the scene. Actually, for the parts that did change, if these
parts changed coherently, they might hint at a sense of objectness, as hypothesized by
the Gestalt law of common fate. As illustrated in Figure 2.1 we here explore these
observations in the context of video object detection in two ways. 1) Improved accuracy
by the law of common fate: By predicting object motion from a static image, we exploit
an additional source of supervision which improves the video object detector accuracy
because coherent motion hints at objectness. 2) Improved efficiency by exploiting
redundancy to reduce computational cost and to reduce annotation cost. Instead of
processing all frames in a video, we sample keyframes and predict object motion for the
missing frames in-between; saving much computation and annotation time by simply
skipping the feature computation and/or the annotation for a large majority of the frames.

We make the following contributions: (i) We propose a video object detection method
that samples static keyframes and predicts object motion for unseen future frames. (ii)
We are compute efficient, as we only extract features for sampled static keyframes; (iii)
We demonstrate data efficiency, as we allow sparse annotations for only the sampled
keyframes, hallucinating motion in-between sparse annotations. (iv) Our experimental
results on ImageNet-VID [1], EPIC KITCHENS-55 [2], and YouTube-BoundingBoxes
[3] show that our approach improves accuracy over the current state of the art video
object detection methods, while being faster at both training and inference time.

2.2. RELATED WORK

Video object detection. Several methods perform temporal post-processing of still-image
object detectors such as post-processing Faster-RCNN [4, 5] or post-processing Mask
R-CNN [6, 7]. Alternatives include recurrent blocks [8, 9] or optical flow [10, 11].
This can be further extended with instance and pixel-level calibrations over time [12], or
using a space-time lattice [13]. More recently, the field has achieved notable momentum
by aggregating temporal information: either by defining detection correlations as a graph
in SELSA [14], or by using global and local temporal pooling in MEGA [15]. MEGA is
further extended by considering all pairwise frames in TF-Blender [16], while HVRNet
[17] integrates inter-video and intra-video object proposal relations. IFF-Net[18] uses
a feature flow estimating module to indicate the feature displacement for video object
detection. LWDN [19] does not simply aggregate features, but aligns the features
between keyframes by adopting a memory mechanism. In our paper, in contrast, we
do not aggregate neighboring frames, nor any other temporal heuristics to post-process
still-image detections. We avoid computationally demanding optical flow and recurrent
blocks. Instead, we anticipate future object locations over time from a single static
keyframe, placing temporal prediction at the heart of our model.

Single image motion prediction versus tracking. Object tracking aims to predict object
location in a video. In classical methods, the bounding box around the object to track
is given a priori [20], but can also be estimated by an object detector [21–24]. The
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Fig. 2.1: Anticipating future object locations from a static image is efficient and exploits motion
cues as an additional form of supervision for video object detection. By sampling a
single static keyframe at time t and anticipating the object locations over the following
T timesteps, we incorporate temporal consistency and smoothness of object motion.
Moreover, we are efficient because we only do the computationally expensive feature
extraction on a small subset of keyframes, while still using bounding box locations for
all video frames.

object location in the next frame can be estimated with siamese networks [21], or object
detections at every frame are linked into tracks by motion regression [22]. And a recent
overview of object tracking is given by [25]. Our method is inspired by tracking, yet we
are different because we make predictions of the object location in future frames from a
single static input image, without actually using the image features of the future frame.

Anticipating motion from a static single image. A single static frame is rich enough
to allow predicting of future appearance [26–29], actions [30–33], and motion [34–36].
Such motion predictions, in turn, can then be used for predicting pedestrians’ behaviors
[37, 38] or other road agents [39]. Moreover, motion prediction can be used as a
self-supervision cue [40–44] to improve feature learning. Inspired by these works, we
also predict the future from a still-image: future object locations. We use motion
prediction as an additional source of supervision to improve the accuracy of the
still-image detector, while we also exploit it for efficiency as it allows us to only
compute features on a subset of still-images, avoiding expensive feature computations on
all frames.

Efficiency in video. Because videos typically sample several frames per second (FPS) it
is important to have efficient video analysis methods. Successful prior work proposes
network architecture adaptations to reduce computations [45–49]. For video object
detection, it is efficient to adapt the detector online [50] or to transfer an image detector
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to video [51]. Alternatively, computations can be reduced by focusing only on specific
video regions [52–54]. Similarly, we also focus on efficiency in video object detection.
We are efficient by predicting object trajectories a few frames ahead and therefore saving
computations by not processing those frames.

Sparse annotations in video. Training a model on sparse video annotations can be
done by iteratively updating the model in a boosting fashion [55], or propagating
groups of pixels through time [56]. More recent work generates dense object masks in
videos from sparse bounding boxes [57]. Rather than focusing on improving the model
accuracy on sparsely annotated videos, prior work has analyzed what is the accuracy vs.
annotation effort trade-off [58]. Specifically for object locations in video, annotations
can be generated through a combination of tracking, frame selection and active learning
[59–62]. Inspired by these works we also explore a variant of our model that allows
sparse annotations. We require bounding box annotations on the static keyframes, and
we will experimentally show that we can hallucinate the motion between keyframes,
removing the need to annotate all frames.

2.3. ANTICIPATING OBJECT LOCATIONS
Object detection backbone. We illustrate our method in Figure 2.2. We start from a
standard static image object detection backbone, and input static frames that uniformly
sub-sampled from the video over time with a time step T , we call such static frames
“keyframes”. For each keyframe at time t , the object detector detects a set of N
bounding boxes Bt = {B i

t }i∈N where B i
t = (xi

t , y i
t , w i

t ,hi
t ), i ∈ {1, ..N } and xi

t , y i
t are the

top-left corner and w i
t ,hi

t are the width and height of the bounding box. Each B i
t

corresponds to a possible object and class c i
t : {(B i

t ,c i
t )}i∈N .

Trajectory subnetwork. Starting from the keyframe detection bounding boxes Bt ,
we anticipate object trajectories – defined as the future bounding box locations of
an object over the following T frames. The trajectory subnetwork is highlighted in
Figure 2.2. For each keyframe indexed by t , we define a batch of length T and we
input into the trajectory network three types of inputs: (a) the time index of the future
trajectory location relative to the keyframe index t batched from [1, ..,T ]; (b) the set
of bounding boxes detected over the keyframe Bt = {B i

t }i∈N repeated over all T time
steps: [{B i

t }i∈N ]×T ; and (c) the static image feature maps extracted from the area of the
keyframe bounding boxes { f i

t | f i
t = f (B i

t )}i∈N , also broadcast for each of the T time
steps: [{ f i

t }i∈N ]×T . Note that by inputting into the trajectory subnetwork the future
trajectory-frame indices in (a), we add temporal ordering information: each future box
prediction has an associated frame index. We map all three inputs: boxes, features and
time indices of trajectory length, through fully connected (FC) layers of equal size. We
concatenate the output features, and pass them through two additional fully connected
layers.

The output of the trajectory subnetwork is a list of trajectories, one trajectory for
each N detected objects indexed by i . Each trajectory starts at the keyframe at time
t and extends over the future t +T frames. Concretely, our trajectory predictions are:
{Ti

t |Ti
t = (B i

t ,B i
t+1, ..,B i

t+T )}i∈N , where we also add the keyframe bounding box Bt to
the trajectory.
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Fig. 2.2: Overview: The network starts from sampled video keyframes at timestep t . A
feature extractor backbone is followed by an object detector. The object detector
outputs for the keyframe at time t a set of N bounding boxes {B i

t }i∈N , together with
their associated class probabilities {ci

t }i∈N and features extracted from each box area
{ f i

t }i∈N . Next, our trajectory subnetwork takes as input: (a) a batch of trajectory
indexes [1, ..,T ], where T is the trajectory length; (b) the keyframe bounding boxes
repeated T times and batched, [{B i

t }i∈N ]×T ; and (c) the box features also repeated
T times [{ f i

t }i∈N ]×T . These are projected through linear layers of equal size (FC1a ,
FC1b , FC1c ) and the output is concatenated and passed through two additional linear
layers. The output of the trajectory network is a set of N trajectories {Ti

t }i∈N of length
T and their associated classes {ci

t }i∈N .

2.3.1. ASSOCIATING TRAJECTORIES TO GROUND TRUTH
To optimize our trajectory predictions, we need to associate ground truth boxes with
all predicted boxes along the trajectory and an object class to each trajectory. Each
trajectory starts with a keyframe bounding box B i

t , which has a corresponding object
class c i

t . We assume that the object class remains the same over the next T frames
along each trajectory and thus let each trajectory inherit the class of its starting keyframe
bounding box, yielding: {(Ti

t ,c i
t )}i∈N .

To define the box-regression loss we need to associate trajectories to ground truth
bounding boxes, B∗. We consider a set of trajectory boxes : {Ti

t = (B i
t ,B i

t+1, ..,B i
t+T )}i∈N .

Following the standard procedure [63, 64] we rank the predicted boxes Bt+l based on
their overlap with the ground truth boxes B∗

t+l at each frame t+l . We associate each of
the N predicted boxes with the best matching IoU score of the ground truth box.

2.3.2. TRAJECTORY LOSS
Bag of boxes loss. We want to optimize for each object indexed by i its associated
trajectory, starting at keyframe t : {Ti

t }i∈N . For readability, we ignore the index i from
here on. The standard loss Lbag for performing box regression, considers the trajectory
boxes as an unordered bag and computes a smooth L1 loss L1(·) [64, 65], for each
predicted box Bt+l , to its associated ground truth box B∗

t+l :

Lbag(B∗, {Bt , ..,Bt+T }) =
T∑

l=0
L1(B∗

t+l −Bt+l ). (2.1)

Trajectory cumulative loss. The downside of Equation (3.2) is that it treats each
prediction Bt+l as if it were independent of its neighboring predictions along the
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Fig. 2.3: Object trajectories are piecewise continuous: an object cannot disappear between two
neighboring frames t and t +1. We incorporate this continuity, by noting that the loss
between a box Bt+l along the trajectory and its associated ground truth B∗

t+l is defined
as the sum of pairwise offsets of neighboring boxes, δt+l , starting from the keyframe
box Bt . The orange line is the true trajectory and the green line is the predicted
trajectory. (Here, for simplicity we discard the width and height of the bounding boxes
and only show (x, y) coordinates and l ∈ {1, ..,4}.)

trajectory, Bt+l−1 and Bt+l+1. Therefore, there is no temporal ordering enforced in the
Lbag loss. Not enforcing the ordering of the predictions along the trajectory could lead
to discontinuous trajectories. We want to enforce smoothness in the predictions over
time: objects cannot disappear or appear at random locations, between neighboring
frames. Specifically, the trajectory is piecewise continuous: for an object to move from a
location Bt+1 to a location Bt+4 it has to travel through the intermediate locations Bt+2

and Bt+3, as illustrated in Figure 2.3. To add this insight, we define a loss that constrains
the pairwise offsets along the trajectory δt+k = (Bt+k −Bt+k−1),k ∈ {1, .., l }, from frame t
up to every frame t+l , to add up to the offset from the ground truth at the frame t+l to
the keyframe prediction (B∗

t+l −Bt ). Concretely:

L∑(B∗,
←→
Tt ) =

T∑
l=0

L1

((
B∗

t+l −Bt
)− l∑

k=1
δt+k

)
, (2.2)

where we redefine the trajectory to predict δt+l values describing pairwise offsets instead
of bounding boxes:

←→
Tt = (δt+1, ..,δt+T ). Note, that if we would predict bounding boxes

Bt+l in the trajectory network, instead of offsets between pairs of bounding boxes δt+l ,
Equation (2.2) would reduce to Equation (3.2) and the temporal ordering would not be
enforced, see the derivation in the supplementary material.

In Equation (2.2) the inner loop over pairwise offsets δt+k accumulates the errors in
the predictions over time from frame t+1 to frame t+l . To make sure the errors do not
accumulate along the trajectory, and the change from frame to frame is smooth, we add
another loss Lbag(δ) constraining the pairwise offsets δt+l at every timestep t+l to map
back to ground truth offsets: δ∗t+l = (B∗

t+l −B∗
t+l−1):

Lbag(δ)(B∗,
←→
Tt ) =

T∑
l=1

L1
(
δ∗t+l −δt+l

)
. (2.3)
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Our final loss Ltraj is then a combination of the two losses where the cumulative
trajectory loss L∑ enforces piecewise continuity in the predictions and the bag of offsets
loss Lbag(δ) discourages errors from accumulating along the trajectory and makes the
trajectory smooth:

Ltraj = L∑+Lbag(δ). (2.4)

We investigate the effect of each loss term in the experimental section, together with the
effect of predicting offsets δt+l instead of box coordinates Bt+l in the trajectory network.

Sparse annotation loss. When there are no annotations in-between keyframes then we
cannot optimize the trajectory anticipating. Since the task in the sparse annotation cases
is object detection on annotated keyframes, we can hypothesize that the precise true
location of an object along a trajectory B∗

t+l , is not essential, as long as the trajectory is
piecewise continuous and smooth, and the starting and ending points of the trajectory are
known. Therefore, we can rewrite our losses in Equation (2.4) to a sparsely-annotated
variant L(sa)

traj by changing the way in which we define the box-supervision. Explicitly,
we replace the set of ground truth boxes {B∗

t ,B∗
t+1, ..B∗

t+T } with a pseudo box trajectory.
The pseudo-box trajectory is defined by a continuous function, rt (·) describing the
trajectory at every timestep as: Tr

t = (B∗
t ,rt+1(B∗

t ), ..rt+T (B∗
t )), relative to the true

keyframe location B∗
t . Because the next keyframe is the last trajectory location, we

also constrain the pseudo trajectory to match the true bounding box at the end of the
trajectory: rt+T (B∗

t ) = B∗
t+T . In practice, we choose rt (·) to be either linear interpolated

box annotations or a parabola as it is continuous and does not assume linear object
trajectories. Here, we only need bounding-box annotations every T frames, for correcting
the starting point and end-point of our predicted trajectory. Our sparsely-annotated loss
L(sa)

traj variants are useful when the dataset only has sparse annotations available.

2.4. EXPERIMENTS
Datasets and evaluation setup. We carefully test our hypotheses on a fully controlled
MovingDigits dataset. We ablate model choices on a subset of ImageNet VID [1].
We show the practical benefits of our approach on the full ImageNet VID [1] and
on EPIC KITCHENS-55 [2]. As a realistic sparsely annotated dataset we evaluate
on YouTube-BoundingBoxes [3], which has approximately 1 keyframe annotation per
second. For the ImageNet VID experiments, we train our model on a combination of
ImageNet VID and DET datasets as a common practice in [10, 14, 16, 17]. To quantify
detection accuracy we adopt the common approach [12, 14–16] by computing mean
Average Precision (mAP), where a detection is correct if its Intersection over Union
(IoU) with the ground truth is sufficiently large.

Note that although our method samples keyframes during training, we do evaluate on
all available frames at test time, unless stated otherwise.

Implementation details. We use Faster R-CNN [64] with an ImageNet pre-trained
ResNet base as the object detection backbone. Our trajectory prediction sub-network
contains three fully-connected layers with 1024 dimensions for the middle layer, see
Figure 2.2. We train our network for 120k iterations on ImageNet VID and 173k
iterations on Epic Kitchens with the SGD optimizer, on 4 GPUs. For ImageNet VID,
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the initial learning rate is 10−3 and is divided by 10 at 80K iterations. For Epic
Kitchens, the initial learning rate is 5×10−4 and is divided by 10 at 120K iterations. For
YouTube-BoundingBoxes, the initial learning rate is 5×10−4 and is divided by 10 at
100k iterations.

2.4.1. HYPOTHESIS TESTING

We test our hypotheses by creating a fully controlled dataset, MovingDigits, where we
pair each of the 10 MNIST digit classes with a linear motion of 2px per frame, see
Figure 2.4. Each video has 32 frames with a frame size of 64×64 px. We created 200
videos for training and 80 videos for testing, with an equal number of videos per class.
We use a trajectory length of T=8, train for 1.25k iterations and use a ResNet-18 feature
extractor.

[H1]: Can the model anticipate motion trajectories? To verify if our model can
anticipate trajectories from a single static input frame t , we train on MovingDigits, where
each digit has its own linear motion. We calculate the average IoU over the predicted
trajectories for the test videos. The IoU is 0.95, which is near-perfect compared to the
IoU of 0.79 for no motion anticipation. We show an example of the predicted bounding
boxes (Bbox) by our method and the ground truth bounding boxes (GT Bbox) from time
steps t to t +3 in Figure 2.4. We conclude that our model can successfully learn motion
by anticipating trajectories from a static input frame.

[H2]: Anticipating improves static detection. The motion cues in-between the static
keyframes offer an additional source of supervision. Here, we investigate how the motion
anticipating affects the static object detector where we evaluate at test-time on keyframes
only. We explore what types of motion to predict between the static keyframes. We
consider four types of motion supervision for predicting box trajectories: (1) Ground
truth motion: trained on true bounding-box trajectories annotated at every frame; (2)
Simulated smooth motion: bounding boxes move between keyframes according to
a smooth parabola. (Details and examples are in the supplementary material); (3)
Randomized positions: there is motion, but it is not smooth, the boxes in-between the
keyframes can occur at any random position in the image; (4) No motion: without
motion prediction, the static object detector baseline trained at every video frame.

Table 2.1 shows the keyframe mAP scores for IoU@[0.50:.05:0.95]. The No motion
static object detector is the baseline, which uses no motion. The Randomized positions
as supervision is detrimental for object detection because the motion is random, and
unpredictable. This likely overfits to the random position prediction on the training set,
which negatively affects the static detections as well. Interestingly, both Ground truth
motion and Simulated smooth motion motion supervision improve the static keyframe
detection. We analyzed the results, and notice an improvement in the IoU. We speculate
that the anticipating loss encourages detecting static regions that are most likely to move
coherently, with consistent motion offsets: i.e. same direction. We conclude that, for
non-random motions, adding motion anticipating as an additional source of supervision
improves static object detection at keyframes, even when we do not use the ground truth
motion between keyframes.
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Input frame GT Bbox Predicted Bbox

t t : t +3 t : t +3

Fig. 2.4: [H1]: Trajectory anticipation on MovingDigits. We show a single static input frame
of digits 6 and 4 and their time-accumulated ground truth and predicted bounding
boxes in timesteps t : t +3. Each digit class has an associated linear motion (green
arrow). The match of our predicted bounding boxes and the ground truth bounding
boxes shows that our model can predict trajectories from a static frame.

Motion Keyframe mAP (%)

Randomized positions 62.68
No motion 73.51
Simulated smooth motion 76.57
Annotated motion 79.31

Tab. 2.1: [H2] Influence of motion anticipating on static object detection. Static keyframe
detection mAP on MovingDigits for varying motion type supervision. For non-random
motions, adding motion anticipating improves static object detection at keyframes.

2.4.2. ABLATION OF MODEL COMPONENTS

We run all ablation experiments on an ImageNet VID [1] subset containing the classes
‘dog’, ‘giant_panda’, and ‘hamster’. We use a ResNet-101 for feature extraction.

[A1]: The effect of the trajectory loss. We evaluate each term in our trajectory loss
Ltraj = L∑+Lbag(δ) in Equation (2.4), compared to the standard loss Lbag in Equation (3.2).
The mAP scores for trajectory lengths T=4 and T=8 are in Table 2.2. The Ltraj loss has
a higher mAP than the bag loss Lbag for both trajectory lengths. Ltraj enforces continuity
and smoothness in the predictions over time thus leads to more precise predictions.
Furthermore, the improvement of Ltraj over Lbag is larger for longer trajectories, e.g.
for T=4 and T=8, Ltraj outperforms Lbag by 1.66% and 2.18% respectively. Our Ltraj
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loss is defined using offsets, without offsets the L∑ would be equivalent to Lbag. We
observe that the effect of predicting offsets between neighboring boxes δt+l , instead
of bounding-box coordinates Bt+l gives an improvement of 0.81% and 0.89%. When
considering Lbag(δ) or L∑ individually, their mAP is lower or on par with Ltraj. This
is because Lbag(δ) cannot enforce trajectory continuity, while L∑ cannot ensure that
trajectories do not diverge by accumulating errors over time. Predicting offsets instead
of box coordinates results in better accuracy.

[A2]: The effect of the sparse annotation loss. We test our model using the L(sa)
traj

loss for sparse annotations. To evaluate this in a controlled setting, we sub-sample
keyframe annotations from the fully annotated ImageNet VID subset to mimic a sparse
annotation scenario, and evaluate only on keyframes. We compare ground truth motion
result with the result of anticipating linearly interpolated trajectories between keyframes.
Table 2.3 shows that the L(sa)

bag(δ) component does not contribute much for the keyframe

detection. This is because L(sa)
bag(δ) constrains the predicted offsets to match the pairwise

offsets of the pseudo trajectory at every frame, which is not useful here since the motion
is simulated. The L(sa)∑ component performs on par with the L(sa)

traj . And the keyframe

detection accuracy with the sparse annotation loss L(sa)
traj is close to that with the proposed

fully-supervised loss Ltraj.

[A3]: Inference speed vs. accuracy trade-off. We can control the inference speed by
sampling fewer keyframes, and thus predicting longer trajectories. We analyse the speed
vs. accuracy trade-off of our method on the subset of ImageNet VID. Figure 2.5 shows
we can reach an mAP of 89.2% with a runtime of 39.6 FPS. Moreover a noticeable drop
in mAP occurs at trajectories longer than 10 frames. However, when the trajectory is too
long, the object motion may vary or the object may leave the frame or new object may
enter the frame. These changes result in the decrease of our model’s performance. The
prediction trajectory length can be chosen according to the speed-accuracy trade-off.

2.4.3. STATE-OF-THE ART COMPARISONS

[S1]: Experiments on ImageNet VID. We compare our method with state-of-the-art
video object detection methods on ImageNet VID in Table 2.4 using a ResNet-101 as
the feature extractor. We mark methods without post-processing with ✓. Methods
with post-processing add extra computational cost. Our method does not use any
post-processing. We use a prediction trajectory of length T=4, as this already allows a
considerable reduction in computation speed. Among all methods, our method is the
most accurate with a 87.2% mAP, which has a 2.7% improvement over the leading
MEGA [15]. We also report runtime (FPS) and train-time (hrs/epoch) to show that our
method is fast and efficient. We measure the efficiency using the code provided by
the original papers, and where the code is not available we mark this with ‘-’. Note
that for the training time this is a rough estimate, when considering the same settings
(batch-size, GPU) for all methods. We tested the inference runtime speed on a single
NVIDIA GTX 1080 Ti. In terms of both training time and runtime our method is most
efficient. Our method has fast inference time with 39.6 FPS, which is ≈ 1.8× faster
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Trajectory length (mAP %)

Loss T=4 T=8

Lbag 87.54 ± 0.16 83.97 ± 0.71

L∑ 87.95 ± 0.27 84.09 ± 0.67
Lbag(δ) 85.19 ± 0.66 79.73 ± 1.01
Ltraj 89.20 ± 0.21 86.15 ± 0.75

Tab. 2.2: [A1]: Loss choice. Compared to Lbag, the Lbag(δ) loss does worse, whereas L∑
performs on par. Their combination in Ltraj = L∑+Lbag(δ) outperforms Lbag. Predicting
offsets instead of bounding-box coordinates in the trajectory network gives better
results. These patterns are consistent over both trajectory lengths.

Keyframe mAP%

Ltraj
Sparse annotation loss

L(sa)∑ L(sa)
bag(δ) L(sa)

traj

T=4 91.03 ± 0.19 90.35 ± 0.34 74.61 ± 0.72 90.76 ± 0.26
T=8 87.94 ± 0.66 86.98 ± 0.73 68.76 ± 0.99 87.12 ± 0.69

Tab. 2.3: [A2]: Sparse annotation loss analysis. We sub-sample keyframes of the fully
annotated ImageNet VID subset to mimic the sparse annotations, and evaluate our
sparse annotation loss on keyframe detection. The L(sa)

bag(δ) does not improve the

detection accuracy, while L(sa)∑ performs on par with the L(sa)
traj . The sparse annotation

loss achieves a comparable accuracy on keyframe detection with our fully-supervised
loss Ltraj.

than existing fast methods like LWND [19] and ST-Lattice [13]. Our efficiency comes
from predicting object locations for the next T frames, while processing only temporally
sub-sampled keyframes.

Comparison on different motion speeds. We also compare on different motion speeds
with other methods as shown in Table 2.5. The category of object motion speeds in
ImageNet VID follows FGFA [10]. Our method improves mAP significantly on slow
and medium motion speeds and achieves comparable results to the previous best method
on fast motion speed, which shows the effectiveness of our method across different
motion speeds.

[S2]: Experiments on EPIC KITCHENS-55. In EPIC KITCHENS-55, each frame
contains avg/max 1.7/9 objects, which is more challenging compared to ImageNet VID.
The Epic Kitchens video object detection task consists of 32 different kitchens and
290 classes. The training set has 272 video sequences captured in 28 kitchens. For
evaluation, 106 sequences collected in the same 28 kitchens (S1) and 54 sequences
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Fig. 2.5: [A3] Inference speed vs. accuracy trade-off. We can increase inference speed (FPS)
by sampling fewer keyframes and predicting longer trajectories. Yet, with increasing
trajectory length the mAP decreases. The prediction trajectory length can be chosen
according to the required speed-accuracy trade-off.

collected in 4 other unseen kitchens (S2) are used. We use a prediction trajectory length
of T=4 and evaluate for two IoU thresholds of 0.5 and 0.75.

As summarized in Table 2.6, our method is more accurate than previous state-of-the-art
methods for both Seen/Unseen splits. This indicates that our method is applicable to
more complex video detection tasks.

2.4.4. SPARSELY ANNOTATED VIDEOS

The YouTube-BoundingBoxes dataset has sparse annotations: the video frame rate is
30 frames per second, and on average it only has annotations at 1 fps. We evaluate
our method compared to the Faster R-CNN [64] baseline on YouTube-BoundingBoxes
in Table 2.7. The networks receive as input keyframes sampled with a step 60 and 30,
which is every 60 frames and 30 frames in the video, respectively. During training, for
the Faster R-CNN we use the labels at the keyframes, while for our method we use
labels with a step of 30 or 1 over the input keyframes. For a label step of 30 and a
keyframe step of 60, we use 2× more labels than input frames, while for a label step
of 1 and keyframe step of 30, we use 30× more labels than frames. Since the video
annotations are sparse we do not have labels at every frame, therefore for a label step of
1, we use our sparse annotation loss. For the L(sa)

traj we define the box trajectories to be
linearly interpolated pseudo trajectories. For keyframes sampled with a step of 60, our
method achieves higher accuracy than Faster R-CNN by using 2× more labels, while
processing the same input keyframes. With the same input keyframes every 30 frames,
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Methods Backbone No Post- mAP (%) Train-time Runtime
proc. (hrs/epoch) (FPS)

Faster-RCNN [64] R101 ✓ 73.6 1.55 21.2
LWND [19] R101 ✓ 76.3 - 20.0
FGFA [10] R101 78.4 6.59 5.0
THP [11] R101+DCN ✓ 78.6 - -
ST-Lattice [13] R101 79.6 1.40 20.0
D&T [22] R101 80.2 6.56 5.0
MANet [12] R101 80.3 6.88 4.9
STSN [66] R101+DCN 80.4 - -
STMN [67] R101 80.5 2.49 13.2
TROI [68] R101 80.5 5.18 6.4
SELSA [14] R101 80.5 3.15 10.6
OGEMN [69] R101+DCN 81.6 - 8.9
SparseVOD [70] R101 ✓ 81.9 - 14.4
BoxMask [71] R101 ✓ 83.2 - 6.1
RDN [72] R101 83.8 - -
HVRNet [17] R101 83.8 - -
TF-Blender [16] R101 ✓ 83.8 - 4.9
MEGA [15] R101 84.5 6.34 5.3

Ours R101 ✓ 87.2 0.78 39.6

Tab. 2.4: [S1]: Experiments on ImageNet VID. We indicate the methods without video-level
post-processing (e.g. SeqNMS, Tube Rescoring, BLR) with ✓in the table. ’No
Post-proc.’ means no post-processing. R101 here is ResNet-101. The runtime is
measured on a NVIDIA GTX 1080 Ti. Our method achieves the best performance and
fastest runtime among all the methods.

Methods Backbone mAP (%) mAP (%) mAP (%) mAP (%)
(slow) (medium) (fast)

FGFA [10] R101 78.4 83.5 75.8 57.6
MANet [12] R101 80.3 86.9 76.8 56.7
SELSA [14] R101 80.5 86.9 78.9 61.4
OGEMN [69] R101+DCN 81.6 86.2 78.7 61.1
HVRNet [17] R101 83.8 88.7 82.3 66.6
IFFNet [18] R101 79.7 87.5 78.7 60.6

Ours R101 87.2 92.2 86.1 66.5

Tab. 2.5: mAP on ImageNet VID across different motion speeds. Our method improves mAP
on different motion speeds.

our method even achieves a 1.1% higher mAP than Faster R-CNN while optimizing a
simulated motion between these frames. This result indicates that the precise location of
an object along a trajectory is not essential for keyframe detection.
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S1 S2

Methods mAP@.5 mAP@.75 mAP@.5 mAP@.75

EPIC [2] 34.2 8.5 32.0 7.9
Faster-RCNN [14] 36.6 9.9 31.9 7.4
SELSA [14] 37.9 9.8 34.8 8.1
SELSA-ReIm + TROI [68] 42.2 - 39.6 -
BoxMask [71] 44.3 18.5 41.3 15.7

Ours 44.9 18.7 41.7 16.0

Tab. 2.6: [S2]: Experiments on EPIC KITCHENS-55. S1 and S2 represent Seen and Unseen
splits respectively. Our method achieves promising results for both test sets and IoU
thresholds.

Methods Keyframe step Label step mAP (%)

Faster-RCNN [64] 60 60 47.6
Faster-RCNN [64] 30 30 58.7

Ours Ltraj 60 30 51.3

Ours L(sa)
traj 30 1 59.8

Tab. 2.7: Sparsely annotated data. We report mAP on the sparsely annotated YouTube-
BoundingBoxes. The sparse annotation loss L(sa)

traj using interpolated pseudo trajectory
labels improves keyframe detection. Our method outperforms Faster R-CNN by making
effective use of annotations, even if these are not present in the dataset.

2.4.5. METHOD LIMITATIONS

Despite our state-of-the-art results, with successful predictions as in Figure 2.6(a), we
also identify several limitations. In practice, multiple motion patterns can be associated
with the exactly same appearance: e.g people can walk or jump. If a specific object’s
appearance contains multiple motion patterns, our method may fail to predict the correct
object locations. Another failure case is if objects appear or disappear in the middle
of a trajectory. In these cases, we will either miss the objects or over-predict. Yet
another limitation of our method is the assumption that the motion changes smoothly.
If the object trajectories have extremely large variations in a short timestep because of
the video frame rate, or other reasons, for example, the dog in Figure 2.6(b) suddenly
changed its moving direction, our trajectory network may not be able to learn such
complex motion patterns. We might miss some detection of intermediate frames as
shown in Figure 2.6(b), but our method can recover the detection by the next keyframe
detection. While these hypothetical limitations might exist, they can only influence our
method minimally, since we miss only a few hundred milliseconds, which is reflected in
our state-of-the-art results compared to other methods for video object detection.
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(a) Success case (b) Failure case

Fig. 2.6: Example predictions. The white boxes are the ground truth. We show one success case
in (a) containing a ‘dog’ running at a fast speed. In (b) the failure case shows a
‘dog’ suddenly changes its moving direction, we missed the detection in the third and
fourth frames. Yet we recovered the detection at the next keyframe detection. When
objects move smoothly our detections are accurate, yet when the motion largely varies,
is unpredictable, and objects enter and leave the frame, our method fails.

2.5. CONCLUSION
We propose a method to efficiently detect objects in videos by predicting their future
locations from a static input keyframe and the ground truth locations of all frames. Our
method associates appearance with motion. Different motion contexts have different
appearances, thus we can model various motion patterns from the keyframes with
different appearances. Because we predict the future object locations over multiple
frames, we do not need to process every frame of the video, but only a subset of
the keyframes, which makes our method efficient. Moreover, by learning to predict
object trajectories we improve the object detection accuracy when compared to the
state-of-the-art on multiple datasets. Finally, by using pseudo object trajectories defined
by smooth continuous functions, we can improve object detection accuracy on sparsely
annotated videos.
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2.6. APPENDIX
2.6.1. DERIVATION FOR LOSS EQUIVALENCE

In this appendix section, we provide the derivation to show that if we would predict
bounding boxes Bt+l in the trajectory network, instead of offsets between pairs of
bounding boxes δt+l , Equation (2.2) would reduce to Equation (3.2) and the temporal
ordering would not be enforced.

If we predict bounding boxes Bt+l and use δt+k = (Bt+k −Bt+k−1),k ∈ {1, .., l }, the sum∑l
k=1δt+k can be rewritten as follows:

l∑
k=1

δt+k =
l∑

k=1
(Bt+k −Bt+k−1),

=
l∑

k=1
(Bt+k )−

l∑
k=1

(Bt+k−1),

=
l∑

k=1
(Bt+k )−

l−1∑
k=0

(Bt+k ),

=
l−1∑
k=1

(Bt+k )+Bt+l −
l−1∑
k=1

(Bt+k )−Bt ,

= Bt+l −Bt .

And we fill the above in Equation (2.2). Then we have,

L∑(B∗,
←→
Tt ) =

T∑
l=0

L1

((
B∗

t+l −Bt
)− l∑

k=1
δt+k

)
,

=
T∑

l=0
L1

(
B∗

t+l −Bt −
l∑

k=1
δt+k

)
,

=
T∑

l=0
L1

(
B∗

t+l −Bt −Bt+l +Bt
)

,

=
T∑

l=0
L1

(
B∗

t+l −Bt+l
)

.

which is the same as Equation (3.2):

Lbag(B∗, {Bt , ..,Bt+T }) =
T∑

l=0
L1(B∗

t+l −Bt+l ).

2.6.2. DETAILS FOR THE Simulated smooth motion
In this section, we describe how we create the Simulated smooth motion: bounding
boxes move between keyframes according to a smooth parabola, and the change of
width and height is linearly interpolated. Given the center points of two keyframe digits
(xt , yt ) and (xt+T , yt+T ), we choose the focus F = (0, f ), f = 8 for the parabola, then the
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Fig. 2.7: An example of simulated smooth motion generated by parabola functions. The parabola
represents the trajectory of intermediate digit locations between every two keyframes.
The simulated smooth motion is smooth and continuous.

parabola can be written as,

y = 1

4 f
x2 − v1

2 f
x + v2

1

4 f
+ v2, (2.5)

where the vertex is V = (v1, v2). By filling in (xt , yt ) and (xt+T , yt+T ), we can get the
value of v1, v2. For every pairwise neighbouring keyframes, we can have a parabola
that acts as a simulated smooth trajectory for intermediate locations of digits. Here we
show an example of having four keyframes and the simulated smooth motion presents
as a parabola in Figure 2.7. Because the digits move linearly in MovingDigits dataset,
we have the digits of keyframes staying in a linear line. We choose the focus of every
second parabola sequence to be F = (0,−8) to make all the parabola trajectories smoothly
connected.
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NO FRAME LEFT BEHIND: FULL

VIDEO ACTION RECOGNITION

Not all video frames are equally informative for recognizing an action. It is
computationally infeasible to train deep networks on all video frames when actions
develop over hundreds of frames. A common heuristic is uniformly sampling a small
number of video frames and using these to recognize the action. Instead, here we propose
full video action recognition and consider all video frames. To make this computational
tractable, we first cluster all frame activations along the temporal dimension based on
their similarity with respect to the classification task, and then temporally aggregate
the frames in the clusters into a smaller number of representations. Our method is
end-to-end trainable and computationally efficient as it relies on temporally localized
clustering in combination with fast Hamming distances in feature space. We evaluate on
UCF101, HMDB51, Breakfast, and Something-Something V1 and V2, where we compare
favorably to existing heuristic frame sampling methods.

This chapter is published as: Xin Liu, Silvia L Pintea, Fatemeh Karimi Nejadasl, Olaf Booij, Jan C
Van Gemert. No frame left behind: Full video action recognition. Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. arXiv: https://arxiv.org/abs/2103.15395
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3.1. INTRODUCTION
Videos have arbitrary length with actions occurring at arbitrary moments. Current video
recognition methods use CNNs on coarsely sub-sampled frames [1–10] because using all
frames is computationally infeasible. Sub-sampling, however, can miss crucial frames
for action recognition. For example, as shown in Figure 4.1, sampling the frame with
the dish in the pan is crucial for correct recognition. We propose to do away with
sub-sampling heuristics and argue for leveraging all video frames: Full video action
recognition.

It is worth analyzing why training CNNs on full videos is computationally infeasible
in terms of memory and calculations. The calculations in the forward pass yield
activations, while the backward pass calculations give gradients which are summed over
all frames to update the weights. Many of these calculations can be done in parallel and
thus are well-suited for modern GPUs. When treating videos as a large collection of
image frames, the amount of calculations are not too different from those on large image
datasets [11]. Regarding memory, however, there is a crucial difference between videos
and images: The video loss function is not per-frame but on the full video. Hence, to do
the backward pass, all activations for each frame, for each filter in each layer need to be
stored in memory. This even doubles for storing their gradients. With 10-30 frames per
second, this quickly becomes infeasible for even just a few minutes of video. Existing
approaches can trade off memory for compute [12–14] by not storing all intermediate
layers, yet they do not scale to video as they would still need to store each frame. The
main computational bottleneck for training video CNNs is memory for frame activations.

Here, we propose an efficient method to use all video frames during training. The
forward pass computes frame activations and the backward pass sums the gradients
over the frames to update the weights. Now, if only the network was linear, then
a huge memory reduction could be gained by first summing all frame activations
in the forward pass, which would reduce to just a single update in the backward
pass. Yet, deep networks are infamously non-linear, and have non-linearities in the
activation function and in the loss function. Thus, if all frames were independent,
treating the non-linear network as linear would introduce considerable approximation
errors. However, subsequent frames in a video are strongly correlated, and it’s this
correlation that makes it possible for existing approaches to use sub-sampling. Instead
of sub-sampling, we propose to process all frames and exploit the frame correlations
to create groups of frames where the network is approximately linear. We use the
ReLU (Rectified Linear Unit) activation function, which is linear when the signs of two
activations agree, to estimate which parts of the video are approximately linear. This
allows us to develop an efficient clustering algorithm based on Hamming distances of
frame activations as illustrated in Figure 4.1. By then aggregating the approximately
linear parts in a video in the forward pass, we make large memory savings in the
backward pass while still approximating the full video gradient.
We summarize the contributions of our work as follows:

• We propose a method that allows us to use most or even all video frames for
training action recognition by approximated individual frame gradients with the
gradients of temporally aggregated frame activations;
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Make scrambled   eggs
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Heuristic frame sub-sampling 2

Make scrambled    eggs

Heuristic frame sub-sampling 1

Proposed:  Full video action recognition

0 1
1 00 1 1
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Fig. 3.1: Sub-sampling can miss crucial frames in videos and may cause confusion for
action recognition: e.g. compare the two sub-samplings heuristics in row 1 and
row 2: Without sampling the dish in the pan it is difficult to classify. Instead,
as shown in row 3, we propose to efficiently use all frames during training
by clustering frame activations along the temporal dimension and aggregating
each cluster to a single representation. The temporal clustering is based on
Hamming distances over frame activations, which is computationally fast. With
the assumption that similar activations have similar gradients, the aggregated
representations approximate the individual frame activations. We efficiently
utilize all frames for training without missing important information.

• We devise an end-to-end trainable approach for efficient grouping of video frames
based on temporally localized clustering and Hamming distances;

• Extensive experiments demonstrate that our method compares well to state-of-the-
art methods on several benchmark datasets such as UCF101, HMDB51, Breakfast,
and Something-Something V1 and V2.

3.2. RELATED WORK
Action recognition architectures. Actions in video involve motion, leading to deep
networks which include optical flow [15–17], 3D convolutions [1, 18–20] and recurrent
connections [16, 21–24]. Instead of heavy-weight motion representations, a single 2D
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image can reveal much of an action [7, 17, 25, 26]. 2D CNNs are extremely efficient,
and by adding motion information by concatenating a 3D module in ECO [2], modeling
temporal relations in TSN [27] or simply shifting filter channels over time in TSM [4]
their efficiency is complemented by good accuracy. For this reason, we build on the
TSM [4] architecture and modify it for full video action recognition.

Frame sampling for action recognition. Realistic videos contain more frames than
can fit in memory. To address this, current methods train by using sub-sampled video
frames [1, 2, 4, 7]. Additionally, the SlowFast [28] network also explores the resolution
trade-off across temporal, spatial and channel dimension. Rather than using a fixed frame
sampling strategy, the sampling can be adaptive [4, 6, 8–10], or learned to select the best
frame [5], or rely on clip sampling [3]. In our work we do not sub-sample frames, but
use all frames of the videos, however our clustering is adaptive as it dynamically adapt
to the task and the loss function.

Using a subset of frames is computationally more efficient. Using 5-7 frames
is sufficient for state-of-the-art action recognition on short videos [29]. Aiming for
training efficiency, the work in [30] uses stochastic mini-batch dropping which drops
complete batches rather than frames, with a certain probability. Similarly, [31] uses
variable mini-batch shapes with different spatio-temporal resolutions varied according to
a schedule. Unlike these methods, we do not focus on training efficiency, but propose a
method that allows the network to see all video frames during training.

Temporal pooling. To integrate frame-level features, TSN [7] uses average pooling in
the late layers of the network. ActionVLAD [32] integrates two-stream networks with
a learnable spatio-temporal feature aggregation. Instead of performing temporal pooling
or aggregation at a late stage of the network, in [33] RankSVM is used to rank frames
temporally and then pool them together. As a follow-up, in [34] a ’dynamic image’ is
introduced, which is a compact representation of the videos frames using the ‘rank pool’
operation. In [35, 36] temporal aggregation via pooling and attention is used. Similar
to these methods, our proposal performs a temporal pooling of the network activations,
however this aggregation is done over clustered activations and it allows us to process
all video frames.

Efficient backpropagation. Given that 2/3 of the training computations and memory
are spent in the backward pass, existing work focuses on approximations. It is
more memory efficient to recompute activations from the previous layer instead of
storing them [14], however this comes at the cost of increased training time. In [37]
gradient approximations are used where activations are overwritten when new frames
are seen without waiting for the backward pass to be performed. Also for efficient
backpropagation, randomized automatic differentiation can be used [38], gradients can
be reused during training [39], or even quantized during backpropagation [40]. Similar
to these works, we use all frames to approximate the full video gradient.
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3.3. AGGREGATED TEMPORAL CLUSTERS
3.3.1. APPROXIMATING GRADIENTS

We enable the use of all frames of a video during training. To this end, we calculate
a single gradient to approximate the gradients of a group of frames. Our hypothesis is
that nearby frames in a video are alike, and thus have similar activations, leading to
congruent updates. When using the ReLU (Rectified Linear Unit) activation function, we
know that for activations with agreeing signs, the activation function is linear. Assuming
that similar frames are approximately linear, the standard computation of the sum of
gradients over all frames, becomes equivalent to first summing all frame activations
and then computing a single gradient. This is computationally and memory efficient.
Mathematically, for frames i , this can be formulated as:

∑
i
∇wL(h(xi w)) =∇wL

(∑
i

h(xi w)

)
, (3.1)

where x are frame activations, w are the network weights, h(·) is an activation function,
and L(·) is the loss function. Note that Equation (3.1) only holds in the ideal case when
the activation function h is linear for similar frames and the loss function L is also
linear. This is not generally the case, and this approximation introduces an error.

With the above ideal scenario in mind, we can use all video frames without calculating
the gradient for each frame, by grouping frames that agree in the sign of their activations
x. Over these grouped activations we calculate a single gradient ∇wL(

∑
i h(xi w)).

However, for similar frames the sign of their activation values may not be in complete
agreement. Therefore, we aim to find which frames can be safely grouped together, to
minimize the error introduced by our approximation in Equation (3.1).

3.3.2. ERROR BOUND FOR THE APPROXIMATION

For ease of explanation, we consider two input video frames and their activations
x={x1,x2}, and a convolutional operation with parameters w, denoted by xw. The two
frames have the same class label, y , since they come from the same video. We consider a
multi-class setting using the cross-entropy loss in combination with the softmax function
q , which for these two samples is:

L(x, y) =−1

2

(
log qy (x1)+ log qy (x2)

)
, (3.2)

where qc (xi )= exp(h(xiwc ))∑C
j=1 exp(h(xiw j ))

, c∈{1, ..,C } indexes video classes and h(·) is the ReLU

activation function. The gradient of the loss with respect to w is:

∇wL(x, y) = x1(qc (x1)−δyc )+x2(qc (x2)−δyc )

2
, (3.3)

where δyc is the Dirac function which is 1 when c=y . In our method, we first average
the two activations after the convolution and before the ReLU . We can do this, because
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Fig. 3.2: We adopt 2D ResNet-50 with TSM [4] a backbone. The input batch size is n
with t frames. We cluster the activations of the first block of size (nt ,c,h, w)
which groups t frames into g clusters and outputs new activations of size
(ng ,c,h, w), as input to the next network blocks. Our full video method
efficiently utilizes all frames and is end-to-end trainable.
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Fig. 3.3: An illustration of our two clustering algorithms. The numbers on the solid line
are pair-wise Hamming distances and the solid line is the cumulative Hamming
distance of frame f1 to f10. For g=3 clusters, the cumulative clustering groups
frames by dividing the total cumulative distance on the y-axis into 3 equally
distanced segments, as shown with the dashed lines resulting in the 3 clusters
( f1− f4), ( f5− f7) and ( f8− f10). The slope clustering algorithm is based on the
slope of the curve and here selects the top-2 largest slopes, as shown with the
solid green lines, which results in the 3 clusters: ( f1− f6), ( f7), ( f8− f10).

if we assume the activations have agreeing signs sign(x1w)=sign(x2w), then it holds that:
h(x1w)+h(x2w)

2 = h( x1w+x2w
2 ). In this case the cross-entropy loss becomes:

L̂(x, y)=− log qy

(x1 +x2

2

)
. (3.4)
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Fig. 3.4: Hamming distances between similar frames and dissimilar frames across 4
blocks of ResNet. The frames are taken from a single Breakfast [41] video.
We denote the frames that are similar to their neighbors with circles and the
dissimilar ones with squares. Hamming distances are consistent across blocks.

In the backward pass, we calculate a single gradient of the averaged activations as
follows:

∇wL̂(x, y) = x1 +x2

2

(
qc

(x1 +x2

2

)
−δyc

)
, (3.5)

We now estimate the relative error introduced by our approximation by comparing
equations Equation (3.3) and Equation (3.5) using Jensen’s inequality. We start from the
softmax function qc (·) and we recover back equations Equation (3.3) and Equation (3.5).
The softmax function qc (·) is convex, therefore we can apply to it Jensen’s inequality
for the samples x1 and x2: qc

(
(x1+x2)

2

)
≤ qc (x1)+qc (x2)

2 . We start by considering the case
(x1+x2)

2 > 0. If we multiply both sides of this inequality with (x1+x2)
2 we obtain that:

(x1 +x2)

2
qc

(
(x1 +x2)

2

)
≤ x1qc (x1)+x2qc (x2)

2

− 1

4
(x1 −x2)(qc (x1)−qc (x2)). (3.6)

In the left hand side of the inequality we recover precisely the ∇wL̂(x, y) given by
Equation (3.5), while in the right hand side we recover Equation (3.3) minus the
approximation error as ∇wL(x, y)− 1

4 (x1 −x2)(qc (x1)−qc (x2)). Note that for the case y=c

the additional Dirac terms in x cancel out. We now consider also the case (x1+x2)
2 ≤ 0,

which together with the previous case leads to the following bound on the absolute
difference between the gradients in Equation (3.3) and Equation (3.5):

|∇wL(x, y)−∇wL̂(x, y)| ≤ 1

4
|(x1 −x2)(qc (x1)−qc (x2))|. (3.7)
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Thus, the difference between the two gradient updates is bounded by a function
depending on the difference between the activations and their softmax responses. The
closer to 0 the difference between the activations the smaller the difference between their
gradient updates. We show in the experimental section that, indeed, small differences
in the activations entail small differences in the loss. The inequality in Equation (3.6)
holds under the condition that the sign of activations agree. Therefore, we want to group
frames based on the sign similarity of their activations.

3.3.3. TEMPORAL CLUSTERING AND AGGREGATION

Using our proposal in Equation (3.5) allows training on all video frames. We group
frames based on the sign agreement of their activations. An efficient way to do this, is to
binarize the activation values by using the si g n function and compute a fast Hamming
distance between binarized activations to determine which frames to group.

Consecutive frames in a video are more likely to be similar in appearance and are
thus more likely to have similarly signed activations. Therefore, we explore two variants
of a temporal clustering algorithm based on Hamming distances, where we allow a fixed
number of clusters g to match the available memory. We employ the temporal order of
video frames and calculate Hamming distances only with neighboring frames. Figure 3.3
illustrates the two temporal clustering algorithms we consider here: cumulative clustering
and slope clustering. We start by calculating the cumulative Hamming distance C (x) for
neighboring frames along the temporal order:

CN (x) =
N−1∑
i=1

H(xi ,xi+1), (3.8)

where xi is the binarized activation of frame i , H(·, ·) is the Hamming distance, and N
is the total number of frames. For cumulative clustering, we divide the total cumulative
Hamming distance, C (x), into g even segments, where the cluster id for frame i is
⌈g Ci (x)

CN (x) ⌉. For the slope clustering, the boundaries of the segments are defined by the
frame indexes corresponding to the top-g largest slopes where the cumulative distance
increases the most.

For efficiency, we cluster early on in the network, and input to the subsequent layers
only aggregated activations. We assume that the sign of the activations corresponding to
two similar frames, approximately agree throughout the network. To validate this, we
visualize in Figure 3.4 the Hamming distance over activations corresponding to similar
and dissimilar frames. The distances corresponding to similar frames remain consistent
across different layers.

Putting everything together, we input a set of n videos into our TSM-based [4]
network architecture. After the first block, we apply temporal clustering and average the
activations within each cluster, giving rise to g activations per video. These aggregated
activations are input to the subsequent blocks of the network. Our method efficiently
utilizes all frames for training and it is end-to-end trainable, as the gradients propagate
directly through the aggregated feature-maps. Figure 3.2 depicts the outline of our
method.
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3.4. EXPERIMENTS
We evaluate our method on the action recognition datasets Something-Something V1 &
V2 [42], UCF-101 [43], HMDB51 [44] and Breakfast [41]. The consistent improvements
show the effectiveness and generality of our method. We validate and analyze our
method on a fully controlled Move4MNIST dataset we created. We also include ablation
studies of the components of our method.

Datasets. Something-Something V1 [42] consists of 86k training videos and 11k
validation videos belonging to 174 action categories. The second release V2 of
Something-Something increase the number of videos to 220k. The UCF101 [43] dataset
contains 101 action classes and 13,320 video clips. The HMDB51 [44] dataset is a varied
collection of movies and web videos with 6,766 video clips from 51 action categories.
Breakfast [41] has long videos of human cooking activities with 10 categories with 1,712
videos in total, with 1,357 for training and 335 for testing. Our fully controlled dataset
Move4MNIST has four action classes {move up, move down, move left, move right}, and
1,800 videos for training and 600 videos for testing. Each video has 32 frames, with a
digit from MNIST [45] moving on a UCF-101 video background. To obtain a per-frame
ground truth of which frames are relevant we randomly inserted a consecutive chunk of
UCF-101 background frames, black frames and frames with MNIST digits that are not
part of the target classes. An example is shown in Figure 3.7.

Training & Inference. Following the setting in TSM [4], our models are fine-tuned
from Kinetics [46] pre-trained weights and we freeze the Batch Normalization [47]
layers for HMDB51 [44] and UCF101 [43] datasets. For other datasets, our models are
fine-tuned from ImageNet [11] pre-trained weights. To optimize the GPU we train with
a fixed number of frames per batch. If the video has less frames, we pad it repeatedly
with the last video frame. We compare and cluster the activations of all the frames in
each video, and get g average activations for each video, from the first block of our
model. We set the number of clusters to g = {8,16} to align with the sub-sampling
methods using 8 or 16 frames. During testing, we follow the setting of TSM and sample
one clip per video and use the full resolution image with the shorter side 256.

Backbone architecture. For a fair comparison with the state-of-the-art, we evaluate
our method on the TSM [4] backbone replying on the ResNet-50 [48] architecture. We
use TSM with a ResNet-18 as the backbone for the experiments on our toy dataset
Move4MNIST and for model analysis on the Breakfast dataset.

3.4.1. ARE MORE FRAMES BETTER?
To make it computationally possible to use all individual frames we evaluate on the
fully controlled Move4MNIST to test if using more frames during training is better than
sub-sampling. We use here the ResNet-18 [48] backbone pretrained on ImageNet [11]
and compare with TSM [4]. We evalute slope clustering and cumulative clustering, and a
cluster-free uniform grouping of evenly distributed segments and then aggregating them
(Ours-uniform).

Table 3.1 shows that TSM trained on all the 32 frames of a video in Move4MNIST
significantly outperforms TSM trained on 8 and 16 sub-sampled frames. The uniform
grouping of evenly distributed segments does not much better than random sub-sampling,
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Model #Frames #Clusters FLOPs Runtime Top-1
/Video Mem./Video

TSM 8 - 14.56G 1.04GB 90.13 ± 0.38
TSM 16 - 29.12G 1.72GB 93.78 ± 0.33
TSM all - 58.24G 3.15GB 98.83 ± 0.16
Ours-uniform all 8 28.61G 1.56GB 90.25 ± 0.28
Ours-slope all 8 28.61G 1.56GB 93.33 ± 0.19
Ours-cumulative all 8 28.61G 1.56GB 94.08 ± 0.25
Ours-uniform all 16 38.51G 1.79GB 92.73 ± 0.25
Ours-slope all 16 38.51G 1.79GB 94.06 ± 0.18
Ours-cumulative all 16 38.51G 1.79GB 95.27 ± 0.21

Tab. 3.1: Training with all frames gives best accuracy. Our method with slope or
cumulative clustering outperforms the uniform grouping of evenly distributed
segments and frame sub-sampling. Our method has less FLOPs and runtime
memory usage than TSM training with all frames.

and uniform grouping performs worse than random sub-sampling when the frame and
cluster numbers increased from 8 to 16. This can be explained since the videos
in the Move4MNIST contain black frames, UCF-101 background frames, and frames
containing another digits at random positions, which can make sub-sampling miss frames
related to the task and evenly distributed segments group frames wrongly. Both our
clustering approaches with 8 and 16 clusters do better than evenly distributed segments
or sub-sampling with 8 or 16 frames as they can adapt to the content and dynamically
choose which frames to group. In addition, our method has significantly reduced FLOPs
and runtime memory when compared to the baseline on all frames.

3.4.2. DO SIMILAR FRAMES HAVE SIMILAR GRADIENTS?
In this experiment, we evaluate our assumption that similar frame activations have similar
gradients. The activations and gradients are taken from the 1st block of ResNet-18. We
show the Euclidean and the Hamming activation distance versus the gradient Euclidean
distance between all 32∗31/2 = 496 frame pairs for three videos in Move4MNIST in
Figure 3.5. For both the Euclidean distance and the Hamming distance the relation
between activations and gradients is close to linear. It validates our assumption that
frames having similar activations with respect to the task have similar gradients.

We compare the ground truth gradients when training truly on all frames to our
efficient approximation. We use 16 clusters and compare our approximate gradients to
the real gradients which are from 3rd block of ResNet-18 for a video in Move4MNIST.
We compare the results of our method with cumulative clustering, slope clustering and
uniform grouping. Results in Figure 3.6 show that compared to uniform grouping,
cumulative clustering and slope clustering give smaller Euclidean distance between the
single gradient from each cluster and the sum of gradients of frames in the corresponding
cluster. And cumulative clustering gives even smaller gradients differences than slope
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Fig. 3.5: An illustration of activation distance versus gradient distance for frames from
three videos in Move4MNIST dataset. For frames that are similar with respect
to recognizing the action, the activation distance and the gradients distance
between them have a nearly linear relation for both the Euclidean distance and
the Hamming distance. Our assumption that frames having similar activations
with respect to the task have similar gradients is validated.
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Fig. 3.6: Comparing the Euclidean distance between gradients of the ground truth of
truly using all frames to our efficient approximation per cluster for cumulative
clustering, slope clustering and uniform grouping on Move4MNIST. Compared
to uniform grouping and slope clustering, cumulative clustering results in
smaller gradients difference and thus a better approximation.

clustering. In other words, it means that our method with cumulative clustering (the
right hand side of Equation (3.1)) approximates the standard gradients calculation (the
left hand side of Equation (3.1)) in the network with a small difference.

3.4.3. ANALYZING MODEL PROPERTIES
We evaluate the clustering methods, the number of clusters, and the training time
efficiency on Breakfast and Move4MNIST with a ResNet-18 backbone.
Different temporal clustering methods. We compare slope clustering, cumulative
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Model #Frames #Clusters Tr. sec/epoch Top-1
TSM 8 - 97.6 59.1
TSM 16 - 113.7 61.4

Ours-uniform all 8 100.1 58.3
Ours-slope all 8 99.6 60.7
Ours-cumulative all 8 101.3 62.0

Ours-uniform all 16 114.0 60.2
Ours-slope all 16 114.5 63.7
Ours-cumulative all 16 115.2 64.4

Tab. 3.2: With 8 and 16 clusters we consistently outperform TSM with 8 and 16 frames
for comparable training time on the Breakfast dataset.

Fig. 3.7: Temporal clustering results for a video in Move4MNIST. Cumulative temporal
clustering groups frames more accurately than slope temporal clustering.

clustering, and uniform grouping where the videos are split into equal segments.
From Table 3.2, cumulative clustering outperforms slope clustering, while uniform
grouping has the lowest top-1 accuracy. This is because equal temporal grouping merges
non similar frames together leading to linear approximations of non-linear information
and incorrect network updates, resulting in a low action recognition accuracy. A similar
trend is also visible on the Move4MNIST dataset in Table 3.1. In Figure 3.7, we show
the temporal clustering results for a small number of frames of a Move4MNIST video.
Cumulative clustering correctly groups similar frames together, while slope clustering
groups moving zero frames and black frames together.

Number of clusters. We conduct experiments using 8 and 16 clusters for our method,
which follows the protocol of TSM with 8 and 16 frames for training. Table 3.2
shows that using 16 clusters consistently outperforms using 8 clusters for all clustering
methods. A larger number of clusters improves accuracy. In the extreme case, the
cluster numbers equal the number of frames in a video, which is equivalent with using
all frames for training. From the table we can also see that our cumulative temporal
clustering implementation improves the top-1 accuracy by 2.9% and 3.0%, separately for
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Fig. 3.8: Cumulative temporal clustering results over epochs for six videos in the
Breakfast dataset. Each cluster is shown in a different color. Clusters contains
segments with different lengths. Our cumulative temporal clustering groups
frames with similar activations together. The cluster lengths change according
to the changes in the frame activations during training.

8 clusters and 16 clusters comparing to TSM with 8 and 16 frames.

To show that our cumulative temporal clustering algorithm is different from the
naive uniform grouping, we visualize the 8 clusters obtained from cumulative temporal
clustering for six videos over different epochs in the Breakfast dataset in Figure 3.8.
Different videos have different segment lengths in the cumulative temporal clustering,
which takes the similarity of frame activations into consideration. In Figure 3.8, we also
show that the cluster length changes over epochs during training, since the activations
change during training.

Efficiency of training time. Table 3.2 gives the training time per epoch for all the
models. Our method with 8 clusters and 16 clusters only has an increase of 3.7 seconds
and 1.5 seconds in training time per epoch, when compared to TSM with 8 frames and
16 frames. The results show that our method is efficient during training time, while
using all video frames.
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Model Backbone #Frames #Clusters Top-1

ResNet-152[49] ResNet152 64 - 41.1%
ActionVLAD [49] ResNet152 64 - 55.5%
VideoGraph [49] ResNet152 64 - 59.1%
TSM [4] (our impl.) ResNet50 16 - 72.1%

Ours-slope ResNet50 all 16 74.9%
Ours-cumulative ResNet50 all 16 76.6%

Tab. 3.3: Our method using either slope temporal clustering or cumulative temporal
clustering compared to existing works on the Breakfast dataset. Our proposal
outperforms TSM, and significantly exceeds in top-1 accuracy methods using
the deeper backbone architecture, ResNet-152. By using all frames our method
has an advantage on long-term video action recognition.

Top-1

Model Backbone Pre-train #Frames #Clusters UCF-101 HMDB51

TSM [4] (our impl.) ResNet50 Kinetics 1 - 91.2% 65.1%
TSN [4] ResNet50 Kinetics 8 - 91.7% 64.7%
SI+DI+OF ResNeXt50 Imagenet dynamic - 95.0% 71.5%+DOF [34] images
TSM [4] ResNet50 Kinetics 8 - 95.9% 73.5%

STM [50] ResNet50 ImageNet 16 - 96.2% 72.2%+Kinetics

Ours-slope TSM-ResNet50 Kinetics all 8 96.2% 73.3%
Ours-cumulative TSM-ResNet50 Kinetics all 8 96.4% 73.4%

Tab. 3.4: Top-1 accuracy on UCF-101 and HMDB51. Our method performs only slightly
better than the state-of-the-art on the scene-related datasets UCF-101 and
HMDB51. These datasets do not have much frame diversity per video, thus,
the improvement of our method over sampling methods is limited.

3.4.4. COMPARISON WITH THE STATE-OF-THE-ART

We compare our method with the state-of-the-art on Something-Something V1&V2,
Breakfast, UCF-101 and HMDB51. All methods use ResNet-50 pre-trained on ImageNet
as a backbone, unless specified otherwise.

Comparison on the Breakfast dataset. We compare our method with existing work
on the Breakfast dataset, which contains long action videos. Our method using either
slope temporal clustering or cumulative temporal clustering largely outperforms the three
methods using ResNet-152 as a backbones, in Table 3.3. Compared to TSM using 16
sub-sampled frames, our method improves the top-1 accuracy by 2.8% and 4.5% with
slope temporal clustering and cumulative temporal clustering, respectively. Methods
using sub-sampling can easily miss important frames for the recognition task on long
action videos. Our method has an advantage on the long videos for action recognition,
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Model #Frames #Clusters Top-1 V1 Top-1 V2
TSN [4] 8 - 19.7% 30.0%
TRN-Multiscale [4] 8 - 38.9% 48.8%
TSM [4] 8 - 45.6% 59.1%
TSM [4] 16 - 47.2% 63.4%
STM [50] 8 - 49.2% 62.3%
STM [50] 16 - 50.7% 64.2%

Ours-slope all 8 46.7% 60.2%
Ours-cumulative all 8 49.5% 62.7%
Ours-cumulative all 16 51.4% 65.1%

Tab. 3.5: Top-1 accuracy on Something-Something V1 and V2 datasets. Our method
using cumulative temporal clustering outperforms the state-of-the-art methods
on both Something-Something V1 and V2. Our method achieves limited
accuracy improvement for shorter videos.

by efficiently utilizing all the frames.

Comparison on the Something-Something dataset. In Table 3.5, we list the results of
our method compared to other methods on the Something-Something V1&V2 datasets.
We achieve state-of-the-art performance on both V1 and V2, with outperforming STM
of 8 frames by 0.3% and 0.4% for V1 and V2, and STM of 16 frames by 0.7% and
0.9% for V1 and V2 respectively. Comparing to TSM, we significantly improve the
top-1 accuracy of 8 frames by 3.9% and 3.5%, and the top-1 accuracy of 16 frames
by 4.2% and 1.7% for the V1 and V2 datasets. Although the Something-Something
dataset is characterized by temporal variations, the video clips are short compared to the
Breakfast dataset. The methods using frame sampling heuristics can capture the main
movement in videos. Therefore, our accuracy improvement is not as pronounced as for
the Breakfast dataset.

Comparison on the UCF-101 and HMDB51 datasets. We train with 8 clusters and
evaluate over three splits and report averaged results in Table 3.4. Our performance is
on par with state-of-the-art methods on both datasets. The UCF-101 and HMDB51 have
a scene-bias, where motion plays a limited role and just a few number of frames –or
even a single frame– is sufficient. Thus, methods relying on sampling heuristics can
correctly classify the actions and our method using all frames is not expected to improve
results. To test this, we show results with a single frame in Table 3.4 which shows that
TSM with 1 frame achieves comparable accuracy to TSN with 8 frames on UCF-101
and outperforms TSN with 8 frames on HMDB51. For scene-biased datasets, using all
frames does not bring accuracy benefits.

3.5. CONCLUSION
We propose an efficient method for training action recognition deep networks without
relying on sampling heuristics. Our work offers a solution to using all video frames
during training based on the assumption that similar frames have similar gradients,
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leading to similar parameter updates. To this end, we efficiently find frames that are
similar with respect to the classification task, by using a cumulative temporal clustering
algorithm based on Hamming distances. The clustering based on Hamming distances
enforces that activations in a cluster agree in signs, which is a requirement entailed by
our assumption that we can approximate the gradients of multiple frames with a single
gradient of an aggregated frame. We accumulate the activations within each cluster to
create new representations used to classify the actions. Our proposed method shows
competitive results on large datasets when compared to existing work.

Despite our state of the art results, we identify several limitations. One limitation
is that the number of clusters is fixed and thus not well-suited for inhomogeneous
videos with more semantic (shot) changes than clusters. This could create a dependency
for action proposals or other approaches to pre-segment a video in homogeneous
segments which somewhat counters the philosophy of using full video action recognition.
Another limitation is that for grouping frames the only non-linearity we consider is the
activation function and do not use the non-linearity in the loss. This limitation seems
insurmountable, as memory constraints prevent us to store all frame activations for when
the loss is computed. Nevertheless, with our current results and analysis, we make a first
move for action recognition to go full video.
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APPENDIX
In addition to the comparison with 2D models, we also show results of our method
compared to the state-of-the-art 3D models and additional 2D models on Breakfast,
Something-Something V1 & V2, UCF-101 and HMDB51. [Nx] denotes the new
citations in the tables.

COMPARISON ON THE BREAKFAST DATASET.
Model Backbone #3D #Optical flow #Frames #Clusters Top-1

ResNet152[49] ResNet152 - - 64 - 41.1%
ActionVLAD [49] ResNet152 - - 64 - 55.5%
VideoGraph [49] ResNet152 - - 64 - 59.1%
TSM [4] (our impl.) ResNet50 - - 16 - 72.1%

I3D [49] 3D Inception-v1 ✓ - 512 - 58.6%
I3D + ActionVLAD [49] 3D Inception-v1 ✓ - 512 - 65.5%
I3D + VideoGraph [49] 3D Inception-v1 ✓ - 512 - 69.5%
3D ResNet-50 + Timeception [51] 3D ResNet-50 ✓ - 512 - 71.3%

Ours-slope ResNet50 - - all 16 74.9%
Ours-cumulative ResNet50 - - all 16 76.6%

Tab. 3.6: Our method using either slope temporal clustering or cumulative temporal clustering
compared to existing works on the Breakfast dataset. Our proposal outperforms TSM
and the 3D model, and significantly exceeds in top-1 accuracy methods using the
deeper backbone architecture, ResNet-152. By using all frames our method has an
advantage on long-term video action recognition.

COMPARISON ON THE SOMETHING-SOMETHING DATASET.
Model Backbone #3D #Optical flow #Frames #Clusters Top-1 V1 Top-1 V2
TSN [4] ResNet50 - - 8 - 19.7% 30.0%
TRN-Multiscale [4] ResNet50 - - 8 - 38.9% 48.8%
TSM [4] Resnet50 - - 8 - 45.6% 59.1%
STM [50] ResNet50 - - 8 - 49.2% 62.3%
MSNet-R50 [52] TSM-ResNet50 - - 8 - 50.9% 63.0%
I3D [53] I3D ✓ - 32 - 41.6% -
NL-I3D [53] I3D ✓ - 32 - 44.4% -
NL-I3D+GCN [53] I3D ✓ - 32 - 46.1% -
S3D-G [54] Inception ✓ - 64 - 48.2% -
ECO [2] BNIncep+3D Res18 ✓ - 8 - 39.6% -
ECO [2] BNIncep+3D Res18 ✓ - 16 - 41.4% -
ECO-En Lite [2] BNIncep+3D Res18 ✓ - 92 - 46.4% -
ECO-En Lite-RGB+Flow [2] BNIncep+3D Res18 ✓ ✓ 92+92 - 49.5% -
DFB-Net [55] 3D ResNet50 ✓ - 16 - 50.1% -

Ours-slope TSM-ResNet50 - - all 8 46.7% 60.2%
Ours-cumulative TSM-ResNet50 - - all 8 49.5% 62.7%

Tab. 3.7: Top-1 accuracy on Something-Something V1 and V2 datasets. Our method using
cumulative temporal clustering outperforms most state-of-the-art methods on both
Something-Something V1 and V2, and performs on par with ECO-En Lite with both
RGB and optical flow while slightly worse than MSNet-R50. Our method achieves
limited accuracy improvement for shorter videos.
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COMPARISON ON THE UCF-101 AND HMDB51 DATASET.

Model Backbone Pre-train #3D #Optical #Frames #Clusters Top-1 Top-1
flow UCF-101 HMDB51

TSM [4] (our impl.) ResNet50 Kinetics - - 1 - 91.2% 65.1%
TSN [4] ResNet50 Kinetics - - 8 - 91.7% 64.7%

SI+DI+OF+DOF [34] ResNeXt50 Imagenet - ✓
dynamic - 95.0% 71.5%images

TSM [4] ResNet50 Kinetics - - 8 - 95.9% 73.5%

STM [50] ResNet50 ImageNet - - 16 - 96.2% 72.2%+Kinetics
MSNet-R50 [52] TSM-ResNet50 Kinetics - - 8 - - 75.8%

ECO-En Lite [2] BNIncep+3D Res18 Kinetics ✓ - 8 - 94.8% 72.4%
RGB I3D [1] 3D Inception-v1 Kinetics ✓ - 64 - 95.1% 74.3%
Two-stream I3D [1] 3D Inception-v1 Kinetics ✓ ✓ 64+64 - 97.8% 80.9%
Ours-slope TSM-ResNet50 Kinetics - - all 8 96.2% 73.3%
Ours-cumulative TSM-ResNet50 Kinetics - - all 8 96.4% 73.4%

Tab. 3.8: Top-1 accuracy on UCF-101 and HMDB51. Our method performs only slightly
better than the state-of-the-art on the scene-related datasets UCF-101 and HMDB51,
and worse than two-stream I3D, which uses both RGB and optical flow with 3D
Inception-v1 backbone. Given that these datasets do not have a large number of frames
per video, the improvement of our method over sampling methods is limited.



REFERENCES

[1] J. Carreira and A. Zisserman. “Quo vadis, action recognition? a new model and
the kinetics dataset”. In: proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 6299–6308.

[2] M. Zolfaghari, K. Singh, and T. Brox. “Eco: Efficient convolutional network
for online video understanding”. In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 695–712.

[3] B. Korbar, D. Tran, and L. Torresani. “Scsampler: Sampling salient clips from
video for efficient action recognition”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, pp. 6232–6242.

[4] J. Lin, C. Gan, and S. Han. “Tsm: Temporal shift module for efficient video
understanding”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 7083–7093.

[5] J. Ren, X. Shen, Z. Lin, and R. Mech. “Best Frame Selection in a Short Video”.
In: The IEEE Winter Conference on Applications of Computer Vision. 2020,
pp. 3212–3221.

[6] S. Sudhakaran, S. Escalera, and O. Lanz. “Gate-Shift Networks for Video Action
Recognition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 1102–1111.

[7] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool.
“Temporal segment networks: Towards good practices for deep action recognition”.
In: European conference on computer vision. Springer. 2016, pp. 20–36.

[8] W. Wu, D. He, X. Tan, S. Chen, and S. Wen. “Multi-Agent Reinforcement
Learning Based Frame Sampling for Effective Untrimmed Video Recognition”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2019,
pp. 6222–6231.

[9] Z. Wu, C. Xiong, C.-Y. Ma, R. Socher, and L. S. Davis. “AdaFrame: Adaptive
Frame Selection for Fast Video Recognition”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

[10] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. “End-to-end learning of
action detection from frame glimpses in videos”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 2678–2687.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: 2009 IEEE conference on computer
vision and pattern recognition. 2009, pp. 248–255.

59



3

60 REFERENCES

[12] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. “Reversible
Architectures for Arbitrarily Deep Residual Neural Networks”. In: AAAI. 2018.

[13] T. Chen, B. Xu, C. Zhang, and C. Guestrin. “Training deep nets with sublinear
memory cost”. In: arXiv preprint arXiv:1604.06174 (2016).

[14] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. “The reversible residual
network: Backpropagation without storing activations”. In: Advances in neural
information processing systems. 2017, pp. 2214–2224.

[15] C. Feichtenhofer, A. Pinz, and A. Zisserman. “Convolutional two-stream network
fusion for video action recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 1933–1941.

[16] H. Gammulle, S. Denman, S. Sridharan, and C. Fookes. “Two stream lstm: A deep
fusion framework for human action recognition”. In: 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE. 2017, pp. 177–186.

[17] K. Simonyan and A. Zisserman. “Two-stream convolutional networks for action
recognition in videos”. In: Advances in neural information processing systems 27
(2014).

[18] T. Du, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. “C3d: Generic features
for video analysis”. In: Corr 2.8 (2014).

[19] K. Hara, H. Kataoka, and Y. Satoh. “Can spatiotemporal 3d cnns retrace the
history of 2d cnns and imagenet?” In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 2018, pp. 6546–6555.

[20] S. Ji, W. Xu, M. Yang, and K. Yu. “3D convolutional neural networks for
human action recognition”. In: IEEE transactions on pattern analysis and machine
intelligence 35.1 (2012), pp. 221–231.

[21] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao. “A multi-stream
bi-directional recurrent neural network for fine-grained action detection”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 1961–1970.

[22] V. Veeriah, N. Zhuang, and G.-J. Qi. “Differential recurrent neural networks for
action recognition”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 4041–4049.

[23] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik. “Action
recognition in video sequences using deep bi-directional LSTM with CNN
features”. In: IEEE Access 6 (2017), pp. 1155–1166.

[24] Z. Wu, C. Xiong, Y.-G. Jiang, and L. S. Davis. “Liteeval: A coarse-to-fine
framework for resource efficient video recognition”. In: Advances in Neural
Information Processing Systems. 2019, pp. 7780–7789.

[25] M. Jain, J. C. Van Gemert, and C. G. Snoek. “What do 15,000 object categories
tell us about classifying and localizing actions?” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 46–55.



REFERENCES

3

61

[26] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
“Large-scale Video Classification with Convolutional Neural Networks”. In:
CVPR. 2014.

[27] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. “Temporal relational reasoning
in videos”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 803–818.

[28] C. Feichtenhofer, H. Fan, J. Malik, and K. He. “Slowfast networks for video
recognition”. In: Proceedings of the IEEE international conference on computer
vision. 2019, pp. 6202–6211.

[29] K. Schindler and L. Van Gool. “Action snippets: How many frames does human
action recognition require?” In: 2008 IEEE Conference on Computer Vision and
Pattern Recognition. 2008, pp. 1–8.

[30] Y. Wang, Z. Jiang, X. Chen, P. Xu, Y. Zhao, Y. Lin, and Z. Wang. “E2-train:
Training state-of-the-art cnns with over 80% energy savings”. In: Advances in
Neural Information Processing Systems 32 (2019).

[31] C.-Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and P. Krahenbuhl. “A Multigrid
Method for Efficiently Training Video Models”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 153–162.

[32] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell. “Actionvlad: Learning
spatio-temporal aggregation for action classification”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 971–980.

[33] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. “Rank pooling
for action recognition”. In: IEEE transactions on pattern analysis and machine
intelligence 39.4 (2016), pp. 773–787.

[34] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. “Action Recognition with
Dynamic Image Networks”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 40.12 (2018), pp. 2799–2813. DOI: 10.1109/TPAMI.
2017.2769085.

[35] F. Sener, D. Singhania, and A. Yao. “Temporal Aggregate Representations for
Long-Range Video Understanding”. In: European Conference on Computer Vision.
2020, pp. 154–171.

[36] S. Song, N.-M. Cheung, V. Chandrasekhar, and B. Mandal. “Deep adaptive
temporal pooling for activity recognition”. In: Proceedings of the 26th ACM
international conference on Multimedia. 2018, pp. 1829–1837.

[37] M. Malinowski, G. Swirszcz, J. Carreira, and V. Patraucean. “Sideways: Depth-
Parallel Training of Video Models”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 11834–11843.

[38] D. Oktay, N. McGreivy, J. Aduol, A. Beatson, and R. P. Adams. “Randomized
Automatic Differentiation”. In: CoRR (2020).

[39] N. Goli and T. M. Aamodt. “ReSprop: Reuse Sparsified Backpropagation”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 1548–1558.

https://doi.org/10.1109/TPAMI.2017.2769085
https://doi.org/10.1109/TPAMI.2017.2769085


3

62 REFERENCES

[40] S. Wiedemann, T. Mehari, K. Kepp, and W. Samek. “Dithered backprop: A sparse
and quantized backpropagation algorithm for more efficient deep neural network
training”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. 2020, pp. 720–721.

[41] H. Kuehne, A. B. Arslan, and T. Serre. “The Language of Actions: Recovering
the Syntax and Semantics of Goal-Directed Human Activities”. In: Proceedings of
Computer Vision and Pattern Recognition Conference (CVPR). 2014.

[42] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,
V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, et al. “The" Something
Something" Video Database for Learning and Evaluating Visual Common Sense.”
In: ICCV. Vol. 1. 4. 2017, p. 5.

[43] K. Soomro, A. R. Zamir, and M. Shah. “A dataset of 101 human action classes
from videos in the wild”. In: Center for Research in Computer Vision 2.11 (2012).

[44] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. “HMDB: A large
video database for human motion recognition”. In: 2011 International Conference
on Computer Vision (2011), pp. 2556–2563.

[45] Y. LeCun, C. Cortes, and C. Burges. “MNIST handwritten digit database”. In:
(2010).

[46] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev, et al. “The Kinetics Human Action Video
Dataset”. In: CoRR (2017).

[47] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. In: International conference on machine
learning. pmlr. 2015, pp. 448–456.

[48] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[49] N. Hussein, E. Gavves, and A. W. Smeulders. “Videograph: Recognizing
minutes-long human activities in videos”. In: ICCV 2019, Workshop on Scene
Graph Representation and Learning (2019).

[50] B. Jiang, M. Wang, W. Gan, W. Wu, and J. Yan. “Stm: Spatiotemporal and motion
encoding for action recognition”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, pp. 2000–2009.

[51] N. Hussein, E. Gavves, and A. W. Smeulders. “Timeception for complex action
recognition”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 254–263.

[52] H. Kwon, M. Kim, S. Kwak, and M. Cho. “MotionSqueeze: Neural Motion Feature
Learning for Video Understanding”. In: European Conference on Computer Vision.
Springer. 2020, pp. 345–362.

[53] X. Wang and A. Gupta. “Videos as Space-Time Region Graphs”. In: Proceedings
of the European Conference on Computer Vision (ECCV). Sept. 2018.



REFERENCES

3

63

[54] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. “Rethinking Spatiotemporal
Feature Learning: Speed-Accuracy Trade-offs in Video Classification”. In:
Proceedings of the European Conference on Computer Vision (ECCV). Sept. 2018.

[55] B. Martinez, D. Modolo, Y. Xiong, and J. Tighe. “Action Recognition With
Spatial-Temporal Discriminative Filter Banks”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). Oct. 2019.





4
CROSS DOMAIN IMAGE

MATCHING IN PRESENCE OF
OUTLIERS

Cross domain image matching between image collections from different source and target
domains is challenging in times of deep learning due to i) limited variation of image con-
ditions in a training set, ii) lack of paired-image labels during training, iii) the existing of
outliers that makes image matching domains not fully overlap. To this end, we propose
an end-to-end architecture that can match cross domain images without labels in the tar-
get domain and handle non-overlapping domains by outlier detection. We leverage domain
adaptation and triplet constraints for training a network capable of learning domain invari-
ant and identity distinguishable representations, and iteratively detecting the outliers with
an entropy loss and our proposed weighted MK-MMD. Extensive experimental evidence on
Office [1] dataset and our proposed datasets Shape, Pitts-CycleGAN shows that the pro-
posed approach yields state-of-the-art cross domain image matching and outlier detection
performance on different benchmarks. The code will be made publicly available.

This chapter is published as:
Xin Liu, Seyran Khademi, Jan Van Gemert. Cross Domain Image Matching in Presence of Outliers. Interna-
tional Conference on Computer Vision Workshops (ICCV-w), 2019. arXiv: https://arxiv.org/abs/
1909.03552
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4.1. INTRODUCTION
Cross domain image matching is about matching two images that are collected from differ-
ent sources (e.g. photos of the same location but captured in different illuminations, seasons
or era). It has wide application value in different areas, with research in location recognition
over large time lags [2], e-commerce product image retrieval [3], urban environment image
matching for geo-localization [4], etc.

Even using deep feature representation learning, the automated cross domain image
matching task remains challenging mainly due to the following difficulties. First, it is diffi-
cult to match varying observations of the same location or object, in general. Second, often
the paired-image examples from two domains are not available for training neural networks.
Third, the image samples in two domains may not fully overlap due to the existing of outlier
images, which affects the matching performance if such outliers are not detected.

In this work, we address the problem of domain adaptation for feature learning in a cross
domain matching task when outliers are present. As is common in domain adaptation, we
only have labeled image pairs from the source domain, but no labels from the target do-
main. To resolve the domain disparity between the train and the test data, we are inspired
from Siamese network [5] for image matching and domain adaptation used in image classi-
fication [6–10]. We propose a triplet constraints network to learn the domain invariant and
identity distinguishable representations of the samples. This is made possible by utilizing
the paired-image information from the source domain, a weighted multi-kernel maximum
mean discrepancy (weighted MK-MMD) method and an entropy loss. The setting of the
problem and experiment results of our method are depicted on a 2D toy dataset in fig. 4.1.

To verify our method, we introduce two new synthetic datasets as there are no publicly
available datasets for our problem setting. Moreover, we believe outlier-aware algorithms
are essential to design practical domain adaptation algorithms as many real data repositories
contain irrelevant samples w.r.t. the source domain. In summary, our main contribution is
two-fold:

• Joint domain adaptation and outlier detection.

• Two new datasets, Pits-CycleGAN dataset and Shape dataset, for cross domain image
matching.

4.2. RELATED WORK
4.2.1. IMAGE MATCHING

Feature learning based matching methods become popular due to its improved performance
over hand-crafted features (e.g. SIFT [11]). Siamese network architectures [5] are among
the most popular feature learning networks, especially for pairs comparison tasks. We also
adopt Siamese network as part of our framework. The purpose is to learn feature represen-
tations to distinguish matching and unmatching pairs in the source domain, which assists
the network in learning to match cross domain images. In the cross-domain image match-
ing context, Linet al. [12] investigated a deep Siamese network to learn feature embedding
for cross-view image geo-localization. Kong et al. [13] applied Siamese architecture to
cross domain footprint matching. Tian et al. [4] utilized Siamese network for matching the
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Fig. 4.1: Domain adaptation (DA) and image matching applied on a 2D toy dataset gener-
ated with domain shift between source and target domains. (a) Original distribu-
tion, (b) no outliers, (c) with outliers, (d) our method. The result of (b) and (c)
shows that outliers affect the alignment of source samples and inlier target sam-
ples. (c) and (d) show that our outlier detection helps separating the outliers from
the aligned source samples and inlier target samples.

building images from street view and bird’s eye view. Unlike the existing works on cross-
domain image matching, we consider labeled paired-image information is only available in
the source domain.

4.2.2. DOMAIN ADAPTATION

Domain adaptation have been researched over recent years in diverse domain classifica-
tion tasks, in which adversarial learning and statistic methods are main approaches. Ganin
et al. [14] proposed domain-adversarial training of neural networks with input of labeled
source domain data and unlabeled target domain data for classification. In [10], the au-
thors proposed a deep transfer network (DTN), which achieved domain transfer by si-
multaneously matching both the marginal and the conditional distributions with adopting
the empirical maximum mean discrepancy (MMD) [15], which is a nonparametric metric.
Venkateswara et al. [9] applied MK-MMD [16] to a deep learning framework that can learn
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hash codes for domain adaptive classification. In this setting MK-MMD loss promotes non-
linear alignment of data, which generates a nonparametric distance in Reproducing Kernel
Hilbert Space (RKHS). The distance between two distributions is the distance between their
means in a RKHS. When two data sets belong to the same distribution, their MK-MMD is
zero. Based on the successful performance of MK-MMD loss, we also adopt it to adapt dif-
ferent domains, this time for image matching task. This requires the marriage of Siamese
network with MK-MMD loss, as we do later in our paper.

4.2.3. OUTLIER DETECTION
Much work exists on outlier detection [17–20]. Chalapathy et al. [17] proposed an one-
class neural network (OC-NN) encoder-decoder model to detect anomalies. Sabokrou et
al. [19] also applied the encoder-decoder architecture as part of their network for novelty
detection. Zhang et al. [20] proposed an adversarial network for partial domain adaptation
to deal with outlier classes in the source domain. Their network is for classification task,
and they do not have the assumption that outliers originate from low-density distribution.
Instead, we are inspired by the work of Liu et al. [18] which uses a kernel-based method to
learn, jointly, a large margin one-class classifier and a soft label assignment for inliers and
outliers. Using the soft label assignment, we implement outlier detection with cross domain
image matching in an iterative sample reweighting way.

4.3. DOMAIN ADAPTIVE IMAGE MATCHING
4.3.1. SIAMESE LOSS
We introduce our proposal for domain adaptation for image matching task once labeled
data is not available in the target domain. Let Xs denote the source domain image set. A
pair of images xi , x j ∈ Xs are used as input to part of our network, as shown in Figure
4.2. xi , x j can be a matching pair or an unmatching pair. The objective is to automatically
learn a feature representation, f (·), that effectively maps the input xi , x j to a feature space,
in which matching pairs are close to each other and unmatching pairs are far apart. We
employ the contrastive loss as introduced in [21]:

L(xi , x j , y) = 1

2
yD2 + 1

2
(1− y){max(0,m −D)}2, (4.1)

where y ∈ {0,1} indicates unmatching pairs with y = 0 and matching pairs with y = 1, D
is the Euclidean distance between the two feature vectors f (xi ) and f (x j ), and m is the
margin parameter acting as threshold to separate matching and unmatching pairs.

4.3.2. DOMAIN ADAPTATION LOSS
It is known that in deep CNNs, the feature representations transition from generic to task-
specific as one goes up from bottom layers to other layers [22]. Compared to the convolu-
tion layers conv1 to conv5, the fully connected layers are more task-specific and need to be
adapted before they can be transferred [9].

Accordingly, our approach attempts to minimize the MK-MMD loss to reduce the do-
main disparity between the source and target feature representations for fully connected
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Convolution Layers

conv1 conv2 conv3 conv4 conv5

Fully Connected Layers
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fc6 fc7 fc8

Contrastive Loss

Entropy Loss

Fig. 4.2: The network for cross domain image matching and outlier detection. The con-
trastive loss makes the network to learn paired-image information from the source.
The weighted MK-MMD loss trains the network to learn transferable features be-
tween the source and the inliers of the target. The entropy loss helps distinguish
inliers and outliers in the target domain.

layers, F = { f c6, f c7, f c8}. The multi-layer MK-MMD loss is given by,

M (us ,ut ) = ∑
l∈F

d 2
k (ul

s ,ul
t ), (4.2)

where, ul
s = {us,l

i }ns
i=1 and ul

t = {u t ,l
i }nt

i=1 are the set of output representations for the source
and target data at layer l , u∗,l

i is the output representation of inuput image x∗,l
i for the

l th layer. The MK-MMD measure d 2
k (·) is the multi-kernel maximum mean discrepancy

between the source and target representations [16]. For a nonlinear mapping φ(·) associated
with a reproducing kernel Hilbert space Hk and kernel k(·), where k(x , y) = 〈φ(x , y)〉, the
MK-MMD is defined as,

d 2
k (ul

s ,ul
t ) = ||E[φ(us,l )]−E[φ(u t ,l )]||Hk . (4.3)

The characteristic kernel k(·), is determined as a convex combination of κ PSD kernels,
{km}κm=1, K := {k : k = ∑κ

m=1βmkm ,
∑κ

m=1βm = 1,βm ≥ 0,∀m}. In particular, we fol-
low [23] and set the kernel weights as βm = 1/κ .

4.4. PROPOSED METHOD: OUTLIER-AWARE DOMAIN

ADAPTIVE MATCHING
The task is to match images with the same content but from different domains where the
outliers are present in the target domain. We assume that in the source domain there are
sufficient labeled image pairs and in the target domain low-density outliers are present. As
in conventional domain adaptation setting labeled data is not available in the target domain.
We propose a deep triplet network which is comprised of three instances of the same feed-
forward network with shared parameters, as shown in Figure 4.2.

4.4.1. IMPORTANCE WEIGHTED DOMAIN ADAPTATION
In our implementation, the MK-MMD loss in subsection 4.3.2 is calculated over every
batch of data points during the back-propagation. Let n (even) be the number of source data
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points us := {us
i }n

i=1 and the number of target data points ut := {u t
i }n

i=1 in the batch. Then,
the MK-MMD can be defined over a set of 4 data points zi = [us

2i−1,us
2i ,u t

2i−1,u t
2i ], ∀i ∈

{1,2, ...,n/2}. Thus, the MK-MMD is given by,

d 2
k (us ,ut ) =

κ∑
m=1

βm
1

n/2

n/2∑
i=1

hm(zi ), (4.4)

where, κ is the number of kernels and βm = 1/κ is the weight for each kernel. And we can
expand hm(·) as,

hm(zi ) = km(us
2i−1,us

2i )+km(u t
2i−1,u t

2i )

−km(us
2i−1,u t

2i )−km(us
2i ,u t

2i−1), (4.5)

in which, the kernel is km(x , y) = exp(− ||x−y ||22
σm

).
With equations 4.4 and 4.5, we can interpret that in the minimum calculation unit (hm(zi )),

two target domain images contribute to MK-MMD loss calculation. When there are outliers
in the target domain, we only want the inliers to contribute to the calculation, but not the
outliers. Therefore, we could assign the target samples with weights wi as 1 for inliers, and
0 for outliers. Because we have no ground truth labels, we can only treat the weights as
the probability of the target samples to be inliers. Hence, we can introduce the weighted
MK-MMD as,

d 2
wk

(us ,ut ) =
κ∑

m=1
βm

1

n/2

n/2∑
i=1

w2i−1w2i hm(zi ), (4.6)

where, w2i−1 and w2i are the weights of the target data points u t
2i−1 and u t

2i in hm(zi )
respectively, and w2i−1, w2i ∈ [0,1]. We will explain how to obtain the weight for each
target domain sample in next subsection.

4.4.2. OUTLIER DETECTION
Since the inlier-outlier label is not available, we implement an entropy loss to iteratively
reassign target domain sample probability of being an inlier, which provides the weights
for the weighted MK-MMD.

We use the similarity measure 〈ui ,u j 〉 to learn discriminative inlier-outlier information
for the target domain data. We define three classes of reference data ur for similarity
measure, the source domain class u1, the pseudo inlier class u2 and the pseudo outlier class
u3. An ideal target output u t

i needs to be similar to many of the outputs from one of the
classes, {uc

k }K
k=1. We assume K data points for every class c, where c ∈ {1,2,3} and uc

k is
the k th output from class c. Then the probability measure for each target sample can be
outlined as,

pi c =
∑K

k=1 exp(u t
i
⊺uc

k )∑C
c=1

∑K
k=1 exp(u t

i
⊺uc

k )
, (4.7)

where, pi c is the probability that a target domain sample x t
i is assigned to category c. When

the sample output is similar to one category only, the probability vector pi = [pi 1, ..., pi c ]⊤
tends to be a one-hot vector. A one-hot vector can be viewed as a low entropy realization of
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pi . Thus, we introduce a loss to capture the entropy of the probability vectors. The entropy
loss can be given by,

S(ur ,ut ) =− 1

nt

nt∑
i=1

C∑
c=1

pi c l og (pi c ). (4.8)

In subsection 4.4.1, we discussed the weighted MK-MMD loss with weights w2i−1 and
w2i . With the sample probabilities of target domain data calculated from equation 4.7, the
weights are calculated as,

wi =
{ pi 1+pi 2

pi 1+pi 2+pi 3
if x t

i is classified as source
pi 2

pi 1+pi 2+pi 3
if x t

i is classified as others
. (4.9)

If a target domain sample is classified as "source", then it has a high probability of being
an inlier, and therefore should contribute more to reducing the domain disparity. So we
calculate the weight of such a target domain sample with the sum of pi 1 and pi 2.

Algorithm We iteratively update the target domain data weights after each epoch dur-
ing training, which works together with domain adaptation for guiding and correcting the
detection of outliers and inliers.

The proposed algorithm for outlier detection is showed in the following. The proposed

Algorithm 1
Input: source domain and target domain training data
Output: target domain training data probabilities

1: Initialization i = 0, calculate the average Euclidean distance of each target domain
training sample between all the source domain training samples, sort the distances in
ascending order and initialize target domain training samples’ weights according to
the sorted distances, xi ∈ first half: wi = 0.7 (pseudo inlier class), xi ∈ second half:
wi = 0.3 (pseudo outlier class). Inlier class consists of source domain training data,
which has the same number of samples with pseudo inlier and pseudo outlier classes.

2: Repeat:
3: i = i +1
4: make new mini batches
5: minimize the overall loss function objective (4.10)
6: update the samples’ weights by equation 4.7 and 4.9
7: update the sets of pseudo inlier class and pseudo outlier class
8: Until target samples’ probabilities are unchanged or training time ends

method is built upon the intuitive assumption that outliers originate from low-density dis-
tribution. Thus, we can assume that the ratio of outliers to all the target domain data is no
more than 50%.

4.4.3. OVERALL OBJECTIVE
We propose a model for cross domain image matching and outlier detection, which incor-
porates learning image matching information from source domain (4.1), weighted domain
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adaptation between the source and the target (4.6) and outlier detection (4.8) in a deep CNN.
The overall objective is given by:

mi nuJ= L(us )+γMw (us ,ut )+ηS(ur ,ut ), (4.10)

where, u := {us
⋃

ut } and (γ,η) control the importance of domain adaptation (4.6) and en-
tropy loss (4.8) respectively.

4.5. EXPERIMENTS

4.5.1. DATASETS

There are no publicly available datasets for our task. Therefore, we propose two datasets
for evaluation. Sample images from the three datasets are shown in Figure 4.3.

Source Target Outlier

Shape

Pitts-CycleGAN

Office

Fig. 4.3: Examples from Shape, Pitts-CycleGAN and Office sets.

Shape is one of the synthetic datasets we generate. It contains 60k source domain images,
30k target domain images (including 2800 outliers). The outlier images are made up of
single alphabets or digits. The source domain and inlier images are combinations of two
geometric shapes, drawn with black solid lines and colored dot lines, respectively. We
define two images are a matching pair if the combination of shapes is the same.

Pitts-CycleGAN is the other synthetic dataset, which contains 204k Pittsburgh Google
Street View images from Pittsburgh dataset [24] as the source domain, and 157k target
domain images (including 52k outliers) generated by applying CycleGAN [25] to the Pitts-
burgh images. So the target domain images are in a painting style. The outliers are sky
images or city views not containing any useful landmark information.

Office [1] consists of 3 domains, Amazon, Dslr, Webcam. We choose Dslr as source
domain and Amazon as target domain. We make pairs with images from the same category.
The outliers come from two randomly chosen categories (’speaker’, ’scissors’) out of the
31 categories.
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4.5.2. IMPLEMENTATION DETAILS
For our triplet network, the three sub-networks share the same architecture and weights.
Pre-trained AlexNet [26] is used for the sub-networks. We finetune the weights of conv4 -
conv5, fc6, fc7, fc8. For the weighted MK-MMD, we use a Gaussian kernel with a band-
width σ given by the median of the pairwise distances in the training data. To incorporate
the multi-kernel, we vary the bandwidth σm ∈ [2−8σ,28σ] with multiplicative factor of 2 [9].
For performance evaluation, we sort the Euclidean distance between the query and all the
gallery features (L2-normalized) to obtain the ranking result. Moreover, we employ the
standard metric mean average precision (MAP).

4.5.3. BASELINE METHODS
There are no available baselines to directly compare with our method, thus, we separate
our experiments to research on domain adaptive image matching 4.5.4 and effectiveness of
outlier detection 4.5.5.

In the experiment on domain adaptive image matching, we assume no outliers exist in
the target domain. Our method is to jointly learn the contrastive loss L(us ) and MK-MMD
loss M(us ,ut ). It is trained with pairs from the source domain and images from the target
domain, we call it SiameseDA.

For evaluating the effectiveness of outlier detection, the target domain contains outliers.
Our method is called DA+OutlierDetection, which learns on the objective 4.10.

The baselines for each experiment are shown in Table 4.1.

Baseline Experiment

Domain adaptive image matching
SIFT + Fisher Vector [11, 27] trained on the source domain data
Siamese network [5] trained on the source domain image pairs

Effectiveness of outlier detection
SiameseDA (upper bound) trained without outliers
SiameseDAOut (lower bound) SiameseDA trained with outliers

Tab. 4.1: Baseline methods for our experiments.

4.5.4. DOMAIN ADAPTIVE IMAGE MATCHING
In this section, we assume the target domain does not contain outliers. We explore if apply-
ing domain adaptation improves the performance of cross domain image matching. In this
case, the learning objective is

mi nuJ= L(us )+γM(us ,ut ), (4.11)

where, the MK-MMD loss term M(us ,ut ) is the unweighted version as explained in sub-
section 4.3.2.

The MAP results are given in Table 4.2. Our method consistently outperforms the base-
lines across all the datasets. With applying MK-MMD loss for domain adaptation, the
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Method Shape Office Pitts-CycleGAN
T → S S → S T → T T → S S → S T → T T → S S → S T → T

SIFT + Fisher Vector 2.5±0.4 3.6±0.3 3.4±0.3 3.5±0.2 12.0±0.5 3.5±0.1 0.04 0.8±0.05 0.3±0.03
Siamese 8.3±0.1 95.0±0.2 31.7±0.6 10.7±0.5 99.2±0.2 77.2±0.3 0.2±0.01 81.3±0.3 60.6±0.5

SiameseDA 26.4±0.2 53.1±0.1 46.2±0.1 29.1±0.1 99.7±0.1 77.5±0.2 0.4±0.01 80.4±0.1 59.5±0.1

Tab. 4.2: MAP performance for cross domain image matching and in-domain image match-
ing experiments on three datasets. T means target domain, S means source do-
main. T → S implies matching target domain images to source domain images,
similar for S → S, T → T . Our method SiameseDA outperforms the baselines
across all the datasets.
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Fig. 4.4: Precision-Recall results of our method DA+OutlierDetection, SiameseDA and
SiameseDAOut for the experiment of cross domain image matching with outlier
detection on the three datasets. Our method gains over the lower bound method.

performance of matching S → S decreases comparing to that of Siamese method. This is
within our expectation since the network may need to learn less from the source domain
to be domain adaptive. Moreover, it is worth to notice that our method also improves the
in-domain image matching (T → T ) of the target domain.

4.5.5. EFFECTIVENESS OF OUTLIER DETECTION

Here we assume the target domain contains outliers, which is to show if the presence of out-
liers reduces the accuracy of cross domain image matching, and our method could improve
it.

The performance of our method (DA+OutlierDetection), upper bound (SiameseDA) and
lower bound (SiameseDAOut) are given in Table 4.3. In terms of testing, we only take
the classified inliers in the query set in calculation. From Table 4.3 we can see, our method
outperforms the lower bound for all the three datasets, but is not better than the upper bound
(except for Pitts-CycleGAN) as expected. It shows that the presence of outliers reduces the
accuracy of cross domain image matching, and our method helps improve the performance
in this case.

In Figure 4.4, we also show the retrieval performance in terms of the trade-off between
precision and recall at different thresholds on our three datasets. The interpolated average
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Method (T → S) Shape Office Pitts-CycleGAN

SiameseDA 26.4±0.2 29.1±0.1 0.4±0.01
DA+OutlierDetection 11.9±0.1 15.9±0.2 1.1±0.03
SiameseDAOut 5.4±0.1 6.8±0.1 0.2±0.01

Tab. 4.3: MAP performance for cross domain image matching with outlier detection
on our three datasets. The proportion of outliers is 10%. Our method
DA+OutlierDetection outperforms the lower bound, but does not surpass the up-
per bound.

precision is used for the precision-recall curves. We can see that our method gains over the
lower bound method.

Impact of outlier proportion We also report the F1-score to measure the performance of
outlier detection of our method. Figure 4.5 shows the F1-score of our method as a function
of the portion of outlier samples for the three datasets. As can be seen, with the increase in
the number of outliers, our method operates consistently robust.
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Fig. 4.5: F1-scores for outlier detection on three datasets with different outlier proportion in
the target domain. Our method is consistently robust.

It is important to notice the limitation of our method, which classifies some inlier samples
as outliers during training. This is mainly caused by the way of initializing the probabilities
of the target domain training data.

4.6. CONCLUSION
We have proposed a network that is trained for cross domain image matching with outlier
detection in an end-to-end manner. The two main parts of our approach are (i) domain
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adaptive image matching subnetwork with contrastive loss and weighted MK-MMD loss,
(ii) outlier detection with entropy loss by updating the probability of target domain data
during training. The results on several datasets demonstrate that the proposed method is
capable of detecting outlier samples and achieving cross domain image matching at the
same time. But our method still needs improvement to overcome the problem of wrongly
classifying inliers as outliers.
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5
WEIGHTALIGN: NORMALIZING

ACTIVATIONS BY WEIGHT
ALIGNMENT

Batch normalization (BN) allows training very deep networks by normalizing activations
by mini-batch sample statistics which renders BN unstable for small batch sizes. Current
small-batch solutions such as Instance Norm, Layer Norm, and Group Norm use chan-
nel statistics which can be computed even for a single sample. Such methods are less
stable than BN as they critically depend on the statistics of a single input sample. To ad-
dress this problem, we propose a normalization of activation without sample statistics. We
present WeightAlign: a method that normalizes the weights by the mean and scaled stan-
dard derivation computed within a filter, which normalizes activations without computing
any sample statistics. Our proposed method is independent of batch size and stable over a
wide range of batch sizes. Because weight statistics are orthogonal to sample statistics, we
can directly combine WeightAlign with any method for activation normalization. We experi-
mentally demonstrate these benefits for classification on CIFAR-10, CIFAR-100, ImageNet,
for semantic segmentation on PASCAL VOC 2012 and for domain adaptation on Office-31.

This chapter is published as:
Xiangwei Shi⋆, Yunqiang Li⋆, Xin Liu⋆, Jan van Gemert. WeightAlign: Normalizing Activations by Weight
Alignment. International Conference on Pattern Recognition (ICPR), 2020. arXiv: https://arxiv.org/
abs/2010.07160. ⋆ The authors contributed equally to this work.
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5.1. INTRODUCTION
Batch Normalization [1] is widely used in deep learning. Examples include image classifi-
cation [2–4], object detection [5–7], semantic segmentation [8–10], generative models [11–
13], etc. It is fair to say that for optimizing deep networks, BatchNorm is truly the norm.

BatchNorm stabilizes network optimization by normalizing the activations during train-
ing and exploits mini-batch sample statistics. The performance of the normalization thus
depends critically on the quality of these sample statistics. Having accurate sample statis-
tics, however, is not possible in all applications. An example is domain adaptation, where
the statistics of the training domain samples do match the target domain statistics, and al-
ternatives to BatchNorm are used. [14, 15]. High resolution images are another example,
as used in object detection [5, 7, 16], segmentation [8, 9] and video recognition [17, 18],
where only a few or just one sample per mini-batch fits in memory. For these cases, it is
difficult to accurately estimate activation normalization statistics from the training samples.

To overcome the problem of unreliable sample statistics, various normalization tech-
niques have been proposed which make use of other statistics derived from samples, such
as layer [19], instance [20] or group [21]. These methods are applied independently per
sample and achieve good performance, but gather statistics just on a single sample and are
thus less reliable than BatchNorm.

In this paper, we propose WeightAlign: normalizing activations without using sample
statistics. Instead of sample statistics, we re-parameterize the weights within a filter to
arrive at correctly normalized activations. See Fig. fig. 5.1 for a visual overview. Our
method is based on weight statistics and is thus orthogonal to sample statistics. This allows
us to exploit two orthogonal sources to normalize activations: the traditional one based on
sample statistics in combination with our proposed new one based on weight statistics. We
have the following contributions.

• WeightAlign: A new method to normalize filter weights.

• Activation normalization without computing sample statistics.

• Performance independent of batch size, and stable performance over a wide range of
batch sizes.

• State-of-the-art performance on 5 datasets in image classification, object detection,
segmentation and domain adaptation.

5.2. RELATED WORK
Network Normalization by Sample Statistics. The idea of whitening the input to improve
training speed [22] can be extended beyond the input layer to intermediate representations
inside the network. Local Response Normalization [4], used in AlexNet, normalizes the
activations in a small neighborhood for each pixel. Batch Normalization (BN) [1] performs
normalization using sample statistics computed over mini-batch, which is helpful for train-
ing very deep networks. BN unfortunately suffers from performance degradation when the
statistical estimates become unstable for small batch-size based tasks.

To alleviate the small batches issue in BN, Batch Renormalization [23] introduces two
extra parameters to correct the statistics during training. However, Batch Renormalization is
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Fig. 5.1: Overview of WeightAlign (WA): Aligning filter weights allows normalizing chan-
nel activations. The weight W of an arbitrary convolutional layer is composed
with Cout filters with size C ×k ×k. Within a filter (yellow region in the left side),
we first flatten it to a vector and then apply our proposed WA in Eq. (eq. (5.10)) to
normalize the filter weights with a introduced learnable parameter γ. Normalizing
weights of each filter in forward pass can realize the normalization of activations
within each channel. Details in Section 5.3.

still dependent on mini-batch statistics, and degrades performance for smaller mini-batches.
EvalNorm [24] corrects the batch statistics during inference procedure. But it fails to fully
alleviate the small batch issue. SyncBN [25] handles the small batch problem by computing
the mean and variance across multiple GPUs which is not possible without having multiple
GPUs available.

Because small mini-batch sample statistics are unreliable, several methods [19–21] per-
form feature normalization based on channel sample statistics. Instance Normalization [20]
performs normalization similar to BN but only for a single sample. Layer Normaliza-
tion [19] uses activation normalization along the channel dimension for each sample. Filter
Response Normalization [26] proposes a novel combination of a normalization that operates
on each activation channel of each batch element independently. Group Normalization [21]
divides channels into groups and computes the mean and variance within each group for
normalization. Local Context Normalization [27] normalizes every feature based on the
filters in its group and a window around it. These methods can alleviate the small batch
problem to some extent, yet have to compute statistics for just a single sample both dur-
ing training and inference which introduces instabilities [28, 29]. Instead, in this paper we
cast the activation normalization over feature space into weights manipulation over param-
eter space. Network parameters are independent of any sample statistics and makes our
method particularly well suited as an orthogonal information source which can compensate
for unstable sample normalization methods.
Importance of weights. Proper network weight parameter initialization [4, 30, 31] is es-
sential for avoiding vanishing and exploding gradients [32]. Randomly initializing weight
values from a normal distribution [4] is not ideal because of the stacking of non-linear ac-
tivation functions. Properly scaling the initialization for stacked sigmoid or tanh activation
functions leads to Xavier initialization [33], but it is not valid for ReLU activations. He et
al. [3] extend Xavier initialization [33] and derive a sound initialization for ReLU activa-
tions. For hypernets, [34] developed principled techniques for weight initialization to solve
the exploding activations even with the use of BN. In [35] a data-dependent initialization
is proposed to mimic the effect of BN to normalize the variance per layer to one in the
first forward pass. To address the initialization problem of residual nets, Zhang et al. [36]
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propose fixup initialization. We draw inspiration from these weight initialization methods
to derive our weight alignment for activation normalization.

Weight decay [37] adds a regularization term to encourage small weights. Max-norm
regularization is used in [38] to avoid extremely large weights. Instead of introducing an
extra term to the loss, Weight Norm [39] re-parameterizes weights by dividing its norm
to accelerate convergence. Such a re-parameterization, however, may greatly magnify the
magnitudes of input signals. In contrast, we scale each filter’s weights as inspired by He
et al. [3]’s weight initialization approach, to generate activations with zero mean and main-
tained variance. This allows us to normalize activations without using any sample statistics.

5.3. PROPOSED METHOD
Batch Normalization (BN) [1] normalizes the features in a single channel to a zero mean and
unit variance distribution, as in Fig. fig. 5.2, to stabilize the optimization of deep networks.
The normalized features x̂ are computed channel-wise at training time using the sample
mean µβ and standard derivation σβ over the input features x as:

x̂ = x−µβ

σβ
, (5.1)

where µβ and σβ are functions of sample statistics of x. For each activation x̂, a pair of
trainable parameters γ, β are introduced to scale and shift the normalized value that

r = γx̂+β. (5.2)

BN uses the running averages of sample statistics within each mini-batch to reflect the
statistics over the full training set. A small batch leads to inaccurate estimation of the
sample statistics, thus using small batches degrades the accuracy severely.

In the following, we express the sample statistics in terms of filter weights to eliminate
the effect of small batch, and re-parameterize the weights within each filter to realize the
normalization of activations within each channel.

5.3.1. EXPRESSING ACTIVATION STATISTICS VIA WEIGHTS

For a convolution layer, let x be a single channel output activation, Y be the input activations,
and w, b be the corresponding filter and bias scalar. Specifically, a filter w consists of
c channels with a spatial size of k × k. To normalize activations by using weights, we
show how the sample statistics µβ and σβ in Eq. (eq. (5.1)) are expressed in terms of filter
weights.

An individual response value x(t ) in x is a sum of the product between the values in w
and the values in a co-located k2c-by-1 vector y(t ) in Y, which is equivalently written as
the dot product of filter w and vector y(t ),

x(t ) = w ·y(t )+b. (5.3)

By computing each individual response x(t ) at any location t , we obtain the full single
channel output activation x.
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We use random variables x, Y and w to present each of the elements in x, Y and w
respectively. Following [3, 33, 34], we make the following assumptions about the network:
(1) The w , Y and b are all independent of each other. (2) The bias term b equals 0.

Expressing µβ of Eq. (eq. (5.1)) in terms of weights: The mean of activation x can be
equivalently represented via filter weights as:

µβ = E[x] = nE[wY ] = nE[w]E[Y ], (5.4)

where E is the expected value and n = k2c denotes the number of weight values in a filter.
Expressing σβ of Eq. (eq. (5.1)) in terms of weights: The variance of activation x is:

σ2
β = Var[x] =nVar[wY ] = n(E[w2Y 2]−E2[wY ])

=n(E[w2]E[Y 2]−E2[w]E2[Y ])
(5.5)

With the Eq. (eq. (5.4)) and Eq. (eq. (5.5)), we will manipulate the weights to normalize
activations in the following sections.

5.3.2. WEIGHTALIGN
We normalize activations by encouraging the mean µβ of the activations in Eq. (eq. (5.4)) to
be zero, and maintaining the variance of the activations to be the same in all layers. Inspired
by [3], we manipulate the weights to satisfy these requirements.

The mean of the activations µβ in Eq. (eq. (5.4)) is forced to be zero when the weight w
in a filter has zero mean:

E[w] = 0. (5.6)

We can exploit E[w] = 0 in Eq. (eq. (5.5)) to further simplify the variance of the activa-
tions σ2

β
in terms of the variance of the weights as,

σ2
β = Var[x] = nE[w2]E[Y 2] = nVar[w]E[Y 2]. (5.7)

Thus, the activation variance σ2
β

depends on the variance of the weights w and on the
current layer input Y . To simplify further, we follow [3] and assume a ReLU activations
function. We use Z to define the outputs of the previous layer before the activation function,
where Y = ReLU(Z ).

If the weight of the previous layer has a symmetric distribution around zero then Z has
a symmetric distribution around zero.1 Because the ReLU sets all negative values to 0, the
variance is halved [3], and we have that E[Y 2] = 1

2 Var[Z ]. Substituted into Eq. (eq. (5.7)),
we have

σ2
β = Var[x] = 1

2
nVar[w]Var[Z]. (5.8)

This shows the relationship of variance between the previous layer’s output before the
non-linearity Z and the current layer’s single channel activation x.

Our goal is to manipulate the weights to keep the activation variance of all layers nor-
malized. Thus we relate the variance of this layer σ2

β
with the variance in the previous layer

1See proof in the supplementary material.
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Var[Z], which can be achieved in terms of the weights by setting 1
2 nVar[w] in Eq. (eq. (5.8))

to a proper scalar (e.g. 1):
1

2
nVar[w] = 1. (5.9)

With Eq. (eq. (5.6)) and Eq. (eq. (5.9)), we can re-parameterize a single filter weights to
have zero mean and a standard deviation

p
2/n, which achieves the activation normalization

like BN in Eq. (eq. (5.1)). Thus, here we propose WeightAlign as,

ŵ = γ
w −E[w]p

n/2 ·Var[w]
, (5.10)

where γ is a learnable scalar parameter
similar to the scale parameter in BN [1] like Eq. (eq. (5.2)). Since WA manipulates the

weights, it does not have the β term as in the form of BN, which is applied on activa-
tions directly. The detail explanation about this is given in supplementary material. From
Eq. (eq. (5.10)), we can tell that the proposed WeightAlign(WA) method does not rely on
sample statistics computed over a mini-batch, which makes it independent of batch size.

5.3.3. INITIALIZATION OF WEIGHTS
We initialize each filter weights w to be a zero-mean symmetric Gaussian distribution whose
standard deviation (std) is

p
2/n where n = k2c. For the first layer, we should have

p
1/n

since the ReLU activation is not applied on the input. But the factor 1/2 can be neglected if it
just exists on one layer and for simplicity, we use the same deviation

p
2/n for initialization.

5.3.4. EMPIRICAL ANALYSIS AND EXAMPLES
To show the distributions of channel activations using different methods, we build an 8-layer
deep network containing 7 convolutional layers and one classification layer with ReLU as
nonlinear activation function. A mini-batch of size 128 independent data is sampled from
N (0,1) is used as input. Specifically, the standard Kaiming initialization [3] without bias
term is used to initialize the weights. Fig. fig. 5.2 shows the activation distributions of 8
different channels taken from two layers, the 3rd intermediate convolutional layer and the
last classifier layer before the softmax loss. Each channel of the last classifier layer rep-
resents one class. To exclude the training effect, we first use the initialization model to
conduct comparison between sample statistics based normalization and our WA normaliza-
tion. For the visualization of trained model, please see Section 5.4. For the baseline model,
it can be seen in Fig. fig. 5.2(a) that the activation distributions in the intermediate layer
start drifting, leading to a constant output for the classifier layer (i.e. the ’Blue’ indexed
class/channel). From Fig. fig. 5.2(b) of Batch Norm (BN) [1], we note that reducing the
Internal Covariate Shift (ICS) in intermediate layer can alleviate the distribution drifting for
the final classifier layer. The output of the classifier layer is no longer a constant function.
Group Norm(GN) [21] can also reduce ICS to some extent, as shown in Fig. fig. 5.2(c).
As shown in Fig. fig. 5.2(d), WA can realize similar functionality of BN. Our proposed
WeighAlign (WA) re-parameterizes the weights within each filter in Eq. (eq. (5.10)) to nor-
malize channel activation. Since weight statistics is orthogonal to sample statistics, WA can
be used in conjunction with BN, GN, LN and IN, as shown in Fig. fig. 5.2(e). Please refer
to supplementary material for visualization of other normalization methods.
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Fig. 5.2: Our WA method can alleviate internal covariate shift of activation (see Sec-
tion 5.3.4 for details). Each color represents the activation distribution of different
channels for different layers. For baseline model, the ’Blue’ indexed channel will
dominate all other channels, leading to a constant classification result. Normaliz-
ing channel activation in intermediate layer can avoid the constant output for the
final classifier layer, which can be realized by WA.

5.4. EXPERIMENTS
We show extensive experiments on three tasks and five datasets: image classification on
CIFAR-10, CIFAR-100 [40] and ImageNet; domain adaptation on Office-31; and seman-
tic segmentation on PASCAL VOC 2012 [41] where we evaluate VGG [31] and residual
networks as ResNet [30].

5.4.1. DATASETS

CIFAR-10 & CIFAR-100. CIFAR-10 and CIFAR-100 [40] consist of 60,000 32×32 color
images with 10 and 100 classes, respectively. For both datasets, 10,000 images are selected
as the test set and the remaining 50,000 images are used for training. We perform image
classification experiments and ablation study on these datasets.
ImageNet. ImageNet [42] is a classification dataset with 1,000 classes. The size of the
training dataset is around 1.28 million, and 50,000 validation images are used for evalua-
tion.
Office-31. Office-31 [43] is a dataset for domain adaptation with 4,652 images with 31
categories. The images are collected from three distinct domains: Amazon (A), DSLR
(D), and Webcam (W). The largest domain, Amazon, has 2,817 labeled images. The 31
classes consists of objects commonly encountered in office settings, such as file cabinets,
keyboards and laptops.
PASCAL VOC 2012. PASCAL VOC 2012 [41] contains a semantic segmentation set and
includes 20 foreground classes and a single background class. The original segmentation
dataset contains 1,464 images for training, and 1,499 images for evaluation. We use the
augmented training dataset including 10,582 images [44].
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5.4.2. IMPLEMENTATION DETAILS

We use Stochastic Gradient Descent(SGD) in all experiments with a momentum of 0.9 and a
weight decay of 5×10−4. The plain VGG model is initialized with Kaiming initialization [3]
and ResNets are initialized with Fixup [36]. We do not apply WA in the final classifier layer.
For classification, we train the models with data augmentation, random horizontal flipping
and random crop, as in [45]. Further implementation details are given in each subsection.

5.4.3. EXPERIMENTS ON CIFAR-10 & CIFAR-100
Comparing normalization methods. We compare our proposed WeightAlign (WA) against
various activation normalization methods, including Batch Normalization (BN) [1], Group
Normalization (GN) [21], Layer Normalization (LN) [19], Instance Normalization (IN) [20].
To demonstrate that WA is orthogonal to all these approaches, we also show the combina-
tion of WA with these activation normalization methods.

We conduct experiments on CIFAR-100 as shown in Tab. table 5.1, where all models
are trained with a batch size of 64. WeightAlign outperforms every normalization method
except BN over large batch size. By combining WeightAlign with sample statistics normal-
ization methods, we can see that weightAlign adds additional information and improves
accuracy. Especially, the GN+WA model achieves comparable performance of BN.

To further show it’s flexibility, we fine-tune a pre-trained BN model on CIFAR-100 with
WA. It achieves 22.38% error rate, which is the same as BN+WA model trained from
scratch. This shows the possibility of finetuning WA on a pre-trained models with a sample-
based normalization method.

On CIFAR-10 we do the same evaluation for ResNet50. BN and BN+WA are trained
only with batch size of 64, and other methods are trained with batch size of 1 and 64.
For batch size of 64 and 1, the initial learning rates are 0.01 and 0.001, respectively. The
baseline method [36] is trained without any normalization methods. Results are given in
Tab. table 5.2. Because CIFAR-10 is less complex than CIFAR-100, the performance gaps
between different methods are thus less obvious. Nevertheless, our method is comparable
to other normalization methods and it allows a batch size of 1, which is not possible for
BN. By combining WA with the sample-based normalization methods, we again observe
that weight statistics normalization helps in addition to sample statistics normalization.

We also compare WA with Weight Normalization (WN) [39] on CIFAR-100 with VGG16
and ResNet50 networks. For VGG16, the error rates of WN, WA, GN are 6.8%, 4.8%and
7.4% when the batch size is 1, and the ones of WN, WA, BN, GN are 8.6%, 5.4%, 5.8% and
11.0% when the batch size is 64. For ResNet50, WN cannot be trained. We can see WA and
WN are workable regardless of the batch size for plain networks and WA outperforms WN
in this model. For residual networks, WA can work alone without any activation normal-
ization layer, while WN cannot. WN is only normalized by its norm to accelerate training.
Without normalization layer in residual networks, WN cannot restrict the variance of the
activation and the residual structure merges the activation from two branches, which leads
to exploding gradients problem. Instead, WA normalizes the weights by zero-mean and a
scaled standard deviation. This scale is determined by the size of convolutional filter and
restricts the variance of weights and further maintains the variance of activations.
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Tab. 5.1: Error rate of ResNet50 on CIFAR-100 for classification. WA outperforms ev-
ery normalization method except BN overlarge batch size. When combined with
statistics normalization methods, WA improves accuracy.

CIFAR-100

Method Error Method error

Baseline [36] 28.43 WA 24.92
BN [1] 23.02 BN + WA 22.39
IN [20] 25.58 IN + WA 24.63

LN [19] 26.78 LN + WA 24.01
GN [21] 25.46 GN + WA 23.64

Tab. 5.2: Error rate of ResNet50 on CIFAR-10 for classification. Weight statistics normal-
ization (WA) helps in addition to sample statistics normalization.

CIFAR-10

Batch size 64 Batch size 1
Method Error Method Error Method Error Method Error

Baseline [36] 6.46 WA 6.21 Baseline 7.27 WA 6.61
BN [23] 4.30 BN+WA 4.29 BN - BN+WA -
IN [20] 6.49 IN+WA 6.42 IN 6.91 IN+WA 6.50

LN [19] 5.02 LN+WA 5.12 LN 6.82 LN+WA 5.76
GN [21] 4.96 GN+WA 4.60 GN 5.79 GN+WA 5.51

Small batch sizes. In Fig. fig. 5.3, we compare BN and WA with different batch sizes
on VGG16 and ResNet18. We train with batch sizes of 64, 8, 4, 2 images per GPU. In
all cases, the means and variances in the batch normalization layers are computed within
each GPU and not synchronized. The x-axis shows different batch sizes and y-axis presents
the validation error rates. From Fig. fig. 5.3 (a), we observe that the performance of WA
is comparable to that of BN on the plain network with large batches. The error rates of
BN increase rapidly when reducing the batch size, especially with batch size smaller than
4. In contrast, our method focuses on the normalization of weight distributions which is
independent of batch size. The error rates of our method are stable over different batch
sizes. We can observe similar results in Fig. fig. 5.3 (b) that our method performs stable
over different batch size on residual network. It is interesting to see that the performance
gap between WA and BN with ResNet18 is smaller than that with VGG16, which is due to
the residual structure.

Depth of residual networks. We evaluate depth of 18, 34, 50, 101, 152 for residual net-
works with batch sizes of 1, 64 per GPU. Tab. table 5.3 shows the validation error rates on
CIFAR-10. We observe that WA is able to train very deep networks for both small and large
batch sizes.

Visualization of weights and activations in training. To verify the motivation, in this
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(a) VGG16 (b) ResNet18

Fig. 5.3: Classification error vs. batch sizes. The models are VGG16 and ResNet18 trained
on CIFAR-100. The error rates of BN increase rapidly when small batch sizes are
used. Our proposed method does not rely on the sample statistics and is indepen-
dent of batch size dimension. The error rates of WA are stable over a wide range
of batch sizes.

Tab. 5.3: Applying WA to varying depth measured by error rate. WA is able to train very
deep networks for both small and large batch sizes.

CIFAR-10

Batchsize 1 Batchsize 64
Model (+WA) Error Error

ResNet18 5.65 6.23
ResNet34 5.84 5.78
ResNet50 6.61 6.42

ResNet101 5.74 6.41
ResNet152 6.09 6.52

(a) Baseline (b) BN (c) WA

Fig. 5.4: Channel weights distribution of trained ResNet50 versus epoch: (a) channel
weights of baseline model. (b) channel weights of BN model. (c) channel weights
of WA model. The x-axis represents the value of weights. The y-axis represents
the epoch. From top to bottom, the epoch varies from 1 to 300. WA makes the dis-
tributions of channel weights symmetric around 0. With a symmetric distribution
around zero for the weight, the activation can also have a symmetric distribution
around zero.

subsection, we visualize the distribution of weights and activation by training a ResNet50
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model on CIFAR-100. A minibatch of 128 images from CIFAR-100 is input to the trained
network to obtain features and weights.
How are the filter weights distributed? In Fig. fig. 5.4, we visualize how the chan-
nel weight distribution changes with the epochs. Fig. fig. 5.4 (a) illustrates the baseline
ResNet50 model without using any normalization. When using BN, as shown in Fig. fig. 5.4
(b), the weight distribution tends to be symmetric around zero. From Fig. fig. 5.4 (c), we
note that the proposed WA method can realize the same functionality of BN making the
weights symmetric and smooth during training. Channel and layer weights distribution
during training of other normalization methods can be found in the supplementary material.
With a symmetric distribution around zero for the weight, the activation can also have a
symmetric distribution around zero.
How are the channel activations distributed? In Fig. fig. 5.2 we have found that before
training, the proposed WA method can effectively normalize channel activations by aligning
the weights within each filter. In Fig. fig. 5.5 we further explore how the channel activa-
tions distributed on a trained ResNet50 network. We visualize the activation distributions
for 4 different channels taken from two layers, a middle layer (the 2rd conv layer of the
8th residual block) and the last classifier layer. Since the weight decay is used, the scale
and shift parameters γ, β are converged to small values. From Fig. fig. 5.5 (d), we have
similar observations as in Fig. fig. 5.2 that our method can normalize activation of different
channels to zero mean and same variance. Fig. fig. 5.5 (e) also illustrates WA can be used
in conjunction with GN to further normalize the activations.

Functionality of different components. We align the filter weights by subtracting the
mean and dividing by a properly scaled derivation. For our method, there are two compo-
nents: E[w] = 0 in Eq. (eq. (5.6)) Var[w] = 2

n in Eq. (eq. (5.9)). We conduct comparative
results for our model with different components for VGG and ResNet18 models on CIFAR-
100. In Tab. table 5.4 we start with the baseline model [36] and augment incrementally with
the two components. We observe that both components contribute substantially to the per-
formance of the whole model.

5.4.4. COMPARISON WITH STATE-OF-THE-ART

Image classification on ImageNet. We experiment with a regular batch size of 64 images
per GPU on plain and residual networks. The total training epoch is 100. The initial learning
rate is 0.1 and divided by 10 at the 30th, 60th and 90th epoch. Tab. table 5.5 shows the top-1
and top-5 error rates of image classification on ImageNet.

For plain networks, WA performs relatively well as BN, only 0.2% difference on top-
1 error rate. Combining WA with BN outperforms BN on VGG16 by 2.51% top-1 error
rate and 1.38% top-5 error rate. For residual networks, WA performs slightly worse than
BN, but combined BN+WA surpasses BN by 0.85% on top-1 error rate and 0.59% on top-
5 error rate. This shows that WA and WA+BN can work well on large and complex datasets.

Domain adaptation on Office-31. Tab. table 5.6 presents overall scores of different nor-
malization methods and their combination with WA on Office-31 dataset. Here we use
ResNet50 models pretraied on CIFAR-100, which are obtained from previous experiments.
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(a) Baseline (b) BN (c) GN (d) WA (e) WA+GN

Fig. 5.5: Channel activation distributions of trained models on CIFAR-100. Different color
represents a different channel. γ and β are the parameters in each normalization.
WA can align the channel activations by normalizing channel weights.

Tab. 5.4: Comparative results for VGG16 and ResNet18 models with different components.
Both components contribute substantially to the performance.

Components in WA VGG16 ResNet18
E[w] = 0 Var[w] = 2

n Error Error

× × - 28.23
✓ × 35.74 27.97
× ✓ - 28.03
✓ ✓ 27.85 24.92

Tab. 5.5: Top-1 and top-5 error rates of image classification on ImageNet. WA and WA+BN
can work well on large and complex datasets.

model Top-1 (%) Error Top-5 (%) Error

VGG16∗ (Baseline) 31.30 11.19
VGG16 (BN)∗ 29.58 10.16
VGG16 (WA) 29.78 10.23

VGG16 (BN+WA) 27.07 8.78
ResNet50 (Baseline)† [36] 27.60 -

ResNet50 (BN)∗ 24.89 7.71
ResNet50 (WA) 26.62 8.91

ResNet50 (BN+WA) 24.04 7.12

The ∗ denotes that we directly test the PyTorch pretrained model.
The † denotes the numbers from the reference.

To perform domain adaptation experiments, we finetune the pretrained model on a source
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Tab. 5.6: Classification accuracies (%) on Office-31 dataset (ResNet50). WA can be applied
to other normalization methods and improves domain adaptation performance.

Method A → W W → A A → D D → A W → D D → W Avg

WA 34.62 42.89 52.05 44.09 87.67 80.00 56.89
BN [1] 46.92 48.91 57.53 37.11 90.41 70.00 58.48
BN + WA 49.23 36.38 58.90 40.00 91.78 76.92 58.87
GN [21] 46.92 42.89 50.68 39.76 82.19 75.38 56.30
GN + WA 46.15 54.46 50.68 37.83 87.67 78.46 59.21
IN [20] 36.92 33.98 41.10 37.11 84.93 76.92 51.83
IN + WA 39.23 41.45 38.36 38.07 90.41 73.85 53.56
LN [19] 37.69 29.89 45.20 33.97 79.45 69.23 49.24
LN + WA 50.77 42.89 56.16 41.69 91.78 80.77 60.68

domain, and validate it on two target domains with 0.001 initial learning rate, e.g. finetune
on A, and validate on W and D. Model with WA consistently outperforms model with GN,
IN and LN. Tab. table 5.6 also shows that our method WA can be applied to other normal-
ization methods successfully and improves domain adaptation performance. In Office-31,
the three domains A, W and D have different sample distribution. Thus the normalization
methods that rely on sample statistics perform worse than our method WA, which only ap-
plies on weights and is independent of sample statistics. When combined with WA, other
activation normalization methods can benefit from the sample-independent merit of WA,
which boosts their domain adaptation performance.

Semantic segmentation on PASCAL VOC 2012. To investigate the effect on small batch
size, we conduct experiments on semantic segmentation with PASCAL VOC 2012 dataset.
We select the DeepLabv3 [46] as baseline model in which the ResNet50 pre-trained on Im-
ageNet is used as backbone. Given the pretrained ResNet50 models with BN and BN+WA
on ImageNet, we finetune them on PASCAL VOC 2012 for 50 epochs with batch size 4,
0.007 learning rate with polynomial decay and multi-grid (1,1,1), and evaluate the perfor-
mance on the validation set with output stride 16. The evaluation mIoU of BN method is
73.80%, and that of BN+WA is 74.87%. Combined with WA, the original BN performance
is improved by 1.03%. This further shows that WA improves other normalization methods.

5.5. CONCLUSION
We propose WeightAlign; a method that re-parameterizes the weights by the mean and
scaled standard derivation computed within a filter. We experimentally demonstrate Weigh-
tAlign on five different datasets. WeightAlign does not rely on the sample statistics and per-
forms on par with Batch Normalization regardless of batch size. WeightAlign can also be
combined with other activation normalization methods and consistently improves on Batch
Normalization, Group Normalization, Layer Normalization, and Instance Normalization on
various tasks, such as image classification, domain adaptation, and semantic segmentation.
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5.6. APPENDIX
5.6.1. PROOF OF SYMMETRIC

Given two independent random variable X and Y , the distribution of product random vari-
able Z , where Z = X Y , can be found as follows,

fZ (z) =
∫ ∞

−∞
1

|t | fX (t ) fY (
z

t
)d t . (5.11)

If the distribution of X is continuous at 0, then we have,

P (Z ≤ z) = P (X Y ≤ z)

= P (Y ≤ z

X
|X > 0)P (X > 0)+P (Y ≥ z

X
|X < 0)P (X < 0)

=
∫ ∞

0
P (Y ≤ z

t
) fX (t )d t +

∫ 0

−∞
P (Y ≥ z

t
) fX (t )d t .

(5.12)

We take the derivation of both sides w.r.t. z and we get,

fZ (z) =
∫ ∞

0

1

t
fY (

z

t
) fX (t )d t +

∫ 0

−∞
−1

t
fY (

z

t
) fX (t )d t

=
∫ ∞

−∞
1

|t | fX (t ) fY (
z

t
)d t .

(5.13)

Suppose the distribution of random variable Y is symmetric around zero, where fY (y) =
fY (−y). Then we can have,

fZ (z) =
∫ ∞

−∞
1

|t | fX (t ) fY (
z

t
)d t

=
∫ ∞

−∞
1

|t | fX (t ) fY (
−z

t
)d t

= fZ (−z).

(5.14)

Therefore, the distribution of product random variable Z will be symmetric around zero, if
the distribution of one of independent random variable X and Y is symmetric around zero.

5.6.2. EXPLANATION OF WA EQUATION FORM

In section 5.3.2, we give out the expression for WA as Eq. (eq. (5.10)). Compared with
BN, WA does not have the β term since it manipulates the weight directly instead of the
activations. If we add a β term to Eq. (eq. (5.10)), it will result in,

ŵ = γ
w −E[w]p

n/2 ·Var[w]
+β. (5.15)

When it multiplies with the input activations x, we will get an extra βx, which is similar
to the element in residual blocks. This will introduce the drift of activation variance again,
which goes against our original intention.
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5.6.3. ADDITIONAL EXPERIMENTS AND VISUALIZATION

SCALE FACTOR IN WEIGHTALIGN

We here conduct an ablation study experiments to validate the effect of our scale factorp
n/2 in Eq. (eq. (5.10)). Specially, we compare our scale factor with a 0.2x our scale factor,

2x our scale factor and 4x our scale factor. The experiments are shown in Fig. fig. 5.6. We
find that a similar scale to

p
n/2 will lead to similar performance. But our scale

p
n/2 has

the best performance. Any other scale factors would cause the failure of training. Thus a
proper scaled derivation plays an important role to make the training stable.

Fig. 5.6: Ablation study of scale factor. Validation error rates with different scale factors
on CIFAR-100 (ResNet18). A slightly different scale factor can cause a failure
of training like the red line. A proper scale factor is important to stabilize the
optimization. Our scale achieves the best performance among other trainable scale
factors.

EMPIRICAL ANALYSIS IN SECTION 5.3.4
We further show activation distributions for different normalization methods over 8 different
channels taken from four different layers: the 1st, 3rd, 7th intermediate convolutional layers
and the last classification layer. Fig. fig. 5.7 shows the comparison between baseline and
other normalization methods including WA. Fig. fig. 5.8 shows the cases when IN, LN and
GN are used in conjunction with our WA.

5.6.4. VISUALIZATIONS OF WEIGHTS AND ACTIVATIONS IN
SECTION 5.4.3

We visualize the distributions of weights and activations as epoch increases during train-
ing. Fig. fig. 5.9 and Fig. fig. 5.10 show weights distributions of a single channel in a
convolutional layer. The weights distributions of WA and BN are smooth and symmet-
ric around zero, while the ones of other normalization methods are rough or asymmetric.
Adding WA with LN, IN and GN smooths and symmetrizes the weights distributions of
channels. Fig. fig. 5.11 and Fig. fig. 5.12 show activation distributions of a single channel
in a convolutional layer. Similarly, the activation distributions of WA and BN are smooth
and symmetric around zero, while the ones of other normalization methods are rough or
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asymmetric. Adding WA with LN, IN and GN smooths and symmetrizes the activation
distributions of channels.
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Fig. 5.7: Each color represents the activation distribution of different channels for different
layers. The first three columns denote 1st, 3rd, 7th convolutional layers and the
last one presents the last classification layer before softmax. All normalization
methods can reduce internal covariate shift to some extent comparing with base-
line.
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Fig. 5.8: The proposed WA can be used in conjunction with BN, LN, IN and GN. The first
three columns denote 1st, 3rd, 7th convolutional layers and the last one presents
the last classification layer before softmax. Note that the activation we plot here is
before passing through specific normalization layer.
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(a) Baseline (b) WA (c) BN

(d) LN (e) IN (f) GN

Fig. 5.9: Weights distributions of a single channel in a convolutional layer for different nor-
malization methods. WA and BN have smooth and symmetric weight distributions.

(a) WA + BN (b) WA + LN

(c) WA + IN (d) WA + GN

Fig. 5.10: Weights distributions of a single channel in a convolutional layer for different
normalization methods in conjunction with WA method. Adding WA smooths
and symmetrizes the weight distributions.
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(a) Baseline (b) WA (c) BN

(d) LN (e) IN (f) GN

Fig. 5.11: Activation distributions of a single channel in a convolutional layer for different
normalization methods. WA and BN have smooth and symmetric weight distri-
butions.

(a) WA + BN (b) WA + LN

(c) WA + IN (d) WA + GN

Fig. 5.12: Activation distributions of a single channel in a convolutional layer for different
normalization methods in conjunction with WA method. Adding WA smooths
and symmetrizes the activation distributions.
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6
DISCUSSION

6.1. CONCLUSION

This thesis analyzes how to improve the efficiency of deep learning models on both video
and image data with respect to four tasks: video object detection, video action recogni-
tion, cross domain image matching with outlier present, and deep activation normalization
independent of sample statistics.

In the context of efficiency on video data, the proposed approaches leverage the redun-
dancy in video frames. For video object detection, this thesis predicts future object loca-
tions from single static frames, while using the ground truth locations of all frames in a
video. The method is based on the observations that the video object motion is smooth
and continuous, which makes it possible to predict future locations of objects from only a
static frame, over multiple subsequent future frames. With the predicted future locations,
the model does not need to process every frame of a video to perform the object detection,
which makes the proposed video object detection method efficient. In terms of video ac-
tion recognition, the proposed method in the thesis is based on the assumption that similar
frames affect the parameter updates similarly and therefore should lead to similar gradi-
ents. One can approximate the gradients of multiple frames with a single gradient of an
aggregated frame-activation. This also makes use of the redundancy characteristic to video
frames, and thus achieves efficiency.

In the context of efficiency on image data, the methods proposed in this thesis for, aim
towards data-efficiency. The task of cross-domain image matching with outliers reaches
data efficiency by not requiring data labels in the target domain, which largely reduces the
annotation effort. While, the proposed activation normalization is independent of sample
statistics. This method matches the normalization performance of BatchNorm without re-
lying on data statistics, and thus is data-efficient.

With the works in this thesis, I aim to inspire the research field towards addressing the
challenging problem of efficiency in deep learning and focusing on deep models that are
both accurate and have reduced computations. The next sections discuss shortly such pos-
sible future directions, and are followed by the final reflection on this thesis.
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6.2. FUTURE WORK
6.2.1. WHAT ROLE DOES BACKGROUND PLAY IN VIDEO

UNDERSTANDING TASKS?
In this work, I demonstrate state-of-the-art results of the proposed video object detection
method in Chapter 2 and video action recognition method in Chapter 3, while also high-
lighting some limitations. One of the limitations in the efficient video object detection work
is that multiple motion patterns can be associated with the exact same appearance, for ex-
ample, a ball can roll to the left or right on a table. In this case, the proposed video object
detection method may fail to predict future locations from a single static frame. In prac-
tice, when an object moves the relative position with respect to the background will also
change. In other words, the background will change differently if the object moves from
left-to-right than if the object moves from top-to-down, while the object has exactly the
same appearance. Moreover, objects appear in typical contexts: a car drives on a road, a
chair is typically next to a table. If one can make use of the relative context changes, and
learn the object motion relative to the context, it is possible to overcome this limitation.
When video object detection is done without anticipating future object locations, are the
background-changes important? Essentially, video object detection means detecting the tar-
get or foreground object(s), not the background. Removing or masking the background can
improve the detection accuracy and can make the model transferable to different datasets.
Some existing works [1–6] have explored the relationship between foreground and back-
ground in object detection, which seems to indicate that background information may not
be informative if motion does not play a role. In terms of video action recognition, it is also
unclear if the foreground contains the action information or the background, or even both
are essential in action recognition. More research should focus on answering what is the
role the background, and in specifically if background changes over time are important for
video understanding tasks.

6.2.2. WHY DOES PREDICTING FUTURE LOCATIONS HELP IMPROVE
DETECTION FOR THE STATIC FRAME?

One interesting phenomenon I observed in my experimental results on the proposed video
object detection method in Chapter 2 is: the object detection accuracy for the static frames
is improved by learning to predict future object locations. We hypothesize in the article
that this is due to the extra supervision the static frame receive. However, it is unclear why
motion supervision should improve static-object detection. A related questions is: does this
hold only for moving objects, or does the detection accuracy improve also for static objects?
This observations can be extended to a more general one: does anticipating a future state
(e.g. motion, appearance, position, etc.) helps improve the accuracy of the current state
predictions, across various tasks. And if this is the case what is the reason behind it?

6.2.3. ACTION RECOGNITION FOR INHOMOGENEOUS VIDEOS

In the context of video action recognition, this thesis shows that one can accumulate the
frame activations along the temporal dimension, by clustering, when the frames are similar
semantically. This seems to perform well in practice on videos that contain actions that are
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homogeneous – actions that are continuous over sequences of frames, without interleaving.
In practice, inhomogeneous videos exist. On these videos one may need a very large number
of clusters, where multiple clusters would map to the same action. An interesting future
research direction is to learn to detect the homogeneous segments, inspired from video
segmentation [7–9], and adaptively process the video segments.

6.3. FINAL WORDS
This thesis explores techniques to improve deep network efficiency on video and image
data. The thesis demonstrates the importance of leveraging video frame redundancy, and
reducing reliance on large annotated datasets. By incorporating these strategies into the
proposed methodologies, I have successfully achieved notable gains in various tasks. With
this thesis, I made one step further towards the development of more efficient and effective
deep neural network models for video and image analysis.
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