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Abstract. Airborne wind energy systems often use kites made of thin membranes to save
material costs and increase mobility. However, this design choice increases the complexity of the
aeroelastic behaviour of the system and demands high-fidelity tools. On the aerodynamic side of
the multi-physics problem, it is quite challenging to create a high quality body conforming grid
due to the complexity of the geometry and the degree of deformation it undergoes. Immersed
boundary methods (IBMs) are quite popular in fluid-structure interaction (FSI) problems
that involve arbitrarily deforming bodies with complex geometries and are more tolerant to
deformations compared to mesh deforming methods like ALE. This paper will look at some of
the popular IBMs, outline criteria to evaluate their applicability, and discuss the limitations
they have in fulfilling those in problems involving thin membranes.

1. Introduction
Aeroelasticity is a significant area of study in the development of advanced wind energy systems.
This fluid-structure interaction (FSI) phenomenon plays a key role in scaling up wind turbines in
a cost-effective and safe way. With designs varying from rigid wing kites with onboard turbines
to flexible membrane kites that convert power at the ground station, airborne systems are a
lighter and less stiff subset in wind energy systems. Key arguments for airborne wind energy
systems (AWES) are significant material savings, reduced environmental impact, mobility, and
the ability to reach wind power at much higher altitudes [1]. However, as material savings
increase from conventional wind turbines to membrane kites, so does the complexity of the
aeroelastic interactions. Existing analytical and computationally less demanding solutions for
understanding the aeroelastic behaviour of wind energy systems make several assumptions that
do not hold for AWES. Thus, the study of AWES requires the use of high-fidelity tools. This
paper looks only at the fluid-dynamics part of the FSI problem and discusses the following
criteria that has to be fulfilled by IBMs to be relevant in wind energy: 1) ability to impose
strong velocity boundary conditions, 2) ability to avoid the smearing of solution across thin
bodies, 3) quality of the obtained pressure solution, and 4) computational cost.

The immersed boundary method (IBM) is a computational fluid dynamics (CFD) approach
that is suitable for complex and deforming geometries such as flexible membrane wings under
aerodynamic load. In an IBM, the Navier-Stokes equations are discretised on a computational
grid extending over the space occupied by both the fluid and the structure [9, 12]. A
representation of the structure is obtained on this grid via a projection or interpolation. Variants
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Figure 1: Schematic representation of the computational domain (Ω) in (a) body conforming
CFD simulations and (b) immersed boundary simulations. The shaded region in (b) represents
the area occupied by the immersed solid. Additionally, (b) shows solid (Ωs) and fluid (Ωf )
subdomains in the case of the domain decomposed IBM.

of the IBM differ in how they use this information in the fluid equations. The most popular IBMs
fall under a class termed, forcing IBMs. Forcing IBMs are popular mainly because they treat
the information from the structure as corrections that have to be made in the fluid solution. In
this work, we compare some IBMs and discuss their viability as an aeroelastic analysis tool for
wind energy. We also demonstrate a novel IBM that can overcome the shortcomings of existing
IBMs and can be applied to complex geometries that are encountered in wind energy related
problems.

2. Immersed Boundary Methods
The classical approach to numerically solve a fluid dynamics problem is to solve the discrete
Navier-Stokes equations on a computational grid that excludes the region occupied by the solid.
Figure 1a shows a 2D cylinder surrounded by a fluid. The region outside the cylinder occupied
by the fluid is the computational domain, Ω. The computational domain is discretised to solve
the governing equations and the quality of the generated mesh plays a significant role in the
accuracy of the results obtained. As the geometries become complex it becomes increasingly
difficult to create a high quality mesh. Furthermore, in FSI problems, every grid has a bearable
range of movement after which the quality of the grid degrades, and in extreme cases, the cells
start to collapse. Such problems need advanced tools like overset chimera grids, octree grids,
adaptive mesh refinement, etc. IBM’s approach to this problem is to simplify the computational
grid and project the necessary fields onto it.

Unlike with the classical approach, in an IBM, the computational grid (Ω) extends over
regions occupied by both the fluid Ωf , and the solid Ωs (Figure 1b). The first step in an IBM is
to get an approximation of the immersed solid on the background mesh. It is an approximation
because the background grid will almost never match exactly the immersed solid that has to be
projected. After the projection, the presence of the solid is numerically mimicked such that the
surrounding fluid behaves as if a boundary exists in the region covered by the solid. In the next
sections, we will look at some of the most popular IBM variants and the way they achieve this.
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2.1. Forcing IBMs
The essence of forcing methods is to add a forcing term (f) to the fluid’s momentum equations
to mimic the presence of the immersed body and make changes to the velocity field as imposed
by the solid, and can be written as,∫

Ω

(
∂u

∂t
+∇ · (uu)−∇ · (¯̄κ∇u) +∇p− f

)
dV = 0, (1)

where, u is the velocity vector, ¯̄κ is the viscosity tensor, p is the fluid pressure, and f is the
forcing term. Continuity is left untouched as,∫

Ω
(∇ · u)dV = 0. (2)

Notice that we assumed an incompressible fluid in this paper. Eqns. (1) and (2) are continuous
and coupled. In order to be solved numerically, they are converted into discrete forms and
usually, decoupled to reduce the computational effort. The projection method [3] is a commonly
used method to decouple time dependent coupled equations. The first step in the projection
method is to compute an intermediate velocity field (u∗) using pressure from the previous time
step. If it is the first time step, an initial guess can be optionally made by solving a pressure
Poisson’s system.

(M + ∆t(A−D))
u∗ − un

∆t
= −(A−D)un + Cpn + f (3)

Then, using the intermediate velocity field a Poisson’s system is solved to advance pressure
(pn+1 = pn + ∆pn).

L∆pn =
CTu∗

∆t
(4)

Finally, a correction is made to make velocity divergence free.

un+1 = u∗ + ∆tM−1C∆pn (5)

In Eqns. (3), (4), and (5), M is the mass matrix and A, D, −C, CT , and L are the advection,
diffusion, gradient, divergence, and Laplacian operators, respectively [11]. As shown below,
different forcing methods vary based on the manner in which f is determined or treated in Eqn.
(3).

2.1.1. Penalty forcing As the name suggests, penalty forcing method is a penalising error
correction method [2]. The penalty force (f) is defined as,

f = βαs
us − un

∆t
. (6)

In Eqn. (6), β is a relaxation factor and αs is a scalar mask function used for the representation
of the structure on the computational grid, or physically, a solid concentration field. us is
the velocity vector of the immersed solid. While the scalar field αs is key to properties such
as sharpness of the interface and conservation of fields exchanged, the relaxation factor β is
useful, because with proper tuning, stability of the simulations and accuracy of the results can
be improved [12]. Variants of the penalty forcing method use different definitions for αs and
β [6, 15]. In this paper, we use a consistent interpolation function to define αs and set the
relaxation factor as one.



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 032013

IOP Publishing

doi:10.1088/1742-6596/1618/3/032013

4

2.1.2. Semi-implicit forcing In Eqn. (3), and penalty forcing method, f is treated as an
explicit term, i.e., f is computed only using the solution from the previous time step. However,
considering the non-linearity of the forcing term, some methods add a certain degree of
implicitness to the evaluation. In a semi-implicit method [13], the forcing term is removed
from Eqn. (3) to get another intermediate velocity field (u∗∗). u∗∗ is then used to compute the
forcing term,

f = αs
us − u∗∗

∆t
, (7)

and make a prior correction to velocity before going to the pressure correction step (Eqn. (5)).

u∗ = u∗∗ + ∆tf (8)

2.1.3. Direct forcing If we look at Eqn. (3) as a balance of forces (inertia, convection, diffusion,
and pressure gradient), the definitions of the forcing term we have seen so far only balances out
the inertial term. In a direct forcing method [10, 4] the forcing term also includes all the
previously unaccounted forces,

f = αs
(

us − u∗

∆t
+ (A−D)u∗ −Cpn

)
. (9)

Furthermore, both the forcing methods we discussed before introduce an additional staggered
step in the temporal integration scheme for the evaluation of the forcing term. However, since
in the direct forcing method f is treated in an implicit manner, its evaluation does not introduce
additional staggered steps, nor does it require the use of a relaxation term for stability or
accuracy.

2.2. Lagrange multiplier
Unlike all the other methods we have discussed so far where velocity boundary conditions from
the immersed solid are enforced in the prediction step (Eqn. (3)), a Lagrange multiplier method
enforces velocity boundary conditions in the projection step (Eqn. (4)) [5, 14]. The system of
Equations in (1) and (2) can be written in matrix form as, H −C ET

−CT 0 0
E 0 0

u
p
f

 =

R
0
us

 , (10)

where, H is the fluid operator that accounts for the inertial, convection, and diffusion terms in
Eqn. (1), R is the right hand side of the equation, and E is a symmetric interpolation operator to
project fields from the solid onto the computational domain. Here, a Lagrange multiplier method
makes the observation that gradient and interpolation operators are Lagrange multipliers that
act on pressure and boundary forces, respectively. Thus, the system can be simplified as,[

H Q

QT 0

](
u
λ

)
=

(
R
Rλ

)
, (11)

where, Q =
[
−C ET

]
, λ =

(
p f

)T
, and Rλ =

(
0 us

)T
. This system can be solved using a

projection algorithm as,
Hu∗ = R−Qλn (12)

Lλ∆λn = QTu∗ −Rλ (13)

un+1 = u∗ −∆tM−1Q∆λn. (14)
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The above time integration scheme is identical to Eqns. (3), (4), and (5), except for the fact
that boundary conditions are imposed in step 3 rather than in step 1. However, the size of the
Poisson’s system in step 2, although symmetric and comparatively easier to solve, has increased
by a multiple of (dim+ 1). It is possible to avoid the simplification from Eqn. (10) to (11) and
solve for the two Lagrange multipliers individually. But, breaking down the Poisson’s system
into two smaller pieces would increase the number of staggered steps in the time integration
scheme and would require additional nonlinear steps to reach the same amount of accuracy.

2.3. Domain decomposed IBM
All the methods we have discussed so far evaluate the fluid equations throughout the
computational domain, Ω. However, the authors argue that it is unnecessary to solve the
fluid equations in elements that are fully covered by the immersed solid. Instead, it should
be enough to enforce the governing equations of the fluid only in the region occupied by the
fluid. Domain decomposed IBM [7] uses the solid concentration field, αs, to decompose the
computational domain, Ω, into solid and fluid subdomains, Ωs and Ωf , respectively (Figure 1b).
In each domain, corresponding governing equations are defined as follows.∫

Ωf

(
∂u

∂t
+∇ · (uu)−∇ · (¯̄κ∇u) +∇p

)
dV = 0 (15)

∫
Ωs

(
∂u

∂t

)
dV =

∫
Ωs

(
∂us

∂t

)
dV (16)∫

Ωf

(∇ · u)dV = 0 (17)

The main differences compared to Eqns. (1) and (2) are as follows. In Eqn. (15) there is no
forcing term, Eqn. (16) is just velocity prescription from the solid, and Eqn. (17) imposes
the divergence condition only in the fluid subdomain, Ωf . Equations (15) and (16) impose a
strong velocity boundary condition and Eqn. (17) imposes divergence free condition without
introducing slip in the solid subdomain.

Other than the above mentioned methods, there are many more variations of the IBM.
However, one of the main criterion we used while selecting methods for this study was the
ability of a method to solve problems on unstructured grids. Resolving boundary layer for
arbitrarily aligned bodies can be computationally heavy on Cartesian grids. Thus, for the
matters of interest in this paper, it is sufficient to limit the evaluation to the aforementioned
IBMs. All the tests are run in Fluidity [11] - a finite element based CFD code - and the mesh
is discretised using piecewise continuous linear triangular elements.

3. Evaluation
3.1. Accuracy of the imposed velocity
The following qualitative test cases demonstrate the effects of Reynolds number and thickness
of the immersed solid on the accuracy of the velocity solution. Figure 2(a) shows the velocity
solution in the region occupied by a rigid stationary NACA0012 aerofoil. The aerofoil is placed
at angle of attack 0° in a 25c×20c domain with open boundary conditions; c is the chord length.
Chord-based Reynolds number of the test case is 1000. The aerofoil is stationary and therefore,
the projected solid velocity is zero. Nevertheless, because of the strong advection forces, there
is significant momentum seepage into the body. Furthermore, this permeable behaviour of the
body reduces the reaction force obtained from the fluid and translates into reduced body forces.
For the sake of completion, it is worth mentioning that β is set as one in our test cases. Figure
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Figure 2: Flow past NACA0012 at Re=1000 modelled using (a) penalty forcing method and (b)
domain decomposed method. The figure shows the magnitude of non-dimensionalised velocity
inside the solid domain.

(a) (b)

(c)

0

4

8

(d)

Figure 3: Non-dimensionalised velocity field and streamlines in a channel flow with an
orthogonally placed membrane modelled using (a) penalty forcing method, (b) direct forcing
method, (c) domain decomposed method, and (d) body conforming CFD at steady state.

2(b) shows the same using the domain decomposed method and shows accurate imposition of
boundary conditions.

Figure 3 shows a thin rigid stationary plate placed orthogonally in a low Reynolds number
channel flow. The test is setup as a channel flow so that the side spill from the plate is clearly
visible, and at the inlet, a parabolic velocity profile (u(0, y)) is prescribed with peak velocity in
the middle.

u(0, y) = 1.5U
y(1.2h− y)

(1.2h
2 )2

(18)

The Reynolds number based on the mean inlet velocity (U) and height of the plate (h) is 20.
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The thickness of the plate is 1% of the height and the coefficient 1.2 besides h accounts for the
10% clearance between the plate and the channel walls on either sides. The plate is located at
h units downstream of the inlet. Furthermore, the inlet velocity profile increases smoothly over
an initial ramp up period as

u(0, y, t) =

{
u(0, y)1−cos(πt)

2 if t < 1

u(0, y) if t >= 1
. (19)

Here, t is the non-dimensionalised time. Similar to the NACA0012 test case, the desired velocity
conditions are zero in the region occupied by the solid. However, unlike the thick NACA0012
that showed some permeability, the thickness of the body is insufficient for the penalty forcing
method (Figure 3a) and direct forcing method (Figure 3b) to enforce the boundary conditions,
and allows the flow to penetrate through the thin plate. By plotting streamlines in the middle of
the channel where convection forces are the strongest, we can see in Figure 3 how effective each
of the methods are at diverting the flow. Figure 3d shows the solution from a body conforming
simulation for reference. We expect the plate to fully divert the flow to the sides and a pair of
vortices develop in the wake. Streamlines in the penalty forcing method (Figure 3a) show very
small deflections and passes through the plate. In the case with direct forcing (Figure 3b), the
deflections in the streamline are slightly larger but still lets part of the momentum through. In
both the cases, the momentum seepage prevents the wake vortices from developing. Figure 3c
shows the same using the domain decomposed method and behaves as desired.

In the projection algorithm that all three IBMs use, velocity is modified in the prediction
and correction steps. In the decreasing order of significance, using an explicit forcing term will
introduce a slip in the prediction step, and not enforcing velocity boundary conditions in the
correction step will introduce a slip at that stage as well. Penalty forcing fails at both and
produces the largest amount of slip, direct forcing neglects the second condition and allows a
bearable amount of slip, and finally, the domain decomposed method avoids slip in both the
steps.

3.2. Solution for the pressure field
All IBMs project a solid velocity which they try to enforce onto the fluid in the region occupied
by the immersed solid. Unlike velocity, pressure has no defined solution inside this region.
However, from the projection method, in Eqn. (4), we can see that pressure is the result of
the Poisson’s system that enforces continuity on the incompressible fluid. Almost all IBMs,
except those like cut-cell methods, extend the continuity assumption to the region occupied
by the immersed solid as well, and let the Poisson’s system solve for a pressure field that is
continuous across the immersed body. Figure 4 plots the variation of pressure along the centreline
(y = 1.1h) in the thin plate test case that we discussed in the previous section. The shaded
region in the figure shows the region occupied by the thin plate. The black markers denote
nodes that are at the interface and the white markers denote nodes that are fully immersed in
the solid. Pressure side is on the left and suction side is on the right. The red curve shows
the pressure variation across the plate from a penalty forcing simulation, and the blue curve
shows that from a direct forcing simulation. Both the pressure curves are continuous across
the thin plate, however with a significant difference in their values. Because, penalty forcing
method fails to enforce velocity conditions strongly, it under-predicts the pressure drop across
the plate. As a result of stronger velocity boundary conditions, in the case of the pressure
solution from the direct forcing simulation, pressure drop is larger compared to the same from
penalty forcing. Still, because the Poisson’s system is unnecessarily searching for a pressure
solution that is continuous across the thin plate, discrete pressure equations of the elements
on the pressure side and that on the suction side affect each other’s outcome. This would be
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Figure 4: Variation of pressure across the immersed plate along the centreline (y = 1.1h).
Shaded region denotes the region occupied by the plate. The black markers denote nodes that
are at the interface and the white markers denote nodes that are fully immersed in the solid.
Unlike the forcing methods, the domain decomposed IBM allows discontinuities in the pressure
field.

an acceptable approximation for problems involving thick immersed solids when there are a
sufficient number of elements inside the solid region to accurately resolve the pressure variation
across the body. However, for problems with thin bodies or large pressure variations across the
body, this assumption introduces errors into the pressure solution and thus also into the velocity
solution. Going back to Figure 3b, we can see that despite the momentum solve step (Eqn. (3))
enforcing strong velocity boundary conditions, the direct forcing method fails to make the thin
plate impermeable. Inaccuracies in the pressure projection (Eqn. (4)) leads to inaccuracies in
the velocity correction (Eqn. (5)).

The alternate option, as employed in the domain decomposed method, is to solve the Poisson’s
system and correct velocity only in the region occupied by the fluid. This leaves the velocity
prescribed in Eqn. (16) unaffected by the pressure solution, but leads to a discontinuous pressure
field. In Figure 4, the black curve shows the pressure variation across the thin plate from a
domain decomposed simulation. On both the sides of the plate there are discontinuities in
the pressure field, and since there is no defined value for pressure inside the solid subdomain,
pressure is set to zero in that region (white nodes in Figure 4). Unlike in the forcing methods
which sought for a continuous pressure solution, this discontinuity keeps the discrete equations
on either side from interacting with one another. Thus, in the absence of the unnecessary
continuity constraint inside the immersed solid, the computed pressure drop across the plate is
also higher.

Because of the discontinuities at the interface and the fictitious pressure values inside the solid
region, it is inaccurate to evaluate pressure gradients at the interface. This is allowable as long
as the discontinuity stays inside the solid region and does not corrupt the solution in the fluid
region. But in cases with moving immersed solids, such an assumption cannot be made. Thus,
although the choice of making the pressure field discontinuous at the solid/fluid interface leads
to a better pressure solution, the pressure gradient term (Cpn) in Eqn. (3) makes the projection
algorithm as described in Eqns. (3), (4), and (5) unusable for problems with moving immersed
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solids. To solve this, we modify the projection algorithm as follows. First, the momentum
equations are solved without including the pressure gradient to get an intermediate velocity
field.

(M + ∆t(A−D))
u∗ − un

∆t
= −(A−D)un + f (20)

Then, instead of solving for a pressure correction, a Poisson’s system is solved for the actual
pressure.

Lpn+1 =
CTu∗

∆t
(21)

This new pressure field matches with the current position of the immersed solid and the
discontinuities are inside the solid subdomain. Finally, the pressure gradient is used to throw
the velocity into a divergence free space.

un+1 = u∗ + ∆tM−1Cpn+1 (22)
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Figure 5: Pressure coefficient along the surface of a NACA0012 at an angle of attack of 0° and
a Reynolds number of 6 million. The circles are experimental results [8], the red line is from
a body conforming CFD simulation, and the black line shows results using the IBM. In (a)
variation along the entire chord is shown and (b) shows a closer look at the leading edge of the
aerofoil where the oscillations are the strongest.

However, a disadvantage in choosing to solve for the pressure field only in the fluid subdomain
is that the irregularities in the projection becomes visible in the pressure solution. At low
Reynolds numbers or with bluff bodies, viscous forces smoothen this out. But for streamlined
bodies at high Reynolds numbers, mismatch between the background grid and the immersed
boundary causes perturbations in the pressure field near the surface of the solid. Figure 5 plots
the pressure coefficient on the surface of a NACA0012 aerofoil at an angle of attack of 0° in a
flow with a chord-based Reynolds number of 6 million. The circular markers are experimental
results [8] and the red line is the result of a body conforming CFD simulation. The black line is
the pressure curve from the domain decomposed immersed boundary simulation. Both the CFD
simulations use k-ω SST turbulence modelling. Although the curve is smooth for the major part
of the chord length and agrees with the reference results, there are visible oscillations in the
curve near the leading tip of the aerofoil (Figure 5b). Other than the incongruity between the
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immersed and computational grids, the strength of the oscillations seem to have a correlation
with the magnitude of the pressure gradient.

This dilemma of whether to keep the flow variable continuous or discontinuous at the interface
between the solid and fluid subdomains is not exclusive to pressure, but to all flow variables that
do not have a physical/defined value inside the solid region to prescribe. For example, when
dealing with high Reynolds number flows and using RANS models, turbulent kinetic energy (k)
and turbulent dissipation (ε) have defined values at the solid boundary, and can be extended
to continuously prescribe the solution inside the solid subdomain as well. However, variables
like turbulent frequency (ω) have no defined value inside the solid region. The choice depends
entirely on the problem at hand.

3.3. Computational performance
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# of iterations
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Figure 6: Performance comparison of penalty forcing (red line), direct forcing (blue line), and
domain decomposed (black line) IBMs with respect to a body conforming simulation (black
dashed line). Caveat: relative performance is highly dependent on the size of the immersed solid
and the number of nodes that are in the solid region.

The flexibility that IBMs offer in the grid generation process takes a toll in the computational
cost. Figure 6 shows the time elapsed for a penalty forcing (red line), direct forcing (blue line),
and domain decomposed (black line) IB simulation with respect to a body conforming simulation
(black dashed line). The plots are from the NACA0012 at Re=1000 test case that we discussed
in section 3.1. The domain decomposed method took ∼ 32% more computational time with
respect to the body conforming simulation, while, penalty forcing and direct forcing IBMs took
∼ 17% on top of that. The main reason IBMs are computationally costlier than body conforming
simulations is that they execute over an extended domain spanning both solid and fluid regions.
Depending on the size of the immersed solid, for the same level of grid resolution at the interface,
the degrees of freedom associated with an IB simulation can be considerably higher. In the case
at hand, by extending the computational domain over the region occupied by the aerofoil, the
degrees of freedom involved went up by ∼ 26% for all IB cases. It is worth mentioning that
using adaptive mesh refinement this mark up can be brought down significantly. But, we keep
a fixed grid so that the IBMs can be compared on a level field.
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Compared to the domain decomposed IBM, the other two takes ∼ 17% more time. The main
reason the domain decomposed IBM outperforms the forcing methods is because in the discrete
system of equations the entries associated with fully immersed nodes are diagonal; both in the
momentum equations and the pressure equations. Thus, the system of equations involved in the
domain decomposed IBM is sparser and leads to a faster convergence.

4. Conclusions
The IBM is a powerful numerical approach for solving FSI problems involving complex,
arbitrarily deforming structures. Their defining feature is the capability to do that without the
need to generate body conforming grids that deform with the body. IBMs have already been
applied to a wide range of fluid flow problems in engineering and biology. As we discussed in this
paper, several variants exist with varying degrees of complexity, advantages and disadvantages,
and applications. Where the conventional CFD approach falls short, IBMs provide a viable
option. A major limitation of IBMs is in their inability to maintain grid resolution near the
boundary and thus, they fail at high Reynolds number problems involving streamlined objects.
For such cases, the conventional body-fitting CFD approach is still superior. To overcome
this drawback, future research should focus on coupling IBMs with adaptive mesh refinement
algorithms. Enabling IBMs to handle high Reynolds number problems will make it feasible to
simulate and analyse advanced wind energy devices.
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