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Abstract

One of the most popular descriptions of the evolution of our Solar System is known as the Nice
model which places the giants Jupiter, Saturn, Uranus and Neptune in proximate orbits which
influence each other greatly due to a phenomenon known as ”orbital resonance”. To attain this
the planets were placed into near co-planar orbits with small eccentricities and inclinations, with
semi-major values of 5.45AU, 8.65AU, 11− 13AU and 13.5− 17AU. Furthermore, a disk of plan-
etoids outside of the outer planet’s radius was placed to emulate to effect of planetoids on this
evolution. Furthermore, the model often includes a disk of planetoids beyond the outer planet’s
radius to simulate their influence on planetary evolution. However, in this research, the effects
of orbital resonance were investigated by running numerical simulations without the presence of
these planetoids, using the Leapfrog method as the numerical integrator. First, we considered the
1:1 resonance of test-particles in the Lagrange point L4. After this the 2:1 resonance was investi-
gated by placing a test-particle in resonance with a planet and afterwards replacing the test particle
with another planet. From this it could be found that resonance has significant effects on planets,
most importantly causing their semi-major axis and eccentricity to oscillate. With this knowledge
the Nice model was researched (with Uranus and Neptune swapped to their current order) without
this disk of planetoids in order to investigate the effects of resonance on the early Solar System.
From this, qualitative effects were found such as the oscillation of eccentricities due to orbital res-
onance and the effect of ”locking”, which is the effect that once two orbits cross each other it’s
difficult for them to separate. During this locking there were a number of opportunities in which
for the crossing orbits to close-encounter and to send each other into eccentric orbits, or to eject
a planet from the Solar System entirely. Finally, to investigate the certainty of the results more
accurate simulations were executed with the use of adaptive time-steps, from these simulations the
same features could be seen with the total energy deviating a few percents.
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1 Introduction

The current leading theory for the extinction of the dinosaurs is that a large meteor impacted the
Earth, ejecting a thick layer of dust into the atmosphere, which in turn globally suppressed pho-
tosynthesis, resulting in extinction events. This theory was first proposed in [Alvarez et al., 1980],
referred to as the ”Alvarez hypothesis” in the literature.

Meteors also cause damage on smaller scales. On February 15, 2013, a meteor impacted close to
Chelyabinsk, Russia. The pressure from the impact destroyed the village’s windows, which caused
most of the damage to the 1,500 people affected; fortunately, there were no casualties.

If one wishes to take preventative actions, it is of utmost importance to detect planetoids before
they become meteors, i.e., before they cross their orbits with that of the Earth. Planetoids only
dimly reflect light from other objects, which means that they are difficult to detect. Thus, it is
helpful to predict where cluster of asteroids may reside and estimate their size in order to place
observational satellites near these clusters. Predicting this depends heavily on understanding the
history and evolution of planetoids and their interactions within the Solar System..

In 2005 a series of papers [Gomes et al., 2005], [Morbidelli et al., 2005], [Tsiganis et al., 2005] were
published conjecturing initial conditions for the distribution of planetoids in the early Solar system:
four giant planets (being Jupiter, Saturn, Uranus and Neptune) were placed very close together
compared to their positions now, with a disk of small planetoids residing outside of the outer
planet’s orbit. Additionally, the planets were placed in such a way that they would have close-
encounters near the same point in their orbit, a phenomenon known as orbital resonance.

To describe what orbital resonance is, we can draw an analogy to a clock. The minute and hour
hand of a clock are said to be in a so-called ”12:1 resonance”, because the minute hand makes 12
full rotations in 12 hours whereas the hour hand only 1. In this case, the hands do not meet at the
same point, which can be verified by considering the approximate locations at times like 2:10 and
3:15. The hands only meet at the same point when the resonance is of the form n : n − 1, such
as 2:1. Imagine a hand which counts every minute and one which counts every two minutes, as
shown in figure (1.1). As can be seen in the figure, the clocks meet again at the same position.

The initial conditions and evolution of the original Nice papers are shown in figure 1.2. The results
of these initial conditions showed significant correspondence with current observed properties of
the Solar system [Tsiganis et al., 2005]. This model is called the ”Nice model” (named after the city
Nice in France) in the literature and is one of the most successful models of the evolution of the
Solar system.

Recent research has expanded on the Nice model, exploring the ”jumping Jupiter” scenario, where
Jupiter experiences a rapid shift in the orbit’s semi-major axis. This could be explained by placing
an additional fifth giant in the original Nice model, which is later on ejected. This planet causes
Jupiter to move quickly when it’s close to this fifth giant before its ejection [Li et al., 2023].

The relevance of the history of the Solar system in taking preventative actions against planetoids
crossing the orbit of Earth and the recent utilisation of the Nice model in the literature motivates us
to investigate the Nice model. In this thesis the Nice model is researched by neglecting the effects
of planetoids to the orbits of the planets. In other words, this research investigates the effects of
orbital resonance on the planets of our Solar System in close proximity.

The structure of this thesis is as follows. First, the basic mechanics of gravity are reviewed, focusing
on Newtonian gravity and the derivation of planetary orbits as approximate ellipses around the
Sun. The three-body problem is then introduced to explain the gravitational interactions between
the Sun, Jupiter, and smaller bodies, which lead to the formation of asteroid clusters in resonant
orbits.

1



1 Introduction

Figure 1.1: Two clocks in 2:1 resonance. As the upper clock makes two full rotations, the lower
clock makes one full rotation. It can be observed that the clocks are in the same position when
both arrows point up.

Figure 1.2: A figure showing 3 snapshots of the evolution of the Nice model. The first snapshot
shows the initial conditions.
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Following this, the slow changes in these elliptical orbits are described using parameters known
as ”orbital elements.” This framework is then used to demonstrate the effects of orbital resonance.
After establishing this theoretical foundation, the Nice model is introduced, outlining its initial
conditions and relevance.

The methodology is then detailed, describing the approach taken in the research. Next, the results
are presented. These include simulations of the 1:1 resonance at Lagrange point L4, the 2:1 reso-
nance both with and without test particles, and a simulation of the Nice model without a disk of
planetoids. The thesis concludes with an analysis of these results and their implications.
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2 Gravity model

This thesis aims to investigate how the positions of gas giants, along with the Sun, influence each
other under specific initial conditions. To achieve this, it is crucial to select an appropiate model that
describes the changes in the positions of the planets: the equations of motion. In this research, these
equations will be modeled purely by gravity. This chapter aims to describe the model of gravity
and its properties to allow for a sufficient understanding of the evolution of the Solar system.

2.1 The N-body problem

In this research, the Solar system will be considered within the framework of Newtonian mechan-
ics. Newtonian mechanics has been chosen over general relativity since general relativity is more
complex but not significantly more accurate in this context. A number of bodies are idealised as
point-masses, and the gravitational forces them are considered. This is known as ”the N-body
problem”.

In Newtonian mechanics any mass mi experiences a gravitational force from a mass mj with a value
given by:

F⃗j→i = −
Gmimj∥∥⃗ri − r⃗j

∥∥3 (⃗ri − r⃗j), (2.1)

where G refers to the gravitational constant which has a value of 6.67430± 0.00015× 10−11Nm2/kg2

[NIST, 2022]. Additionally, r⃗i and r⃗j refer to the positions of body i and body j, respectively. In
Newtonian mechanics, the force is related to the motion of a particle by F⃗ = m⃗a, where a⃗ is the
acceleration, or the second order derivative of position. This means that the acceleration of a mass
mi due to a mass mj is

a⃗j→i = −
Gmj∥∥⃗ri − r⃗j

∥∥3 (⃗ri − r⃗j). (2.2)

If the contributions of all masses other than that of body i are summed, the acceleration of body i
can be found as

a⃗i = −∑
j ̸=i

Gmj

||⃗ri − r⃗j||3
(⃗ri − r⃗j). (2.3)

This results in a non-linear system of differential equations which in general is hard to solve. An
analytical solution to this problem is known [Wang, 1991], but it is an infinite series expression
with very slow convergence, and therefore not practically useful. Because of this limitation, simpli-
fications to the N-body problem shall be made in theoretical discussions, and numerical solutions
shall be utilised for the experiments.

2.2 Ellipse

This section’s purpose is to inform the reader about the properties of the ellipse, as this shape will
be recurrent in the following chapters. If the reader is familiar with the properties of the ellipse,
understanding this thesis should not be compromised by skipping this section.

An ellipse can be defined in the following way:

5



2 Gravity model

c

a

b

f⃗2 f⃗1

Figure 2.1: Representation of an ellipse highlighting three key distances: the semi-major axis a, the
semi-minor axis b, and the distance from the center to the foci c. These characteristic distances
define the shape and geometry of the ellipse.

Definition 2.2.1 (Ellipse). An ellipse is a set of points {⃗r ∈ R2 : ||⃗r− f⃗1||+ ||⃗r− f⃗2|| = 2a}.

In words, this means that an ellipse is created by picking two points f⃗1 and f⃗2 and a distance 2a.
Then, the ellipse is found by finding all the points such that going from f⃗1 to such a point and
then going to f⃗2 covers a distance exactly equal to 2a. An example of an ellipse has been provided
in figure 2.1. There are three important variables describing the different characteristic distances
of the ellipse illustrated in the figure: a, b and c. a describes the distance from the center to the
rightmost point, also known as the ”semi-major axis”, b is the distance between the center and
the top, known by ”semi-minor axis”, and c describes the distance from the center to one of the
points chosen in the definition, such a point is known as a ”focus”, and c is given the name ”linear
eccentricity”.

Notice that in figure 2.1 a is mentioned as the length from the center to the right-most point. This
is consistent with definition (2.2.1). Consider the right-most point, then the two distances would be
a− c and a + c, adding up to 2a, proving consistency. The uppermost point can also be considered
in a similar way to find a relation between a, b and c, the two distances are equal and equate to√

b2 + c2, meaning that 2
√

b2 + c2 = 2a =⇒ b2 + c2 = a2. Since there is an equation relating
the three variables, two parameters are needed to describe the shape of an ellipse since the three
variables got reduced to two. Since a is seen in the definition it is natural to take a as one of these
parameters, describing the size of the ellipse. For the second parameter a quantity which describes
the shape of the ellipse is chosen: the eccentricity, defined by e = c

a which takes values from 0 to 1.
For e = 0, the focuses coincide and one obtains a circle.

Since algebraic computations of the ellipse will be necessary in the following sections, the algebraic
shape of an ellipse oriented like the one in the example is given as: [Wikipedia, 2024a]( x

a

)2
+
(y

b

)2
= 1. (2.4)

However, for the purposes of this paper, the Sun, which is one of the focuses, is most naturally
placed at the origin. For this reason, the ellipse is shifted to the left resulting in the expression(

x + c
a

)2
+
(y

b

)2
= 1. (2.5)
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2.3 The one-body problem

When this equations is written completely in terms of the ellipse parameters, this would give(
x + ae

a

)2
+

(
y√

1− e2a

)2
= 1. (2.6)

In conclusion, the ellipse is a shape defined by the combined distance of two focuses. The ellipse
is determined by two parameters a and e, known as the semi-major axis and the eccentricity. This
shape is described by equation (2.6) algebraically when the Sun is placed at the origin and the
perihelion at the positive x-axis (which shall be the convention in this paper).

2.3 The one-body problem

The N-body problem has been described but there’s a significant difference in tools necessary to
describe a dust cloud of gravitational particles and that of describing the Solar system; the Solar
system has bodies orbiting in ellipses around the Sun while a dust cloud does not. The Solar
System therefore requires a simpler analysis of the N-body problem because of this structure, the
goal of this section is to illustrate why this structure emerges.

The reason why the planets orbit around the Sun instead of around each other as well is the fact
that it’s the heaviest object in the Solar system, approximately 1,000 times heavier than Jupiter, the
heaviest planet. More specifically, the equations of motions of a body can be well approximated
by neglecting the other planets. Additionally, because the Sun is vastly more heavy than the other
objects it can also be considered as the center of mass (which in reality is just outside of the Sun’s
surface). Neglecting all other masses and pinning the Sun at the origin modifies equation (2.3) into

¨⃗r = −GM⊙
r3 r⃗, (2.7)

which is also referred to as ”the one-body problem”. In this equation r is the distance from the
Sun, or center of mass, and M⊙ is the Solar mass which has a value of 2.0× 1030kg
[Murray and Dermott, 2000, p. 22]. This differential equation is not trivial to solve but solutions
can be found by applying the first two Kepler laws: [Murray and Dermott, 2000, p. 3]

1. The planets move in ellipses with the Sun at one focus.

2. A radius vector from the Sun to a planet sweeps out equal areas in equal times.

These laws describe the evolution of the body because the path is known by the first law and the
speed at which the path is traversed by the second law. The initial conditions then give the specifics:
which ellipse and at what rate is area traversed. This means that the orbits of the planets are all
ellipses which slowly change over time because of perturbations from other planets. An example
of an orbit has been provided in figure 2.2. Two labels have been given to the outermost points: the
perihelion and the aphelion. The perihelion will be mentioned a number of times throughout the
paper as it gives a reference direction for the ellipse and because the mechanics are relatively simple
at that point because of the symmetry, allowing for the calculation of conserved quantities.

The ”third Kepler law”

n2a3 = GM⊙, (2.8)

where n is the angular velocity, is a direct consequence from the first two Kepler laws (2.3). In
section 2.5.2, it is demonstrated that at the periapsis, the position and velocity vector are given
by

r⃗ =

a(1− e)
0
0

 and v⃗ =

(
0√

GM⊙
a

1+e
1−e

)
.

7
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Sun

Planet

aphelion perihelion

r⃗

v⃗

Figure 2.2: An example of a planetary orbit around the Sun.

From these, the rate of area being swept out can be derived as 1
2 ∥⃗r× v⃗∥ = 1

2

√
GM⊙a(1− e2). By

considering that the area of an ellipse is πab = πa2
√

1− e2, the period can be derived as

T =
πab

1
2

√
GM⊙a(1− e2)

=
2πa3/2
√

GM⊙
. (2.9)

Using the relationship that the frequency n = 2π
T , the third Kepler law, equation (2.8), is then

derived.

2.4 Three-body problem

The three-body problem involves analyzing the mutual gravitational interactions between three
bodies. This problem is crucial for testing numerical methods and understanding 1:1 ”orbital
resonance,” which will be further discussed in section 2.7. In its most general form, the three-body
problem is notoriously difficult to solve, with known solutions being slowly-converging infinite
series [Sundman, 1913], from which the general solution of the N-body problem [Wang, 1991] was
inspired. For simplicity, we impose the following restrictions: firstly, the third mass is negligible
and does not affect the orbits of the first two bodies; secondly, the orbits of the first two bodies are
perfect circles around their common center of mass (CM), simplifying the equations of motions.
This section explores the motion of the third, negligible mass.

2.4.1 The movement of the two bodies

To understand the motion of the third body, we first need to precisely determine the motion of the
two primary bodies, which can be analyzed by solving the two-body problem. Instead of deriving
a solution from scratch, we will present a known solution and verify that it satisfies the equations
governing the two-body problem.

The proposed solutions of both bodies are:

r⃗1 =

x1
y1
z1

 =

− cos(nt)µ2d
− sin(nt)µ2d

0

 (2.10)

8



2.4 Three-body problem

and

r⃗2 =

x2
y2
z2

 =

cos(nt)µ1d
sin(nt)µ1d

0

 , (2.11)

where d is the distance between the two points and µ1 and µ2 are relative weights with values of
m1/(m1 + m2) and m2/(m1 + m2) respectively. Key observations from this solution include:

1. The bodies are in circular motion with both bodies having the same angular frequency. A
rotation by

R̂ =

 cos(nt) sin(nt) 0
− sin(nt) cos(nt) 0

0 0 1

 , (2.12)

or nt radians in the negative direction, keeps r⃗1 and r⃗2 stationary.

2. The distance between the two bodies remains constant, r⃗1 − r⃗2 = m1+m2
m2

r⃗1 = dr̂1. This is a
direct implication from the previous observation.

3. The center of mass remains stationary at the origin: m1⃗r1 + m2⃗r2 = 0⃗.

To verify the solution, the expressions are substituted into the equations of motion:

¨⃗r1 = −Gm2

r3
12

(⃗r1 − r⃗2) and ¨⃗r2 = −Gm1

r3
12

(⃗r2 − r⃗1), (2.13)

which then turns into

−n2⃗r1 = −G(m1 + m2)

d3 r⃗1 and − n2⃗r2 = −G(m1 + m2)

d3 r⃗2. (2.14)

This confirms that the proposed solution satisfies the equations, provided that

n2 =
G(m1 + m2)

d3 . (2.15)

An example of such a motion has been displayed in figure 2.3

2.4.2 The mechanics of a rotating frame.

The three-body problem is complex due to the time-dependent interactions between moving bodies.
To simplify the analysis, particularly for the restricted three-body problem, we use a rotating frame
of reference where the two primary bodies are stationary. This section details how Newtonian
mechanics transform in this rotating frame.

Consider the linear transformation R̂ : r⃗ = (x, y, z) → r⃗′ = (ξ, η, ζ) represented by the matrix R̂
as in equation 2.12, which rotates the system by nt radians into the negative direction. In this
new (ξ, η, ζ) frame the two massive masses are stationary. d2

dt2 r⃗ = a⃗ needs to be determined to
understand how the mechanics change.

Starting from the expression r⃗ = R−1r⃗′, this expression is differentiated twice to obtain:

a⃗ =
d2R̂−1

dt2 r⃗′ + 2
dR̂−1

dt
v⃗′ + R̂−1 a⃗′. (2.16)

The R̂−1 has to be evaluated further to get a more direct expression. First note that

R̂−1 =

cos(nt) − sin(nt) 0
sin(nt) cos(nt) 0

0 0 1

 . (2.17)

9



2 Gravity model

2
1

m2
m1+m2

d

m1
m1+m2

d

Figure 2.3: Illustration of the circular motion of two bodies. The distances are proportional to the
mass of the other body to balance the center of mass.

To get the derivative, simple term by term geometric differentiation gives that

d
dt

R̂−1b⃗′ =

−n sin(nt) −n cos(nt) 0
n cos(nt) −n sin(nt) 0

0 0 0

bξ

bη

bζ

 , (2.18)

but this can also be rewritten as

R̂−1b⃗′ = n

cos(nt) − sin(nt) 0
sin(nt) cos(nt) 0

0 0 1

−bξ

bη

0

 , (2.19)

which can be represented symbolically by nR̂−1⃗bp,L. So

dR̂−1

dt
b⃗ = nR̂−1⃗bp,L, (2.20)

where p stands for projected (onto the ξ, η-plane) and L for rotated to the left. This means that
equation (2.16) can be rewritten as

a⃗ = −n2R̂−1 x⃗′p + 2nR̂−1v⃗′p,L + R̂−1 a⃗′ (2.21a)

−n2 x⃗′p + 2nv⃗′p,L + a⃗′ = R̂x⃗. (2.21b)

This means that

ξ̈ − 2nη̇ = n2ξ − µ1

r3
13
(ξ − m2

m1 + m2
d)− µ2

r3
23
(ξ − m1

m1 + m2
d) (2.22a)

η̈ + 2nξ̇ = n2η − µ1

r3
13

η − µ2

r3
23

η (2.22b)

ζ̈ = − µ1

r3
13

ζ − µ2

r3
23

ζ. (2.22c)
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2.4 Three-body problem

Note that this equation can also be written as

ξ̈ − 2nη̇ = −Uξ (2.23a)

η̈ + 2nη̇ = −Uη (2.23b)

ζ̈ = −Uζ , (2.23c)

where

U = −1
2

n2(ξ2 + η2)− µ1

r13
+

µ2

r23
. (2.24)

2.4.3 Jacobi integral

In the three-body problem, the test particle has a conserved quantity known as the Jacobi integral.
This subsection will derive the Jacobi integral and demonstrate how it can be calculated. This can
be used to validate numerical tests, by testing whether this quantity is indeed conserved.

Starting from the dot-product of equation (2.23) and the velocity gives

v⃗′ · a⃗′ = −v⃗′ · ∇⃗U, (2.25)

which represents the derivative of

1
2

v′2 = −U − 1
2

CJ (2.26a)

=⇒ CJ = −2U − v′2 (2.26b)

= n2(ξ2 + η2) + 2(
µ1

r13
+

µ2

r23
)− (ξ̇2 + η̇2 + ζ̇2). (2.26c)

This CJ is the integration constant and is a conserved quantity for a particle in the restricted three-
body problem. It can be thought of as the ”energy” of this frame which is being rotated. The
n2(ξ2 + η2) + 2( µ1

r13
+ µ2

r23
) can be thought of as the ”potential term” and −(ξ̇2 + η̇2 + ζ̇2) the ”kinetic

term”.

Since later on simulations are ran in the inertial reference frame it is useful to also be able to
calculate the Jacobi integral in this frame. Most of the conversion is trivial: ξ2 + η2, µ1/r13 and
µ2/r23 are all functions of the distance and can thus immediately be expressed in their x, y, z-
equivalent. The kinetic-energy term ξ̇2 + η̇2 + ζ̇2 is non-trivial, however. To find this quantity,
consider that v⃗′ = d

dt⃗ r′ = d
dt R̂⃗r. By the product-rule and considering the symmetry to equation

(2.20) this simplifies to

v⃗′ = nR̂⃗rp,R + R̂v⃗. (2.27)

Taking the dot-product of v⃗′ with itself simplifies the formula to

ξ̇2 + η̇2 + ζ̇2 = v⃗ · v⃗ + 2nv⃗ · r⃗p,R + n2⃗rp,R · r⃗p,R = (ẋ2 + ẏ2 + ż2)− 2n(xẏ− yẋ) + n2(ξ2 + η2).
(2.28a)

This helps in the transformation of the Jacobi integral in inertial coordinates:

CJ = 2
(

µ1

r13
+

µ2

r23

)
+ 2n (xẏ− yẋ)−

(
ẋ2 + ẏ2 + ż2

)
. (2.29)

Thus there is a quantity known as the Jacobi integral which arises as an integration constant. This
constant has a simple form in both the rotated and the inertial frame and can therefore be of great
utility in analysing the 3-body problem.
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2.4.4 Lagrange points

In the 3-body problem there are particular stables points. These can, for example, be observed
in space by particular clumps of asteroids. This subsection identifies stationary points–where the
forces cancel out–indicating potential positions where a particle remains stationary if it starts there.
These points, known as ”Lagrange points,” are candidates for stable points.

Remark. In the following subsections a lot of algebraic manipulations will be performed. For
simplification, a different system of units is used: the distance unit is chosen such that d = 1, and
the unit of time is chosen such that G(m1 + m2) = 1. Consequently, n2 = G(m1+m2)

d3 = 1, leading to
n = 1.

With these new units the accelerations obtained by dividing force by mass are given by:

ag1 = − µ1

r3
13

r⃗13, (2.30a)

ag2 = − µ2

r3
23

r⃗23, (2.30b)

ac = r⃗p, (2.30c)

which can be deduced by differentiating each term in the potential (2.24).

When the forces cancel out, the total gravitational accelerations equal the negative of the centrifugal
acceleration, implying that these accelerations are parallel. This has two key implications. First,
since ac ∝ r⃗p, the centrifugal acceleration can not balance the ζ-axis, meaning all forces and vectors
lie in the (ξ, η)-plane. Consequently, r⃗p = r⃗, simplifying the equations. Additionally, because r⃗ is
parallel to the centrifugal acceleration and this acceleration is parallel to the sum of the gravitational
accelerations, it means that (a⃗g1 + a⃗g2) × r⃗ = 0. Solving this, gives that m1

r3
13

r⃗1 +
m2
r3

23
r⃗2 = 0, which

means that two terms of ag1 + ag2 together cancel to 0, leaving the last two terms to be −( µ1
r3

13
+ µ2

r3
23
)⃗r.

Comparing the amplitudes between ag1 + ag2 and ac gives that

µ1

r3
13

+
µ2

r3
23

= 1. (2.31)

The solutions to this equation are then the stationary points. However, these equations are difficult
to solve. To simplify these equations an additional quantity is derived: remember that m1r⃗1 =
−m2r⃗2. Multiplying this equation by a⃗1 + a⃗2 gives that m1 a⃗2× r⃗13 = −m2 a⃗1× r⃗23, (write r⃗1 = r⃗13 + r⃗
and note that a1 ∝ r⃗13 and that a1 + a2 ∝ r⃗). Since these vectors have the same directions, this means
that m1a2r13 = m2a1r23. This in turn means that r13 = r23 = d by utilising equation (2.31). This
gives two stationary points which lie on an equilateral triangle together with the other objects,
these points are known as L4 and L5.

This approach assumes that not all points lie on the same line. Indeed, the norm of the cross
product was compared but this norm is zero in the 1-dimensional case. If they do lie on the same
line, all of the coordinates can be represented by ξ-coordinates which means that equation (2.31)
becomes m1

(ξ+µ2)
+ m2

µ1−ξ = m1 + m2, which can be translated into the polynomial

(µ1 − ξ)3(µ2 + ξ)3 = µ1(µ1 − ξ)3 + µ2(µ2 + ξ)3. (2.32)

This polynomial can be solved numerically or approximations can be made to find 3 other sta-
tionary points [Murray and Dermott, 2000, p. 77], these stationary points are known as L1, L2 and
L3.

To illustrate the stationary points, or Lagrange points, a plot has been made of the potential U =
1
2 (ξ

2 + η2) + µ1
r13

+ µ2
r23

shown in figure 2.4, where the stationary points reside on the critical points
of the multi-dimensional function.

The stationary points have been found by manipulating the equations relating the forces on the test
particle. However, as mentioned this does not show that the particle does not stay close as it could
accelerate away after a small deviation. Instead, stability has to be shown.
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2.4 Three-body problem

Figure 2.4: All the Lagrange points and contour lines of the potential U for µ2 = 0.2 in the ξ, η-
plane.

2.4.5 Stability of Lagrange points

This subsection aims to show that particular Lagrange points are stable. To show this a general
procedure is outlined and is executed for the points L4 and L5. From these equations of motion
it can be shown that L4 and L5, the points corresponding to the equilateral triangle, are in fact
stable.

In equation (2.23) the equation on the right-side could be written as −∇U, this equation is approx-
imated by a second-order Taylor expansion.

ξ̈ − 2η̇ = Uξξ ξ + Uξηη (2.33a)

η̈ + ξ̇ = Uηηη + Uηξ ξ (2.33b)

ζ̈ = Uζζ ζ (2.33c)

are then the equations describing movement close to the stationary points, where it has been used
that Uξ = Uη = Uζ = 0 due to the fact only stationary points are considered and Uξζ = Uηζ = 0
due to the symmetry in the ζ-axis at those points. It can be observed that the equations of ξ and
η influence each other, while ζ evolves independently. So an analysis has can be made of ξ and η,
and ζ independently.

The ζ-motion is analysed first due to it being simpler. To find the motion of ζ Uζζ has to be found,
which is equal to − µ1

r2
13
− µ2

r2
23

. This quantity is always negative so the equation of motion can be

rewritten as

ζ̈ = −kζ, (2.34)

where k is some positive number. The solutions of this differential equation are well known and is
in general a sum of a sine and cosine, hence the solution is stable. So it only has to be shown that
the motion of ξ and η coupled together is stable as well.

13
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To analyse the motion of ξ and η, the equations of motion shall be rewritten in the form of the
linear equation

d
dt


ξ
η
ξ̇
η̇

 =


0 0 1 0
0 0 0 1

Uξξ Uξη 0 −2
Uηξ Uηη 2 0




ξ
η
ξ̇
η̇

 . (2.35)

The matrix helps with the analysis because stability occurs if the eigenvalues of this matrix all have
non-positive real parts. So it’s essential to be able to find these eigenvalues. These eigenvalues can
be found by equating det Â− λ Î to zero, which results in

λ4 + λ2 (4−Uξξ −Uηη

)
+ UξξUηη −U2

ξη = 0. (2.36)

To find the solution to this equation the values of Uξξ , Uηη and Uξη have to be found explicitly.
These values are

Uξξ = 1− A + B (2.37a)

Uηη = 1− A + C (2.37b)

Uξη = D, (2.37c)

where

A =
µ1

(r3
13)0

+
µ2

(r3
23)0

(2.38a)

B = 3

[
µ1

(r5
13)0

(x0 + µ2)
2 +

µ2

(r5
23)0

(x0 − µ1)
2

]
(2.38b)

C = 3y2
0

[
µ1

(r5
13)0

+
µ2

(r5
23)0

]
(2.38c)

D = 3y0

[
µ1

(r5
13)0

(x0 + µ2) +
µ2

(r5
23)0

(x0 − µ1)

]
. (2.38d)

This then turns equation (2.36) into

λ4 + λ2 (2 + 2A− B− C) + (1− A + B)(1− A + C)− D2 = 0. (2.39)

The solutions to this equation are found by considering the fact it’s a second order polynomial in
λ2 which means that the quadratic equation gives the solutions

λ1,2 = ±
[

1
2
(B + C− 2A− 2)

−1
2

[
(B + C− 2A− 2)2 − 4((1− A + B)(1− A + C)− D2)

]1/2
]1/2 (2.40a)

λ3,4 = ±
[

1
2
(B + C− 2A− 2)

+
1
2

[
(B + C− 2A− 2)2 − 4((1− A + B)(1− A + C)− D2)

]1/2
]1/2

.
(2.40b)

So if these quantities all have a non-positive real part, the system can be said to be stable. Note
however that λ1 = −λ2 and λ3 = −λ4, so each negative real part is coupled by a positive real part,
this means that the equations must be purely imaginary in that case.

Since L1, L2 and L3’s location are not known exactly the analysis is difficult, too difficult for the
scope of this subsection, and shall therefore be skipped. Instead only L4 and L5 shall be consid-
ered.
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For L4, L5 the position are known from the fact that r13 = r23 = d ≡ 1, which means that x0 =

( 1
2 − µ1) and y0 = ± 1

2

√
3. This means that A, B, C, D take on the values

A = µ1 + µ2 = 1 (2.41a)

B = 3
[

1
4

µ1 +
1
4

µ2

]
=

3
4

(2.41b)

C = 3
[

3
4

µ1 +
3
4

µ2

]
=

9
4

(2.41c)

D = ±3

√
3

2

[
1
2

µ1 −
1
2

µ2

]
= ±3

√
3

2
. (2.41d)

Which then means that the solutions given by equation (2.40) are

λ1,2 = ±
[
−1

2
− 1

2

[
27µ2

2 − 27µ2 + 1
]1/2

]1/2
(2.42a)

λ3,4 = ±
[
−1

2
+

1
2

[
27µ2

2 − 27µ2 + 1
]1/2

]1/2
, (2.42b)

which have to be purely imaginary. For this the following two cases are considered:

1. 27µ2
2− 27µ2 + 1 < 0, in which case an imaginary number is added to the − 1

2 term in equations
(2.42). This means that the term in brackets is mixed real and imaginary, which always has a
non-zero real part after taking the square root which means that either λ1 or λ2 has a positive
real part. Therefore this case results in instable equilibrium point.

2. 27µ2
2− 27µ2 + 1 ≥ 0, in which case a real number is added to the − 1

2 term in equations (2.42),
which if it is ≤ 1

2 will result in a term ≤ 0, and therefore purely imaginary, meaning that the

point is stable. If 27µ2
2 − 27µ2 + 1 > 1

[
− 1

2 + 1
2
[
27µ2

2 − 27µ2 + 1
]1/2

]1/2
will be positive real

and the point is therefore unstable.

The function 27µ2
2 − 27µ2 + 1 shall therefore be considered. It has the same roots as µ2

2 − µ2 +
1

27 ,

which has roots 1
2 ±

√
1
4 −

1
27 . These roots have the approximate values of 0.0385 and 0.9615. At

µ2 = 0 and µ2 = 1 the function has value 1. This means that if 0 ≤ µ2 ≤ 1
2 −

√
( 1

2 )
2 − 1

27 ≈ 0.0385

and the parallel case 1 ≥ µ2 ≥ 1
2 +

√
( 1

2 )
2 − 1

27 ≈ 0.9615 the point will be stable.

From considering the second-order Taylor approximation for the potential it has been found that

L4 and L5 have non-positive eigenvalues for the cases 0 ≤ µ2 ≤ 1
2 −

√
( 1

2 )
2 − 1

27 ≈ 0.0385 and

1 ≥ µ2 ≥ 1
2 +

√
( 1

2 )
2 − 1

27 ≈ 0.9615. This means that it can be concluded that L4 and L5 are stable
points.

2.4.6 Different orbits

Since the eigenvalues are all imaginary for L4 and L5 and come in pairs of positive and negative
the general solution has the form

ξ = A1 cos(λ1t) + B2 sin(λ1t) + C1 cos(λ2t) + D1 sin(λ2t) (2.43a)
η = A2 cos(λ1t) + B2 sin(λ1t) + C2 cos(λ2t) + D2 sin(λ2t). (2.43b)

The solutions were then found for µ2 = 0.01 with eigenvalues with value of λ1 ≈ 0.963 and
λ2 ≈ 0.268, with an initial deviation of 10−5 from x0 = (1− µ2) and 10−5 from y0 = 1

2

√
3 and

an angular velocity of n ≡ 1. The values were first calculated with eÂt⃗s, where Â is the matrix in
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Figure 2.5: A so-called ”horseshoe” orbit which was obtained by initialising a system of µ2 =
0.000953875 at ξ = −1.02745, η = ξ̇ = 0, η̇ = 0.04032.

equation (2.35) and s⃗ the state corresponding to the initial conditions outlined. These values were
then fitted to the solutions described in equation (2.43). From this the values

A1 = −2.45× 10−5, B1 = −8, 55× 10−5, C1 = 3.45× 10−5, D1 = 3.07× 10−4 (2.44a)

A2 = −4.20× 10−5, B2 = 4.91× 10−5, C2 = 5.20× 10−5, D2 = −1.76× 10−4 (2.44b)

were obtained.

Aside from the close points to L4 it is also possible for asteroids to orbit around both L4, L5 and
L1 by getting caught in orbits close to contour lines outlined in figure 2.4. These result in so-called
”horseshoe” orbits (2.5) and ”tadpole” (2.6) orbits.

2.5 Orbital elements

In section 2.3, the idea was introduced that planetary orbits are ellipses. Beyond the variables a
and e discussed in section 2.2, which describe the shape of the ellipse, three additional variables
Ω, ω and I are used to define the orientation of the orbit. Moreover, there’s a final variable, ν or
M0, which specifies the position of the body in the orbit. These six variables, collectively known
as ”orbital elements,” are particularly useful for analyzing the dynamics of the Solar System, due
to their geometric nature. However, these elements are not perfectly constant, as they change over
time due to the gravitational influence of other planets. This gradual evolution of orbits, driven by
perturbations, will be discussed further in section 2.6, showing the importance of orbital elements
in understanding both the current state and the long-term evolution of planetary orbits.

2.5.1 Definition of orbital elements

Orbital elements consist of six variables, of which a and e have already been talked about in suffi-
cient detail and shall therefore be listed immediately:

a : The semi-major axis of the orbit.

e : The eccentricity of the orbit.
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Figure 2.6: A so-called ”tadpole” orbit which was obtained by initialising a system of µ2 =
0.000953875 at ξ = −0.097668, η = ξ̇ = 0, η̇ = −0.06118.

This ellipse is embedded in 3-dimensional space, the next three variables aim to describe this po-
sition. In figure 2.2 it can be seen that the Sun, which is one of the focuses, is always located at
the origin according to the Kepler laws (2.3). So the only degree of freedom stems from the orien-
tation (as opposed to displacement as well). To describe this orientation a procedure is described
which will result in three quantities Ω, ω and I, which are three additional orbital elements. The
description is similar to that of Euler angles:

• Start with an ellipse oriented along the positive x-axis, with the periapsis in this direction
and the angular velocity pointing along the positive z-axis. The goal is to rotate this initial
configuration into the desired orientation.

• Identify the point where the ellipse crosses the (x, y)-plane, where the orbiting body moves
from a negative to a positive z-coordinate. This point is called the ”ascending node.”

• Rotate the ellipse until the periapsis aligns with the ascending node. The angle of this rotation,
measured around the z-axis, is called the longitude of the ascending node, Ω.

• Next, rotate the ellipse around the periapsis to adjust the tilt of the orbit. The angle of this
tilt, relative to the reference plane, is the inclination, I.

• Finally, rotate the ellipse within the orbital plane to align the periapsis with the desired end
position. The angle of this rotation, within the plane, is the argument of periapsis, ω.

In figure 2.7 the procedure is outlined visually. This procedure is also described by executing the
transformationscos Ω − sin Ω 0

sin Ω cos Ω 0
0 0 1

1 0 0
0 cos I − sin I
0 sin I cos I

cos ω − sin ω 0
sin ω cos ω 0

0 0 1

 = R̂y(Ω)R̂x(I)R̂z(ω) (2.45)

on the ellipse which can be parameterised by−ae + a cos E
a
√

1− e2 sin E
0

 . (2.46)

Note that these procedures are in reverse order (rotation by ω is first) because the axes do not move
together with the ellipse, so all rotations have to applied in the ”rest system”. These procedures
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x⃗1

y⃗1

z⃗ f = z⃗1

x⃗ f

y⃗ f

Ω

Ω
y⃗1

y⃗2
z⃗2

I

I

x⃗1 = x⃗2

z⃗1

x⃗2

y⃗2
z⃗2 = z⃗3

x⃗3

y⃗3

ω

ω

Figure 2.7: A procedure illustrating the transition between the blue orientation and the pink orien-
tation by Euler angles. First rotating about Ω around the z-axis to be able to rotate the plane by an
angle of I correctly. Finally, rotating ω around the z-axis to obtain the correct orientation within
the plane.

result in a normal vector (direction of angular velocity) of the ellipse to be moved to

n⃗ =

 sin(Ω) sin(I)
− cos(Ω) sin(I)

cos(I)

 . (2.47)

I : The inclination, defined by the angle between plane of reference and plane of orbit.

Ω : Longitude of ascending node, the angle with which the plane has to be rotated horizontally
after being inclined.

ω : Argument of periapsis, the angle between the periapsis and the reference vector of the plane.

With the first 5 orbital elements the orbit of the body is completely given. However, there is one last
variable describing the position of the body on this trajectory, for this the variable ν is used, which
is the angle from the perihelion to the body calculated from the Sun in the plane of the ellipse.
Figure 2.8 shows how a, e, ν and ω can be expressed visually.

ν : True anomaly, angle between periapsis and object.

The true anomaly, while geometrically significant, is not particularly useful for analytical purposes
due to its complex dependence on time. As noted in section 2.3, the rate at which the true anomaly
changes is proportional to the area swept out by the orbiting body, which is a nonlinear function
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Sun

Body

Aphelion perihelion

Reference direction

(1 + e)a (1− e)aω

ν

Figure 2.8: A figure showing a few notable quantities within the plane of an orbit. The reference
direction refers to the direction through which the plane has been rotated. The perihelion and the
Aphehlion are the closest and farthest point away from the Sun respectively and have values of
(1− e)a and (1 + e)a. ω is the angle from the reference direction to the perihelion and ν is the
angle from the perihelion to the body.

of time due to the elliptical shape of the orbit. To simplify the analysis, a ”pseudo-angle” known
as the mean anomaly, denoted by M, is typically used instead. Unlike the true anomaly, the
mean anomaly varies linearly with time, increasing by 2π every orbital period. It reaches integer
multiples of 2π each time the orbiting body passes through perihelion. The mean anomaly can be
expressed as M = n(t− t0), where n is the average angular velocity, and t0 is the time of perihelion
passage. At the reference time t = 0 (epoch), the mean anomaly is denoted as M0, which is
time-independent and serves as an alternative to the true anomaly ν.

M0 Mean anomaly at epoch, linearilised pseudo-angle between periapsis and object at a chosen
reference time.

Thus this section the orbital elements a, e, ω, I, Ω, ν and M0 have been described. In the literature
more can be found, however, for a basic understanding of the orbital elements these are deemed
sufficient.

2.5.2 Calculating orbital elements from Cartesian coordinates

As has been shown in the previous section, the orbital elements consist of six variables which tend
to be intuitive due to their geometrical nature. This section shall focus on calculating these variables
when a particular position r⃗ and velocity v⃗ have been given. The derivation of orbital elements from
Cartesian coordinates involves using conserved quantities such as energy and angular momentum.
These quantities are straightforward to compute at a specific point in the orbit using Cartesian
coordinates. By expressing these conserved quantities in terms of the orbital elements and solving
the corresponding equations, the relationship between Cartesian coordinates and orbital elements
can be established, thereby determining the orbital parameters.

The first step is finding the position and velocity at this particular point in terms of orbital elements;
the perihelion is chosen for this because of its symmetry leveraging more simplistic derivations.
The expression of distance from the Sun at the perihelion in terms of orbital elements is (1− e)a
according to elliptical geometry, so only the expression for velocity in orbital elements has to be
found.
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The velocity at the perihelion is determined by examining the ratio of acceleration to velocity
at this point. This ratio is related to the curvature of the ellipse, which can be derived from
elliptical geometry. Since acceleration is centripetal at the perihelion, this relationship simplifies
the calculation of velocity by linking it directly to the curvature of the orbit. Indeed, consider the
fact that the velocity is tangent to the distance but the acceleration parallel to it, this means that
the parallel distance to the perihelion can be described by x(t) = r0 +

1
2 ∥⃗a∥0 t2 +O(t3) while the

tangent distance is y = v0t +O(t2). These expressions can be combined to obtain

x(y) = r0 +
1
2
∥⃗a∥0

v2
0

y2 +O(y3), (2.48)

where r0, v0, ∥⃗a∥0 are the position, velocity and acceleration respectively. Differentiating this ex-

pression gives that d2x
dy2 =

∥⃗a∥0
v2

0
. However, this curvature can also be described by the geometry of

the ellipse. Differentiating equation (2.6) twice at the right most point gives that d2x
dy2 = 1

(1−e2)a .
This means that the relationship between curvature and the velocity fraction is easily obtained by
equation both d2x

dy2 .

∥⃗a∥0
v2

0
=

1
(1− e2)a

(2.49)

is this equation. Velocity is then found by substituting ∥⃗a∥ = GM⊙
((1−e)a)2 , which means that

v0 =

√
GM⊙

a
1 + e
1− e

. (2.50)

Now these quantities of r0 = (1− e)a and v0 =
√
GM⊙

a
1+e
1−e are used in finding conserved quantities

and relating them to Cartesian coordinate formulas.

The first conserved quantity comes from energy divided by mass. Equation (2.7) can also be written
as

d2⃗r
dt2 = −∇U, with U = −GM⊙

r
. (2.51)

This means that the conserved quantity for the energy is 1
2 mv2 − GmM⊙

r , which can be reduced to

ϵ =
1
2

v2 − GM⊙
r

. (2.52)

This can be written in terms of orbital elements:

ϵ = −GM⊙
r

+
1
2

v2 (2.53a)

= − GM⊙
(1− e)a

+
1
2
GM⊙

a
1 + e
1− e

(2.53b)

=
GM⊙

2a
. (2.53c)

This expression only depends on the semi-major axis a which means that the semi-major axis can
be derived from the Cartesian state, this is given explicitly by

a =
GM⊙

2ϵ
=

GM⊙

2
(

1
2 v2 − GM⊙

r

) . (2.54)

The second conserved quantity which shall be considered stems from angular momentum divided
by mass, also known as the reduced angular momentum h. This quantity is calculated by h = r⃗× v⃗.
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Since position and velocity were perpendicular, the expression can be simply found to be h⃗ = r0v0n⃗,
where n⃗ is the normal of the plane.

h⃗ = r⃗× v⃗ (2.55a)
= r0v0n⃗ (2.55b)

= (1− e)a

√
GM⊙

a
1 + e
1− e

n⃗ (2.55c)

=
√
GM⊙(1− e2)a n⃗ (2.55d)

is then this reduced angular momentum expressed in terms of orbital elements. By comparing this
equation of n⃗ with the one given by equation (2.47) its relation to orbital elements can be found.
From this relation I and Ω can be found with inverse trigonometric functions:

I = cos−1

(
h⃗ · ẑ

h

)
, (2.56)

Ω = atan2(hy, hx). (2.57)

The eccentricity e can be found using this equation as well, however, these is a simpler way of
doing so using the next conserved quantity.

The final equation is a more unfamiliar conserved quantity as it’s specific to the case of Kepler orbits
(or more generally, inverse quadratic forces). This conserved quantity is the ”Laplace-Runge-Lenz
vector” and is a vector which points from the focus to the periapsis with length e. This gives a clear
relationship to this conserved quantity and the eccentricity. This quantity is defined by

v⃗× h⃗
GM⊙

− r⃗
r

. (2.58)

In this equation h⃗ = r⃗ × r⃗ is the reduced angular momentum as mentioned before. Before this
supposedly conserved quantity is used, it is first proven that it is indeed a conserved quantity by
showing that the time-derivative is equal to 0. Consider just the time derivative of only v⃗×⃗h

GM⊙ :

d
dt

v⃗× h⃗
GM⊙

=
a⃗× h⃗
GM⊙

(2.59a)

=
− GM⊙

r3 r⃗× h⃗
GM⊙

(2.59b)

= − r⃗× h⃗
r3 (2.59c)

= − (⃗r · v⃗)⃗r− r2v⃗
r3 (2.59d)

=
d
dt

r⃗
r

(2.59e)

So with the r⃗
r subtracted the time-derivative will be 0 and therefore will be a conserved quantity. It

can then be shown that this vector points towards the perihelion and that it has magnitude of e by
computing this vector for the special case of the perihelion:

e⃗ =
v⃗0 × h⃗
GM⊙

− r⃗0

r0
, (2.60a)

=
v2

0r⃗0

GM⊙
− r⃗0

r0
, (2.60b)

=
(1 + e)r⃗0

r0
− r⃗0

r0
, (2.60c)

= e
r⃗0

r0
. (2.60d)
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Which is indeed a vector of length e pointing towards r⃗0, or in other words, the perihelion. The
simpler way of calculating the eccentricity e, as mentioned before, is then

e = |⃗e| (2.61)

And furthermore a way to obtain ω. Let Ω⃗ =

cos Ω
sin Ω

0

, then:

ω = atan2(Ω⃗ · (⃗e× n⃗), Ω⃗ · e⃗) (2.62)

Where n⃗ is once again given as in equation (2.47).

In this section the conserved quantities of energy and angular momentum (both divided by mass)
were expressed in terms of orbital elements by considering the special point of the perihelion. The
energy was completely a function of the semi-major axis a and the angular momentum pointed in
the normal vector which allowed for the determination of the longitude of ascending node Ω and
inclindation I. Additionally, a new conserved quantity quantity known as the ”Laplace-Runge-
Lenz vector” was introduced which gave information about the eccentricity e and the location of
the perihelion from which the argument of periapsis ω could be found.

2.6 Perturbations of the planets’ motion

This section explores how the elliptical orbits of a planet are perturbed by the gravitational influence
of other planets. The aim is to derive equations that describe the changes in orbital elements
due to these perturbations, which is essential for understanding the dynamics of multiple-planet
systems.

The one-body problem is finding the solution to the differential equation (2.7 and equation (2.51):

¨⃗r = −GM⊙
r3 r⃗ = −∇U. (2.63)

The one-body problem describes a single body orbiting a central mass. However, to account for
the gravitational perturbations from other bodies, the N-body problem (2.3) has to be considered,
where the equation can be rewritten as:

d2⃗r
dt2 = −∇(U +R), with R = −∑

j

Gmj

rj
, (2.64)

where mj is any mass other than the Sun and rj the distance to that mass.

The change in orbital elements can then be found by the Lagrange planetary equations

da
dt

= − 2
na

∂R
∂M0

, (2.65a)

de
dt

=
b

na3e
∂R
∂ω
− b2

na4e
∂R

∂M0
, (2.65b)

dM0

dt
=

2
na

∂R
∂a

+
b2

na4e
∂R
∂e

, (2.65c)

dω

dt
=

cos I
nab sin I

∂R
∂I
− b

na3e
∂R
∂e

, (2.65d)

dI
dt

=
1

nab sin I
∂R
∂Ω
− cos I

nab sin I
∂R
∂ω

, (2.65e)

dΩ
dt

= − 1
nab sin I

∂R
∂I

, (2.65f)

where we refer to [Fitzpatrick, 2023] for a derivation. In these equations n is used which has been
briefly mentioned for the average angular velocity. This quantity simplifies the equations but can
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2.7 Orbital resonance

also be rewritten as n2a3 = GM⊙, according to the third Kepler law [Murray and Dermott, 2000,
p. 3]. As R is typically small, the resulting changes are also minor. To illustrate this, consider two
planets each with a mass of 1027kg, orbiting in circular, co-planar paths with semi-major axes of
5AU and 10AU, analogous to Jupiter and Saturn. At their closest approach, the perturbation R for
each planet would be:

R = −G · 1027 kg
5 AU

= −8.9× 104 J/kg. (2.66)

For the innermost planet with a semi-major axis a = 5 AU, the mean motion n is approximately:

n ≈ 1.7× 10−8 s−1. (2.67)

Thus, the rate of change of the semi-major axis da
dt can be estimated as:∣∣∣∣da

dt

∣∣∣∣ ≈ 2
na
· |R|1

2 T
=

2|R|
πa

= 5.7× 104 m/s = 3.8× 10−7 AU/s. (2.68)

This variation is small relative to the size of their orbits. Nonetheless, over extended periods, such
small perturbations can accumulate, as discussed in section 2.7.

2.7 Orbital resonance

This section applies the Lagrange planetary equations to the gravitational interactions between
two co-planar bodies, with a significantly lighter inner body compared to the outer body. The
heavier body is positioned along the positive x-axis, and both bodies orbit in a counter-clockwise
direction. These initial conditions are illustrated in figure 2.9. By analyzing the gravitational
potential over multiple periods and averaging it, the phenomenon of ”orbital resonance” emerges.
This resonance effect plays a crucial role in the long-term evolution of planetary systems, including
the Solar System.

For co-planar orbits, the Lagrange planetary equations simplify by eliminating Ω and I, and sub-
stituting ω with ϖ. The equations describing the change of orbital elements are then

da
dt

= − 2
na

∂R
∂M0

, (2.69a)

de
dt

=

√
1− e2

na2e
∂R
∂ϖ
− 1− e2

na2e
∂R

∂M0
, (2.69b)

dM0

dt
=

2
na

∂R
∂a

+
1− e2

na2e
∂R
∂e

, (2.69c)

dϖ

dt
= −
√

1− e2

na2e
∂R
∂e

. (2.69d)

Because of the difficulty of solving these equations an approximation shall be made: instead of
considering R, the average value ⟨R⟩ shall be considered. This average value for one (outer)
period can approximately be found by considering figure 2.10, where it can be seen that there’s
some base level with the contribution of a peak added. From this the approximation

⟨R⟩ = base level + α(peak− base level) (2.70)

This peak is found by considering the point at which the two planets are closest, as this point has
the highest value. At the closest approach, R for the inner planet is R = − Gm

r , where m is the
mass of the outer planet. Here, r is the distance between the two bodies, computed as the difference
between their distances from the central body. The distance of the outer orbit to the center is simply
its radius R, the inner orbit is a more complicated expression, however. The distance from the inner
orbit to the center is a f (ϕ, e), where a is the semi-major axis and f is some function in terms of the
mean anomaly ϕ and the eccentricity e. A figure of this function f has been made for e = 0.3 in
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Sun

Perihelion

Body 1

Body 2
ϖ≈ M0

Figure 2.9: A figure showing the initial conditions of a small inner body in a Kepler orbit and a
large outer body in a circular orbit.
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Figure 2.10: The disturbing potential R. Notice that there’s some base-level shown by the grey
dotted line and peaks.

figure 2.11. The base level is found by − Gm
R+a , which is the scale when the planets are approximately

opposite to each other. From this the full approximation of ⟨R⟩ is

⟨R⟩ ≈ −(1− α)
Gm

R + a
− α

Gm
R− a f (ϕ, e)

, (2.71)

where α is some constant associated with the consideration of only the closest point. Typically,
the pseudo-angle ϕ at which the planets align varies over time, so ⟨R⟩ must be averaged over ϕ
and depends on a and e. However, if the orbital periods are commensurate (i.e., their ratio is a
fraction of integers), ϕ remains constant. This effect is known as orbital resonance. To illustrate
this, consider the 2:1 resonance, which means that the inner planet has a period 2 times that of
the outer planet. Consider that the planets are in conjunction at a pseudo-angle (pseudo-angles
will be used to make the mathematics easier) of ϕ. The next time these planets will meet is when
ϕ + 2nt = ϕ + nt + k · 2π, which is when nt = k · 2π, or when plugged into ϕ + 2nt and ϕ + nt, the
same angle. The angle ϕ can be calculated from the orbital elements as follows. If the inner planet
starts with a mean anomaly M0 and a longitude of periapsis ϖ, and the outer planet starts at an
angle θ0, the evolution of the pseudo-angles can be described as M0 + ϖ + 2nt for the inner planet
and θ0 + nt for the outer planet. Equating these gives the pseudo-angle at which they meet as

ϕ = 2θ0 − 2ϖ−M0. (2.72)
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Figure 2.11: The oscillation function for e = 0.3. This function describes the distance divided by the
semi-major axis from the focal point closest to the periapsis to a point that makes a pseudo-angle
ϕ relative to the periapsis.

With the significance of ϕ the Lagrange orbital equations are

∂⟨R⟩
∂a

= (1− α)
Gm

(R + a)2 − α
Gm

(R− a f (ϕ, e))2 f (ϕ, e), (2.73a)

∂⟨R⟩
∂e

= −aα
Gm

(R− a f (ϕ, e))2
∂ f
∂e

(ϕ, e), (2.73b)

∂⟨R⟩
∂ϖ

= −aα
Gm

(R− a f (ϕ, e))2
∂ f
∂ϕ

(ϕ, e)
∂ϕ

∂ϖ
= 2aα

Gm
(R− a f (ϕ, e))2

∂ f
∂ϕ

(ϕ, e), (2.73c)

∂⟨R⟩
∂M0

= −aα
Gm

(R− a f (ϕ, e))2
∂ f
∂ϕ

(ϕ, e)
∂ϕ

∂M0
= aα

Gm
(R− a f (ϕ, e))2

∂ f
∂ϕ

(ϕ, e). (2.73d)

(2.73e)

To understand these equations, it is crucial to analyze the function f . The function f reaches
its extreme values at perihelion and aphelion, corresponding to ϕ = 0 + k · 2π (value 1− e) and
ϕ = π + k · 2π (value 1 + e), respectively. The zeros of f occur at π/2− e + k · 2π and 3π/2 +
e + k · 2π. These zeros correspond to the eccentric anomaly E = k · π and the mean anomaly
M = E− e sin E. Further details regarding the relationship between eccentric and mean anomaly
are provided through [Wikipedia, 2024b]. The observations of the zeros and the extreme values can
be seen in figure 2.11. The extreme values and zeros are important because f ’s sign is determined
by the zeros and ∂ f

∂ϕ ’s sign is determined by the extreme values. With this knowledge the sign of
da
dt , de

dt , dϖ
dt and dM0

dt can be found. Generally, this angle slowly oscillates in resonance, causing all the
relevant orbital elements, but most significantly e and a, to oscillate. This oscillation of e and a is
most important for the context of orbital evolution.

2.8 Nice model

One of the most popular descriptions of the evolution of planetary orbits of the giants in the Solar
system is known as the Nice model. The Nice model states that the giant planets began their
evolution near their current resonances and operates through two main mechanisms:
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2.8 Nice model

1. Orbital Resonances: The planets’ orbits have semi-major axes in specific resonant relation-
ships.

2. Interactions with Planetoids: The planets interact with a population of planetoids.

The concept of orbital resonance has been discussed in (2.7) but the most important aspects shall
be repeated, whereas the disk of planetoids shall not be discussed in detail as they shall be ignored
during the simulations. According to the original Nice model [Tsiganis et al., 2005], the giant plan-
ets were positioned as follows:

1. Jupiter: 5.45 AU

2. Saturn: 8.65 AU

3. Neptune: 11–13 AU

4. Uranus: 13.5–17 AU

Here Uranus and Neptune are additionally separated by at least 2 AU. Additionally, the planets
have an eccentricity e and inclination i ∼ 10−3. These semi-major axes make it so that the planets
are placed in low integer resonances close to 2:1 and 3:2. specifically, TJ : TS ≈ 2 : 1, TS : TN ≈ 3 : 2
and TN : TU , where TJ , TS, TN and TU are the periods of Jupiter, Saturn, Neptune and Uranus
respectively. These relationships result in the fact that they meet each other in the same point,
causing them to strongly influence each other resulting in oscillations in e and a, allowing the
planets to move closer to each other.

Additionally, the planets interact with planetoids, which have a total mass ranging from 30 to
50 times the mass of Earth (ME). These planetoids are distributed from Neptune’s orbit out to
30–35 AU, with their density falling off linearly within this range. These interactions primarily
dampen the planets’ eccentricities e and inclinations i, mitigating extreme variations and preventing
excessive resonant effects. This is an important feature because during resonance, these values
can vary quite drastically, but now these effects are dampened. Furthermore, and maybe more
significantly, it allows for a mechanism to escape from ”locking” as shall be described in the results
chapter (4).

It is important to note that all orbits start as near-circular orbits, which implies that the argument
proposed in section 2.7 seems to not apply, as the the oscillation function f would remain near con-
stant. However, note that the denominator of de

dt contains a e term in equation (2.69), which means
that the decrease of the f in the nominator is compensated for by the e term in the denominator.

Figure 2.12 illustrates the typical evolution of the Solar System under the Nice model. This plot,
known as an a/q/Q plot, depicts the semi-major axis a, the minimum heliocentric distance q,
and the maximum heliocentric distance Q. Here q and Q are expressed as (1− e)a and (1 + e)a,
respectively. These plots are used to show the range of heliocentric distance the planets can occupy
and also provide a way to visualise the a and e parameter in one figure.

The original Nice model simulations revealed that Neptune and Uranus frequently switched po-
sitions, as shown in figure 2.12. This switching occurred after Jupiter and Saturn entered a 1:2
mean motion resonance, which perturbed their orbits and significantly impacted the eccentrici-
ties of Neptune and Uranus. After this, Neptune and Uranus have a series of encounters due to
their orbits decreasing their relative distance. This series of encounters causes both planets to un-
dergo drastic changes in semi-major axis a and eccentricity e, as can be observed from figure 2.12
and results in effects such as the swapping of positions and expansion into larger semi-major axis
orbits.
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Figure 2.12: Evolution of the Solar System as depicted in the Nice model [Tsiganis et al., 2005].
This a/q/Q plot displays the semi-major axis a (where q = a(1− e)), the perihelion distance q,
and the Aphelion distance Q (where Q = a(1 + e)). The plot illustrates how the semi-major axis
and eccentricity of the planets evolve over time, providing insights into the dynamic changes and
resonant interactions within the Solar System.
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3 Numerical method

3.1 Mechanics

As mentioned in the N-body problem section 2.1, the algebraic solutions known to the n-body
problem are of limited use so numerical solutions are instead utilised to solve the differential
equations (2.3). This paper uses Leapfrog integration for numerical integration, suitable because
acceleration depends only on position, not velocity. Before the numerical integration method is
described, it is important to understand how each particle is described in the simulation; a particle
i is initialised with a mass mi (which stays constant throughout the run), a 3D-Cartesian position
r⃗i = (xi, yi, zi) and its corresponding velocity v⃗i in 3D-Cartesian coordinates, as well. These are
then updated each time-step according to the Leapfrog integration, which is described by

r⃗i,n+1 = r⃗i,n + v⃗i,ndt +
1
2

a⃗i,ndt2 (3.1a)

v⃗i,n+1 = v⃗i,n +
1
2
(⃗ai,n + a⃗i,n+1)dt. (3.1b)

In these equations r⃗i,n is the position vector of particle i at time-step n, v⃗i,n the velocity vector, a⃗i,n
the acceleration vector and dt the size of the time-step. The time after n iterations would then be t =
n ·dt. At each iteration, ai,n+1 is calculated using equation (2.3), which is computationally intensive
due to its non-linear nature. For this reason, array multiplications in Numpy (Python) were used
to save time over alternatives such as for-loops. To outline the computations executed, equation
(2.3) shall be rewritten with their indices and quantities shall be defined to make particular steps
simpler. First equation (2.3) can be rewritten by denoting a subscript for each vector component:

aiχ = ∑
j ̸=i

Gmj
rjχ − riχ

|rjχ − riχ|3
, (3.2)

where χ is this new index. To simplify this expression two related quantities shall be defined:

Rijχ ≡ rjχ − riχ (3.3)

and

Tij ≡
(

R2
ij0 + R2

ij1 + R2
ij2

)−3/2
, (3.4)

where Tij is ill-defined for i = j as it would equal to the undefined 0−3/2. For this reason the
definition is modified to

Tij ≡
(

R2
ij0 + R2

ij1 + R2
ij2 + D

)−3/2
, (3.5)

where Dij is a quantity defined by

Dij =

{
∞ i = j
0 else.

(3.6)

In the implementation, ∞ from the Python math library is used, which functionally represents a
number that satisfies the following properties:

∞ + c = ∞, c ∈ R (3.7a)

∞−3/2 = 0. (3.7b)
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3 Numerical method

Effectively, this has the same effect as the case of not computing i = j, however, due to limitations
in software and knowledge the speed increase of arrays could not be combined with disallowing it
to compute the entire operation. In conclusion, the acceleration is then computed by

aiχ = ∑
j

GmjRijχTij. (3.8)

To outline how the algorithm functions, some pseudocode has been written:
m← minitial
r ← rinitial
v← vinitial
gravity interaction constant[i, j] ← G· m[:, newaxis]
D ← ∞ · diag(length(m))
procedure a(r)

R← r[newaxis, :, :]− r[:, newaxis, :]
T ←

(
(r[i, j, 0]2 + r[i, j, 1]2 + r[i, j, 2]2)

)−3/2

return ∑j gravity interaction constant[i, j]R[i, j, ξ]T[i, j]3

end procedure
a← A(r)
while Do Iteration = True do

r ← r + vdt + 1
2 adt2

a′ ← A(r)
v← 1

2 (a + a′)dt
a← a′

end while

In following sections this program shall be used with varying initial conditions, initially to test
accuracy and later to verify and find results. This algorithm shall, however, be slightly altered
when the mechanics of interactions with the asteroid cloud are added.

3.2 Initialisation

To initialise leapfrog, the initial position and velocity need to be given. For every simulation it is
outlined in detail how this is initialised.

Generally, the Sun (called the Sun because it has the mass of the Sun) will always have the position
and velocity values such that ∑ mi⃗ri = 0⃗ and ∑ mi v⃗i = 0⃗, where i refers to all the other bodies, this
is done to set the center of mass stationary at the origin. The Sun shall therefore be omitted from
the specific initial conditions.

Asteroid in L4
Parameters: δx, δy, δẋ, and δẏ define deviations in position and velocity from the L4 point in the
rotating frame.
Constant values: distance between the outer body and the Sun d = 5AU and the mass-ratio µ2 =
0.01.
First, the angular velocity was calculated by n =

√
GM⊙

d3(1−µ2)
. After this, the outer body was placed

with position r⃗2 = ((1− µ2) · d, 0, 0) and velocity (0, (1− µ2)d · n, 0). The test-particle was then
positioned at r⃗3 = (( 1

2 −mu2)d + δx, 1
2

√
3d + δy, 0). The angle θ3 and distance r3 of this point were

then calculated, after which the velocity was calculated by v⃗3 = (cos θ3nr + δẋ, sin θ3nr + δẏ, 0).

Test particle in 2:1 resonance
Parameters: a0, e0 and ϖ0, describing the orbit of the test-particle.
Constant values: distance between the outer body and the Sun d = 5AU and the mass-ratio
µ2 = 0.001.
Two bodies were initialised. The outer body was placed similarly to last initial conditions at po-

sition r⃗2 = ((1 − µ2) · d, 0, 0) and velocity (0, (1 − µ2)d · n, 0) with n =
√

GM⊙
d3(1−µ2)

. The particle
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3.3 Adaptive time-steps

was then initialised at the positive x-axis. The parameter ϖ0 ∈ {0, π} gives two different ini-
tial conditions. If ϖ0 = 0, the initial position is at perihelion, r⃗3 = ((1 − e0)a0, 0, 0), with ve-

locity v⃗3 = (0,
√
GM⊙

a0

1+e0
1−e0

). For ϖ0 = π, the position is r⃗3 = ((1 + e0)a0, 0, 0) and velocity is

v⃗3 = (0,
√
GM⊙

a0

1−e0
1+e0

). Similarly, if ϖ0 = π the position would be r⃗3 = ((1 + e0)a0, 0, 0) and the

velocity v⃗3 = (0,
√
GM⊙

a0

1−e0
1+e0

).

Two planets in 2:1 resonance
Parameters: a0, e0 and ϖ0, describing the orbit of the test-particle.
Constant values: distance between the outer body and the Sun d = 8.65AU and the mass of Jupiter
and Saturn for the inner and outer body respectively.
These are the same initial conditions as the previous simulation except for the fact that the test-
particle had Jupiter’s mass and the outer particle Saturn’s. Furthermore, the distance to the outer
object was set to be d = 8.65AU and a0 was scaled appropriately.

Nice model
Parameters: In this simulation four planets were initialised with masses of Jupiter, Saturn, Uranus
and Neptune, from inner to outer planet (note that this is different from the Nice paper as they
initialised Uranus as the outer planet). These planets were initialised with a random e, ω, Ω and I,
of which e and I were chosen from a uniform distribution between −10−3 and 10−3, while ω and
Ω were chosen from a uniform distribution between −π and π. The semi-major axis of Uranus
and Neptune were picked randomly from 11− 13AU and 13.5− 17AU with the initial condition
that they are at least 2AU apart.
Constant values: Jupiter’s and Saturn’s semi-major axis with values of 5.45AU and 8.65AU respec-
tively.
The initial values were calculated from these orbital elements by initialising the planet at po-

sition r⃗i = ((1 − ei)ai, 0, 0) and velocity v⃗i = (0,
√
GM⊙

ai

1+ei
1−ei

), which was afterwards rotated by

R̂z(Ω)R̂x(I)R̂z(ω).

3.3 Adaptive time-steps

The time-step dt was initially too large for accurate close-encounter calculations, but reducing dt
significantly increased computation time. Therefore, instead of a constant dt, a variable dt was
opted for. The basic principle for choosing the dt at a particular moment is that ∥⃗a∥dt ≪ ∥v⃗∥, so
instead of a dt parameter, a parameter k was chosen such that dt could be found by a particular
procedure: to find dt the minimum of {k · ∥v⃗∥i / ∥⃗a∥i} was considered, where vi is the speed of
body i and ai the acceleration. This presents an issue, however. To use leapfrog correctly, the dt
has to be consistent throughout the entire time-step. But, during the time-step the accelerational
influences are calculated which are used to calculate the dt. So knowledge of the time-step has
to be used before the time-step. To address this, an initial dt is selected based on the previous
iteration and then adjusted if it proves insufficient during the attempted time-step. If the time-step
necessary for the time-step is less than 0.9× the used dt, the time-step is tried again but with this
new value for dt. This process is iterated multiple times until an appropriate dt is found.
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4 Results

In this chapter the results of various simulations are presented building up to simulating the Nice
model (without the influence of a disk of planetoids). Various orbital resonances are considered,
starting with 1:1 resonance of L4 with a test particle and then proceeding to a 2:1 resonance with
a test particle, after which the test particle is replaced by a particle with mass. These simulations
give insight into the general principles of resonance and helps with finding suitable time-scales
for the simulation of the Nice model. After this, the Nice model is considered without asteroids.
From this several phenomena van be observed such as resonance, close-encounters, ejections and
orbit-catching.

4.1 The 1:1 resonance, L4

First, motions about L4 are considered. This is done because L4 is an example of a 1:1 resonance, the
strongest resonance. Furthermore, L4’s (and that of L5) analytical description is the most extensive,
see section 2.4, which allows for a simpler analysis.

In the following tests two bodies were set in circular motions around each other with a distance of
d = 5AU and a mass ratio of µ2 = 0.01. This circular motion was initialised by placing the two
bodies on the x-axis with corresponding speeds as described in equation (2.15).

First a test was ran to observe the deviation from the center point, since a test-particle should be
stationary at L4. For this the x-values of the test particle were transformed by ∆x/d = (x − (1−
µ2)d)/d and the y-values by ∆y/d = (y− ( 1

2

√
3)d/d). Using these quantities the ”absolute relative

deviation” was then calculated by
√

∆y/d2 + ∆x/d2. The results are shown for time-steps 104s in
figure 4.1 and 105s in figure 4.2.

From these figures an oscillatory motion can be observed in figure 4.3 and figure 4.4. In these
oscillations the maximum deviation is most important as that is an indicator of the precision of
distance of the simulation. For this reason, the maximum deviation was plotted over time in
figure 4.5. A least squares fit was made to a straight line of this figure was made, from which the
relation log δr

d ≈ 2.00 log dt− 36.38 was found with a variance of 2.62× 10−7 and 3.66× 10−5 for
the variables respectively. The scaling of the error is therefore quadratic, which agrees with the fact
that Leapfrog is a second order integrator.

After these tests the analytical solution of a slight deviation ∆x/d = ∆y/d = 10−5 was tested
against the theoretical result of equation (2.44). The parameters were found to be sufficiently
similar to the theoretical value, however, the phase of the solution and the simulation differed
significantly. This phase difference differed with −0.002yr/900yr with significant changes to dt
(103s and 105s). This offset is illustrated in figure 4.6 and figure 4.7. Therefore, the phase difference
is explained as an artifact of the theoretical approximation of Taylor series and the experimental
value from 105s is considered sufficient to model the motion of planets close to L4. The change of
−0.002yr/900yr is not deemed significant and therefore the

The phase off-set also means that the analytical solution is limited in testing the accuracy of the
simulation as making the analytical solution more accurate would decrease the distance, but this
would make the error from the simulation more significant. The key insights are that the error
changes asymptotically quadratically and the scale of error is approximately 10−5 of the distance
for time-steps of 105s.
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4 Results

Figure 4.1: A plot of the relative distance from L4, that is, the distance divided by the distance
between the two large masses d. This simulation was ran with time-steps of 104 seconds.

Figure 4.2: A similar plot to that of 4.1 but with time-steps of 105 seconds.
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4.1 The 1:1 resonance, L4

Figure 4.3: The path of an object starting close to L4. It can be seen that it oscillates about this point.
Additionally, this shape seems similar to that of a cycloid.

Figure 4.4: The x and y values divided by the separation between the Sun and the planet.
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4 Results

Figure 4.5: The maximum relative deviation against the time-steps of the simulation. A linear
relation can be observed between log dt = log ∆x

d . It follows from the slope of 2 decades per
decade that the error is quadratic in dt.

Figure 4.6: The numerical solution and the analytical solution near L4 with starting conditions
x − x0/d = y − y0/d = 10−5 after 900yr. After this time the numerical solutions seems to lag
behind the analytical solution with about 9.419yr
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4.2 2:1 Resonance with test-particle

Figure 4.7: Similar test to 4.6 where the numerical and analytical solution of motion near L4 with
starting conditions x− x0/d = y− y0/d = 10−5 are compared after 900yr.

Plot a0 e0 ϖ0
a 0.625277 0.128386 0
b 0.633424 0.0725011 0
c 0.637837 0.0122862 0
d 0.636705 0.060146 π
e 0.638222 0.0184545 π
f 0.610592 0.1975 0

Table 4.1: Initial conditions for the various tests which will be ran in this section, taken from
[Murray and Dermott, 2000].

4.2 2:1 Resonance with test-particle

Now a more complex resonance is considered: the 2:1 resonance. The consideration of this res-
onance is important because such a resonance is forced between Jupiter and Saturn in the Nice
model. First, a test-particle is considered in this section, as this allows to isolate certain effects of
resonance and a sufficient time-scale can be observed by comparing the results with those out of
the literature.

Taken from [Murray and Dermott, 2000] the following orbital elements were chosen as initial con-
ditions for a variety of tests. These orbital elements were calculated as if the Sun was located at
the origin (which coincides with center of mass). These values were chosen to research the 2:1
resonance. This particle was initialised with these orbital elements at the x-axis with a positive z-
component of the angular velocity. The Sun and an outer object such that µ2 = 0.001 and d = 5AU
were initialised at the x-axis with a positive z-component of the angular velocity, as well. The outer
body was initialised at the positive x-axis, whereas the Sun at the negative x-axis. These two bodies
were initialised such that they would orbit around each other with a d = 5AU and with the CM at
the origin, so as described in 2.4.2.

From these tests plots were created of the orbital elements a, e and ϖ. Additionally, an angle
describing an orbital resonance parameter (named the resonance angle in section 2.7) was plotted
as well with the value φ1 = 2ν2 − ν1 − 2ϖ1, where the index 1 refers to the test particle and
the index 2 to the massive body. The quantity φ1 is important because it illustrates the angle
from the periapsis at which the two objects have a close encounter. This can be confirmed by
considering an arbitrary point at which the test-particle resides at angle ν1 + ϖ1 and the outer
body at angle ν2 (there is no ϖ2 term because the light body has a circular orbit, so the periapsis
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is ill-defined, instead it is assumed to be 0 where it was initialised). The two bodies then meet at
angle ν1 + ϖ1 + 2nt = ν2 + nt =⇒ nt = ν2 − ν1 − ϖ1, so the angle at which they meet has value
ν2 + (ν2 − ν1 −ϖ1) = 2ν1 − ν2 −ϖ2. The angle from the periapsis is then minus ϖ2, giving

angle of close encounter from periapsis = φ1 = 2ν2 − ν1 − 2ϖ1. (4.1)

These plots have been made for time-steps of dt = 105s and dt = 106s shown in figures (4.8 and
4.9) respectively. Comparing the plots with results obtained in [Murray and Dermott, 2000], it can
be seen that the dt = 105s closely resembles the plots obtained in that book, whereas dt = 106s
strongly deviates for (e) and ( f ). The initial conditions of the test-particle deviated significantly
between (e) and ( f ), yet the path of ( f ) in the 106s simulation resembles that of what (e)’s path
is according to the 105s and the citation. This shows how sensitive resonances can be and the
importance of choosing appropriate time-steps.

Additionally, the orbital elements seem to change in periodic ways. For all the plots the semi-major
axis a and the eccentricity e seem to deviate around a particular value. (a), (b) and (c) can be
categorised by the behaviour of φ1 which deviates around 0 but never completes a full rotation,
this is known as libration and it’s a indicator for resonance. Furthermore, in the (a), (b) and (c)
plots the semi-major axis a deviates around its resonance ratio of 22/3. (d) has the bodies pass
each other opposite of the periapsis as can be seen from φ1. The resonance ratio can be found by
considering a2/a1 in the third Kepler law, equation (2.8), given that T2/T1 = 1/2.

Furthermore, for the plots (a)-(d) in figure 4.8 it can be observed that the motion is in a specific kind
of resonance because the resonant angle ϕ librates but does not circulate. Whereas in (e) and (f) in
figure 4.8 they do circulate. From this it is concluded that these are different types of resonance,
for (a)-(d) there is a particular ”force” keeping the resonant-angle to a particular value, but for (e)
and (f) this force is not strong enough.

In conclusion, it was observed that resonances are highly sensitive to errors by comparing compu-
tations with time-steps 105s and 106s. From this it was also found that 105s is a sufficient time-step
for resonance at a distance of approximately 3AU. Furthermore, it was observed that planet’s semi-
major axis a and eccentricity e oscillate when in resonance and that the type of resonance can be
observed from a quantity φ1 = 2ν2 − ν1 −ϖ1.
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4.2 2:1 Resonance with test-particle

Figure 4.8: These figures show the variance of orbital elements of different 2:1 resonances over a
time-scale of 100 circulations of an outer body with µ2 = 0.001. In each plot a is the semi-major
axis (on a scale from 3AU to 3.25AU), e represents the eccentricity (on a scale from 0 to 0.2), ϖ
longitude of periapsis (on a scale from −π to π rad) and φ a quantity defined by 2ν2 − ν1 − 2ϖ
(on a scale from −π to π rad). The initial values are given in table 4.1. All of these figures were
created with time-steps of 105s.
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Figure 4.9: Plots of different orbital elements for different types of 2:1 resonances, described more
precisely in figure 4.8, which is identical to these plots except that time-steps of 105s were used to
create the plots instead of 106s, which were used for these plots.
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4.3 2:1 resonance tests of planets

4.3 2:1 resonance tests of planets

The tests from previous section were executed again, except no longer a test-particle is used as
the inner object, but instead a body Jupiter’s and the outer body has been given Saturn’s mass.
Additionally, the outer planet was placed at a distance of 8.65AU to mimic that of Saturn in the
Nice model.

The key difference between these two simulations is that both orbiting bodies influence each other’s
orbits instead of only the outer body influencing the inner. This results in more variables, which is
why there are now two plots for every a, e and ϖ.

Comparing these plots with those of the previous section it can be observed that (a), (b) and (c)
have similar plots for the orbital elements except that deviations in a and e are dampened for (b)
and (c) and is less constant for (a). Furthermore, the change in ϖ is dampened for all of these
plots. The plots of (d), (e) and (f) have significantly different patterns and most notably is the
(e) plot which seems strongly resonant. For most plots e increases, suggesting that the plots are
not periodic for larger time-steps. To illustrate this, the most aperiodic plots (c) and (e) have been
simulated for 1000 cycles of the outer body.

It is also interesting to consider Jupiter and Saturn in their initial conditions as they would be in
the Nice model. That is, Jupiter at 5.45AU and Saturn at 8.65, both in near circular co-planar orbits
(e and i on the scale of 10−3).
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Figure 4.10: Orbital elements of two planets starting over a time-scale of 1000 circulations of the
outer body. The inner and outer body were given the masses of Jupiter and Saturn respectively. In
each plot a is the semi-major axis (on a scale from on a scale from 5.2 to 5.6AU for the inner body
and 8.25 to 8.9AU for the outer), e represents the eccentricity (on a scale from 0 to 0.2 for both), ϖ
longitude of periapsis (on a scale from −π to π rad) and φ a quantity defined by 2ν2− ν1− 2ϖ (on
a scale from −π to π rad). The initial values are given in table (4.1).
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4.3 2:1 resonance tests of planets

Figure 4.11: The orbital elements of initial conditions (b) and (f) respectively for 1000 outer periods.
The specifics of these initial conditions are also given in the titles of the respective plots. These
plots were shown for 100 outer periods in 4.3 and were both plotted because the eccentricity e did
not appear periodic in these plots. It is in this figure that that this is indeed the case.
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Figure 4.12: Orbital elements of Jupiter and Saturn initialised as in the Nice model. a is the semi-
major axis (on a scale from on a scale from 5.2 to 5.6AU for the inner body and 8.25 to 8.9AU for
the outer), e represents the eccentricity (on a scale from 0 to 0.2 for both), ϖ longitude of periapsis
(on a scale from −π to π rad) and φ a quantity defined by 2ν2 − ν1 − 2ϖ (on a scale from −π to π
rad).
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Figure 4.13: Run of our Nice model depicting oscilations due to resonance.

4.4 Four planets in resonance chain

To study the effects of orbital resonance, a ”resonance-chain” has been created. That is, a multitude
of planets which have initial semi-major axes so that the frequencies of the neighbouring orbits are
close to resonance just like in the Nice model. This model differs significantly from the Nice model,
however, as it does not include a disk of planetoids. To attain this resonance the planets have been
initialised close to TJ : TS ≈ 2 : 1, TS : TU ≈ 3 : 2 and TU : TN , where TJ , TS, TU and TN are the
periods of Jupiter, Saturn, Uranus and Neptune respectively. Additionally, the eccentricities and
inclinations were chosen from a uniform distribution between −10−3 and 10−3. The semi-major
axis values given to the planets to attain these values close to resonance are

1. Jupiter : 5.45 AU

2. Saturn : 8.65 AU

3. Uranus : 11-13 AU

4. Neptune : 13.5-17 AU,

where Uranus and Neptune are additionally separated by at least 2 AU.

From these plots particular phenomena could be observed. Firstly, as noted in section 4.3, the semi-
major and the eccentricity oscillate when in resonance as can be observed in figure 4.13. The eccen-
tricity tends to oscillate most significantly which causes the distance between the different orbits
to decrease. It can also be observed that these effects are most notable for the lightest outer plan-
ets Uranus and Neptune. When two planets’ orbits cross they can start having close-encounters,
shown in figure 4.14. In these cases the semi-major axis and eccentricity change drastically. In that
figure it can also be observed that the orbits of Uranus and Neptune stay close to one another, this
is explained because the point at which the planets change orbit should be included in the new
path. The influence of the two planets can sometimes be so great that one of the planets is ejected
as shown in figure 4.15. The effect of two planets having a prolonged close-distance is labeled
”locking” in this paper. When Uranus and Neptune are displaced by a larger distance, Uranus
can first lock with Saturn as shown in figure 4.16. When this happens, like in the previous case,
the orbits of Saturn and Uranus significantly change each other’s semi-major axis and eccentricity
causing one of the orbits to cross Neptune’s orbit as well. Due to this ”multi-locking” the Solar

51



4 Results

Figure 4.14: Run of our Nice model depicting Uranus and Neptune closing in on each other, after
which at around t ≈ 0.3 × 106yr they have a close encounter and Neptune is ejected into an
eccentric orbit.

Figure 4.15: Run of our Nice model depicting an ejection of Uranus at around t ≈ 0.1× 106yr, after
which Neptune is knocked into a more eccentric orbit with higher semi-major axis.
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Figure 4.16: Run of our Nice model depicting Uranus influencing Saturn’s and Neptune’s orbit
strongly due to the distance between the orbits from around t = 0.5× 106yr. After chaotic changes,
Uranus is ejected from the Solar System at around 0.7× 106yr, after which Saturn and Neptune
keep changing each other’s orbit.

system undergoes a chaotic evolution. In the case of figure 4.16 Uranus is ejected from the Solar
system, Jupiter ends up with a significant eccentricity and Saturn and Neptune remain locked with
each other, resulting in significant changes in the future.

Error analysis We tested the accuracy of our simulations by studying the constants of motion:
energy, linear momentum and angular momentum. These values are theoretically constant and
therefore provide an indication of the error. These values are calculated by

E = ∑
i

1
2

mi v⃗i · v⃗i −∑
ij

Gmimj

rij
(4.2a)

p⃗ = ∑
i

mi v⃗i (4.2b)

L⃗ = ∑
i

mi⃗ri × v⃗i, (4.2c)

where E, p⃗ and L⃗ are the energy, linear momentum and angular momentum respectively, mi, r⃗i
and v⃗i the mass, position and velocity of body i and rij the distance between body i and body j.
The total energy, absolute value of linear momentum, and the z-value of angular momentum of
the systems were plotted, as shown in Figures (4.17, 4.18, 4.19 and 4.20). These plots reveal key
insights into the behavior of these conserved quantities under different dynamical scenarios.

In figure 4.17, the total energy exhibits oscillations around a mean value, with deviates on the
order of 2× 10−3. Similarly, the linear momentum oscillates with deviations around 1× 10−1, and
the angular momentum fluctuates approximately 1.0× 10−3, thought with a shifting mean. There
variations are attributed to noise inherent in these simulations. Examining figure 4.18 it becomes
evident that close encounters result in significant changes in the mean values of both total energy
and angular momentum. Additionally, the noises levels for both linear and angular momentum
increase following these encounters. In the case of an ejection event following a close encounter,
as shown in figure 4.19, the mean value of the momentum shifts, resulting in the center of mass
(CM) of the system moving over time. Consequently, the angular momentum error grows linearly.
Aside from this effect, the total energy exhibits a discontinuous jump to a new mean value, and
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Figure 4.17: Relative deviation of total energy, linear momentum and angular momentum of figure
4.13. It can be observed that all the conserved quantities have a noise-like error which is on the
scale of 10−3 for the energy and the angular momentum, while it is on the scale of 10−1 for the
momentum.
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4.4 Four planets in resonance chain

Figure 4.18: Relative deviation of total energy, linear momentum and angular momentum of figure
4.14. A discontinuity can be observed in the energy and angular momentum plot around t =
0.3× 106yr. Additionally, the angular momentum and the linear momentum increase their noise-
like error after this event.
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the noise in the momentum also increases after the event, similar to what is observed during close
encounters. Finally, the cumulative effect for multiple close encounters and a single ejection is
presented in figure 4.20. This plot illustrates the combined impact on the conserved quantities,
reinforcing the observations made in the previous scenarios. In summary, the analysis of these
plots indicates that while noise is present in all simulations, close encounters and ejections lead
to noticeable discontinuities in energy and angular momentum. These events also cause a marked
increase in noise levels, particularly in linear and angular momentum, due to the shifting center of
mass and other dynamical effects.
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Figure 4.19: Relative deviation of total energy, linear momentum and angular momentum of figure
4.15. A discontinuity can be observed in the energy and linear momentum plot around t = 0.1×
106yr. Additionally, the noise of the linear momentum increases after this point. Because of the
moving center of mass (the average of p is not constant) the angular momentum’s error increases
linear from t = 0.1× 106yr.
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Figure 4.20: Relative deviation of total energy, linear momentum and angular momentum of figure
4.16. Significant results can be found around t = 0.5 × 106yr, during which all the conserved
quantities change and an event around 0.7× 106yr after which the angular momentum linearly
increases, suggesting an ejection, as can be verified from figure 4.16.
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Figure 4.21: Run of our Nice model with adaptive time-steps. Most notable is the ejection of Uranus
at approximately t = 0.8× 106yr

4.4.1 Resonance chain with adaptive time-steps

To reduce the uncertainty in energy, linear momentum and angular momentum, adaptive time-
steps have been implemented as outlined in in section 3.3. While the improvement in accuracy was
not drastic, it was nonetheless significant. Figure 4.21 illustrates the evolution of the Solar System
with adaptive time-steps, showing features similar to those observed in figure 4.16, considered
previously, without adaptive time-steps.

error analysis The errors in total energy, linear momentum, and angular momentum are pre-
sented in figure 4.22. These results are compared with those from the similar scenario depicted
in figure 4.20. The energy profile in the adaptive time-step scenario displays multiple jumps, but
over a smaller range (from −1.5 to 1.5× 10−2), compared to the larger range observed in the non-
adaptive case (from −4.5 to 2.5×−2), This general trend of reduced error is consistent across all
conserved quantities, including total energy, linear momentum, and angular momentum.

A particularly promising observation is that, during the ejection event, the energy profile does
not exhibit a continuous jump. The absence of discontinuity strengthens the confidence that ejec-
tions are a physically plausible outcome in the Solar System, as captured by the simulations with
adaptive time-steps.

In summary, the implementation of adaptive time-steps has led to a notable reduction in the uncer-
tainties associated with energy and momentum. The more stable behavior of conserved quantities,
particularly during critical events such as ejections, enhances the confidence that these events rep-
resent realistic dynamical features of the Solar System.

The plots have shown various dynamical conditions of oscillating eccentricities e, locking, close-
encounters and ejections. These results suggest that resonance is a strong explanation for rapid
evolution of the Solar System as is suggested in the Nice model. Furthermore, ejections of plan-
ets such as observed in revisions of the Nice model are seen in this paper as well, increasing the
likelihood of such a conclusion. Additionally, this paper has strong educational relevance in un-
derstanding the effects of resonance, due to the different types considered and the approach of
isolating resonance from all other effects which are usually considered in the Nice model.
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4 Results

Figure 4.22: Relative deviation of total energy and momentum of figure 4.21. From the angular
momentum plot it can be seen that there are 2 significant events at around 0.45× 106yr and 0.8×
106yr. By comparing the timescale with that of figure 4.21 it can be seen that the first event is
when Uranus starts having close encounters with Saturn and Neptune, changing its semi-major
axis significantly and the last event is the ejection of Uranus.
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5 Conclusion

In this paper, we investigated gravitational resonances using a variety of initial conditions for bod-
ies in co-planar orbits around a central massive object, at least 1000 times heavier than the orbiting
bodies. Simulations were conducted using a second-order leapfrog integrator, which calculated
accelerations via optimized brute-force methods based on array multiplication.

We began by examining motions near the L4 Lagrange point. This provided an estimate of the
simulation’s numerical deviation and insights into the analytical solution near L4. The analytical
solution, which involves a Taylor approximation of the potential, deviates from the numerical
results, leading to a gradual phase shift. A comparison between the analytical and numerical
solutions revealed that the solution shifted by 9.42 years over a 1000-year period, indicating the
limitations of the analytical approximation in capturing long-term behavior.

Next, we explored the 2:1 resonance, both with and without a test particle. Different initial con-
ditions were used to trigger various types of resonances, revealing the sensitive nature of these
systems. Even small changes in time-steps could lead to significantly different outcomes and res-
onance patterns. In these simulations, the semi-major axis a and eccentricity e were observed to
oscillate, with the resonance angle φ serving as a valuable tool for analyzing the types of reso-
nances. The test-particle scenario exhibited strong periodicity, while simulations involving two
massive bodies tended to display chaotic behavior. This chaotic behavior was particularly evident
as the eccentricity of the outer body increased, leading to more pronounced dynamical effects.

Finally, we simulated the Solar System using a configuration similar to the Nice model, excluding
planetoids, and with Uranus and Neptune swapped from their current positions. These simulations
revealed consistent phenomena across different runs. Initially, the planets’ orbits oscillated in both
semi-major axis a and eccentricity e, causing their orbits to gradually converge. Once the planets
reached a critical proximity, close encounters occurred, but these encounters did not increase the
distance between the planets. Instead, the planets became “locked” in their orbits unless one was
eventually ejected from the Solar System, resulting in chaotic outcomes where one planet was
typically expelled.

The plots have shown various dynamical conditions of oscillating eccentricities e, locking, close-
encounters and ejections. These results suggest that resonance is a strong explanation for rapid
evolution of the Solar System as is suggested in the Nice model. Furthermore, ejections of planets
such as observed in revisions of the Nice model are seen in this paper as well. Overall the signifi-
cance of these results is that resonance is found as a strong factor of these drastic dynamics.
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6 Further Research

Due to time constraints, this study only scratches the surface of the complexities involved in the
evolution of the Solar System under Nice model conditions. We propose three areas for further
research:

1. Planetoid Disc: As discussed in Section 2.8, planetoids play a crucial role in damping eccen-
tricity and inclination, allowing planets to escape from orbital locking. Future studies could model
planetoids as a homogeneous disc extending from Neptune’s initial position to approximately 30
AU. Alternatively, planetoids could be modeled individually and calculated via brute force, as in
the original Nice model study [Tsiganis et al., 2005].

2. More Accurate Integrator: The simulations exhibited significant errors in conserved quantities
such as energy and momentum. Using a more accurate integrator could help mitigate these errors,
leading to more precise results.

3. More Efficient Algorithm or Enhanced Computing Power: The accuracy of the simulations
could also be improved by decreasing the time-step ∆t, but this was not feasible in our study due
to the inefficiency of Python and limited access to high-end computing resources. Utilizing more
efficient algorithms or more powerful computational tools could alleviate this issue.
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