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ABSTRACT2

Global soft fruit supply chains rely on trustworthy descriptions of product quality. However, crucial3
criteria such as sweetness and firmness cannot be accurately established without destroying the4
fruit. Since traditional alternatives are subjective assessments by human experts, it is desirable to5
obtain quality estimations in a consistent and non-destructive manner. The majority of research6
on fruit quality measurements analyzed fruits in the lab with uniform data collection. However,7
it is laborious and expensive to scale up to the level of the whole yield. The “harvest-first,8
analysis-second” method also comes too late to decide to adjust harvesting schedules.9

In this research, we validated our hypothesis of using in-field data acquirable via commodity10
hardware to obtain acceptable accuracies. The primary instance that the research concerns is11
the sugariness of strawberries, described by the juice’s total soluble solid (TSS) content (unit:12
°Brix or Brix). We benchmarked the accuracy of strawberry Brix prediction using convolutional13
neural networks (CNN), variational autoencoders (VAE), principal component analysis (PCA),14
kernelized ridge regression (KRR), and support vector regression (SVR), based on fusions of15
image data, environmental records, and plant load information, etc. Our results suggest that: (i)16
models trained by environment and plant load data can perform reliable prediction of aggregated17
Brix values, with the lowest RMSE at 0.59; (ii) using image data can further supplement the18
Brix predictions of individual fruits from (i), from 1.27 to 1.10, but they by themselves are not19
sufficiently reliable.20

Keywords: Non-Destructive Analysis, In-Field Test, Machine Learning, Computer Vision, Data Fusion, Feature Selection, Total Soluble21
Solid, Crop Management22
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1 INTRODUCTION

Soft fruits such as strawberries, raspberries, blueberries, etc. are popular and profitable fruit varieties. The23
annual consumption of strawberries in Europe is estimated to be more than 1.2 million tonnes, which leads24
the market share of horticultural crops (Ministry of Foreign Affairs (CBI), 2021a,b; Calleja et al., 2012).25
Worldwide production of strawberries is stable with increasing demands and prices and is continuously26
growing even through the COVID-19 pandemic (Chandler et al., 2012; Ministry of Foreign Affairs (CBI),27
2021b; Simpson, 2018; Bos-Brouwers et al., 2015). However, without the protection of hard skins, soft28
fruits are vulnerable during production and post-harvest activities. This results in significant food waste29
and economic loss (Food and Agriculture Organization of the United Nations, 2011; Fruitteelt, 1991;30
Stenmarck et al., 2016). The food loss and waste comprise up to 50% loss along the supply chain in some31
countries (Kelly et al., 2019; Rees et al., 2012), among which the production loss is the majority, which32
consists of up to 20% (Porat et al., 2018; Terry et al., 2011). It has been estimated that for every ton of food33
waste, C1,900 of production and processing costs are lost. Moreover, it is argued that 50% of the waste34
could be edible (Stenmarck et al., 2016).35

The nutritional and economic value of crops is influenced by the harvesting strategy. However, subjective36
assessments and inappropriate maintenance of fruit quality could bring conflicts in logistics planning37
between suppliers and distributors, which results in even further post-harvest loss (Ramana et al., 1981;38
Elik et al., 2019). Therefore, early decision-making supports both ecological and economic interests. To39
make logistic and harvesting decisions as early as possible, it is highly desirable to predict the quality of40
ready-to-harvest strawberries in the field (Lezoche et al., 2020; Abasi et al., 2018; Corallo et al., 2018;41
Soosay and Kannusam, 2018).42

Multiple variables determine the quality of a strawberry, including maturity, shape, sweetness, and43
firmness (Liu et al., 2014; Xu and Zhao, 2010; Montero et al., 1996). As the majority of strawberry44
products are consumed fresh, the taste is the highest priority for most European consumers of strawberries45
(Chandler et al., 2012; Ministry of Foreign Affairs (CBI), 2021b). Therefore, we narrow our research scope46
of this paper to concern the interior quality of the fruit, which is not directly told by their appearances: this47
paper explores the assessment of the level of sweetness of strawberries, which is quantitatively described48
by total soluble solid (TSS) content in the juice of freshly harvested fruits, using informatics and machine49
learning (ML) approaches.50

Traditionally, the TSS content is measured by a refractometer, quantified by the degree Brix (°Brix or51
Brix) (Azodanlou et al., 2003). The measurement is expensive in both labor cost and capital because the52
samples that are sent to destructive measurements can no longer be sold (Gómez et al., 2006; Agulheiro-53
Santos et al., 2022). To reduce errors and optimize the supply chain, there is a desire for more accurate,54
quantitative, and non-destructive tools to assess the quality of each fruit (Ventura et al., 1998; Mancini55
et al., 2020). Therefore, we explore the feasibility of Brix prediction with easily-acquirable data, such that56
the prediction can be carried out on-site without specific fruit preparation.57

Related research has demonstrated the feasibility of applying computer vision (CV) in grading the quality58
of fruits (Liu et al., 2017; Klinbumrung and Teerachaichayut, 2018; Munera et al., 2017; Zhang et al., 2016)59
and in assessing specific quality attributes (Vandendriessche et al., 2013; Montero et al., 1996; Azodanlou60
et al., 2003; Abeytilakarathna et al., 2013). CV and spectral analysis from hyperspectral imaging (HSI)61
are popular techniques that have often been applied in investigating the intrinsic properties (Gao et al.,62
2020; Liu et al., 2019; Amodio et al., 2019; Agulheiro-Santos et al., 2022). High prediction accuracy63
could be was achieved when fruit photos were acquired under a (mostly-)uniform experiment setup (Nandi64
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et al., 2016; Mancini et al., 2020; Shao et al., 2021; Weng et al., 2020; Xu and Zhao, 2010). Such setup65
requires delicate devices which hinder the applications in a real-world setting and on an enormous number66
of samples. Moreover, the ”harvest first, analysis second” methodology limits the possibility of adjusting67
the harvest strategy for supply chain optimizations because strawberries stop growing after being harvested.68
Hence, our study concerns the implication of the fruit’s intrinsic characteristics by its appearance under69
natural light, when the fruit is still on the plant.70

Meanwhile, the micro-climate in the greenhouse and the horticultural treatments strongly influence71
the harvest quality and pace of growing (Choi et al., 2015; Dı́az-Galián et al., 2021; Sim et al., 2020).72
The temperature, humidity, CO2 level, lighting conditions, and irrigation are proven to be crucial factors73
(HIDAKA et al., 2016; Sim et al., 2020; Avsar et al., 2018; Corallo et al., 2018; Muangprathub et al., 2019).74
The crop load is also argued to influence the quality of fruits (Verrelst et al., 2013; Belda et al., 2020;75
Correia et al., 2011). In modern horticulture, environmental data is readily collected by field sensors or76
climate computers in most greenhouses (Hayashi et al., 2013; Sim et al., 2020; Samykanno et al., 2013;77
Muangprathub et al., 2019). Nevertheless, these point measurements cannot provide distinctive information78
to specify the quality of individual fruits. Thus, our research introduces approaches to integrate in-the-wild79
fruit images with environmental and plant-load data in predicting the Brix values of individual fruits.80

By investigating the performances of Brix prediction models, we aim at providing insights in answering81
two main questions: i) how accurately can the models estimate the Brix values by different sets of inputs?82
and ii) which data are valuable for training the Brix prediction models? The research contributes from four83
perspectives: i) we collected and labeled a dataset of strawberry images and quality measurements, using84
commodity hardware; ii) we designed a conceptual methodology of non-destructive quality estimation; iii)85
we shaped and implemented our methodology to predict the strawberry sugariness; iv) by comparing the86
model performances, we suggest how to develop reliable prediction models by CV and ML techniques.87

2 MATERIALS AND METHODS

2.1 Data collection88

Data were collected from May 2021 to November 2021. This was carried out on overwintered trays of89
Favori strawberry plants in a greenhouse at the Delphy Improvement Centre B.V. (Delphy) in Bleiswijk,90
the Netherlands. Strawberries were cultivated in baskets that were hung from the ceiling in the greenhouse.91
For the plants monitored by the cameras, the harvesting frequency is mostly once per week, or twice per92
week when the strawberries grow faster in warmer periods. There is exactly one harvest round per day, so93
we use “from a harvest” to describe the data collected from the same date.94

The data collection setup consisted of the following parts: i) static cameras facing the planting baskets to95
take periodic photos; ii) Brix measurements of the strawberries by the horticulturalists from Delphy; iii)96
physical labels on the branches to identify the measurement results of a strawberry with its appearance in97
images; iv) climate sensors to record the environment in the greenhouse and the outside weather; v) plant98
loads, represented by the average number of Favori fruits and/or flowers per unit area; vi) other logs about99
the plant cultivation.100

Representations of individual strawberries were the major inputs to train the Brix prediction models. We101
considered image data because they are objective and distinct. The images were collected hourly with102
a time-lapse setting. The same sections of six example images are shown in Figure 1. As is shown in103
the figures, we stuck a yellow label to indicate the ID of a strawberry a few hours before the harvest104
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2021-08-18 4PM 2021-08-19 4PM 2021-08-20 8AM 2021-08-20 9AM 2021-08-20 3PM 2021-08-20 4PM

Figure 1. Illustration of the time-lapse images. The same parts of six images are selected. The time stamps
of data collection are indicated above the images. According to the images, by 9 am on 2021-08-20, the
yellow physical label is stuck onto the branch. The strawberry 20.8.1.1 was harvested between 3 pm and 4
pm of the same day, so the last time when it was observable on images was 3 pm, 2021-08-20.

(namely the “ID label”), such that the strawberry’s appearance in the images can be connected to the105
measurement results. The measurement data that are assigned to identified strawberries are called the106
“connected measurements” in the following text.107

Based on previous research on influencing factors of strawberry qualities (Avsar et al., 2018; Chen et al.,108
2011; Correia et al., 2011) and the expertise of our collaborating horticulturalists, temperature, humidity,109
radiation level, CO2 density, and relevant plant treatment records (additional lighting, watering were all110
considered as the environment data. The number of fruits and/or flowers per unit area was counted weekly111
and noted as the ”plant load”. Both the environment and plant load data were collected by Delphy.112

The strawberries with the ID labels were stored separately. On the same day of the harvest, researchers113
from Delphy measured the Brix value and the firmness of those strawberries, with a refractometer and a114
penetrometer respectively. The size category is defined by a ring test, and the ripeness level is evaluated115
according to the experience of the greenhouse researchers.116

2.2 Methodology of experiment implementations117

We segmented the strawberries from the in-field images, such that only the pixels that describe the118
sample strawberry were analyzed. We trained a Mask R-CNN model (He et al., 2017) with a ResNet101119
backbone for semantic segmentation. We used the Detectron2 platform (Wu et al., 2019) to build the model.120
The ResNet101 backbone was pre-trained on the ImageNet dataset. We resized the image segments to121
200*200*3 pixels. They were the raw inputs for Brix prediction and feature extraction in the image-only122
experiment , the image-with-env experiment , and the image-with-Brix experiment . We considered only123
the last available observations, e.g. the strawberry segment from the 5th image in Figure 1. In this way,124
we limited the quality changes between when it was in the image and when it was measured. We also125
normalized the colors of the images to reduce the distraction from the changing lighting conditions during126
the day by applying elastic-net regressions at the red, green, and blue channels respectively.127

To analyze the images in the image-only experiment , we built Convolutional Neural Networks (CNNs)128
and Variational Auto-Encoders (VAEs) to analyze and encode the image segments of individual strawberries129
with Multi-Layer Perceptrons (MLPs). The models were either trained from scratch or with weights pre-130
trained by other popular datasets such as the ImageNet (Deng et al., 2009). Details of model architectures131
can be found in the supplementary materials. We also introduced principal component analysis (PCA) in132
the experiments for feature dimensionality reduction and model regularization (Shafizadeh-Moghadam,133
2021; Geladi et al., 1989). By taking the largest differences among the pixel data, PCA helps to exclude134
disturbance from the shared information of strawberry images to some extent. Hereafter, we use the word135
“encode” to represent the process of dimensionality reduction by the encoder parts of the VAEs and/or PCA.136
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We use “attribute” to describe the content of information that our model concerns. “Feature” or “input”137
represents what goes directly to the models, such as information from the latent space of the VAEs and/or138
after PCA.139

We trained the CNNs, MLPs, the predictor part of the VAEs, and the PCA models by the strawberry140
observations with connected measurements, which are 178 out of 304 Brix measurements. We trained the141
encoder and decoder parts of the VAEs by all the segmentation outputs of the Mask R-CNN model. Hence,142
this dataset includes images that were taken over the life cycles and of more strawberries. The image-only143
experiment and the image-with-env experiment applied the same encoders.144

We designed the env-only experiment to analyze the relationship between the environment data and145
the Brix. We used rolling averages of the environment data over different periods. Since the environment146
data does not include specific information about individual strawberries, we took all of the 304 Brix147
measurements into account and grouped them by each harvest. They are called the “aggregated Brix”. The148
reliability of the aggregated Brix could also be better ensured by introducing more sample measurements.149
We not only trained machine learning models to predict the value expectation, but also the standard150
deviation (std.) and the percentiles from 10% to 90% (with intervals of 10%). The representations of the151
Brix distribution were considered in supporting further experiments of individual Brix prediction.152

Since the amount of data points was reduced to the same as the days of harvests after the aggregation,153
the volume of the dataset became too small to support the training of deep neural networks. Hence, we154
applied linear regression (LR), support vector regression (SVR), and kernelized ridge regression (KRR)155
models. In addition, leave-one-out experiments were considered to enlarge the training sets of the env-only156
experiment . That means we split only one data point as the validation set in each experiment run, instead157
of proportionally splitting. Under this setting, we ensured all the data was used once in performance158
validation so that we could get a predicted value at every data point. The performance of individual Brix159
prediction in the env-only experiment is discussed based on the results from the leave-one-out experiments,160
by considering the predicted value expectation as the Brix predictions of all harvests on the same day.161

In the image-with-env experiment , we stacked the features of images and the environment data according162
to the object strawberries to train models. By the encoder parts of the VAEs and the PCAs fitting to the163
training set, we encoded the images to image features. We trained the models of the image-with-Brix164
experiment by the same image features but with the outputs from the env-only experiment– predictions of165
the mean, std., and percentiles, etc. We established four neural network architectures to fit the various size166
of features in both the image-with-env experiment and the image-with-Brix experiment , including three167
three-layer MLPs and one four-layer MLP.168

We used the Keras library (Chollet et al., 2015) to build and train the CNNs, VAEs, and MLPs in the169
experiments. All model training used the Adam optimizer (beta1=0.9, beta2=0.999) and a learning rate of170
0.0003. We considered random rotation, mirroring, and flipping to augment the image data. When training171
the VAE, we also considered random scaling up to ±10%. We used the Scikit-Learn library (Pedregosa et al.,172
2011) to conduct PCA and to construct LR, SVR, and KRR models in the env-only experiment . The KRR173
used polynomial kernels of degrees up to 3 and penalty terms of 1 and 10. These are all state-of-the-art174
implementations in data analytics.175

For all experiments except with specific definitions, we split the data into 7:1:2 for training: testing:176
performance validation. We run each experiment 15 times with a fixed series of data splits. All the deep177
learning models were trained on a Geforce GTX 1080 GPU under a maximum of 300 epochs.178
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3 RESULTS

This chapter describes our research findings in four steps: i) the exploration of the dataset that we collected;179
ii) our conceptual methodology of designing the experiments; iii) the model performance of each series of180
experiments respectively; iv) two influencing feature selections: whether to use the plant load data or not181
and which image encoder to choose. The last section gives a comparison among the experiment series and182
states our suggestions for developing a reliable Brix prediction model.183

3.1 An integrated dataset describing the growth and harvest quality of strawberries184

In order to predict Brix from non-destructive in-field data, we collected observations of the fruits and185
related environmental records in a greenhouse. The observations were in the form of images, and the186
environmental records are time-series and single-value measurements. All relevant data were linked with187
the observations of individual fruits. As such, we could implement machine learning techniques to discover188
the mapping from the collected data to the Brix values.189

From April 2021 to November 2021, we recorded the growth of strawberries by 13,400 images from190
three RGB cameras and collected environmental records during this period. We measured the Brix of 304191
ready-to-harvest strawberries, which were selected from 28 harvests in 22 weeks. The overall statistics of192
the measurement data set are shown in Figure 2. According to the box plots and the line plot, the Brix at193
each harvest usually has a median value lower than the mean. It is implied that using the average sample194
measurements to estimate the Brix of every fruit has a higher probability to overestimate the quality.195

The environmental records during the data collection period were archived hourly and were grouped by196
rolling averaging over periods. As a preliminary analysis, we computed the correlations of the environmental197
data under different averaging periods and the aggregated Brix values of each harvest. The results indicate198
a strong correlation between temperatures (measured on the leaves, plants, and in the air), radiation levels,199
watering, and cyclic lighting strengths with the mean Brix of each harvest. The correlations of the Brix200
with humidity and CO2 density are weaker. Details are shown in Figure S2 in supplementary materials.201
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Figure 2. Statistics of the Brix measurements, grouped by harvests per week. On the left, the x-axis
indicates the calendar week number of the harvests. The green y-axis presents the number of tested samples.
The blue line and its contour indicate the averaged Brix value and the standard deviation (std.) of the
measurements of the week respectively. The box plots illustrate the distribution of the measurement for the
week. On the right, the histogram gives an overview of the distribution of all Brix measurements in 2021.
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3.2 Conceptual Experiment Design202

We designed four series of experiments to study the effectiveness of using these data, shown in Figure 3 :203
we first analyzed whether the images (section 3.3) or the environment data (section 3.4) could work alone204
in Brix prediction, and then we considered two ways of data fusion (section 3.5).205

In the image-only experiment , the Brix prediction model was trained solely by the images of strawberries.206
We considered both supervised learning (SL) and semi-supervised (SSL) in training the models in this207
experiment series. A challenge in this experiment was that the inclusion of non-relevant pixel data lowered208
the learning process and even reduced the prediction accuracy. To reduce this effect, some of the models209
were accompanied by additional regularization procedures, such as conducting principal component210
analysis (PCA) on the training dataset and using the principal components as the features for learning.211

We considered environmental records and/or plant loads as the input in the env-only experiment . Together212
we call these the environment data. In the primary step, we conducted correlation analysis to classify213
the importance of each sort of attribute and to define sets of features. Since the environment data cannot214
express information about individual strawberries, we trained regression models to predict the expectation215
and the distribution of Brix value aggregations of each harvest.216
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ModelInput

Segments from 
in-Field Images
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Plant Load Data
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Quality 

Prediction

#1 The Image-Only Exp.
Image Segments

-> Quality of a Strawberry

#2 The Env-Only Exp.
Environment (+ Plant Load)

-> Aggregared Quality

#3 The Image-with-Env Exp.
Im. + Env. (+ Plant Load)
-> Quality of a Strawberry

#4 The Image-with-Brix Exp.
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-> Quality of a Strawberry
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Exp2
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Exp2
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Figure 3. The methodology of the four experiment series in this research. They are described by the
data flow, consisting of the input attributes, the output objects, and the models to map the corresponding
inputs and outputs. The line colors and the short notes indicate different experiment series: red represents
the image-only experiment (“Exp1”), yellow is for the env-only experiment (“Exp2”), blue is for the
image-with-env experiment (“Exp3”), and green is for the image-with-Brix experiment (“Exp4”). All the
models are evaluated by comparing the outputs with the ground truth.

We established the image-with-env experiment and the image-with-Brix experiment respectively as217
two ways of integrating the image data and environmental records in training. We encoded the image218
of each strawberry to comprise the image features. These features were combined directly with the219
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environmental records to train the neural networks in the image-with-env experiment . We considered the220
image features and the aggregated Brix predictions from the env-only experiment as the inputs in the221
image-with-Brix experiment . The setup was chosen based on two assumptions: i) the predictions from222
the env-only experiment are good indications of the overall quality of harvests; ii) compared to predicting223
the absolute Brix, the appearance information might be more helpful in terms of estimating the relative224
position out of value distribution of Brix.225

We set up two exam baselines to evaluate the experiment outcomes. Firstly, we used the average value226
of all the Brix measurements as the expectation of the Favori species. It represents the empirical Brix227
value that members of the soft fruit supply chain usually believe, so it is named the empirical baseline.228
It is the baseline of this Brix prediction study. Secondly, we considered the average Brix of each harvest229
as the expected value. As it represents the traditional way of sugariness assessment, which is anticipated230
by sample measurements, it is called the conventional baseline. According to the experiment setup, the231
conventional baseline is essentially the optimal situation of models from the env-only experiment .232

We used root mean squared error (RMSE) and mean absolute error (MAE) to represent the model accuracy.233
The RMSE is regarded as the main indicator of model performance. It gives increasingly more punishments234
if the predicted value is further from the ground truth. After running the experiments over different dataset235
splits, we used the standard deviation of the RMSEs (RMSE-std.) to indicate the robustness of model236
performances. The coefficient of determination (also called the R2 score) is considered a quantitative237
assessment of the level of model fitting. It is the proportion of the variation in the dependent variable, i.e.238
the individual or the aggregated Brix in this case, that is predictable from the input data. Higher R2 scores239
indicate better correlations between the inputs and outputs in the mapping.240

3.3 Practical Brix prediction models cannot be trained with images alone241

By the image-only experiment , we inspect the feasibility to train a Brix predictor with only images. We242
trained CNNs from scratch, with transfer learning (TL), and with semi-supervised learning (SSL) methods.243
The best-performing model of the entire experiment series has an averaged RMSE of ca. 1.33 over different244
validation splits.245

As the horizontal lines in Figure 4 indicate, the selected model outperforms empirical baseline , while it246
is slightly worse than conventional baseline . It is implied that the appearances of strawberries provide hints247
of the Brix to a limited extent, whereas the time of harvest has more predictive power. We hence conducted248
further experiments to unravel the other attributes for Brix prediction.249

Among the experiment results, we noticed that the involvement of feature dimensionality reduction250
facilitates the model performance. A possible mechanism would be that a large proportion of overlapping251
features were condensed in the latent space of VAEs or the orthonormal bases of PCA (Goharian et al.,252
2007). As the pixel data from a fine image is likely to correlate with each other, PCA is a practical technique253
to de-correlate the data and facilitate model-training. Meanwhile, the model fitting might also be regularized254
with the help of PCA, particularly when the model was trained with a small data set in our situation (Geladi255
et al., 1989; Delac et al., 2005). These findings also motivated us to encode the images in the data fusion256
steps of further experiments.257

3.4 Models reveal significant dependencies of aggregated Brix on environment data258

The performance in predicting aggregated values259
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In the env-only experiment , we trained LR, SVR, and KRR models to assess how well the collective Brix260
value can be predicted with only the environment data. When aggregating the data points, overfitting was261
an indispensable issue. Particularly, when the data are very few whilst the inputs have a large dimension. To262
assess the level of model-fitting, we calculated the R2 score of models using different subsets of features,263
hyper-parameters, and train-test splits to predict the representations of value aggregations on the testing data264
set. When we grouped the scores by the algorithms of models to evaluate the level of model determination,265
we found more than half of the LR models have a negative R2 score, which indicates that simple linear266
models cannot fit this mapping. With a stronger regularizer, or with higher outlier flexibility, the R2 scores267
of KRR (alpha=10) and SVR models are more condensed to 0.5-0.6. The generally higher R2 scores also268
indicate they are more practical models in tackling this circumstance.269

The performance in predicting individual values270

To make the results comparable, the predictions of the averaged Brix were regarded as the estimation of271
all the strawberry measurements at each harvest. The RMSEs were hence calculated on the same validation272
splits as the other experiment sets take. Figure 4 compares the effectiveness of using various periods of273
environment data with other experiments, of which the time spans are grouped by the ending time.274

As the bars in Figure 4 demonstrate, when models use features from the periods closer to the harvest275
time, they obtain lower and less diverged RMSEs in general. The RMSE-std of the models in the env-only276
experiment is lower than the best-performing model from the image-only experiment . The result argues277
that even using only the environment data in Brix prediction could train more reliable and stable models.278
Hence, it is strongly suggested to involve the environment data in training further comprehensive models.279

3.5 Images give the power to perform individual prediction with environment data.280

Results from the env-only experiment indicate that we need specific information to distinguish fruit-to-281
fruit differences from each harvest. Since the environment data are all point measurements, we encoded282
the images into 200, 50, 10, and 5 features by four combinations of VAEs and PCA respectively to283
fit the dimension differences between the two types of data. The image-with-env experiment and the284
image-with-Brix experiment introduce two ways of fusing the image feature and environment data.285

Combining image features with direct environmental information286

The image-with-env experiment straightforwardly combined the two types of data to train the MLPs for287
the individual Brix prediction. Unsurprisingly, the lowest RMSEs from all the groups outperformed the288
best models from the image-only experiment and the env-only experiment , as is illustrated in Figure 4.289

Curiously, the performance difference caused by the collection time span of environment data was290
remarkably reduced in this experiment. A possible reason would be that the MLPs also learn the trend of291
changes within the time-series data – such that the performance did not reduce as much as in the env-only292
experiment . Meanwhile, the nonlinearity and regularization performed by the neural network also ensured293
the robustness of the model performances.294

Combining image features with predicted Brix distribution of a harvest295

The fourth experiment, the image-with-Brix experiment , allows us to explore another way of integrating296
the knowledge from the two sorts of data: to use the image features to predict the relative quality within297
the distribution of Brix values. We used the predictions of Brix aggregations1 from the leave-one-out298

1 To limit the variables, we took only results from the KRR model with alpha=10 and polynomial degree=3.
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experiments from the env-only experiment . Among all the experiment series, the models from the image-299
with-Brix experiment resulted in the lowest RMSEs, as illustrated in Figure 4. Among the different features300
of the aggregated Brix, models that were trained by Brix percentiles slightly outperform the models that301
assumed a Gaussian-distribution fit, i.e. using the mean and std. as inputs.302
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Only environment data
Im. + environment data
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Im. + prediction of Brix distribution
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Figure 4. Performance comparison of Brix prediction accuracies among the four experiment sets, using
RMSE as an indicator. The error bars indicate the standard deviation of RMSEs (RMSE-std) across different
splits of validation sets. The models are grouped by the ending point of the periods of the environmental
records. The y-axis shows the minimum RMSE of models from the same group. The colors indicate the
input attributes of the experiment sets. The best performance of models using only image data is presented
by a horizontal line. The contour around it indicates the corresponding RMSE-std. The horizontal line in
gray and brown indicates the two benchmarks that are mentioned in the methodology section.

3.6 Plant load is crucial as part of the indirect environmental information303

As is illustrated in Figure 5, introducing the plant load as part of the input attributes has a positive effect304
on the model performances, which is more outstanding on the models from the env-only experiment .305
In the image-with-env experiment , the upper limit of model accuracy was slightly improved. But more306
importantly, there were notable decreases in the std. of RMSEs over different data splits. Both changes307
were limited in the image-with-Brix experiment . In all, we suggest that plant load is a crucial feature when308
the raw environmental information comprises the input data.309

Moreover, since our plant load data was averaged over different branches of strawberries, they did not310
directly reflect the division of nutrition on the camera-monitored plants as the literature suggests. Hence,311
we suppose that the data could reveal the general influence of the growing environment on strawberries in312
this greenhouse compartment in an indirect and deferred way.313

3.7 Image encoders have a noteworthy influence on the model performances314

The best-performing models of each family are considered in the previous result discussions. However,315
the number of image features also influenced the model accuracy. The information from different latent316
spaces is illustrated in Figure 6. Figure 7 discusses the effects when the image features are utilized with317
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Figure 5. Performance comparison of Brix prediction using different attributes of environmental
information, using RMSE as an accuracy indicator. The colors indicate the involvement of the plant
load data. The y-values indicate the minimum RMSEs of models from the same group.

different representations of environment data. When we used only the images in the prediction, it is still318
important to keep as many features as possible. Referring to the illustrations in Figure 6, it is indicated that319
considering the texture and the shape of strawberries could have a positive influence on the intrinsic quality320
representation. When using image features together with the raw environment data, we cannot see much321
difference in the best performances. Nevertheless, we observe an increase in the RMSEs when using larger322
dimensions of image features with the aggregated Brix. Overall, it is suggested that similar dimensions of323
image features and the other source of data could generally achieve better RMSEs.324

Table 1. Detailed accuracy indicators of the best-performing models using different sets of input attributes.
The models are ranked according to the “RMSE” column. the empirical baseline is calculated by using
the Brix expectation of the strawberry variety as all the predicted values. the conventional baseline is
calculated by taking the average Brix of each harvest as the individual predictions. The MAE and RMSE
of all models and benchmarks are calculated by averaging over 15 random validation splits. The std. of the
RMSE on each validation split is presented in the “RMSE-std” column.

Image Feature Env. Data Plant Load Brix Agg. MAE RMSE RMSE-std.
Included In Agg. Pred. In Agg. Pred. Percentiles 0.81 1.10 0.158
Included In Agg. Pred. In Agg. Pred. Mean + std. 0.86 1.12 0.139
Included In Agg. Pred. In Agg. Pred. Mean 0.90 1.15 0.118
Included Included Included N/A 0.90 1.18 0.103
Included Included Not included N/A 0.90 1.22 0.119
the conventional baseline 0.91 1.22 0.151

N/A Included Included N/A 0.96 1.24 0.128
N/A Included Not included N/A 1.00 1.27 0.146
Included Included Included N/A 1.04 1.32 0.134
Included Not included Not included N/A 1.00 1.33 0.189
the empirical baseline 1.21 1.56 0.312
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The Original Image The First 3 Latent Layers with 4X Dimensionality Reduction

The Original Image The First 3 Latent Layers with 8X Dimensionality Reduction

The Original Image The First 3 Latent Layers with 20X Dimensionality Reduction

The Original Image The First 3 Latent Layers with 40X Dimensionality Reduction

Figure 6. Examples of an image segment and its latent features from the four VAEs, plotted in a monologue
style. The first column is the original image segment uniformed into a size of 200x200 pixels. The segment
background is saved as black and transparent pixels. The level of dimensionality reduction from each
encoder is shown on top of the latent space illustrations.
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Figure 7. Performance comparison of Brix prediction using different image encoders, using RMSE as an
accuracy indicator. The x-axis indicates the input attributes of the experiment sets. The colors indicate the
dimensionality of the image features involved in the experiments. The y-values show the minimum RMSEs
of all models from the same group.
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4 DISCUSSION

With this paper, we propose and evaluate a practical methodology for estimating the sugariness of individual325
strawberries, starting from planning the data collection setups. This approach uses affordable devices326
to collect relevant observations in the field and does not require harvesting or destroying the fruit. The327
experiment results demonstrate that it is feasible to anticipate the quality of strawberries when they are still328
growing. Such information could support the decision-making of harvesting and supply-chain strategies of329
greenhouse managers.330

According to Figure 4 and Table 1, the models using image features with aggregated Brix information331
are the optimal choices among all the attribute combinations. The models could reduce the RMSE by up to332
28.8% and 18.9% from the empirical baseline and the conventional baseline respectively. Compared to the333
image data, the environmental information has shown to be more relevant for the models to learn from,334
yet they lack the capability to tell fruit-to-fruit variances. Compared to using data from a sole source, a335
mixed-use of both could lead to an accuracy improvement of 10.0% and 6.2%, respectively.336

Compared to other research in the field, we included multiple types of data to build machine-learning337
models. Our models show competitive performances in the sweetness prediction of strawberries (RMSE 1.2338
from Sun et al. (2017), RMSE 1.18 from Amoriello et al. (2022), MSE 0.95 from Cho et al. (2019)) while339
using in-field data collected more easily-acquired devices. On top of that, the dataset that we collected for340
pursuing this research is also useful for more research in this field.341

In the above-mentioned experiments, we performed all the procedures step-by-step, yet we see the342
possibility of exploiting higher levels of model integration. Nevertheless, as state-of-the-art computer343
vision technologies allow detection models to be faster and more portable, expanding the capability of344
real-time assessments of fruit quality could also be an interesting topic.345

The research primarily studies in-field and non-destructive data that are worth to be considering in346
training Brix prediction models. The images, which the prediction models were trained with, are essentially347
a subset of the time-lapse image dataset. With the entire dataset, further research is suggested to include348
temporal information for refining the quality prediction models. It is also an interesting topic to explore the349
practicability of using earlier images in forecasting future Brix values.350

Our results suggest that environmental information plays a vital role in training a reliable model.351
Particularly, the environmental information from up to fourteen days before the harvest is crucial to352
ensure the model’s accuracy. Nevertheless, we did not discuss the detailed influence of specific sources of353
climate data on our model accuracies. It is therefore recommended to conduct subsequent studies on the354
effectiveness of learning with different environmental factors.355
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