3D building model edit with generative AI

Student: Yingxin Feng

Supervisors: Nail Ibrahimli Dr. Ken Arroyo Ohori

Co-reader: Dr. Liangliang Nan

Content

- □ Introduction
- □ Related work
- Methodology and result
- **□** Conclusion

Introduction: motivation

- Promising future of generative AI
- Success in image generation and edit for general cases
 - limited identity-preserving level or geometric deformation scope for buildings

Examples (InstructPix2Pix)

"Add fireworks"

"Make it a castle"

"Make it ancient"

Introduction: motivation

Partial success in 3D model edit (based on 2D pre-trained models)

Limited to certain object types and viewing angles

Posterior Distillation Sampling (Implicit based)

"Roses"

Text2Tex (Explicit based)

"Wooden barrel"

"Metal CD player"

X-Mesh (Explicit based)

"Colorful candy vase"

"Blue Whale"

Introduction: motivation

Lack of attention in 3D building models domain

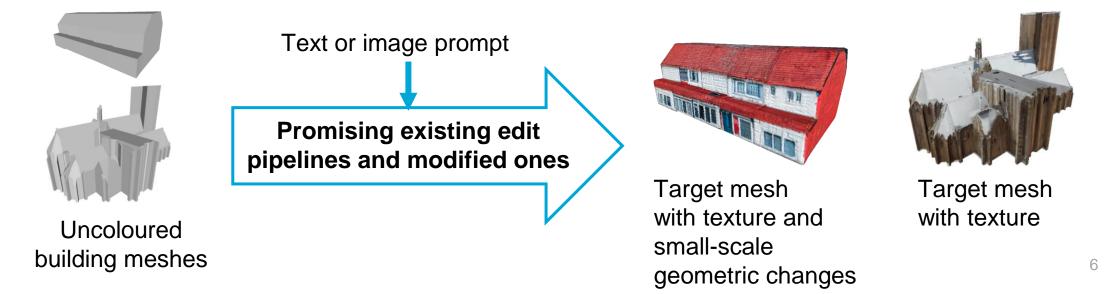
 Limitations from 2D models: challenging in dealing with complex and specific buildings and prompts, inconsistency and bias in views

2D Challenging cases (Stable Diffusion)

"A zoomed out DSLR photo of a two-Storey red townhouse with small windows and grey roof, five connected"

"A four-storey office building with perforated brickwork and plant decorated façade"

2D View inconsistency (InstructPix2Pix)

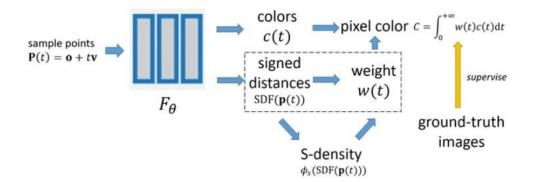


"Make it a church"

Introduction: research objective

- Explore the potential of generative AI based 3D edit in building models
 - What existing pipelines are promising in the building model edit field?
 - How do these chosen pipelines perform in different building cases?
 - How to develop a new pipeline or modify existing ones to make the edit results better comply with user guidance and have higher fidelity?
 - What are the user scenarios and limits of the existing and modified edit pipelines?

Related work: 3D representation

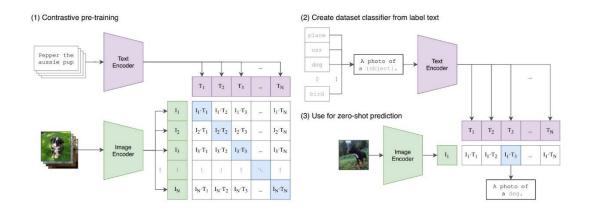

Implicit:

Neural Implicit Surfaces (NeuS)

- Able to extract a high-quality surface and render images regardless of resolution limit
- Geometry and texture information influence mutually: more difficult to control

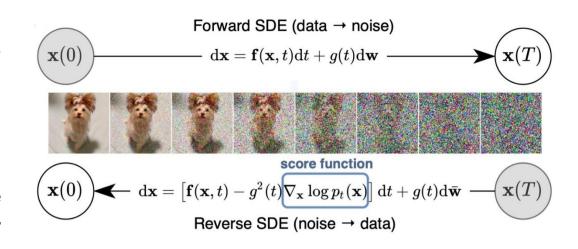
Explicit: Mesh

- Relatively compact, can represent both the geometry and texture explicitly
- Wide application and easy for further processing
- Limited by resolution




```
v 1.000000 -1.000000 -1.000000
v -1.000000 1.000000 -1.000000
# 8 vertices, 0 vertices normals
f 2 3 4
f 8 7 6
f 5 6 2
f 6 7 3
f 3 7 8
f 1 4 8
f 1 2 4
f 5 8 6
f 1 5 2
f 2 6 3
f 4 3 8
f 5 1 8
                                   Image reference: [Wang et al., 2021]
# 12 faces, 0 coords texture
```

Related work: Generative AI in image


CLIP

- Connect text and image
- Encoders serve as bases for other pipelines

Diffusion model

- Add Gaussian noise at each time step in the training stage and reverse the process in the inference stage
- Stable Diffusion: text-to-image, depth-toimage generation
- Others: InstructPix2Pix (text-guided image edit), SDEdit (denoising), Zero-1-to-3 (viewaware image generation)

Related work: Generative AI in 3D

Utilize 2D text-guided pre-trained model to guide 3D content
 Implicit
 Explicit (mesh)

- Edit the base multi-view images dataset
 - Instruct-nerf2nerf: iteratively dataset update
- Backpropagate the image loss to the 3D implicit neural model
 - Dreamfusion: Score Distillation Sampling (SDS) loss
 - Posterior Distillation Sampling: PDS loss
 - Zero123: view aware image generation

- Geometry and texture joint edit
 - Text2Mesh
 - CLIP-Mesh
 - X-Mesh
- Texture generation
 - TANGO
 - Latent-paint
 - Fantasia3D
 - TEXTure and <u>Text2Tex</u>
 - Paint-it

Methodology and result: overview

General idea

- First experiment with implicit 3D representation (NeuS) based edit: fail
- Focus on explicit 3D representation (Mesh) based edit instead
- Guidance engineering in 2D space
- Chosen representative existing pipelines: Latent-Paint, Text2Tex, X-Mesh
- Modifications (6): based on Text2Tex and X-Mesh
- Evaluations: qualitative and quantitative (user study)

Data (implicit)

- DTU MVS
- NeRF-Synthetic

Data (explicit)

 Sample provided by the X-Mesh paper

Tool

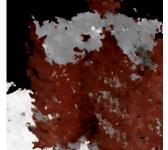
- Programming language: Python
- Mesh processing and visualization: Meshlab

Implicit 3D representation (NeuS) based edit

Original image

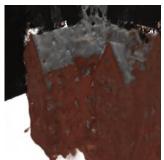
Text prompt: Make it a church

 Iteratively update image dataset Iteration increases



Basic: update one image at a time

Update the whole dataset


Manual view selection

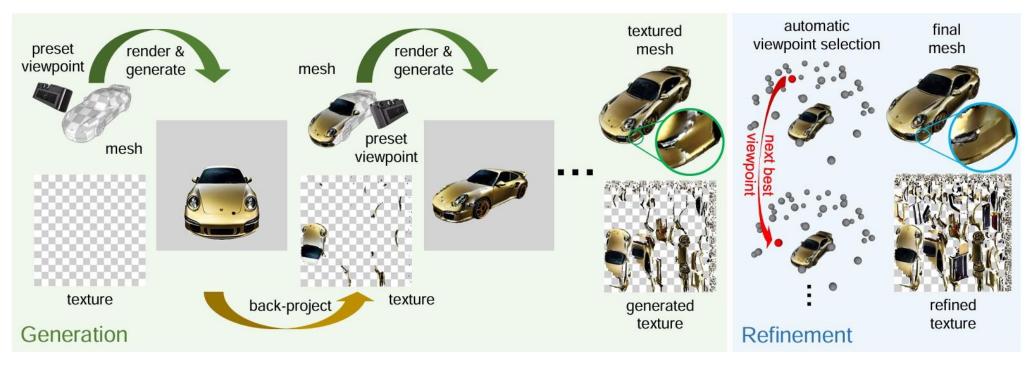
Combine SDEdit

 Incorporate 2D image loss to 3D model

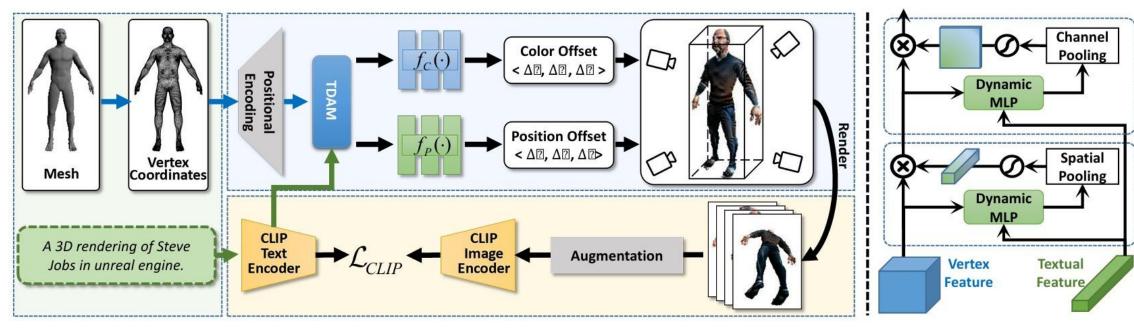
SDS loss

PDS loss

Away from the input view



Stable Zero123


Name	Latent-Paint	Text2Tex	X-Mesh
Texture creation	yes	yes	yes
Geometry edit	no	no	yes
Pre-trained model	text-to-image	depth-to-image	CLIP
	Stable Diffusion	Stable Diffusion	

Name	Latent-Paint	Text2Tex	X-Mesh
Texture creation	yes	yes	yes
Geometry edit	no	no	yes
Pre-trained model	text-to-image	depth-to-image	CLIP
	Stable Diffusion	Stable Diffusion	

Name	Latent-Paint	Text2Tex	X-Mesh
Texture creation	yes	yes	yes
Geometry edit	ometry edit no r		yes
Pre-trained model	text-to-image Stable Diffusion	depth-to-image Stable Diffusion	CLIP

(b) Text-Guided Dynamic Attention

Guidance engineering in 2D space

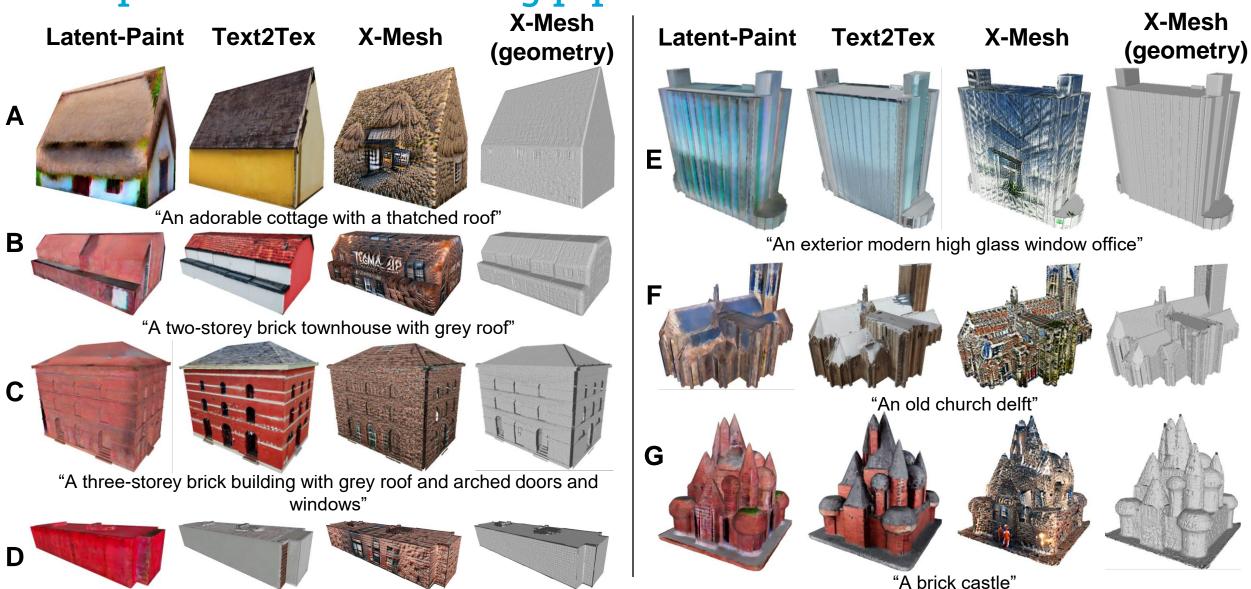
Text for CLIP and Stable Diffusion

- clear and specific
- keywords for realistic style
- keywords for camera location

"An exterior four-storey red apartment with grey roof"

"Apartment"

Image (for Image control X-Mesh)


- close-up and unobstructed buildings
- CLIP Interrogator: can not return perfectly matching text

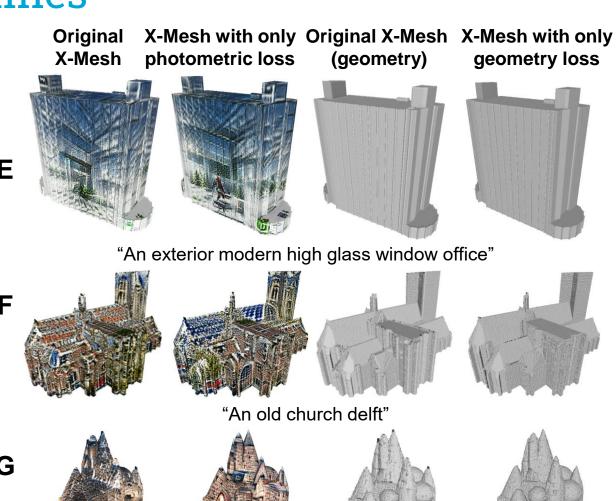
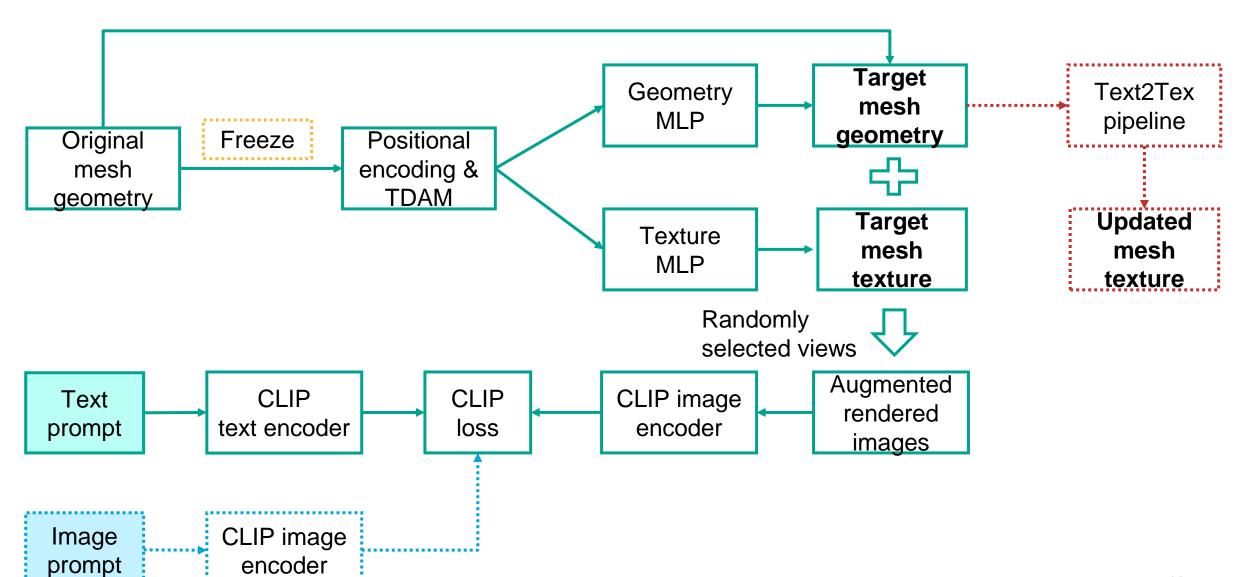

A proper image prompt

Image generated by Stable Diffution using Text prompt returned by CLIP interrogator

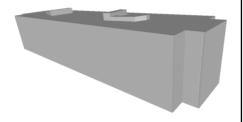
X-Mesh with only Original X-Mesh X-Mesh with only Original X-Mesh photometric loss (geometry) geometry loss "An adorable cottage with a thatched roof" "A two-storey brick townhouse with grey roof" G "A three-storey brick building with grey roof and arched doors and windows"



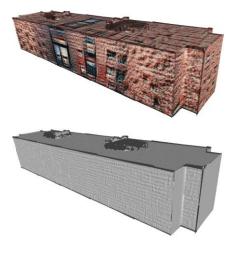
"A brick castle"

"An exterior brick apartment"

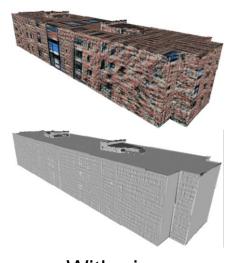
Modifications: overview

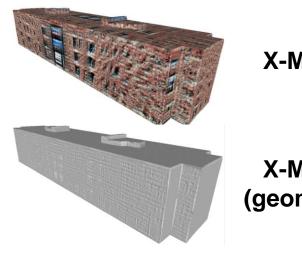

Modifications Original X-Mesh Modification for discussion **Target** Geometry mesh MLP geometry Original Positional encoding & mesh TDAM geometry **Target Texture** mesh MLP texture Randomly selected views Augmented CLIP image **CLIP CLIP** Text rendered encoder text encoder loss prompt images

Modifications

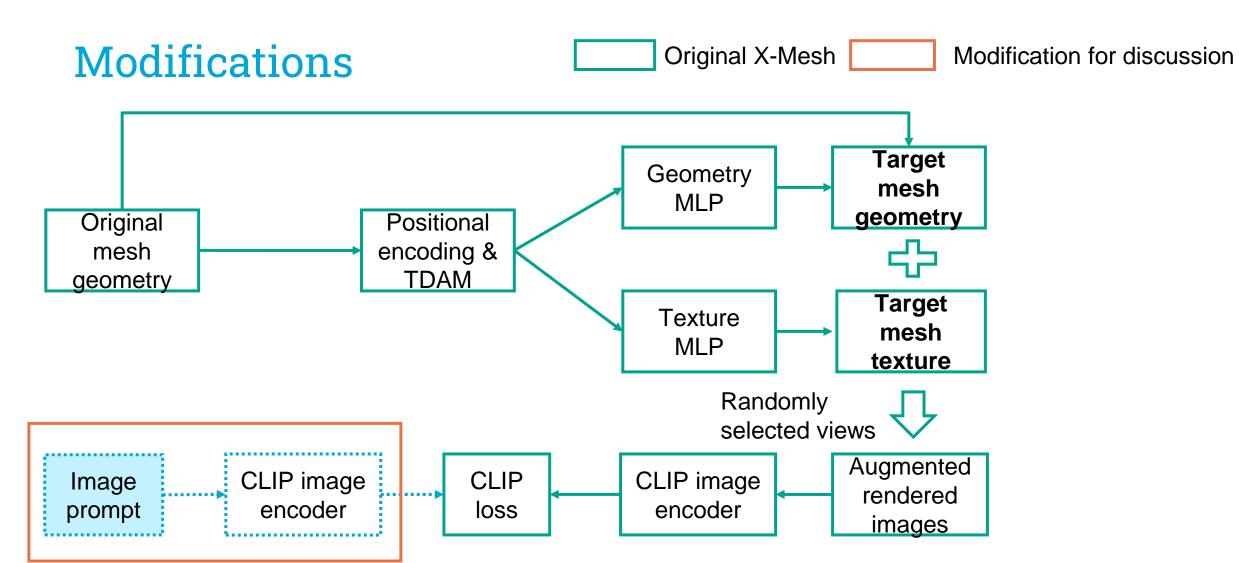

Text prompt

Additional procedure: add view specification prompt


"An exterior brick apartment"

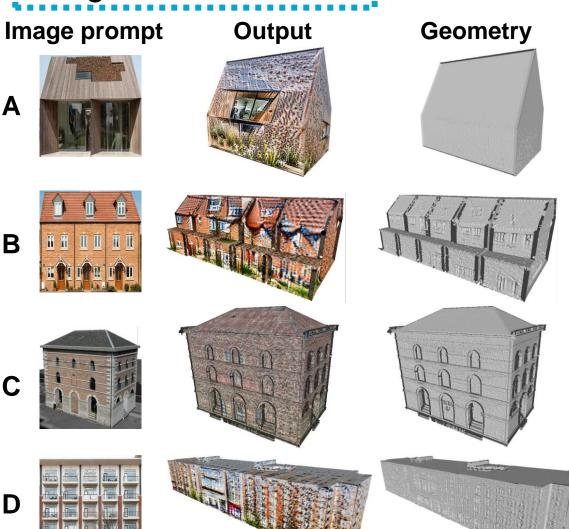

Original mesh: An exterior brick apartment

Without view specification


With view specification

With view specification (Building-related descriptions)

X-Mesh


X-Mesh (geometry)

Modifications: Image control X-Mesh

Image control module

Alternative module: use image prompt

Modifications: Image control X-Mesh

Image control module

Additional procedure: weight specification on input image view

Original mesh

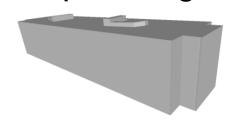


Image prompt

Without view weight specification

Output

With view weight specification

Output

Geometry

Front view

Side view

Back view

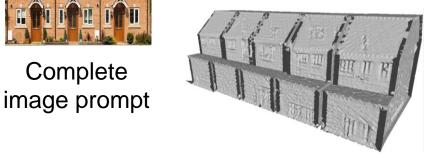
Top view

23

Modifications: Image control X-Mesh

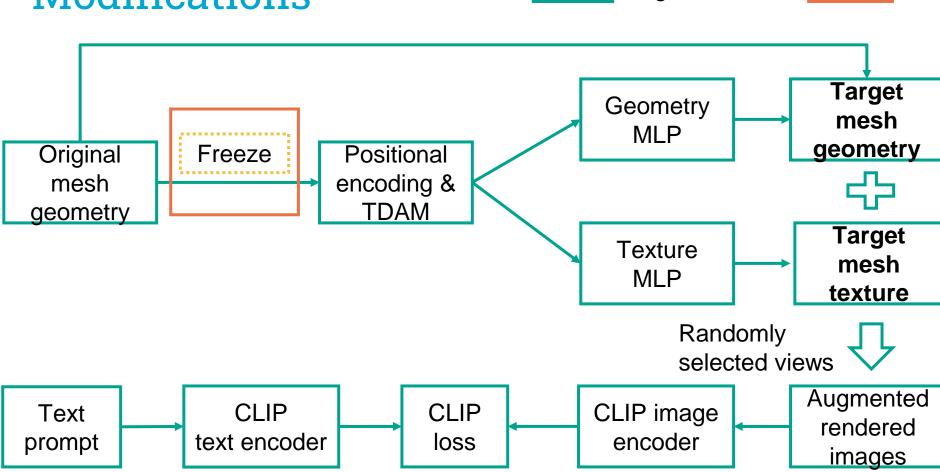
Image control module

Additional procedure: edit façade and roof separately


Complete result

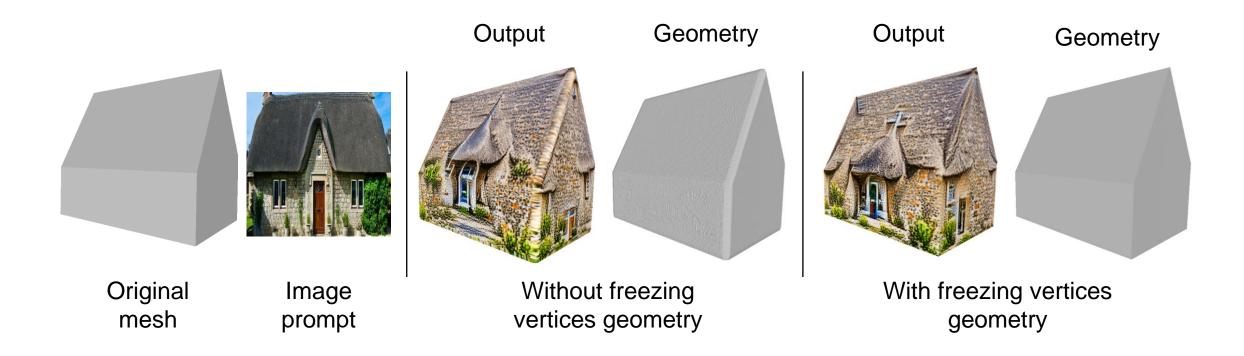
Facade image prompt

Façade result


Complete result (geometry)

Façade result (geometry)

Modifications


Original X-Mesh Modification for discussion

Modifications

Freeze

Additional procedure: freeze randomly sampled vertices geometry

Modifications Original X-Mesh Modification for discussion **Target** Geometry Text2Tex mesh MLP pipeline geometry **Positional** Original encoding & mesh TDAM geometry Updated **Target Texture** mesh mesh MLP texture texture Randomly selected views Augmented CLIP image **CLIP CLIP** Text rendered encoder text encoder loss prompt images

Modifications: Combine X-Mesh and Text2Tex

Text2Tex module

Additional module: use Text2Tex to update texture

Α

"An adorable cottage with a thatched roof"

B

"A two-storey brick townhouse with grey roof"

"A three-storey brick building with grey roof and arched doors and windows"

D

"An exterior brick apartment"

Ε

"An exterior modern high glass window office"

"An old church delft"

"A brick castle"

Quantitative results

- Score on how realistic the image is (1 lowest, 5 highest)
- 50 respondents

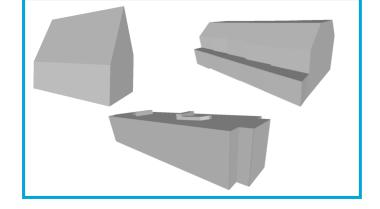
Overall average user score

Latent-Paint: 1.98

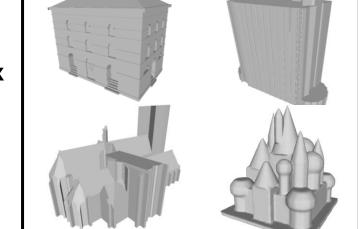
Text2Tex: 2.73

X-Mesh: 2.31

Image control X-Mesh: 2.79


Combination of X-Mesh and Text2Tex: 2.86

Quantitative results


Ranking of separate average user score

(1 highest ranking, 5 lowest ranking)

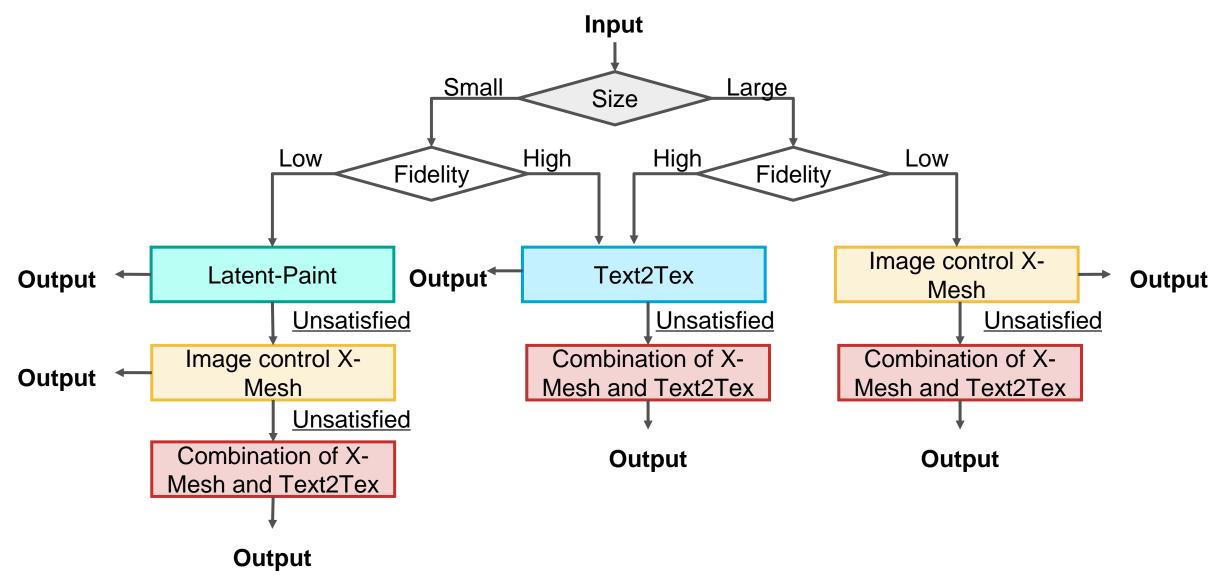
	Latent -Paint	Text2 Tex	X- Mesh	Image control X-Mesh	Combination of X-Mesh and Text2Tex
Model A	4	5	3	1	2
Model B	5	3	4	2	1
Model D	5	4	2	1	3
Model C	5	2	4	3	1
Model E	4	1	5	2	2
Model F	3	1	4	5	2
Model G	4	1	5	2	3

Simple model

Complex model

Application examples: Image control X-Mesh

- Single building edit
- Scene edit by combing



Faculty building

Conclusion

Conclusion

✓ Contributions

- ✓ Evaluate performances of representative 3D edit pipelines in building domain
- ✓ Make modifications on them to better fit the demand of users and generate high-quality results

Limitations

- □ Suitable for simple cases: limited geometric edit scope and detailed level of textures
- □ Inherit the limits of the 2D pre-trained models: limited generalization ability and view consistency problems
- ☐ High computational demand: limited performances especially for large and complex buildings

GitHub repository

- Easy-to-use codes for two successful modifications:
 - Image Control X-Mesh
 - Combination of X-Mesh and Text2Tex
- Example data and results

https://github.com/fengyingxin/MSc-Thesis

Reference

- Armandpour, M., Zheng, H., Sadeghian, A., Sadeghian, A., and Zhou, M. (2023). Re-imagine the negative prompt algorithm: Transform 2d diffusion into 3d, alleviate janus problem and beyond. arXiv preprint arXiv:2304.04968.
- Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved lod specification for 3d building models. Computers, Environment and Urban Systems, 59:25-37.
- Brooks, T., Holynski, A., and Efros, A. A. (2022). Instructpix2pix: Learning to follow image editing instructions. arXiv e-prints, pages arXiv-2211.
- Chao, C.-K. T. and Gingold, Y. (2023). Text-guided image-and-shape editing and generation: A short survey. arXiv preprint arXiv:2304.09244.
- Chen, D. Z., Siddiqui, Y., Lee, H.-Y., Tulyakov, S., and Nießner, M. (2023a). Text2tex: Textdriven texture synthesis via diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 18558-18568.
- Chen, M., Xie, J., Laina, I., and Vedaldi, A. (2023b). Shap-editor: Instruction-guided latent 3d editing in seconds. arXiv preprint arXiv:2312.09246.
- Chen, R., Chen, Y., Jiao, N., and Jia, K. (2023c). Fantasia3d: Disentangling geometry and appearance for high-quality text-to-3d content creation. arXiv preprint arXiv:2303.13873.
- Chen, Y., Chen, R., Lei, J., Zhang, Y., and Jia, K. (2022). Tango: Text-driven photorealistic and robust 3d stylization via lighting decomposition. Advances in Neural Information Processing Systems, 35:30923-30936.
- Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., et al. (2008). Meshlab: an open-source mesh processing tool. In Eurographics Italian chapter conference, volume 2008, pages 129-136. Salerno, Italy.
- Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34:8780-8794.
- Dong, J. and Wang, Y.-X. (2023). Vica-nerf: View-consistency-aware 3d editing of neural radiance fields. In Thirty-seventh Conference on Neural Information Processing Systems.
- Fang, S., Wang, Y., Yang, Y., Tsai, Y.-H., Ding, W., Zhou, S., and Yang, M.-H. (2023). Editing 3d scenes via text prompts without retraining. arXiv e-prints, pages arXiv-2309.
- Guo, Y.-C., Liu, Y.-T., Shao, R., Laforte, C., Voleti, V., Luo, G., Chen, C.-H., Zou, Z.-X., Wang, C., Cao, Y.-P., and Zhang, S.-H. (2023). threestudio: A unified framework for 3d content generation. https://github.com/threestudio-project/threestudio.
- Haque, A., Tancik, M., Efros, A. A., Holynski, A., and Kanazawa, A. (2023). Instructnerf2nerf: Editing 3d scenes with instructions. arXiv preprint arXiv:2303.12789.
- Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., and Wang, W. (2021). Neus: Learning Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., arXiv:2106.10689.
- arXiv:2305.18047.
- Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., and Zhu, J. (2023b). Prolificdreamer: Youwang, K., Oh, T.-H., and Pons-Moll, G. (2023). Paint-it: Text-to-texture synthesis via deep High-fidelity and diverse text-to-3d generation with variational score distillation. arXiv convolutional texture map optimization and physically-based rendering. arXiv preprint preprint arXiv:2305.16213.

- Hessel, J., Holtzman, A., Forbes, M., Bras, R. L., and Choi, Y. (2021). Clipscore: A referencefree evaluation metric for image captioning. arXiv preprint arXiv:2104.08718.
- Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30.
- Hong, S., Ahn, D., and Kim, S. (2023). Debiasing scores and prompts of 2d diffusion for view-consistent text-to-3d generation. In Thirty-seventh Conference on Neural Information Processing Systems.
- Jpcy (2022). Xatlas. https://github.com/jpcy/xatlas.
- Kamata, H., Sakuma, Y., Hayakawa, A., Ishii, M., and Narihira, T. (2023). Instruct 3d-to-3d: Text instruction guided 3d-to-3d conversion. arXiv preprint arXiv:2303.15780.
- Koo, J., Park, C., and Sung, M. (2023). Posterior distillation sampling. arXiv preprint arXiv:2311.13831.
- Li, C., Zhang, C., Waghwase, A., Lee, L.-H., Rameau, F., Yang, Y., Bae, S.-H., and Hong, C. S. (2023a). Generative ai meets 3d: A survey on text-to-3d in aigc era. arXiv preprint arXiv:2305.06131.
- Li, W., Chen, R., Chen, X., and Tan, P. (2023b). Sweetdreamer: Aligning geometric priors in 2d diffusion for consistent text-to-3d. arXiv preprint arXiv:2310.02596.
- Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., and Vondrick, C. (2023). Zero-1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9298-9309.
- Ma, Y., Zhang, X., Sun, X., Ji, J., Wang, H., Jiang, G., Zhuang, W., and Ji, R. (2023). X-mesh: Towards fast and accurate text-driven 3d stylization via dynamic textual guidance. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2749–2760.
- Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and Ermon, S. (2021). Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073.
- Metzer, G., Richardson, E., Patashnik, O., Girves, R., and Cohen-Or, D. (2023). Latent-nerf for shape-guided generation of 3d shapes and textures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12663-12673.
- Michel, O., Bar-On, R., Liu, R., Benaim, S., and Hanocka, R. (2022). Text2mesh: Text-driven neural stylization for meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13492-13502.
- Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. arXiv preprint arXiv:2003.08934.
- neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint Louf, R., Funtowicz, M., et al. (2019). Huggingface's transformers: State-of-the-art natural Stabilityai (2023). Stable zero123. https://huggingface.co/stabilityai/stable-zero123. language processing. arXiv preprint arXiv:1910.03771.
- Wang, Q., Zhang, B., Birsak, M., and Wonka, P. (2023a). Instructedit: Improving auto-Yariy, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., and Lipman, Y. (2020). matic masks for diffusion-based image editing with user instructions. arXiv preprint Multiview neural surface reconstruction by disentangling geometry and appearance. Advances in Neural Information Processing Systems, 33:2492-2502.
 - arXiv:2312.11360.

- Mohammad Khalid, N., Xie, T., Belilovsky, E., and Popa, T. (2022). Clip-mesh: Generating textured meshes from text using pretrained image-text models. In SIGGRAPH Asia 2022 conference papers, pages 1-8.
- Müller, T., Evans, A., Schied, C., and Keller, A. (2022). Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1-15.
- Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.
- Pharmapsychotic (2023). clip-interrogator. https://github.com/pharmapsychotic/ clip-interrogator.
- Po, R., Yifan, W., Golyanik, V., Aberman, K., Barron, J. T., Bermano, A. H., Chan, E. R., Dekel, T., Holynski, A., Kanazawa, A., et al. (2023). State of the art on diffusion models for visual computing. arXiv preprint arXiv:2310.07204.
- Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. (2022). Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988.
- Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020.
- Richardson, E., Metzer, G., Alaluf, Y., Giryes, R., and Cohen-Or, D. (2023). Texture: Textguided texturing of 3d shapes. In ACM SIGGRAPH 2023 Conference Proceedings, pages 1-11.
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2021). High-resolution image synthesis with latent diffusion models. arXiv preprint arXiv:2112.10752.
- Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and Aberman, K. (2023). Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 22500-22510. IEEE.
- Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al. (2022). Photorealistic text-to-image diffusion models with deep language understanding. Advances in Neural Information Processing Systems, 35:36479-36494.
- Shen, T., Gao, J., Yin, K., Liu, M.-Y., and Fidler, S. (2021). Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Advances in Neural Information Processing Systems, 34:6087-6101.
- Shi, Y., Wang, P., Ye, J., Long, M., Li, K., and Yang, X. (2023). Mydream: Multi-view diffusion for 3d generation. arXiv preprint arXiv:2308.16512.
- Song, L., Cao, L., Gu, J., Jiang, Y., Yuan, J., and Tang, H. (2023). Efficient-nerf2nerf: Streamlining text-driven 3d editing with multiview correspondence-enhanced diffusion models. arXiv preprint arXiv:2312.08563.

3D building model edit with generative AI

Student: Yingxin Feng

Supervisors: Nail Ibrahimli Dr. Ken Arroyo Ohori

Co-reader: Dr. Liangliang Nan

