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A B S T R A C T

This paper presents a semi-analytical solution for the 3D problem of a cylindrical tunnel embedded in an elastic
half-space subject to plane harmonic compressional and shear waves. Both the tunnel and soil are modelled
as an elastic continuum. Conformal mapping is employed to transform the original physical domain with
boundary surfaces of two different types onto an image domain with surfaces of the same type, which makes
the problem easier to solve. The total wave field in the half-space consists of incident and reflected (from the
half-space surface) plane waves, as well as directly and secondary scattered cylindrical waves, while the total
wave field in the tunnel consists of refracted cylindrical waves. The secondary scattered waves, generated
when the cylindrical waves directly scattered from the tunnel meet the half-space surface, are represented
by cylindrical waves that originate from an image source, which is in line with the spirit of the method of
images. The unknown amplitude coefficients of the cylindrical waves are determined from the boundary and
continuity conditions of the tunnel–soil system by projecting those onto the set of circumferential modes,
which results in a set of algebraic equations. Results show that the present method converges for a small
number of circumferential modes. We observe very good agreement between the obtained results and those in
literature. In a systematic evaluation, we demonstrate that the method works well for the frequency band of
seismic waves, as well as for the complete considered ranges of the tunnel/soil stiffness ratio, the embedded
depth of the tunnel, the vertical incident angle and the tunnel thickness. However, the results obtained for
a moderate tunnel–soil stiffness contrast under the incident compressional wave are inaccurate when Hankel
functions are used to represent the cylindrical waves in the tunnel, which is due to the refracted shear waves in
the tunnel transitioning from propagating to evanescent (in the 3D case). These inaccuracies can be perfectly
overcome by representing the waves in the tunnel by Bessel functions. We also find that the present method
generally works better for the incident compressional wave than for the incident shear wave, as the condition
number of the matrix (related to the mentioned algebraic equations) is often larger in the latter case. In view
of engineering practice, we conclude that the tunnel is safer when the surrounding soil is stiffer, the tunnel is
thicker and the vertical incident angle is larger. Finally, the present method, which is in general fast, elegant
and accurate, can be used in preliminary design so as to avoid pronounced resonances, and to assess stress
distributions and ground vibrations.
1. Introduction

Underground tunnels and pipelines are important infrastructures
due to numerous applications in civil engineering. The dynamics of
these underground structures subject to dynamic loadings, such as
seismic waves or moving trains, have been studied by many researchers
in the past [1–4].

The ground is often modelled by a half-space, which consists of
an infinite domain beneath a flat stress-free surface. The challenges in
solving the boundary value problem of a cylindrical tunnel embedded
in a half-space are as follows: (1) The half-space domain is infinite,
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and it is often computationally expensive and challenging to satisfy
the boundary conditions at large distance when applying numerical
methods [5]; (2) The boundary surfaces are of two different types
(i.e. flat and cylindrical), and it is difficult to deal with this issue
especially when applying analytical methods; (3) It can be very difficult
to get accurate results due to ill-conditioned matrices encountered for
specific solution methods [6].

The existing approaches to study the scattering of waves by un-
derground structures can be divided into two categories: analytical
methods and numerical methods. These two types of methods have
vailable online 24 August 2023
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their own pros and cons. Analytical methods are computationally effi-
cient but can only deal with structures of simple geometries. Numerical
methods, on the other hand, can handle structures of complex ge-
ometries but are often computationally expensive because of the large
domains that need to be discretised. The most often used numerical
methods are Finite Element Methods (FEM), Finite Difference Methods
(FDM), Boundary Element Methods (BEM) and combinations of those.
A comprehensive overview of the features of these different methods
applied to the problem of wave scattering by underground structures
in a half-space can be found in [5].

With the development of more powerful computers, numerical
methods have been widely applied to investigate the dynamic ampli-
fications induced by the scattering of plane waves by underground
structures and canyons at the ground surface. For example, Luco and
de Barros [6–10] employed the indirect BEM to examine the 2D or
3D responses of infinitely long cylindrical inclusions embedded in a
layered poroelastic half-space. A simplified Donnell shell theory was
used to model pipelines. The applications of the indirect BEM to
other wave scattering problems can be found in the work by Dravin-
ski and Mossessian [11]. The advantage of the indirect BEM is that
(integrable) singularities of the Green’s functions are eliminated by
locating the source positions away from the integral surface at which
the observation positions are located. A special direct BEM was used
by Stamos and Beskos [5,12] to determine the 3D dynamic response
of underground structures in a half-space. In their paper, quadratic
isoparametric boundary line elements and an advanced numerical
integration technique for the treatment of singular integrals were used
to produce results of high accuracy. Furthermore, the combination of
BEM and FEM was applied by Liu et al. [13] to study the 3D response
of pipelines buried in a half-space. The above mentioned methods are
all frequency-domain based. Some work conducted in the time domain
employing FEM or BEM can be found in Refs. [14–18]. Note that the
BEM is often more efficient compared to other numerical methods, as
explicit expressions for the employed Green’s functions are available
(in the frequency–wavenumber domain), and only surfaces need to be
discretised. Therefore, the BEM can also be perceived as semi-analytical
method.

Analytical methods are usually based on wave-function expansions.
Using the method of separation of variables, wave functions satisfying
the wave or Helmholtz equations in Cartesian or cylindrical coor-
dinates, respectively, are obtained. The unknown coefficients in the
wave-function expansions (i.e., general solutions) can be determined
based on boundary conditions. Wave functions were first used by
Pao and Mow [1] to study the wave scattering from a cavity in a
full-space. To solve the unknown coefficients for more complicated
problems involving a half-space, additional techniques need to be
employed. For the 2D SH wave scattering problem in a half-space with
an embedded tunnel, the method of images was used to obtain a closed-
form steady-state solution [19]. The P-SV problem in a half-space is
more complicated to solve due to mode conversions between the P and
SV waves at the half-space surface and at the tunnel. To tackle this,
Datta and EL-Akily [20–22] employed a method of matched asymptotic
expansions and a method of successive reflections to calculate the
response of the considered half-space system. Lee and Zhu [23] em-
ployed Legendre polynomials to represent both P and S wave functions
so that zero-stress boundary conditions at the half-space surface can
be satisfied. Other examples of analytical solutions to solve the wave
scattering problems can be found in Refs. [24,25].

To circumvent the difficulty arising due to the two different bound-
ing surfaces in the problem of cylindrical structures embedded in a
half-space, Cao and Lee [26], and Lee and Karl [27] proposed to
approximate the flat half-space boundary by an almost flat circular
boundary of a large radius. The aim of the current study is to present
a semi-analytical solution without employing this approximation. To
cope with the challenge of the two different boundary surfaces, the
method of conformal mapping (which employs the complex-variable
2

Fig. 1. A 3D model of a tunnel embedded in an elastic half-space subjected to seismic
waves and the employed coordinate systems.

theory) can be used; it transforms a domain with flat and cylindrical
boundary surfaces into a domain with cylindrical surfaces only [28].
Liu et al. [29] were the first to apply the method of conformal mapping
to solve the 2D full-space wave scattering by a cavity problem. Then,
Verruijt [30] also used this method to solve the problem of a circular
cavity in an elastic half-space with prescribed static loads acting on the
cavity surface. Later on, the method was used by Liu et al. to solve
the 2D problem of two closely-spaced circular cavities subject to plane
harmonic waves in a full-space [31], and to solve the 2D dynamic
problem of a tunnel embedded in an elastic half-space subjected to
seismic waves [32]. The current paper aims to extend the method to
the 3D case, and present a systematic evaluation of the performance of
the method, which is lacking in the other studies.

This paper is organised as follows. In Section 2, we present the
statement of the considered problem. Section 3 presents incident and
reflected plane-wave fields in the soil, and scattered and refracted
cylindrical-wave fields in the soil and tunnel, respectively. Stress and
displacement expressions in terms of complex variables are given in
Section 4. The conformal mapping functions are introduced in Sec-
tion 5. In Section 6, we determine the unknown coefficients of poten-
tials related to the cylindrical waves. After having solved the problem,
convergence tests and validations of the proposed method are given in
Section 7. Furthermore, an evaluation of the accuracy of the present
method is given in Section 8. The accuracy is analysed for varying
dimensionless frequency, the stiffness ratio of the tunnel to soil, the
embedded depth of the tunnel, the vertical incident angle and the
thickness of the tunnel. The effects of these five important factors on the
response of the system are briefly addressed as well. Finally, Section 9
presents the conclusions.

2. Problem statement

In this paper, we consider the three-dimensional model shown in
Fig. 1. An infinitely long tunnel embedded in an elastic half-space is
subjected to seismic waves with the wave propagation direction being
arbitrary. The tunnel has a circular cross-section, and the longitudinal
axis of the tunnel is parallel to the half-space surface. Both the tunnel
and the half-space are modelled as an elastic continuum which is
assumed isotropic and linearly elastic.

Regions Ω1 and Ω2 shown in Fig. 1 refer to the domains of the
soil and tunnel, respectively. For the analysis, it is convenient to
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Fig. 2. Incident angles: (a) vertical incident angle and (b) horizontal incident angle.
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use six coordinate systems: global Cartesian (𝑦̃, 𝑧̃, 𝑥̃) and cylindrical
(𝑟, 𝜃, 𝑥̃) coordinates with origin at the free surface of the half-space,
local Cartesian (𝑦̃1, 𝑧̃1, 𝑥̃1) and cylindrical (𝑟1, 𝜃1, 𝑥̃1) coordinates with
rigin at the centre of the tunnel, and local Cartesian (𝑦̃2, 𝑧̃2, 𝑥̃2) and
ylindrical (𝑟2, 𝜃2, 𝑥̃2) coordinates with origin at the centre of the image
f the tunnel. The centre of the tunnel 𝑜̃1 is located beneath the free
urface at a depth of 𝐻̃ , and the inner and outer radii of the tunnel
re denoted as 𝑅̃i and 𝑅̃o, respectively. The image of the tunnel is
ymmetrically positioned with respect to the free surface. As shown in
ig. 2, the vertical incident angle 𝜃v is defined as the angle between the

wave propagation direction and the positive vertical 𝑧̃ axis, while the
horizontal incident angle 𝜃h is the angle between the projection of the

ave propagation direction on the horizontal plane (i.e., (𝑥̃, 𝑦̃)-plane)
nd the negative 𝑥̃ axis. Throughout this paper, a tilde is used to denote
hat parameters, coordinates, variables and operators are dimensional.

.1. Governing equations and boundary conditions

As we are interested in the steady-state solution to the problem, we
ssume that both the excitations and the responses of the system are
armonic and proportional to e+ i 𝜔̃𝑡, where i is the imaginary unit, 𝑡

time, 𝜔̃ = 2𝜋𝑓 the angular frequency and 𝑓 the frequency in Hz. In
hat follows, the factor e+ i 𝜔̃𝑡 is left out from all the expressions for
revity. The governing equations of motion of the soil medium and the
unnel in the frequency domain, without external forces, read [2,3]
(

𝜆̃(𝑖) + 𝜇̃(𝑖)
)

𝛁̃𝛁̃ ⋅ 𝐮̃(𝑖) + 𝜇̃(𝑖)𝛁̃2𝐮̃(𝑖) = −𝜔̃2𝜌̃(𝑖)𝐮̃(𝑖), (1)

here 𝜆̃(𝑖) and 𝜇̃(𝑖) signify the Lamé constants, and 𝜌̃(𝑖) the material den-
ity; the superscript 𝑖 = {1, 2} indicates the soil or tunnel, respectively;
𝛁̃ is the three-dimensional gradient vector (for Cartesian coordinates,
as an example, 𝛁̃ = (𝜕𝑦̃, 𝜕𝑧̃, 𝜕𝑥̃)), 𝛁̃

2 is the Laplace operator (e.g., 𝛁̃2 =
𝜕2𝑦̃ + 𝜕

2
𝑧̃ + 𝜕

2
𝑥̃), and 𝐮̃(𝑖) is a displacement vector (e.g., 𝐮̃(𝑖) = (𝑢̃(𝑖)𝑦̃ , 𝑢̃

(𝑖)
𝑧̃ , 𝑢̃

(𝑖)
𝑥̃ )).

The excitations of the system are seismic waves coming from below
he tunnel. Therefore, we have stress-free boundary conditions at both
he free surface of the half-space and the inner surface of the tunnel. We
ssume that the soil and tunnel are perfectly bonded, which implies that
e have continuity conditions at the tunnel–soil interface. Accordingly,

hese stress-free boundary and continuity conditions are written as
ollows:
̃ (1)𝑧̃𝑧̃ = 𝜎̃(1)𝑧̃𝑦̃ = 𝜎̃(1)𝑧̃𝑥̃ = 0, 𝑧̃ = 0,

̃ (2)𝑟1𝑟1 = 𝜎̃(2)𝑟1𝜃1 = 𝜎̃(2)𝑟1 𝑥̃1 = 0, 𝑟1 = 𝑅̃i,

𝑢̃(1)𝑟1 = 𝑢̃(2)𝑟1 , 𝑢̃(1)𝜃1 = 𝑢̃(2)𝜃1 , 𝑢̃(1)𝑥̃1 = 𝑢̃(2)𝑥̃1 , 𝑟1 = 𝑅̃o,
(1) (2) (1) (2) (1) (2) ̃

(2)
3

̃𝑟1𝑟1 = 𝜎̃𝑟1𝑟1 , 𝜎̃𝑟1𝜃1 = 𝜎̃𝑟1𝜃1 , 𝜎̃𝑟1 𝑥̃1 = 𝜎̃𝑟1 𝑥̃1 , 𝑟1 = 𝑅o.
.2. Application of the Helmholtz decomposition

It is noted that the displacement components in Eq. (1) are coupled.
or ease of finding solutions, we apply the Helmholtz decomposition
̃ (𝑖) = 𝛁̃𝜙̃(𝑖) + 𝛁̃ × 𝚿̃(𝑖), which reduces the elastodynamic equation of

otion to two uncoupled Helmholtz equations:

̃ 2𝜙̃(𝑖) +
(

𝑘̃(𝑖)P
)2
𝜙̃(𝑖) = 0, (3)

̃ 2𝚿̃(𝑖) +
(

𝑘̃(𝑖)S
)2

𝚿̃(𝑖) = 0, (4)

here Eq. (3) is a scalar potential equation, and Eq. (4) is a vector
otential equation; 𝜙̃(𝑖) and 𝚿̃(𝑖) are potentials related to dilatational
nd rotational motions, respectively; 𝑘̃(𝑖)P = 𝜔̃∕𝑐(𝑖)P and 𝑘̃(𝑖)S = 𝜔̃∕𝑐(𝑖)S are
he compressional and shear wavenumbers; 𝑐(𝑖)P =

√

(𝜆̃(𝑖) + 2𝜇̃(𝑖))∕𝜌̃(𝑖) and
𝑐(𝑖)S =

√

𝜇̃(𝑖)∕𝜌̃(𝑖) are the propagation velocities of the compressional and
hear waves.

The vector potential 𝚿̃(𝑖) needs to satisfy the gauge condition 𝛁̃ ⋅
̃ (𝑖) = 0, so that only two of the three components of 𝚿̃(𝑖) are indepen-
ent. We split up the vector potential 𝚿̃(𝑖) as follows [3,33]:

𝚿̃(𝑖) = 𝚿̃(𝑖)
1 + 𝚿̃(𝑖)

2 ,

𝚿̃(𝑖)
1 = 𝜓̃ (𝑖)𝐞𝑥̃ +

(

𝑘̃(𝑖)S
)−2

𝛁̃
(

𝜕𝜓̃ (𝑖)

𝜕𝑥̃

)

,

𝚿̃(𝑖)
2 =

(

𝑘̃(𝑖)S
)−1

𝛁̃ ×
(

𝜒 (𝑖)𝐞𝑥̃
)

,

(5)

in which 𝐞𝑥̃ is the unit vector along 𝑥̃ axis. The vector potential 𝚿̃(𝑖)
1

is defined such that the associated particle motion is polarised only
in the vertical plane (i.e., (𝑦̃, 𝑧̃)-plane); the other vector potential 𝚿̃(𝑖)

2
is defined such that the associated particle motion is polarised in all
directions. This can be observed in the displacement expressions in
Section 2.3 (see Eq. (10), contributions of 𝜓 (𝑖) and 𝜒 (𝑖)).

By defining the vector potentials as in Eq. (5), the equation for
the vector potential, Eq. (4), can be reduced to two uncoupled scalar
potential equations:

𝛁̃2𝜓̃ (𝑖) +
(

𝑘̃(𝑖)S
)2
𝜓̃ (𝑖) = 0,

𝛁̃2𝜒 (𝑖) +
(

𝑘̃(𝑖)
)2
𝜒 (𝑖) = 0.

(6)
S
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2.3. Non-dimensionalisation

For the analysis of the problem, we introduce non-dimensional
parameters, coordinates, variables and operators. These are defined as

{𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝑟, 𝑟1, 𝑟2}

= {𝑥̃, 𝑦̃, 𝑧̃, 𝑥̃1, 𝑦̃1, 𝑧̃1, 𝑥̃2, 𝑦̃2, 𝑧̃2, 𝑟, 𝑟1, 𝑟2}
/

𝐻̃,

𝐻,𝑅i, 𝑅o,𝐮(𝑖)} = {𝐻̃, 𝑅̃i, 𝑅̃o, 𝐮̃(𝑖)}
/

𝐻̃,

𝑐(𝑖)P , 𝑐
(𝑖)
S } = {𝑐(𝑖)P , 𝑐

(𝑖)
S }

/

𝑐(1)S , 𝑡 = 𝑡𝑐(1)S

/

𝐻̃, 𝜔 = 𝜔̃𝐻̃
/(

𝜋𝑐(1)S

)

,

𝑘(𝑖)P , 𝑘
(𝑖)
S } = {𝑘̃(𝑖)P , 𝑘̃

(𝑖)
S }𝐻̃, {𝜙(𝑖), 𝜓 (𝑖), 𝜒 (𝑖)} = {𝜙̃(𝑖), 𝜓̃ (𝑖), 𝜒 (𝑖)}

/

𝐻̃2,

𝜆(𝑖), 𝜇(𝑖)} = {𝜆̃(𝑖), 𝜇̃(𝑖)}
/

𝜇̃(1), 𝜌(𝑖) = 𝜌̃(𝑖)
(

𝑐(1)S

)2 /
𝜇̃(1).

(7)

ccordingly, the dimensionless Helmholtz equations are obtained as

2𝜙(𝑖) +
(

𝑘(𝑖)P
)2
𝜙(𝑖) = 0,

2𝜓 (𝑖) +
(

𝑘(𝑖)S
)2
𝜓 (𝑖) = 0,

2𝜒 (𝑖) +
(

𝑘(𝑖)S
)2
𝜒 (𝑖) = 0.

(8)

he boundary and continuity conditions (see Eq. (2)) of the problem in
erms of dimensionless variables and parameters are as follows:
(1)
𝑧𝑧 = 𝜎(1)𝑧𝑦 = 𝜎(1)𝑧𝑥 = 0, 𝑧 = 0,
(2)
𝑟1𝑟1

= 𝜎(2)𝑟1𝜃1 = 𝜎(2)𝑟1𝑥1 = 0, 𝑟1 = 𝑅i,
(1)
𝑟1

= 𝑢(2)𝑟1 , 𝑢(1)𝜃1 = 𝑢(2)𝜃1 , 𝑢(1)𝑥1 = 𝑢(2)𝑥1 , 𝑟1 = 𝑅o,
(1)
𝑟1𝑟1

= 𝜎(2)𝑟1𝑟1 , 𝜎
(1)
𝑟1𝜃1

= 𝜎(2)𝑟1𝜃1 , 𝜎
(1)
𝑟1𝑥1

= 𝜎(2)𝑟1𝑥1 , 𝑟1 = 𝑅o.

(9)

ased on the dimensionless Helmholtz decomposition 𝐮(𝑖) = 𝛁𝜙(𝑖) +
× 𝚿(𝑖) and the definition of the vector potential (see Eq. (5)), the

isplacement components can be expressed in terms of the three
imensionless scalar potentials 𝜙(𝑖), 𝜓 (𝑖) and 𝜒 (𝑖):

(𝑖)
𝑦 =

𝜕𝜙(𝑖)

𝜕𝑦
+
𝜕𝜓 (𝑖)

𝜕𝑧
+ 1
𝑘(𝑖)S

𝜕2𝜒 (𝑖)

𝜕𝑥𝜕𝑦
,

𝑢(𝑖)𝑧 =
𝜕𝜙(𝑖)

𝜕𝑧
−
𝜕𝜓 (𝑖)

𝜕𝑦
+ 1
𝑘(𝑖)S

𝜕2𝜒 (𝑖)

𝜕𝑥𝜕𝑧
,

𝑢(𝑖)𝑥 =
𝜕𝜙(𝑖)

𝜕𝑥
+ 1
𝑘(𝑖)S

(

(

𝑘(𝑖)S
)2
𝜒 (𝑖) +

𝜕2𝜒 (𝑖)

𝜕𝑥2

)

.

(10)

The 3D problem is reduced to a 2D one by letting 𝜕∕𝜕𝑥 = 0
(i.e., 𝑘(1)𝑥 = 0, 𝑘(1)𝑥 is introduced later, in Eq. (13)), corresponding to
the case when 𝜃h = 90◦ or 𝜃v = 0◦. From the displacement expressions
shown in Eq. (10), we observe that the scalar potential 𝜓 (𝑖) in the 2D
case is related to the well-known SV wave because 𝜓 (𝑖) only contributes
o motions (𝑢(𝑖)𝑦 and 𝑢(𝑖)𝑧 ) in the vertical plane (𝑦, 𝑧); on the contrary,

the other scalar potential 𝜒 (𝑖) is related to the SH wave because 𝜒 (𝑖)

only contributes to the horizontally polarised out-of-plane motion 𝑢(𝑖)𝑥 .
Therefore, the 3D problem is reduced to decoupled 2D plane-strain (P-
SV) and 2D anti-plane (SH) problems when 𝜕∕𝜕𝑥 = 0. However, in the
3D case, we cannot uniquely relate the potentials 𝜓 (𝑖) and 𝜒 (𝑖) to SV and
SH waves, respectively, although 𝜓 (𝑖) still only contributes to motions
in the (𝑦, 𝑧)-plane for the 3D case (while the associated wave generally
propagates in all directions).

The Cartesian stress components in terms of potentials can be
easily obtained using the well-known Hooke’s law [4]. The cylindri-
cal displacement and stress components in terms of potentials could
be derived in a similar way as demonstrated above (i.e., derived in
Cartesian coordinates; see Eq. (10)). To do that, one would need to
consider the gradient vector, the Laplace operator and the displacement
vector in cylindrical coordinates (i.e., 𝛁 =

(

𝜕𝑟,
(

1∕𝑟
)

𝜕𝜃 , 𝜕𝑥
)T

, 𝛁2 =

𝜕2 +
(

1∕𝑟
)

𝜕 +
(

1∕𝑟2
)

𝜕2 + 𝜕2, 𝐮(𝑖) =
(

𝑢(𝑖), 𝑢(𝑖), 𝑢(𝑖)
)T

) instead of those in
4

𝑟 𝑟 𝜃 𝑥 𝑟 𝜃 𝑥
Cartesian coordinates shown in Section 2.1. As an alternative, we derive
the cylindrical displacement and stress expressions by transforming
the ones in Cartesian coordinates using the following relations for the
displacement vector 𝐮 and stress tensor 𝝈, respectively:

⎡

⎢

⎢

⎢

⎣

𝑢𝑟
𝑢𝜃
𝑢𝑥

⎤

⎥

⎥

⎥

⎦

= 𝐓
⎡

⎢

⎢

⎢

⎣

𝑢𝑦
𝑢𝑧
𝑢𝑥

⎤

⎥

⎥

⎥

⎦

, 𝐓 =

⎡

⎢

⎢

⎢

⎣

cos (𝜃) sin (𝜃) 0
− sin (𝜃) cos (𝜃) 0

0 0 1

⎤

⎥

⎥

⎥

⎦

, (11)

⎡

⎢

⎢

⎢

⎣

𝜎𝑟𝑟 𝜎𝑟𝜃 𝜎𝑟𝑥
𝜎𝜃𝑟 𝜎𝜃𝜃 𝜎𝜃𝑥
𝜎𝑥𝑟 𝜎𝑥𝜃 𝜎𝑥𝑥

⎤

⎥

⎥

⎥

⎦

= 𝐓
⎡

⎢

⎢

⎢

⎣

𝜎𝑦𝑦 𝜎𝑦𝑧 𝜎𝑦𝑥
𝜎𝑧𝑦 𝜎𝑧𝑧 𝜎𝑧𝑥
𝜎𝑥𝑦 𝜎𝑥𝑧 𝜎𝑥𝑥

⎤

⎥

⎥

⎥

⎦

𝐓T, (12)

where the superscript ‘‘(𝑖)’’ is omitted for brevity, the cylindrical coor-
dinate system (𝑟, 𝜃, 𝑥) is defined based on 𝑦 = 𝑟 cos (𝜃) and 𝑧 = 𝑟 sin (𝜃),
𝐓 is the transformation matrix, and 𝐓T is its transpose.

3. Solutions of the governing equations

In this section, we aim to solve the governing equations specified in
Eq. (8). These Helmholtz equations can be solved using the method of
separation of variables in the Cartesian and cylindrical coordinate sys-
tems separately [33]. The solutions are used to construct the complete
wave field in the system [4].

3.1. Incident and reflected plane waves

Our ultimate goal is to solve the dynamic problem shown in Fig. 1.
As the problem of interest is linear, we first consider a submodel which
is a half-space without a tunnel, subject to seismic excitations, and
find the wave field in the half-space based on the stress-free boundary
conditions at the free surface. Then, we add the embedded tunnel in
the half-space, and find the additional wave field due to the presence
of the tunnel; for this model the excitation is the response calculated in
the previous submodel at the factitious tunnel–soil interface. The sum
of the two wave fields obtained in both models form the total wave
field.

Thus, considering first a half-space without the underground struc-
ture, we have harmonic plane waves as the solutions to Eq. (8).
Reflected waves are generated when the incident wave meets the free
surface of the half-space, and propagate away from the free surface.
The sum of the incident and reflected plane waves form the wave
field in the half-space. Three cases will be discussed in this subsection:
incident compressional (𝜙(1)

inc) and shear (𝜓 (1)
inc and 𝜒 (1)

inc) waves, where
the subscript ‘‘inc’’ indicates the incident wave.

Case 1: Incident compressional wave. The plane-wave solutions for
the incident (𝜙(1)

inc) and reflected waves (𝜙(1)
ref , 𝜓

(1)
ref , 𝜒

(1)
ref ) are given as

𝜙(1)
inc = 𝜙0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 − i 𝑘(1)𝑧,P𝑧
)

,

𝜙(1)
ref = 𝑅𝜙,𝜙𝜙0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,P𝑧
)

,

𝜓 (1)
ref = 𝑅𝜓,𝜙𝜙0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,S𝑧
)

,

𝜒 (1)
ref = 𝑅𝜒,𝜙𝜙0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,S𝑧
)

,

(13)

here the subscript ‘‘ref ’’ indicates the reflected wave; 𝜙0 is the ampli-
ude of the incident compressional wave, 𝑅𝜙,𝜙, 𝑅𝜓,𝜙 and 𝑅𝜒,𝜙 (given
n Appendix A) are amplitude ratios of the reflected waves 𝜙(1)

ref , 𝜓
(1)
ref

and 𝜒 (1)
ref , to the incident compressional wave 𝜙(1)

inc, respectively. The
avenumbers 𝑘(1)𝑥 and 𝑘(1)𝑦 in the 𝑥 and 𝑦 directions are written as

𝑘(1)𝑥 = 𝑘(1)𝑥,P = −𝑘(1)P sin
(

𝜃v
)

cos
(

𝜃h
)

, 𝑘(1)𝑦 = 𝑘(1)𝑦,P = 𝑘(1)P sin
(

𝜃v
)

sin
(

𝜃h
)

.

(14)

The wavenumbers 𝑘(1)𝑧,P and 𝑘(1)𝑧,S in the 𝑧 direction for compressional and
shear waves in the soil medium are given as

𝑘(1) =

√

(

𝑘(1)
)2

−
(

𝑘(1)
)2, 𝑘(1) =

√

(

𝑘(1)
)2

−
(

𝑘(1)
)2, (15)
𝑧,P P 𝑧,S S
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𝑘
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𝑘
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t
o
c

𝑘

where Re
(

𝑘(1)𝑧,P
)

> 0 and Re
(

𝑘(1)𝑧,S
)

> 0 are taken for propagating
waves (assuming 𝜔 > 0). Furthermore, the total wavenumber 𝑘(1) in
the horizontal plane (𝑥, 𝑦) is defined as

(1) =

√

(

𝑘(1)𝑥
)2

+
(

𝑘(1)𝑦
)2
. (16)

According to Snell’s law for elastic waves [2], the wavenumbers in the
𝑥 direction of the reflected compressional and shear waves are the same
(equal to that of the incident wave), that is, 𝑘(1)𝑥,P = 𝑘(1)𝑥,S = 𝑘(1)𝑥 , as well
s the wavenumbers in the 𝑦 direction, that is, 𝑘(1)𝑦,P = 𝑘(1)𝑦,S = 𝑘(1)𝑦 .
Case 2: Incident shear wave type 𝜓 . The plane-wave solutions for

the incident (𝜓 (1)
inc) and reflected waves (𝜙(1)

ref , 𝜓
(1)
ref , 𝜒

(1)
ref ) are given as

𝜓 (1)
inc = 𝜓0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 − i 𝑘(1)𝑧,S𝑧
)

,

𝜙(1)
ref = 𝑅𝜙,𝜓𝜓0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,P𝑧
)

,

𝜓 (1)
ref = 𝑅𝜓,𝜓𝜓0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,S𝑧
)

,

𝜒 (1)
ref = 𝑅𝜒,𝜓𝜓0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,S𝑧
)

,

(17)

where 𝜓0 is the amplitude of the incident shear wave; 𝑅𝜙,𝜓 , 𝑅𝜓,𝜓 and
𝑅𝜒,𝜓 (given in Appendix A) are amplitude ratios of the reflected waves
𝜙(1)
ref , 𝜓

(1)
ref and 𝜒 (1)

ref , to the incident shear wave 𝜓 (1)
inc , respectively. The

wavenumbers in the 𝑥 and 𝑦 directions in this case are given as

𝑘(1)𝑥 = 𝑘(1)𝑥,S = −𝑘(1)S sin
(

𝜃v
)

cos
(

𝜃h
)

, 𝑘(1)𝑦 = 𝑘(1)𝑦,S = 𝑘(1)S sin
(

𝜃v
)

sin
(

𝜃h
)

.

(18)

Here, it is noted that under the incident shear waves (𝜓 (1)
inc and

𝜒 (1)
inc) there exists a critical vertical incident angle, beyond which the

wavenumber 𝑘(1)𝑧,P becomes imaginary (see Eqs. (15) and (18)). This
occurs when 𝑘(1)P < 𝑘(1) = 𝑘(1)S sin (𝜃v). Therefore, the critical vertical
angle is defined as

𝜃critv = arcsin
⎛

⎜

⎜

⎝

𝑘(1)P

𝑘(1)S

⎞

⎟

⎟

⎠

= arcsin

(
√

1 − 2𝜈(1)
2 − 2𝜈(1)

)

. (19)

vanescent waves are generated when 𝜃v > 𝜃critv , and for those waves it
s required that Im

(

𝑘(1)𝑧,P
)

< 0.
Case 3: Incident shear wave type 𝜒 . The plane-wave solutions for

he incident (𝜒 (1)
inc) and reflected waves (𝜙(1)

ref , 𝜓
(1)
ref , 𝜒

(1)
ref ) are given as

𝜒 (1)
inc = 𝜒0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 − i 𝑘(1)𝑧,S𝑧
)

,

𝜙(1)
ref = 𝑅𝜙,𝜒𝜒0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,P𝑧
)

,

𝜓 (1)
ref = 𝑅𝜓,𝜒𝜒0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,S𝑧
)

,

𝜒 (1)
ref = 𝑅𝜒,𝜒𝜒0 exp

(

− i 𝑘(1)𝑥 𝑥 − i 𝑘(1)𝑦 𝑦 + i 𝑘(1)𝑧,S𝑧
)

,

(20)

where 𝜒0 is the amplitude of the incident shear wave; 𝑅𝜙,𝜒 , 𝑅𝜓,𝜒 and
𝑅𝜒,𝜒 (given in Appendix A) are amplitude ratios of the reflected waves
𝜙(1)
ref , 𝜓

(1)
ref and 𝜒 (1)

ref , to the incident shear wave 𝜒 (1)
inc , respectively. The

wavenumbers in the 𝑥 and 𝑦 directions in this case are the same as that
in case 2; see Eq. (18).

3.2. Scattering of elastic waves by the tunnel

The presence of the infinitely long cylindrical tunnel causes scatter-
ing of elastic waves. These scattered waves are denoted as 𝜙(1)

s,1, 𝜓
(1)
s,1

and 𝜒 (1)
s,1 . The subscript ‘‘s, 1’’ indicates the ‘directly scattered’ waves

propagating away from the tunnel in the half-space. When these di-
rectly scattered waves meet the free surface of the half-space, secondary
scattered waves are generated, which are denoted as 𝜙(1)

s,2, 𝜓
(1)
s,2 and 𝜒 (1)

s,2 .
The subscript ‘‘s, 2’’ indicates the ‘secondary scattered’ waves. Based on
5

the spirit of the method of images, these secondary scattered waves
are considered to originate from an image source, but the intensity is a
priori unknown. The image source is located at the centre of the image
of the tunnel, positioned symmetrically with respect to the free surface.

To describe the waves propagating away from the tunnel and its
image, we apply the method of separation of variables to solve the
Helmholtz equations shown in Eq. (8), assuming a harmonic variation
in the circumferential direction of the form exp(i 𝑛𝜃) [4,33]. To satisfy
the continuity condition at 𝜃 = 0 and 𝜃 = 2𝜋, 𝑛 is required to be an inte-
ger. It turns out that, for fixed 𝑛, the radial behaviour is described by a
Hankel function. The general solution is then constructed as an infinite
series (that is commonly referred to as a wave-function expansion),
which represents the entire scattered wave field. The potentials related
to the scattered wave fields in the half-space are given as follows:

𝜙(1)
s,1 =

∞
∑

𝑛=−∞
𝑎𝑛𝐻

(2)
𝑛

(

𝑘(1)a 𝑟1
)

exp
(

i 𝑛𝜃1 − i 𝑘(1)𝑥 𝑥
)

,

𝜓 (1)
s,1 =

∞
∑

𝑛=−∞
𝑏𝑛𝐻

(2)
𝑛

(

𝑘(1)b 𝑟1
)

exp
(

i 𝑛𝜃1 − i 𝑘(1)𝑥 𝑥
)

,

𝜒 (1)
s,1 =

∞
∑

𝑛=−∞
𝑐𝑛𝐻

(2)
𝑛

(

𝑘(1)b 𝑟1
)

exp
(

i 𝑛𝜃1 − i 𝑘(1)𝑥 𝑥
)

,

𝜙(1)
s,2 =

∞
∑

𝑛=−∞
𝑑𝑛𝐻

(2)
𝑛

(

𝑘(1)a 𝑟2
)

exp
(

i 𝑛𝜃2 − i 𝑘(1)𝑥 𝑥
)

,

𝜓 (1)
s,2 =

∞
∑

𝑛=−∞
𝑒𝑛𝐻

(2)
𝑛

(

𝑘(1)b 𝑟2
)

exp
(

i 𝑛𝜃2 − i 𝑘(1)𝑥 𝑥
)

,

𝜒 (1)
s,2 =

∞
∑

𝑛=−∞
𝑓𝑛𝐻

(2)
𝑛

(

𝑘(1)b 𝑟2
)

exp
(

i 𝑛𝜃2 − i 𝑘(1)𝑥 𝑥
)

,

(21)

here 𝑎𝑛,… , 𝑓𝑛 denote the unknown coefficients which will be deter-
ined from the boundary and interface conditions, and 𝐻 (2)

𝑛 (..) denotes
he Hankel function of the second kind and 𝑛-th order, and represents
utgoing waves (propagating away from the tunnel) considering the
ime dependent factor e+ i𝜔𝑡. 𝑘(1)a and 𝑘(1)b are the cylindrical wavenum-
ers of the compressional and shear waves in the soil, respectively:

(1)
a =

√

(

𝑘(1)P

)2
−
(

𝑘(1)𝑥
)2
, 𝑘(1)b =

√

(

𝑘(1)S

)2
−
(

𝑘(1)𝑥
)2
, (22)

where Re(𝑘(1)a ) > 0 and Re(𝑘(1)b ) > 0 are taken for the propagating
cylindrical waves in the soil (assuming 𝜔 > 0), while Im(𝑘(1)a ) < 0
is taken for the evanescent cylindrical waves. Note that cylindrical S
waves in the soil never become evanescent because 𝑘(1)b is real valued
s 𝑘(1)S is always larger than 𝑘(1)𝑥 .

The potentials related to refracted waves in the tunnel are con-
structed using Bessel functions, and are given as

𝜙(2)
r =

∞
∑

𝑛=−∞

[

𝑔𝑛𝐽𝑛
(

𝑘(2)a 𝑟1
)

+ ℎ𝑛𝑌𝑛
(

𝑘(2)a 𝑟1
)

]

exp
(

i 𝑛𝜃1 − i 𝑘(2)𝑥 𝑥
)

,

𝜓 (2)
r =

∞
∑

𝑛=−∞

[

𝑖𝑛𝐽𝑛
(

𝑘(2)b 𝑟1
)

+ 𝑗𝑛𝑌𝑛
(

𝑘(2)b 𝑟1
)

]

exp
(

i 𝑛𝜃1 − i 𝑘(2)𝑥 𝑥
)

,

𝜒 (2)
r =

∞
∑

𝑛=−∞

[

𝑘𝑛𝐽𝑛
(

𝑘(2)b 𝑟1
)

+ 𝑙𝑛𝑌𝑛
(

𝑘(2)b 𝑟1
)

]

exp
(

i 𝑛𝜃1 − i 𝑘(2)𝑥 𝑥
)

,

(23)

where 𝑔𝑛,… , 𝑙𝑛 denote the unknown coefficients; 𝐽𝑛(..) and 𝑌𝑛(..) denote
he Bessel functions of the first and second kind, respectively, and 𝑛-th
rder. 𝑘(2)a and 𝑘(2)b are the wavenumbers of the compressional and shear
ylindrical waves in the tunnel, respectively:

(2)
a =

√

(

𝑘(2)P

)2
−
(

𝑘(2)𝑥
)2
, 𝑘(2)b =

√

(

𝑘(2)S

)2
−
(

𝑘(2)𝑥
)2
, (24)

The longitudinal wavenumber 𝑘(2)𝑥 of the refracted waves is equal to
𝑘(1)𝑥 according to Snell’s law. Note that here we use Bessel functions to
represent the cylindrical waves in the tunnel. Alternatively, we could
use the Hankel functions of the first and second kind (𝐻 (1)

𝑛 and 𝐻 (2)
𝑛 ) to

represent the cylindrical ingoing and outgoing waves in the tunnel, like
in [32]. Mathematically, both representations of the waves in the tunnel
are correct. However, it is found that the numerical results obtained by
using Bessel functions are more accurate; see Sections 7.2 and 8.2.
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3.3. Total wave fields

The incident and reflected plane waves together with the directly
and secondary scattered cylindrical waves make up the total wave field
in the half-space (𝜙(1), 𝜓 (1) and 𝜒 (1)):

𝜙(1) = 𝜙(1)
inc + 𝜙

(1)
ref + 𝜙

(1)
s,1 + 𝜙

(1)
s,2 ,

𝜓 (1) = 𝜓 (1)
inc + 𝜓

(1)
ref + 𝜓

(1)
s,1 + 𝜓 (1)

s,2 ,

𝜒 (1) = 𝜒 (1)
inc + 𝜒

(1)
ref + 𝜒

(1)
s,1 + 𝜒 (1)

s,2 .

(25)

The total wave field in the tunnel consists of the refracted waves (𝜙(2),
𝜓 (2) and 𝜒 (2)):

𝜙(2) = 𝜙(2)
r , 𝜓 (2) = 𝜓 (2)

r , 𝜒 (2) = 𝜒 (2)
r . (26)

4. Stress and displacement expressions in terms of complex vari-
ables

To employ the complex-variable theory for determining the un-
known coefficients in Eqs. (21) and (23), we introduce a complex
variable 𝜅 = 𝑦+ i 𝑧 = 𝑟ei 𝜃 and its conjugate 𝜅̄ = 𝑦− i 𝑧 = 𝑟e− i 𝜃 , where 𝑦,
𝑧 and 𝑟, 𝜃 are the dimensionless Cartesian and cylindrical coordinates
in the vertical plane, respectively, as introduced in Section 2. In line
with the introduction of the image source, the local coordinate systems
(𝑦1, 𝑧1, 𝑥1) and (𝑦2, 𝑧2, 𝑥2) are defined symmetrically with respect to the
free surface of the half-space, with 𝑧2 positive downward (see Fig. 1).
The local coordinates 𝑟1 and 𝑟2 can be written in terms of complex
variables 𝜅 and 𝜅̄ related to the global coordinate system using the
relation between different coordinates:
𝑟1 = |𝑦1 + i 𝑧1| = |𝑦 + i(𝑧 +𝐻)| = |𝜅 + i𝐻|,

𝑟2 = |𝑦2 + i 𝑧2| = |𝑦 + i(−𝑧 +𝐻)| = |𝜅̄ + i𝐻|.
(27)

The exponential terms of the local coordinates 𝜃1 and 𝜃2, showing up in
Eqs. (21) and (23), can also be written in terms of the complex variables
𝜅 and 𝜅̄ as

ei 𝜃1 =
𝑦1 + i 𝑧1
𝑟1

= 𝜅 + i𝐻
|𝜅 + i𝐻|

, ei 𝜃2 =
𝑦2 + i 𝑧2
𝑟2

= 𝜅̄ + i𝐻
|𝜅̄ + i𝐻|

. (28)

Substituting Eqs. (27) and (28) into the expressions for the potentials
(see Eqs. (21) and (23)), we get the potentials in terms of the complex
variables 𝜅 and 𝜅̄, which are not shown in this paper for brevity.

Thereafter, the displacement (see Eq. (10)) and stress components
in the Cartesian coordinates (𝑦, 𝑧, 𝑥) can also be expressed in terms of
the complex variables 𝜅 and 𝜅̄, and they are shown in Eqs. (B.1)–(B.9)
in Appendix B. The expressions for the displacements and stresses in
the cylindrical coordinate system (𝑟, 𝜃, 𝑥) can be derived in terms of the
complex variables 𝜅 and 𝜅̄ as well by employing the transformation
relations (see Eqs. (11)–(12)), and they are shown in Eqs. (B.10)–(B.16).

5. Conformal mapping

As shown in Fig. 1, there are two different types of boundary
surfaces in the model (i.e., a flat free surface and cylindrical surfaces
of the tunnel). This makes the boundary value problem difficult to
solve. In this paper, we propose to use conformal mapping functions
to circumvent this difficulty by mapping the original domain with
boundary surfaces of two different types onto an image domain with
boundary surfaces of the same type. The application of conformal
mapping functions is demonstrated in this section.

We have introduced the complex variable 𝜅 and its conjugate 𝜅̄ in
the original physical domain in Section 4. Here, we introduce a complex
variable 𝜁 = 𝜉 + i 𝜂 = 𝜌ei 𝜗 and its conjugate 𝜁 = 𝜉 − i 𝜂 = 𝜌e− i 𝜗, which
are defined in the image domain. Two conformal mapping functions
𝑤(1)(𝜁 ) and 𝑤(2)(𝜁 ), one for the region of the half-space with a cavity
and one for the tunnel region, defining the relations between the two
6

Fig. 3. Image domain.

complex variables 𝜅 and 𝜁 in the original and image domains, are given
as follows:

𝜅(1) = 𝑤(1)(𝜁 ) = − i𝐺
1 + 𝜁
1 − 𝜁

, (29)

𝜅(2) = 𝑤(2)(𝜁 ) = − i𝐻 +
𝑅o
𝛽o
𝜁, (30)

where 𝐺 = 𝐻
(

1 − 𝛽2o
)/(

1 + 𝛽2o
)

and 𝛽o = 𝐻∕𝑅o −
√

(

𝐻∕𝑅o
)2 − 1.

Using these two mapping functions, the two regions Ω1 and Ω2 in the
physical domain (as shown in Fig. 1) are mapped onto two regions
Γ1 and Γ2 in the image domain (as shown in Fig. 3), respectively.
Accordingly, the free surface of the half-space 𝑧 = 0, the outer surface
𝑟1 = 𝑅o and inner surface 𝑟1 = 𝑅i of the tunnel correspond to surfaces
defined by circles |𝜁 | = 1, |𝜁 | = 𝛽o and |𝜁 | = 𝛽i = 𝛽o𝑅i∕𝑅o. Clearly, the
boundary surfaces in the image domain are of the same type.

The mappings of the regions Ω1 and Ω2 in the physical domain onto
regions Γ1 and Γ2 in the image domain are conformal and reversible.
It can be easily proven that the mapping functions 𝑤(1)(𝜁 ) and 𝑤(2)(𝜁 )
are analytic (except at one point (𝜌 = 1, 𝜗 = 0) corresponding to points
at infinity in the physical domain), and their derivatives with respect
to the complex variable 𝜁 (i.e., 𝑤(1)′(𝜁 ) and 𝑤(2)′(𝜁 )) are nonzero.

In general, the mapping functions induce a phase change between
the complex variables in the two domains. For a general conformal
mapping function 𝜅 = 𝑤(𝜁 ), the relation between the coordinate 𝜃 in the
physical domain and the coordinate 𝜗 in the image domain is defined
as [28]

exp(i 𝜃) =
𝜁
𝜌
𝑤′(𝜁 )
|𝑤′(𝜁 )|

= exp(i 𝜗)
𝑤′(𝜁 )
|𝑤′(𝜁 )|

. (31)

The first conformal mapping function 𝑤(1)(𝜁 ) indeed induces a phase
change because 𝑤(1)′(𝜁 ) is a complex number. On the contrary, the sec-
ond mapping function 𝑤(2)(𝜁 ) does not induce a phase change because
the 𝑤(2)′(𝜁 ) is a constant (i.e., 𝑤′(𝜁 )

|𝑤′(𝜁 )| = 1, exp(i 𝜃) = exp(i 𝜗); see Eq. (31)).

As a consequence, point 𝐴 at the tunnel–soil interface (see Fig. 1) is
mapped onto two different points 𝐴+ and 𝐴− (as shown in Fig. 3) using
mapping functions 𝑤(1)(𝜁 ) and 𝑤(2)(𝜁 ), respectively. When we apply the
continuity conditions at the tunnel–soil interface (see Section 6), we
need to take this issue into account. Let 𝜗+ and 𝜗 denote the arguments
of the vectors ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑂𝐴+ and ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑂𝐴− in the image domain, respectively. The
relation between these two angles can be derived using 𝜅(1) = 𝜅(2):

− i𝐺
1 + 𝛽oei 𝜗

+

+ = − i𝐻 +
𝑅o 𝛽oei 𝜗, (32)
1 − 𝛽oei 𝜗 𝛽o
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and is given as

𝜗+(𝜗) = arg

[

i𝑅oei 𝜗 +𝐻 − 𝐺
i𝑅oei 𝜗 +𝐻 + 𝐺

]

. (33)

. Solving the unknown coefficients

As shown in Section 4, the potentials, displacements and stresses
re written in terms of complex variables 𝜅 and 𝜅̄. The derivatives of
otentials related to the plane waves with respect to 𝜅 and 𝜅̄ can be
btained by simply applying the chain rule (i.e., first with respect to 𝑦
nd 𝑧, and then to 𝜅 and 𝜅̄), and the derivatives of potentials related to
ylindrical waves with respect to the complex variables can be derived
sing both the chain rule and the recurrence relations of Hankel/Bessel
unctions (see Appendix C).

To solve the problem in the image domain where the boundary
urfaces are of the same type, we need to get the expressions for
isplacements and stresses in terms of the complex variables 𝜁 and 𝜁 .
pplying the derivatives of potentials with respect to 𝜅 and 𝜅̄ and then
eplacing the complex variables 𝜅 and 𝜅̄ by the appropriate mapping
unction (see Eqs. (29) and (30)) and their conjugates, we can get the
otentials, displacements and stresses written in terms of 𝜁 and 𝜁 ; they
re not shown in this paper for brevity.

Considering the total wave field in the half-space and tunnel (see
qs. (25) and (26)), and using the expressions for displacements and
tresses in terms of complex variables 𝜁 and 𝜁 , we obtain a set of
lgebraic equations based on the boundary and continuity conditions
see Eq. (9)):
12
∑

𝑖=1

∞
∑

𝑛=−∞
𝑘(𝑗,𝑖)𝑛 (𝜗)𝑥(𝑖)𝑛 = 𝑏(𝑗)(𝜗), (34)

here 𝑥(1)𝑛 = 𝑎𝑛, . . . , 𝑥(12)𝑛 = 𝑙𝑛; 𝑖 = {1,… , 12} indicates the term related
o the corresponding potentials of cylindrical waves; see Eqs. (21) and
23). 𝑗 = {1,… , 12} denotes the specific boundary condition: 𝑗 =
1, 2, 3} and 𝑗 = {4, 5, 6} refer to the stress-free boundary conditions
t the half-space surface and at the inner surface of the tunnel, re-
pectively; 𝑗 = {7,… , 12} refer to the continuity conditions at the
unnel–soil interface; see Eq. (9). Not all the entries of 𝑘(𝑗,𝑖)𝑛 and 𝑏(𝑗) are
resented in this paper, but they are understood as functions of complex
ariables 𝜁 and 𝜁 . For the aim of demonstration, we present the entries
f 𝑘(𝑗,𝑖)𝑛 and 𝑏(𝑗) related to the tenth continuity condition (i.e., 𝜎(1)𝑟1𝜃1 =
(2)
𝑟1𝜃1

) in Appendix D. In addition, for the set of algebraic equations
𝑗 = {7,… , 12}) formulated based on the continuity conditions, all the
isplacements and stresses related to the soil medium, namely, 𝑢(1)𝑟1 , 𝑢(1)𝜃1 ,
(1)
𝑥1 , 𝜎(1)𝑟1𝑟1 , 𝜎

(1)
𝑟1𝜃1

and 𝜎(1)𝑟1𝑥1 , are functions of 𝜗+(𝜗) while those related to

he tunnel are functions of 𝜗 (see also Section 5).
Multiplying Eq. (34) by the complex conjugate of the circumferen-

ial basis functions exp(i 𝑛𝜗), which appears in the expression for the
otentials of the cylindrical waves, integrating over the interval [0, 2𝜋]
nd applying the orthogonality relation wherever possible, we get
12
∑

𝑖=1

∞
∑

𝑛=−∞
𝑘(𝑗,𝑖)𝑛,𝑠 𝑥

(𝑖)
𝑛 = 𝑏(𝑗)𝑠 , (35)

here 𝑠 = {0,±1,±2,…} and

(𝑗,𝑖)
𝑛,𝑠 = 1

2𝜋 ∫

2𝜋

0
𝑘(𝑗,𝑖)𝑛 (𝜗) exp(− i 𝑠𝜗) d𝜗, (36)

𝑏(𝑗)𝑠 = 1
2𝜋 ∫

2𝜋

0
𝑏(𝑗)(𝜗) exp(− i 𝑠𝜗) d𝜗. (37)

or the potentials related to the directly scattered waves in the half-
pace (𝜙(1)

s,1 , 𝜓
(1)
s,1 , 𝜒

(1)
s,1 in Eq. (21)) and for the potentials related to the

efracted waves in the tunnel (Eq. (23)), orthogonality of the expo-
ential functions can be employed (i.e., 𝑘(𝑗,𝑖)𝑛,𝑠 = 0 for 𝑠 ≠ 𝑛, and
= {1, 2, 3, 7,… , 12}). The maximum values of 𝑛 and 𝑠 need to be finite
n order to be able to evaluate the unknown coefficients, which means
7

hat the sum over circumferential modes needs to be truncated. The
mount of modes for refracted waves in the tunnel is 2𝑁 + 1 when we
onsider 𝑛 from −𝑁 to 𝑁 . If we use the same amount of modes 2𝑁 +1

for both the directly scattered waves (𝜙(1)
s,1, 𝜓

(1)
s,1 , 𝜒 (1)

s,1 ) and secondary
scattered waves (𝜙(1)

s,2, 𝜓
(1)
s,2 , 𝜒 (1)

s,2 ), we use the following multiplication
unction:

exp(− i 𝑠𝜗), 𝑗 = {1,… , 12}; 𝑠 = {0,±1,±2,… ,±𝑁}. (38)

The matrix equation that is formulated based on Eq. (35) becomes
[

𝐊
]

12(2𝑁+1)×12(2𝑁+1) [𝐱]12(2𝑁+1)×1 =
[

𝐛
]

12(2𝑁+1)×1 . (39)

If we use 2𝑁 + 1 modes for the directly scattered waves and 2𝑀 + 1
𝑀 ≠ 𝑁) modes for the secondary scattered waves, in order to still

formulate a square matrix, different rows in Eq. (34) are multiplied by
different multiplication functions, respectively, as follows:

exp(− i 𝑠D𝜗), 𝑗 = {1,… , 3}; 𝑠D = {0,±1,±2,… ,±𝑀},

exp(− i 𝑠𝜗), 𝑗 = {4,… , 12}; 𝑠 = {0,±1,±2,… ,±𝑁},
(40)

and the matrix equation obtained from Eq. (35) reads
[

𝐊
]

(9(2𝑁+1)+3(2𝑀+1))×(9(2𝑁+1)+3(2𝑀+1)) [𝐱](9(2𝑁+1)+3(2𝑀+1))×1

=
[

𝐛
]

(9(2𝑁+1)+3(2𝑀+1))×1 . (41)

By using different numbers of modes for the directly and secondary
scattered waves, we acknowledge their contributions to the final re-
sponse in the system. It can be shown that, for converged results at the
tunnel, more circumferential modes of the directly scattered waves are
needed than of the secondary scattered waves (i.e., 𝑁 > 𝑀), while for
converged results at the ground surface, more circumferential modes
of the secondary scattered waves are needed. This is because, due to
geometrical attenuation, the potentials have larger contributions to the
response in the near field than in the far field. An advantage of using a
different number of circumferential modes is that the size and condition
of the matrix 𝐊 can be smaller, and the computation time can be
reduced.

Matlab is used to solve for the unknown coefficients. The calculation
is performed on a laptop with CPU of Intel Core i7 5600U/2.6 GHz. For
example, the computation time varies from 15 s to 2 min depending on
the value of 𝑁 (and 𝑀 , if different) from 3 to 10, respectively, for a
tunnel embedded in a half-space (3D case) using the first set of parame-
ters in Table 1. Since the computation is very efficient even when using
large values of 𝑁 and 𝑀 , the same number of circumferential modes
for both wave fields will be used in the following analysis (i.e., we use
the multiplication function in Eq. (38) instead of the one in Eq. (40)).

From the analysis using the proposed method, we find that matrix 𝐊
may have a relatively high condition number. That happens particularly
when Hankel functions have small arguments (i.e., when one of the
cylindrical wavenumbers 𝑘(1)a , 𝑘(1)b , 𝑘(2)a and 𝑘(2)b is relatively small, see
Eqs. (21) and (23)), see explanation in Section 7.2.

7. Convergence tests and validations

This section presents convergence tests and validations of the
present method by comparing with results obtained by other methods.
Three categories of comparisons are discussed: 2D anti-plane shear
(SH waves), 2D plane-strain (P and SV waves) and 3D cases. Table 1
presents the five parameter sets comprising parameters of the soil and
tunnel, the geometries of the system and the frequencies of the incident
harmonic waves.

In Table 1, 𝐸̃(1) and 𝐸̃(2) are the Young’s moduli of the soil and
tunnel, respectively, 𝜈(1,2) are the Poisson’s ratios, and ℎ is the thickness
of the tunnel. 𝜂 = 𝜔̃𝑅̃o

/(

𝜋𝑐(1)S

)

is the dimensionless frequency used in
the literature [10], which is different from the dimensionless frequency
𝜔 introduced in this paper (see Eq. (7)).
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Table 1
Five sets of parameters of the system.

Parameter sets Soil parameters Tunnel parameters Geometries and
frequencies

1 𝐸̃(1) = 7.567 GPa 𝐸̃(2) = 16 GPa 𝐻 = 5𝑅i

Liu et al. 𝜈(1) = 0.333 𝜈(2) = 0.2 ℎ = 0.1𝑅i
[13] 𝜌̃(1) = 2664 kg∕m3 𝜌̃(2) = 2240 kg∕m3 𝜂 = 0.105

2 𝐸̃(1) = 0.29593 GPa 𝐸̃(2) = 0.7992 GPa 𝐻 = 1.5𝑅o

Lee et al. 𝜈(1) = 0.333 𝜈(2) = 0.2 ℎ = 0.1𝑅o
[34] 𝜌̃(1) = 1640 kg∕m3 𝜌̃(2) = 3 × 𝜌̃(1) 𝜂 = 0.5

3 𝜇̃(1) = 0.111 GPa 𝜇̃(2) = 8.4 GPa 𝐻 = 2.5𝑅o

Balendra et al. 𝑐(1)s = 260 m∕s 𝜈(2) = 0.2 ℎ = 0.1𝑅o

[19] 𝜌̃(1) = 1640 kg∕m3 𝜌̃(2) = 2410 kg∕m3 𝜂 = 0.245

4 𝐸̃(1) = 0.69 Gpa 𝐸̃(2) = 16 GPa 𝐻 = 8.33𝑅i

Datta et al. 𝜈(1) = 0.45 𝜈(2) = 0.2 ℎ = 0.1𝑅i
[35] 𝜌̃(1) = 2665 kg∕m3 𝜌̃(2) = 2240 kg∕m3 𝜂 = 0.132

5 𝐸̃(1) = 0.69 GPa 𝐸̃(2) = 16 GPa 𝐻 = 2𝑅i

Wong et al. 𝜈(1) = 0.45 𝜈(2) = 0.2 ℎ = 0.1𝑅i
[24,25] 𝜌̃(1) = 2665 kg∕m3 𝜌̃(2) = 2240 kg∕m3 𝜂 = 0.132

For results presented in the following, all displacements and stresses
re normalised. The displacement components are normalised by the
mplitude of the incident compressional (P) or shear (S) wave:

= 𝑢∕𝑈{P,S}, (42)

where 𝑢 denotes an arbitrary (but corresponding to 𝑈) displacement
component, and 𝑈P and 𝑈S are the amplitudes of the corresponding
incident P and S waves, respectively, which can be derived using
Eq. (10):

𝑈P = i 𝑘(1)P 𝜙0,

𝑈S = i 𝑘(1)b 𝜓0 or 𝑈S = 𝑘(1)b 𝜒0.
(43)

The normalised stress is given as

Σ = 𝜎
/[

𝜔𝜌(1)𝑐(1)S 𝑈{P,S}

]

, (44)

where 𝜎 denotes an arbitrary (but corresponding to Σ) stress compo-
nent.

For a 3D problem, a convergence test using the first parameter set
in Table 1 is shown in Fig. 4. The system is subject to an incident P
wave (𝜂 = 0.105, 𝑓 = 10.84 Hz). The vertical and horizontal incident
angles are 𝜃v = 30◦ and 𝜃h = 0◦. It is shown that both the normalised
displacement 𝑈𝑥 at the half-space surface 𝑧 = 0 and the normalised
oop stress Σ𝜃1𝜃1 at 𝑟1 = 𝑅o converge very quickly. It can be verified
hat for relatively high frequencies, 𝑁 = 5 appears sufficient. All the
8

esults in this paper are obtained using 𝑁 = 5 and employing the
representations of cylindrical waves in the tunnel in terms of Bessel
functions (see Eq. (23)) unless specified otherwise. The remainder of
this section is devoted to validations.

7.1. 2D anti-plane shear cases

This subsection presents the following three comparisons. We con-
sider a problem of a tunnel embedded in a half-space subjected to
incident SH waves (i.e., 𝜒 (1)

inc) using the parameter sets in Table 1. In the
following Figs. 5–11, the black solid line indicates the present results
while the red dashed line indicates the results taken from the literature.

The first comparison is made with the results obtained by Lee and
Trifunac [34] for a vertically incident SH wave (𝜃v = 0◦ and 𝜃h =
0◦). The second parameter set in Table 1 is used. The longitudinal
isplacement 𝑈𝑥 at the half-space surface 𝑧 = 0, the longitudinal
isplacement 𝑈𝑥1 and shear stress Σ𝑟1𝑥1 at the tunnel–soil interface
1 = 𝑅o, and the shear stress Σ𝜃1𝑥1 at the inner surface of the tunnel
1 = 𝑅i are shown in Fig. 5. An excellent agreement between the present
esults and those from [34] is observed.

The responses in Fig. 5 are symmetric with respect to 90◦ and 270◦ as
xpected based on the excitation. In Fig. 5(a), we observe the screening
ffect of the tunnel, as the longitudinal displacement is smaller in the
ange of 𝑦∕𝑅o = [−2, 2] above the tunnel. Comparing Fig. 5(c) and (d),
e observe that the magnitude of Σ𝜃1𝑥1 is much larger than that of Σ𝑟1𝑥1 .

The second comparison is made between the present results and
hose obtained by Balendra et al. [19] for a non-vertically incident
H wave (𝜃v = 30◦ and 𝜃h = 90◦). The same quantities as in the
revious example are shown in Fig. 6, but the shear stress is nor-
alised differently for consistency with the literature result: Σ𝜃1𝑥1 =

2𝜎𝜃1𝑥1∕[(1 − 𝜈
(2))𝜔𝜌(1)𝑐(1)S 𝑈S]

|

|

|

. A very good agreement is observed. For
his obliquely incident SH wave (𝜃v = 30◦), the response loses symmetry
compare Figs. 5 and 6). In Fig. 6(a), we observe that the response is
maller to the right of the tunnel due to the screening effect. Fig. 6(d)
hows that the shear stress Σ𝜃1𝑥1 is amplified much more than Σ𝑟1𝑥1

(this is also the case when the original normalisation is used), which is
the same as in the first example.

For the third comparison, we consider the first parameter set in
Table 1 and validate the current results with the results obtained by
Liu et al. [13], and by Barros and Luco [10]. The system is subjected
to a vertically incident wave (𝜃v = 0◦ and 𝜃h = 90◦). We observe an
excellent agreement; see Fig. 7. The normalisation factor for Σ𝜃1𝑥1 is
taken the same as in the previous example. It is interesting to note
that the screening effect is not observed in the third example, and the
maximum displacement occurs above the tunnel. The reason is that
the frequency is lower and the tunnel is embedded deeper in the third
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Fig. 5. The first comparison example for the 2D SH wave case (𝜒 (1)

inc ): (a) 𝑈𝑥 at 𝑧 = 0, (b) 𝑈𝑥1 at 𝑟1 = 𝑅o, (c) Σ𝑟1𝑥1 at 𝑟1 = 𝑅o and (d) Σ𝜃1𝑥1 at 𝑟1 = 𝑅i. The excitation is a vertically
ncident SH wave (𝜃v = 0◦ and 𝜃h = 90◦), and the second parameter set in Table 1 is used. Note that for panel (d) no result from literature is available.
Fig. 6. The second comparison example for the 2D SH wave case (𝜒 (1)
inc ): (a) 𝑈𝑥 at 𝑧 = 0, (b) 𝑈𝑥1 at 𝑟1 = 𝑅o, (c) Σ𝑟1𝑥1 at 𝑟1 = 𝑅o and (d) Σ𝜃1𝑥1 at 𝑟1 = 𝑅i. The excitation is a

non-vertically incident SH wave (𝜃v = 30◦ and 𝜃h = 90◦), and the third parameter set in Table 1 is used. Note that for panel (a) no result from literature is available.
example (𝜂 = 0.105, 𝐻 = 5𝑅i = 4.545𝑅o) than in the first example
(𝜂 = 0.5, 𝐻 = 1.5𝑅o). We can see that the screening effect is also
not observed for another example, which uses the fourth parameter set
(𝜂 = 0.132, 𝐻 = 8.33𝑅i) in Table 1; see Fig. 8(c) and (f).

By comparing the first and third examples in this subsection, we
see that the distributions and amplitudes of the responses are quite
different in these two examples even though they are both subject to
9

vertically incident SH waves. That is because the system parameters
(i.e., the dimensionless frequency, the stiffness ratio of the tunnel to
soil, and the embedded depth of the tunnel) are different. We will
discuss the effect of these and other two parameters (the vertical
incident angle and the thickness of the tunnel) on the response of the
system in Section 8.
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Fig. 7. The third comparison example for the 2D SH wave case (𝜒 (1)
inc ): (a) 𝑈𝑥 at 𝑧 = 0, (b) 𝑈𝑥1 at 𝑟1 = 𝑅o, (c) Σ𝑟1𝑥1 at 𝑟1 = 𝑅o and (d) Σ𝜃1𝑥1 at 𝑟1 = 𝑅i. The excitation is a vertically

incident SH wave (𝜃v = 0◦ and 𝜃h = 90◦), and the first parameter set in Table 1 is used. Note that for panel (a) no result from literature is available.
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7.2. 2D plane-strain cases

The comparison studies for the two-dimensional plane-strain cases
consider the problem of a tunnel embedded in an elastic half-space sub-
jected to incident P and SV waves (i.e., 𝜙(1)

inc and 𝜓 (1)
inc , respectively). We

discuss three examples. First, we consider a case of vertically incident
P and SV waves (𝜃v = 0◦ and 𝜃h = 90◦) using the fourth parameter
set in Table 1 and compare our results with the results obtained by
Datta et al. [35]. Fig. 8(a) and (b) show the radial displacement 𝑈𝑟1
at the tunnel–soil interface 𝑟1 = 𝑅o and the hoop stresses Σ𝜃1𝜃1 at the
centre-line of the tunnel 𝑟1 = 𝑅c for the incident P wave, while Fig. 8(d)
nd (e) show these quantities for the incident SV waves. It is clear that
he results obtained by the present method are in good agreement with
hose in the literature.

For comparison, in Fig. 8(e), we added the results obtained by the
resent method using Hankel functions to represent the cylindrical
aves in the tunnel (see Section 3.2), and small differences are ob-

erved compared with the literature results. Furthermore, we can verify
hat the results obtained using Hankel functions are not completely
mooth; this is because the cylindrical wavenumbers in the tunnel
re small (the combination of frequency and tunnel stiffness leads to
(2)
b (= 𝑘(2)S ) being small), which makes that the corresponding Hankel
unctions become large. In this situation, the Hankel functions render
he columns of matrix 𝐊 (see Eq. (39)) linearly dependent given the
imitation of the computer precision, which leads to an ill-conditioned
ystem of equations and 𝐊 having a large condition number (the results
an be improved to some extent when quadruple precision is used
not standard in Matlab) in solving the system of equations). We see

similar non-smooth curve in the second 2D plane-strain example,
ig. 9(d), for which the cylindrical wavenumbers are even smaller. It
an be verified that the non-smooth feature does not disappear even
hen large amounts of hysteretic damping are added in the system

results not shown). From Figs. 8(e) and 9(d), we observe that when
essel functions are used instead of Hankel functions to represent
he cylindrical waves in the tunnel, the method gives smooth and
ccurate results. The reason is that Bessel functions do not render the
10

olumns of matrix 𝐊 linearly dependent, and therefore the problem
of limited precision is less severe with Bessel functions than with
Hankel functions. As a result, the condition number of matrix 𝐊 is
ffectively reduced when Bessel functions are used. We also found
hat the boundary conditions at the inner surface of the tunnel and
he continuity conditions at the tunnel–soil interface are then satisfied
uch better.

In order to demonstrate that the literature result in Fig. 8 (as well as
he present result) is correct, we also included the hoop stress (Fig. 8(e))
btained by the indirect boundary element method (indirect BEM).
learly, a perfect match with the literature result is observed. More
etails regarding our implementation of the indirect BEM can be found
n Section 8.

We also present the displacements at the ground surface for the
irst example. Fig. 8(c) and (f) show that under the vertically incident

wave, the vertical displacement 𝑈𝑧 is approximately equal to 2
(i.e., amplification factor is 2), while the horizontal displacement 𝑈𝑦
is approximately equal to 0. On the contrary, for the vertically incident
SV wave, the horizontal displacement 𝑈𝑦 ≈ 2 and 𝑈𝑧 ≈ 0. Therefore,
he vertical and horizontal displacement components are the dominant
isplacement components for the incident P (𝜙(1)

inc) and SV (𝜓 (1)
inc) waves,

espectively. It can be verified that for a 3D problem the vertical,
orizontal and longitudinal displacements (i.e., 𝑈𝑧, 𝑈𝑦 and 𝑈𝑥) are the
ominant displacement components for 𝜙(1)

inc, 𝜓
(1)
inc and 𝜒 (1)

inc , respectively.
n Section 8, we study the effect of system parameters on the dominant
isplacement components at the ground surface for the three different
ncident wave types.

In the second example, the fifth parameter set in Table 1 is used.
he ratio of the tunnel depth to its inner radius (𝐻∕𝑅i = 2.0) is
maller than that in the first example (𝐻∕𝑅i = 8.33), and we consider
non-vertically incident wave case (𝜃v = 10◦ and 𝜃h = 90◦). Fig. 9

shows the response under the incident P and SV waves. We observe
that the agreement with results from [25] is very good but Σ𝜃1𝜃1 is
not smooth when Hankel functions are used to represent the waves
in the tunnel, which is again related to the cylindrical wavenumbers
in the tunnel being small. Clearly, the non-smoothness is more severe
for the incident S wave case. Therefore, one may infer that the present

method works better for the incident P wave case than the S wave case;
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Fig. 8. The first comparison example for the 2D P-SV wave case (𝜙(1)
inc and 𝜓 (1)

inc ): (a), (d): 𝑈𝑟1 at 𝑟1 = 𝑅o; (b), (e): Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; and (c), (f): 𝑈{𝑦,𝑧} at 𝑧 = 0. The excitations are
vertically incident P and SV waves (𝜃v = 0◦ and 𝜃h = 90◦), respectively. The fourth parameter set in Table 1 is used. Note that for panels (c) and (f) no result from literature is
available.
see also Section 8.1. However, that is not necessarily true, as shown in
Section 8.2, where the influence of the stiffness contrast is investigated
in more detail. In addition, the non-smoothness of the response curves
is more severe in the shallow tunnel case (see Fig. 9(d)) than the
deep tunnel case (see Fig. 8(e)). This is confirmed by the analysis in
Section 8.3.

It is shown in Fig. 9 that the distributions of the hoop stress Σ𝜃1𝜃1
and axial stress Σ𝑥1𝑥1 are very similar, though the amplification of the
hoop stress is much higher than that of the axial stress. Fig. 9(c) and (f)
show that the extremes of the radial and tangential displacements 𝑈𝑟1
and 𝑈𝜃1 are both around 2, which is different from what we observed at
the free surface, where there is one dominant displacement component
(dependent on incident wave type). However, we do see that the radial
displacement 𝑈𝑟1 has maxima where the tangential displacement 𝑈𝜃1
has minima, and vice versa.

In the third example, we consider a vertically incident wave case
(𝜃v = 0◦ and 𝜃h = 90◦), and use the first parameter set. The obtained
results are shown in Fig. 10, where we observe a perfect match between
the present results and those obtained by Liu et al. [13]. In this
example, the stiffness ratio of the tunnel to soil is small, and the tunnel
is embedded at relatively large depth. Therefore, as opposed to the
first two examples considered in this section, the results obtained when
Hankel functions are used also match perfectly the literature results,
but they are not shown in Fig. 10 for brevity. Fig. 10(c) and (f) show
the normal radial stress Σ𝑟1𝑟1 and shear stress Σ𝑟1𝜃1 for the vertically
incident P and SV waves, respectively. We see that the distributions of
Σ𝑟1𝑟1 and Σ𝜃1𝜃1 are the same, and the amplitude of Σ𝑟1𝑟1 does not exceed
1. Furthermore, we observe that the bending in the circumferential
direction is more severe for the incident SV wave case than for the
incident P wave case.

7.3. 3D case

One example of a 3D problem with incident P and S waves (i.e., 𝜙(1)
inc

and 𝜒 (1)
inc , respectively) is given in this subsection. The first parameter

set is used with obliquely incident P and S waves under incident angles
◦ ◦
11

𝜃v = 30 and 𝜃h = 0 . The obtained results are shown in Fig. 11,
where we observe excellent agreement between the present results and
those obtained by Liu et al. [13]. Note that the results obtained using
the indirect BEM are also included for this validation case, and good
agreement is observed as well.

8. Accuracy of the present method and parametric studies

As shown in Section 7, the present method works very well when
Bessel functions are used for the wave field in the tunnel. This is not
necessarily the case when Hankel functions are used instead (i.e., when
there is high stiffness contrast between the tunnel and soil, or when
the tunnel is shallow; see Figs. 8 and 9). To gain more insight into
the accuracy of the present method, we evaluate in this section the
influence of five different parameters in the system: the dimensionless
frequency, the stiffness ratio of the tunnel to soil, the embedded depth
of the tunnel, the vertical incident wave angle and the thickness of the
tunnel. Note that for the analysis in Sections 8.1, 8.3, 8.4 and 8.5, the
results obtained when Hankel functions are used for the wave field in
the tunnel are the same as the ones obtained using Bessel functions, but
the former results are not shown for brevity.

To evaluate the accuracy of the present method, we also imple-
mented the indirect BEM. The formulation of the indirect BEM for
the current seismic wave problem is similar to the formulation for the
moving-load problem [36], only the external force is different. The
implementation of the indirect BEM for the seismic wave problem has
been validated for each case, but only two cases are shown in this
paper; see Figs. 8 and 11. To check the convergence of the indirect
BEM, we considered different numbers of receiver and source points:
(𝑁r , 𝑁s) = (40, 20) and (𝑁r , 𝑁s) = (80, 40). Figs. 12–16 show that
(𝑁r , 𝑁s) = (40, 20) is sufficient for all the calculations in this paper. Note
that we considered a very small amount of hysteretic material damping
(i.e., material damping ratio being 0.001) in the implementation of the
indirect BEM.

Throughout this section, we display the hoop stress at the centre-
line of the tunnel and displacements at the ground surface. The hoop
stress is chosen as it is the most important response component for the

tunnel. For the ground vibrations, we choose the vertical, horizontal
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Fig. 9. The second comparison example for the 2D P-SV wave case (𝜙(1)
inc and 𝜓 (1)

inc ): (a), (d): Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; (b), (e): Σ𝑥1𝑥1 at 𝑟1 = 𝑅c; and (c), (f): 𝑈{𝑟1 ,𝜃1} at 𝑟1 = 𝑅o. The excitations
are non-vertically incident P and SV waves (𝜃v = 10◦ and 𝜃h = 90◦), respectively. The fifth parameter set in Table 1 is used. Note that for panels (c) and (f) no result from literature
is available.
Fig. 10. The third comparison example for the 2D P-SV wave case (𝜙(1)
inc and 𝜓 (1)

inc ): (a), (d): 𝑈𝑟1 at 𝑟1 = 𝑅o; (b), (e): Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; and (c), (f): Σ{𝑟1𝑟1 ,𝑟1𝜃1} at 𝑟1 = 𝑅o. The excitations
are vertically incident P and SV waves (𝜃v = 0◦ and 𝜃h = 90◦), respectively. The first parameter set in Table 1 is used. Note that for panels (c) and (f) no result from literature is
available.
and longitudinal displacements 𝑈𝑧, 𝑈𝑦 and 𝑈𝑥 for 𝜙(1)
inc, 𝜓

(1)
inc and 𝜒 (1)

inc ,
respectively, as they are the dominant displacement components; see
Section 7.2. The first parameter set in Table 1, and 𝜃v = 30◦ and 𝜃h = 0◦

are used as the base case in the following analysis. We display the
maximum of the absolute value of hoop stresses around the tunnel, and
the maximum of the absolute value of ground vibrations in the range of
12
𝑦∕𝑅o = [−4, 4]. Furthermore, the effects of the five different parameters
on the response of the system are briefly discussed as well.

8.1. Dimensionless frequency

As seismic waves typically have low frequencies, we consider the
dimensionless frequency in the range of 0.002−1.5 (𝑓 = 0.2−154.8 Hz).
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Fig. 11. An example for the 3D case (𝜙(1)
inc and 𝜒 (1)

inc ): (a), (d): 𝑈𝑟1 at 𝑟1 = 𝑅o; (b), (e): 𝑈𝑥1 at 𝑟1 = 𝑅o; and (c), (f): Σ𝜃1𝜃1 at 𝑟1 = 𝑅c. The excitations are non-vertically incident P and
S waves (𝜃v = 30◦ and 𝜃h = 0◦), respectively. The first parameter set in Table 1 is used.
Fig. 12. Evaluation of the present method for the dimensionless frequency 𝜂: (a)–(c) hoop stress Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; (d)–(f) vertical displacement 𝑈𝑧, horizontal displacement 𝑈𝑦 and
longitudinal displacement 𝑈𝑥 at 𝑧 = 0 subject to 𝜙(1)

inc, 𝜓
(1)
inc and 𝜒 (1)

inc , respectively.
Fig. 12(a)–(c) show that the present method works well in terms of the
hoop stress. Fig. 12(d)–(f) show that the present method also works well
in terms of the ground vibrations for dimensionless frequencies up to
0.7, 0.69 and 0.46 (𝑓 = 72.3, 71.2 and 47.5 Hz) under 𝜙(1)

inc and 𝜓 (1)
inc , and

𝜒 (1)
inc , respectively. Clearly, the method performs well for the frequency

band of seismic waves. We included the higher frequencies in view of
the applicability of the method for other, higher-frequency loadings.
13
For high dimensionless frequencies, the condition number of the
formulated matrix 𝐊 is very large, and the matrix equation Eq. (39)
cannot be solved accurately. From the numerical analysis, we found
that the boundary conditions at the inner surface of the tunnel and
continuity conditions at the interface are still satisfied well for high
frequencies, but the boundary conditions at the ground surface are not.
Results are thus only accurate at the tunnel surfaces, not at the ground
surface. The reason for the inaccuracy lies in the fact that the secondary
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Fig. 13. Evaluation of the present method for the stiffness ratio of the tunnel to soil 𝐸(2)∕𝐸(1): (a)–(c) hoop stress Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; (d)–(f) vertical displacement 𝑈𝑧, horizontal
isplacement 𝑈𝑦 and longitudinal displacement 𝑈𝑥 at 𝑧 = 0 subject to 𝜙(1)

inc, 𝜓
(1)
inc and 𝜒 (1)

inc , respectively.
cattered waves in the soil are represented by cylindrical waves and
ot plane waves, while the latter are most likely more suitable to
epresent the response at the flat ground surface at high frequencies.
sing more circumferential modes does not help increasing accuracy;
n the contrary, we can verify that the condition number gets larger,
o the results obtained using more modes can be even worse. In fact,
t is difficult to get converged results using the present method for
igh-frequency cases.

We observe that the present method generally works better for the
ncident P wave case (𝜙(1)

inc) than the incident S wave case (𝜓 (1)
inc and

(1)
inc); see also Fig. 9. The reason is that, for the incident S wave case,
he longitudinal wavenumber 𝑘(1)𝑥 is larger than that for the case of the
ncident P wave under the same frequency, as the speed of the S wave is
maller than that of the P wave. Thus, 𝑘(1)a is smaller, which eventually
esults in a higher condition number of matrix 𝐊 and less accurate
esponses; see explanation in Section 7.2, although the inaccuracy in
his case originates from the Hankel functions in the soil, which cannot
e replaced by Bessel functions as there are only outgoing waves.

Fig. 12 shows that for different incident wave types, the hoop stress
as a dominant peak value at low frequencies, oscillates as frequency
ncreases, and has a decreasing trend. The first two dimensionless
esonance frequencies under 𝜙(1)

inc are 0.15 and 0.74, respectively, under
(1)
inc 0.11 and 0.33, and under 𝜒 (1)

inc 0.24 and 0.59. We also see that
he curve for the incident S wave case oscillates more. In addition,
s opposed to the decreasing trend for the hoop stress, the curves for
round vibrations exhibit a slightly increasing trend.

To conclude, the advantage of the proposed semi-analytical method
s that it is very efficient regarding computational time. However, the
ondition number increases as frequency increases, which may lead to
n increase in computational time (still efficient compared with indirect
EM) and, at some point, to inaccurate results. Thus, for seismic wave
xcitations, the semi-analytical method is beneficial, but its accuracy is
ost for high-frequency loadings.

.2. Stiffness ratio of the tunnel to soil

As mentioned in Section 7.2, the large stiffness contrast (𝐸(2)∕𝐸(1) =
23) between the tunnel and soil may induce inaccuracies in the results
14
obtained by the present method when using Hankel functions to rep-
resent the cylindrical waves in the tunnel. Therefore, we evaluate it
for varying stiffness ratio: 𝐸(2)∕𝐸(1) = [0.5 − 25]. The corresponding
range for shear wave velocity in the soil is 𝐶 (1)

S = [2123 m∕s − 300 m∕s]
based on the shear velocity 𝐶 (2)

S = 1725 m∕s. In this section, we
show the results obtained by the present method using both Bessel and
Hankel functions in Fig. 13. It is shown that the present method using
Bessel functions works well for both the incident P and S waves in the
complete considered range. However, regarding the hoop stress, the
present method using Hankel functions does not give accurate results
in the stiffness ratio range of 10− 15 for the incident P wave case. This
improvement was already touched upon in Section 7.2.

The large stiffness contrast causes only a small inaccuracy in the
results (i.e., the small difference in trend as the stiffness ratio increases);
they are still satisfactory. Therefore, a large stiffness ratio does not
necessarily lead to inaccurate results. It is surprising to see that the
results are actually least accurate for a moderate stiffness contrast
(range 10−15), and for the incident P wave case. This is different from
what we observed in Section 8.1 (and in Sections 8.3–8.5), where the
present method seemed to perform better for the incident P than the
incident S wave case.

To understand the inaccuracy in the range of 10−15 for the incident
P wave case, we consider the wavenumbers of refracted waves in the
tunnel. One can verify that 𝑘(2)b (see Eq. (24)) becomes imaginary when
𝐸(2)∕𝐸(1) = 12.5, which implies that the refracted shear wave becomes
evanescent; |𝑘(2)b | is small in the interval of 𝐸(2)∕𝐸(1) = [10 − 15], and
|𝑘(2)b | is the smallest when 𝐸(2)∕𝐸(1) = 12. As explained in Section 7.2,
the small argument of a Hankel function results in inaccurate responses
(it can be verified that the inaccuracy does not completely disappear
when large amounts of hysteretic damping are added in the system).
That is the reason why the responses are inaccurate for 𝐸(2)∕𝐸(1) =
[10 − 15], and why the largest discrepancy occurs when 𝐸(2)∕𝐸(1) = 12.
Similarly, the (small) inaccuracy observed for the incident S wave case
(see Fig. 13(c) and (e)) when 𝐸(2)∕𝐸(1) = 3 is again caused by the
refracted S wave becoming evanescent, and 𝑘(2)b being the smallest

for this stiffness contrast. Fortunately, when Bessel functions are used,
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Fig. 14. Evaluation of the present method for the depth ratio 𝐻∕𝑅o: (a)–(c) hoop stress Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; (d)–(f) vertical displacement 𝑈𝑧, horizontal displacement 𝑈𝑦 and
longitudinal displacement 𝑈𝑥 at 𝑧 = 0 subject to 𝜙(1)

inc, 𝜓
(1)
inc and 𝜒 (1)

inc , respectively.
he condition number of matrix 𝐊 is effectively reduced and accurate
esults can be obtained for the small wavenumbers.

Fig. 13 shows that the hoop stress increases dramatically as the
tiffness ratio increases, which indicates that the hoop stress in the
unnel can be reduced effectively by replacing the surrounding soft soil
y stiff soil (i.e., by means of ground improvement). The hoop stress
nder 𝜙(1)

inc is the largest, and the one under 𝜒 (1)
inc is the smallest. It is also

hown that the ground vibrations decrease only slightly as the stiffness
atio increases.

.3. Embedded depth of the tunnel

In this section, we evaluate the present method for the embedded
epth of the tunnel, and the considered range of embedded depth ratio
s that 𝐻∕𝑅o = [1.5− 20]. The results are shown in Fig. 14. We observe
hat the present method works very well in general for both the P and S
ave cases, despite some small differences between the current results
nd those obtained using the indirect BEM. The reason why the present
ethod works less good for shallow tunnels with 𝐻∕𝑅o = [1.5−2] (see

Fig. 14(e) and (f)) is that the wavenumbers are small in this range.
Fig. 14(d)–(f) show that the ground vibrations at the ground surface

have a decreasing trend. The ground vibrations are amplified more for
shallow tunnels due to ‘trapped’ waves between the top of the tunnel
and the ground surface [16,17]. We observe in Fig. 14(a)–(c) that the
embedded depth has a large effect on the hoop stress, for all three
incident wave types. Both the distributions and magnitudes of the hoop
stress are different, and the peak values occur at different depth ratios.
In addition, we see that the response (both the hoop stress and ground
vibration) for the incident P wave is not always larger than that for
the incident S wave, which is different from what is claimed in [16]
that generally greater amplifications are observed for P waves than
for SV waves. For example, the hoop stress under 𝜙(1)

inc is the largest
when 𝐻∕𝑅o = [5 − 9.25]; the hoop stress under 𝜓 (1)

inc is the largest when
𝐻∕𝑅o = [2−5, 14.5−20]; the hoop stress under 𝜒 (1)

inc is the largest when
𝐻∕𝑅o = [9.25 − 14.5]. Therefore, a larger embedded depth does not
necessarily make the tunnel safer. In fact, we can verify that the hoop
15

stress shows a decreasing trend with increasing embedded depth, but
the decrease is not monotonic as quasi-periodic patterns appear. The
ground displacements (Fig. 14(d)–(f)) show similar patterns, although
the oscillation is less strong.

8.4. Vertical incident angle

Here, we evaluate the present method for the vertical incident angle
𝜃v, while we consider 𝜃h = 0◦. Note that for the considered soil param-
eter set with 𝜈(1) = 0.333, 𝜃critv = arcsin

(

√

(

1 − 2𝜈(1)
)

∕
(

2 − 2𝜈(1)
)

)

≈

30◦ for the incident S wave case (see Eq. (19)). Fig. 15 shows that
the results obtained by the present method are accurate for both the
incident P and S wave cases. Note that the scattered compressional
waves in the soil become evanescent (i.e., 𝑘(1)a becomes imaginary)
when 𝜃v ≈ 30◦ (see Eqs. (15), (19) and (22); as we consider 𝜃h = 0◦,
𝑘(1)𝑦 = 0 and 𝑘(1)a = 𝑘(1)𝑧,P). As explained in Section 8.2, we expect
inaccuracy at the transition to evanescent waves. One can verify that
the obtained results are indeed less accurate around 𝜃v = 30◦ especially
when using 𝑁 = 10; however, the obtained results using 𝑁 = 5
are satisfactory. Therefore, the inaccuracy issue regarding the angle
(i.e., scattered compressional waves becoming evanescent) is less severe
than in the case of unfavourable stiffness ratio (i.e., refracted shear
waves becoming evanescent). In addition, this suggests that it is not
recommendable to use more than necessary circumferential modes in
the computations.

Fig. 15(a) and (b) show that the hoop stress decreases significantly
as 𝜃v increases for the cases of 𝜙(1)

inc and 𝜓 (1)
inc ; however, the hoop stress

first increases and then decreases for the case of 𝜒 (1)
inc . We observe two

small peaks at 𝜃v = 24.5◦ and 𝜃v = 𝜃critv ≈ 30◦, and a pronounced
peak at 𝜃v = 39◦. Similar to the trend of the hoop stress, the dominant
displacement 𝑈𝑧 decreases under 𝜙(1)

inc. However, the influence of 𝜃v on
the dominant displacement 𝑈𝑦 is very small. The dominant longitudinal
displacement under 𝜒 (1)

inc varies more as 𝜃v increases, and there is a
pronounced peak at 𝜃v = 𝜃critv ≈ 30◦ and a second small peak at 𝜃v = 64◦.
We can conclude that 𝜃critv has a large effect on the response of the

(1)
system, especially under 𝜒inc .
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Fig. 15. Evaluation of the present method for the vertical incident angle 𝜃v: (a)–(c) hoop stress Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; (d)–(f) vertical displacement 𝑈𝑧, horizontal displacement 𝑈𝑦 and
longitudinal displacement 𝑈𝑥 at 𝑧 = 0 subject to 𝜙(1)

inc, 𝜓
(1)
inc and 𝜒 (1)

inc , respectively.
Fig. 16. Evaluation of the present method for the thickness ratio of the tunnel ℎ∕𝑅o: (a)–(c) hoop stress Σ𝜃1𝜃1 at 𝑟1 = 𝑅c; (d)–(f) vertical displacement 𝑈𝑧, horizontal displacement
𝑈𝑦 and longitudinal displacement 𝑈𝑥 at 𝑧 = 0 subject to 𝜙(1)

inc, 𝜓
(1)
inc and 𝜒 (1)

inc , respectively.
m
t

t
i
m

.5. Thickness of the tunnel

The evaluation of the present method for changing thickness ratio
∕𝑅o is presented in this section. We consider a range of 0.05 − 0.5.
ig. 16 shows that the present method works well for both the incident
and S wave cases. The reason why the (small) difference between the

esults obtained using the present method and those using the indirect
16

EM increases as the thickness ratio increases, is that the tunnel is
odelled by the Flügge shell theory in the indirect BEM, while the
unnel is modelled as an elastic continuum in the current method.

Fig. 16(a)–(c) show that the hoop stress decreases significantly as
he thickness of the tunnel increases. This suggest that a thicker tunnel
s indeed safer. Furthermore, the hoop stress under 𝜙(1)

inc and 𝜓 (1)
inc is

uch larger than that under 𝜒 (1)
inc . Fig. 16(d)–(f) show that all the

dominant displacement components decrease slightly as the thickness

of the tunnel increases. Different from what we observed for the hoop
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stress, the dominant displacement under 𝜒 (1)
inc is much larger than that

under 𝜙(1)
inc and 𝜓 (1)

inc .

9. Conclusions

A semi-analytical solution for the 3D response of a tunnel em-
bedded in an elastic half-space subject to seismic waves has been
presented in this paper. An existing method has been extended suc-
cessfully from 2D to 3D. Both the tunnel and soil were modelled
as an elastic continuum. The method of conformal mapping (which
employs the complex-variable theory) was used to map the original
physical domain with boundary surfaces of two different types onto
an image domain with boundary surfaces of the same type. The total
wave field in the soil consists of incident and reflected plane waves,
and directly and secondary scattered cylindrical waves, while the total
wave field in the tunnel only consists of refracted cylindrical waves. The
secondary scattered waves are generated when the cylindrical waves
directly scattered from the tunnel meet the half-space surface. They
were represented by cylindrical waves that originate from a source of
a priori unknown intensity located at the centre of the image of the
tunnel, which is positioned symmetrically with respect to the half-space
surface.

The unknown coefficients of the potentials related to the cylindrical
waves were determined by the boundary and continuity conditions
of the tunnel–soil system. The boundary value problem was solved
in the image domain from a system of algebraic equations obtained
by projecting the boundary and continuity conditions onto the set
of the circumferential basis functions/modes. Convergence tests were
conducted regarding the number of circumferential modes (𝑁), and it
was shown that 𝑁 = 5 appears sufficient for the considered scenarios in
this paper. The results obtained by the present method were validated
for 2D anti-plane, 2D plane-strain and 3D cases by literature results.
Excellent agreement was observed.

The performance of the present solution method has been system-
atically evaluated and the effect of five important parameters on the
response of the system has been addressed briefly as well. The main
findings are as follows:

• The present method performs well for the frequency band of
seismic waves. For high dimensionless frequencies, the condition
number of the formulated matrix obtained from the boundary
and continuity conditions is very high, which causes inaccurate
results. The proposed method generally works better for the
incident P wave case than the incident S wave case. The reason
is that the wavenumbers in the arguments of the Hankel func-
tions (representing the cylindrical waves in the soil) are small,
implying that the Hankel functions render the columns of matrix
𝐊 linearly dependent for the S wave case, which eventually results
in ill-conditioned system of equations and less accurate responses.
The hoop stress decreases as frequency increases in a global
sense, while the dominant displacement component increases as
frequency increases. Furthermore, the results reveal pronounced
resonances which should be avoided in the design of tunnels.

• In the considered range of the stiffness ratio of the tunnel to soil,
the proposed method works well in general when Bessel functions
are used to represent the cylindrical waves in the tunnel. In
contrast, when Hankel functions are used to represent waves in
the tunnel, the hoop stress becomes inaccurate for a stiffness ratio
in the range of 10−15. The reason is that the wavenumbers in the
Hankel functions (representing the cylindrical waves in tunnel)
are small in this moderate stiffness contrast range, which is due
to refracted shear waves (in the tunnel) becoming evanescent
(in the 3D case). These inaccuracies can be perfectly overcome
by representing the cylindrical waves in the tunnel by Bessel
functions.
The hoop stress increases dramatically as the stiffness ratio of the
17

tunnel to soil increases, which indicates that the hoop stress in the
tunnel can be reduced effectively by replacing the surrounding
soft soil by stiff soil, while the ground vibrations decrease slightly
as the soil stiffness decreases.

• The present method generally works well in the considered range
of the embedded depth of the tunnel.
It is shown that the hoop stress has a peak value at different
embedded depths for three different incident waves (P wave
and two differently polarised S waves), and the ground vibra-
tions are amplified more for shallow tunnels. A larger embedded
depth does not necessarily make the tunnel safer. The hoop stress
shows a decreasing trend with increasing embedded depth, but
the decrease is not monotonic as quasi-periodic patterns appear.
The ground displacements show similar patterns, although the
oscillation is less strong.

• The present method generally works well in the considered range
of the vertical incident angle.
The vertical incident angle has a large effect on the response of
the system. The hoop stress decreases significantly as the vertical
incident angle increases for 𝜙(1)

inc (P wave) and 𝜓 (1)
inc (S wave),

while the hoop stress for 𝜒 (1)
inc (different S wave) first increases and

then decreases, with a pronounced peak value where the vertical
incident angle is slightly larger than the critical vertical incident
angle. The dominant ground vibration decreases as the vertical
incident angle increases for 𝜙(1)

inc; the dominant ground vibration
does not change much for 𝜓 (1)

inc , while there is a pronounced peak
at the critical vertical incident angle for 𝜒 (1)

inc .
• The present method generally works well in the considered thick-

ness range of the tunnel.
The hoop stress decreases significantly as the thickness of the
tunnel increases, while the dominant ground vibrations decrease
only slightly. This suggest that a thicker tunnel is indeed safer,
and it is also somewhat beneficial for structures on the ground
surface.

Finally, we can conclude that the proposed method is in general a fast,
elegant and accurate method for solving the seismic wave scattering
problem, and can be used for preliminary design.
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Appendix A. Amplitude ratios of potentials of reflected to incident
plane waves

Amplitude ratios of potentials of reflected waves to incident plane
waves in a homogeneous half-space without embedded structures can
be determined based on the stress-free boundary conditions at the
half-space surface. The result is presented in this appendix.

Case 1: Incident compressional wave (𝜙(1)
inc). The amplitude ratios

(𝑅𝜙,𝜙, 𝑅𝜓,𝜙 and 𝑅𝜒,𝜙) of the reflected waves (𝜙(1)
ref , 𝜓

(1)
ref and 𝜒 (1)

ref ) to
incident wave (𝜙(1)

inc) are given as follows:

𝑅𝜙,𝜙 =
4𝑘𝑧,P𝑘𝑧,S𝑘2 −

(

2𝑘2 − 𝑘2S
)2

4𝑘 𝑘 𝑘2 +
(

2𝑘2 − 𝑘2
)2
, 𝑅𝜓,𝜙 =

4𝑘𝑧,P𝑘𝑦
(

2𝑘2 − 𝑘2S
)

(

𝑘S∕𝑘b
)2

4𝑘 𝑘 𝑘2 +
(

2𝑘2 − 𝑘2
)2

,

𝑧,P 𝑧,S S 𝑧,P 𝑧,S S
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𝜅

𝑢

a

𝜎

𝑅𝜒,𝜙 =
4 i 𝑘𝑧,P𝑘𝑧,S𝑘𝑥𝑘S

(

2𝑘2 − 𝑘2S
)

∕𝑘2b

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2

, (A.1)

where the first and second subscripts indicate the potentials of the
reflected and incident waves, respectively. It is understood that all the
wavenumbers shown in this section are associated with the soil medium
and should have the superscript ‘‘(1)’’. However, this superscript is
omitted for brevity. For example, 𝑘 = 𝑘(1), as defined in Eq. (16).

Note that when the axial wavenumber 𝑘𝑥 equals to zero, a 2D
problem is recovered. Consequently, we have 𝑘 = 𝑘𝑦, 𝑘S = 𝑘b, and
the amplitude ratios shown in Eq. (A.1) are reduced to the following
expressions:

𝑅𝜙,𝜙 =
4𝑘𝑧,P𝑘𝑧,S𝑘2 −

(

2𝑘2 − 𝑘2S
)2

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
,

𝑅𝜓,𝜙 =
4𝑘𝑧,P𝑘𝑦

(

2𝑘2 − 𝑘2S
)

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
, 𝑅𝜒,𝜙 = 0. (A.2)

Case 2: Incident shear wave (𝜓 (1)
inc). The amplitude ratios (𝑅𝜙,𝜓 , 𝑅𝜓,𝜓

and 𝑅𝜒,𝜓 ) of the reflected waves (𝜙(1)
ref , 𝜓

(1)
ref and 𝜒 (1)

ref ) to incident wave
(𝜓 (1)

inc) are given as follows:

𝑅𝜙,𝜓 =
−4𝑘𝑧,S𝑘𝑦

(

2𝑘2 − 𝑘2S
)

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
,

𝑅𝜓,𝜓 =
8𝑘𝑧,P𝑘𝑧,S𝑘2𝑦𝑘

2
S∕𝑘

2
b −

[

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2

]

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2

,

𝑅𝜒,𝜓 =
8 i 𝑘𝑧,P𝑘2𝑧,S𝑘S𝑘𝑦𝑘𝑥∕𝑘

2
b

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
.

(A.3)

For 𝑘𝑥 = 0, we obtain the amplitude ratios for the 2D problem (P-SV or
plane-strain problem):

𝑅𝜙,𝜓 =
−4𝑘𝑧,S𝑘𝑦

(

2𝑘2 − 𝑘2S
)

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
,

𝑅𝜓,𝜓 =
4𝑘𝑧,P𝑘𝑧,S𝑘2 −

(

2𝑘2 − 𝑘2S
)2

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
, 𝑅𝜒,𝜓 = 0. (A.4)

Case 3: Incident shear wave (𝜒 (1)
inc). The amplitude ratios (𝑅𝜙,𝜒 , 𝑅𝜓,𝜒

and 𝑅𝜒,𝜒 ) of the reflected waves (𝜙(1)
ref , 𝜓

(1)
ref and 𝜒 (1)

ref ) to incident wave
(𝜒 (1)

inc) are given as follows:

𝑅𝜙,𝜒 =
4 i 𝑘𝑥

(

2𝑘4 − 3𝑘2𝑘2S + 𝑘
4
S

)

∕𝑘S

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2

,

𝑅𝜓,𝜒 =
8 i 𝑘𝑧,P𝑘2𝑧,S𝑘S𝑘𝑦𝑘𝑥∕𝑘

2
b

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2
,

𝑅𝜒,𝜒 =
8𝑘𝑧,P𝑘𝑧,S𝑘2𝑦𝑘

2
S∕𝑘

2
b −

[

4𝑘𝑧,P𝑘𝑧,S𝑘2 −
(

2𝑘2 − 𝑘2S
)2

]

4𝑘𝑧,P𝑘𝑧,S𝑘2 +
(

2𝑘2 − 𝑘2S
)2

.

(A.5)

For 𝑘𝑥 = 0, we obtain the amplitude ratios for the 2D problem (SH or
anti-plane shear problem):
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𝑅𝜙,𝜒 = 0, 𝑅𝜓,𝜒 = 0, 𝑅𝜒,𝜒 = 1. (A.6)
Appendix B. Expressions for displacements and stresses in terms
of complex variables

The components of the displacements and stresses in Cartesian
coordinates (𝑦, 𝑧, 𝑥) expressed in terms of the complex variables 𝜅 and
̄ are as follows, where the superscript (𝑖 = {1, 2}) is omitted for brevity
(throughout this appendix):

𝑢𝑦 =
(

𝜕𝜙
𝜕𝜅

+
𝜕𝜙
𝜕𝜅̄

)

+ i
(

𝜕𝜓
𝜕𝜅

−
𝜕𝜓
𝜕𝜅̄

)

−
i 𝑘𝑥
𝑘S

(

𝜕𝜒
𝜕𝜅

+
𝜕𝜒
𝜕𝜅̄

)

, (B.1)

𝑢𝑧 = i
(

𝜕𝜙
𝜕𝜅

−
𝜕𝜙
𝜕𝜅̄

)

−
(

𝜕𝜓
𝜕𝜅

+
𝜕𝜓
𝜕𝜅̄

)

+
𝑘𝑥
𝑘S

(

𝜕𝜒
𝜕𝜅

−
𝜕𝜒
𝜕𝜅̄

)

, (B.2)

𝑢𝑥 = − i 𝑘𝑥𝜙 +
𝑘2b
𝑘S
𝜒, (B.3)

and

𝜎𝑦𝑦 = −𝜆𝑘2𝑥𝜙 − (𝜆 + 𝜇) 𝑘2a𝜙 + 2𝜇

(

𝜕2𝜙
𝜕𝜅2

+
𝜕2𝜙
𝜕𝜅̄2

)

+ 2 i𝜇

(

𝜕2𝜓
𝜕𝜅2

−
𝜕2𝜓
𝜕𝜅̄2

)

+
i𝜇𝑘𝑥𝑘2b
𝑘S

𝜒 −
2 i𝜇𝑘𝑥
𝑘S

(

𝜕2𝜒
𝜕𝜅2

+
𝜕2𝜒
𝜕𝜅̄2

)

, (B.4)

𝜎𝑧𝑧 = −𝜆𝑘2𝑥𝜙 − (𝜆 + 𝜇) 𝑘2a𝜙 − 2𝜇

(

𝜕2𝜙
𝜕𝜅2

+
𝜕2𝜙
𝜕𝜅̄2

)

− 2 i𝜇

(

𝜕2𝜓
𝜕𝜅2

−
𝜕2𝜓
𝜕𝜅̄2

)

+
i𝜇𝑘𝑥𝑘2b
𝑘S

𝜒 +
2 i𝜇𝑘𝑥
𝑘S

(

𝜕2𝜒
𝜕𝜅2

+
𝜕2𝜒
𝜕𝜅̄2

)

, (B.5)

𝜎𝑥𝑥 = −
(

𝜆 + 2𝜇
)

𝑘2𝑥𝜙 − 𝜆𝑘2a𝜙 −
2 i𝜇𝑘𝑥𝑘2b

𝑘S
𝜒, (B.6)

𝜎𝑦𝑧 = 2 i𝜇

(

𝜕2𝜙
𝜕𝜅2

−
𝜕2𝜙
𝜕𝜅̄2

)

− 2𝜇

(

𝜕2𝜓
𝜕𝜅2

+
𝜕2𝜓
𝜕𝜅̄2

)

+
2𝜇𝑘𝑥
𝑘S

(

𝜕2𝜒
𝜕𝜅2

−
𝜕2𝜒
𝜕𝜅̄2

)

,

(B.7)

𝜎𝑦𝑥 = −2 i𝜇𝑘𝑥

(

𝜕𝜙
𝜕𝜅

+
𝜕𝜙
𝜕𝜅̄

)

+ 𝜇𝑘𝑥

(

𝜕𝜓
𝜕𝜅

−
𝜕𝜓
𝜕𝜅̄

)

+
𝜇
(

𝑘2S − 2𝑘2𝑥
)

𝑘S

(

𝜕𝜒
𝜕𝜅

+
𝜕𝜒
𝜕𝜅̄

)

, (B.8)

𝜎𝑧𝑥 = 2𝜇𝑘𝑥

(

𝜕𝜙
𝜕𝜅

−
𝜕𝜙
𝜕𝜅̄

)

+ i𝜇𝑘𝑥

(

𝜕𝜓
𝜕𝜅

+
𝜕𝜓
𝜕𝜅̄

)

+
i𝜇

(

𝑘2S − 2𝑘2𝑥
)

𝑘S

(

𝜕𝜒
𝜕𝜅

−
𝜕𝜒
𝜕𝜅̄

)

. (B.9)

Employing the transformation relations shown in Eqs. (11) and
(12), the expressions for displacements and stresses in the cylindrical
coordinate system (𝑟, 𝜃, 𝑥) are derived in terms of the complex variables
𝜅 and 𝜅̄:

𝑢𝑟 =
(

ei 𝜃 𝜕𝜙
𝜕𝜅

+ e− i 𝜃 𝜕𝜙
𝜕𝜅̄

)

+ i
(

ei 𝜃 𝜕𝜓
𝜕𝜅

− e− i 𝜃 𝜕𝜓
𝜕𝜅̄

)

−
i 𝑘𝑥
𝑘S

(

ei 𝜃 𝜕𝜒
𝜕𝜅

+ e− i 𝜃 𝜕𝜒
𝜕𝜅̄

)

, (B.10)

𝜃 = i
(

ei 𝜃 𝜕𝜙
𝜕𝜅

− e− i 𝜃 𝜕𝜙
𝜕𝜅̄

)

−
(

ei 𝜃 𝜕𝜓
𝜕𝜅

+ e− i 𝜃 𝜕𝜓
𝜕𝜅̄

)

+
𝑘𝑥
𝑘S

(

ei 𝜃 𝜕𝜒
𝜕𝜅

− e− i 𝜃 𝜕𝜒
𝜕𝜅̄

)

, (B.11)

nd

𝑟𝑟 =−𝜆𝑘2𝑥𝜙 − (𝜆 + 𝜇) 𝑘2a𝜙 + 2𝜇
(

e2 i 𝜃 𝜕
2𝜙
𝜕𝜅2

+ e−2 i 𝜃 𝜕
2𝜙
𝜕𝜅̄2

)

+2 i𝜇
(

e2 i 𝜃 𝜕
2𝜓
𝜕𝜅2

− e−2 i 𝜃 𝜕
2𝜓
𝜕𝜅̄2

)

+
i𝜇𝑘𝑥𝑘2b 𝜒 − 2 i𝜇𝑘𝑥

(

e2 i 𝜃 𝜕
2𝜒
2 + e−2 i 𝜃 𝜕

2𝜒
2

)

,

(B.12)
𝑘S 𝑘S 𝜕𝜅 𝜕𝜅̄
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𝜎

𝜎

w

N
t

𝜎𝜃𝜃 =−𝜆𝑘2𝑥𝜙 − (𝜆 + 𝜇) 𝑘2a𝜙 − 2𝜇
(

e2 i 𝜃 𝜕
2𝜙
𝜕𝜅2

+ e−2 i 𝜃 𝜕
2𝜙
𝜕𝜅̄2

)

−2 i𝜇
(

e2 i 𝜃 𝜕
2𝜓
𝜕𝜅2

− e−2 i 𝜃 𝜕
2𝜓
𝜕𝜅̄2

)

+
i𝜇𝑘𝑥𝑘2b
𝑘S

𝜒 + 2 i𝜇𝑘𝑥
𝑘S

(

e2 i 𝜃 𝜕
2𝜒
𝜕𝜅2

+ e−2 i 𝜃 𝜕
2𝜒
𝜕𝜅̄2

)

,

(B.13)

𝑟𝜃 =2 i𝜇
(

e2 i 𝜃 𝜕
2𝜙
𝜕𝜅2

− e−2 i 𝜃 𝜕
2𝜙
𝜕𝜅̄2

)

− 2𝜇
(

e2 i 𝜃 𝜕
2𝜓
𝜕𝜅2

+ e−2 i 𝜃 𝜕
2𝜓
𝜕𝜅̄2

)

+ 2𝜇𝑘𝑥
𝑘S

(

e2 i 𝜃 𝜕
2𝜒
𝜕𝜅2

− e−2 i 𝜃 𝜕
2𝜒
𝜕𝜅̄2

)

,
(B.14)

𝑟𝑥 = −2 i𝜇𝑘𝑥

(

ei 𝜃 𝜕𝜙
𝜕𝜅

+ e− i 𝜃 𝜕𝜙
𝜕𝜅̄

)

+ 𝜇𝑘𝑥

(

ei 𝜃 𝜕𝜓
𝜕𝜅

− e− i 𝜃 𝜕𝜓
𝜕𝜅̄

)

+
𝜇
(

𝑘2S − 2𝑘2𝑥
)

𝑘S

(

ei 𝜃 𝜕𝜒
𝜕𝜅

+ e− i 𝜃 𝜕𝜒
𝜕𝜅̄

)

, (B.15)

𝜎𝜃𝑥 = 2𝜇𝑘𝑥

(

ei 𝜃 𝜕𝜙
𝜕𝜅

− e− i 𝜃 𝜕𝜙
𝜕𝜅̄

)

+ i𝜇𝑘𝑥

(

ei 𝜃 𝜕𝜓
𝜕𝜅

+ e− i 𝜃 𝜕𝜓
𝜕𝜅̄

)

+
i𝜇

(

𝑘2S − 2𝑘2𝑥
)

𝑘S

(

ei 𝜃 𝜕𝜒
𝜕𝜅

− e− i 𝜃 𝜕𝜒
𝜕𝜅̄

)

. (B.16)

Appendix C. Derivatives of potentials related to plane and cylin-
drical waves

Based on the definition of the complex variable 𝜅 = 𝑦 + i 𝑧 and
its conjugate 𝜅̄ = 𝑦 − i 𝑧 given in this paper (i.e., 𝑦 = (𝜅 + 𝜅̄) ∕2 and
𝑧 = − i (𝜅 − 𝜅̄) ∕2), the derivative of a function 𝑓 (which represents a
potential related to plane waves) with respect to the complex variables
can be calculated using the chain rule:

𝜕𝑓
𝜕𝜅

=
𝜕𝑦
𝜕𝜅

𝜕𝑓
𝜕𝑦

+ 𝜕𝑧
𝜕𝜅

𝜕𝑓
𝜕𝑧
,
𝜕𝑓
𝜕𝜅̄

=
𝜕𝑦
𝜕𝜅̄

𝜕𝑓
𝜕𝑦

+ 𝜕𝑧
𝜕𝜅̄

𝜕𝑓
𝜕𝑧
. (C.1)

The recurrence relation of a Hankel function, for example 𝐻 (2)
𝑛 (𝑥)

ith the argument 𝑥, is given as

2𝑛
𝑥
𝐻 (2)
𝑛 (𝑥) = 𝐻 (2)

𝑛−1(𝑥) +𝐻
(2)
𝑛+1(𝑥). (C.2)

The derivative of Hankel functions (which occur in the potentials
related to cylindrical waves) with respect to the complex variables (𝜅
and 𝜅̄) can be derived using the chain rule (see Eq. (C.1)) and the
recurrence relation of Hankel functions (see Eq. (C.2)):

𝜕
𝜕𝜅

[

𝐻 (2)
𝑛

(

𝑘a|𝜅 + i𝐻|

)

(

𝜅 + i𝐻
|𝜅 + i𝐻|

)

𝑛

]

=
𝑘a
2
𝐻 (2)
𝑛−1

(

𝑘a|𝜅 + i𝐻|

)

(

𝜅 + i𝐻
|𝜅 + i𝐻|

)𝑛−1
, (C.3)

𝜕
𝜕𝜅̄

[

𝐻 (2)
𝑛

(

𝑘a|𝜅 + i𝐻|

)

(

𝜅 + i𝐻
|𝜅 + i𝐻|

)𝑛
]

=
−𝑘a
2
𝐻 (2)
𝑛+1

(

𝑘a|𝜅 + i𝐻|

)

(

𝜅 + i𝐻
|𝜅 + i𝐻|

)𝑛+1
, (C.4)

𝜕
𝜕𝜅

[

𝐻 (2)
𝑛

(

𝑘a|𝜅̄ + i𝐻|

)

(

𝜅̄ + i𝐻
|𝜅̄ + i𝐻|

)𝑛
]

=
−𝑘a
2
𝐻 (2)
𝑛+1

(

𝑘a|𝜅̄ + i𝐻|

)

(

𝜅̄ + i𝐻
|𝜅̄ + i𝐻|

)𝑛+1
, (C.5)

𝜕
𝜕𝜅̄

[

𝐻 (2)
𝑛

(

𝑘a|𝜅̄ + i𝐻|

)

(

𝜅̄ + i𝐻
|𝜅̄ + i𝐻|

)𝑛
]

=
𝑘a
2
𝐻 (2)
𝑛−1

(

𝑘a|𝜅̄ + i𝐻|

)

(

𝜅̄ + i𝐻
|𝜅̄ + i𝐻|

)𝑛−1
. (C.6)

ote that these derivative relationships are also hold for Bessel func-
ions.
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Appendix D. Entries of 𝒌(𝒋𝒊)𝒏 and 𝒃(𝒋) in Eq. (34)

Based on the boundary and continuity conditions (see Eq. (9)),
substituting potentials of the total wave fields (see Eqs. (25) and
(26)) into the expressions for displacements and stresses in terms of
complex variables 𝜅 and 𝜅̄, evaluating the derivative of potentials using
Eqs. (C.1) and (C.3)–(C.6), and then replacing the complex variables
𝜅 and 𝜅̄ in the physical domain by complex variables 𝜁 and 𝜁 in the
image domain (through appropriate mapping functions, see Eqs. (29)
and (30), and their conjugates), we finally obtain Eq. (34), which is a
function of complex variables 𝜁 and 𝜁 . For the aim of demonstration,
this appendix presents the entries of 𝑘(𝑗,𝑖)𝑛 and 𝑏(𝑗) related to the tenth
continuity condition (i.e., 𝑗 = 10, which relates to 𝜎(1)𝑟1𝜃1 = 𝜎(2)𝑟1𝜃1 ). For
completeness, we also show two terms related to the seventh continuity
condition.

The entries of 𝑘(𝑖,𝑗)𝑛 related to the tenth continuity condition are
written as follows:

𝑘(10,1)𝑛 = +𝜆(1)
(

𝑘(1)𝑥
)2

+
(

𝜆(1) + 𝜇(1)
)(

𝑘(1)a

)2
𝐻 (2)
𝑛

(

𝑘(1)a
|

|

𝑋1
|

|

)

(

𝑋1
|𝑋1|

)𝑛

−
𝜇(1)

(

𝑘(1)a

)2

2

[

e2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(1)a
|

|

𝑋1
|

|

)

(

𝑋1
|𝑋1|

)𝑛−2

+ e−2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(1)a
|

|

𝑋1
|

|

)

(

𝑋1
|𝑋1|

)𝑛+2
]

,

(D.1)

𝑘(10,2)𝑛 = −
i𝜇(1)

(

𝑘(1)b

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(1)b
|

|

𝑋1
|

|

)

(

𝑋1
|

|

𝑋1
|

|

)𝑛−2

− e−2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(1)b
|

|

𝑋1
|

|

)

(

𝑋1
|

|

𝑋1
|

|

)𝑛+2
⎤

⎥

⎥

⎦

, (D.2)

𝑘(10,3)𝑛 = −
i𝜇(1)𝑘(1)𝑥

(

𝑘(1)b

)2

𝑘(1)S

𝐻 (2)
𝑛

(

𝑘(1)b
|

|

𝑋1
|

|

)

(

𝑋1
|

|

𝑋1
|

|

)𝑛

+
i𝜇(1)𝑘(1)𝑥

(

𝑘(1)b

)2

2𝑘(1)S

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(1)b
|

|

𝑋1
|

|

)

(

𝑋1
|

|

𝑋1
|

|

)𝑛−2

+ e−2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(1)b
|

|

𝑋1
|

|

)

(

𝑋1
|

|

𝑋1
|

|

)𝑛+2
⎤

⎥

⎥

⎦

,

(D.3)

𝑘(10,4)𝑛 = +𝜆(1)
(

𝑘(1)𝑥
)2

+
(

𝜆(1) + 𝜇(1)
)(

𝑘(1)a

)2
𝐻 (2)
𝑛

(

𝑘(1)a
|

|

𝑋2
|

|

)

(

𝑋2
|𝑋2|

)𝑛

−
𝜇(1)

(

𝑘(1)a

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(1)a
|

|

𝑋2
|

|

)

(

𝑋2
|

|

𝑋2
|

|

)𝑛+2

+ e−2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(1)a
|

|

𝑋2
|

|

)

(

𝑋2
|𝑋2|

)𝑛−2
]

,

(D.4)

𝑘(10,5)𝑛 = −
i𝜇(1)

(

𝑘(1)b

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(1)b
|

|

𝑋2
|

|

)

(

𝑋2
|

|

𝑋2
|

|

)𝑛+2

− e−2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(1)b
|

|

𝑋2
|

|

)

(

𝑋2
|𝑋 |

)𝑛−2
⎤

⎥

⎥

, (D.5)

| 2|

⎦
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𝑘

w

𝜓

𝑘(10,6)𝑛 = −
i𝜇(1)𝑘(1)𝑥

(

𝑘(1)b

)2

𝑘(1)S

𝐻 (2)
𝑛

(

𝑘(1)b
|

|

𝑋2
|

|

)

(

𝑋2
|

|

𝑋2
|

|

)𝑛

+
i𝜇(1)𝑘(1)𝑥

(

𝑘(1)b

)2

2𝑘(1)S

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(1)b
|

|

𝑋2
|

|

)

(

𝑋2
|

|

𝑋2
|

|

)𝑛+2

+ e−2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(1)b
|

|

𝑋2
|

|

)

(

𝑋2
|𝑋2|

)𝑛−2
]

,

(D.6)

𝑘(10,7)𝑛 = −𝜆(2)
(

𝑘(2)𝑥
)2

−
(

𝜆(2) + 𝜇(2)
)(

𝑘(2)a

)2
𝐻 (2)
𝑛

(

𝑘(2)a
|

|

𝑋3
|

|

)

(

𝑋3
|𝑋3|

)𝑛

+
𝜇(2)

(

𝑘(2)a

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(2)a
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛−2

+ e−2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(2)a
|

|

𝑋3
|

|

)

(

𝑋3
|𝑋3|

)𝑛+2
]

,

(D.7)

𝑘(10,8)𝑛 = +
i𝜇(2)

(

𝑘(2)b

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛−2

− e−2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛+2
⎤

⎥

⎥

⎦

, (D.8)

(10,9)
𝑛 = +

i𝜇(2)𝑘(2)𝑥
(

𝑘(2)b

)2

𝑘(2)S
𝐻 (2)
𝑛

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|𝑋3|

)𝑛

−
i𝜇(2)𝑘(2)𝑥

(

𝑘(2)b

)2

2𝑘(2)S

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (2)
𝑛−2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛−2

+ e−2 i 𝜃𝐻 (2)
𝑛+2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|𝑋3|

)𝑛+2
]

,

(D.9)

𝑘(10,10)𝑛 = −𝜆(2)
(

𝑘(2)𝑥
)2

−
(

𝜆(2) + 𝜇(2)
)(

𝑘(2)a

)2
𝐻 (1)
𝑛

(

𝑘(2)a
|

|

𝑋3
|

|

)

(

𝑋3
|𝑋3|

)𝑛

+
𝜇(2)

(

𝑘(2)a

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (1)
𝑛−2

(

𝑘(2)a
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛−2

+ e−2 i 𝜃𝐻 (1)
𝑛+2

(

𝑘(2)a
|

|

𝑋3
|

|

)

(

𝑋3
|𝑋3|

)𝑛+2
]

,

(D.10)

𝑘(10,11)𝑛 = +
i𝜇(2)

(

𝑘(2)b

)2

2

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (1)
𝑛−2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛−2

− e−2 i 𝜃𝐻 (1)
𝑛+2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛+2
⎤

⎥

⎥

⎦

, (D.11)

𝑘(10,12)𝑛 = +
i𝜇(2)𝑘(2)𝑥

(

𝑘(2)b

)2

𝑘(2)S

𝐻 (1)
𝑛

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛

−
i𝜇(2)𝑘(2)𝑥

(

𝑘(2)b

)2

2𝑘(2)S

⎡

⎢

⎢

⎣

e2 i 𝜃𝐻 (1)
𝑛−2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛−2

+ e−2 i 𝜃𝐻 (1)
𝑛+2

(

𝑘(2)b
|

|

𝑋3
|

|

)

(

𝑋3
|

|

𝑋3
|

|

)𝑛+2
⎤

⎥

⎥

⎦

,

(D.12)

here 𝑋1 = 𝑤(1) (𝜁 (𝛽o, 𝜗+)
)

+ i𝐻 , 𝑋2 = 𝑤(1)
(

𝜁 (𝛽o, 𝜗+)
)

+ i𝐻 and
𝑋3 = 𝑤(2) (𝜁 (𝛽o, 𝜗)

)

+ i𝐻 = 𝑅o (considering Eq. (30)). 𝜗+ is a function
of 𝜗; see Eq. (33). The terms of e+2 i 𝜃 and e−2 i 𝜃 in the first six entries
(i.e., 𝑘(10,1)𝑛 − 𝑘(10,6)𝑛 ) and in the last six entries (i.e., 𝑘(10,7)𝑛 − 𝑘(10,12)𝑛 ),
respectively are written as functions of variable 𝜗 in the image domain
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as follows:

e2 i 𝜃 = e2 i 𝜗+
[

𝑤(1)′(𝜁 )
|𝑤(1)′(𝜁 )|

]2

= −

(

ei 𝜗+ − 𝛽o
1 − 𝛽oei 𝜗

+

)2

,

e−2 i 𝜃 = −

(

1 − 𝛽oei 𝜗
+

ei 𝜗+ − 𝛽o

)2

, (D.13)

e2 i 𝜃 = e2 i 𝜗, e−2 i 𝜃 = e−2 i 𝜗. (D.14)

Similarly, the terms of ei 𝜃 and e− i 𝜃 in the first six entries, for example,
in the seventh continuity condition, (i.e., 𝑘(7,1)𝑛 − 𝑘(7,6)𝑛 ) and in the last
six entries (i.e., 𝑘(7,7)𝑛 − 𝑘(7,12)𝑛 ), respectively are written as functions of
variable 𝜗 in the image domain as follows:

ei 𝜃 = ei 𝜗+ 𝑤(1)′(𝜁 )
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)2
, (D.15)

ei 𝜃 = ei 𝜗, e− i 𝜃 = e− i𝜗. (D.16)

The entry of 𝑏(𝑗) related to the tenth continuity condition, with the
incident P wave (𝜙(1)

inc) taken as an example, reads as follows:

𝑏(10) = −𝜆(1)
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where the terms of e+2 i 𝜃 and e−2 i 𝜃 have the expressions as shown in
Eq. (D.13), and
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