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Fast Single-Mode Fiber Nonlinearity Monitoring: An
Experimental Comparison Between Split-Step and

Nonlinear Fourier Transform-Based Methods
Pascal de Koster , Olaf Schulz , Jonas Koch , Stephan Pachnicke , Senior Member, IEEE,

and Sander Wahls , Senior Member, IEEE

Abstract—We experimentally investigate the problem of mon-
itoring the Kerr-nonlinearity coefficient γ from transmitted and
received data for a single-mode fiber link of 1600 km length. We
compare the accuracy and speed of three different approaches.
First, a standard split-step Fourier method is used to predict the
output at various γ values, which are then compared to the mea-
sured output. Second, a recently proposed nonlinear Fourier trans-
form (NFT)-based method, which matches solitonic eigenvalues in
the transmitted and received signals for various γ values. Third, a
novel fast version of the NFT-based method, which only matches
the highest few eigenvalues. Although the NFT-based methods do
not scale with link length, we demonstrate that the SSFM-based
method is significantly faster than the basic NFT-based method
for the considered link of 1600 km, and outperforms even the
faster version. However, for a simulated link of 8000 km, the fast
NFT-based method is shown to be faster than the SSMF-based
method, although at the cost of a small loss in accuracy.

Index Terms—Single-mode fiber, Kerr-nonlinearity,
characterization, split-step Fourier method, nonlinear Schrödinger
equation, nonlinear Fourier transform, forward scattering
transform, solitons.

I. INTRODUCTION

THE characterization of the Kerr nonlinearity coefficient
of an installed optical fiber link is fundamental for fiber

optical communications when employing higher launch powers,
for example for digital back-propagation (DBP) [1], [2], [3],
[4], nonlinear frequency division multiplexing (NFDM) [5],
or for performance estimation [6]. However, the nonlinearity
coefficient is often not well known by the operator, so it is
critical to measure the nonlinearity coefficient to optimally
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choose the transmission system parameters afterwards. Even
when estimates of the nonlinearity coefficients are provided by
the manufacturer, the coefficients may vary slightly between
fibers, or change after installation due to aging, bending or splic-
ing [1]. The re-characterization or even continuous monitoring
of installed fibers is therefore often beneficial or even necessary.
Monitoring of the nonlinearity coefficient can furthermore reveal
changes of the link.

Practical communication systems today often avoid high pow-
ers at which the Kerr-nonlinear effect starts to distort the signal
significantly. Therefore, the exact value of the Kerr-nonlinearity
coefficient received little attention so far. However, as optical
networks are being pushed towards higher bit-rates - often em-
ploying higher launch powers - estimating the Kerr-nonlinearity
coefficient becomes increasingly important. We are thus inter-
ested in methods to accurately and quickly determine the value
of the Kerr-nonlinearity coefficient. Many links are in constant
use. Furthermore, the transmission format is often difficult to
change. Hence, it would be desirable to use already available
regular transmission data to identify the Kerr-nonlinearity coef-
ficient. This implies that the usual identification methods relying
on specific training signals (e.g., using four-wave mixing [7],
cross-phase modulation [8] or self-phase modulation [9]) are
not well-suited for characterization of operational links. Instead,
the Kerr-nonlinearity coefficient is typically identified by nu-
merically simulating the propagation through the link with a
split-step Fourier method (SSFM), for various nonlinearity co-
efficients. The nonlinearity coefficient at which the numerically
forward-propagated input matches the measured output best is
kept [10], [11], [12], [13]. However, the time required by such
methods increases with the fiber length. They are therefore more
time consuming for long links.

In earlier work, we proposed an alternative identification
method which does not directly depend on the link length. This
method compares solitonic components found using the non-
linear Fourier transform (NFT) of the transmitted and received
signals [14], [15]. Solitons are stable waves that arise from a
balance between dispersive and nonlinear effects. In an idealized
lossless and noise-free link, the eigenvalues associated with the
solitons are conserved exactly during propagation. Nevertheless,
even in the presence of loss and noise the solitonic eigenvalues
are still very stable [1]. As hidden solitons are present in many
kinds of typical fiber-optical transmission data [15], [16], the
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NFT-based identification method is in principle widely applica-
ble. The Kerr-nonlinearity coefficient is required to normalize
the data before computing the NFT, and thus affects the detected
solitons. The NFT-based identification method compares the
solitonic components at the transmitter and receiver for different
values of the Kerr-nonlinearity coefficient, and keeps the one
at which the solitonic components match best. No numerical
propagation is necessary. Thus the method does not depend on
the link length, in contrast to propagation based-methods. We
thus investigate if a speed-up can be achieved with respect to
SSFM-based methods by instead comparing the signals in the
NFT domain.

The NFT-based method has been investigated in simula-
tions [14] and experiments [15], [17], where it has been found
to provide similar estimates to split-step methods. However,
it has not yet been tuned and assessed in terms of computa-
tional complexity, which is the goal of this article. We propose
and investigate a faster version of the NFT-based nonlinearity
characterization from [15], which only considers a few high-
energy solitons. (While all nonlinear Fourier components are
required to reconstruct a signal, one component in general is
already sufficient to estimate the fiber parameters under ideal
circumstances.) The solitonic eigenvalues are computed faster
by using the old eigenvalues at an earlier γ estimate as ini-
tial guesses for the eigenvalues at the new γ estimate. This
drastically speeds up the NFT-based matching, at the cost of
some accuracy.

Finally, we quantitatively compare the SSFM-based iden-
tification method, the NFT-based method from [15] and the
faster NFT-based method in terms of speed and accuracy. We
first compare these three methods on well-separated pulses,
such that neighboring pulses do not distort each other due
to channel memory. Next, we compare the three methods on
signal segments, that have been cut out from a full burst.
As the channel memory distorts the received signal segment,
we adapt the SSFM-based method slightly to take this into
account. The NFT-based methods were less affected by the
distortion due to channel memory and were therefore not
adjusted.

The main contributions in this article are thus as follows:
� The proposal of a novel fast version of the NFT-based

nonlinearity identification algorithm.
� An experimental investigation of the accuracy of the

SSFM-based method, the original NFT-based method
and the novel NFT-based method.

� A run-time comparison of these three algorithms.
This article is organized as follows. Section II describes

the nonlinearity identification algorithm through the split-step
Fourier method. Section III recapitulates how the NFT can be
used to identify solitonic components in a signal, and to identify
the nonlinearity coefficient. Section IV describes the proposed
faster NFT-based method which only compares the highest
few eigenvalues. Section V compares the three identification
methods on experimental measurement data for a 1600 km link.
Section VI compares the three identification methods on simu-
lated data for an 8000 km link. Finally, Section VII concludes
the article.

II. SPLIT-STEP FOURIER METHOD FOR FIBER NONLINEARITY

IDENTIFICATION

The propagation of an optical signal through a span of
single-mode fiber (SMF) can be modeled by the lossy nonlinear
Schrödinger equation (NLSE),

Al = −iβ2

2
Aττ + iγ|A|2A− α

2
A, (1)

in whichA (in
√

W) is the complex signal amplitude, l (in m) the
distance, τ (in s) the time, β2 (in s2

m ) the second-order dispersion
coefficient, α (in 1

m ) the loss coefficient, and finally γ (in 1
Wm )

the Kerr-nonlinearity coefficient to be identified in this article.
Subscripts denote partial derivatives. At the end of each span
an Erbium-doped fiber amplifier (EDFA) boosts the signal to a
fixed launch power, resulting in a sawtooth-like power profile
over the entire link.

In the first method considered in this article, the nonlinear
coefficient γ is determined by numerically propagating the
transmitted signal for variousγ values, and keeping theγ value at
which the forward propagated input and measured output match
best. Here, we use the split-step Fourier method (SSFM) for
the digital propagation. This method simulates the evolution
of an optical signal by propagating the signal numerically in
spatial steps of size Δl [18]. Each step is split up in a linear
part and a nonlinear part. The linear part solves the effects
of the linear terms in the NLSE analytically in the Fourier
domain. Let Ã(ω, l) = F{A(τ, l)} be the Fourier transform of
A, then the linear part of the NLSE is solved in the Fourier
domain through

Ãlin(ω, l +Δl) = Ã(ω, l) e

(
i
β2

2 ω2−α
2

)
Δl
. (2)

Next, the nonlinear contribution is added by assuming that
|A(τ, l)|2 is approximately constant during the spatial step, and
the contribution is again added in the Fourier domain:

Ã(ω, l +Δl) = Ãlin(ω, l +Δl) eiγF{|A
lin(ω,l+Δl)|2}Δl. (3)

At the end of each fiber span, the signal is numerically amplified
to model the EDFA loss compensation. However, no amplified
spontaneous emission (ASE) noise is added in the simulation,
since we consider an idealized propagation.

In order to determine the best value of γ, we consider the rel-
ative L1-error between the measured output and the numerically
propagated input:

E(γ) =

∫
T

(|Aout(τ)−Aout,SSFM(τ ; γ)|) dτ∫
T |Aout(τ)| dτ , (4)

in whichAout(τ) is the measured received signal,Aout,SSFM(τ ; γ)
the transmitted signal after numerical propagation with γ, and
T = [T0, T1] the time window of the considered signal. This
error is evaluated for every γ in a grid, and the γ with the smallest
error is kept. For the numerical propagation, the transmitted
signal is first re-sampled using Fourier interpolation at sampling
frequency equal to four times the 99%-energy bandwidth of the
transmitted signal. We found that this sampling rate was required
to obtain accurate results.
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We note here that the identified γ implicitly depends on the
assumed values of β2 and α using the SSFM-method (this will
also hold for the NFT-based methods). Using wrong values here
implies that the value of γ does not correspond to the actual value
of the fiber. However, the identified value will still correspond
to the γ describing the system best given the assumed α and β,
and would therefore still be ‘optimal’ for the purpose of signal
processing.

The spatial step Δl is chosen as large as possible, but small
enough that the identified value for γ has converged. The prop-
agation part of the SSFM-based method is performed using
a fast C version of the software ssprop [19], while the error
is calculated in MATLAB. This SSFM-based method requires
O(N log(N)L) floating point operations (FLOPs), where L is
the total link length, and N log(N) is the computational cost of
the fast Fourier transforms.

A. SSFM-Based Identification From Windowed Signals

The SSFM-based algorithm processes a burst of a finite
duration. The boundaries of the burst should contain sufficient
guard intervals in order to account for signal broadening and
the periodicity of the discrete Fourier transform. When only a
cut-out part of the burst is processed, the guard intervals are
missing and these effects have to be taken into account.

We formally define a ‘windowed’ signal as a segment (i.e.,
window) q(τ), τ ∈ [T0, T1], cut-out from a full signal. The
windowed signal is identical to the full signal for the duration
of the window. The numerical SSFM propagation implicitly
assumes that outside the window, the signal repeats periodically,
and thus the numerical propagation will differ from the phys-
ical propagation. However, this difference is only limited to a
boundary region at the edges of the window. We approximate
the size of the affected boundary region using the formula for
pulse broadening (pb) [1, Eq. 2.3.3]:

ΔT pb = |Lβ2ΔΩ|, (5)

where ΔT pb is the amount that a Gaussian-shaped signal with
radial bandwidth ΔΩ gets broader as it travels through a fiber of
length L with dispersion coefficient β2. For the purpose in this
article, it sufficed to estimate the pulse broadening using only the
dispersion, as we noticed that the contribution of nonlinearity
to pulse broadening was insignificant in comparison to the
dispersion for the considered links.

We found that we only need to cut away a quarter of the pulse
broadening at both window boundaries to sufficiently prevent the
influence of the pulse broadening. We can thus define an interior
region of the window, that is barely affected by the windowing
of the signal. We define the interior of the window as

T int =
[
T int

left, T
int
right

]
=

[
T0 +

1
4ΔT pb, T1 − 1

4ΔT pb
]
. (6)

When the SSFM-based method is applied to windowed signals,
we will simulate the propagation of the windowed signal in the
whole window T , but only consider the error on the interior T int:

E(γ) =

∫
T int

(|Aout(τ)−Ain, SSFM(τ ; γ)|) dτ∫
T int |Aout(τ)| dτ . (7)

III. NONLINEAR FOURIER TRANSFORM-BASED FIBER

NONLINEARITY IDENTIFICATION USING SOLITONS

An alternative method for fiber-nonlinearity identification
considers the solitonic content in transmitted signals. Solitons
are stable, particle-like waves resulting from a balance between
the dispersive and the nonlinear effects. Due to their stability,
solitons existing in the transmitted signal are normally also
present at the receiver, while only moderately affected by noise.
Although solitons are often not directly recognizable from the
signal shape, earlier research has already shown that many
conventional fiber-optic transmission signals contain significant
amounts of solitons [14], [16], [20]. The nonlinear Fourier
transform (NFT) can be used to determine the solitonic spectrum
of a signal, in which the nonlinearity coefficient γ plays the role
of a parameter that is used to normalize the signal. When the
correct γ value is assumed in the normalization, the solitons at
the transmitter are identical to the solitons at the receiver for a
noiseless and lossless fiber, while a wrong γ value will result in
a mismatch between transmitted and received solitons. We may
thus identify γ by determining the value at which the transmitted
solitons and received solitons match best. The greatest advantage
of NFT-based identification is that no signal propagation is
required. The required time of the method therefore does not
directly scale with the link length, as opposed to the SSFM-based
method. In the following, we recapitulate the most important
aspects of NFT-based nonlinearity identification.

A. Normalized Nonlinear Schrödinger Equation

The soliton content of a signal may be determined using the
nonlinear Fourier transform. The NFT is typically computed
from the lossless normalized and dimensionless NLSE. To ob-
tain a lossless NLSE, we apply path-averaging to the lossy NLSE
from 1:

Q = Aeαl/2, γ1 =
1

Ls

∫ Ls

0

γe−αl dl = γ
1− e−αLs

αLs
, (8)

⇒ Ql ≈ −iβ2

2
Qττ + iγ1|Q|2Q, (9)

where γ1 is the path-averaged nonlinearity coefficient, and Ls

is the uniform span-length. Finally, the equation is normal-
ized [21]:

t =
1

T0
τ, q = T0

√
|γ1/β2|︸ ︷︷ ︸
cq

Q, z =
1

T 2
0

(−β2/2)︸ ︷︷ ︸
cz

l, (10)

⇒ qz = iqtt + 2i|q|2q, (11)

where cq is the amplitude normalization constant (c2q is the ef-
fective nonlinearity-dispersion ratio of the fiber link), and cz the
space normalization constant. The time normalization T0 �= 0 is
a free parameter. Similar to the linear Fourier transform, it simply
re-scales the NFT spectrum. Throughout this article, we use the
receiver sampling time T0 = Δt = 0.0125 ns = 1/(80 GHz).
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B. Nonlinear Fourier Transform

After normalizing the signal according to the fiber parameters
β2, γ, α, and Ls, the solitons can be extracted by computing the
NFT of q(t). The NFT is found by solving the Zakharov-Shabat
scattering problem [22],

d

dt

[
φ1(t, λ)

φ2(t, λ)

]
=

[
−iλ q(t)

−q∗(t) iλ

][
φ1(t, λ)

φ2(t, λ)

]
, (12a)

s.t.

[
e−iλt

0

]
t→−∞←−

[
φ1(t, λ)

φ2(t, λ)

]
t→+∞−→

[
a(λ)e−iλt

b(λ)e+iλt

]
, (12b)

in which φ(t, λ) is the eigenfunction corresponding to the com-
plex spectral parameter λ = ξ + iη, and a(λ) and b(λ) are the
scattering coefficients indicated by the right boundary conditions
in 12b. The full NFT spectrum finally consists of a discrete
(solitonic) spectrum, and a continuous spectrum. We define the
continuous spectrum as the value of b(λ) over the real axis,
Λc := {b(ξ) : ξ ∈ R}, and the discrete spectrum using the zeros
of a(λ) in the upper half plane, Λd := {(λk, b(λk)) : �(λk) >
0, a(λk) = 0}. Each eigenvalue λk = ξk + iηk corresponds to
a soliton. The eigenvalue λk defines the shape and speed of the
soliton, while the b-coefficient bk = b(λk) provides information
about the soliton location and phase [23]. Throughout the rest
of this article, we are only interested in the eigenvalues.

C. Nonlinearity Identification From Eigenvalue Matching

The Kerr-nonlinearity coefficient may be determined by com-
paring the NFT spectra of a transmitted signal and its corre-
sponding received signal for various values of γ, which influence
the NFT spectra through the normalization in 8–11. As the value
of γ is varied, there is an optimal value at which the NFT spectra
at the transmitter and the receiver match best. While both the
continuous spectrum and discrete spectrum may be used for
spectral matching, the continuous spectrum often contains little
power. We observed that the power in the continuous spectrum
of the considered signals was only 2% at 2 dBm, 6% at−1 dBm,
10% at −4 dBm and 15% at −7 dBm signal power. The power
in the continuous spectrum thus seems to be low, which, for
some NFT-based transmitters, can even be proven mathemati-
cally [24]. In general many signals close to the linear regime still
have a significant portion of their energy in the discrete spec-
trum, and can contain many solitons [14], [16]. There are also
specifically designed nonlinear frequency division multiplexed
(NFDM) signals that only use the continuous spectrum [25]. In
such situations, the discrete spectrum version of the algorithm
from [14] cannot be utilized, but instead the version for the
continuous spectrum given there should be used. Finally, it
was also observed in [14] that using the continuous spectrum
of low-energy signals to determine γ also causes significant
bias. We therefore chose not to use the continuous spectrum
for identification.

We thus only consider the discrete spectrum, and follow the
discrete spectrum matching method used in [14] and [15], which
is summarized below:

1) A γ value is selected from a grid, and its corresponding
cq value is used for the normalization.

2) The eigenvalues of the transmitted and received signals
are determined from the normalized signals.

3) The matching error E is determined as follows:

E = min
m(k)

∑
k Ekm(k)∑

k �
(
λin
k

)
+
∑

m � (λout
m )

, with (13a)

Ekm = min
(|λout

m − λin
k |,�(λin

k + λout
m )

)
, (13b)

where m(k) denotes the perfect matching which connects
the input eigenvalue λin

k to the output eigenvalue λout
m ,

and Ekm is the cost of connecting these eigenvalues. In
case the input and output spectra have different num-
bers of eigenvalues, unmatched eigenvalues of the larger
spectrum are assigned a maximum cost: Ek− = �(λin

k ),
E−m = �(λout

m ). By assigning a maximum cost to eigen-
value pairs and to unmatched eigenvalues, each eigenvalue
cannot contribute more to the error than its associated
energy (∝ �λk). This ensures that random low eigen-
values with very little energy do not dominate the error,
but the high (energetic) eigenvalues are most important.
After assigning each matching a cost, the minimum-cost
matching may be efficiently determined (e.g., using the
Hungarian algorithm [26]).

The steps 1)–3) are repeated for every γ value in the grid. The
γ value with the lowest error is kept. This procedure is performed
for each signal block, and all estimates for γ are averaged for a
final estimate.

For this method, we found accurate results when using a
sampling rate of two times the bandwidth of the transmitted
signal, so only half the number of samples compared to the
SSFM-based method. The full discrete spectrum was determined
using the software library FNFT (branch add_bsloc_methods2,
commit 9756b3) [27]. We used the default sub-sample and refine
method with the 4split4B discretization. The desired number of
samples after sub-sampling was chosen using the Nyquist rate.
In this configuration finding the eigenvalues requires O(N2)
FLOPs, where N is the number of samples.

D. NFT-Based Identification From Windowed Signals

When considering a windowed signal, the NFT implicitly
assumes it to be zero outside the window while in reality it
is not. The unaccounted interactions with the outside lead to
distortions in the soliton spectra. We investigated the option of
deriving the location of each soliton based on its b-coefficient,
and only accept the eigenvalues that were inside the interior
for the matching. However, we found that doing so did not
significantly improve the NFT-based identification. We therefore
decided to omit it.

We investigated why accepting and discarding solitons based
on their location did not significantly improve the identification
algorithm. We found that windowing mostly influences the low
eigenvalues, but their contribution to the full error is very limited.
Furthermore, we observed that most of the medium and high
eigenvalues appear inside the interior by default, and also stay
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there during propagation. We believe there are two reasons
for this.

First, any potentially high eigenvalue close to the edge has part
of its soliton cut off, and its eigenvalue is thus lowered in the
process. Most of the detected high eigenvalues are thus already
inside the interior. Second, all large solitons (corresponding to
high eigenvalues) have a short duration, and thus large band-
width. This large bandwidth should fit entirely within the signal
bandwidth, and thus their center frequency lies closer to the
center (i.e., zero). The drift speed of each soliton is proportional
its center frequency [21], which is therefore also relatively low.
The highest solitons therefore have relatively low drift speeds,
and thus usually stay within the window during the transmission.

As accepting and rejecting eigenvalues due to the windowing
does not seem to influence the highest eigenvalues too much, we
will use the same NFT-based algorithm for both full signals and
windowed signals.

IV. FAST NFT-BASED NONLINEARITY IDENTIFICATION

THROUGH LOCAL REFINEMENT OF HIGH EIGENVALUES

In this section, we adapt the NFT-based algorithm from the
previous section to speed it up, and create a fast NFT-based al-
gorithm. To do so, we only consider the highest few eigenvalues
of the signal. The highest eigenvalues contain most of the signal
energy, and are also more robust to noise and model mismatch
compared to lower eigenvalues. As we consider less information
from the signal, the accuracy of the identified γ could slightly
worsen. However, this loss in accuracy should be limited. It may
even be beneficial to disregard the lower eigenvalues when they
are known to be unreliable, as we will observe in some of the
results.

The eigenvalues are a continuous function of γ. Therefore, as
we sweep the value for γ in small steps, the eigenvalues at the
new γ value will be close to the previous eigenvalues. We may
thus refine the eigenvalues at the previous γ value to find the
eigenvalues at the current γ value. Local refinement of the K
highest eigenvalues only takes O(KN) FLOPs, as opposed to
theO(N2) FLOPs when the full spectrum has to be determined
from scratch.

Our new strategy will be thus to compute a full spectrum only
once, and then use the highest K eigenvalues as initialization
for local refinement as the γ value is being varied. After the
eigenvalues have been determined for the initial γ value, sweep-
ing γ takes significantly less time than computing a full NFT at
every γ.

The fast NFT-based identification algorithm proposed here is
similar to the original NFT-based algorithm from Section III-C
in the main lines. In both cases, we sweep over a grid of values
for γ, and measure the error by how well the input- and output-
eigenvalues match. The main difference is that we will now only
match the highest few eigenvalues, and use a fast refinement
method to update the eigenvalues when proceeding from one γ
value to the next.

The full algorithm is summarized in Alg. 1, and has the
following steps: 1)-2) Re-scale the time, the received signal
and the transmitted signal using T0. Normalize the transmitted

Algorithm 1: Identifying cq by Matching High Eigenvalues.

Input:
• Transmitted signal, Ain(τ),
• Received signal, Aout(τ),
• Grid of decreasing normalization constants
cq(1) > cq(2) > . . . > cq(J),
• Number of high eigenvalues to compare, Khigh,
• Time normalization, T0.

Output:
• cID

q .
Algorithm:
1: t = τ/T0, Qin(t) = T0 A

in(τ), Qout(t) = T0 A
out(τ).

2: q0,in(t) = cq(1)Q
in(t), q0,out(t) = cq(1)Q

out(t),
3: {(λ0,in

k , b0,ink ), k = 1, . . . ,Kall } ← NFT(q0,in(t))
4: {(λ0,out

m , b0,out
m ),m = 1, . . . ,M all} ← NFT(q0,out(t))

5: Keep the highest Khigh input eigenvalues, and highest
3 Khigh output eigenvalues.

6: for j = 1, . . . , J do
7: qj,in(t) = cq(j)Q

out(t), qj,out(t) = cq(j)Q
out(t)

8: {(λj,in
k , bj,ink ), k ≤ Khigh } ← NFT(qj,in)

∣∣ λj−1,in
k

9: {(λj,out
m , bj,out

m ),m ≤ 3 Khigh } ← NFT(qj,out)
∣∣ λj−1,out

m

10: E(j)← ({λj,in
k }, {λj,out

m }) from 14
11: Return cq(j), at which E(j) is minimal.

and received signals using the cq(γ) (10) corresponding to the
highest value of γ in the grid, resulting in normalized signals
q0,in and q0,out. 3)-4) Calculate the full discrete spectrum of
q0,in and q0,out using the NFT in Section III-B. 5) Store the
highest Khigh input eigenvalues, and the highest 3 Khigh output
eigenvalues. These will be used as initial guesses. More output
eigenvalues than input eigenvalues are kept, as we will only focus
on matching all the highest input eigenvalues. When we took
the same number of output eigenvalues as input eigenvalues,
we found that the highest K input eigenvalues and highest K
output eigenvalues found at the initial guess cq(1) would often
not correspond to the highest K eigenvalues at the correct cq
as initially high eigenvalues often drift downwards as cq is
varied. To ensure that at the correct cq all input eigenvalues have
their correct counterpart present in the output eigenvalues, we
thus need to consider more initial output eigenvalues than input
eigenvalues. For the purpose in this article we observed that con-
sidering three times as many output eigenvalues usually sufficed
to include the correct counterparts of all the considered input
eigenvalues, while still keeping the computation time low by
considering only a small set of eigenvalues. This step concludes
the initialization of the input and output eigenvalues. 6) Loop
over all values of cq(γ), starting with the highest value. Perform
steps 7)–10) in every loop. 7) Normalize the transmitted and
received signals corresponding to the current value cq(γ). 8)-9)
Determine the Khigh highest input eigenvalues, and the 3 Khigh

highest output eigenvalues, by locally refining (using Newton’s
method, bsloc_newton in FNFT) the eigenvalues found with
previous normalization cj-1

q . 10) From the current set of Khigh

input and 3 Khigh output eigenvalues, calculate the matching
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Fig. 1. Experimental setup with exact fiber lengths, positions of optical filters, and applied signal-processing. Acronyms: AWG = arbitrary waveform generator;
AOM = acousto-optic modulator; CFO = carrier frequency offset.

error E as follows:

E =

∑Khigh

k=1 Ekm(k)∑Khigh

k=1 �
(
λin
k

) , with (14a)

Ekm = min
(|λout

m − λin
k |,�(λin

k )
)
, (14b)

where m(k) is the minimum-cost matching [26], which assigns
each input eigenvalue k to output eigenvalue m at the cost Ekm.
11) After the error was determined for every cq , return the value
cq at which the error is minimized. This concludes the algorithm.

We finally note that the same algorithm is used for full
signals and for windowed signals, for the same reasons as in
Section III-D.

V. EXPERIMENTAL RESULTS

In this section, we compare the SSFM-based algorithm, the
original NFT-based algorithm and the fast NFT-based algorithm
with only high eigenvalues on experimental data. First, we
compare the speed and accuracy of these three methods on full
bursts separated by guard intervals. This ensures the signal is not
influenced by neighboring pulses, which is implicitly assumed
in both the SSFM-, and in the NFT-based methods. Second, we
compare the three methods on windowed signals that are cut out
from the same bursts. Windowing signals provides control over
the signal length, and thus the computation time. However, this
does imply that the edges of the windowed signals are affected
by their surrounding, which is not the case for the complete
bursts with guard intervals.

A. Experimental Setup

The experimental setup is shown in Fig. 1. All digital signals
were pre-compensated for the measured frequency response of
the back-to-back transceiver setup. Digital-to-analogue conver-
sion was done using an 88 GSa/s arbitrary waveform generator
(AWG). The analogue signal was converted into the optical
domain at 1550 nm carrier wavelength using an I/Q modulator
and a laser with <100 kHz linewidth. The optical signal was
amplified to 2 dBm launch power before every fiber span, and
circulated 8 times through a loop of 4 spans of 50 km OFS
AllWave SMF for a total of 1600 km. Although higher launch
powers are desirable for both nonlinear communication and
identifying the nonlinearity coefficient, 2 dBm was the highest

launch power we could use due to limitations in the experimental
setup. The used launch power was well above the levels typically
used in linear transmission, so the nonlinearity should still be
sufficiently large to demonstrate and qualitatively compare all
identification methods.

The reference fiber coefficients for α and β2 were taken
from the data sheet: βref

2 = −21.2 fs2

km (D = 16.6 ps
nm·km ), α

ref =

0.19 dB
km . The value for γ was not provided by the data sheet,

so we used a typical value from the literature [28, p.157] as
initial guess: γref = 1.26 1

Wkm . After polarization de-rotation, the
optical signal was received using a coherent receiver using a
local laser with <10 kHz linewidth, and an oscilloscope with 80
GSa/s. The signal was post-processed as indicated in Fig. 1.
Finally, we used the SSFM-based method with a space-step
size of Δl = 1000m, and the NFT-based methods to estimate
the nonlinearity coefficient γ. Both the SSFM-based method
and NFT-based methods were run on the same computer to
ensure that the computation times shown in Table I can be fairly
compared.

B. Identification From Complete Bursts

We first compare the identification algorithms on bursts with
sufficient guard intervals, such that neighboring bursts do not
interfere during the propagation. Therefore, the SSFM- and
NFT-based methods can both be applied individually to each
burst, without paying additional attention to interactions with
neighboring bursts. Each burst consists of a summation of time-
shifted raised cosine shaped carriers (roll-off factor 0.5), each
multiplied with a symbol. More precisely, the transmitted signal
qin(τ) was given by

Ain(τ) =

Ns∑
s

asA
c(τ − sT c), with (15a)

Ac(τ) =

{
π

4 T c sinc
(

τ
T c

)
, τ = ±T c,

1
T sinc

(
τ
T c

) cos(πτ/2 T c)
1−(τ/T c)2) , otherwise,

(15b)

in which as is the QPSK-symbol with index s, Ns = 128 the
number of symbols in a single burst, T c = 0.1 ns the carrier
spacing, and Ac the raised cosine carrier. The full burst duration
with guard intervals was 16 ns. This signal-type was transmitted
100 times with random QPSK symbols over 1600 km at 2 dBm
launch power. We observed that this type of signal contains
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TABLE I
MEAN COMPUTATION TIME TO COMPUTE THE γ VALUE FROM A SINGLE BURST, FOR THE 6 DIFFERENT SIGNAL TYPES (DETAILS SPECIFIED PER ROW), USING THE

FULL NFT-BASED METHOD, THE FAST NFT-BASED METHOD USING ONLY 10 EIGENVALUES, AND THE SSFM-BASED METHOD

about 70 solitons when normalized using γ = 1.26 1/(W·km)
(small variations occur depending due to the randomness of the
symbols). The transmitted signals and corresponding received
signals were used for the identification of γ. For a fair compari-
son, we consider the same grid of γ values for each of the three
methods, and determine the error for every γ in the grid. The
considered grid for the γ values ranged from 0.8γref to 1.2γref,
in 21 equidistant steps. We chose this grid as typical values of γ
in data sheets include about 2% uncertainty [29]. A few percent
difference in the usedγ only marginally affect the received signal
(and present solitons), and is typically acceptable for signal
processing. The range of the grid was chosen large enough such
that the distribution of estimated γ could be observed, as well as
that we expect the correct γ to be within 20% of the reference
value for the considered fiber.

For each of the methods, γ was identified for each of the
100 bursts, and a final estimate was calculated by averaging
all estimates that were not at the edge of the grid. Estimates at
the edge were discarded, as this implies that the error failed
to converge within reasonable values for γ, and were thus
considered outliers. The resulting γ distributions are shown in
Fig. 2, and the final estimated γ values are shown in Table I.

We note that the distribution of the full NFT and SSFM-based
methods are similar, and peak at approximately the same position
of γ = 1.20 1/W·km. We will consider this identified coeffi-
cient as the ‘correct’ coefficient to compare later results with.
Although the full NFT-based method and SSFM-based method
yield the same final estimate, the standard deviation of the distri-
bution for the NFT-based method is larger than the variance for
the SSFM-based method, which was also observed in an earlier
study on simulation data [14]. We believe this is mostly due to
the mismatch in the path-average approximation. In [30], it was
shown that the stability of path-average second-order solitons in
specific signals start to degrade significantly for signals around

Fig. 2. Distribution of the identified γ from raised cosine bursts with vanishing
tails.

2 dBm launch power, potentially explaining the large variance
in the estimates for γ.

Next, we observe that the identified γ of the fast NFT-based
method with 10 eigenvalues contains a 7% bias towards higher
values of γ. We already observed that the input and output
eigenvalues do not perfectly match due to the path-average
approximation and noise, and that this causes a larger standard
deviation for the identified γ. We suspect that the bias occurs
because higher γ values generally create denser clouds of high
eigenvalues, as more high eigenvalues are present due to more
nonlinearity. The high input eigenvalues may then randomly find
a closer output eigenvalue than at the correct γ, causing a bias
towards slightly higher γ.

The computation times for the three identification algorithms
are shown in Table I. We observe a speed-up of a factor 5 when
considering only 10 eigenvalues in the fast NFT-based method
compared to considering the full spectrum for every γ value.
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The SSFM-based method was still slightly faster than the fast
NFT-based method.

We thus conclude that the SSFM-based method resulted in
the most accurately identified γ values, while also being the
fastest method for this signal. However, with N = 358 samples,
this signal was rather long. The original NFT-based method
requires two full NFTs per γ value in the grid, so 42 NFTs
in total for this grid. The fast NFT-based method also requires
two full NFTs for initialization before the eigenvalue refinement.
As both NFT-based methods calculate full NFTs, both require
O(N2) FLOPs, while the SSFM-based method only requires
O(N logN) FLOPs given that the number of spatial steps is
kept constant. Considering shorter signals could thus allow
NFT-based methods to perform faster. In the next section we
therefore window the bursts to control the signal length, and
compare the NFT- and SSFM-based methods on these signals.

C. Identification From Windowed Signals

In this section, we consider the identification of the nonlinear-
ity coefficient from windowed signals (see Section II-A), short
segments cut out from the bursts. In practical communication
systems, bursts are often made as long as possible to minimize
the impact of the guard interval on the spectral efficiency. There-
fore, it will often occur that only long signals are available for
the identification, so that windowing might significantly reduce
the complexity. As opposed to the complete bursts from the
previous subsection, the edges of the windowed signals will be
affected by the signal outside the window, and thus this has an
impact on the identification. On the other hand, windowing the
signal has the benefit that the length of the considered signal
can be controlled, and thus the identification may be sped up by
considering shorter windows.

The SSFM-based method was slightly adapted to deal with the
cut-off part of the bursts as described in Section II-A. For both
NFT-based methods, we used the same algorithms as before, as
explained in Section III-D.

For the identification in this section, we consider the raised
cosine signals as in the previous section, but now consider only a
small window centered around the middle of each raised cosine
burst. A single block of the raised cosine signals had a duration
of 16 ns, of which 3.2 ns was guard interval and the block
of symbols was 12.8 ns. We are interested in the case where
the considered window is a piece from a continuous stream of
symbols, and thus we consider a center piece from the block
which is sufficiently far away from the guard intervals. The pulse
broadening (5) was approximately 1.2 ns. The smallest window
we could theoretically consider would be 1.2 ns, but this entire
window would then be influenced by the outside of the window.
To ensure that we have a sufficiently large interior of the window,
we chose the smallest window size as 3.2 ns.

The largest possible window size was 11.6 ns. Considering
larger windows also becomes less efficient due to the superlinear
scaling of the computation time as a function of signal duration.
Instead of considering a long signal, it would be much faster to
consider two signals with half the duration at some point. We
thus chose the largest window to be 8.0 ns.

We also considered an intermediate window size of 5.6 ns. For
these three different window sizes, we compared the algorithms
in terms of accuracy and speed.

The distributions of the identified γ value from 100 windowed
signals are shown in Fig. 3 for three different windows, and
the identified γ can also be found in Table I. For the shortest
window of 3.2 ns, we observe a large standard deviation in the
distribution of the γ values for the NFT-based methods, while
many of the identified γ are on the edge of the grid. The SSFM-
based method also shows a large standard deviation, but close
to the expected value of γ = 1.20 1/(W·km) identified from the
full bursts. This window is barely large enough to effectively
identify the value ofγ using the SSFM-based method, while both
NFT-based methods contain too many outliers to be reliable.
Upon inspection, it indeed turned out that there were only about
15 eigenvalues within this windowed signal type, of which only
a few were high enough to be unaffected by the windowing.

The window of 5.6 ns duration shows clearly distinguishable
peaks around the expected value for γ. For this window size, the
SSFM-based method becomes reliable, and the fast NFT-based
method with 10 eigenvalues is closer to the expected γ value than
the full NFT. This is likely because the full NFT contains many
low eigenvalues that become unreliable when the signal is win-
dowed. Although the low eigenvalues have a limited influence on
the error in 13a, they can still bias the estimate. The bias towards
higher values of γ is again attributed to random good matchings
that are more likely due to the denser cloud of eigenvalues at
higher nonlinearities. Next, the 8 ns window shows clear peaks
in all distributions, and the full NFT and refined NFT show
similar distributions. However, both NFT-based estimates show
a clear deviation from the SSFM-based method, and are about
5% higher. The windowing thus seems to structurally bias both
NFT-based methods. We also investigated other intermediate
window durations, but these results were very similar to the
shown results (or simply interpolations) and were therefore
omitted from this article.

Finally, we also investigated the influence of the considered
number of high eigenvaluesKhigh for the fast NFT-based method
on the identified γ. We compared khigh ∈ {5, 8, 10, 12, 15}, with
the result shown in Fig. 4. Overall, the distributions of the
identified γ depend marginally on the chosenKhigh, although for
Khigh = 15 we found that the bias towards higher γ increases,
probably due to considering several low eigenvalues that are
influenced by the windowing of the signal. While considering
only 5 eigenvalues may put too much weight on single good
or bad matchings of eigenvalues, we find that considering be-
tween 5–10 eigenvalues leads to results closest to the correct γ.
Nevertheless, the influence of Khigh is still rather limited.

The computation times for the windowed signals are indicated
in Table I. We observe that the computation time for the SSFM-
based method scales approximately linearly with the number
of signal samples. As expected, both NFT-based methods scale
worse with the number of signal samples than the SSFM based
method. Reducing the window to the minimum required length
therefore in particular speeds up the NFT-based methods. How-
ever, we observed that this can cause a structural deviation in the
identified γ value, or causes the methods to fail entirely due to a
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Fig. 3. Distributions of identified γ from a windowed raised-cosine signal for various window durations.

Fig. 4. Identified γ from windowed signals using a varying number of high
eigenvalues Khigh.

lack of high eigenvalues. Furthermore, the NFT-based methods
required 180 samples before the distribution for the identified
γ value stabilized, and at this point the SSFM-based method is
already faster. We thus conclude that the SSFM-based method
yields more accurate and faster results than both NFT-based
methods for the considered 1600 km SSFM link.

D. Discussion

In this section, we discuss several possible improvements to
SSFM- and NFT-based identification methods, and share our
view on the feasibility for each option.

Accuracy and consistency: In the shown examples, the SSFM-
based method consistently identified γ ≈ 1.20 1/(W·km),

Fig. 5. Error-curves of the SSFM-based method and the NFT-based methods
for the raised cosine pulse with vanishing tails, from Section V-B and Fig. 2.

whereas the NFT-based estimates were often biased, as well as
that the estimates had a larger standard deviation. In particular
the bias of up to 7% for the NFT-based methods can be too
large to be acceptable in some cases. To investigate the reason
for the larger standard deviation, the error-curves of the full
bursts from Section V-B are shown in Fig. 5. When considering
the average error in Fig. 5(b), we observe that the NFT- and
SSFM-based errors show a clear optimum. However, we observe
that for a single burst the SSFM-based method has a much
smoother error-curve than the full NFT-based method. This
is caused by sudden changes in the eigenvalue matching as
γ is varied. The NFT-based method with only 10 eigenvalues
is much smoother, as the high input- and output-eigenvalues
usually stay matched in the same pairs, while the error only
changes because the eigenvalues drift away/closer as γ is varied.
However, as discussed before, the NFT-based matching using
only high eigenvalues seems to be biased towards high γ values.
We note here that the NFT-based method could be biased as it
is optimizing a different criterion: it attempts to only match the
eigenvalues as well as possible, instead of the full signals. It may
therefore be possible that the NFT-based γ value is optimal in
this sense. However, our observations suggest that this is not the
case. We believe the bias is introduced due to the denser clouds
of eigenvalues at higher γ values that allow for random good
matchings. While it might be possible to account for this effect,
it seems challenging to do so.

Computation time: We observed that the NFT-based methods
can be faster than the SSFM-based method when the fiber
length is long and the signal is short, but for the 1600 km link
the SSFM-based method is usually faster. However, both the
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NFT-based methods and SSFM-based methods can be further
sped up in various ways. For the NFT-based methods, the most
important constraint is the calculation of the discrete spectrum,
which takes O(N2) FLOPs for the method used in this article,
which may also be observed in Table I. When comparing the
computation time per signal as a function of the number of
signal samples, we indeed observe this relation for the full
NFT-based method. The fast NFT-based method uses only two
full NFTs for the first grid point, but the refinement-based NFTs
for all other grid points require only O(N) time, so the O(N2)
scaling is much less visible there. Especially signals with large
bandwidths will require more samples to capture, and thus take
longer computation times for NFT-based methods (see e.g. the
42 GB scenario). This drawback would pose a problem as the
current trend in optical communication is towards high data
rates, which are associated with large bandwidths.

Fortunately, recent research has shown that the higher eigen-
values of a signal may be determined quickly using both time
windowing and frequency windowing [31]. While we were
already using some form of time-windowing in this article, the
paper [31] showed that frequency windowing (i.e., partition-
ing the full signal into band-limited signals, calculating the
eigenvalues of each frequency-windowed partition, and then
recombining the discrete spectra) could drastically reduce the
computation time for calculating the higher eigenvalues from
signals with large bandwidth. This would largely overcome
the drawback of computational scaling in the signal bandwidth
associated with NFT-based identification methods. In scenarios
with higher bandwidths than in our experiments, an additional
frequency windowing step as in [31] is thus recommended to
reduce computation times.

The SSFM-based method could be sped up further, for ex-
ample by using Volterra series for the digital propagation (see
e.g., [32]), which require less steps per span for similar accuracy.
Furthermore, due to the observed smoothness in the error-curves
for the SSFM-based method, the grid search could be replaced
by a local-descend method, allowing for even faster identifi-
cation. We shortly investigated this possibility, and found that
the SSFM-based error already converged in approximately four
steps to the optimal γ value using Newton’s method due to its
smooth error-curves.

Dependence on power spectral density: In order to identify the
nonlinearity coefficient, the signal needs to have a sufficiently
high power spectral density such that the nonlinear effects
become observable. We shortly consider two cases here with
lower power spectral density, and compare how the identification
methods perform. The results are shown in Fig. 6. The left
case considers the same windowed raised cosine signal as from
Fig. 3(c), but with only−4 dBm launch power (four times lower).
The right case considers a raised cosine signal at 2 dBm launch
power, but with symbol time T four times shorter. This also
increases the bandwidth by a factor four, and hence the power
spectral density is also four times lower. We observe that the
SSFM-based method can still yield reliable estimates, whereas
the NFT-based method fails entirely in most of the cases. For
smaller power spectral densities, there are much fewer high
eigenvalues. As a result the NFT-based methods become very

Fig. 6. Identifiedγ values for two signal types (duration, bandwidth and power
as indicated) where the NFT-based method fails. The left signal type was a raised
cosine with too little power for high eigenvalues. The right signal had a broader
spectrum, with the same power, and therefore less power per Hz, also resulting
in too low eigenvalues. As a result, most of the NFT-based estimates do not
converge within the grid. However, the SSFM-based method still shows a peak
near the expected value for the right case.

biased towards higher γ values, for which there are more eigen-
values to be matched. We thus observe that the SSFM-based
method is also more robust for identification on signals with
low power spectral densities. We note here that for low-power
signals, the continuous spectrum contains a larger portion of the
signal energy and might be used to identify γ.

VI. SIMULATION RESULTS FOR LINKS UP TO 8000 KM, WITH

IDEAL RAMAN AMPLIFICATION

In this section, we investigate a scenario in which NFT-based
identification should outperform the SSFM-based identification.
We will consider simulation data of an 8000 km fiber link,
with ideal Raman amplification to ensure a uniform signal
energy profile throughout the propagation. This scenario with
long link lengths and ideal Raman amplification should be
especially suitable for NFT-based identification, as the path-
average approximation (8) is no longer required due to the
ideal Raman amplification. Furthermore, the computation time
of the SSFM-based method will be about 5 times as long as
compared to the 1600 km link due to the increased link length,
whereas the NFT-based methods are not directly influenced.
Due to practical limitations, we were not able to demonstrate
this example experimentally, and we present here results from
simulated data instead. Finally, we estimate at which distance
NFT-based methods are faster than the SSFM-based method, by
also considering simulated links of 1600 km and 4800 km.

A. Simulation Channel

The considered link in the simulations had a total length
of 8000 km, while the propagation was simulated with the
NLSE from 1, with βref

2 = −21.2 fs2

km (D = 16.6 ps
nm·km ), γ

ref =
1.20 1/(W·km), such that the simulated fiber corresponded to
the experimental fiber. The loss parameter was set to αref = 0 dB

km
in the simulation due to the ideal Raman amplification. The
propagation was performed by a split-step method, with steps of
2 km. At the end of every step, realistic Raman noise was added
to the signal, with spontaneous emission factor of nsp = 3.5,
corresponding to a pump wavelength at approximately 1450 nm
and a carrier wavelength of 1550 nm [33, Eq. 7.3.9].
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Fig. 7. Example of a realization of a 7-eigenvalue signal traveling through an ideally Raman amplified single mode fiber of 8000 km length, at transmitter (z = 0),
halfway (z = 4000 km), and at the receiver (z = 8000 km).

B. Signal Types

For the simulation, we considered two types of signals: a
raised cosine-signal, similar to the one in the previous section,
and a 7-eigenvalue signal, tailored to the fiber and designed to
mitigate signal broadening, inspired by [34].

First, we considered a 7-eigenvalue signal. The signal
was generated by initializing the NFT spectrum with 7
eigenvalues in the discrete spectrum, and b(λ) = 0, ∀λ ∈ R
for the continuous spectrum. In a normalized domain
(using cq = 2.38 · 1011 1/(s

√
W), T0 = 1 s and 10),

we set the eigenvalues as λ = 109[−7.5 + 5.7i,−5.0 +
3.8i,−2.5 + 5.7i, 0 + 3.8i, 2.5 + 5.7i, 5.0 + 3.8i, 7.5 + 5.6i],
respectively with absolute b-coefficients log |b| =
[−18.7,−9.12,−10.38,−2.62, 1.14, 6.24, 15.86]. The phases
of the b-coefficients were randomly assigned to±π/4 or±3π/4.
The bandwidth of this type of signal was approximately 9 GHz.
This type of signal corresponds to eigenvalue communication,
in which the bits are modulated with QPSK on the phase of
the b-coefficient of each eigenvalue. The signal was designed
such that the left-most soliton travels to the right and vice versa
during the propagation over 8000 km. The effective duration
of the signal thus first gets shorter, before getting wider again,
and reaching the receiver at the approximate same duration as
the transmitted signal. This type of eigenvalue communication
signal is illustrated in Fig. 7. The launch power of this signal
was −3.7 dBm.

Second, we considered the same raised-cosine signal as in
the previous section with Nc = 128 symbols per block, and
T c = 0.1 ns, but adding an 11.2 ns guard interval (instead of
3.2 ns), resulting in blocks of 24 ns. The additional guard interval
is required to prevent interference between two blocks, as the
additional link length causes each block to spread out much
further. We set the average launch power to−4 dBm. This launch
power with Raman amplification roughly leads to the same
path-average power as +2 dBm launch power for the previous
link with lumped amplification. The exact same transmitted
7-eigenvalue signals and raised cosine signals were also used
for propagation over 1600 km and 4800 km. We note here that
the long guard intervals required for the 8000 km transmission
were excessive for the 1600 km and 4800 km transmission, but
we chose to still include the long guard intervals to make the
comparison fair.

C. Identification From Simulated Signals

We identified γ from both mentioned types of signals, using
both NFT-based methods, and the SSFM-based method. First
we considered the full blocks of the 7-eigenvalue type signals,
second the full blocks of the raised-cosine type signals, and third
the windowed raised-cosine type signals, where each window
contained only the middle 50% of each block.

The identified γ value for each signal type, each method and
each fiber length are shown in Table I. As the γ distributions
were very similar for the three considered link lengths, we
only show the result for 8000 km in Fig. 8. We observe that
for the 7-eigenvalue type signal, all three methods yield very
accurate results, although the fast NFT-based method shows
a slightly larger variance in the identified γ than the other
two methods. For both the full and the 50% windows of the
raised cosine-type signals, the full NFT-based method as well
as the SSFM-based methods again yield highly accurate re-
sults with low variance, but the fast NFT-based method again
shows a small bias towards higher γ values, and has larger
variance. In all scenarios the SSFM-based method yields ac-
curate results with the lowest variance, and is therefore the most
accurate method.

However, when comparing the computation times in Table I
for the 8000 km link, we observe that the full NFT-based method
is significantly faster than the SSFM-based method except for
the longest signal, and the fast NFT-based method is consistently
4 times as fast as the SSFM-based method for all types of
signals. We thus conclude that the NFT-based methods can
indeed provide a significant speed up for very long links, at
the cost of a small loss in accuracy and increase in uncertainty.
Fig. 9 also shows that the full NFT-based method is faster than the
SSFM-based method for the 7-eigenvalue (7-EV) signal already
at 2000 km, and for the other two signals comparably fast at
8000 km. The fast NFT-based method using only the 10 highest
eigenvalues is already faster for all considered signals for links
longer than 2000 km, and much faster at 8000 km.

VII. CONCLUSION

We compared three different methods for identifying the
Kerr-nonlinearity coefficient for an installed optical single-mode
fiber link from available transmission data. The first method was
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Fig. 8. Identified γ for the SSFM with ideal Raman amplification from 8000 km transmission data. The distributions for 4800 km and 1600 km were similar,
and are therefore omitted.

Fig. 9. The mean computation time per signal for each simulated signal as a
function of fiber length, also shown in Table I). The computation times for the
NFT-based methods remain approximately constant, whereas the SSFM-based
method increases linearly with distance.

based on numerical split-step propagation of the transmitted
signal and comparing input and output. The second method
compared all solitonic eigenvalues at input and output using
the nonlinear Fourier transform (NFT). The third method only
compared the highest few eigenvalues, and calculated these
faster using local refinement of previous eigenvalues. The third
method was first proposed in this article. We compared these
three methods on complete bursts, and on cut-out parts of bursts,
for which we adapted the SSFM-based method to deal with
interference due to the channel memory.

We showed that the SSFM-based method was faster and more
accurate than both NFT-based identification methods for an
experimental 1600 km link. The NFT-based method with few
eigenvalues was significantly faster than the full NFT-based
method, but showed some bias when compared using complete
bursts with vanishing tails. When applied on a windowed signal
without vanishing tails, both NFT-based methods showed some
bias, but the method with few eigenvalues was more accurate
in this case. Nevertheless, the SSFM-based method was more
accurate in all aspects for both the vanishing pulse, and the
windowed signal. We thus consider the SSFM-based method

to be the method of choice for the identification of the nonlin-
earity coefficient in operational single-mode fibers at equivalent
transmission distances.

Finally, we investigated whether NFT-based identification
could outperform SSFM-based identification for a very long link
of 8000 km. Indeed the NFT-based methods did not scale with the
link length, and showed similar or lower computation times than
the SSFM-based method when applied to signals for a simulated
ideal-Raman amplified link, although the SSFM-based method
was still slightly more accurate. In case that a small loss in
accuracy is acceptable, the NFT-based method could therefore
be the method of choice for long links.
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