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Deep Learning for Size-Agnostic Inverse Design of
Random-Network 3D Printed Mechanical Metamaterials

Helda Pahlavani,* Kostas Tsifoutis-Kazolis, Mauricio C. Saldivar, Prerak Mody, Jie Zhou,
Mohammad J. Mirzaali,* and Amir A. Zadpoor

Practical applications of mechanical metamaterials often involve solving
inverse problems aimed at finding microarchitectures that give rise to certain
properties. The limited resolution of additive manufacturing techniques often
requires solving such inverse problems for specific specimen sizes. Moreover,
the candidate microarchitectures should be resistant to fatigue and fracture.
Such a multi-objective inverse design problem is formidably difficult to solve
but its solution is the key to real-world applications of mechanical
metamaterials. Here, a modular approach titled “Deep-DRAM” that combines
four decoupled models is proposed, including two deep learning (DL) models,
a deep generative model based on conditional variational autoencoders, and
direct finite element (FE) simulations. Deep-DRAM integrates these models
into a framework capable of finding many solutions to the posed
multi-objective inverse design problem based on random-network unit cells.
Using an extensive set of simulations as well as experiments performed on
3D printed specimens, it is demonstrate that: 1) the predictions of the DL
models are in agreement with FE simulations and experimental observations,
2) an enlarged envelope of achievable elastic properties (e.g., rare
combinations of double auxeticity and high stiffness) is realized using the
proposed approach, and 3) Deep-DRAM can provide many solutions to the
considered multi-objective inverse design problem.
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1. Introduction

The second and third decades of the 21st
century have witnessed the emergence of ar-
chitected materials with bespoke, unusual
properties that stem from their small-scale
design. At the nexus of rational design
techniques, where computational models
are used to establish design–property re-
lationships, and additive manufacturing
(AM), i.e., 3D printing, techniques, which
enable the realization of arbitrarily complex
designs, a highly vibrant subdiscipline has
emerged that is rapidly pushing such de-
signer materials into applications in medi-
cal devices,[1–3] soft robotics,[4–6] and other
advanced areas of research.[7–9] Depending
on the type of the properties targeted,
these architected materials may be referred
to as mechanical metamaterials,[10–14]

acoustic metamaterials,[15–17] or meta-
biomaterials,[3,18] among other types.

Despite their recent academic success,
there are two major challenges that hinder
the real-world applications of metamateri-
als in general and mechanical metamateri-
als in particular. To put these challenges in
perspective, let us consider a typical device

design scenario where the required elastic properties as well as
the dimensions of a device are specified by the device designer.
The design problem is then reduced to the problem of finding
the microarchitectures that give rise to the required elastic prop-
erties, while also satisfying the size requirements. The inverse
problem of finding the microarchitecture(s) resulting in a spe-
cific set of elastic properties is challenging enough in its own
right particularly given that the desired combination of proper-
ties is often very rare (e.g., high stiffness and highly negative val-
ues of the Poisson’s ratio[19]). The difficulty of such an inverse
design problem is further exacerbated by the fact that most me-
chanical metamaterials are usually only analyzed in terms of their
homogenized or asymptotic properties (i.e., when the number
of the constituting unit cells approaches infinity). Such homog-
enized solutions are only valid at their convergence limits and
may significantly deviate from the actual elastic properties when
the number of unit cells is not large enough[20] Given the lim-
ited resolution of AM techniques, it is often impossible to fit a
very large number of unit cells within a given set of dimensions.
Homogenized solutions may, therefore, not offer too much help
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when dealing with real-world design problems. The inverse de-
sign problem should, therefore, not be solved for the asymptotic
case of an infinite number of unit cells but for the actual case of a
finite number of unit cells in each spatial direction. Here, we use
deep learning (DL) models and deep generative models to tackle
such a size-agnostic inverse design problem within the context
of random-network (RN) mechanical metamaterials.

Most of the mechanical metamaterials developed to date are
composed of periodic unit cells. Previous studies have, however,
shown that RN units cells, consisting of stretch- and bending-
dominated beam-like structures, allow for a wide range of con-
ventional and auxetic elastic properties,[21–25] which may go be-
yond the limits achieved by geometrically-ordered mechanical
metamaterials, particularly when seeking after rare combina-
tions of elastic properties[21] We will, therefore, use RN designs
to increase the chance of finding accurate solutions for the in-
verse design problems targeted here. A facet of such nonlinear in-
verse problems relevant to microarchitecture design of mechani-
cal metamaterials concerns the nonuniqueness of the solution. It
is important to realize that different solutions to the inverse prob-
lem posed in the previous paragraph are not equal in many other
aspects. That is because designs with similar effective properties
could have highly different stress distributions and, thus, highly
different degrees of resistance to fatigue and fracture. We are,
therefore, interested to find as many of solutions to the posed in-
verse problem as possible so that additional design requirements,
such a uniform stress distribution or a minimum stress peak, can
be applied. This further increases the practical utility of the ap-
proach presented here.

The existing DL models used for such inverse-design prob-
lems are often deterministic in nature. Such models are not well
equipped to regress a single input to multiple outputs and may
converge to the average of the solutions instead. We will, there-
fore, model the aforementioned inverse design problem in a
probabilistic, generative manner because such approaches have
been shown to enable investigations of the structure–response
relationship and can resolve the one-to-many mapping problem
that deterministic models are unable to cope with.[26–29] Genera-
tive adversarial networks (GAN)[30] and variational autoencoders
(VAE)[31] which seek to understand the underlying relationship
between design features and targets/labels and generate new de-
signs from a low-dimensional latent space, are popular deep gen-
erative models used for the inverse design of materials[27,32–35]

and their multiscale microarchitectures.[36,37] In contrast to VAE,
which provides a straightforward mapping from the observed
dataset to a continuous latent space, a continuous latent space
with a meaningful structure is intractable for GAN models[27] par-
ticularly in 3D.[38]

To achieve the goals presented above, we take a modular ap-
proach, hereafter referred to as “Deep-DRAM.” Deep-DRAM (DL
for the design of RN metamaterials) is composed of a sequence of
DL and generative models that not only collectively solve the size-
agnostic, inverse design problem but can also be (individually)
used for many other purposes. First, we create a DL-based for-
ward predictor model that predicts the anisotropic elastic prop-
erties of a specific type of RN unit cells. Second, we present a
generative model based on conditional variational autoencoder
(CVAE) that generates the microarchitecture of RN unit cells with
a given set of anisotropic elastic properties. The third module is a

DL-based forward predictor model that receives the microarchi-
tecture of the RN unit cells and the desired dimensions of the
specimen (i.e., the number of RN unit cells along each spatial
direction) and predicts its elastic properties. The developed mod-
els are then combined to solve the size-agnostic design problem
with the additional requirement that the maximum stresses are
minimized (see Movies S1, S2, and S3, Supporting Information).
While the data required for training and testing the DL mod-
els are all generated using finite element (FE) models, we also
present several experiments in which actual mechanical metama-
terials are 3D printed and mechanically tested to compare their
measured elastic properties and deformation patterns with our
computational results.

2. Results

2.1. Elastic Properties of RN Unit Cells

For the first module, we considered RN unit cells composed of
16 nodes (nx × ny, nx = ny = 4) because this number of nodes al-
lows for a broader range of elastic properties when compared to
larger sizes of RN unit cells (Figure S2 and Table S1, Supporting
Information), as well as a higher chance of extreme negative and
extreme positive Poisson’s ratios (Table S2, Supporting Informa-
tion). For this number of nodes, it is possible to generate unit
cells with average nodal connectivity values of Zg = 2.5, 3, 3.5, 4,
and 4.5. Depending on the Zg value, the number of beam-like ele-
ments in the RN unit cells varied between 20 and 42 (Figure 1a). It
should be noted that the total estimated number of unit cells that
can be generated, whether they abide by the design limitations
or not, considering the above-mentioned values of Zg is ≈9.22 ×
1011 (Table S3, Supporting Information). Assuming that the aver-
age simulation time per design equals ≈5.42 × 10−4 s (Figure S3,
Supporting Information), it takes ≈497 million seconds (= 5761
days) (Table S3, Supporting Information) to perform FE analysis
on all these RN unit cells. The huge number of possible designs
highlights the need to have an ultrafast model to predict the elas-
tic properties of the RN unit cells.

We performed FE analysis on 6 million randomly generated
RN unit cells (i.e., 1.2 million unit cells from each group of Zg)
as the training group. The elastic properties in directions 1 and 2,
which were calculated by FE modeling of these unit cells, cover
a cone-like region with a range of (0, 0.25) and (−1.5, 1.2) for the
relative elastic moduli (E11/Eb and E22/Eb , where Eb is the elastic
modulus of the bulk material) and Poisson’s ratios (𝜈12 and 𝜈21),
respectively (Figure 1b). The distributions of the relative elastic
modulus and Poisson’s ratio in directions 1 and 2 had similar
ranges of values. Moreover, the results show that the RN unit cells
are highly anisotropic. The broad range of the elastic properties
is due to the possibility to generate both stretching- and bending-
dominated structures using random distributions of elements as
well as by changing Zg. These results confirm that it is possible
to devise RN unit cells with extreme positive and extreme nega-
tive values of the Poisson’s ratio as well as rare-event[19] double-
auxetic unit cells.

We selected six unit cells from the different groups of elas-
tic properties, i.e., almost extreme positive and negative values
of the Poisson’s ratio in one direction, almost extreme double-
auxeticity, almost extreme elastic moduli in both directions, and
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Figure 1. A schematic illustration and elastic properties of the RN unit cells as well as the network architecture of the unit cell elastic properties model.
a) To design the RN unit cells, we predefined the node coordinates with a fixed horizontal and vertical distance of Δx = Δy = 7.5 mm. Assuming a grid
of 4 × 4 nodes, the overall dimensions of each unit cell is L = W = 22.5 mm. Based on the defined overall connectivity, Zg, the applicable number of
beam-like elements were randomly distributed within the structure. b) The elastic properties (i.e., E11/Eb, E22/Eb, 𝜈12, and 𝜈12) calculated for the RN
unit cells using FE analysis. c) The deformation patterns of six RN unit cells under two loading conditions of ɛ11 = 5% and ɛ22 = 5% as predicted by FE
analysis and observed in the mechanical tests on the 3D printed specimens. d) The network architecture of the trained unit cell elastic properties model,
which maps the design of the unit cell to their elastic properties.
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moderate positive and negative values of the Poisson’s ratio as
well as moderate values of the elastic moduli in both directions
(Figure 1b). To validate the results of our simulations, we 3D
printed and experimentally evaluated the elastic properties and
deformation patterns of these six unit cells. The experimentally
obtained values of the elastic moduli (see the stress–strain curves
in Figure S4, Supporting Information) and Poisson’s ratios show
a good agreement with FE simulations (Table S4, Supporting In-
formation). Moreover, the deformation patterns follow similar
trends in both simulations and experiments (Figure 1c). In some
elements within the FE models, we see higher levels of defor-
mations predicted by FE models as compared to those observed
experimentally. These small differences may be explained by the
assumptions of the FE models, including a linear elastic consti-
tutive behavior and fully fixed boundary conditions.

We trained a DL model, hereafter referred to as the “unit cell
elastic properties model” that predicted the four elastic proper-
ties of any RN unit cell given its design (Figure 1d). Based on the
results of our hyperparameter tuning pipeline, the applications
of an undersampling process and a MinMaxScaler to the cross-
validation (CV) data resulted in the best model performance. The
hyperparameter tuning suggested a model with four hidden lay-
ers (500, 376, 252, and 128 hidden neurons in subsequent lay-
ers) without a regularization term, with Adam optimizer[39] and
with ReLU activation functions throughout the layers (Table S5,
Supporting Information). Within 200 epochs of model training
with the optimized hyperparameters, the mean squared error
(MSE) and the mean absolute error (MAE) reduced for the train-
ing dataset from 9.5 × 10−4 and 2.0 × 10−2 to 1.5 × 10−5 and 2.7
× 10−3, respectively. For the validation dataset, the values of MSE
and MAE reduced from 3.7 × 10−4 and 1.4 × 10−2 to 1.6 × 10−5

and 2.6 × 10−3, respectively (Figure S6, Supporting Information).
The evaluation of the trained model using the test dataset re-
sulted in a coefficient of determination (R2) of >0.993 and >0.999
for the Poisson’s ratios and elastic moduli, respectively (Table S6
and Figure S7, Supporting Information). In general, the trained
model exhibited a high degree of accuracy in predicting the elas-
tic properties of the RN unit cells with an overall coefficient of
determination (R2) of 0.997, an MAE of 3.6 × 10−3, and an MSE
of 6.0 × 10−5 (Table S6 and Figure S7, Supporting Information).
All these results show that the model is well trained without un-
derfitting and overfitting and can, therefore, be further used for
highly accurate, deterministic prediction of the elastic properties
of various RN unit cell designs. The availability of such a model
allows for the ultrafast prediction of the elastic properties associ-
ated with any design of RN unit cells with the evaluation of the
DL model taking ≈2.44 × 10−5 s per design (for prediction of 106

specimens), which is >20 times faster than the corresponding FE
simulation.

2.2. Generative Inverse Design Framework

For the inverse design of RN unit cells, we trained a deep genera-
tive model based on CVAE that was paired with the pretrained
forward predictor (i.e., the unit cell elastic properties model)
(Figure 2a). Based on the results of the hyperparameter tuning,
the size of the latent space was chosen to be 8. For both recog-
nition and reconstruction models of the CVAE, we selected two

hidden layers with 512 and 260 neurons, an Adam optimizer, and
ReLU activation functions throughout both hidden layers. ReLU
and Sigmoid were selected as the activation functions of the out-
put layer for the recognition and reconstruction models, respec-
tively (Table S7 and Figure S8, Supporting Information).

The reconstruction model of the trained CVAE was separated
and called “unit cell generative model”. To assess the generative
ability of this model, the elastic properties of the test dataset and
a random sampling from a normal distribution (ɛ ≈ N(0,1)) were
passed as inputs to this model. The predicted unit cell structures
were passed as inputs to the unit cell elastic properties model
and the predicted elastic properties were compared with the ini-
tially requested elastic properties of the test dataset. The results
of this comparison showed an overall coefficient of determina-
tion (R2) of 0.865, an MAE of 5.1 × 10−2, and an MSE of 8.5 ×
10−3 (Figure S9c and Table S8, Supporting Information). To as-
sess the best achievable accuracy among the designs generated
by the unit cell generative model, one hundred possible designs
were generated for each set of elastic properties present in the test
dataset. Then, the elastic properties of the generated unit cells
were compared with the desired mechanical response provided
to the model through the calculation of the regression metrics R2,
MSE, MAE, and root mean square error (RMSE). The best candi-
dates were then selected among the 100 possible designs. Based
on the proposed approach, the final evaluation of the unit cell
generative model showed an overall R2 of 0.977, an MAE of 1.2 ×
10−2, and an MSE of 3.0× 10−4 (Figure S9d and Table S9, Support-
ing Information). In addition, the high accuracy of the unit cell
generative model in generating new RN unit cells was demon-
strated by comparing the DL-predicted elastic properties of the
generated unit cells with their corresponding FE results (Figure
S10, Supporting Information). Based on this comparison, R2 of
0.98, 0.98, 0.99, and 0.99 were calculated for 𝜈12, 𝜈21, E11, and E22,
respectively (Figure S10, Supporting Information).

2.3. Unit Cells with Requested Rare Elastic Properties

To demonstrate the generative ability of the unit cell generative
model, grid-sampled values of double-auxetic elastic properties,
which are rare occurrences in the natural sampling of RNs[21]

were created and fed to the deep generative model. For each re-
quest, the elastic properties were defined as a combination of 𝜈12
and 𝜈21 in the range of (−1, −0.1) and an equal elastic modulus
along both directions with values within the range of E11/Eb =
E22/Eb = (0, 0.25). For each input, the best design out of a 100
designs was selected. The four elastic properties of the gener-
ated unit cells predicted by the unit cell properties model are
reported in a 3D scatterplot incorporating color coding for the
fourth property (Figure 2b). To explore the expansion offered by
the deep generative model over the observed elastic properties in
the initial library (i.e., the training and test datasets), the exist-
ing elastic properties in the dataset and the nonduplicate values
from the generative process were compared (Figure 2b). From
the 3D scatterplot, we can see that the envelope of the achievable
elastic properties is expanded in all three planes (i.e., planes of
𝜈12 − 𝜈21, E11/Eb − 𝜈12, and E11/Eb − 𝜈21). The top view of the
3D scatterplot, which shows the expansion of the envelope in the
𝜈12 − 𝜈21 plane, reveals the possibility of generating unit cells
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Figure 2. The unit cell generative model and its ability to generate new RN unit cells. a) The CVAE is composed of two parts: 1) the recognition part,
which maps the unit cell design and its corresponding elastic properties to the latent space and 2) the reconstruction part, which converts a sampling
of the latent space and the requested elastic properties to the corresponding design of the unit cell. The reconstruction part of CVAE is separated and is
referred to as the “unit cell generative model” to generate RN unit cells given the target elastic properties. The elastic properties of the generated unit
cells are further predicted by the unit cell elastic properties model for final filtering. b) A demonstration of the ability of the unit cell generative model to
generate new unit cells with given elastic properties which were not present in the initial library. Cross-sections are presented to more clearly visualize
the generated unit cells with new elastic properties. c) The deformation pattern of three specimens (i.e., I, II, III) with new elastic properties not present
in the original library. Moreover, a group of specimens (i.e., IV) are presented to show the ability of the trained model to generate specimens with similar
elastic properties.
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with extreme double-auxetic properties (Figure 2b). In general,
these results confirm the ability of the deep generative model
to generate unit cells with new elastic properties that were not
within the envelope of the elastic properties covered by the ini-
tial (i.e., training) library. The deep generative model is, there-
fore, of value for the efficient generation of unit cells with prede-
fined elastic properties, especially rare-event properties, such as
double-auxeticity.

As case studies, we selected four sets of elastic properties (I,
II, III, and IV) with negative values of the Poisson’s ratio and
different Young’s moduli (see the top views in Figure 2b) to illus-
trate the generated unit cells corresponding to these cases. For
the elastic properties of case IV, three generated candidates are
displayed to demonstrate the possibility of generating different
designs exhibiting similar sets of elastic properties. The defor-
mation patterns of these unit cells (when subjected to 5% strain
along directions 1 and 2) were compared to the initial state of
the generated unit cell (Figure 2c). The calculated error values
averaged over the four components of the elastic properties were
8.3%, 8.6%, 3.6%, and 3.1% for unit cells I, II, III, and IV, re-
spectively (Table S10, Supporting Information). These case stud-
ies show a high degree of accuracy of the deep generative model
when used for the design of double-auxetic unit cells with elas-
tic properties which were not seen before in the training or test
datasets.

2.4. Elastic Properties of Combinatorial Designs

We studied combinatorial designs composed of D1 × D2 repeti-
tions of RN unit cells (Figure 3a). Assuming D1 and D2 are values
varying in a range of (2, 20), we studied a total of 100 combina-
torial designs from each RN unit cell. Based on a preliminary
study we performed on the combinations of RN unit cells, we
selected D1 = D2 = 20 as the maximum size of combinatorial
designs due to the saturation of the elastic properties for larger
numbers of unit cells (Figure S13, Supporting Information). We
used the undersampled dataset of RN unit cells (dataset size =
81 569), which was used for the training of the unit cell elastic
properties model, and performed numerical simulations for all
the 100 combinatorial designs composed of these RN unit cells
(size of dataset = 8 156 900). The generated dataset was further
used to train a forward predictor called “size-agnostic model”
that predicts the elastic properties of the combinatorial designs
(Figure 3a).

To train the model, we assumed MinMaxScaler as the scaling
method, ReLU as the activation function of all the hidden layers
as well as of the output layer, and Adam as the optimizer with
a learning rate of 0.0001, which were adopted from the hyper-
parameter tuning step of the unit cell elastic properties model.
The hyperparameter tuning step of the deep generative model re-
sulted in 6 hidden layers with 512, 428, 343, 258, 174, and 89 neu-
rons, respectively (Table S11, Supporting Information). Within
200 epochs, the prediction errors (MSE, MAE) reduced from MSE
= 4.7 × 10−3 and MAE = 2.9 × 10−2 to MSE = 1.6 × 10−5 and
MAE = 2.9 × 10−3 for the training dataset and from MSE = 4.1 ×
10−3 and MAE= 1.4 × 10−2 to MSE= 1.7× 10−5 and MAE = 3.0 ×
10−3 for the validation dataset (Figure S11, Supporting Informa-
tion). The trained model had an overall R2 of 0.995 for the test

dataset (10% of the original dataset), confirming that it can accu-
rately predict the elastic properties of the combinatorial designs
(Table S12 and Figure S12, Supporting Information).

Combinatorial designs showed a wide range of elastic prop-
erties. The relative elastic moduli (E11/Eb and E22/Eb) and Pois-
son’s ratios (𝜈12 and 𝜈21) calculated by the numerical simulations
were in the ranges of (0, 0.3) and (−2, 3), respectively (Figure 3b).
The 3D distribution of the elastic properties of the combinatorial
designs resembled a square pyramid with inwardly curved faces
whose base is placed within the 𝜈12 − 𝜈21 plane. The distribution
of the elastic properties in the 𝜈12 − 𝜈21 plane was bounded by
two hyperbolas, one with openings in the first and third quad-
rants and the other one with openings in the second and forth
quadrants (Figure 3b).

To validate the results of our simulations, the elastic properties
(Table S13, Supporting Information) and deformation patterns of
four selected combinatorial designs were determined experimen-
tally (Figure 3c). These specimens were selected with dimensions
of D1 = D2 = 4 and exhibited a wide range of mechanical prop-
erties (Figure 3c; and Table S13, Supporting Information). These
include a specimen with a positive Poisson’s ratio in one direc-
tion and a zero Poisson’s ratio in the other direction (specimen 1
in Figure 3c), a specimen with a negative Poisson’s ratio in one
direction and a zero Poisson’s ratio in the other direction (spec-
imen 2 in Figure 3c), an isotropic specimen with extreme elas-
tic moduli in both directions (specimen 3 in Figure 3c), and an
anisotropic specimen with a high elastic modulus in one direc-
tion and a low elastic modulus in another direction (specimen
4 in Figure 3c). We performed uniaxial tensile tests in two per-
pendicular directions (i.e., 1 and 2) on each of these specimens
as well as digital image correlation (DIC) measurements for all
specimens.

To study how the elastic properties vary with D1 and D2, we
selected one of the RN unit cells and depicted the evolution of
the four elastic properties as a function of changes in D1. and
D2 (Figure 4a). We found a nonlinear relationship between the
elastic properties and dimensions of the combinatorial designs
of this unit cell that, as expected, saturates for large enough num-
bers of unit cells along each spatial direction (Figure 4a; and
Figure S13, Supporting Information). For this elected RN unit
cell, E11/Eb, E22/Eb, 𝜈12, and 𝜈21 converge toward 0.046, 0.085,
−0.04, and −0.2, respectively (Figure S13, Supporting Informa-
tion). Another example is presented in Figure S14 (Supporting
Information) in which E11/Eb, E22/Eb, 𝜈12, and 𝜈21 converge to-
ward 0.020, 0.048, 0.05, and 0.5, respectively. To validate the pre-
diction results and to show the possibility of 3D printing of these
specimens in different dimensions, we selected 3 combinatorial
designs with dimensions of D1 = D2 = 4, D1 = 10 and D2 = 4,
and D1 = D2 = 10. We performed uniaxial tensile tests in direc-
tion 2 on each of these specimens and compared their elastic
moduli and Poisson’s ratios with those of computational mod-
els. In addition, to show the possibility of achieving similar prop-
erties but in different dimensions, we selected four specimens
with negative Poisson’s ratio in direction 1 and E11/Eb = (0.01
± 0.01)/0.6, Eb = 0.6 MPa (Figure 4b). We have performed DIC
measurements for all specimens except of those that were very
large (i.e., D1 = D2 = 10). This further analysis allowed us to
compare the strain distributions within the structure. This com-
parison showed a good agreement between the local and overall
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Figure 3. a) A schematic illustration and elastic properties of the combinatorial designs as well as the network architecture of the size-agnostic model.
b) The envelope of the elastic properties achieved by the combinatorial designs, according to direct FE simulations. c) The deformation patterns of four
combinatorial designs subjected to uniaxial tensile loading along two perpendicular directions (i.e., 1 and 2). The following loading conditions were
used for most of the specimens: ɛ11 = 5% and ɛ22 = 5%. For specimens with very high elastic moduli smaller applied strains were used. Both the results
of FE analysis and DIC experimental results obtained using mechanical tests on the 3D printed specimens are presented. The comparison between FE
simulations and experimental results is provided in Table S13 (Supporting Information).
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Figure 4. a) The evolution of the elastic properties as functions of D1 and D2 for a specific case study. Each combinatorial design with a given dimension
(D1 × D2) is created by repeat filliping a specific RN unit cell D1 times vertically (along direction 1) and D2 times horizontally (along direction 2). The
vectors containing D1 and D2 the binary vectors representing the design of the unit cells are introduced to the size-agnostic model as input. The model
then returns the predicted elastic properties of the combinatorial design as output. The deformation patterns of one lattice at different sizes (i.e., 4 ×
4, 4 × 10, 10 × 10) subjected to the following loading conditions: ɛ22 = 5%, ɛ22 = 3.4%, and ɛ22 = 5%, respectively. Both the results of FE analysis
and DIC measurements obtained from the mechanical tests of the 3D printed specimens are presented. It was not possible to perform DIC for the 10
× 10 combinatorial design due to its large dimensions, but the deformation pattern of this specimen subjected to ɛ22 = 3% is shown in Figure S15
(Supporting Information). b) The deformation patterns of four representing designs in different dimensions (i.e., 4 × 4, 2 × 6, 4 × 10, and 10 × 10)
subjected to the following loading conditions: ɛ11 = 5%, ɛ11 = 5%, ɛ11 = 2.4%, and ɛ11 = 5%, respectively, showing similar rare properties (i.e., negative
Poisson’s ratio and E11/Eb = (0.01 ± 0.01)/0.6, Eb = 0.6 MPa) while their overall dimensions are different. Both the FE results and DIC measurements
obtained from mechanical tests on the 3D printed specimens are presented. It was not possible to perform DIC for the 10 × 10 combinatorial design
due to its large dimensions, but the deformation pattern of this specimen subjected to ɛ11 = 5% loading condition is shown in Figure S16 (Supporting
Information). The comparison between FE simulations and experimental results is provided in Table S14 (Supporting Information).

deformation withing the structure (Figure 4a,b), as well as the
measured mechanical properties that were obtained numerically
and experimentally (Table S14, Supporting Information). The
mechanical tests of these specimens indicated that the deforma-
tion patterns follow the same trends as observed in the simula-

tions. The mismatches between the simulations and mechanical
tests can be attributed to the assumptions used in the simulations
(e.g., a linear elastic constitutive equation), differences between
the experimental and simulated boundary conditions, and man-
ufacturing imperfections.

Adv. Mater. 2023, 2303481 2303481 (8 of 18) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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2.5. Inverse Design of Lattice Structures with Requested Elastic
Properties and Dimensions

We combined the unit cell generative model and the size-agnostic
model to develop a comprehensive and powerful framework
called Deep-DRAM, which can inversely design lattice struc-
tures with given elastic properties and dimensions. Given the
requested elastic properties, we first used the deep generative
model to generate 105 RN unit cells. It takes the deep gener-
ative model 5.7 ± 0.1 s on a workstation (see the Experimen-
tal Section for the specifications) to generate these unit cells.
Since the returned unit cell structures would vary in their de-
sign and mechanical response, they can deviate from the re-
quested set of elastic properties. This is, in fact, an advantage
of such a generative model because the actual elastic properties
of a lattice structure with a finite (anisotropic) number of unit
cells along each spatial direction may be quite different from the
unit cell properties. The presence of such natural variations in
the elastic properties of the generated unit cells enables us to
feed a large number of designs created by the deep generative
model to the size-agnostic model that is trained to account for
the effects of size along each direction. Then, all these gener-
ated unit cells together with the desired dimensions are intro-
duced to the size-agnostic model to predict the elastic properties
of these combinatorial designs. Finally, the MSE values showing
the difference between the target properties and the final elas-
tic properties of the generated combinatorial designs are calcu-
lated. Based on the error values, we selected the designs that best
matched the target elastic properties for the given dimensions
(Figure 5a).

To demonstrate the functionality of Deep-DRAM, we assumed
a constant value for the elastic modulus (i.e., E11/Eb = E22/Eb
= 0.03) and a range of (−1, 1.6) for the Poisson’s ratios with a
step size of 0.2 (i.e., 14 groups of values for the Poisson’s ra-
tios). In total, we studied 196 (i.e., 14 × 14) sets of elastic prop-
erties. We also predefined a dimension of D1 = D2 = 4 for
the generated combinatorial designs. Using these predefined
values, 1.96 × 107 combinatorial designs were generated and
filtered based on their MSE values. The whole design proce-
dure including the inverse design of the RN unit cells, com-
bining the unit cells into combinatorial designs, prediction of
the elastic properties of the combinatorial designs, and find-
ing the best candidates based on the calculated MSE values
took ≈38 min (for all the 1.96 × 107 designs) using the same,
above-described computer. A few examples of generated RN lat-
tice structures with predefined elastic properties and dimensions
are presented in Movie S1 (Supporting Information) (RN lattice
structures with negative Poisson’s ratio) and Movie S2 (Support-
ing Information) (RN lattice structures with positive Poisson’s
ratio).

To quantify the expected error values for the design of combi-
natorial designs with different elastic properties and dimensions,
we repeated the aforementioned procedure for 196 selected sets
of elastic properties considering two groups of dimensions. In
the first group, we predefined equal dimensions (i.e., D1 = D2
= [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]), while in the second group
we assumed D2 = 2 and D1 = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20].
We defined the envelope of successful designs such that it was
bounded by the designs corresponding to an MSE value of 0.1.

The heat maps of the MSE values depict the expected error val-
ues for generating combinatorial designs when the elastic prop-
erties and dimensions are provided as input (Figure 5b). The
gray regions represent the designs whose elastic properties are
associated with MSE values exceeding the acceptance threshold
(Figure 5b). Upon closer inspection, we found that the gray re-
gions primarily correspond to the property–size combinations
that simply cannot arise from the considered RN. As expected,
the envelopes of successful design generations converge for large
enough values of D1 and D2 (Figure 5b). For larger sizes, the heat
maps of MSE values for combinatorial designs with D1 = D2 are
symmetrical around the 𝜈12 = 𝜈21 line. This increased symmetry
indicates a more isotropic behavior of RN combinatorial designs
as their dimensions increase. In the other group of the combina-
torial designs with D2 = 2 and varying D1 values, we do not expect
isotropy because the ratio of D1/D2 increases and the geometry
is not symmetric anymore.

2.6. Stress Distribution

Deep-DRAM provides many solutions to the design problem of
finding RN lattice structures with predefined dimensions and
elastic properties. It is, therefore, possible to apply additional de-
sign requirements, such as criteria regarding the stress distri-
butions observed within the generated structures under various
types of loading conditions. One such criterion is to choose the
design with the minimum peak stress, thereby enhancing their
resistance against fatigue and failure. To demonstrate the utility
of our size-agnostic inverse design framework within this con-
text, we first generated combinatorial designs with predefined
elastic properties and dimensions. We then filtered the generated
designs based on their maximum von Mises stress (Figure 6a)
(see Movie S3, Supporting Information). As representative cases,
we studied three groups of combinatorial designs with prede-
fined specifications: i) D1 = D2 = 4, 𝜈12 = −0.2, and 𝜈21 = 0.2,
ii) D1 = 10, D2 = 4, 𝜈12 = 𝜈21 = 0.5, and iii) D1 = D2 = 10, 𝜈12
= 𝜈21 = −0.2, while the elastic modulus was assumed to be the
same for these three groups (i.e., E11/Eb = E22/Eb = 0.03). From
each group, the first 1000 designs with MSE < 0.1 were further
analyzed using FE simulations to determine the stress distribu-
tion within their elements under two loading conditions (i.e., ɛ11
= 5% or ɛ22 = 5%). The normalized peak values of the von Mises
stress in directions 1 and 2 were then calculated (Figure 6b). From
each group, we selected two specimens with almost the same
MSE but with either the minimum or maximum Euclidean dis-
tance from the origin. The stress distributions corresponding to
these case studies clearly show stress concentrations in some re-
gions within the specimens with the maximum Euclidean dis-
tances (i.e., specimens 2, 4, and 6), while the stress distribution
are comparatively more uniform within specimens 1, 3, and 5
(Figure 6c,d). The specimens with high peak stresses are prone
to premature crack initiation and growth and should be avoided
in the design of mechanical metamaterials aimed for practical ap-
plications. Further analysis of these results shows 310%, 250%,
and 270% difference between the maximum and minimum val-
ues of the von Mises stresses of the three study groups, which
are very substantial numbers within the context of peak stress
reduction analysis.

Adv. Mater. 2023, 2303481 2303481 (9 of 18) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 5. The structure of Deep-DRAM as a size-agnostic inverse design framework. a) In this framework, the deep generative model and the size-
agnostic model are combined to generate combinatorial designs with desired elastic properties and dimensions. The best candidates among the gen-
erated combinatorial designs are then selected based on their MSE values. b) The heat maps of the MSE values indicating the expected error values for
generating combinatorial designs with predefined elastic properties and dimensions.

2.7. Exotic Properties and their Recurring Features

We utilized our models to develop lattices with rare mechani-
cal properties (i.e., double-auxeticity). Such deployment allowed
us to tackle the common challenge of obtaining structures with
such exotic properties[21] demonstrating how ML-based meth-
ods help bridging problems in the design space of metamate-

rials. Moreover, by generating a large number of designs, we
studied the main features that determine such properties, and
laid two different hypotheses of their significance. If a single
“dominant” structure with similar exotic properties emerged
from the analysis, a design template for future optimization pro-
cesses could emerge as a result. If, in contrast, no “dominant”
structure emerges, this study would demonstrate that ML-based

Adv. Mater. 2023, 2303481 2303481 (10 of 18) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 6. Multiobjective design where the minimization of peak von Mises stresses is considered as an additional design requirement. a) Finding
the optimized combinatorial designs based on the stress values of the elements of the lattice structure (see Movie S3, Supporting Information). b) As
representative cases, combinatorial designs of three groups (i.e., D1 = D2 = 4, D1 = 10, and D2 = 4, and D1 = D2 = 10) were studied. For each group, the
first 1000 generated combinatorial designs with MSE values below 0.1 were further analyzed using FE simulations to determine the stress distributions
within their elements. The normalized peak von Mises stresses when the structure was subjected to a strain of ɛ11 = 5% are plotted against the same
type of stress when the applied stain is ɛ22 = 5%. c,d) The deformation patterns and stress distributions of the elements of some selected combinatorial
designs. For the specimens in (c) further DIC measurement was performed and the comparison of strain distribution between FE and DIC are shown
in four bottom rows in (c).
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Figure 7. The recurring features of double-auxetic designs (i.e., 𝜈12 = −0.4 ± 0.1 and 𝜈21 = −0.4 ± 0.1). a) The process of obtaining the “dominant”
features for such properties, where probability maps were calculated using 250 different designs. b) The probability maps of the 4 × 4 unit cell lattices.
c) The distribution of the elastic moduli of these designs that fall in the ranges E11/Eb = (0.01 ± 0.01)/0.6 and E22/Eb = (0.01 ± 0.01)/0.6, with Eb =
0.6 MPa, and include compliant (zone 1), medium (zone 2), and stiff (zone 3) lattice structures. b,d) The filtered equivalents of the 4 × 4 (b) and 10 ×
10 (d) unit cell lattices were obtained to showcase the similarities of the probability maps regardless of the lattice size. e) Representative examples of
ML-obtained designs with double-auxeticity but different stiffness moduli corresponding to different zones (top-row) tested in direction 1 (middle-row)
and direction 2 (bottom-row). f) The resulting behavior of the different “dominant” structures corresponding to different zones with different elastic
moduli (top-row) tested in direction 1 (middle-row) and direction 2 (bottom-row).

methods are fundamental to obtain the plethora of design pos-
sibilities that result in such properties. Thus, to discover such
“dominant” structures, we generated 250 new geometries for ma-
terials with specific target properties (i.e., 𝜈12 = −0.4 ± 0.1, 𝜈21
= −0.4 ± 0.1, E11∕Eb = (0.01 ± 0.01)∕0.6 and E22∕Eb = (0.01 ±
0.01)∕0.6, with Eb = 0.6 MPa (Figure 7). These simulations were
conducted across two different material sizes (i.e., 4 × 4, and 10

× 10 unit cells) (Figure 7b,d). We also categorized the resultant
elastic moduli into three main groups of low (zone 1), medium
(zone 2), and high (zone 3) elastic moduli (Figure 7c). The
representative lattice structures of ML-obtained designs show
similar double-auxetic properties as requested (Figure 7e). The
microstructures of these representative structures were, however,
significantly different in each zone, highlighting complementary
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microstructures when comparing structures with compliant or
stiff elastic moduli (Figure 7e).

In order to find out the recurring features in each zone, we
further organized struts based on their probability of occurrence,
from the highest to the lowest. Additional struts were sequen-
tially added to the structure until the total number equaled the
mean count of struts per design, as observed in pre-existing strut
configurations. Structures classified as “dominant” were identi-
fied via the application of thresholding techniques to their respec-
tive probability distribution maps in each zone (Figure 7f). These
threshold values were reverse-engineered to align the resultant
number of beams with the mean number of struts per lattice,
specific to each zone.

These results demonstrate that our ML-model can identify
a wide range of viable structures, thereby increasing the likeli-
hood of discovering metamaterials with unprecedented proper-
ties. It also suggests that combining features from these domi-
nant structures could lead to new materials that may, individually,
not meet all the desired criteria (Figure 7e,f).

Moreover, ML-obtained designs with double auxetic properties
show unique features depending on their level of elastic moduli
(Figure 7e). These unique features individually give rise to the
desired combinations of rare properties while, they are not col-
lectively pointing toward a specific dominant pattern of features
(Figure 7f), implying that a thorough exploration of as many de-
signs as possible is required to discover such specific and unique
features.

3. Discussions and Future Outlook

The Deep-DRAM framework presented here is a combination of
four modules and provides many opportunities for the design
of mechanical metamaterials for practical use in the design of
advanced functional devices. In addition, the presented modu-
lar approach allows the individual modules to be combined with
other tools available elsewhere to provide solutions for the many
challenges encountered in the design of designer materials. To a
degree, the modularity of this approach and the probabilistic na-
ture of the CVAE allows us to decouple some of the problems en-
countered in the design and optimization of mechanical metama-
terials, thereby enabling multiobjective design optimization with
minimum development and computational costs. For example,
the multiple objectives of achieving a certain set of elastic prop-
erties and minimizing the peak stress within the structure can
be handled in-series with minimum computational costs. That
is partially due to the extremely high speeds of both generating
and evaluating individual designs, which are in the range of mi-
croseconds.

In conventional computational design approaches, including
FE analysis, topology optimization, gradient-based optimization,
genetic algorithms, and response surface methodology, inverse
problems often result in degenerate designs, meaning that mul-
tiple structural configurations could yield an identical set of ma-
terial properties. The risk of degeneracy is particularly evident
when parameters, such as elastic properties and dimensions are
given a priori. Without the ability to distinguish between nearly
identical outcomes, conventional methods may fall short in their
predictive capability.[40,41]

Deep-DRAM could address these issues by employing an aux-
iliary objective function aimed at minimizing degeneracy in the
generated unit cells. For instance, introducing a regularization
term in the loss function that penalizes similar structural fea-
tures could prevent the model from converging to degenerate
solutions. This aspect becomes particularly salient when the
model is aimed at designing structures under multiple physical
constraints where degenerate designs can have differing perfor-
mance metrics.

The integration of a DL-based forward predictor model with a
deep generative model, such as the CVAE, serves multiple criti-
cal functions in the framework for designing RN unit cells. The
forward predictor not only validates the unit cell designs gener-
ated by the CVAE, ensuring their alignment with predefined elas-
tic properties, but also provides a rapid and computationally effi-
cient evaluation mechanism. This efficiency is particularly advan-
tageous when compared to traditional, computationally intensive
methods, such as FE analysis, thereby facilitating a more rapid it-
eration process in the design cycle. Additionally, the forward pre-
dictor enhances the robustness of the overall system, serving as a
reliability check against overfitting by the generative model. The
forward predictor’s ability to quickly validate the elastic properties
of generated designs ensures the suitability of the framework for
generating complex, application-specific lattice structures. Over-
all, the DL-based forward predictor is an indispensable compo-
nent in this generative inverse design framework, contributing
not just to validation but also to computational efficiency and ro-
bustness.

The integration of the Kullback–Leibler (KL) divergence term
in the loss function serves an important role in shaping the la-
tent space within the CVAE framework. By incorporating KL di-
vergence, the model fosters a more compact and structured la-
tent space. This not only facilitates effective encoding but also
ensures generalizability, which is crucial for material design ap-
plications. The KL term acts as a regularization mechanism, im-
posing penalties for deviations from a predefined probabilistic
distribution. This optimization refines the latent space, leading
to more reliable and interpretable representations of mechanical
properties in metamaterials.

In the present study, we have primarily focused on the use
of CVAEs for the forward modeling of mechanical proper-
ties in metamaterials. However, the use of graph neural net-
works (GNNs) presents an intriguing avenue for future investi-
gations, particularly given the intricate graph-like relationships
between constituent elements in architected materials. Previ-
ous studies[42–44] have already demonstrated the applicability of
GNNs in capturing the complex topologies and spatial depen-
dencies in such materials. Specifically, GNNs can provide a more
direct encoding of the material’s microarchitecture, given their
ability to directly model the relationships between adjacent ele-
ments in a complex network. Future work may explore the po-
tential of integrating GNNs into the current framework with the
anticipation that this could further refine the model’s predictive
accuracy and generalizability.

In the context of machine learning applications, particu-
larly in the identification of unit cells with rare mechanical
properties, various distribution scenarios emerge that require
careful investigations—namely, in-distribution (ID), near-out-of-
distribution (NOD), and out-of-distribution (OOD). The current

Adv. Mater. 2023, 2303481 2303481 (13 of 18) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202303481 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

study deploys Deep-DRAM, a modular, DL-oriented framework,
to address the size-agnostic inverse design problem. Experimen-
tal evaluations suggest that the model exhibits commendable
performance in predicting and inverse designing within ID and
NOD contexts, adhering to the well-established practices where
test datasets incorporate elements distinct from the training set.
Nevertheless, a characteristic limitation pertaining to OOD sce-
narios has been observed—a phenomenon corroborated by ex-
isting literature on the constraints of neural networks as high-
dimensional function estimators.[45,46]

While Deep-DRAM has been formulated to generate struc-
tures with mechanical properties that are intrinsically OOD, es-
pecially upon specific requests for extreme properties, the model
does manifest a capacity of producing samples beyond the train-
ing distribution, hence showcasing its adaptability to OOD de-
mands. This serves as a direction for future investigations into
the model’s resilience against OOD inputs, a particularly impor-
tant point given the study’s focus on rare mechanical proper-
ties. Within the modular architecture of Deep-DRAM, individ-
ual components—from the DL-based forward predictor model
for anisotropic properties to the generative model predicated on
CVAEs—warrant further evaluation. Methodologically, resilience
against OOD inputs can be examined via robust techniques,
such as CV,[47,48] bootstrapping,[49,50] or Bayesian methods for
uncertainty quantification.[51–54] It would be insightful to syn-
thetically generate pseudo-out-of-distribution samples to simu-
late conditions or properties not initially covered in the train-
ing set. Employing metrics, such as the coefficient of determi-
nation (i.e., R2), MAE, and RMSE, could serve as effective tools
for evaluating the model’s predictive fidelity under these nuanced
conditions.

In future research, it may be valuable to investigate the use of
encoded latent representations[55–58] from the bottleneck of the
VAE to more efficiently solve regression problems. The premise
is that initially encoding a microstructure using the encoder part
of the VAE could potentially minimize the number of parame-
ters needed for forward models. Importantly, this approach may
lead to models that generalize better across different tasks and
conditions.

The manufacturability constraints are pivotal to the utility of
DL-generated mechanical metamaterials. In the current study,
selective laser sintering (SLS) method was employed to fabricate
2.5D metamaterials. However, this technique has two notable
limitations: the size of the build plate and a minimum feature
size of 700 μm. The former restricts the creation of structures to
dimensions no greater than 190 mm × 190 mm (the maximum
dimensions that can fit are 10 × 10 unit cells that were scaled by
80%), while the latter impedes downscaling, as the strut thick-
ness in the metamaterial can fall below the resolution capabili-
ties of the printer. These limitations necessitate the exploration
of alternative techniques, such as stereolithography (SLA) or two-
photon polymerization (2PP), for achieving finer resolutions in
the fabrication of micro- or submicroscopic metamaterials.[59–61]

Future research could integrate these manufacturing constraints
into DL models to ensure the practical feasibility of computation-
ally designed structures.

There are a number of points that need to be discussed re-
garding the broader use of Deep-DRAM. First, while we focused
on a specific choice of RN for this study, the same methodology

can also be used for any underlying design paradigm including
any other types (i.e., size, organization) of random structures as
well as ordered structures and a combination thereof. Second,
the modular design of our approach as well as its ad hoc combi-
nation with direct FE modeling affords it a high degree of flex-
ibility in terms of taking design requirements into account and
tackling multiple types of problems that are challenging in their
own right. For example, the problem of finding rare combina-
tions of elastic properties is treated independently in multiple
other studies[14,19] but can also be studied, within the confines
of the selected RN design, using the modules developed here.
Third, our focus on the linear elastic properties meant that we
used linear elastic constitutive models everywhere in the current
study. However, the same approach can be used to study the non-
linear properties of RN designs or to consider any other aspects
of their constitutive behavior (e.g., viscoelasticity). The only dif-
ference would be that the FE models need to be modified to re-
flect the more complex constitutive behavior. Indeed, the relative
advantage of the presented approach would be even more evi-
dent when the simulation time is longer, such as the case of non-
linear or viscoelastic constitutive behaviors. Fourth, the compact
and computationally efficient nature of the final models means
that they can be implemented in low-resource settings to power
edge computing[62,63] applications. Finally, some elements of the
developed modulus (i.e., even individual layers) can be used for
more advanced machine learning approaches, such as transfer
learning, to further generalize the domain of application of our
models.

4. Conclusions

We have developed a size-agnostic inverse design framework,
Deep-DRAM, which can generate RN lattice structures not only
with predefined elastic properties but also with predefined di-
mensions suitable for any intended application. We showed
that combining deep generative models with forward predictors
is successful in generating bespoke mechanical metamaterials
while also satisfying additional design requirements, such as
minimum peak stresses, to improve the endurance of designer
materials for real-world applications.

5. Experimental Section
We studied restricted RN unit cells in which the nodal points of the beam-
like elements were fixed at specific locations. The design of these unit cells
was inspired by the previous research[21] that computationally explored
the auxeticity and stiffness of RNs and demonstrated a wide range of elas-
tic moduli and Poisson’s ratios for this type of mechanical metamaterials.
For this work, RN unit cells composed of different node numbers (i.e., nx
= ny = 3, 4, 5, 6, 7, and 8) are first studied to find out the least number
of nodes that corresponds to the broadest range of elastic properties. It
is assumed the internodal distances of Δx and Δy in directions 1 and 2,
respectively. The overall size of a unit cell is, therefore, given by: L × W (L
= ny × Δy and W = nx × Δx) (Figure 1a). Also, the in-plane (t = 1 mm) and
out-of-plane (T = 10 mm) thicknesses for the RN unit cells was assumed.
The beam-like elements were randomly distributed to connect the whole
grid. Unit cells with the network connectivity values of Zg = 2.5, 3, 3.5, 4,
and 4.5 (Figure 1a) were studied. Further combinatorial designs that are
composed of different numbers of rows and columns of RN unit cells were
studied.
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Computational Models: All the FE models were created using MATLAB
(MATLAB R2018b, MathWorks, USA) codes. Custom codes were used to
design the structures by randomly connecting each node to its surround-
ing nodes and to perform the FE simulations that estimate the elastic prop-
erties of the resulting structures (i.e., the elastic moduli and Poisson’s ra-
tios in both orthogonal in-plane directions). The random distribution of
beams resulted in “loose designs” where some nodes were not connected
to the overall grid. To exclude such designs, a graph-based search method
(breadth-first search[64]) for filtering and discarding such invalid unit cell
designs was used. The applied graph-based algorithm sped up the pro-
cess by nearly 900 times as compared to an image-based filtering method
used previously[21] (more information is provided in Figure S1, Support-
ing Information). The codes were further extended to incorporate the RN
unit cells into the combinatorial designs (Figure 3a).

The three-node quadratic beam elements (Timoshenko beam ele-
ments) with rectangular cross-sections (t × T) and with two translational
(i.e., u11 and u22) and one rotational (i.e., u33) degrees of freedom (DOF)
at each node were employed. An elastic material with a Young’s modulus
of Eb = 0.6 MPa and a Poisson’s ratio of 𝜈b = 0.3 was then assigned to
elements. For each structure, two FE models were created to separately
apply a strain of 5% along 1- and 2-directions. In the first model, the top
nodes were subjected to a strain of 5% along the 2-direction (u11 = u33 =
0 and u22 = 0.05 × L), while all the DOF of the bottom nodes were con-
strained (u11 = u22 = u33 = 0). In the second model, the right nodes were
subjected to 5% strain along the 1-direction (u22 = u33 = 0 and u11 = 0.05
× W) while all the DOF of the left nodes were constrained (u11 = u22 = u33
= 0). More information about the FE equations used for the numerical
simulations are provided in the Supporting Information.

To calculate the elastic moduli of the structures (E11 = 𝜎11/ɛ11 and
E22 = 𝜎22/ɛ22), the normal stresses along directions 1 and 2 (𝜎11 =
F11∕(L × T), 𝜎22 = F2∕(W × T) (Figure 1a)) were divided by the strain ap-
plied along the same direction (ɛ11 = ɛ22 = 5%). In these equations, F̄ 11
and F̄22 are the mean reaction forces along directions 1 and 2 at the right
and top nodes, respectively (F11 = (

∑nR
i=1F11,i)∕nR, F22 = (

∑nT
i=1F22,i)∕nT,

where nR and nT are the total numbers of the right and top nodes, while
F11,i and F22,i are the reaction forces along directions 1 and 2 at each of the
right and top nodes, respectively). The transverse strain as the ratio of the
average displacement of the lateral nodes was then calculated to the initial
transversal length of the structure (in the case of 𝜀axial = 𝜀11 = 5%: 𝜀trans =
𝜀22 = (

∑nT
i=1𝛿yi)∕(L × nT), and in the case of 𝜀axial = 𝜀22 = 5%: 𝜀trans =

𝜀11 = (
∑nR

i=1𝛿xi)∕(W × nR)). The transverse strain was then divided by the
applied axial strain to calculate the Poisson’s ratio (𝜈 = −𝜀trans∕𝜀axial).

Deep Learning—Unit Cell Elastic Properties Model: A predictor model
was trained that was referred to as the “unit cell elastic properties model”
which aims to learn the mapping from the space of RN unit cell designs
to that of their elastic properties. This model takes as input a binary vector
representing the RN unit cells (i.e., a binary vector of 0 and 1 values, where
1 indicates the presence of an element and 0 indicates its absence) and
returns the elastic properties (E11, E22, 𝜈12, and 𝜈21) of the unit cells as out-
put. Before training the model, an initial data analysis process followed by
a hyperparameter tuning study was performed. To select the options and
parameters for both data analysis and hyperparameter tuning, a pipeline
training technique (Figure S5, Supporting Information) which combined
data analysis options and model hyperparameters in its search space was
used. Pipeline training automates the training process including data anal-
ysis and hyperparamater tuning and optimizes the model considering dif-
ferent configurations of the parameters of the search space of the pipeline.

A workstation (CPU = Intel Xeon W-2295, RAM= 256 GB) and a Python
script (Python 3.9.7) to tune the parameters of the pipeline’s search space
was used. Though this, 10 368 combinations of parameters were investi-
gated (Table S5, Supporting Information) and the best pipeline parameters
were selected. For data analysis, data resampling and data scaling were se-
lected to be investigated since the size and distribution of both inputs and
outputs are important for the success of the model training step. As for the
model hyperparamaters, the parameters were selected describing the de-
sign of the DL models (i.e., the width and depth of the hidden layers as well
as the trend of the variation of the number of hidden neurons per layer),
the regularization terms, the type of the optimizer algorithm, the activa-

tion functions of the hidden layers and output layer, and the application
of batch normalization. The search methods of CV grid search from scikit-
learn (version 1.1.1) was used to systematically iterate over the predefined
values of the search space parameters (see the Supporting Information
for a more in-depth discussion of the methods).

The overall performance of the model was assessed by characterizing
its ability to generalize from the training dataset to the test dataset to avoid
both under- and overfitting. To avoid overfitting, k-fold CV was used that
divides the training dataset into k smaller sets. Threefold CV, meaning that
each set equals 33% of the training dataset was used. Note that 10% of
the overall dataset was kept as the test dataset for final model evaluation.

MSE was selected (Equation (1)) as the loss function of the model to
ensure the regression line changes only slightly for a modest change in
the data point. For the evaluation of the model training, the coefficient of
determination (R2) (Equation (2)) was used which indicates the amount
of target variance explained by the model’s independent variables

MSE = 1
n

∑n

i=1

(
yi − ŷi

)2
(1)

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2

∑n
i=1(yi − ȳ)2

(2)

where n is the size of the dataset, yi is the ith real target, ŷi is the corre-
sponding predicted value, and ȳ is the mean value of y (ȳ = 1

n

∑n
i=1 yi).

Deep Learning—Deep Generative Model: A deep generative model was
trained that allows for the inverse design of RN unit cells. This model is
based on CVAE and follows a similar approach as in a number of previ-
ous studies.[26,65] The key difference between CVAE and VAE is that CVAE
can incorporate certain conditions in the training process.[65,66] Here, the
additional conditions concern the elastic properties of the RN unit cells.
Two deep neural networks were utilized as the submodels of the CVAE,
each with a structure purposefully built for their specialized roles. More
specifically, they are a recognition network and a reconstruction network
which are coupled in an encoder-decoder format (Figure 2a). The recog-
nition model transfers the designs of the RN unit cells as well as their
corresponding elastic properties into a low-dimensional, continuous, and
ordered latent space[27] The reconstruction model uses the four elastic
properties and the latent variables to recreate the binary vector represent-
ing the metamaterial design. After the successful training of the CVAE,
the reconstruction model was separated and used as the deep generative
model. The input to this deep generative model was the desired elastic
properties of the RN unit cell as well as a random sampling from a normal
distribution with the same dimensions as the latent space.

The loss function that was utilized to train the CVAE (CVAE) was ob-
tained from the loss function of a standard VAE (VAE) with conditional
information included. The loss function of VAE consists of two terms, the
reconstruction error and the KL term, and is given as[31,65,66]

VAE = E [log P (x|z)] − DKL [Q (z|x) ‖P (z)] (3)

where E represents an expectation value, P and Q are probability distribu-
tions, DKL represents the KL divergence, x is the binary vector representing
the RN unit cells, and z represents the latent variables. Q(z|x) and P(x|z)
are approximated by the recognition and reconstruction models, respec-
tively. The incorporation of the conditional information in the loss function
of the VAE modifies the loss function of CVAE as follows[65,66]

CVAE = E [log P (x|z, y)] − DKL [Q (z|x, y) ‖P (z|y)] (4)

where y is a condition vector that plays an active role in both the encoding
and decoding operations. The condition vector in the model contains the
elastic properties of the RN unit cells.

To assess the elastic properties of the generated RN unit cells and as
a regularisation term to the overall loss function[29] the pretrained “unit
cell elastic properties model” that predicts the elastic properties of the RN
unit cells was incorporated in the overall loss function (all). all for the

Adv. Mater. 2023, 2303481 2303481 (15 of 18) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202303481 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [27/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

training of the deep generative model contains terms that account for the
configuration of the latent space, the reconstruction of the input metama-
terial design, and the retrieval of the desired elastic properties from the
generated RN unit cells. For the retrieval of the desired mechanical prop-
erties from the reconstructed RN unit cells, MSE is considered as the loss
function, MSE. Therefore, the total loss function for the deep generative
model (Equation (5)) include those corresponding to the CVAE (CVAE)
and the MSE (MSE) between the target and predicted elastic properties
of the reconstructed RN unit cells

all = CVAE + MSE (5)

To train a CVAE with an optimal fitting and a lower dimension of the
latent space, the same hyperparamater tuning pipeline as for the unit cell
elastic properties model was used. Some assumptions were made based
on the best resulting parameters for the unit cell properties model. Identi-
cal hyperparameters as for the unit cell elastic properties model were used
in the data processing steps. Additionally, the Adam optimizer was prese-
lected, having outperformed the RMSprop optimizer in the training of the
“unit cell properties model.” In total, 6144 combinations of parameters
were tested through the hyperparameter optimization method with a run-
ning time of ≈1341 min (≈23 h) (Table S7, Supporting Information). For
the validation of the elastic properties arising from the generated RN unit
cells and as a regularization term to the overall loss, the pretrained unit
cell elastic properties model was used as a forward predictor of the elastic
properties of the RN unit cells (E11, E22, 𝜈12, and 𝜈21).

For the evaluation of the trained CVAE (Figure S8, Supporting Informa-
tion) with the help of the test dataset, the latent space was visualized to
see if it is well-clustered. Moreover, the relevant performance metrics (i.e.,
Confusion matrix, Precision, Recall, and F1 score) for the same purpose
was used. To visualize the latent space (Figure S9a, Supporting Informa-
tion) where the metamaterial design is encoded, the t-distributed stochas-
tic neighbor embedding (t-SNE) approach was used to reduce its dimen-
sion to two. In addition to capturing the relevant information regarding
the design of RN structures, the latent variables need to capture some in-
formation regarding the elastic properties of the designs. As a result, elas-
tic properties are examined and distributed inside each geometric cluster.
Because elastic properties are continuous and, thus, cannot be split into
categories, they were manually classified according to certain specific cri-
teria to investigate if the latent space can identify distinct Poisson’s ratios
to a satisfactory degree. The targets of the elastic properties are assigned
to three classes: 0 for auxetic metamaterials, 1 for conventional metama-
terials, and 2 for double-auxetic metamaterials. The binary multilabel class
output is assessed in the case of unit cell representation reconstruction.
This is accomplished by calculating the weighted average of the actual and
predicted classes for each sample in the test dataset. The confusion matrix
shows, in a sample-wise manner, the summary of the prediction results of
the classification problem with each row corresponding to the actual class
and each column corresponding to the predicted one. This matrix was then
used to assess the classification accuracy of the model.

For the evaluation of the model training, the F1 score (Figure S9b, Sup-
porting Information) was chosen as the evaluation index of the introduced
RN reconstruction, and the predicted elastic responses of the returned
structures were evaluated using R2. The F1 score is mainly established for
binary classification tasks with the values 1 and 0 corresponding to the best
and worst performances, respectively. The F1 score may be considered a
weighted harmonic mean of the precision and recall, where the recall and
precision are both equally essential (Equation (6)). Intuitively, precision is
the proportion of the true positive cases among those labeled as positive
by the model and recall is the proportion of the positive instances among
the total number of positive examples including

F1 =
2 × recall × precision

recall + precision
, where recall = TP

TP + FN
, precision = TP

TP + FP
(6)

where TP is true positive, FN is false negative, and FP is false positive.
Deep Learning—Size-Agnostic Model: To predict the elastic properties

of the combinatorial designs composed of RN unit cells with given dimen-

sions, a forward predictor model referred to as the “size-agnostic model”
was trained. This model aims to learn the mapping from the space of com-
binatorial designs composed of D1 ×D2 repetitions of RN unit cells (where
D1 and D2 are the number of the repetitions of a RN unit cell along direc-
tions 1 and 2, respectively, and are assumed to be an even value in the
range of (2–20)) to the space of their elastic properties (i.e., E11, E22, 𝜈12,
and 𝜈21). A binary vector representing the RN unit cells combined with
the vectors D1 and D2 were introduced to the model as inputs. The model
returned the elastic properties of the combinatorial design as its output.
Before training the model, the same hyperparameter tuning pipeline as
described above for the unit cell elastic properties model was used to op-
timize the hyperparamaters of the model (Table S11, Supporting Informa-
tion). MSE was assumed. (Equation (1)) as the loss function of the model
and used R2 (Equation (2)) and MSE (Equation (1)) for the evaluation of
the trained model.

Experiments: Six RN unit cells (Figure 1b,c) and four combinatorial
designs (Figure 3d) to be 3D printed and mechanically tested were se-
lected. The SLS method for printing these lattices using a commercially
available material (i.e., Oceanz Flexible TPU) was used. The 3D printed
specimens were attached to the testing machine using a designed pin and
gripper system which was 3D printed using a fused deposition modeling
(FDM) 3D printer (Ultimaker 2+, Geldermalsen, the Netherlands) from
polylactic acid (PLA) filaments (MakerPoint PLA, 750 gr, Natural). A me-
chanical testing machine (LLOYD instrument LR5K, load cell = 100 N)
was used to perform quasistatic uniaxial tensile tests of the 3D printed
specimens. The specimens were loaded at a rate of 0.05 mm min−1 until
the maximum strain of 5% or a load of 95 N was reached along directions
1 and 2. The stress–strain curves were then obtained based on the ap-
plied displacements and the recorded reaction forces. Stress and strain
values were calculated by dividing the force by the initial cross-section
area and dividing the crosshead displacements by the initial length of
the specimen, respectively. The overall stiffness of the specimens along
directions 1 and 2 (i.e., E11 and E22) were then calculated as the slope
of the stress–strain curves. To calculate the Poisson’s ratios (i.e., 𝜈12
and 𝜈21) of the specimens, image analysis using a custom-made MAT-
LAB code was performed. For this purpose, a digital camera was used to
capture the lateral deformations of the specimens to measure the trans-
verse strain at the different steps of the applied longitudinal displacement.
Finally, the Poisson’s ratio was calculated as 𝜈 = −𝜀trans∕𝜀axial, where
ɛtrans and ɛaxial were calculated in the same way as in the computational
models.

Full-field strain maps (first principal true strains) at a frequency of 1 Hz
using a 3D DIC system (Q-400, two cameras each with 12 MPixel, LIMESS
GmbH, Krefeld, Germany) and its associated software (Instra 4D v4.6,
Danted Dynamics A/S, Skovunde, Denmark) were obtained. To track the
internal displacements of the lattices, the specimens were painted with a
white coating followed by a black-dot speckle pattern. The overall strain of
the specimens and their Poisson’s ratios were obtained using digital ex-
tensometers integrated within the DIC software. Due to their large sizes,
the 10 × 10 unit cell specimens were not recorded with the DIC equipment
and their overall strains were calculated using the crosshead displacement
of the testing bench and their Poisson’s ratio were calculated using the
method described above.

The mechanical properties of these specimens were validated using FE
simulations with the Abaqus solver. These simulations were carried out
under the same conditions as mentioned in the previous sections. These
simulations were performed under displacement control until the final
strain of their respective experiment. An in-house made MATLAB code was
used to obtain the coefficient of determination (Ordinary R2) between the
additional experiments and their simulations. The obtained values were
R2 = 93.32% for the elastic modulus and R2 = 80.2% for the Poisson’s
ratio.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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