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ABSTRACT

Artificial Neural Networks (ANNs) are increasingly used for discrete choice analysis, being appreciated in particular for their strong predictive
power. However, many choice modellers are critical — and rightfully so — about using ANNs, for the reason that they are hard to diagnose. That is, for
analysts it is hard to see whether a trained (estimated) ANN has learned intuitively reasonable relationships, as opposed to spurious, inexplicable or
otherwise undesirable ones. As a result, choice modellers often find it difficult to trust an ANN, even if its predictive performance is strong. Inspired
by research from the field of computer vision, this paper pioneers a low-cost and easy-to-implement methodology to diagnose ANNs in the context of
choice behaviour analysis. The method involves synthesising prototypical examples after having trained the ANN. These prototypical examples
expose the fundamental relationships that the ANN has learned. These, in turn, can be evaluated by the analyst to see whether they make sense and
are desirable, or not. In this paper we show how to use such prototypical examples in the context of choice data and we discuss practical con-
siderations for successfully diagnosing ANNs. Furthermore, we cross-validate our findings using techniques from traditional discrete choice analysis.
Our results suggest that the proposed method helps build trust in well-functioning ANNSs, and is able to flag poorly trained ANNs. As such, it helps
choice modellers use ANNs for choice behaviour analysis in a more reliable and effective way.

1. Introduction

Throughout the choice modelling community there is a considerable and increasing interest in using Artificial Neural Networks
(ANNSs) to analyse and predict choice behaviour. Recently, several papers have emerged which show the added value of ANNs in a
variety of settings (Alwosheel et al., 2018; Golshani et al., 2018; Lee et al., 2018; Sifringer et al., 2018; Van Cranenburgh and
Alwosheel, 2019). This recent and rapid increase in interest can be explained by impressive achievements of ANNs in other fields, such
as speech recognition and image classification. In particular, ANNs’ flexible modelling structure and their ability to work with
abundant, complex and highly non-linear data allow them to outperform statistical models (e.g., discrete choice models), most notably
in their prediction accuracy (Hagenauer and Helbich, 2017; Karlaftis and Vlahogianni, 2011).

But, despite their often superior prediction performance, many choice modellers remain understandably critical towards ANNs. An
important reason for this relates to their proverbial ‘black box’-nature, meaning that the trained network itself is hard to interpret; this
severely limits the behavioural insights that may be drawn from them, and makes them notoriously hard to diagnose (Karlaftis and
Vlahogianni, 2011)." Regarding this latter aspect (model diagnosis), ANNs are typically validated by relying on empirical prediction
performance. For instance, a widely-used validation approach is to evaluate ANN prediction performance on out-of-sample set of data
points (Haykin, 2009). The error returned by the ANN on the out-of-sample set is an approximation of the so-called generalisation
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error, which is the key metric for assessing an ANN’s learning capability. Having a low (high) generalisation error implies that the
underlying data generating process has been well (poor) approximated (Abu-Mostafa et al., 2012; Breiman, 2001).

However, having a low generalisation error does not necessarily mean that the ANN has learned intuitively correct and desirable
relationships. Due to the complexity of the learning task, in practice it occasionally happens that ANNs learn counterintuitive,
inexplicable, or otherwise undesirable relations between variables. One evocative example in which an ANN learned undesirable
relations occurred when it was used to select candidates in a recruitment context, and produced gender bias (i.e. favouring male
candidates over female candidates) (Fernandez and Fernandez, 2019). While the ANN merely reproduced a bias that was implicitly
present in the data on which it was trained, the opaqueness of the ANN made that such undesirable relations could stay unnoticed for
a long time. Aside from this example, where an undesirable relation was learned by the ANN, in many cases a poorly trained network
may have learned spurious or inexplicable relations between input and output data. This too, would create a problem in terms of the
model’s usefulness for making predictions, and it would not always surface in a process of merely evaluation prediction performance.
In some fields trusting that the relationships between the explanatory variables and the predictions are reasonable, is more important
than in others (Shmueli, 2010). In fields like natural language processing, the difficulty of diagnosing ANNs does not seem to
substantially hinder applications; but, in the field of discrete choice behaviour analysis, having trust in the relations learned by a
choice model, even when it is only used for predictions and not for behavioural or economic analysis, is rightfully considered very
important.

Lately, the development of alternative techniques for validating and diagnosing ANNs in light of their black box-nature has been the
subject of many debate, critiques, and research efforts in a variety of contexts (Lipton, 2016). Notably, in the computer vision field
much research effort has recently been made (Montavon et al., 2018; Samek et al., 2017; Simonyan et al., 2013). A particularly
interesting and easy-to-implement method that has been proposed in that field is based on the synthesis of so-called prototypical
examples (Erhan et al., 2009; Montavon et al., 2018). By synthesising prototypical examples using the ANN (after having trained it),
the ANN exposes the fundamental relationships that it has learned. These, in turn, can be evaluated by the analyst to see if they are
intuitively correct and desirable, or not. For instance, when creating a prototypical example of a cat using an ANN that is trained to
discriminate between cats and dogs (note that this involves ‘drawing’ a cat, as opposed to selecting a cat from the training data set), we
expect to see distinguishable characteristics of cats in the prototypical example, such as whiskers. Hence, (human) interpretation of the
prototypical example allows the analyst to diagnose the rationale behind the network predictions by comparing it with his (or her)
mental image of a cat. To the best of authors’ knowledge, no study has yet pioneered the use of prototypical examples to diagnose
ANNS s used for choice behaviour analysis.

This paper pioneers the use of prototypical examples to diagnose ANNs for choice behaviour analysis. In particular, we show that
the generation and interpretation of prototypical examples is a low-cost and easy-to-implement method to validate the rationale of
ANNs for choice behaviour analysis, and as such building trust (or not) in the ANN. To this aim, we first show that the use of pro-
totypical examples for diagnosis is not confined to the domain of visual data, by re-conceptualising this notion towards one that is
applicable for choice analysis. Subsequently, we apply this method to a recently collected Revealed Preference (RP) mode choice data
set. That is, we train an ANN on these RP data and diagnose it by synthesising and interpreting prototypical examples. Finally, we cross-
validate the proposed method, by comparing the relationships that are exposed by the prototypical examples with those obtained from
traditional discrete choice models that were estimated on these same data.

Before we proceed, we would like to emphasize that this research effort does not aim to promote using ANNs for discrete choice
behaviour analysis. In our view, since the interpretability of ANNs remains limited, even after having diagnosed it with the method
proposed in this paper, the natural domain of application of ANNs is forecasting, rather than behavioural and economic analysis. This
research effort is motivated by the increasing use of ANNSs for discrete choice analysis (and prediction in particular), which in our view
presents a strong motivation to offer a low-cost and easy-to-implement method to test whether the relationships learned by an ANN in
the training process, are intuitive and desirable. Without such a diagnosis, a choice modeller remains unsure to what extent to trust the
ANN, hampering its usefulness as a tool to make predictions.

The remainder of this paper is organised as follows: Section 2 introduces the prototypical example methodology to the choice
modelling community. Section 3 provides the empirical case study. It presents the main dataset that we use for our analysis and it
discusses the training of the ANN. Section 4 presents the prototypical examples created using our trained ANN. It shows how the
methodology can be used to as a tool for diagnosing an ANN trained in the context of choice data. Section 5 provides a cross-validation
of the proposed method, using conventional discrete choice analysis techniques. Finally, Section 6 draws conclusions and presents
potential directions for future research. A first appendix presents a textbook-level introduction of how to train ANNs. The second
appendix provides an additional case study, in which we show how the proposed prototyping method can be used to flag a poorly
trained ANN.

2. Methodology
2.1. Model interpretability and diagnosis

Opening the black-box of ANNs has received much attention in a variety of fields. In the literature, several meanings have been
attached to the effort of opening an ANN’s black-box such as enhancing interpretability, explainability or understandability (Lipton,
2016). In this study, we use the term diagnosis which is closely related to the notion of interpretability; this latter concept is defined as
the mapping of an abstract concept (e.g., a predicted mode choice) into a domain that the human can make sense of (Montavon et al.,
2018). We consider the process of diagnosing an ANN to consist of the effort to test to what extent the ANN has learned intuitive and
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desirable relations and hence can be trusted?; this is done by interpreting a set of synthesised examples (see further below), although it
should be noticed here, that a full interpretation of the ANN is not the aim here.

Nonetheless, movement towards interpretable ANNs has created important tools that may (also) be used to diagnose ANNs (Ribeiro
et al., 2016; Samek et al., 2017). This interpretability movement can be classified into ante-hoc and post-hoc approaches. In ante-hoc
approaches interpretability is incorporated (‘hard-wired’) in the model structure. This approach entails designing a model such that its
parameters and predictions can be interpreted by the analyst in a meaningful way. For choice modellers this approach is familiar, as the
high level of interpretability of discrete choice models can be considered a result of imposing a strong structure as an ante-hoc
approach. In other words, choice modellers routinely embed domain knowledge (e.g., theories on choice behaviour) into the
model’s structure. As a result, the parameters of, for instance, the widely used linear-additive Random Utility Maximisation (RUM)
model (McFadden, 1973) can readily be interpreted as marginal utilities.

In post-hoc approaches interpretability comes after having trained a model (Montavon et al., 2018). Post-hoc methods provide bits
of interpretation without elucidating or enforcing how the complete model works in full detail. Rather, they take a trained model and
generate either a local (i.e., interpretation of a particular prediction) or a global interpretation of the model. Some post-hoc approaches
have recently been applied to ANNs used in the choice modelling literature. Chiang et al. (2006) and Hagenauer and Helbich (2017)
conduct sensitivity analysis to measure the importance of input variables for different types of trained ANNs. Golshani et al. (2018)
implemented Garson’s algorithm (Garson, 1991), which aims to determine the relative importance of input attributes, for explaining
the ANN’s predictions. Note that a recent study highlights the drawbacks of using sensitivity analysis for interpretability (Samek et al.,
2017).

2.2. Synthesising prototypical examples for diagnosing an ANN

Synthesising prototypical examples is another post-hoc approach to provide interpretation to ANNSs. It has been proposed in the
computer vision field, where it is difficult to understand exactly how a trained ANN functions due to the large number of interacting
and non-linear parts (e.g., an ANN called AlexNet consists of over 60 million parameters) (Krizhevsky et al., 2012). Synthesising
prototypical examples is considered a low-cost method to uncover a sample of the learned patterns in images (Erhan et al., 2009;
Simonyan et al., 2013). The idea of this approach is that by synthesising prototypical examples using a trained ANN (note this means
drawing an image, not selecting one from a data set), these prototypes expose fundamental relationships that the trained ANN has
learned. As such, the analyst can assess the synthetically generated prototypes to see if they make sense, e.g. contain the expected
characteristics. Hence, prototypical examples allow the analyst to diagnose part of the rationale behind the network predictions and
build trust on the predictions by comparing it with his or her own mental map. Note that because the set of generated prototypical
examples is generally small compared to the number of relations learned by the network, it is not able to generate a complete
interpretation of the ANN; nonetheless, its use for diagnosing and building trust in ANNSs is well established in the field of computer
vision.

2.2.1. Activation maximisation

To synthesise prototypes, a technique called activation maximisation is used. This technique searches for the input that maximises
the probability of a particular output label (e.g. a cat or a dog). The inputs that maximise the probability of a certain output label are
called ‘prototypical examples’; these examples, in the context of image classification, are synthetic drawings of a dog or a cat, rather
than a particular image of a dog or a cat selected from the input data. The process of maximising the activation is much akin to the
process of training an ANN (a detailed description of this process is presented in the Appendix for interested readers). In the context of
choice data, the set of observations is given by S = ((x1,y1), (X2,¥2) -, (Xn,¥n),---» (Xn,¥n))- Each nth observation s, contains a vector of
independent variables x, that represent the attributes of alternatives, socio-demographics, and possibly other covariates, and a K-
dimensional vector of dependent variables y, that represent the observed choice (i.e., zeros for non-chosen alternatives, and a one for
the chosen alternative); K being the size of the choice set. The ANN training process aims to find the optimum weight parameters w
such that the error function (which depends on the observations’ variables x and y) is minimised.

To maximise the activation within a trained ANN, we aim to find input values (i.e., the prototype) x" such that the activation of a
particular output neuron (i.e., the choice probability P; for alternative i) is maximised (equation (1))

x = argmax(P;(w,x) — AX') (¢))

where A represents the regularisation term.>

Like the process of training an ANN, the process of finding x" is iterative. At the beginning, the x values are initialised (either
randomly or from some predefined point). Then, at each iteration step, P is increased by changing the x (note that the weights w are
kept fixed during this process). A gradient ascent approach can be used for this purpose (Erhan et al., 2009). This process is repeated
until a pre-specified stopping criterion is achieved. Note that equation (1) is non-convex, meaning that there are many local maxima in
the search space. As such, it is possible to obtain several solutions, meaning that a single ANN can generate many different prototypical
examples.

2 Note that a growing body of literature studies what constitutes a trustworthy model (Kulesza et al., 2015; Lipton, 2016; Miller, 2017).
3 Regularisation is a frequently used method in machine learning to avoid overfitting by penalising the size the models flexibility (Bishop, 2006).
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Fig. 1. Left: Actual dumbbell. Right: Four prototypical examples dumbbells (Mordvintsev et al., 2015).

In case x is randomly initialised, the gradient ascent process usually is able to produce many prototypical examples. However,
previous studies have shown that many of them can be useless, in the sense that they do not resemble meaningful inputs x (e.g. because
they take extreme and unrealistic values (Nguyen et al., 2015)). To overcome this problem, the optimisation process can be constrained
to only generate examples that resemble realistic inputs (Nguyen et al., 2016a). In particular, two controlling factors can be applied:
First, instead of randomly initialising x values (as was initially proposed by Erhan et al. (2009)), x can be initialised based on the mean
and variance of the attributes levels as they appear in the original data (Nguyen et al., 2016b). This is found to substantially improve
the quality of the synthesised prototypes. Second, x values can be constrained to be within the range of the original data. In the field of
image processing this practice is widely used (called clipping, see Yosinski et al. (2015) for example). A pseudocode of the activation
maximisation method can be found below.

Pseudocode: Activation Maximisation Method

Step 1 Initialisation
Set x values (according to the selected initialisation method)
Step 2 Forward propagation
Propagate the input neuron values x to output neuron through hidden neurons
Calculate the ANN output neuron values (ANN probabilities)
Step 3 Backward propagation
Calculate the gradient for the network input neurons
Update x values (within the range of the original data)
Go back to step 2 and repeat the process until the selected criterion is satisfied

2.3. Prototypical examples - a computer vision illustration

To further clarify the method, in this subsection we provide an illustration of how prototypical examples are used in the computer
vision field. An illustration from the computer vision field is taken for two reasons: 1) many of the recent advancements in ANN
research have taken place in this field; 2) visual examples are particularly effective in illustrating how the method works. The
particular example is taken from Mordvintsev et al. (2015). Mordvintsev et al. (2015) use an ANN to discriminate between several
output classes, including a dumbbell (weight) class. To train this ANN, they presented the ANN with many images, including many
images of dumbbells. To check whether the trained network has learned the relevant features of dumbbells (e.g., a dumbbell has a bar
and weight plates) and ignores unrelated ones (e.g., weight plates can be of various shapes), prototypes of dumbbells were synthesised.

Fig. 1 shows four different prototypical examples of dumbbells generated by the trained ANN. From Fig. 1 we can make a number of
observations. First we notice that the four prototypes are not the same. But it is clear that they all present patterns that, once inter-
preted, can be recognised by the human analyst as dumbbells. Second, the prototypes always show a part of a muscular weightlifter’s
arm. Depending on the analyst expectations,” this may either indicate that the trained network has failed to completely learn the
features of a dumbbell (as it is mixed with the arm of a muscular weightlifter). Hence, the predictions of the trained network may not be
fully trusted, as the trained ANN may confuse muscular weightlifter images with dumbbell images. A possible source of this ‘failure’ is
that the examples used for training contain dumbbells and arms holding them. Most importantly for the purpose of our paper, this
example illustrates that prototypical examples can be used to diagnose the rationale of a trained ANN.

3. Data and ANN training
3.1. Data preparation
For this study, we use revealed preference (RP) data from a study conducted for travel mode choice analysis in London city (Hillel
4 Analysts may have different beliefs and expectations. For example, some would expect (and accept) that the muscular weightlifter appears in

dumbbells prototypes, whereas others may not. Most importantly, the synthesised prototypes can be used to reveal these relations learned by the
ANN (either expected or not), and as such help the analyst to determine whether or not an analyst will trust the ANN.
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Table 1
Data statistics.
No.  Attribute  Description Type Range [min, Mean and standard
max] deviation
1 TCprive Estimated cost of driving route, including fuel cost and congestion charge Float (£) [0.05, 17.16] (1.91, 3.48)
2 TCpuprr Estimated cost of public transport route, accounting for rail and bus fare types Float (£) [0, 13.49] (1.56, 1.55)
3 TTprive Predicted duration of driving route Float [0.03, 2.06] (0.29, 0.25)
(hours)
4 TTpurr Predicted duration of public transportation Float [0.03, 2.73] (0.47, 0.31)
(hours)
5 TTwak Predicted total duration of walking times for interchanges on public transportroute  Float [0.04, 9.27] (1.15,1.13)
(hours)
6 DIS Straight line distance between origin and destination Integer [96, 40941] (4690, 4827)
(meters)
TRAF Predicted traffic variability on driving route Float [0, 1] (0.34, 0.20)
INTER Number of interchanges on public transport route from directions API Integer [0, 4] (0.38, 0.62)
9 DL Boolean identifier of a person making trip: 1 if person has driving license, Bool [0, 1] (0.62, 0.49)
0 otherwise
10 Cco Car ownership of household person belongs to: no cars in household (0), less than Integer [0, 2] (0.99, 0.75)
one car per adult (1), one or more cars per adult (2)
11 BS Bus fare scale of person making trip imputed from socio-economic data: 0 (free bus Float [0, 1] (0.64, 0.47)
journeys), 0.5 (half price), 1 (full price)
12 FEM Boolean identifier of a person making trip: 1 if female, 0 otherwise Bool [0, 1] (0.53, 0.49)
13 AG Age of person making trip Integer [5, 99] (39.5,19.3)
(years)

et al., 2018).,°° The chosen dataset contains four alternatives and a total of 27 features (i.e., attributes of alternatives and charac-
teristics of decision makers). To prepare these data for our study, we took a number of steps. First, we removed features that were
deemed redundant and merged them with others. For instance, rather than using three features to represent car cost (fuel, congestion,
and total cost), we merged them into one total cost feature. Table 1 presents statistics on the attribute levels in the data set used for
analysis. Second, we noticed that the data set was highly imbalanced in terms of chosen mode distribution: walking (17.6%), cycling
(3.0%), public transport (35.3%) and driving (44.2%). Such imbalances could potentially be problematic for training ANNs (Haykin,
2009). In light of the aim of this paper (which does not focus on finding the best predictions of travel behaviour, but rather on testing a
method to diagnose the ANN), we deemed dealing with this sort of data imbalances out of scope. Therefore, we ‘repaired’ this data
imbalance by removing the cycling alternative from the data set. However, we consider exploring the use of prototypical examples in
the context of imbalanced data sets an interesting avenue for further research. Third, we excluded very short trips (i.e., less than two
minutes), as these were deemed not to contain a mode trade-off. The resulting dataset that is used for this study consist of 77,638 mode
choice observations.

3.2. ANN development and training

The ANN is implemented in the Python environment using the open source deep learning library Keras (Chollet, 2015).” To train
the ANN, the built-in training algorithm (which is used to update weights’ values w) known as Adam is used (Kingma and Ba, 2014).%
Prior to training the ANN, the data are normalised to reduce training time and minimise the probability of ending-up with suboptimal
solutions.’ A conventional three layers (input, output and one hidden layer) fully connected ANN structure is used (the used ANN has
M = 173; M being the number of adjustable parameters).'° To test the performance of the ANN to predict the travel mode choice, we
conducted a so-called k-fold cross-validation method, with k = 5. The dataset is partitioned into five equally sized folds of (roughly) 15,
528 observations. Then, a single fold is used for testing, while the remaining four folds are used for training. This process is repeated 5

5 The dataset and its description are available online, and can be downloaded from the first author profile at researchgate.net.

% In addition, we use the well-known stated preference Swiss Metro data, as a second case study, to take a first step towards testing the general
applicability of the proposed method. To avoid repetition in the main text, we present this second case study in Appendix 2.

7 Code is available upon request from the first author.

8 Note that the used training algorithm is more sophisticated than the described training process at the Appendix (i.e., the Adam algorithm
implements a version of stochastic gradient descent), but both are based on a backpropagation training mechanism.

9 Data normalisation is common practice for ANN training. In this study, the minimum and maximum values of data are normalised to —1 to +1.
19 ANN complexity is adjusted using a cross validation approach (see (Alwosheel et al., 2018) for more details). To avoid overfitting, a commonly
used rule-of-thumb in ANNS is that the sample size needs to be (at least) 10 times larger than the number of adjustable parameters in the network
(Haykin, 2009). A recent study specifically dealing with sample size requirements for using ANNs in the context of choice models is more con-
servative, and recommends to use a sample size of (at least) 50 times the number of estimable weights (Alwosheel et al., 2018). Our sample size
satisfies this condition and, therefore, we safely avoid overfitting issues.


http://researchgate.net

A. Alwosheel et al. Journal of Choice Modelling 33 (2019) 100186

Table 2
Performance of the trained ANN.
Performance metric Function Null model ANN Linear-additive RUM
Final Log-likelihood N K —86,625 —43,477 —-50,704
21 kZ Yak In(Prk)
n=1k=1
Cross-entropy 1 MK -1.09 —0.56 —0.65
N DD vk In(Pu)
=1 =1
P ) 0 0.50 0.42

times, where each of the five folds is used only once for testing.

Table 2 shows several performance metrics for the trained ANN. The reported performance metrics are averaged across the five
folds. It shows that ANN achieves a fair prediction performance. For comparison, we also report the performance of a standard linear-
additive RUM-MNL model.!! As expected based on previous literature, the ANN outperforms the discrete choice model by a large
margin. Table 3 shows the k-folds confusion matrix for the trained ANN. To construct the confusion matrix each observation is assigned
to an alternative based on the highest probability as predicted by the ANN. Then, each prediction is compared to the true chosen
alternative. The cells on the diagonal show the mean percentage of the observations that are correctly assigned, across the 5 folds.
Additionally, the values between parentheses show the average ANN probabilities of the observations that are correctly classified. The
off-diagonal cells show the mean percentage of observations that are misclassified, across the 5 folds. Values between parentheses
show the average ANN probabilities of these observations. Table 3 shows that the ANN predicts driving choices quite well, while it has
some more difficulty with accurately predicting choices for walking and public transport. However, it should be noticed that there can
be different degrees of randomness associated with choices for different modes. Hence, it could be the case that it is inherently more
difficult to accurately predict choices for public transport than for driving. Another possible explanation could be related to imbalances
in the training data (i.e., the driving alternative has 45% share of the data, as mentioned above). It is well known, that under-
representation of particular choice alternatives (‘output labels’ in machine learning parlance) can undermine the reliability of a
trained ANN model. Dealing with such problems is beyond the interest of this work, but a plethora of methods and approaches are
developed to combat these issues. For example, a commonly used approach is to synthesise more observations of the under-represented
alternative (see e.g. Chawla et al. (2002)). Another approach is based on penalising the ANN when it makes classification mistakes
concerning under-represented alternatives. For further discussions on these methods, interested readers are referred to e.g., He and
Garcia (2008) and Batista et al. (2004).

4. Results: prototypical examples

Now that we know that, as expected, the ANN greatly outperforms a conventional discrete choice model in terms of predictive
power, the big question becomes: can we trust that the predictive power of ANN is based on intuitive, explicable and desirable relations
between in- and output variables which the network has learned (or not)? Such a conclusion cannot be drawn by simply inspecting
prediction outcomes such as the ones presented above; and this is where the proposed method of creating prototypical examples comes
in. Using the techniques described in Section 2, we let the trained ANN create typical examples of a choice for a car (driver), for public
transport, and for walking. Inspecting of these synthetic examples allows us to determine to what extent we can trust the ANN. Table 4
shows, for each alternative (driving, public transport, walking), five prototypical examples created by the trained ANN. Note that each
example is independently synthesised. That is, the initial inputs are independently initialised. To facilitate inspection, we employ a so-
called vertical heat-map, where high values are depicted red and low values are depicted blue. For example, the red colour at the last
attribute ‘age’ (AG) indicates high values (between 50 and 53), while blue indicates low values.

A number of inferences can be made based on Table 4. First, we use the examples to diagnose whether our ANN has learned
intuitively correct relationships, as opposed to spurious or otherwise undesirable ones. For instance, Table 4 shows that prototypical
examples in which a travel mode is chosen are associated with relatively low travel times for that mode (columns 3 to 5). For instance,
in the prototypical examples of a choice to drive, driving has the lowest travel time of available modes. Likewise, we see that a
prototypical choice to drive is associated with a high number of interchanges for the public transport alternative (column 8), a high
number of owned cars (column 10) and a low variability in traffic conditions (column 7). Furthermore, the prototypical case in which
walking is chosen is associated with a relatively low distance to the destination. All these results are all in line with expectations.
Second, the synthesised prototypes resemble realistic relations. For instance, distances for driving prototypes are between 13 and
16 km, while they are around 200 m for walking prototypes. Furthermore, a prototypical driving trip takes about 15 min (0.25 h), and a
prototypical walking trip takes less than five minutes. Third, it should be noted that the prototypes may also show some unexpected
patterns. For example, prototypes for driving are expected to show that a person has a driving license, but they do not. Instead,
prototypes for public transport are associated with high driving license ownership. Although this is not as expected, finding such

11 Note that the k-fold method is not used for the RUM model. Rather, the RUM model is estimated one time using the whole dataset.
12 For optimal reading, this table is best shown in screen and coloured printing.
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Table 3
Confusion matrix.
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ANN Classification

Driving Public Transport Walking >
True chosen alternative Driving 83.45 (0.68) 10.85 (0.20) 5.68 (0.12) 100% (1)
Public Transport 21.6 (0.23) 71.52 (0.67) 6.7 (0.10) 100% (1)
Walking 21.2(0.24) 9.5 (0.20) 69.3 (0.56) 100% (1)
Table 4
Synthesised prototypical examples. See Table 1 for description of the attributes.'?
Attribute No. 1 2 3 4 5 6 7 8 10 11 12 13
Travel Cost Travel time Trip characteristics Traveller characteritics
fCorie  Teram  [TToo  Tlaan  Thea DIS _ TRAF _INTER BS FEM AG

Public Tran Ex. 1 X
Ex2 920 776 16756 050 [oa6 |
Ex3 | 947 | 760 16365 053 050 a8
Ex 4 9.13 17001
Ex 5 901 17081
Walking  Ex 1 8.40
Ex2 879
Ex 3 836
Ex 4 841
Ex 5 8.6

relations can be useful for understanding the data and the model. For instance, they could indicate that an attribute is not relevant for
explaining predictions, or could point towards issues related to the data itself. For example, after seeing this result, we found that the
driving alternative also includes car passenger, taxi, van and motor bike (see Hillel et al. (2018) for more information). This could
explain why prototypical examples for driving alternative do not associate with driving license ownership.

Finally, as alluded to in section 2.2.1 for this method setting A to an appropriate value is needed. In particular, we find that in case 4
is set too small the regularisation term will have little effect. As a result, the generated prototypical examples may have extreme
attribute levels, while in case 4 is set too large the prototypical examples will contain only noise. In this study, we have tested numerous
values for As and found 1 = 0.005 to work best (in the sense that it resulted in the generation of prototypes that are meaningful, i.e.
from the perspective of the analyst). This result is in line with work conducted in computer vision, where also 4 = 0.005 is found to
work well, see e.g. Nguyen et al. (2016a).' As such, we recommend using this value in future work.

5. Cross-validation using discrete choice models

This section cross-validates the results and interpretations presented in section 4. To do so, we compare our findings with results
obtained from a traditional linear-additive RUM-MNL discrete choice model. More specifically, we use this estimated conventional
discrete choice model for two purposes: First, to inspect whether the synthesised prototypical examples would also be considered
realistic prototypes from the discrete choice model’s perspective. In other words, do the prototypical examples obtain high prediction
probabilities when fed into the choice model? Second, we use this choice model to put the derived interpretations (in section 4) to the
test. Since the estimates of discrete choice models allow for straightforward inference of the importance of attributes, we can use them
as a test to check the interpretations on attribute importance derived from the synthesised prototypes. It is very important to note here,
that we do not aim to compare the trained ANN and the estimated discrete choice model (DCM) in terms of their interpretability;
clearly, the DCM beats the ANN in this regard, given its strong and behaviourally intuitive model structure which facilitates rigorous
behavioural and economic interpretation. Our aim is different: given the strong predictive power of the ANN (compared to DCM), we
use prototypical examples to diagnose and build trust in the model (which is a more modest aim than achieving a full interpretation); in
this section we validate our diagnosis method by checking whether the generated prototypical examples are congruent with the

13 Also note that we use the same regularisation value for the additional case study we show in Appendix 2.
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Table 5

Estimation results of RUM-MNL model.”
No. of observations 77,638
Final LL —50,704.14
p? 0.42
Attribute Est. Rob. t-values Part-worth utility
ASC_Drive 0 fixed
ASC_PubTr 1.85 59.57
ASC_Walk 2.62 73.91
TT —6.11 —95.48 4.30
TC —0.121 —7.94 0.27
DL 0.994 44.23 0.994
BS —0.112 —4.73 0.112
co 1.39 90.38 2.78
INTER 0.767 38.02 0.767
TRAF -2.77 —43.00 1.04
AG_TC —0.121 —3.92 0.09
DIS_TC 0.00840 9.75 0.12
FEM_TC —0.0348 —4.08 0.05

estimated DCM, whose model structure we trust a priori.

Table 5 shows the estimation results of the DCM alongside the implied part-worth utilities.'* As can be seen, and as is expected, all
parameters have the intuitively correct sign and are highly significantly different from zero (see Appendix 3 for the model specifi-
cations). More interestingly, Table 6 shows that the prototypes created by the ANN can also be considered prototypes from the discrete
choice model’s perspective. That is, we see that the all prototypes yield very high choice probabilities from the estimated choice
model’s perspective. This result validates the synthesised examples. Furthermore, Table 5 confirms the interpretations derived in
section 4 regarding attribute importance. Specifically, both the prototypes and the part-worth utilities indicate that travel time is a
highly important factor the mode choice (i.e., prototypical examples are always associated with the lowest travel time). Additionally,
the importance of car ownership and light traffic conditions for the driving alternative are cross-validated by respectively the 2nd and
3rd largest associated part-worth utilities.

6. Conclusions and recommendations

This study contributes to the growing literature which focuses on using machine learning techniques for choice behaviour analysis,
by pioneering a post-hoc methodology for diagnosing trained ANNs (in the context of choice behaviour analysis). We show how the
proposed methodology can be easily applied at low cost to build trust in an ANN which was trained to predict (mode) choice behaviour.
Based on our encouraging results, we believe that the proposed methodology provides a valuable tool for discrete choice modellers. It
is however crucial to mention once more that the proposed method does not entirely open-up the black box of an ANN. As such, in our
view of the most natural domain of application of ANNS still lies in forecasting tasks, as opposed to behavioural or economic analysis;
our prototypical examples method helps the analyst to determine whether or not to trust predictions made by the trained ANN.

We would like to point out several limitations to this study, providing avenues for future research. Firstly, to avoid synthesising
unrealistic prototypical examples, in our study the prototypical examples are randomly initialised according to a pre-defined distri-
bution (normal distribution). In future research, a more accurate initialisation process can be employed. In particular, incorporating
generative models (e.g., generative adversarial network as proposed in Goodfellow et al. (2014)) in the initialisation process may
produce more reliable prototypes. Secondly, the empirical analyses provided in this paper are based on two datasets (one of which is
presented in Appendix 2). It is advisable to repeat these type of analyses using more datasets having different characteristics, e.g. many
attributes, more alternatives, data imbalances, etc.. This will provide a richer view on the extent to which the proposed ‘prototypical
examples’ methodology is a valuable tool to diagnose trained ANNs more generally. Lastly, the method is based on an inherently
subjective process on the side of the analyst, when deriving interpretations from synthesised prototypes; that is, the analyst ultimately
decided to what extent the generated examples match his or her expectations regarding the phenomenon being modelled (e.g. mode
choices). Although we believe that this is certainly not a disadvantage per se, it is worthwhile to develop more objective methods or
guidelines to extract and interpret prototypes. This will improve the rigour of this method and ultimately will help analysts to better
understand the potential and limitations of using ANNs for discrete choice analysis.

14 To calculate the part-worth utility the attribute level range is multiplied by parameter estimation. However, since we work with RP data here we
use the 20-80 percentile range (as opposed to the full range). For example, consider an attribute A that consists of uniformly distributed values
between 0 and 100. From that, we get the 20-80 percentile range (60 in this case) and multiply it by the parameter estimate.

15 Note that the model is estimated using the whole dataset (k-folds method is not used in this case).
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Table 6
Choice probabilities for prototypical examples, based on discrete choice model.
Alternatives Examples No. Pprive Pruprr Py
Alt. 1: Driving Example 1 0.9999 0.0000 0.0000
Example 2 0.9999 0.0000 0.0000
Example 3 0.9999 0.0000 0.0000
Example 4 0.9999 0.0000 0.0000
Example 5 0.9999 0.0000 0.0000
Alt. 2: Public Transport Example 1 0.0025 0.9974 0.0000
Example 2 0.0027 0.9972 0.0000
Example 3 0.0027 0.9972 0.0000
Example 4 0.0030 0.9969 0.0000
Example 5 0.0032 0.9967 0.0000
Alt. 3: Walking Example 1 0.0010 0.0000 0.9989
Example 2 0.0009 0.0000 0.9990
Example 3 0.0010 0.0000 0.9988
Example 4 0.0010 0.0000 0.9988
Example 5 0.0010 0.0000 0.9989

Statement of contribution

Artificial Neural Networks (ANNs) are increasingly being used to analyse choice behaviour. They usually outperform their theory-
driven counterparts, i.e. traditional discrete choice models, in terms of prediction performance. Nonetheless, many choice modellers
are reluctant to use ANNs for choice behaviour analysis. An important reason for this is that ANNs are hard to diagnose (black-box
issue). That is, for analysts it is hard to see whether an ANN has learned intuitively correct relationships, as opposed to spurious or
otherwise undesirable ones. This paper is the first to investigate the ANN black-box issue in the context of choice behaviour analysis.

It contributes to the literature by pioneering a methodology that can be used to diagnose the rationale behind the predictions of
ANNSs in the context of choice behaviour analysis. It does so by re-conceptualising a method that has been proposed in the computer
vision context toward one that is applicable for choice analysis. The method is based on the creation of so-called prototypical examples.
By letting a trained ANN synthesise prototypical examples, the ANN reveals the fundamental relationships that it has learned. These, in
turn, can be assessed by the analyst to derive interpretations regarding the rationale of the trained ANN.

Based on the encouraging interpretations we have obtained, we believe that the proposed methodology provides a valuable tool for
discrete choice modellers, as it allows for a test of trustworthiness of the otherwise black box ANN.
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Appedix 1. Training of ANNs

ANNS s are biologically inspired systems that have proven to be a powerful technique for machine learning. They are well-known for
being highly effective in solving complex classification and regression problems (Haykin, 2009). ANNSs consist of highly interconnected
processing elements, called neurons, which communicate together to perform a learning task, such as classification, based on a set of
observations. There are three types of neurons: input neurons, hidden neurons, and output neurons. Input neurons represent the in-
dependent variables. In the context of choice modelling, these are the alternatives’ attributes, characteristics of decision-makers, and
contextual factors. Qutput neurons contain the dependent variables. In a discrete choice context, these are the choice probabilities for
each alternative. Neurons in-between are called hidden neurons because their inputs and outputs are connected to other neurons and
are therefore ‘invisible’ to the analyst.

Each neuron in the network (except input neurons) receives inputs multiplied by estimable parameters known as weights (w;). The
weighted inputs are accumulated and added to a constant (called bias) to form a single input for a pre-defined processing function
known as activation function. The bias has the effect of increasing or decreasing the net input of the activation function by a constant
value, which increases the ANNs flexibility (Haykin, 2009). The activation function generates one output that is fanned out to other
neurons. Commonly used activation functions are tan-sigmoid, softmax and step function.

In this work, we use the widely implemented ANN structure that consists of layers of neurons connected successively, known as
multilayer perceptron (MLP) structure. Three elements need to be defined for MLP structure: activation functions, number of layers,
and number of neurons at each layer. These three elements are set according to the desired objective of the modelling effort. For
example, adding more layers or more hidden neurons increase the complexity of the network. In this paper, we use the so-called
shallow version of ANN (i.e., an ANN with input layer, output layer, and one hidden layer). The complexity of which is adjusted by
modifying the number of hidden neurons (we found that 20 hidden neurons provides satisfactory performance). The activation
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functions employed in this paper are tang-sigmoid softmax function for hidden and output neurons, respectively.

Once these three elements are defined, the training process that aims to find the model’s parameter (w) is implemented. The choice
data that we use for training consist of set of observation observations S = ((x1,y1),(X2,¥2);---; (Xn,:¥n),---»(Xn,¥n)). Each nth observation
s, contains a vector of independent variables x,, that represent the attributes and a K-dimensional vector of dependent variables y,, that
represent the observed choice (i.e., zeros for the non-chosen alternatives, and a one for the chosen alternative); K being the size of the
choice set. Since choices are mutually exclusive (i.e., only one alternative can be chosen from the choice set), from a machine learning
perspective this is considered a classification problem.

The central goal of training is to model the underlying data generating process (DGP) that has led to the current set of observations,
so that the best possible prediction for future observation is achieved (Bishop, 1995). While to estimate the parameter of a choice
model the likelihood function is maximised, for ANN training an equivalent so-called error function J(w) is minimised. We define w as a
vector that contains the ANN estimable parameters w. Assuming the data consist of N choice observations across K alternatives, the
error function is defined as follows:

J(w)= =0 v In(Pu) (A1)

1 1

K
n k=

Where y, is an indicator which denotes whether alternative k is chosen in observation n, and Py is the choice probability predicted by
the ANN, which is a function of w and x. By training the ANN, the analyst’s objective is to find the weight vector w such that J(w) is
minimised. This process can be described as follows:
w’ =argmin J(w) (A2)
w

The process of finding optimum weights (w") is conducted in successive steps. At each step, J(w) is decreased by adjusting the
parameters in w. The well-known gradient descent approach is the widely applied algorithm for this purpose.'® In short, this process of
training an ANN can be described as follows: first, the weights’ values w are randomly initialised. The input neurons’ values (taken
from the training data) are propagated to the output layer through the hidden layer, this process is called forward propagation. Then,
the output neurons’ values (i.e., choice probabilities) are compared with the observed choices to compute the function J(w) described
in Equation (A1). The optimisation mechanism is then conducted by propagating J backward to the input layers through the hidden
layer. To adjust the weights, the backward propagation process includes taking the partial derivative of the error J with respect to the
weights, called the gradient vector g. Along with an adaptive or predefined learning rate value, w values are re-adjusted.

The process of error (forward and backward) propagation is repeated iteratively until a pre-specified stopping criterion is achieved.
This training mechanism is known as back-propagation, and constitutes the most popular approach to train neural networks
(Rumelhart et al., 1988). However, it should be noted that moving toward a local minimum is one of the widely reported risks
associated with this back-propagation approach (Iyer and Rhinehart, 1999; Park et al., 1996). As such, it is always recommended to
train the network more than once to minimise the probability of ending up with a sub-optimal trained network. A pseudocode of the
ANN training can be found below, and for comprehensive description of ANNs training interested readers are referred to Bishop
(2006).

Appedix 2. Results of Swiss Metro data

This section presents the outcome of applying the proposed approach on the Swiss Metro data (Bierlaire et al., 2001). The data are
pre-processed such that only travel time and cost attributes are considered.'” We used the processed data to train a three-layers fully
connected network (see Alwosheel et al. (2018) for ANN complexity adjustment for Swiss Metro data). Note that the training process is
similar to the process conducted in section 3 (e.g., same training built-in algorithm, and the k-folds cross-validation method).

Table A1
Performance of the trained ANN

Performance metric Null model ANN Linear-additive RUM
Final Log-likelihood —9849.2 —6485.9 —6714.54
Cross-entropy -1.09 —0.70 —0.75

2 0 0.36 0.32

Table A2 shows, for each alternative (car, Swiss Metro, train), five prototypical examples synthesised using the trained ANN. Note
that each example is independently synthesised (i.e., the initial inputs are independently initialised). To facilitate inspection, we
employ a so-called vertical heat-map, where high values are depicted red and low values are depicted blue.

16 Note that in case of training deeper or more complex ANNS, sophisticated algorithms inspired form the gradient descent (e.g., stochastic gradient
descent) are used.
17 The minimum and maximum values of data are normalised to —1 and +1.

10
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Table A2
Synthesised prototypical examples

Train

SM

A number of inferences can be made based on Table A2. First, although each example is independently initialised, the synthesised
prototypes for each alternative are almost identical, implying that the ANN has less flexibility due to using only two attributes. Second,
the synthesised examples show that the ANN has learned the expected relations. For example, the prototypical examples in which a
travel mode is chosen are associated with relatively low travel cost for that mode.

The prototypes shown in Table A2 are cross-validated using the standard linear-additive RUM-MNL (estimation results of RUM-
MNL model are shown at Table A3). We use this estimated choice model to inspect whether the synthesised prototypical examples
would also be considered prototypical examples from the choice model’s perspective. As expected, the estimated choice model returns
very high choice probabilities for all prototypes (resulted probabilities are similar to the results reported at Table 6).

Table A3
Estimation results of RUM-MNL model
No. of observations 9036
Final LL —6714.54
p? 0.32
Attribute Est. Rob. t-values
TT —2.01 —55.7
TC —1.03 —24.79

Finally, we use the Swiss Metro data to show how the proposed method can be used to detect or flag a (deliberately) poorly trained
ANN. More specifically, we would like to present a situation where the synthesised prototypes show patterns that are unexpected by
the analyst, signalling problems with the trained ANN. To do so, we deliberately train a far too complex ANN that consists of two
hidden layers (with 500 nodes each). The complexity of this ANN is much higher than the complexity of the problem at hand, which
results in a poor model that fails to approximate the underlying data generating process (Vapnik, 2013). For this network, we did not
apply the k-folds cross-validation method (the data are randomly separated into two parts: 80% of the data is used for training and the
remaining 20% is used for testing). The performance of the trained ANN on training and testing data is presented at Table A4. Results
show that the trained ANN obtained excellent prediction performance in the training data but very poor performance in the testing
data. This result in itself already signals a so-called overfitting problem, which occurs when the ANN is excessively complex comparing
to the underlying data generating process. The excellent performance in the training data is obtained because the ANN complexity
allows for fitting the training data perfectly (i.e., including noise artefacts). We choose to apply an overfitting scenario because it is a
common mistake due to the ANN capability and flexibility (Abu-Mostafa et al., 2012), although clearly for this extreme overfitting
situation, inspection of conventional performance metrics would already suggest to the analyst that something is wrong with the ANN.

11



A. Alwosheel et al. Journal of Choice Modelling 33 (2019) 100186

Table A4
Performance of the trained ANN (with two hidden layers)

Performance metric Training data Testing data
Cross-entropy -0.14 —2.09
Hit-rate 0.94 0.63

Table A5 shows, for each alternative (car, Swiss metro, train), five prototypical examples synthesised using the trained ANN. Note
that each example is independently synthesised (i.e., the initial inputs are independently initialised). To facilitate inspection, we
employ a so-called vertical heat-map, where high values are depicted red and low values are depicted blue.

Table A5
Synthesised prototypical examples.
Travel Cost (CHF) Travel Time (min)
Car SM Train Car SM Train
Ex. 1 86.90 1069.96 463.03 145.21 85.86 162.74
Ex. 2 86.58 | 1627 142.81 101.38 179.01
Train Ex. 3 85.85 812.39 377.17 142.95 86.94 176.58
Ex. 4 81.63 1195.12 387.19 14657 [L67147 " 24698
Ex. 5 85.85 812.40 377.17 142.95 86.94 176.58
.1 82.70 154.68 118.15 194.99
.2 103.07 143.56 90.65 152.66
SM .3 98.20 190.21
.4 90.07 170.77
.5 90.07 170.77
.1 92.04 173.51
.2 92.04 173.51
Car .3 92.05 173.51
.4 92.03 173.51
.5 107.10

The prototypes shown at Table A5 clearly reveal that the ANN has not really learned the expected patterns. For example,
considering the first train prototype, the car alternative is actually more attractive than the train alternative (cheaper and faster). This
pattern is not expected by travel behaviour analyst. Therefore, the network in this case cannot be trusted.

Appedix 3. Specifications of the linear-additive random utility maximisation model

Table A1 shows the observed utility function for the linear-additive random utility maximisation (RUM) model used in this study
(see Table 1 for attributes’ name, notation, and description). The model is estimated in Multinomial Logit (MNL) form.
Table A1l: Utility function specifications

VDrive :ASCDn've + ﬁﬂTTDrive + /}TCTCDrive + ﬂAG,TC (AG * TCDrive) + /),DIS,TC (DIS * TCDrive) + /}FEM,TC (FEM * TCDrive) + ﬂDLDL
+ BcoCO + Prrar TRAF

Vewtr = ASCrupire + BrrTTruste + BreTCrubtr + Pa_rc (AG*TCrutr) + Prys;c (DIS*TCpustr) + Briy_rc(FEM*TCpury) + psBS
+ BinierINTER

VWalk :ASCWqu + ﬁITTTWaIk + ﬂTCTCWalk + ﬁAG_TC (AG * TCWalk) + ﬁDIS_TC (DIS * TCWaIk) + ﬂFEM_TC (FEM * TCWalk)

Notations

Vi Observed part of utility of alternative i

ASCG; Specific constant of alternative i

Prr Taste parameter associated with travel time attribute
Prc Taste parameter associated with travel cost attribute

Pac.1c  Taste parameter associated with interaction between age and travel cost attribute

Pois_tc ~ Taste parameter associated with interaction between travel distance and travel cost attribute
Prem_1c  Taste parameter associated with interaction between gender and travel cost attribute

PoL Taste parameter associated with driving license attribute

12



A. Alwosheel et al. Journal of Choice Modelling 33 (2019) 100186

Peo Taste parameter associated with number of owned car attribute
Brrar Taste parameter associated with traffic variability attribute
Pas Taste parameter associated with bus scale attribute

PINTER Taste parameter associated with number of interchanges attribute
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