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Can behavioral interventions optimize self-consumption? Evidence from a 
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A B S T R A C T   

Aligning prosumers’ electricity consumption to the availability of self-generated electricity decreases CO2 
emissions and costs. Nudges are proposed as one behavioral intervention to orchestrate such changes. At the 
same time, fragmented findings in the literature make it challenging to identify suitable behavioral interventions 
for specific households and contexts - specifically for optimizing self-consumption. We test three sequentially 
applied interventions (feedback, benchmark, and default) delivered by digital tools in a field experiment with 
111 German households with rooftop-photovoltaics. The experiment design with a control-group, baseline 
measurements, and high-frequency smart-meter-data allows us to examine the causal effects of each intervention 
for increasing self-consumption. While feedback and benchmark deliver small self-consumption increases (3–4 
percent), the smart changing default leads to a 16 percent increase for active participants. In general, households 
with controllable electric vehicles show stronger effects than those without. For upscaling behavioral in
terventions for other prosumers, we recommend interventions that require little interaction and energy literacy 
because even the self-selected, motivated sample rarely interacted with the digital tools.   

1. Introduction 

Shifting consumption to the times of self-generated electricity of 
households with rooftop photovoltaic (PV) is a key measure to decar
bonize the residential energy sector. Coordinated consumption shifts 
ensure a viable return-on-investment for households [1–3] and a more 
efficient operation of the existing energy infrastructure [4–6]. Optimi
zation models demonstrate that households can increase their 
self-consumption with consumption shifts by 2–50 percentage points, 
depending on the optimized technology. White goods are at the lower 
end [7], while stationary battery systems [1,2,6,8–10] and EVs [11,12] 
are more promising. To unlock the emerging flexibility potential of the 
latter, households need to establish a new routine for using these flexible 
technologies [12]. 

Orchestrating consumption shifts is an understudied use case for 
behavioral interventions [6,13,14]. Behavioral interventions, as subtle 
changes in one’s choice environment, complement price incentives. 
Price incentives shape the terms of household consumption and address 
rational reasoning (e.g., higher return-on-investment from tax exemp
tion [15–17]). Behavioral interventions provide ongoing support for 

households to respond to these terms (e.g., stimulating flexibility) and to 
make intuitive decisions [20]. Nudges are one of the most researched 
behavioral interventions [18]. The ongoing rise of digital tools leads to a 
broader application since behavioral interventions can be easily imple
mented in the user interface [19,20]. 

Behavioral interventions can guide households in the way the choice 
task is structured, and the choice option is described [20,21]. The first 
category about structuring the choice task is known as more effective 
but also invasive in terms of paternalism. A frequently applied example 
is defaults [20,22]. In contrast, the second category about describing the 
choice options (e.g., feedback) is more subtle [20]. The majority of in
terventions for energy savings belong to this category. For instance, the 
realized energy savings for feedback ranged between 5 and 13 percent 
(e.g., Refs. [11,23–29]). In some studies (e.g., Refs. [28,29]), the effect 
persisted over a period of up to two years. However, most field trials 
took four weeks to 11 months and did not report long-term effects. 

Although automated consumption shifts enable behavioral in
terventions from the first category (i.e., structuring the choice task), the 
few existing studies on consumption shifts apply behavioral in
terventions from the second category about the description of choice 
options (e.g., environmentally friendly framing). These studies show 
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one-digit improvements of provided flexibility [13,15,16]. Although 
this seems small, the effects are economically meaningful given the 
strong evidence that price incentives alone are insufficient for energy 
decision-making (e.g., Refs. [17,19]). The similar magnitude, the 
existing literature’s focus on other incentive mechanisms, and the 
missing utilization of automation encourage us to explore further 
behavioral intervention of both categories for households with 
rooftop-PV and EVs. Thereby, we consider that these prosumers have a 
different asset base and, therefore, more flexibility potential in the 
operational phase than the general population. We contribute to the 
broader research question “Can behavioral interventions delivered 
through digital tools help prosumers increase their self-consumption?" 
by testing empirically the impact (i) of interventions from both cate
gories (i.e., changing the description of choice options and the structure 
of the choice task) and (ii) for prosumers with and without EVs. 

The range of findings in the literature makes it challenging to 
determine which kind of behavioral intervention fits which household 
and context. The efficacy of such interventions is highly context-specific, 
as the intervention accounts only for part of the outcome variation (self- 
consumption in our case) in real-life environments. Insights on the 
group- and context-dependent fit are therefore important but largely 
missing [24], while publication bias reinforces the evidence gap [25]. At 
the same time, methodological challenges exist: First, generally estab
lished techniques for stated preferences are less suitable for capturing 
intuitive choices and intervention effects of everyday life [25]. Second, 
shortcomings in the research design of revealed preference approaches 
(e.g., underpowered sample, no control-group, no baseline measure
ment) impede applying methods for causal effects [25,30]. Studies with 
larger, more heterogeneous samples tend to result in smaller effect sizes 
[25]. Third, behavioral intervention studies are highly context-specific, 
hindering interventions’ comparability across single interventions [31]. 

Under consideration of the content-related and methodological 
challenges, we examine the understudied use case of behavioral in
terventions for consumption shifts based on smart-meter-data. In a 
German field experiment of the Horizon 2020 funded project NUDGE, 
three sequentially applied interventions support 111 participating 
households in shifting their electricity consumption to times of their self- 
generated electricity. The first two interventions adjust the description 
of the choice option (i.e., second category), specifically through visu
alization in the digital tool in the form of (a) feedback and (b) bench
marking. The third intervention is a default targeting EV charging (i.e., 
first category). Recent intervention studies based on smart-meter-data 
(e.g., Refs. [23,24,32–35]) successfully applied a 
difference-in-differences approach (DiD) to reveal the causal effect of 
interventions. We also selected this approach and compared the relative 
developments in self-consumption between the treatment- and 
control-groups over time. 

We create a new comparability level by testing three interventions 
within the same experiment setting to minimize context-specific differ
ences and present new evidence specific to EV-users. Learning effects 
during the interventions are managed by establishing previously tested 
interventions as new basic settings and calculating only the incremental 
change for each intervention. We investigate group-specific effects for 
prosumers with and without controllable EVs and fatigue effects during 
the nudging period. 

In Section 2, we present the applied methodology. Section 3 contains 
the results with the overall, time- and group-dependent effect for each 
intervention. Section 4 includes the discussion, whereas we conclude 
our study in Section 5. 

2. Methodology 

2.1. Sample 

We analyzed the self-consumption of 111 participating households 
living in, or near Mannheim, Germany. The participants are customers 
of the service provider Beegy1 and responded voluntarily to its call for 
participation via e-mail. Smart-meter-data were collected continuously 
at high-frequency resolution and aggregated to daily average values at 
household-level for analysis. Our estimation sample starts in January 
2022 and ends in June 2023. Supplementary data on household equip
ment and a socio-demographic survey were also recorded (see 
supplementary-material 1.2). 

The majority are families with children (57 percent) living in a sin
gle- or semi-detached house (69 percent) [36]. The average age is 56.34 
[36]. All households have rooftop-PV with an average installed 
PV-capacity of 8.16 kWp [36]. A sub-group of 39 participants owns a 
controllable EV (in the following called “EV-group"). 105 participants 
are equipped with battery-storage-systems and 29 with heatpumps. We 
divided the sample into a treatment-group (n = 54) and a control-group 
(n = 57) with random assignment before the first intervention. Both 
groups are similar in installed PV-capacity, number of controllable EVs 
(n = 18 in the treatment- and n = 21 in the control-group), wall boxes, 
heatpumps, and other technical dimensions (see TableAnnex 1). 
Equipment changes during the intervention period (see 
supplementary-material 1.2) were considered in a robustness check. 

2.2. Design and Procedure 

2.2.1. Interventions and experiment design 
In the following, we describe the interventions and their imple

mentation. Each intervention was presented to participants for a specific 
period during the experiment (see Fig. 1). Two tools, a webportal, and a 
smart-charging-app, exposed the participants to the interventions. The 
smart-charging-app is only available for participants with controllable 
EVs. The tools were already in use before the experiment. This real-life 
embedding creates authentic insights but also places restrictions on the 
intervention design (e.g., no social comparison is possible due to data 
privacy). 

Flexible technologies such as battery-storage-systems (n = 105) and 
heatpumps (n = 29) were automatically optimized for increasing self- 
consumption (see Section 4). 

Given concerns about fatigue effects for participants, we first 
implement two interventions that change the description of the choice 
options (but leave the choice task as before, i.e., second intervention 
category) and end with an intervention that simplifies the choice task (i. 
e., first intervention category). The two earlier interventions are visu
alizations that bundle more than one design element. They present in
formation on how behavior translates to savings in both monetary terms 
and CO2 emissions. They are designed to require more active user 
engagement than the last intervention. 

The two earlier interventions describe the choice options more 
appealingly based on concurrent timing (first intervention, feedback) or 
more competitively with a dynamic framing (second intervention, his
torical benchmark). The feedback combines simple indicators on a 
dashboard with signaling colors (see Fig. 2). The historical benchmark 
with prompts reports on the previous and upcoming self-consumption in 

Abbreviations: 

DiD - difference-in-differences 
EV – electric vehicle 
FE – fixed effects 
PV – photovoltaic 
TWFE - two-way fixed-effects  

1 Further information on the service portfolio of Beegy can be found: https: 
//www.beegy.com/one-pager-en/(last visited: 27/12/2023). 
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a bar chart and provides recommendations on how to adjust the con
sumption (see Fig. 3). The consumption recommendations are based on 
a forecast of self-generated electricity and are communicated with 
prompts. They encourage households to use their dishwasher, laundry, 
or washing machine during the hours of forecasted generation. 

The third chosen intervention, a default intervention, changes the 
choice tasks and aims to establish new charging behaviors with low 
awareness and interaction requirements (see Fig. 4).2 Therefore, a new 
charging mode for participants with controllable EVs was introduced. 
The existing charging mode of the smart-charging-app maximized self- 
consumption during charging, given the specified target state of 
charge and departure time. The new charging mode is activated on the 

webportal and charges the EV only with self-generated electricity.3 Once 
the participants accepted the new charging mode in the webportal, it 
was always activated when the EV was plugged in at home. 

Simultaneously with the smart-charging-default, an additional 
feature as part of the third intervention was introduced for all partici
pants to keep participants without controllable EVs engaged. The feature 
aggregates the savings in terms of cost savings and CO2 emissions in the 
form of a downloadable energy report (see FigureAnnex 3). 

The first intervention is implemented on the dashboard, which is the 
landing page of the tool (i.e., the page that is shown once the tool is 
opened). The second and third interventions are implemented on pages 
that are accessed via the sidebar of the tools (i.e., “statistic" and “fore
cast" for the second and “download" and “e-mobility" for the third 

Fig. 1. Timeline of the experiment.  

Fig. 2. Intervention 1 for the PV- and EV-group providing simple indicators in signaling color to stimulate consumption shifts or additional consumption during PV- 
generation by the participants, as presented to the participants and thus, in German language, see supplementary material for further information. 

2 Figs. 2–4 illustrates the three interventions in the webportal, which are 
similarly implemented in the smart-charging-app (see Appendix 8.1). 3 Provided it is not overruled by new settings in the smart-charging-app. 
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intervention). The participants were informed about the updates via a 
one-time e-mail at the beginning of the intervention and via a “new" 
sticker next to the page name on the sidebar. 

Two special constellations in the experiment design allow us to 
evaluate the respective effect of each intervention. First, multi- 
treatment designs have to consider learning effects, which makes it 
difficult to separate individual interventions from the compound effect. 
To mitigate this issue, we introduced interim periods without an inter
vention after each treatment period. Second, to distinguish between 
persistent learning and the effect of the following intervention, we 
transformed the previous intervention into a basic setting for the 
following intervention. This means that the previous intervention was 
visible to the control- and treatment-groups when the following inter
vention was introduced. To allow the control-group to internalize the 
new basic setting, we have already introduced the previous intervention 
to them during the interim period. The difference between the treat
ment- and control-group provides incremental change since the control- 
group has only seen the previous intervention before the next treatment 
begins. 

2.2.2. Main measures for treatment and control group 
We tested the three interventions sequentially in the same setting. To 

respond to the interventions, participants can either shift their existing 
consumption or additionally consume self-generated electricity. We 
computed two measures to analyze participants’ responses to the 
nudging interventions: an absolute one (self-consumption) and a relative 
one to the overall consumption (autarky-rate) [35,36]. While in other 
studies (e.g., Refs. [4,7]) the latter is also called self-sufficiency-rate, we 
call it autarky-rate to avoid terminological confusion with 
sufficiency-research. 

The absolute measure recognizes both responses but is prone to 
random consumption changes (e.g., vacations, construction works). The 
relative one absorbs these consumption changes (including additional 
consumption in response to the intervention). 

As outlined above, the composition of the treatment- and control- 
group is comparable; this also applies to the mean outcome variables 

Fig. 3. Intervention 2 for the PV- and EV-group providing benchmark of pre
vious and current self-consumption (top) and forecast of PV-generation with 
recommendations for actions (bottom) to stimulate consumption shifts or 
additional consumption during PV-generation by the participants, as presented 
to the participants and thus, in German language, see supplementary material 
for further information. 

Fig. 4. Intervention 3 for the EV-group providing a new charging mode that charges the EV automatically with excess electricity from the local PV (“solar power 
charging" – switch on the left side, which is deactivated until its first activation). If activated, the switch on the right side for the existing charging mode “standard 
charging" is deactivated. 
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(see Table 1). Self-consumption is calculated as the mean hourly value 
over a 24-h period. Autarky-rate is the ratio of self-consumption to total 
consumption, calculated from the respective daily means. The autarky- 
rate takes values between 0 and 1. The final column shows the number 
of observations (Obs) in the panel comprising 422 days, after excluding 
few cases with missing values in the smart-meter reporting. The stan
dard deviation, minimum and maximum indicate a high variation 
within each group across individual households. Overall, the partici
pants’ energy consumption is above the German average but falls in line 
with estimates addressing prosumers and EV ownership (e.g., Refs. [8, 
12]). 

Fig. 2 plots the data for both groups over time to complement the 
static representation. The three solid, vertical black lines indicate the 
treatment start dates of the interventions, with the dashed line indi
cating the end of the intervention for the treatment-group. This parti
tions the study period into four blocks of interest: the baseline (N = 0) 
and the interventions N = {1,2,3}. For the DiD approach, it is important 
that treatment- and control-groups are comparable and do not exhibit 
differential patterns at baseline (parallel trends assumption, see, e.g., 
Angrist and Krueger (1999) [30]). The graphical illustration supports 
this assumption. Both groups are similar in levels and trends, and the 
strong, common fluctuation over time is driven by weather conditions, 
as expected. The variability in August 2022 is attributable to missing 
values due to problems with a central data platform. We conducted a 
robustness check with a restricted sample to ensure that this does not 
bias the estimation results. The same pattern holds qualitatively for both 
outcomes (self-consumption and autarky-rate), despite higher volatility 
for self-consumption. 

The parallel development between the groups also holds when 
comparing the particular EV-group and the group without controllable 
EVs (in the following called “PV-group"), providing further support for 
successful randomization in the design. For details, refer to the 
supplementary-material 1.3. The figure does not support a visible 
divergence during the intervention, which indicates that average effects 
may be small and weather effects may dominate patterns over time. We 
will consider these first insights in the formal analysis. 

2.3. Statistical models for analysis 

As outlined above, the main identification strategy is a DiD 
approach. The objective is to identify the causal effect of the behavioral 
intervention after accounting for differences across groups and differ
ences across time that would otherwise correlate with the nudging ef
fect. We evaluate the effect of the intervention assignment (i.e., 
intention-to-treat), which may include participants that did not 
actively interact with the content. However, this approach indeed pro
vides a realistic projection of the expected effect of intervention in real- 
world settings for policy-makers and practitioners. 

The model is estimated for the two outcome variables. Autarky-rate 
is the preferred outcome in light of the wide variation across individuals 

depicted in Table 1. For self-consumption, we log-transform the 
dependent variable to address the long right tail with high-value outliers 
in the distribution of the raw data. 

There are two challenges to obtaining credible estimates in our 
setting. First, the European energy crisis: We address this with time-fixed 
effects at the daily level absorbing shocks in the environment that are 
common to both groups. This includes behavioral adjustments driven by 
price spikes and political announcements. For example, Pelka et al. 
(2022) [31] document that search volume on Google Trends accounts 
for part of the variation in self-consumption. Time-fixed effects also 
account for weather variation, which applies to both groups and shows 
in the raw data (see Fig. 5). Second, we want to compare the three 
nudging treatments with each other. We, therefore, estimate separate 
coefficients for each intervention instead of a single treatment effect. 

With these considerations, we chose a two-way fixed-effects model 
(TWFE) with multiple treatment periods (see e.g., Ref. [37]). Formally, 
the regression equation (1) is: 

yit = ai + bN Tit Nt + c Gi + d Nt + pt + eit (1)  

Where i indicates individuals and t indicates time periods (days). The 
indicator T equals 1 for the treatment-group, and zero for the control- 
group. N is a categorical variable that takes value 0 at baseline and 
then has six non-zero values. The three active intervention periods N =

1,N = 2,N = 3, and the interim periods (see Fig. 5). The coefficient of 
interest is bN for all N = {1, 2, 3}, which captures the DiD treatment 
effect from the interaction of T and N. The estimate represents the dif
ferential development of the treated households during the nudging 
period measured relative to the control-group. 

The TWFE model absorbs individual-specific intercepts (ai) and 
period-specific intercepts (pt, see discussion above). The individual 
fixed-effects ai absorb level differences across households in a within- 
transformation. This accounts for time-constant factors such as house
hold size, stock of appliances, or pre-existing behavioral differences. 
Robust standard errors are calculated with the common Huber-White 
adjustment. From a purely statistical perspective, the model obtains 
coefficients also for the interim periods: N = {0,1, …6} (see 
supplementary-material 1.3). The interim coefficients bN>3 capture the 
relative difference across groups, not the counterfactual development 
without any nudging. 

Overall, we chose the methodology in light of the data structure and 
the objective to deliver causal effects. The DiD is state of the art [38], 
and allows us to leverage the experiment design with control group and 
panel data. The addition of two-way fixed effects provides further con
trol over the granularity in the time-series and cross-sectional variation 
[39–41]. Relative to simpler regression designs, we lose degrees of 
freedom, but gain the ability to address the complex variation pattern. 

We then add heterogeneity analysis and robustness checks. First, we 
consider the dynamic nature of the treatment effect by running an event 
study for all three interventions. This addresses concerns that the 
treatment effect diminishes over time due to fatigue. By contrast, the 
behavior might change with a time lag to treatment, so the prediction is 
ambiguous. Additionally, the pre-treatment coefficients support parallel 
trends assumption. 

The second extension is a sub-group analysis for the EV and PV- 
group. This is implemented through an additional interaction term in 
the main regression equation for the sub-groups. The working hypoth
esis predicts a stronger effect on the EV-group because this sub-group 
receives the treatment with an additional interface – the smart- 
charging-app. This analysis is particularly interesting for Intervention 
3, since that intervention is a two-part treatment with additional func
tionalities specific to the EV-group. We then use additional information 
from the tool to test whether tool users were able to shift self- 
consumption from the evening hours (in which they tend to charge 
[42]) to the midday-PV-peak. Formally, this is tested with a regression 
(2) specific to Intervention 3 using data at hourly frequency: 

Table 1 
Summary statistics by group.   

Mean SD Min Max Obs 

Treatment-group (n ¼ 54) 
Consumption [Wh] 755.58 586.12 0.05 7503.91 23029 
Self-consumption [Wh] 445.49 358.8 0 3863.78 23029 
Autarky-rate [percentage] 0.55 0.24 0 1 23029 
Control-group (n ¼ 57) 
Consumption [Wh] 720.18 565.57 0 5987.11 24010 
Self-consumption [Wh] 459.33 370.57 0 4188.53 24010 
Autarky-rate [percentage] 0.60 0.23 0 1 24010 

Notes: Descriptive statistics for estimation sample from January 2022 to June 
2023 at daily aggregation. Self-consumption is the difference between total 
consumption and output to grid. Autarky-rate is the ratio of self-consumption to 
total consumption. 

S. Pelka et al.                                                                                                                                                                                                                                    



Smart Energy 14 (2024) 100140

6

Fig. 5. Outcomes by group over time.  

Table 2 
Main results for DiD design.  

Panel A: Results for Autarky-Rate  

(1) (2) (3) (4) 

Basic Time FE Twoway FE Weather 

N = 1 0.0146** 0.0185*** 0.0209*** 0.0201*** 
(2.09) (3.45) (5.57) (4.40) 

N = 2 0.0145* 0.0201*** 0.0212*** 0.0180*** 
(1.77) (3.72) (5.05) (2.65) 

N = 3 − 0.00868 − 0.00493 ¡0.00935** − 0.000671 
(-1.22) (-0.87) (-2.26) (-0.05) 

R2 0.255 0.582 0.778 0.639 
Obs 46409 46409 46409 34004 
FE none time time þ household household  

Panel B: Results for Self-Consumption  

(1) (2) (3) (4) 

Basic Time FE Twoway FE Weather 

N = 1 0.0160 0.0291 0.0291* 0.0259 
(0.54) (1.23) (1.73) (1.25) 

N = 2 0.0450 0.0606** 0.0280 0.0165 
(1.25) (2.15) (1.32) (0.59) 

N = 3 0.0569** 0.0704*** 0.111*** 0.105* 
(2.09) (3.43) (6.64) (1.81) 

R2 0.111 0.473 0.702 0.525 
Obs 45928 45928 45928 33564 
FE none time time þ household household 

Notes: DiD estimation for dependent variables autarky (upper panel) and self-consumption (lower panel). Robust standard errors (Huber-White) in parentheses. 
Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01. N = {1,2,3} refers to interventions 1 and 2, and 3, respectively. Columns differ in the fixed-effects structure, 
indicated in the bottom row. 
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yit = ai + bH Ait Ht + c Ht + pt + eit (2)  

Where A is an indicator for households that actively engage with the 
app, and H is a categorical variable for AM (6–10am), midday (11am- 
3pm), and PM (4pm–8pm). The base level is AM, and we exclude night- 
time hours. The coefficient of interest is bH, which indicates whether 
active app users realize larger shifts during a specific Time Block H. We 
again use a TWFE model and robust standard errors. 

3. Results 

3.1. Treatment effects 

The analysis based on the DiD approach delivers treatment effects for 
each intervention. For interpretation, two particular aspects of our 
design are important (see Section 2). First, the treatment effects are 
measured relative to the control-group, which has never seen the 
respective intervention before. Second, the treatment effects capture 
incremental changes: each coefficient gives the effect of the newly 
introduced intervention. Table 2 presents the main regression results, 
with autarky-rate as the dependent variable in the upper panel and the 
natural logarithm of self-consumption in the lower panel. Throughout 
all results, we refer to self-consumption meaning this logarithmic 
transformation for ease of exposition. The first column shows the basic 
model with no controls or fixed effects. Column (2) adds time-fixed ef
fects to address day-specific shocks common to both groups. Column (3) 
is a two-way fixed-effects model with both time and household-specific 
fixed effects. This very conservative estimation is most demanding 
regarding variation but also most credible in eliminating the potential 
confounders discussed previously. Note that the group and period in
dicators are omitted due to the collinearity with the fixed effects. Col
umn (4) replaces the time fixed-effects with the continuous variable 
solar radiation based on the insights from Fig. 2. The household fixed- 
effects are kept. The number of observations is lower because radia
tion data are not available for December 2022 (interim period after 
Intervention 2) and after May 2023 (last part of Intervention 3). 

Before turning to treatment effects, we assess model selection. We 
use the coefficient of variation (R2) in the bottom panel as proxy for 
model fit. Moving from column (1) to columns (2) and (3), the R2 in
creases substantially with the addition of fixed effects. The simplest 
model explains 26 percent of the variation in the outcome autarky, 
which increases by more than 30 percentage points when time-fixed 
effects are added. After adding household-fixed effects, the TWFE 
model in column (3) accounts for 78 percent of the variation. Notably, 
substituting time-variant weather controls for the time-fixed effects re
sults in a substantial drop in the R2, suggesting that time patterns are not 
driven entirely by weather as an exogenous force. We find a very similar 
pattern for self-consumption in the lower panel. For both outcomes, the 
sign of the coefficients is robust across all four columns, but the effect 
sizes and the standard errors increase as we build towards the TWFE 
model. This indicates that care must be taken in accounting for house
hold and time heterogeneity, as the simpler models tend to understate 
the estimated treatment effect. 

Based on these preliminaries, we consider column (3) the main es
timate of the analysis. In the following, we focus on this column. For the 
feedback intervention (N = 1), there is a small, positive treatment effect. 
The coefficient for autarky indicates that the intervention increased 
autarky by 2.1 percentage points, a moderate improvement of 3.8 
percent when evaluated against the mean outcome of 0.55 (Table 1 for 
reference). The coefficient on self-consumption indicates a 2.9 percent 
increase in self-consumption. Evaluated at the sample mean, this 

translates to an improvement of 13 Wh per hour on average. While the 
effect sizes are similar for both outcomes, the estimate is highly signif
icant for autarky, but not for self-consumption (only at the 10 percent- 
level of confidence). 

Regarding the benchmark intervention (N = 2), the effects are again 
positive and of similar magnitude as Intervention 1. For self- 
consumption, the effect sizes vary substantially across columns, and 
the result is not statistically significant in the conservative estimates 
(Columns 3 and 4). This likely reflects the higher volatility of self- 
consumption relative to autarky-rate, which leads to unstable co
efficients in specifications that do not control for heterogeneity across 
households. Comparing the estimates in the TWFE model, a Wald test 
fails to reject the null hypothesis of equal coefficients (p-value = 0.955 
for autarky-rate, p-value = 0.961 for self-consumption, see 
supplementary-material 1.3). This indicates that the feedback and the 
benchmark intervention do not differ in their effectiveness. 

The consistent picture of small, positive effects from the first two 
interventions does not carry to the default intervention (N = 3). For 
autarky, the effect size is negligible from an economic perspective 
despite the statistical significance. Yet, for self-consumption, there is a 
sizable increase of 11 percent in self-consumption. Evaluated at the 
hourly sample mean, this translates to an increase of 49 Wh. Wald tests 
against Intervention 1 and Intervention 2 reject equality of coefficients 
for both outcomes (all p-values <0.001), indicating that Intervention 3 
does indeed work differently. 

When self-consumption rises, but autarky remains unaffected, the 
likely explanation is that households simultaneously increased total 
energy consumption. Autarky-rate as the ratio would then be constant. 
To substantiate this interpretation, we also ran the same model with 
total energy consumption as the outcome variable (not shown here). We 
found a significant increase of about 8 percent, which suggests that 
households increased both the denominator and the numerator of the 
autarky-rate. Intervention 3 is found to be more effective in increasing 
self-consumption, but ineffective for autarky. This finding suggests that 
more is needed to understand the mechanism of Intervention 3 
compared to the other two interventions. We explore this further in the 
following sections. 

Finally, we conduct a number of robustness checks and run the 
regression separately for each intervention to support the stability of the 
estimates. The list of robustness checks is included in Appendix 8.2. 
Code and documentation are available from the authors upon request. 

3.2. Short-run effects 

One explanation for the small average effects in the main results 
above could be that consumers quickly lose interest rather than adapting 
their routine due to the interventions [43]. We test this with the event 
study design displayed in Fig. 6. Time is centered to zero as the day a 
specific intervention becomes effective. For a better overview, the 
specification reports only 20 lead and lag terms (daily coefficients before 
and after the intervention started) and aggregates the other daily co
efficients as endpoints (see Ref. [44]). Individual coefficients are plotted 
as black circles; the endpoints are represented as hollow circles. Across 
all interventions and for both outcome variables, the point estimates are 
clustered closely around the horizontal line at zero. The confidence in
tervals also span zero in the vast majority of cases. Corresponding to the 
main results, the time pattern appears less volatile for autarky than 
self-consumption at least for Interventions 1 and 2. Overall, the event 
study does not support a clear time trend within the study period. In fact, 
individual coefficients are insignificant, which indicates that single-day 
effects are small and the positive average found in the main result 
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emerges only in the aggregate. Given power constraints with the small 
cross-section relative to the number of parameters, this is expected. On 
the flip side, the study also lends credibility to the parallel trends 
assumption, as the pre-treatment effects are tightly clustered around 
zero. In economic terms, the event study further supports that the three 
tested interventions have small effects within the ecosystem of pro
sumers’ energy consumption. 

3.3. Sub-group analysis 

A unique feature of the experiment is the sub-division into the par
ticipants without (“PV-group") and with controllable EVs (“EV-group"). 
We estimate the effects separately for these sub-groups to explore het
erogeneity. This is shown in Fig. 7. The specification is the same TWFE 
model as in the main results but displayed in graphical form for expo
sition: the circle and diamond symbols represent the coefficients, i.e., 

Fig. 6. Event study results.  

Fig. 7. Sub-group analysis.  
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point estimates for the marginal effect, and the vertical extensions the 95 
percent confidence interval. Autarky-rate is displayed in the upper 
panel, self-consumption (log-transformed) in the lower panel. The col
umns correspond to the three interventions. 

For Interventions 1 and 2, the EV-group appears more responsive 
than the PV-group. While the confidence intervals overlap for autarky- 
rate, the sub-group differences are statistically significant for self- 
consumption. The EV-group has self-consumption treatment effects in 
the range of 10–12 percent, which is substantially above the average 
effect of 2–3 percent in the main analysis. Across both outcomes, the 
analysis suggests that the positive average effect is driven more by the 
EV-group. 

However, this does not hold for Intervention 3. The confidence in
tervals of the two sub-groups overlap substantially for both outcomes, 
and the associated p-values do not support sub-group differences (not 
reported here). This result is surprising because especially Intervention 3 
was targeted to the EV-group. The PV-group only received the energy 
report, whereas the EV-group had a new charging mode. The sub-group 
analysis does not support the interpretation that the increase in self- 
consumption is driven by the EV-group, which was the working hy
pothesis derived from the main results. 

However, the presented effects come from assignment to the 
treatment-group (intention-to-treat effect). Using the additional infor
mation available from the smart-charging-app, we explore intraday- 
shifts separating those households that activated the new charging 
mode of Intervention 3 (n = 9), and those that did not. The hypothesis is 
that the active group changed their charging behavior to longer plug-in 
times, so the smart-charging-mode would shift consumption to the 
midday-PV-peak. We add energy consumption (again log-transformed) 
based on the insights from the main result. 

The regression results are shown in Table 3 below. The coefficients of 
interest are in bold in the top two rows: the interaction terms reveal 
whether the active group shifts more into midday (11am-3pm), i.e., 
relatively more than the control-group. For each outcome, the first 
column uses all inactive households as the control-group; the second 
column uses only those in the EV-group, i.e., only participants who had 
access to the mode. This means a loss of observations but serves as a 
robustness check against concerns that those in the PV-group are not 
suitable control-group for the EV sample. As before, the results show no 
significant effects for autarky-rate but a strong positive shift to the 
midday hours for self-consumption and total consumption (Active x 
Midday). The effect sizes of 15–17 percent for self-consumption are 
substantially larger than the main result. Total consumption increases by 

a similar magnitude. We do not find significant differences in the eve
ning hours (Active x PM) across all outcomes, which indicates that the 
midday increase is not offset by opposite changes during evening hours. 
The base effects for Midday and PM in the lower rows conform to ex
pectations from normal load profiles. The results are interpreted as 
revealing the potential of the new mode, thus indicating that the weak 
effects in Fig. 7 stem from a low activation level. By contrast, partici
pants that activate the new charging mode are able to use their PV- 
generation more effectively. In brief, the default intervention has a 
high potential for consumption shifts that is not captured in the overall 
sample because a relatively small sub-group drives it. 

Connecting the insights from sections 2.2 and 2.3, the question is 
whether the default intervention can also induce more regular and, thus, 
sustainable behavior changes. With the small sample and limited up
take, we can only provide indicative, descriptive evidence here. Testing 
for variance equality (Levene-test) shows a minor increase in the vari
ance of self-consumption, but fails to reject the null hypothesis. By 
contrast, the correlation between solar radiation and self-consumption 
increases sharply from 0.22 before the default to 0.73 afterwards. This 
indicates that the intervention increases the alignment with the relevant 
variation (solar radiation), but does not decrease the unconditional 
variation in the outcome. 

4. Discussion 

The treatment-group’s positive, small intervention effects are of 
similar magnitude as other studies estimating causal effects regarding 
energy-saving behavior (e.g., Refs. [23,24,32–35]). We did expect our 
results to be at the lower end of the effect spectrum in the literature on 
behavioral interventions due to the publication bias and lack of causal 
effect methods in other studies. At the same time, the larger effects for 
the active EV-group even range between the few available studies with 
EVs (e.g., Refs. [45–47]) and model-based studies optimizing 
self-consumption under optimal conditions (e.g., Refs. [11,12]). In 
summary, we show that the tested interventions for feedback and 
benchmarking are suitable for increasing self-consumption by changing 
the described choice options. Additionally, the charging default in
creases self-consumption effectively by re-structuring the choice task. In 
the following, we provide a methodological reflection, position the re
sults, and suggest subjects for further research. 

Estimating causal effects with smart-meter-data requires careful 
consideration of the identification strategy to extract the relevant vari
ation from the overall noise, which our results demonstrate. We provide 

Table 3 
Intra-day shifts during intervention 3.   

(1) (2) (3) (4) (5) (6) 

Autarky-rate Self-Consumption Total Consumption 

Active x Midday ¡0.00217 0.0132 0.165** 0.157** 0.165** 0.135* 
(-0.15) (0.94) (2.28) (2.17) (2.26) (1.84) 

Active x PM 0.0114 ¡0.00871 ¡0.0587 ¡0.130 ¡0.0117 ¡0.0313 
(0.42) (-0.32) (-0.39) (-0.87) (-0.15) (-0.39) 

Midday 0.184*** 0.173*** 0.721*** 0.802*** 0.176*** 0.260*** 
(80.26) (44.97) (66.91) (42.21) (23.91) (20.68) 

PM − 0.0209*** 0.00600 0.118*** 0.260*** 0.0972*** 0.170*** 
(-7.42) (1.29) (8.59) (11.25) (13.83) (14.69) 

R2 0.352 0.322 0.200 0.193 0.250 0.196 
Obs. 72802 26325 69347 25270 72802 26325 
Control-group All EV only All EV only All EV only 

Notes: Regression testing for intra-day shifts during Intervention 3. Data at hourly frequency. Baselevel is AM (6:00–10:00). Active is an indicator for interaction with 
the app. Robust standard errors in parentheses. Significance Levels: *p < 0.10, **p < 0.05, ***p < 0.01. 

S. Pelka et al.                                                                                                                                                                                                                                    



Smart Energy 14 (2024) 100140

10

treatment effects using a conservative TWFE specification of the broader 
DiD estimation, which applies microeconomic methods in this inter
disciplinary setting. In the process, we showcase the difficulty of 
assessing treatment effects from real-life settings: the bulk of the vari
ation in the smart-meter-data stems from general differences across 
households and time. Interventions on (self-)consumption behavior 
cannot change the external conditions, leaving a limited margin for 
optimization because much of the variation is “pre-determined". How
ever, the third intervention also indicates strong opportunities for new 
behavioral routines (EV-charging) that are aligned with exogenous 
variation (solar radiation). 

Our employed model is a strong improvement relative to pooled 
ordinary least-squares, but it is not a panacea for all confounders. The 
fixed-effects strategy rests on the assumption that within-household 
behavior is constant over time and can therefore be partialled out (see 
Ref. [42]). This strategy does not address time-variant confounders such 
as newly added assets. This is most critical for intervention 3, which 
begins during heating season. We ensure that heatpump ownership is 
balanced across all four sub-groups. However, we cannot completely 
rule out this potential confounder (e.g., different operation across 
households). This is similar to the battery-storage-systems, which are 
operated all year long but more intensively during the summer period. 

Similarly, time fixed-effects absorb factors like solar radiation com
mon to all households on a given day, but the treatment effect is the 
average effect across all households. Essentially, we take the assumption 
that factors like weather and energy prices are common to the treatment 
and the control group on a given day. In practice, the approach assumes 
for energy prices that this is a common shock to all households, and that 
the groups respond similarly on average – not only regarding the direct 
price effect, but also how susceptible households are to energy-related 
information in the intervention. The tested interventions show limited 
behavioral effects relative to the ecosystem, but the capacity for 
exploiting solar radiation indirectly impacts how prosumers optimize 
self-consumption. In the summer, when some households are close to 
complete autarky-rate, there may not be room left for the intervention to 
increase it further. In the winter, there are days with very little radiation 
and potential to exploit. Hence, interpreting effect sizes across seasons 
deserves a note of caution. Moreover, the seasonal yield differences 
imply that, for the intervention design, interventions should stimulate 
additional consumption for the excess generation in summer and focus 
on shifts of existing consumption in winter. 

The rise of smart-metering makes data for such estimations easily 
accessible. At the same time, the data quality is prone to technical and 
human failures, such as connection issues, which increase noise that is 
difficult to separate from systematic variation. If such issues cannot be 
fully mitigated, it is key to understand their implication on the results. 
For instance, for some participants, the winter break created longer 
disconnection times. If these disconnection times are due to absence 
from home, we would conclude that data is missing from a below- 
average consumption period. Studying such correlation between data 
issues and human behavior and deriving best practices for handling 
them are subjects for further research. 

Human behavior could also impact the results due to social desir
ability. Participants were aware of being part of an experiment and, 
thus, may intentionally pay special attention. However, showing social 
desirability in everyday life over a time span of 1.5 years appears 
difficult [48]. In addition, the event study did not show differences over 
time. Thus, we believe that social desirability did not affect the results 
(largely). Studies examining long-term effects of behavioral in
terventions may consider and assess this in more detail. 

Self-selection in our sample creates limitations regarding the 
external validity of our results. With the highly motivated prosumers 
and their sizable asset portfolio to optimize over (see supplementary- 
material 1.2), the sample does not represent the German population. 
At the same time, it shows typical characteristics of early adopters of 
rooftop-PV and EVs [49,50], who are the current target group for this 
kind of intervention. Learnings from this group give insights into how to 
support other households at the later stages of the diffusion curve [3, 
51]. The increasing diffusion is expected to lead to greater 
household-dependent variations and an elevated need to tailor in
terventions to household conditions. Thus, our work lays a basis for 
further research. 

Remarkably, even our self-selected sample takes up the interventions 
only to a limited extent. In particular, the efficacy of the charging default 
is weakened since only half of the EV-group activated the feature. While 
no significant effect for the overall EV-group is found, a comparison of 
the non- and activated participants shows a 15–17 percent increase in 
self-consumption for activated prosumers. Acknowledging the risk of 
low uptake, we recommend designing interventions with only a mini
mum amount of required interaction. In our case, we believe a charging 
default without the need for an initial activation would likely be more 
effective. 

Such low uptake of interventions demonstrates limitations, which 
policymakers may face when upscaling behavioral interventions as 
policy measures. In this sense, the main results for the entire sample are 
a more accurate projection for policy measures since they measure the 
effect for the ones that were assigned to the treatment (intention-to- 
treat) and not the sub-group that was certainly exposed to the treatment. 
The uptake is likely to decrease further when the interventions are rolled 
out to the - likely less motivated - German population. At the same time, 
since the German population is younger than the sample, a rollout would 
target more digital natives, which may increase the chances for an 
uptake. 

The results of the feedback and benchmark interventions confirm the 
efficacy of their common design aspects, i.e., condensed information 
presented in an appealing manner for describing choice options. 
Although we recognize an incremental improvement when a benchmark 
is added as a second intervention, both effects are not significantly 
different. Consequently, no conclusions can be derived from the 
distinctive design aspects that come with describing choice options (i.e., 
whether signaling colors are a more effective stimulus than 
benchmarking). 

The effects are driven by the sub-group with controllable EVs. The 
increased effect size emphasizes the opportunity for technology-specific 
intervention designs that align with the strong exogenous drivers of the 
outcome of interest. The stronger results for the EV-group in in
terventions 1 and 2 (compared to the non-EV group) suggest that there is 
potential for implementing interventions while EVs and other electrified 
residential technologies are still emerging and new routines around 
them are created. From a different angle, the large intra-day effects in 
intervention 3 fit with this interpretation, albeit conditional on active 
utilization. Since these emerging technologies are already equipped with 
digital interfaces, behavioral interventions could also be integrated at a 
low cost. However, in our study, the additional interface for the EV- 
group does not allow us to clearly distinguish between the impact of 
the technology and the interface. Future research could disentangle both 
factors. Furthermore, it could test the effect on other flexible technolo
gies (e.g., heatpumps) and on households who are not yet prosumers, 
further assessing the heterogeneity and context-specificity of behavioral 
interventions. Thereby, other aspects of behavioral interventions from 
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the literature could be further examined, e.g., (i) the relation of applied 
interventions to normativity [52], (ii) their link to economic incentives 
[53], and (iii) their focus on the individual’s or the society’s welfare 
[54]. 

5. Conclusion 

This paper has studied the effectiveness of three behavioral in
terventions within the same field experiment using a more rigorous 
estimation framework than much of the previous literature. We find 
small, positive effects for interventions through feedback and bench
marking, both in absolute self-consumption and in relative terms 
(autarky-rate). Sub-group analysis shows that the EV-group mainly 
drives the average effects. The default intervention stands out as 
different from the others: it increases self-consumption substantially but 
is ineffective for autarky-rate as total consumption increases simulta
neously. We are able to show that the low uptake of the intervention 
explains the weak average effect. By contrast, the prosumers adopting 
the smart-charging-mode can increase self-consumption by 16–17 
percent. As a subject for further research, we suggest exploring how 
behavioral interventions interact with the households’ charging routine. 

Overall, we contribute novel evidence on stimulating prosumers to 
optimize self-consumption, which is a previously understudied use case 
of behavioral interventions with growing potential in the energy tran
sition and consumption shifts. The study extracts intervention effects 
from a real-life field experiment, which reveals that behavioral in
terventions target a relatively small component within the ecosystem of 
household energy consumption. 

The uptake is likely to deteriorate for other, less dedicated pro
sumers. Also, the prosumers’ level of energy literacy is likely to be lower, 
which makes interventions that change the described choice options (e. 
g., feedback) less attractive than interventions that re-structure the 
choice task (e.g., default). Future applied work could explore specif
ically how intervention design can be better embedded in the ecosystem. 

Subtle interventions require supporting regulatory, technical, and 
digital conditions. The other way around, restrictive self-consumption 
regulation, unappealing digital interfaces, and mal-functioning flexible 
technologies can easily overrule the small, positive treatment effects. At 
the same time, if behavioral interventions are thoughtfully aligned to 
these conditions, they can unlock hard-to-reach flexibility potential. 
Orchestrating a grid-friendly operation of large consumption 

technologies, such as EVs and heatpumps, is a promising future case for 
behavioral interventions in light of emerging flexibility markets, digi
talization, and other grid regulations. 
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Appendix 

8.1 Design of the Interventions for the Smart-Charging-App (intervention 1 and 2) and the Monthly Report Download (intervention 3) 

A description of the interventions can be found in the supplementary-material 1.1. 
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Fig. Annex 1. Intervention 1 for the EV-group providing simple indicators in signaling color.   
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Fig. Annex 2. Intervention 2 for the EV-group providing benchmarks of previous and current self-consumption of charging and upcoming optimized 
charging process.  
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Fig. Annex 3. Intervention 3 for both groups providing aggregated information on past self-consumption in form of energy reports.  
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8.2. List of Robustness Checks

Fig. Annex 4. List of robustness checks.  

S. Pelka et al.                                                                                                                                                                                                                                    



Smart Energy 14 (2024) 100140

16

8.3. Descriptive Development between EV and PV-group over Time

Fig. Annex 5. Outcomes by sub-group over time at weekly aggregation 
Notes: Left panel refers to full sample, middle panel to EV-group, right panel to PV-group. Index 1 refers to sub-sample of treatment-group, index 2 to control-group. 
Aggregated to weekly means for exposition. 
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