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Abstract 
This thesis explores the relatively large contribution of the product category ‘chemicals n.e.c.’ 

(chemicals not elsewhere classified) to the Dutch healthcare sector’s carbon and material footprint 

observed in previous studies. For this, an input-output study using SNAC-EXIOBASE data was 

performed. SNAC-EXIOBASE uses national statistics for the Dutch part of the multi-regional input-

output table. It also distinguishes a separate chemical and pharmaceutical industry in the Dutch part. 

This can help identify possible aggregation problems in the EXIOBASE category ‘chemicals n.e.c.’ which 

is an aggregate of the chemical and pharmaceutical industry sectors. Comparing the carbon and 

material footprint of pharmaceuticals used in the Dutch health care sector as calculated with (default) 

EXIOBASE and SNAC-EXIOBASE shows that there is an aggregation problem in the ‘chemicals n.e.c.’ 

category. This means that grouping the pharmaceutical industry with the chemical industry greatly 

influences the carbon and material footprint of pharmaceuticals. The carbon footprint decreases by 

11% and the material footprint by 61% when using SNAC-EXIOBASE compared to EXIOBASE data. The 

multiplier analysis showed that in all cases the Dutch pharmaceutical industry has a lower carbon, 

mineral and metal intensity (footprint per euro) compared to the Dutch chemical industry or 

‘chemicals n.e.c.’ confirming the aggregation problem. The LCA literature review showed that the 

range of carbon intensities of individual pharmaceuticals matches the carbon intensity of the 

‘pharmaceutical industry’ in SNAC-EXIOBASE. This study also showed that the material footprint of the 

Dutch healthcare sector is uncertain and should be used with care. Future research should focus on 

using MRIOs that better depict the pharmaceutical industry like the ICIO which is based on the ISIC 

Rev. 4 classification and, therefore, includes a separate pharmaceutical industry. Before performing 

analyses with the ICIO is possible, higher sectoral resolution and environmental extensions are 

needed. 
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Executive summary 
This executive summary is made for partners in the GDDZ, RIVM and non-experts in the field of 

input-output analysis. 

Problem statement 

Previous studies on the carbon and material footprint of the Dutch healthcare sector showed a large 

contribution of the consumption of pharmaceuticals to these footprints. This large share of 

pharmaceuticals was observed in the study by RIVM for the Netherlands as well as in studies of other 

countries. Carbon and material footprints are calculated with the use of input-output analysis. Input-

output analyses are based on economic statistics which are converted to input-output tables (IOTs). 

These IOTs are available in world (multi-regional input-output tables, MRIOTs) size containing 

aggregated sectors to describe the economy. In this way, in most MRIOTs the pharmaceutical industry 

and chemical industry are aggregated into one category: chemicals not elsewhere classified (chemicals 

n.e.c.). Even though all these studies show a large share of the healthcare sector’s carbon and material 

footprint is caused by this category ‘chemicals n.e.c.’, no studies explain this. Therefore, this studies’ 

research question is:  

“How can the relatively large contribution of the product category ‘chemicals n.e.c.’ to the carbon and 

material footprints of the Dutch healthcare sector be explained?” 

Approach and methods 

Step by step possible reasons that could cause the previously observed high contribution of the 

consumption of pharmaceuticals to the Dutch healthcare sector’s carbon and material footprint were 

investigated. First, the previous studies were checked for conceptual and calculation errors. Second, 

the previous study by RIVM was compared to the carbon and material footprint calculated in this study 

which used SNAC-EXIOBASE data compared to the default EXIOBASE data used by RIVM. SNAC-

EXIOBASE uses national statistics for the Dutch part of the MRIOT. It also distinguishes a separate 

chemical and pharmaceutical industry in the Dutch part. This can help identify possible aggregation 

problems in the EXIOBASE category ‘chemicals n.e.c.’ which is an aggregate of the chemical and 

pharmaceutical industry sectors. Also, a literature review on LCA studies of pharmaceutical products 

was performed to be able to get a better understanding of the carbon and material footprint of 

pharmaceuticals and to see if this is in line with the way the pharmaceutical industry is represented in 

the SNAC-EXIOBASE input-output table. Lastly, if aggregation problems are found, then also possible 

improvement options based on the results of this study will be mentioned.  

Results 

No conceptual and calculation errors could be found in previous studies based on a comparison of the 

use of healthcare expenditure data and a comparison of the total Dutch carbon footprints calculated 

in these studies. The investigation into the EXIOBASE category ‘chemicals n.e.c.’ which was used in the 

RIVM study to described the pharmaceutical industry, showed that this category includes 

pharmaceuticals but also includes products like inks, paints, make-up, soaps, and bulk chemicals.  

The Dutch healthcare sector’s carbon footprint calculated in this study consists of 14.26 Mt CO2 

equivalents. The material footprint of the healthcare sector calculated using SNAC-EXIOBASE consists 

of 15.05 Mt of materials (minerals and metals) and is dominated by mineral use (89%). The mineral 
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footprint consists of a large share of ‘other mineral’ use (69%), which is very remarkable. The mineral 

group of ‘other minerals’ consists of bitumen, asphalt, precious and semi-stones, graphite, quartz and 

quartzite, siliceous fossil meals, asbestos, steatite and talc. This large share may be explained by the 

healthcare products that are made of the minerals that fall under ‘other minerals’. However, because 

we were not able to quantitively check how much of these ‘other minerals’ are used in the Dutch 

healthcare sector, this result remains uncertain.  

This study shows that there is an aggregation problem in the EXIOBASE category ‘chemicals n.e.c.’.  

This means that the carbon and material footprint of the Dutch consumption of pharmaceuticals is 

highly influenced by the grouping of chemicals together with pharmaceuticals. When using SNAC-

EXIOBASE data (which distinguishes a separate pharmaceutical sector), the carbon footprint decreases 

by 11% and the material footprint by 61%, compared to the use of EXIOBASE data and the use of the 

aggregate product group ‘chemicals n.e.c.’. In all cases, the Dutch ‘pharmaceutical industry’ category 

has a lower carbon, mineral and metal footprint per euro spent compared to the Dutch ‘chemical 

industry’ or the aggregate ‘chemicals n.e.c.’ category. This confirms the identified aggregation 

problem because it shows that the per euro footprints diminishes a lot when splitting the 

pharmaceutical industry from the chemical industry. Lastly, an analysis of the supply chains of the 

pharmaceutical industry, the chemical industry and ‘chemicals n.e.c.’ as they are displayed in the 

input-output tables showed that their supply chains substantially differ.  

The literature review on the life cycle analyses (LCA) of individual pharmaceutical products showed 

that only a small fraction of pharmaceuticals is analysed. It also shows that these studies often do not 

include the material footprint of pharmaceuticals and only focus on the carbon footprint. This also 

means that using LCA data to describe input-output analysis is not feasible. The LCA review showed a 

carbon footprint per euro range of the 44 substances that match the carbon footprint per euro of the 

pharmaceutical industry as it is described in the SNAC-EXIOBASE input-output tables. This shows that 

there is no initial reason to think that the pharmaceutical industry is properly displayed in the SNAC-

EXIOBASE dataset. 

Conclusion 

The observed decrease of the carbon footprint by 11% and material footprint by 61% in combination 

with the carbon footprints per euro, and the structural path analysis of the supply chains showed that 

there is an aggregation problem in the EXIOBASE ‘chemicals n.e.c.’. This shows that the results 

observed in previous studies are subject to a substantial aggregation problem, which also makes sense 

due to the different types of products that are in the ‘chemicals n.e.c’ category. Even though there is 

a decrease in the carbon and material footprint of the Dutch healthcare sector, it is still reasonable to 

say that the consumption of pharmaceuticals is a large share of the carbon and material footprint. The 

‘pharmaceutical industry’ category has the highest carbon, mineral and metal footprint per euro of all 

four healthcare-related categories used in this study. 

Recommendations 

The motivation of this study originates in the Green Deal Sustainable Healthcare in the Netherlands 

(GDDZ) in which RIVM (Steenmeijer et al., 2022) is creating a knowledge base for the environmental 

impacts of the Dutch healthcare sector. We advise RIVM to be careful to use the material footprint 

results for policy advice since the results of their study and this study differ so much, and relatively 

little research has been done on this subject, which makes it hard to value these findings. Especially 

the hotspot analysis of the material footprint calculated in this study showed that the large share of 

‘other minerals’ is hard to explain. Also, the total minerals extracted per sector in the SNAC-EXIOBASE 

extension differs compared to the EXIOBASE extension. Without knowing why these values differ, it is 
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unwise to put too much value on these results. Future research should therefore focus on the material 

footprint of the Dutch healthcare sector. 

RIVM is also advised to not base their knowledge base too much on the analysis of one year as creating 

a knowledge base on the environmental impacts of a healthcare sector benefits from trends over the 

years. The EXIOBASE dataset is available for many different years and the SNAC-EXIOBASE dataset is 

available for 2010, 2014 and 2016. It would be interesting to compare default MRIO healthcare studies 

of other countries to a SNAC approach study, as was done in this study. It would be interesting to see 

how the results change when using a SNAC approach based on other datasets.   

We suggest that future studies on the Dutch healthcare sector should focus on using MRIOs that have 

a separate pharmaceutical industry as this could solve some of these aggregation issues. The input-

output tables developed by the OECD (the ICIO tables) already apply this because they base their IOT 

on a newer economic classification system (ISIC Rev. 4). Before these can be used for healthcare 

footprint analyses, environmental extensions should be added and the resolution of sectors in these 

tables should be increased. Due to the economic analysis focus of the OECD, we do not expect the 

OECD to add these environmental extensions. As this ICIO table by the OECD is a very recent 

development we advise RIVM to take these developments into account for future studies as studies 

based on older economic classification systems (like EXIOBASE) will become outdated. Partnering with 

PBL could be an option since they have experience in working with the ICIO tables. Lastly, LCA studies 

can be still very useful to indicate hotspots of emissions or material extraction caused by the 

healthcare sector. We advise that mitigation measures should be based on low-hanging fruit which 

can better be found by using LCA.  
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1. Introduction  
The healthcare sector and rising environmental impacts are intertwined. On the one hand, the 

healthcare sector must deal with the negative effects of climate change and other environmental 

impacts. An often-mentioned negative effect of climate change is heat stress, which especially has an 

impact on the elderly and children (Kovats & Hajats, 2008). On the other hand, the healthcare sector 

contributes to environmental impacts, like global warming, smog formation, acidification, and more 

(Eckelman & Sherman, 2016). These environmental impacts are caused by environmental 

interventions. Some of the environmental interventions caused by healthcare were calculated by 

Lenzen et al. (2020). For example, according to Lenzen et al. (2020), the global healthcare sector is 

responsible for the environmental interventions of 54.4 Gt CO2 equivalent emissions, and 122.2 Mt 

particulate matter emissions.  Of all the indicators used in Lenzen et al. (2020), the healthcare sector 

causes global environmental impacts that are in the range of 1 to 5 per cent of global impacts, while 

they are responsible for more than 5% of some countries’ national impacts. Belkhir & Elmeligi (2019) 

even find that the pharmaceutical industry’s carbon intensity is around 55% higher than that of the 

automotive industry. The healthcare sector also uses a lot of materials (De Koning, 2020), which 

indirectly also causes a lot of environmental impacts during the mining and quarrying stage of these 

materials. 

As part of the Dutch national climate goals, reduction of GHG emissions from the healthcare sector 

are agreed upon. The Ministry of Health, Welfare, and Sport (VWS: Ministerie van Volksgezondheid, 

Welzijn en Sport) created a Green Deal Sustainable Public Health (GDDZ: Green Deal Duurzame Zorg) 

in which agreements between healthcare partners are made on how the healthcare sector can 

contribute to decreasing GHG emissions, how the circular economy can be stimulated in this sector, 

how medicine wastes can be diminished, and how a health-promoting living environment can be 

created (Green Deal, 2019). As part of the commissioned task by the VWS, the Dutch National Institute 

for Public Health and the Environment (RIVM: Rijksinstituut voor Volksgezondheid en Milieu) work on 

gaining knowledge on the environmental impacts of the Dutch healthcare sector (Rijksinstituut voor 

Volkgezondheid en Milieu, n.d.). This collecting of information is one of the focal points of the GDDZ. 

The first investigations in this programme used environmentally-extended multi-region input-output 

analysis to investigate the different environmental impacts and material use related to the healthcare 

sector. Input-output analysis (IOA) is a method often used for calculating the environmental footprints 

of a national economy or a sector in an economy. The knowledge base study of the RIVM focuses on, 

the carbon footprint, the material footprint, the land-use footprint, the freshwater footprint, and the 

waste footprint of the Dutch healthcare sector. It showed that the purchase of pharmaceuticals among 

the Dutch healthcare sector has the largest contribution to carbon emissions, raw material extraction, 

freshwater use, land use, and waste production (Steenmeijer et al., 2022). Next to this, explorative 

research was conducted by De Koning (2020) on the material footprint of the Dutch governmental 

expenditure. An unexpected finding was that the expenditures of the Dutch government in the 

product category ‘chemicals and chemical products’ has a high contribution to the material footprint 

(19.1%), while the final demand expenditures share is relatively small (2.76%), compared to other final 

demand categories like ‘public administration and defence’ (31.43%), that has a similar contribution 

to the total material footprint (23.4%) (De Koning, 2020). There is still no clear explanation on why the 

footprints of the chemical category are so large in both studies. Interestingly, in Steenmeijer et al. 

(2022) (RIVM study) the same chemicals category (chemicals not elsewhere classified) is used for 

calculating the environmental impact of pharmaceuticals used in the healthcare sector. No 
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disaggregation of this sector was done, which means that it is not clear which part of the 

environmental impact is caused by pharmaceuticals and which part is caused by other chemicals.   

Also, outside the Netherlands, very large shares of the healthcare sector’s emissions can be assigned 

to the consumption of pharmaceuticals. Wu (2019), for example, finds that the consumption of 

pharmaceuticals is responsible for 55% of the carbon emissions of the Chinese healthcare sector. Also, 

the study of the UK healthcare sector by Tennison et al. (2021) shows that 32% of the supply chain 

emissions are caused by the consumption of pharmaceuticals and chemicals. 

A further investigation into the environmental impact of the category ‘chemicals not elsewhere 

classified’ (‘chemicals n.e.c.’) could therefore give insight into if the high emission share of 

pharmaceuticals and chemicals is caused by the healthcare sector or if it is caused by other factors. 

The societal relevance of this thesis lies in the fact that public health is essential for any society, 

however, it should be balanced with environmental issues. The findings of this will help in this 

balancing, as it can be used by RIVM in its knowledge base program on the environmental impacts of 

the public healthcare sector. By identifying the cause of the healthcare sector's high material and 

carbon footprints and the contributions of individual pharmaceutical products to this footprint, VWS 

and the other 200 plus partners in the GDDZ can formulate better policies to reduce these footprints. 

Next to this, future studies could also benefit from the insights into possible aggregation problems in 

‘chemicals n.e.c.’.   

This thesis addresses the research field of Industrial Ecology as it tries to solve the above-mentioned 

sustainability problem. Industrial Ecology is an interdisciplinary research field that focuses on society’s 

metabolism to identify, design, and evaluate solutions for sustainability problems from a socio-

technical system perspective. The approach of this study is multidisciplinary and uses tools often used 

in Industrial Ecology which have a background in natural science, social science, and engineering, as 

input-output analysis and life cycle assessment (LCA) were used to investigate the carbon and material 

footprint of the Dutch consumption of pharmaceuticals. The healthcare sector is approached from a 

system thinking perspective, as the GHG emissions and material use caused by the healthcare sector 

were linked to the healthcare sector by using IOA.  

In the next chapter, the problem definition of this thesis will be addressed. After this, in chapter 3, 

important concepts and the research approach of this study are explained. Chapter 4 shows all 

methods used to obtain the results. Chapter 5 shows the results obtained, following the research flow 

diagram. In chapter 6 these results and discussed and put into context. The conclusions are based on 

the discussion and are presented in chapter 7. 

 

 

 

 

 

 

 

 



10 
 

2. Problem definition 
Carbon footprint analysis traditionally focussed on the carbon footprint of energy supply, different 

modes of transportation, different products, food production, and services in general (Minx et al., 

2009). In contrast, carbon footprint analyses of specific service sectors have received less attention. 

As mentioned in the introduction, recently, there have been studies that already used input-output 

analysis for calculating the environmental impact of the healthcare sector, however, there are 

relatively few. Pichler et al. (2016), who created methodologically consistent cross-country 

comparisons of carbon footprints of the healthcare sector, even stated that at that time only four 

countries (US, England, Australia, and Canada) had done a carbon footprint analysis for the healthcare 

sector. After this, the Chinese, Austrian, Japanese, and English healthcare sectors’ carbon footprints 

were calculated by Wu (2019), Weisz et al. (2020), Nansai et al. (2020), and Tennison et al. (2021), 

respectively. 

Strangely, the above-mentioned studies and studies focussing on the Dutch healthcare sector, only 

focused on the carbon footprint (ARUP & Health Care Without Harm, 2019; Gupta Strategists, 2019; 

Pichler et al., 2016), while other environmental impact indicators are also very relevant. The more 

recent study of Lenzen et al. (2020), does calculate other environmental footprints, however, the 

calculation of a raw material footprint is not included. Next to this, this study is a global assessment 

and thus lacks in detail. Material footprint analyses of the healthcare sector seem to be scarce. A 

search in the Scopus search engine with the keywords “material”, “footprint”, “health” and “public” 

showed there are no studies that specifically focus on calculating the material footprint of the 

healthcare sector. The only study found in this search that seems to be of relevance is of Ottelin, 

Heinonen & Junnila (2018). They do calculate the material footprint caused by the welfare state of 

Finland; however, they do not specifically focus on the healthcare sector, and nothing is stated on the 

material footprint of pharmaceuticals.  While there is a general shortage of studies focussing on the 

material footprint of the healthcare sector, this study specifically focuses on the Netherlands. 

Therefore, the first knowledge gap found is the lack of studies calculating the Dutch healthcare sector's 

material footprint. Steenmeijer et al. (2022) does calculate the Dutch healthcare sector’s material 

footprint, however, this study is not published yet. This lack of material footprint studies on the Dutch 

healthcare sector also made it difficult for Steenmeijer et al. (2022) to compare their results to 

previous studies. 

The second knowledge gap focuses more on the results of previous studies. From initial investigations 

by De Koning (2020) and Steenmeijer et al. (2022), the carbon and material footprint of the Dutch 

sector ‘chemicals n.e.c.’ is larger than expected. The same is observed for other countries in other 

studies (Nansai et al., 2020; Tennison et al., 2021; Weisz et al., 2020; Wu et al., 2019). There is no clear 

explanation for the large share of pharmaceuticals and chemicals of the healthcare sectors’ emissions 

for all these studies. It could be the case that this result represents reality quite well, however, it could 

also be a misrepresentation of reality. Therefore, this study analyses the following possible reasons 

why pharmaceuticals and chemicals are responsible for such a large share of the total healthcare 

emissions:  

• Data limitations due to the use of the selected input-output database  

• Conceptual errors 

• Incorrect calculations  

Conceptual errors here refer to errors in the construction of the input-output analyses which could 

have been prevented if the right concepts and thinking steps were used. 
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The uncertainty of the results of previous studies also lies in the fact that it is not yet clear if input-

output analysis is a suitable tool for analysing the carbon and material footprint of the healthcare 

sector of a nation. This is because critical assessments of the results are lacking.  Therefore, the third 

knowledge gap is the uncertainty of whether input-output analysis is a suitable tool that produces 

useful results for the carbon and material footprint of the healthcare sector of a nation.  

The three knowledge gaps this study addresses can be summarized as follows:  

1. What is the material footprint of the Dutch healthcare sector? 

2. Can the relatively high contribution of ‘chemicals n.e.c.’ to the Dutch healthcare sector´s 

carbon and material footprint as results and indications of previous studies, be explained by 

data limitations, conceptual errors, or incorrect calculations?  

3. To what extent is environmentally-extended input-output analysis a suitable tool to analyse 

the carbon and material footprint of the Dutch healthcare sector? 

Starting from the three knowledge gaps derived in this literature review, this study focused on 

unravelling why the large contribution of ‘chemicals n.e.c.’ to the Dutch healthcare sector’s carbon 

and material footprint and what is contributing to this. This study might also be able to give more 

insight into whether IOA is a useful way to calculate the carbon and material footprints of the 

healthcare sector and how it could be improved. From this line of reasoning the following main 

research question is formulated: 

How can the relatively large contribution of the product category ‘chemicals n.e.c.’ to the carbon and 

material footprints of the Dutch healthcare sector be explained? 

In this research question, the relatively large contribution of the product category ‘chemicals n.e.c.’ 

to the carbon and material footprints refer to the finding of the studies of De Koning (2020) and 

Steenmeijer et al. (2022). 

In the next chapter, the core concepts and research approaches that are related to the research 

question are described. The identification of core concepts helps lay the context of this thesis and is 

useful to find the general approach for the further analysis of the research question.  

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

3. Concepts and research approach 

3.1 Core concepts 
The core concepts are subdivided into IOA and healthcare expenditure concepts. IOA concepts are 

important because IOA is the main tool used in studies that investigate the healthcare sectors’ carbon 

and material footprint. IOA is also relevant for all the identified knowledge gaps. A good understanding 

of its basics and the state-of-the-art is therefore essential. Next to this, healthcare expenditure is an 

important concept because it is used to construct input-output calculations for the healthcare sector. 

Different studies use different definitions of healthcare expenditure, which influences the result of 

these studies. Insight into the different definitions is, therefore, essential to analyse other studies. It 

is also useful for choosing a suitable healthcare definition to be used in this study. 

3.1.1 IOA 
In its basics, an input-output model is a system of linear equations that describe the distribution of an 

industry’s product through an economy which was developed by Wassily Leontief in the 1930s (Miller 

& Blair, 2009). It shows how demand for products by one industry sector is related to the production 

of products in other industry sectors and is, therefore, often used for macroeconomic analyses. 

Economists use IOA to analyse economic events and shocks that are created by different sectors, and 

the effects these have on the whole economy. Input-output analysis is also an interesting 

environmental accounting tool. By adding environmental extensions to IOA the environmental 

impacts along the supply chain of a sector can be calculated (Kitzes, 2013). In contrast to other typical 

Industrial Ecology tools, IOA is both a macroeconomic tool and a tool for analysing economy-wide 

potential environmental impacts. For example, the commonly used method of Life Cycle Analysis (LCA) 

only focuses on specific products or services in a sector (De Haes, 2002; Guinée et al., 2002) and is not 

easily connected to an economic modelling framework. LCA and IOA have in common that they can 

consider different environmental indicators (ibid.). Material Flow Analysis (MFA) does have to 

possibility to look at a global system, however, it only investigates the flows of materials through the 

economy, while other environmental indicators are not analysed (Bringezu, & Moriguchi, 2002). The 

fact that input-output tables depict the whole economy and can be used to calculate different 

environmental indicators, makes it useful for this study. It can provide a general idea of the carbon 

and material footprint of the Dutch consumption of pharmaceuticals, without having to perform an 

LCA for all the individual products in this sector or collect all the bottom-up data of the industries, 

which would be impossible. 

3.1.2 Price levels 
An input-output table (IOT) is constructed from observed economic data for a specific geographic 

region, like national accounts (Miller & Blair, 2009). National input-output tables are usually 

constructed by national statistical agencies according to guidelines described in the “System of 

National Accounts” (SNA; United Nations [UN], 2009). The SNA describes how all the monetary 

transactions between economic activities are recorded in input-output tables. Those national statistics 

usually record the transactions at three different price levels, i.e., basic prices, producers’ prices, or 

purchasers’ prices. IOTs are often at basic prices. Figure 1 shows the relationship between, basic prices 

and purchasers’ prices.  
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Figure 1: Schematic overview of basic prices, producers’ prices and purchasers prices. Based on lectures by Dr Ranran Wang 
(where VAT refers to Value added tax and SUB refer to subsidies). 

The basic price is described by the SNA as (UN, 2009, p. 101): 

“The basic price is the amount receivable by the producer from the purchaser for a unit of a 

good or service produced as output minus any tax payable, and plus any subsidy receivable, 

by the producer because of its production or sale. It excludes any transport charges invoiced 

separately by the producer.”  

Producers’ price is described as (UN, 2009, p. 101): 

 “The producer’s price is the amount receivable by the producer from the purchaser for a unit 

of a good or service produced as output minus any VAT, or similar deductible tax, invoiced to 

the purchaser. It excludes any transport charges invoiced separately by the producer. 

The purchasers’ price is described as (UN, 2009, p. 102):  

“The purchasers’ price is the amount paid by the purchaser, excluding any VAT or similar tax-

deductible by the purchaser, in order to take delivery of a unit of good or service at the time 

and place required by the purchaser. The purchasers’ price of a good includes any transport 

charges paid separately by the purchaser to take delivery at the required time and place.” 

When national statistical data is used in performing calculations with the input-output table, a 

conversion between the statistical data from purchasers’ or producers’ prices is needed, to be able to 

calculate with comparable numbers. In this study, the conversion will be used to be able to include 

the healthcare expenditure data provided by Statistics Netherlands (CBS) (which is in purchasers’ 

prices) in the IOT table (which is in basic prices). 

 

3.1.3 Footprint calculation 
This study specifically dives deep into the carbon and material footprint of the Dutch healthcare 

sector. Calculating a footprint is also often called a ‘consumption based’ approach, as it calculates the 

resource depletion or emissions of an economy based on the consumption of goods and services and 
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their whole supply chain, instead of only considering the impacts that occur during the production or 

consumption activity itself, which is a ‘production based’ approach (Tukker et al., 2016). The material 

footprint is defined by Wiedmann et al. (2015, p. 6271) as: “the global allocation of used raw material 

extraction to the final demand of an economy”. Used raw materials refer to materials that are 

extracted and further used in the economy and have an economic value (Bringezu et al., 2003). In 

contrast, unused materials are extracted to be able to access the used materials, which is often called 

overburden (Bringezu et al., 2003). The unused materials do not enter the economic system and have 

no economic value. Wiedmann’s definition is not very clear on which materials fall under the material 

footprint. Raw material extraction can refer to a lot of different materials. It can refer to abiotic 

materials only, like minerals and metals. While it could also include biotic materials like biomass and 

fossil fuels (Giljum, Bruckner & Martinez, 2015; Wiedmann et al., 2015). Most importantly, the 

materials selected for calculations should match the goal of the study.  

Wiedmann & Minx (2008, p. 4) define the carbon footprint as “a measure of the exclusive total amount 

of carbon dioxide emissions that are directly and indirectly caused by an activity or is accumulated 

over the life stages of a product.". Wiedmann & Minx (2008) explicitly only included carbon dioxide, 

because at that time other greenhouse gasses were more difficult to quantify because of data 

availability. Nowadays, most studies also include other greenhouse gasses, like methane (CH4), nitrous 

oxide (N2O), and Fluorinated greenhouse gasses (F-gasses) which are common environmental 

extensions in input-output databases that in total define the carbon footprint. If these substances are 

already converted to the common unit of kg CO2 equivalents (CO2 eq.) depends on the database. For 

example, in EXIOBASE, the emissions of the greenhouse gasses are given in kg of CO2, CH4, N2O and 

SF6. These emissions need to be converted manually to CO2 equivalents using global warming 

potentials (GWP). GWP is the heat that is absorbed in the atmosphere by greenhouse gasses. For CO2 

this value is 1, but this differs for other greenhouse gasses and different time spans (IPCC, 2007). 

Substances like the HFC’s, the CFC’s and the PFC’s are already expressed in kg CO2 equivalents in 

EXIOBASE and many other GHG emission inventories.  

Given that environmentally-extended input-output tables are available, we explain how these can be 

used to set up an environmentally-extended Leontief demand-driven model to calculate the above-

mentioned carbon and material footprints. Leontief refers to both the developer of IOA, Leontief 

Wassily, as well as the Leontief matrix which is essential to IOA and is explained further on. As 

mentioned, this model is based on economic statistics, which are depicted in the square inter-industry 

transaction matrix (Z matrix in €/€). Figure 2 shows an example input-output table. The Z-matrix shows 

the inputs of each industry in the columns and the outputs of each industry in the rows. 



15 
 

 

Figure 2: Basic input-output table 

In this square both in the rows (i) and columns (j), the same industries are depicted. The zij elements 

in the matrix represent interindustry transactions per sector i to all sectors j, including the sector itself. 

The total output of industry A can be calculated by adding the outputs of all industries plus the final 

demand for sector A. The total input of sector A can be calculated by adding the inputs from all 

industries plus the value-added of sector A.  

By dividing each zij element by the total output (x) of sector j, we obtain the technical coefficients 

matrix A, as shown in equation 1. An element in the A matrix shows the direct requirements of 1 euro 

of the total output of j from sector i. Figure 2 also shows the A table constructed from the example Z 

table.  

 

𝐴 = 𝑍𝑥−1  Eq. 1  

 

 

Figure 3: The A matrix constructed from the basic input-output table shown in figure 2. 
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The Leontief inverse is the key to performing an IOA. The Leontief matrix represents the scaling factor 

(multiplier) of how the total output of and industry responds to changes in the final demand for this 

product. The Leontief inverse helps us see the impact of this in all industries in the economy, as it 

shows how the output of all these industries changes due to this effect. Important to note is that this 

covers both direct and indirect effects. The Leontief inverse is constructed using this A matrix by taking 

the inverse of the Identity matrix minus A, as shown in equation 2. 

 

𝐿 = (𝐼 − 𝐴)−1            Eq. 2  

 

 

Figure 4: Leontief matrix based on the A matrix shown in figure 3 

An element in the Leontief matrix (Lij) shows the total requirements of sector i per euro of final 

demand of sector j, which includes the direct and indirect requirements.  

The total output vector (x) can also be calculated by multiplying the Leontief matrix with the final 

demand.  

 

𝑥 =  𝐿𝑦         Eq. 3   

 

As mentioned, the Leontief matrix can give an idea of the output changes induced by a change in 

demand. Figure 5 shows this change in total output due to a change in final demand. In the example, 

the total output is calculated by using equation 3. The new final demand vector is based on an increase 

in final demand for industry A by 40%.  
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Figure 5: The change in total output induced by the change in final demand of industry A by 40% (numbers are rounded). 

For using environmentally-extended input-output analysis (EE-IOA) the Leontief inverse is again 

important, as it shows us the direct and indirect requirements of the sectors i per euro of final demand 

of sector j. This is essential for calculating the environmental footprint of a sector, as this enables 

covering all the emissions that are caused along the supply chain by producing the products of this 

sector. Therefore, the environmental footprint is calculated by multiplying the Leontief matrix with 

the final demand and the direct environmental coefficients vector plus the direct emissions caused by 

households, as shown in equation 4. 

 

𝐸 = 𝑓′𝐿𝑦 + 𝐸ℎℎ                      Eq. 4  

 

In general, this environmental footprint now shows the environmental intervention caused directly 

and indirectly by a certain final demand of different industries. Where E represents the total 

environmental footprint, f is the direct environmental coefficients vector (environmental intervention 

per €), L is the Leontief matrix, y is the final demand vector, and Ehh is the emissions directly occurring 

in households. 

Important to note is that footprints are expressed in the total amount of environmental intervention. 

Environmental interventions are defined as flows entering the economy from the natural environment 

or going from the economy (waste) into the natural environment (e.g., carbon dioxide, natural 

resources, and land use) (Guinée et al. 2002). Environmental interventions can be converted to 

environmental impacts indicators like global warming, material depletion, and land-use change, in a 

lifecycle impact assessment (LCIA).  
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3.1.4 Multi-Regional Input-Output analysis  
According to Tukker et al. (2016) environmentally-extended multi-regional input-output analysis (EE-

MRIO) is one of the most promising ways to calculate consumption-based indicators like carbon and 

material footprints because it can easily deal with the complex relation of value creation and 

production of emissions in the various countries of the supply chain. Figure 6 shows the basics of an 

EE-MRIO. It shows that imported products for consumption can be traced back to where they are 

produced, the final use for domestic and imported products, and factor inputs for each region. The 

production of each country is linked to the extraction of resources in that country. In this way, 

consumption of products by Dutch consumers can for example be traced back to mineral extraction 

abroad. 

 

Figure 6: A hypothetical EE-MRIO of 3 regions (Tukker et al., 2016) 

Nowadays MRIO datasets can have a very detailed resolution and geographically cover the whole 

world. The resolution refers to the number of industries and products that are covered in the dataset 

for all the countries. The EXIOBASE 3 dataset has a resolution of 163 industries by 200 products and 

covers 44 countries (28 EU, 16 major economies, and 5 rest of the world regions) (Stadler et al., 2018). 

Tukker et al. (2016) mention that this high resolution is crucial for calculating environmental footprints 

because environmental pressures in the economically less relevant sectors can be essential for 

different environmental footprints. 

Important to note is that this MRIO approach to calculating the carbon and material footprint has 

several advantages and limitations. The main limitation of using MRIO to calculate environmental 

footprints is that products with different physical characteristics are grouped into one product group 

with the same unit of economic value (the homogenous product group assumption). A downside of 

this is that it implies an economic allocation of the environmental impacts, which is based on the 

monetary transaction. However, if footprints are calculated with the use of physical allocations, the 

monetary MRIO data cannot be translated to physical transactions, as the monetary value per weight 

can differ between the different supply chains of the different products in one product category 

(Weisz & Duchin, 2006). To clarify this problem an example is shown in table 1. The table shows the 

per euro carbon footprint used in ‘chemicals n.e.c.’ which is the EXIOBASE category in which both 
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ascorbic acid (vitamin C) and sulfuric acid fall. As mentioned, in input-output analysis, both substances 

get the same environmental coefficient per euro as shown with the value of 2.51 kg CO2 eq./€ spent 

on ‘chemicals n.e.c.’. Table 1 also shows the carbon footprint per kg of the substance, based on the 

LCA database ecoinvent. This carbon footprint per kg of the substance can be converted to a carbon 

footprint per euro, using the weight per euro of the substances (Sigma-Aldrich, 2022; Zorginstituut, 

2021). The price of ascorbic acid is based on the pharmacotherapeutic compass 

(Farmacotherapeutisch Kompas) and the price of sulfuric acid is based on Sigma-Aldrich. They follow 

the same assumptions as later described in chapter 4.3 The numbers are based on calculations 

performed by De Koning (2021), which can be found in appendix B. 

Table 1: Example showing the main limitation of calculating environmental footprints using MRIO. 

 
Ascorbic acid (vitamin C) Sulfuric acid (98%) 

Weight [kg] per euro 0.01 0.09 

EXIOBASE carbon footprint per euro (WE) 2.51 2.51 

Ecoinvent carbon footprint per kg (RER) 3.09 0.10 

Ecoinvent carbon footprint translated to per euro (RER) 0.03 0.01 

 

Table 1 clearly shows that the per euro carbon footprint calculated using ecoinvent and EXIOBASE 

differ a lot. The ecoinvent data is based on a cradle-to-grave assessment of the environmental 

interventions occurring during the life cycle of these products. Therefore, a more detailed 

environmental impact per euro of the substance is represented by the ecoinvent carbon footprint per 

euro. This indicates that the aggregated footprint per euro ‘chemicals n.e.c.’, therefore, is not suitable 

for some individual products, e.g., sulfuric acid. This example shows that the aggregation within MRIO 

may lead to multiple orders of magnitude overestimation or underestimation of the carbon footprint 

of specific products that are estimated with the aggregate carbon footprint of the whole group. The 

calculation of the example can be found in appendix A.  

Another limitation of MRIOs is that they usually are too geographically aggregated to calculate 

agricultural or water footprints (Weinzettel et al., 2014).  However, for the material and carbon 

footprint, this is seen as less of a problem. The main advantages of using an MRIO approach is that it 

covers the whole world and that the environmental interventions are related to the demand of 

products, meaning that these cannot be lost in the calculations as they are based on material balancing 

principles (Tukker et al., 2016).  

3.1.5 SNAC Datasets 
A lot of studies that calculate the environmental footprints of the healthcare sector use EE-MRIO 

tables. As this study focuses specifically on the Netherlands, the best available data for the 

Netherlands should be used that is linked to an MRIO. Datasets like this already exist and are called 

Single National Accounts-Multi Regional Input-Output models (SNAC-MRIO). Statistics Netherlands 

created a SNAC-MRIO for the Netherlands and based it on the EXIOBASE database, therefore is called 

the SNAC-EXIOBASE dataset (Walker et al., 2017). In regular stock multi-regional databases, the data 

of the countries is adjusted to be able to match and balance all countries, which means that data for 

the Netherlands would not match the original national statistical data anymore (Edens et al, 2015). 

Edens et al. (2011) show that when using the MRIO GTAP7 the Netherlands is a net importer of 

emissions, while when using international trade statistics and the Dutch national accounts the 

Netherlands is a net exporter of emissions. This difference showcases that using MRIO data for a 

national analysis can be problematic. In SNAC databases, the national statistics are adhered to as 
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closely as possible, while the rest of the MRIO is adapted to this one country’s national statistics. This 

makes the datasets preferable when performing a national analysis.   

3.1.6 Healthcare expenditure 
Another core concept is healthcare expenditure because it is a term that can be defined in several 

ways. Statistics Netherlands defines total healthcare expenditure by three different definitions 

(Centraal Bureau voor de Statistiek [CBS], 2021d). The difference in these definitions on the one hand 

lies in if it only includes healthcare or if it also includes wellbeing, youth care and childcare (CBS, 

2021a). On the other hand, the difference lies in if the total Dutch expenditure entails expenditure by 

Dutch residents only or if it entails all healthcare expenses that happen in Dutch territory. Lastly, there 

is also a healthcare sector definition that only entails the expenses on compulsory health insurance. 

Data on healthcare expenditure is available at Statistics Netherlands for all three definitions of 

healthcare. Table 2 shows that there are several combinations of the definitions are possible. This 

table also shortly describes what these combinations of definitions entail.  

Table 2: Division of healthcare definitions and healthcare expenditure definitions 

Healthcare 
expenditure 
definition/healthcare 
sector definition 

Broad definition International definition Compulsory insurances 

Healthcare Medical care and long-
term care expenses that 
happen in Dutch territory. 

Consumption of 
healthcare by Dutch 
residents including 
abroad consumption 
abroad of medical and 
long-term care. 

Expenses on medical and 
long-term healthcare 
under compulsory 
insurances. 
 

Healthcare and 
wellbeing 

Medical care, long-term 
care, wellbeing, youth 
care, and childcare 
expenses that happen in 
Dutch territory.  

-  Expenses on medical care, 
long-term healthcare, 
wellbeing, youth care, 
and childcare under 
compulsory insurance. 
 

 

Important to note is that there is an international definition of defining healthcare (expenditure) 

developed by the System of Health Accounts (SHA). In this definition healthcare expenditure of a 

country entails all expenditure by its residents, which can also be abroad. The total expenditure on 

health includes all activities with the main aim of improving, maintaining, and preventing the 

deterioration of the health of persons, and limiting the consequences of ill health through the 

application of qualified knowledge of health. Healthcare includes the following groups of activities, 

(which includes the use of medicines and aids and support services such as ambulance transport): 

1. Health promotion and prevention. 

2. Diagnosis, treatment, cure, and rehabilitation of disease. 

3. Care for the chronically ill. 

4. Care for persons with health limitations or disabilities. 

5. Palliative care. 

6. Providing public health programs. 

7. Governance and management of health care and its financing. 

This definition only includes a small part of social care in comparison with the broad definition, which 

is why it is also a blank element in table 2. 
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On the other hand, there is a definition of healthcare in the broad sense. This definition includes 

expenditure on medical care, long-term care, wellbeing and social services, youth care and childcare. 

Care includes both provisions of services and goods. Expenditure on mutual deliveries between care 

providers does not count, it only concerns the ultimate (final) expenditure. This definition considers 

expenditure on healthcare goods and services by all institutions, practices, and organizations that 

provide those goods and services; providers for whom it is not their most important work also count. 

The expenses include the care provided to non-residents by Dutch healthcare providers. Lastly, the 

healthcare expenditure in the broad sense is also available without the social care expenditure, which 

is why this element in table 2 is filled in.  

The healthcare expenditure definition of compulsory insurance is of less relevance to this study, as 

the total expenses of the Dutch healthcare sector will be used to calculate the carbon footprint. 

Therefore, it is not explained in more detail. 

Lastly, another important concept in this study is extramural healthcare expenses. The previous 

definitions were all for defining total healthcare expenses, which in any of these definitions always 

includes extramural expenses. Extramural expenses are expenses by clients that are not staying in 

health institutions, like for example hospitals. It includes all expenses at the general practitioners and 

the pharmacy. This distinction between the consumption from the healthcare institution and 

extramural expenses is important for how the final demand of healthcare will be modelled in this 

study. This is explained in chapter 4.  
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3.2 Research approach  

3.2.1 Sub-questions  

The research approach follows the 3 identified knowledge gaps. From these knowledge gaps, sub-

questions were defined to be able to fill these gaps and answer the main research question.  

The three knowledge gaps this study addresses can be summarized as follows:  

1. What is the material footprint of the Dutch healthcare sector? 

2. Can the relatively large contribution of ‘chemicals n.e.c.’ to the Dutch healthcare sector´s 

carbon and material footprint as results and indications of previous studies, be explained by 

data limitations, conceptual errors or incorrect calculations?  

3. To what extent environmentally-extended input-output analysis a suitable tool to analyse the 

carbon and material footprint of the Dutch healthcare sector? 

The first sub-question tries to solve the second literature gap. It is defined as: “To what extent can the 

results of previous studies be explained by conceptual and calculation errors?” This sub-question is 

based on the suggestions for future research which were proposed by RIVM and De Koning (2020). 

The observed large contribution of ‘chemicals n.e.c.’ to the Dutch healthcare sector’s carbon and 

material footprint could have different origins. Firstly, it is not certain that the analyses of Steenmeijer 

et al. (2022) and De Koning (2020) do not contain any conceptual or calculation errors. To rule this 

out, the first sub-question investigates several possible sources of conceptual and calculation errors 

that may explain the previous studies’ results. 

 

The second sub-question is defined as: “What is the material and carbon footprint of the Dutch 

healthcare sector calculated in this study?” Except for the study by Steenmeijer et al. (2022), no 

material footprint studies on the Dutch healthcare sector exist (to the best of our knowledge). 

Therefore, this study helps fill the knowledge gap on the Dutch healthcare sector’s material footprint 

(first knowledge gap). As explained in chapter 3.1.5, the SNAC-EXIOBASE dataset ensures better data 

quality. It distinguishes a separate chemical and pharmaceutical industry in the Dutch part, while it 

also has both a ‘care and wellbeing’ sector and a ‘healthcare’ sector, which EXIOBASE does not. The 

Dutch healthcare sector’s carbon and material footprint calculated in this study, therefore, is mainly 

aimed at a better description of the Dutch healthcare sector in the IOT. 

 

The third sub-question dives deeper into data limitations as a possible explanation of the results and 

therefore tries to solve the second knowledge gap as well. The sub-question is defined as: “To what 

extent can the results of previous studies be explained by data limitations?” For this, the Dutch 

healthcare sector’s carbon and material footprint calculated in this study (using SNAC-EXIOBASE data) 

will be compared to previous studies. Since the SNAC-EXIOBASE distinguishes a separate chemical and 

pharmaceutical industry in the Dutch part, using this dataset can help identify possible aggregation 

problems in the EXIOBASE category ‘chemicals n.e.c.’ which is the aggregate of the chemical and 

pharmaceutical industry sectors. Next to this, multiplier analyses and structural path analysis were 

performed to get more insight into why the contribution of ‘chemicals n.e.c.’ in previous studies is so 

large, and if this result is mainly caused by data limitations in the EXIOBASE dataset.  

 

The fourth sub-question helps understand the carbon and material footprint of the Dutch 

consumption of pharmaceuticals as calculated with the use of IOA by investigating the carbon and 

material footprints of individual pharmaceutical products. It is defined as: “What are the carbon and 

material footprints of individual pharmaceutical products?” The fourth sub-question helps understand 

if the observed carbon footprint of previous studies matches the carbon and material footprints of 
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individual pharmaceutical products. De Koning (2020) recommended finding out in more detail which 

products are in ‘chemicals n.e.c.’ and how these different products influence the results. This also 

helps identify if ‘chemicals n.e.c.’ is too aggregated and gives a first impression of the 

representativeness of the category ‘pharmaceutical industry’ in SNAC-EXIOBASE. For this sub-

question, bottom-up data from LCA studies were used for the relevant product groups identified in 

sub-question 1. The LCA data which is normally expressed in carbon footprint per kg of the product 

was converted to a per euro carbon footprint, as is common in input-output analysis.  

 

The last sub-question was optional. If previous sub-questions show that ‘chemicals n.e.c.’ is too 

aggregated to be used for calculating the carbon and material footprint of the Dutch consumption of 

pharmaceuticals, improvements on this had to be found. The last sub-question is, therefore, defined 

as: “What are the possibilities for solving the aggregation problems in ‘chemicals n.e.c.’ to better 

calculate the carbon footprint of the pharmaceutical industry?” This sub-question helps answer the 

third knowledge gap. The aim of this sub-question is not to do an in-depth analysis of all possibilities; 

however, it will list several options that can logically be derived from the results observed in this study. 

3.2.2 Research flow and approach 
In figure 7, the research steps including the sub-questions, methods, and data needs, are schematically 

depicted. Figure 7 also shows when the knowledge gaps can be answered. The research approach is 

based on systematically ruling out possible reasons that could explain the high carbon and material 

footprint of the Dutch healthcare sector after which the main research question can be answered.  

 

Figure 7: Research flow diagram 

This study, therefore, takes a quantitative modelling approach. Mainly because input-output tables 

are an analytical framework (or model) (Miller & Blair, 2009) with which the main analyses of this 

study were conducted. In this study, the national accounts of all countries are quantitative data. By 

translating this data into a SNAC-EXIOBASE, it can be used as an analytical framework.  
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3.2.2 Limitations of research approach 
Choosing a research approach also has limitations. The main limitations of the research approach of 

this study can be summarized as follows:  

1. The analysis was only conducted for one reference year, which makes it difficult to 

generalize the results found in this study. 

2. Only two impact categories were taken into account, meaning that trade-offs between 

different impact categories are difficult to identify. 

The SNAC-EXIOBASE dataset exists for the years 2010, 2014, and 2016 (Walker et al., 2017). As the 

SNAC-Datasets are not publicly available, a SNAC dataset was requested by Statistics Netherlands. Due 

to the scope, and time frame for this study, one reference year was chosen. The reference year of this 

study is 2014 because this version was provided by Statistics Netherlands. Only reviewing one year is 

a limitation, since this makes it difficult to generalize the results found in this study. 

Another limitation is the limited impact categories calculated in this study, which makes it difficult to 

identify trade-offs between environmental impact categories. Only the carbon and material footprint 

were included. The reasons for this study were the relatively high carbon, material, blue water 

consumption, land-use and waste-generation footprints of the consumption of Dutch pharmaceuticals 

as identified by De Koning (2020) and Steenmeijer et al. (2022). Of these impact categories, only the 

carbon and material footprint (mineral and metal extraction) are available in the SNAC-EXIOBASE 

dataset. Due to the time scope of this thesis, we did not search for data for the other environmental 

extensions. Next to the convenience of selecting these two impact categories, it is also an interesting 

combination because the calculation of the material footprint and carbon footprint differ a lot. 

Materials are only delved in a few sectors at the beginning of the supply chain, while for the carbon 

footprint every step in the supply chain is interesting. Therefore, the aggregation of the category 

‘chemicals n.e.c.’ could influence the results of the material footprint more. 

Before answering the sub-questions and knowledge gaps mentioned in this chapter, the methods used 

for this will be discussed in the next chapter.  
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4. Methods  
This section describes per sub-question the collection, the methods for creating the SNAC-EXIOBASE 

calculations, and the methods for the analyses performed.  

4.1 Analysing the correctness of previous studies 
To rule out if the relatively high carbon and material footprint of the Dutch healthcare sector identified 

in De Koning (2020) and Steenmeijer et al. (2022) is not caused by conceptual or calculation errors 

these studies are reviewed. First, the expenditure on healthcare in both studies was reviewed. As the 

Leontief demand-driven model was used to calculate the footprints in these studies, the expenditure 

on healthcare can be seen as a driver of these footprints and is, therefore, carefully examined. The 

healthcare expenditure data used by Steenmeijer et al. (2022) (table 3) was checked by using the 

original data from Statistics Netherlands (Centraal Bureau voor Statistiek [CBS], 2021a) and calculating 

the basic price with the use of the Eurostat 2016 supply table (Eurostat, 2022).  

After this, the ‘chemicals n.e.c.’ sector which is used to depict pharmaceuticals in Steenmeijer et al. 

(2022) was broken down into sub-categories using economical statistical classification schemes. This 

gives a first impression of the suitability of the category ‘chemicals n.e.c.’ for calculating the Dutch 

carbon and material footprint. For this disaggregation of ‘chemicals n.e.c.’, concordance tables 

provided by EXIOBASE were used (Stadler et al., 2018). The disaggregation was done for the NACE 

classification and the CPA 2002 classification. The NACE classification was chosen because the 

categories in EXIOBASE are based on NACE (NACE Rev. 1.1). The CPA classification was chosen because 

it is more detailed. The product group names corresponding to the NACE codes are also collected from 

Eurostat (Eurostat, 2008). The CPA product group names were already listed in the concordance table 

(Appendix C).  

Lastly, the total carbon footprints of the two studies were compared to other studies, to see if these 

are similar or if they deviate. This helps point out if De Koning (2020) and Steenmeijer et al. (2022) are 

outliers, which could indicate conceptual and calculation errors. 

 

4.2 The material and carbon footprints of the Dutch healthcare sector and how they 

can be explained 
The methods of the second and third sub-question are combined as they overlap a lot. For the second 

sub-question, identifying the material footprint of the Netherlands, a new input-output study was 

performed using SNAC-EXIOBASE 2014 data. This new study is also useful to identify how the Dutch 

healthcare carbon and material footprint calculated with SNAC-EXIOBASE data compares to the 

footprints with the standard EXIOBASE data (sub-question 3). The footprints are calculated according 

to the theory described in section 3.1.3.  

4.2.1 Calculating the Dutch healthcare sector’s carbon and material footprint 
The SNAC-EXIOBASE data are available through Statistics Netherlands. Originally SNAC-EXIOBASE was 

used to calculate Dutch carbon footprints with data that is as close as possible to official Dutch 

statistics. The SNAC-EXIOBASE dataset contains 49 countries. It represents 2014 data and is in 

industry-by-industry (ixi) format. The Dutch Z-matrix contains 76 sectors and there are 21 final 

demand categories.  All other countries contain 163 sectors and 7 final demand categories, following 

the original EXIOBASE format. The 21 final demand categories follow the structure of the Dutch 

national accounts. Appendix D shows the metadata of the dataset, which also explains the different 

final demand categories of the Netherlands. Important to note is that in the SNAC-EXIOBASE dataset 
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the Netherlands only has about only half as many sectors as in the normal EXIOBASE set up, which 

means that this part is more aggregated, and inherently details are lost. However, using SNAC-

EXIOBASE is very interesting for this study since it includes separate Dutch ‘pharmaceutical industry’ 

and ‘chemical industry’ categories, whereas in the original EXIOBASE dataset the chemical and 

pharmaceutical industries are aggregated in one category ‘chemicals n.e.c.’. The environmental 

extensions of the SNAC-EXIOBASE dataset include carbon, biomass, minerals, metals, and fossils 

resources.  

In this study, only the carbon, minerals, and metals extensions were used. The SNAC environmental 

extensions were constructed from the EXIOBASE extensions. Appendix D shows the metadata of the 

SNAC-EXIOBASE dataset. 

The carbon extension was used for the carbon footprint analyses. As shown in appendix E, the SNAC-

EXIOBASE dataset takes 22 EXIOBASE environmental emissions into account for constructing the 

carbon extensions. Important to note is that the SNAC-EXIOBASE dataset already converts the 

substances to CO2 equivalents as follows:  

• 1 kg CO2 = 1 kg CO2 eq.  

• 1 kg CH4 = 25 kg CO2 eq. 

• 1 kg N2O = 298 kg CO2 eq. 

• 1 kg F-gasses = 1 kg CO2 eq. 

In the SNAC-EXIOBASE dataset, it is therefore not possible to easily change the global warming 

potentials per substance, while in EXIOBASE this is possible because the practitioner of the input-

output analysis must assign these to CO2, CH4, and N2O themselves. This possibility to change the 

global warming potentials is very useful because global warming potentials differ for the time span 

you take, e.g., 100 years. Global warming potentials are also subject to change due to ongoing 

research (Trottier, 2015). Therefore, this lack of flexibility in the SNAC-EXIOBASE dataset is a downside. 

EXIOBASE includes more substances than SNAC-EXIOBASE does and offers the possibility for the 

practitioner of the input-output analysis to decide which substance should be included in the footprint 

calculation.  For a broad carbon footprint analysis, often the problem-oriented approach baseline CML 

1999 of and a GWP of a 100-year time span is used, as described in the DESIRE characterisation 

matrices (Van Bree & Slob, 2016) (see appendix F). Comparing the substances used for the carbon 

extension with the DESIRE characterisation, it becomes clear that NMVOC is excluded in the SNAC-

EXIOBASE carbon extension, while it is available in EXIOBASE. 

For the material footprint, only the mineral and metal extensions were used. Biomass was excluded 

from the material footprint analysis as this study does not focus on a food or crop system, making it 

less relevant. The fossil resources extension was also excluded from the material footprint analysis 

because of three reasons. First, it overlaps with the carbon footprint, as the carbon extension already 

shows the effect of using fossil fuels, and the fossil resources extension is, therefore, less interesting. 

Second, if fossils would be included in the material footprint, this would dominate the material 

footprint, as in our economies a lot of fossils are used, making it more interesting to exclude them. 

Third, Steenmeijer et al. (2022) also do not include fossil resources in their material footprint, 

excluding these extensions, makes these studies more comparable. This third argument also holds for 

excluding biomass from the material footprint. SNAC-EXIOBASE extensions are built up from the 

EXIOBASE extensions. Appendix E shows which EXIOBASE extensions fall under the aggregated SNAC-

EXIOBASE extensions. The metal and mineral extensions only include the ‘domestic extraction used’ 

minerals and metals, as explained in the core concepts. 
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Before any analyses were performed, the total carbon footprint of the Netherlands was calculated to 

compare it to the carbon footprint calculated by Walker et al. (2017) as a validation of the results 

obtained in this study. For this, the direct emissions by households based on Statistics Netherlands 

data were used, which can be found in Appendix G (CBS, 2020). For calculating the carbon and material 

footprint of the Dutch healthcare sector, a demand stimulus had to be constructed. Before being able 

to construct this demand stimulus, a suitable healthcare expenditure definition for this study had to 

be chosen. This study used the broad healthcare expenditure definition which also includes care and 

wellbeing. This definition is suitable as the SNAC-EXIOBASE dataset also includes a care and wellbeing 

sector, and because in this sector also pharmaceuticals are used, which is the interest of this study. 

This definition includes all expenses on health care made in Dutch territory. An advantage of selecting 

this definition is that it was also used in Steenmeijer et al. (2022), which makes the studies easier to 

compare.  

4.2.2 Analysing the Dutch healthcare sector’s carbon and material footprint 
Several analyses were performed to explain the Dutch healthcare sector’s carbon and material 

footprint calculated in this study. To identify consumption drivers of emissions, contribution analyses 

were performed. A contribution analysis helps quantify emissions embodied in different product 

categories of the demand stimulus. A contribution analysis is sometimes also called a consumption 

perspective. The equation used for a contribution analysis is shown in equation 5. 

 

∆𝑒′ = 𝑓′𝐿∆�̂�           Eq. 5  

 

To identify where in the supply chain emissions, occur, hotspot analyses were performed. A hotspot 

analysis is sometimes also called a production perspective. This study performs a hotspot analysis per 

sector and per country, to get even more detail into where emissions occur. Next to this the SNAC-

EXIOBASE mineral and metal extensions are disaggregated to the material groups used in EXIOBASE, 

to be able to perform a hotspot analysis per material group.  

The equation used for the hotspot analysis is shown by equation 6.   

 

∆𝑒 = 𝑓𝐿∆𝑦           Eq. 6  

 

For the hotspot analysis per material group, the EXIOBASE extension was copied for all countries 

except for the Netherlands. As the Dutch part of the SNAC-EXIOBASE database contains 76 sectors 

instead of 163 in EXIOBASE, a concordance table was made to assign the EXIOBASE extensions to 

SNAC-EXIOBASE sectors (Appendix H). This concordance table is based on the SBI (standard bedrijfs 

indeling) classification and the EXIOBASE products (CPA 1996 codes) (Kruiskamp, 2021). The 

concordance table was only used for the mineral extension, as according to the SNAC-EXIOBASE metal 

extension, no metal extraction is occurring in the Netherlands. In some cases, several EXIOBASE 

sectors should be linked to multiple SNAC-EXIOBASE sectors, which means that a distribution key is 

needed. Because finding a suitable distribution key is very difficult, first, a check was made for the 

sectors where mineral extraction occurs in the Dutch part of the SNAC-EXIOBASE dataset. All these 

sectors have one or multiply relevant EXIOBASE sectors whose minerals extension can be linked to it, 

which all are not linked to another sector that has mineral use occurring in it. This one-to-many 
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relationship makes the concordance table created in this study not suitable to use for the carbon 

extension because distribution keys would have to be added.      

     

Several multiplier analyses were performed to get more insight into the differences between 

emissions and extraction caused by different sectors. Equation 6 shows how the multiplier analyses 

were conducted. Where p represents the per euro footprint (intensity), and the diagonalized f 

represents one extension that is diagonalized.  

 

𝑝 = 𝑓(𝐼 − 𝐴)−1           Eq. 7 

 

The carbon, mineral, and metal intensity of the SNAC-EXIOBASE ‘chemicals n.e.c.’ categories were 

compared per country and with the Dutch ‘chemical industry’ and ‘pharmaceutical industry’ 

categories available in the SNAC-EXIOBASE dataset. The carbon, mineral, and metal intensity of the 

Dutch ‘chemicals n.e.c.’ sector in the 2014 EXIOBASE dataset was also compared to the Dutch 

‘chemical industry’ and ‘pharmaceutical industry’ categories in the SNAC-EXIOBASE dataset. This 

comparison will identify if there is an aggregation problem in ‘chemicals n.e.c.’ 

Lastly, also a structural path analysis (SPA) was performed to get more insight into where in the supply 

chain of the Dutch chemical and pharmaceutical industries a large part of the environmental 

intervention occurs (Peters & Hertwich, 2006). This was also done for the Dutch EXIOBASE category 

‘chemicals n.e.c.’. The method of the structural path analysis is derived from the earlier mentioned 

equation 3. 

 

𝑥 =  𝐿𝑦 =  (𝐼 − 𝐴)−1  Eq. 8  

 

The Leontief inverse can also be written as a Taylor expansion (Lenzen, 2007; Waugh 1950) which is 

shown in equation 9: 

 

𝐿 = (𝐼 − 𝐴)−1 = 𝐼 + 𝐴 + 𝐴2 + 𝐴3 + ⋯       Eq. 9  

 

Each element in this expansion represents a production layer in the input-output system. In theory, 

this expansion goes to infinity, however, in an input-output system, there is a limited amount of 

production layers. Similarly, the environmental intervention (excluding household direct emissions), 

can be calculated by using this Taylor expansion (Peters & Hertwich, 2006):  

 

𝑓𝐿𝑦 =  𝑓(𝐼 − 𝐴)−1𝑦 = 𝑓𝐼𝑦 +  𝑓𝐴𝑦 + 𝑓𝐴2𝑦  + 𝑓𝐴3𝑦 + . ..                 Eq. 10  
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The contribution of each layer ‘t’, to the environmental intervention, can then be written as fAt y.  The 

SPA conducted in this study fIy (the zeroth production layer), represents the direct emissions emitted 

by the chemical and pharmaceutical manufacturers. To produce a pharmaceutical product, however, 

inputs from other industries are necessary, therefore the emissions emitted during the production of 

these products should also be counted, which is done by the second tier fAy. This expansion goes until 

the end of the production chain fAny, where ‘n’ represents the deepest production layer.  

Often, the largest contribution to the environmental intervention does not occur in the zeroth tier but 

is caused somewhere up in the supply chain (Treloar, 1997). Interestingly, SPA can show which 

production linkages (small set of steps in a supply chain) contributes a lot to the total environmental 

intervention of producing a certain product.  

The SPA algorithm is based on the following equations. The simplest thing is to think of the supply 

chain as a tree, where the number of nodes grows exponentially with each tier (resulting in each tier 

having nt+1 nodes). The zeroth tier shows the direct contribution of each production layer: 

 

𝐹𝑖𝑦𝑖                         Eq. 11 

 

 Then the first-tier nodes (n2 nodes) are evaluated by equation 12, which shows a path from i to j: 

 

𝐹𝑗𝐴𝑗𝑖𝑦𝑖                            Eq. 12  

 

Continuing to the second-tier, the nodes are evaluated by equation 13, which shows a path from i to 
j to k. 

 

𝐹𝑘𝐴𝑘𝑗𝑦𝑗                              Eq. 13  

 

For all other tiers, the same is pattern is performed.  By calculating all nodes, the production paths 
that contribute the most to the total environmental intervention can be identified.  

The open-access python package ‘pyspa’, developed by André Stephan and Paul-Antoine Bontinck was 

used in this study (Stephan & Bontinck, 2019). The ‘pyspa’ package is based on the code of Treloar 

(1998).  In this SPA package, the stages (tiers) and thresholds can be set to preferred numbers. The 

package instructions recommend setting the stages to at least 8 for an IOA. Therefore, this study sets 

the stages at 8.  Thresholds are set so that all paths combined represent at least 75% of the total 

environmental intervention. A SPA was conducted for the Dutch ‘chemical industry’ and 

‘pharmaceutical industry’ categories as available in the SNAC-EXIOBASE dataset, as well as for the 

category ‘chemicals n.e.c.’ in EXIOBASE. The carbon extension used in the EXIOBASE extension 

contains the same substances and weighting factors as the SNAC-EXIOBASE carbon extension, to make 

the SPA comparable between the categories.  
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4.3 Carbon and material footprints of individual pharmaceutical products 
First, a small literature review was conducted to find out if there are already scientific papers and 

reports that researched the carbon and material footprint of individual pharmaceutical products and 

their contribution to the total healthcare footprint. This showed that for identifying the carbon and 

material footprint of individual pharmaceutical products data from LCA studies was needed. RIVM 

already worked on collecting data on the carbon footprint of different pharmaceutical products, by 

doing a literature review on LCA (Pieters et al., 2022). The papers found in this search have partially 

been used in this study. This literature review was based on a selection of papers which were found 

using keywords relating to LCA and pharmaceuticals (TITLE-ABS-KEY (LCA OR LCIA OR “Life Cycle 

Assessment” OR "Life Cycle Analysis" OR "Life Cycle Inventory Assessment" OR "Life Cycle inventory”) 

AND TITLE-ABS-KEY (API OR "active pharmaceutical ingredient*" OR "drug packaging" OR "metered 

dose inhaler") (Pieters et al., 2022). In this search, 87 papers were found of which 17 were selected by 

RIVM based on the following selection criteria of the paper should be modelling an LCA and should be 

about a pharmaceutical product or related to it (e.g., packaging of pharmaceuticals) (Pieters et al., 

2022). Several studies have been added to the list identified by Pieters et al. (2022) by snowballing the 

papers. Eventually, 11 studies were suitable for this study, meaning that their functional unit could be 

translated to ‘1 kg of API or 1 kg of chemical’. 

Most LCA studies described the carbon footprint per kg active pharmaceutical ingredient (API). By 

converting the carbon footprint per kg, to a monetary carbon footprint, the range in LCA results could 

be compared to the carbon intensity of the input-output sector ‘chemical industry’ and 

‘pharmaceutical industry’ categories in SNAC-EXIOBASE. This gives a first impression of how individual 

products carbon intensity compared to the aggregated carbon intensity of input-output analysis and 

can therefore give an idea of the range of the carbon intensity of individual products. The online Dutch 

pharmacotherapeutic compass (Farmacotherapeutisch Kompas) was used, which is a reference site 

for medical professionals, which provides information on the dose, API, side effects, and prices of 

pharmaceutical products (Zorginstituut Nederland, 2021). When possible, the prices of a substance 

were gathered from the Farmacotherapeutisch Kompas (pharmacotherapeutic compass). The 

Farmacotherapeutisch Kompas is preferred over other sources because it represents the Dutch 

situation and is reliable because it is developed by Dutch pharmacists and medical physicians and is a 

product of the Dutch Healthcare Institution (Zorginstituut Nederland, 2021). The 

Farmacotherapeutisch Kompas is also convenient because it is open-source, meaning that the data 

used for calculations in this study can be verified.  

 

Figure 8: Different scopes that can be used in LCA studies of pharmaceuticals 

The reviewed LCA studies that will be used to calculate a carbon intensity (kg CO2 eq./ €), either 

performed a cradle-to-gate or cradle-to-grave analysis. A cradle-to-grave LCA study takes the 
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environmental interventions occurring at every step of the supply chain into account starting from 

resource extraction until waste disposal (end-of-life), as can be seen in figure 8. A cradle-to-gate LCA 

study only takes into account environmental interventions occurring from the resource extraction to 

the factory gate. A lot of LCA studies related to pharmaceutical products are cradle-to-gate. More 

specifically, these are cradle-to-gate studies for API production. For example, for paracetamol, this 

means that the production of the tablet and the packaging of the tablets are excluded from these 

studies, as can be seen in figure 8.  

The difference in scope of the LCA study results in different types of prices that are suitable to use per 

scope. For the cradle-to-gate studies, prices are needed at the gate of the manufacturer of the AP., 

Unfortunately, these industry prices are not available on the Farmacotherapeutisch Kompas, which 

only describes the costs of the pharmaceutical formulation in consumer prices. To find the industry 

prices, first alternative websites were consulted. These were mostly online marketplaces that provide 

little information on what the average prices for 1 kg of API is based on (PharmaCompass, n.d.). This 

makes using these prices unreliable. An example of such a marketplace is PharmaCompass 

(PharmaCompass, n.d.). Because of the lack of reliable industry prices, the lowest available price on 

the Farmacotherapeutisch Kompas of the pharmaceutical in question was used to represent the 

industry price. This assumption is based on the following reasoning. For most medicinal options, the 

Dutch Farmacotherapeutisch Kompas lists several formulations that Dutch healthcare practitioners 

could prescribe to a patient, for instance, the original (patented) compound and several alternatives. 

The final product that a patient receives is in many cases dependable on the type of healthcare 

insurance the patients have. Among these alternatives, one finds the generic pharmaceuticals 

(generiek), which are brandless alternatives (with no patent). Generic pharmaceuticals often have 

lower prices, due to market forces. Of course, the lowest prices (which are often generic prices) found 

on the Farmacotherapeutisch Kompas, also include costs that should not be included in the industry 

API prices, e.g., labour costs, transportation costs, and packaging costs. For the industry, margins on 

generic products are often very low, and the final product price will therefore be largely constituted 

by API purchase (industry) price. This assumption results in the prices of the pharmaceuticals for which 

a cradle-to-gate study is performed to be on the high side. The use of these high prices results in lower 

carbon intensities than when real industry prices would be used because the carbon footprint is 

divided by a larger number than in the case of lower prices. 

For the cradle-to-grave LCA studies’ products, consumer prices are needed. The prices available on 

the Farmacotherapeutisch Kompas are, therefore, suitable. Because for many pharmaceuticals 

multiple formulations are listed on the Farmacotherapeutisch Kompas, an average of the prices of 

these formulations is used.  

Lastly, the study by Raymond et al. (2010) does contain any LCA results on pharmaceuticals, however, 

it focussed on solvents and the comparison of solvents to commodity chemicals. This study was 

included, because, in the production process of API, 80-90% of the mass can be assigned to solvent 

use (Raymond et al., 2010). This means that solvents are common products used in the pharmaceutical 

industry, and therefore also interesting for this study. The prices of the solvents and commodity 

chemicals are not available on the Farmacotherapeutisch Kompas, which is why the prices available 

on Sigma-Aldrich were used. Sigma-Aldrich is a large supplier to the Life Sciences industry. They 

guarantee a high quality and purity of their products, which is why their prices are quite high. This high 

quality is needed for the labs to which they sell, which is on a smaller scale compared to the large 

pharmaceutical companies who mainly buy in bulk. Prices of larger quantities are usually lower.  

However, the industry prices of solvents and raw materials used by these large pharmaceutical 

companies are often confidential. Therefore, the prices of the solvents and commodity chemicals 
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derived from Sigma-Aldrich are based on the largest quantities available, mimicking these bulk 

purchases.  

The assumptions made for collecting price data were discussed with Dr Kweekel, a Dutch hospital 

pharmacist (D. Kweekel, personal communication, January 7, 2021). The assumption made for the 

conversion of the LCA studies to a carbon intensity per substance are summarized as follows: 

1. The pharmaceutical product prices were converted to basic prices using the conversion 

rate of 0.73 to basic prices based on the SUT category 28: Basic Pharmaceuticals and 

Preparations (as explained in chapter 5.2.1.). 

2. Prices of bulk chemicals (often solvents) are based on the largest quantity available on 

Sigma-Aldrich website. 

3. For the pharmaceuticals where a cradle-to-gate LCA was performed, the lowest prices of 

pharmaceuticals available on  www.farmacotherapeutischkompas.nl were used. 

4. For the pharmaceuticals where and cradle-to-grave LCA study was performed an average 

of all alternative formulations available on www.farmacotherapeutischkompas.nl  was 

used. 

5. For Hexane and Toluene, the prices of PharmaCompass were used as they were not 

available on all the above-mentioned sites. 

 

4.4 Improving the calculation of the carbon and material footprint of the Dutch 

healthcare sector 
In the last sub-question, two possible improvements on the methods used to calculate the carbon and 

material footprint of the healthcare sector are suggested based on the findings of this study. For this 

no literature is performed to find all possible improvement options, however, the most logical 

improvement options from this study are represented to get a first idea of how to proceed in future 

studies.  

 

 

 

 

 

 

 

 

 

 

http://www.farmacotherapeutischkompas.nl/
http://www.farmacotherapeutischkompas.nl/
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5. Results 

5.1. Conceptual comparison of previous studies  
In this chapter, the first sub-question is answered. The study by De Koning (2020) and Steenmeijer et 
al. (2022) were compared to each other to be able to identify errors and conceptual mistakes. This 
comparison is also useful for deciding how to construct new input-output-output calculations using 
SNAC-EXIOBASE data. The studies are compared on the amount and source of healthcare expenditure 
they use, and how they depict the pharmaceutical industry. The Dutch carbon footprint of Steenmeijer 
et al. (2022) is also compared to other studies to identify if it stands out, which could indicate a 
conceptual or calculation error. 
 

5.1.1 Dutch expenditure on healthcare 
To be able to answer sub-question 1 first the healthcare expenditures used in the study of De Koning 

(2020) and Steenmeijer et al. (2022) are compared and evaluated.   

As mentioned in the core concepts section, the healthcare sector can be defined in different ways. 

Steenmeijer et al. (2022) defined healthcare according to the broad definition of healthcare and 

wellbeing. The healthcare expenditure data of Steenmeijer et al. (2022) was classified according to 

the System of Health Accounts (SHA) classification (World Health Organization, 2011). De Koning 

(2020) calculated the governmental expenditure and investments based on the EXIOBASE expenditure 

of 2010 which follows but is not exactly classified according to NACE Rev. 1.1. De Koning (2020) 

calculated the governmental expenditure and investments based on the EXIOBASE expenditure of 

2010. Relevant EXIOBASE categories are chemicals and chemical products (‘chemicals n.e.c.’), health 

and social work (HSW), and medical precision and optical instruments. Following EXIOBASE, the total 

Dutch demand for these categories is 81.56 billion euros, as can be seen in table 3. Table 3 shows that 

the governmental demand for these categories’ totals 66.39 billion euros. In the study of De Koning 

(2020), this governmental demand is used to calculate the material footprints of these categories. 

Interestingly, when comparing the market share of the Dutch government to all expenditure in the 

healthcare-relevant sectors, the government market share is quite large, especially in the HSW 

category, where it is about 30% (table 4). These findings are in line with ARUP & Health Care Without 

Harm (2019), who also find that healthcare has a share of 30% of the Dutch governmental expenditure.  

Table 3: Total final demand for healthcare-relevant sectors derived from EXIOBASE for the year 2010 (De Koning, 2020). 

Code CPA level 3 category Final demand 
[billion euros] 

80 Health and social work 68.80 

74 Manufacture of chemicals and chemical products 8.66 

33 Manufacture of medical, precision and optical instruments, watches and 
clocks 

4.1 

Total  81.56 
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Table 4: Sum of the final demand and investments of the Dutch government in 2010. Including the share of the product 
groups’ final demand of the total governmental demand (De Koning, 2020).  

Code CPA level 3 category Final demand 
[billion euros] 

Share of total 
Dutch 
governmental 
expenditure [%] 

80 Health and social work 58.7 30.01 

74 Manufacture of chemicals and chemical products 5.4 2.76 

33 Manufacture of medical, precision, and optical instruments, 
watches and clocks 

2.29 1.17 

Total  66.39 33.94 

 

Table 5: The market share of the Dutch government per category for the year 2010 (De Koning, 2020). 

Code CPA level 3 category Market share of 
the Dutch 
government [%] 

80 Health and social work 84 

74 Manufacture of chemicals and chemical products 23 

33 Manufacture of medical, precision, and optical instruments, watches and 
clocks 

19 

 

The amount of Dutch expenditure in the broad definition of healthcare and wellbeing provided by 

Statistics Netherlands and used by Steenmeijer et al. (2022) is 94.84 billion euros for the year 2016 

(CBS, 2021d). However, this expenditure is still in purchaser price, while the EXIOBASE expenditure is 

in basic prices. This means that the expenditure data provided by Statistics Netherlands still had to be 

converted to basic prices. This is done per category for all the relevant sectors, as can be seen in table 

7. For the conversion to basic prices, the same conversion rate is used as holds for the Eurostat supply 

table of 2016’s similar category, as these tables are both available in basic and purchasers’ prices. For 

example, for the expenditure of pharmaceuticals, the Dutch national statistics category ‘HC51: 

medicines and aids’ are used, and the corresponding supply table category is ‘Basic Pharmaceuticals 

and Preparations (28)’ (Eurostat, 2022). The calculation of the conversion rates is shown in table 6. 

Table 6: Conversion rates from basic to purchasers’ prices used in Steenmeijer et al. (2022) based on Eurostat (2022) 

Sector SUT category Basic prices 
[million euros] 

Purchasers’ price 
[million euros] 

Ratio 

Medicines and 
consumables 

28. Basic 
Pharmaceuticals 
and Preparations 

16446 24452 0.67 

Therapeutic tools 33. Computer, 
electronic and 
optical products 

92968 113372 0.82 

Healthcare 83.Human health 
services 

44463 44635 0.996 

84. residential care 
and social work 
services 

36223 36223 1 
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There seems to be almost no conversion rate between the purchasers’ and basic price of the health 
services, therefore it is kept the same. The expenditure on health services is based on the total 
expenditure of healthcare – the purchasers’ prices of HC51 and HC52: 91.842 – 5.639 – 3.107 = 86.10 
billion euros. The total expenditure on healthcare in basic prices is therefore 92.53 billion euros. 
 
Table 7: Conversion from purchasers’ prices to basic prices of the expenditure on the Dutch healthcare sector for the year 
2016 as used in the Steenmeijer et al. (2022) 

 
Category 

Purchasers’ prices [billion euros] 
 

Basic prices [billion euros] 

HC51: Medicines and aid 5.64 3.80 

HC52: Therapeutical tools 3.11 2.55 

Health services 86.10 86.10 

Total 94.84 92.45 

  

From this comparison, it can be derived that the healthcare expenditure in both studies is quite similar, 
however, De Koning (2020) is interested in governmental demand only. If we include private consumer 
demand, the healthcare expenditure rises by about 6 billion euros. Generally, using national statistical 
data is preferred over internationally compiled data like the data provided by EXIOBASE. Next to this, 
the Statistics Netherlands data on healthcare expenditure can provide the total picture, while 
EXIOBASE can only provide us with the governmental expenditure, which is close to the total 
healthcare expenditure, or to the total demand for the healthcare-relevant sectors, which means that 
non-healthcare demand is also included. Lastly, De Koning uses 2010 data as EXIOBASE only has real 
data until the year 2010, after this now-casts are used to predict the near future (Stadler et al., 2018). 
This means that after 2010 the use of Statistics Netherlands data is even more preferred. Steenemeijer 
et al. (2022) uses expenditure data from 2016 and insert it into the EXIOBASE version of 2016. In 
conclusion, it can be said that the studies’ relatively large carbon and material footprint for the 
category ‘chemicals n.e.c.’ cannot be explained by errors in the way the final demand vector is 
constructed to represent the consumption of Dutch healthcare. 
 

5.1.2. Comparing different categories used for pharmaceuticals in input-output analysis and 

economic statistics 
The main interest of this study is to unravel the carbon and material footprint of the Dutch 

consumption of pharmaceutical products. It is interesting to dive deeper into the different relevant 

categories for pharmaceuticals in input-output analysis on the one hand, and the national statistics on 

the other hand. Specifically, we investigate if the studies of De Koning (2020) and Steenmeijer et al. 

(2022) assigned expenditures in the healthcare sector on pharmaceuticals to the correct product 

categories. 

EXIOBASE 

As mentioned, the pharmaceutical industry is not specifically defined in EXIOBASE. EXIOBASE follows 

NACE Rev. 1.1 for economic activities and CPA 1996 for products. In EXIOBASE, pharmaceuticals fall 

under an aggregated category ‘chemicals n.e.c.’ (63). This section investigates which products fall 

under ‘chemicals n.e.c.’. To be able to investigate what falls under the category ‘chemicals n.e.c.’ (63) 

in EXIOBASE we have to make use of the relationships between the classifications that are used for 

economic activities, products and (traded) goods. The linkages between classification systems are 

shown in figure 9. Figure 9 shows that classification systems are either on the level of economic 

activities, products, or goods. EXIOBASE is classified based on NACE Rev. 1.1. Figure 9 proves, that 

even though EXIOBASE is based on NACE Rev. 1.1, other classifications like PRODCOM or CPA are also 

suitable to find out which products fall under ‘chemicals n.e.c.’ In theory, these classification systems 
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are linked to each other, however, in practice, this linkage is often quite difficult to use. The sector 

‘chemicals n.e.c.’ is subdivided into smaller parts using several of the different economic classification 

systems available (as can be seen in appendixes C, I, J).  

 
Figure 9: The internationally different economic classification systems and their relationships (Eurostat, 2008). 

NACE-Rev. 2  

NACE codes are assigned by the European Union to classes of economic activity for creating economic 
statistics and overviews (Eurostat, 2008). The NACE Rev. 2 classification is based on the ISIC Rev. 4 
classification, which is the international standard classification of products. Appendix C shows that the 
NACE class/group of 21: ‘Manufacture of chemicals and chemical products’  is relevant for this study, 
while also the NACE group of 20: ‘Manufacture of basic pharmaceutical products and pharmaceutical 
preparations’ is relevant. Some of the bulk chemicals that fall under group 20 are also bought in by 
hospitals and pharmaceuticals manufacturers are indirectly also used for producing pharmaceuticals. 
The NACE classification is not very detailed, however, it does identify that ‘chemicals n.e.c.’ is a 
category that also includes products like paint, printing ink, soap, industrial gasses, etc. 
 

PRODCOM level 2 

The PRODCOM classification has 3 levels of detail and is linked to the CPA classification. The level 2 
classification lists 178 products that are in the EXIOBASE category ‘chemicals n.e.c.’. These can be 
found in appendixes I and J. Appendix I shows the complete overview of both level 2 and 3 PRODCOM 
products that fall under ‘chemicals n.e.c.’. It also shows which products are relevant for the 
manufacturing of pharmaceuticals at classification level 3. The relevant products are marked yellow. 
The non-relevant products are mentioned with “no”, and the products that might also be used for 
other products and of which is not sure if they are used in the production of pharmaceuticals, the field 
is left empty. (D. Kweekel, personal communication, October 12, 2021).  
 

National statistics 

In the Dutch national statistics provided by Statistics Netherlands, the Dutch expenditure on 
pharmaceuticals is described in the category ‘HC5: Medicines and aids. This category is split into HC51: 
Medicines, Consumables’ (Geneesmiddelen, Verbruiksartikelen), and ‘HC52: therapeutic tools. HC51 
includes prescription medicines, over-the-counter medicines, and other medical consumables. Other 
medical consumables are for example bandages. HC52 includes vision aids (such as glasses), hearing 
aids, orthopaedic aids (such as special footwear), medical-technical appliances (such as wheelchairs), 
and other durable medical goods (e.g., blood pressure monitors). 
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In conclusion, can be said that the consumption of pharmaceuticals is defined quite differently in 
national statistics than in input-output databases like EXIOBASE. While input-output tables are 
structured per products groups or industries, these are too aggregate to properly display the 
pharmaceutical industry. Pharmaceuticals only fall in one category; however, this category also 
contains other chemicals that are not used in the production of pharmaceuticals. This could distort 
the footprints calculated using these input-output sectors, as the other chemicals’ environmental 
impacts are also weighed in these calculations. From this initial separation, it becomes clear that 
‘chemicals n.e.c.’ contains a lot of product groups that are not relevant for pharmaceutical production. 
Next to this, it also contains a lot of product groups that could be used in pharmaceutical products in 
some instances, but they also are sometimes used in the chemical industry (e.g., enzymes and 
glycerol). This makes subdividing ‘chemicals n.e.c.’ into a separate pharmaceutical industry category 
in EXIOBASE difficult as product groups could belong in both the chemical and pharmaceutical 
industries. Lastly, this section also shows the heterogenous character of ´chemicals n.e.c.´. 
 

5.1.3 Comparison of the Dutch carbon footprint  
The studies of De Koning (2020) and Steenmeijer et al. (2022) can also be checked by comparing the 

carbon footprint of the Netherlands with carbon footprints calculated independently by others. As 

already mentioned in the introduction, several carbon footprint calculations of the Dutch healthcare 

sector already exist. These studies are included in the comparison of the total Dutch carbon footprint 

of table 8. RIVM made it possible to also calculate the numbers for the year 2014, to be able to better 

compare their study with this study, which uses the 2014 SNAC-EXIOBASE database. 

Table 8: Total Dutch carbon footprint as calculated by the Statistics Netherlands official and relevant studies that did 
calculate the Dutch healthcare carbon footprint as well. 

Study  Reference year Dutch carbon footprint in Mt CO2 eq. 

Meijer-Cheung, Schoenaker Schenau (2016) 
(SNAC by Statistics Netherlands) 

2014 175 

Statistics Netherlands official  2014 188 

Gupta Strategists (2019) 2017 163 

ARUP & Healthcare Without Harm (2019)  2014 2251 

Steenmeijer et al. (2022) (RIVM) 2014 2272 

Steenmeijer et al. (2022) (RIVM) 2016 241 

Pichler et al. (2019) 2014 2213 /1951 

Lenzen et al. (2020) 2015 2313/ 3331 

 

From table 8 can be derived that the total Dutch carbon footprint calculated in these studies range 

from 163-333 Mt CO2 equivalents. The study of Lenzen et al. (2020) stands out because table 8 shows 

2 numbers for the Dutch carbon footprint. The 333 Mt CO2 eq. is derived from the supplementary 

information (SI) of the paper, in which the Dutch carbon footprint is derived from the healthcare 

carbon footprint and the share of the healthcare carbon footprint of the national footprint. The 333 

Mt CO2 eq. of Lenzen et al. (2020) is also the outlier of the studies compared in table 8. When 

comparing this to the Eora explorer, the Dutch carbon footprint is reported as 231 Mt CO2 eq. As 

Lenzen et al. 2020 is performed with the full Eora dataset, the number found in the SI of the study is 

alarming. Pichler (2019) also uses Eora, however, the difference between the reported carbon 

footprint in the Eora explorer is lower. Pichler (2019) also only includes CO2 in its analysis, which could 

explain the lower national footprint based on the study compared to the Eora explorer. Gupta 

 
1 Based on the CF of healthcare and the share of the national footprint 
2 Not reported in the referenced study, calculated for the purpose of this study 
3 Sourced or inferred from Eora explorer on its website 
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Strategists (2019) records the lowest total Dutch carbon footprint of the compared studies. The study 

of Steenmeijer et al. (2022) is in the middle to the higher range of all studies, indicating no initial 

errors.  

In conclusion, the conceptual comparison of previous studies showed that both the construction of 

the final demand vector, as well the calculation of the total Dutch carbon footprint seems to be 

conducted correctly, or at least is not the reason why the carbon and material footprint of the Dutch 

consumption of pharmaceuticals is relatively high. Section 5.1.2 also showed that the carbon and 

material footprint of the category ‘chemicals n.e.c.’ could be a misrepresentation of the carbon and 

material footprint of the consumption of pharmaceuticals. This idea of misrepresentation of 

‘chemicals n.e.c.’ comes from the fact that it both contains products that are not used and products 

that only in some cases are used in the pharmaceutical industry. To get a better picture of the carbon 

and material footprint of the Dutch consumption of pharmaceuticals, less aggregated data could give 

more insight into the actual carbon and material footprint of the Dutch consumption of 

pharmaceutical products. Due to trade secrets, and the diversity of the pharmaceutical industry, it is 

difficult to exactly know which products and in which quantity they are used in the production of 

pharmaceutical products. Therefore, a dataset already containing a pharmaceutical sector is 

preferred.  
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5.2 Carbon and material footprint of the Dutch healthcare sector based on SNAC-

EXIOBASE 
This chapter shows the results of the second sub-question: “What is the material and carbon 

footprint of the Dutch healthcare sector calculated in this study?” It also answers the second 

knowledge gap: “What is the material footprint of the Dutch healthcare sector?” 

5.2.1 Construction of final demand stimulus 
For calculating the carbon and material footprint of the Dutch healthcare sector, the construction of 

the final demand stimulus was important. This demand stimulus is based on 4 SNAC-EXIOBASE sectors, 

as shown in table 9. The two SNAC-EXIOBASE sectors ‘Gezondheidszorg’ and ‘Zorg en welzijn’ together 

are the equivalent of the Health and Social Work sector in EXIOBASE. Table 9 also shows the 

corresponding healthcare function (from Statistics Netherlands) that was used to link the Dutch 

healthcare expenditure to the SNAC-EXIOBASE sectors, which are based on the standard company 

classification system of the Netherlands (SBI) (Kruiskamp, 2021).  

Table 9: Linking Statistics Netherlands healthcare expenditure function to the SNAC-EXIOBASE sectors. 

SNAC sector (including SBI code) Healthcare function (Statistics Netherlands) 

86. Healthcare (Gezondheidszorg) 
 

Medical and long-term care (Geneeskundige landgdurige 
zorg) (HC1-HC9 excluding HC5) 
 

87-88. Care and wellbeing (Zorg en welzijn) 
 

Welbeing, youth care and childcare (Welzijn, Jeugdzorg 
en kinderopvang) 
 

21. Pharmaceutical industry (Farmaceutische 
industrie) 
 

HC51: Medicines and consumables (Geneesmiddelen, 
verbruiksartikelen) 

32. Other industries (Overige industrie) HC52: Therapeutic tools (Therapeutische hulpmiddelen) 

 

The demand stimulus is a vector of zeros, except for the positions of the relevant SNAC-EXIOBASE 

sectors mentioned in table 9, where the healthcare expenditure is filled in. Table 9 shows the 

healthcare expenditure per SNAC-EXIOBASE category based on this. The expenditure on ‘medical and 

long-term care’ and ‘wellbeing, youth care and childcare’ is from Statistics Netherlands (CBS, 2021a) 

and the expenditure on the HC categories are from Statistics Netherlands (Centraal Bureau voor de 

Statistiek, 2021c) as well. As the Statistics Netherlands data is available in purchasers’ prices, a 

conversion to basic prices was needed. Table 9 shows this conversion. The conversion was based on 

conversion rate calculated using similar categories in the 2014 supply table which contains both 

purchasers’ and basic prices (appendix K). This conversion rate was used for the conversion of the 

Statistics Netherlands data. The conversion rate calculations are shown in table 10. 
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Table 10: Conversion rates from basic prices to purchasers’ prices used in this study. 

Sector SUT category Basic price 
[million euros] 

Purchaser price 
[million euros] 

Ratio 

Medical and long-
term care 

83. Human health 
services 

42949 43019 1.00 

Wellbeing, youth 
care and childcare 

84. Residential care 
and social work 

35752 35306 1.01 

Medicines and 
consumables 

28. Basic 
Pharmaceuticals 
and Preparations 

19607 26876 0.73 

Therapeutic tools 33. Computer, 
electronics and 
optical instruments 

81225 98163 0.83 

 
Appendix L also shows that the total expenditure on care and wellbeing from Statistics Netherlands 
(CBS, 2021d) is divided into ‘medical and long-term care’, ‘wellbeing, youth care and childcare’ and 
‘policy and management’. In the SNAC-EXIOBASE dataset, this expenditure from either the healthcare 
sector or the care and wellbeing sector include policy and management expenses, as can be observed 
in the A matrix column of these sectors in appendix M. Therefore, this expense is proportionally 
divided over both categories as shown below. 
 
Division of policy and management expenses over ‘healthcare’ and ‘care and wellbeing’ sectors 
Expenditure on ‘policy and management’: 3945 million euros 
Total expenses without policy and management = 80116 +7866 = 8798280 
Share of ‘medical and long-term care’ of total: 80116/87982 = 0.91 
Share of ‘wellbeing, youth care and childcare’: 7866/87982 = 0.09 
Expenditure on ‘medical and long-term care’ = 80116 + (3945×0.91) = 83706 
Expenditure on wellbeing, youth care and childcare’ = 7866 + (3945×0.09) = 8221 
 
In Statistics Netherlands the expenses on both ‘medical and long-term care’ and ‘wellbeing, youth care 
and childcare’ are given in total expenditures, which means that the extramural expenses on 
therapeutic tools, medicines and consumables should be subtracted from this. Appendix L shows that 
summing the whole HC-categories is equal to the total expenses on ‘medical and long-term care’, 
therefore the extramural expenses on therapeutic tools, medicines and consumables should be 
subtracted from this expenditure category as shown below. 
 
Expenditure on healthcare (in million euros) = 83706 - 8553 (HC5) = 75152 
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Table 11: Total Dutch expenditure on healthcare using the broad healthcare and wellbeing definition for the year 2014. 

 
Category 

Purchasers’ 
prices [million 
euros] 
 

basic prices 
[million 
euros] 

Medical and long-term care (Geneeskundige landgdurige zorg) 
 

75152 75002 

Wellbeing, youth care and childcare (Welzijn, Jeugdzorg en 
kinderopvang) 
 

8221 8303 

HC51: Medicines and consumables (Geneesmiddelen, 
verbruiksartikelen) 

5355 4230 

HC52: Therapeutic tools (Therapeutische hulpmiddelen) 
 

3199 2355 
 

Total 91927 89890 

 

Lastly, it is important to note is that in this study the therapeutic tools and medicines are assumed to 

be sourced completely domestically. Since only the Dutch part of the MRIOT distinguishes a 

pharmaceutical industry, this is the only to better depict the pharmaceutical industry in the 

calculations. In this is assumed that the Dutch SNAC-EXIOBASE category ‘pharmaceutical industry’ is 

representative of the pharmaceuticals that are bought in the Netherlands. However, this creates a 

trade-off between a better depiction of the pharmaceutical industry compared to more realistic 

sourcing.  

5.2.2 Carbon footprint 
The total Dutch healthcare sector’s carbon footprint calculated in this study is 14.26 Mt CO2 

equivalents. The indirect carbon footprint of the Dutch healthcare sector as constructed in this study 

consists of 12.6 Mt CO2 equivalents, as shown in table 12. The direct impacts consist of the direct 

emissions of the healthcare sector as documented by Statistics Netherlands (CBS, 2020). Important to 

note is that for this study, anaesthetic gasses (direct emissions) and emissions from using pressurized 

metered-dose inhalers (indirect emission that occurs in households) are excluded while Steenmeijer 

et al. (2022) do include these. ARUP & Healthcare Without Harm (2019) do also include direct 

emissions from anaesthetic gasses. Travel emissions are also not taken into account, while other 

studies calculating the Dutch carbon footprint do include these (Gupta Strategists 2019; Steenmeijer 

et al., 2022). This means that there are differences in the scope of these studies. However, it goes 

beyond the scope of this study to include them, as the focus lies on the indirect emissions of ‘chemicals 

n.e.c.’.  

Table 12: The breakdown of the Dutch carbon footprint of the healthcare sector as calculated in this study 

Breakdown emissions Emissions [Mt CO2 eq.] 

Indirect 12.61 

Direct from Statistics Netherlands 1.65 

Total 14.26 
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Hotspot analyses 

Table 13 shows that mainly energy-related sectors are high contributors to the Dutch healthcare 

sector’s carbon footprint, which is to be expected. After all, according to Statistics Netherlands, 48.6 

Mt (about 25%) of GHG emissions occurring in the Netherlands is caused by electricity generation 

(Centraal Bureau voor de Statistiek, 2021b). The sector of interest for this study, ‘chemicals n.e.c.’, is 

responsible for a large share (8.06%) of the Dutch healthcare carbon footprint, which is in line with 

previous studies.  

Table 13: Hotspot analysis of the Dutch carbon footprint of the healthcare sector per sector where emissions occur (top five 
sectors). 

Sector Emissions  [Mt 
CO2 eq.] 

Share of 
total [%] 

Direct emissions 1.65 11.54 

Production of electricity by coal 1.63 11.43 

Energy companies (Dutch SNAC-EXIOBASE sector) 1.36 9.54 

‘Chemicals n.e.c.’ 1.15 8.06 

Healthcare (Dutch SNAC-EXIOBASE sector) 0.97 6.80 

Extraction of natural gas and services related to natural gas extraction, 
excluding surveying 

0.76 5.33 

 

Of the 14.26 Mt of CO2 equivalents, the largest share occurs in the Netherlands (47.8.%). Next to this, 

10.24% occurs in China, which seems logical in any carbon footprint as it is such a large manufacturing 

country. Specifically for the healthcare sector, China also is a large player in both the pharmaceutical 

industry and the medical devices industry (which also includes disposables like masks). China was the 

second-largest pharmaceutical market in the world in 2017, with over 100 billion US dollars in 

revenues (World Health Organization, 2017). Chinese pharmaceutical companies first were mainly 

focused on the production of basic chemicals, intermediate products and APIs, while recently they 

also have shifted towards finished pharmaceutical products. In 2011 the Chinese medical device 

industry output accounted for the share of 1.4% of the Chinese GDP (Zhang et al., 2016), after which 

it has become a large market player. Between 2015 and 2019 the exports grew by about 10% per year 

(Deloitte, 2021).  

Table 14: Hotspot analysis of the Dutch carbon footprint of the healthcare sector per country where emissions occur (top 
five countries).  

Country Emissions [Mt CO2 eq.] Share of total [%] 

The Netherlands 6.82 47.83 

China 1.29 9.05 

Belgium 0.94 6.59 

Russia 0.81 5.68 

Germany 0.78 5.33 

 

The emissions occurring in Russia can for a large part be attributed to Russian natural gas extraction, 

which is imported by the Netherlands (74.44%). As neighbouring countries to the Netherlands, the 

emissions occurring in Belgium and Germany also make sense. The Belgium emissions are mainly 

caused by ‘chemicals n.e.c.’ (73.41%), which is in line with the fact that Belgium is the third-largest 

exporter of pharmaceuticals in Europa, after Switzerland and Ireland (Janssen, n.d.). Germany has a 

large share (25% in 2020) in the medical device market of Europe (MedTech Europe, 2021).  The 
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emissions occurring in Germany are also energy-related and are mainly caused by the electricity 

production by coal (44.87%). More detailed information on the hotspot analyses can be found in 

appendix N. 

Contribution analyses 

Table 15 shows the emissions caused per sector where expenses are made for calculating the carbon 

footprint of the healthcare sector. The expenses here refer to expenses gathered from Statistics as 

explained in table 11. Most emissions occur due to expenses on services provided by the healthcare 

sector, which is also where the most expense occur. The second-largest share of the emissions of the 

Dutch healthcare sector in total is caused by the pharmaceutical industry in which actually half the 

amount of expenses occurs compared to the care and wellbeing sector. When comparing the carbon 

intensities, the pharmaceutical industry has the highest carbon intensity, followed by the medical 

appliances in ‘other industries’. The fact that the healthcare sector’s and care and wellbeing sector’s 

carbon intensity are lower than the pharmaceutical industry and the medical appliances can be 

explained by the fact that expenses in the healthcare sector and care and wellbeing sector are much 

more dominated by labour than in the manufacturing industries. More detailed information on the 

contribution analysis can be found in appendix N. 

Table 15: Contribution analysis per sector where expenditure occurs 

SNAC-EXIOBASE category Emissions  
[kt CO2 eq.] 

Expenses            
[million euros] 

Carbon intensity       
[kg CO2 eq./€] 

Healthcare 9748 75002 1.30×10-1 

Pharmaceutical industry 1283 4230 3.05×10-1 

Care and wellbeing 961 8303 1.16×10-1 

Other industries (medical appliances) 618 
 

2355 
 

2.63×10-1 

 

5.2.3 Material Footprint 
The material footprint only consists of indirect impacts, as material extraction caused by expenses to 

the Dutch healthcare only occurs at the beginning of the supply chain at the mining and quarrying 

sectors. The total material footprint of the Dutch healthcare sector as calculated in this study consists 

of 15.05 Mt of materials. This material footprint is mainly dominated by mineral extraction (88.97%).  

Table 16: The material footprint of the Dutch healthcare sector as calculated in this study 

 Minerals [Mt] Metals [Mt] Total [Mt] 

Material footprint 13.39 1.66 15.05 

 

Hotspot analyses 

As material extraction only occurs in the extraction sector, it is not very interesting to perform a 

hotspot analysis per sector. However, it is interesting to identify where in the world the Dutch 

healthcare sector influences material extraction. Table 17 shows that most minerals are extracted in 

China (30.19%) and India (26.73%). The occurrence of China, and Germany as large contributors to the 

mineral and in the case of China also the metal footprint can be explained by the fact that they are 

large players in the healthcare industries (MedTech Europe, 2021; Word Health Organisation [WHO], 

2021). India is also expected to have a large share in the mineral footprint, due to its large 

pharmaceutical industry (WHO, 2021). These countries differ for metal extraction as can be seen in 
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table 18.  In the Netherlands only sand, gravel, and salt are extracted, and no metals are extracted. 

The high share (12.61%) of Sweden in the metal footprint of the Dutch healthcare sector can be 

explained by the fact that it is one of the largest EU ore and metal producing countries (Ministry of 

Enterprise Energy and Communications Sweden, 2013). Especially most of Europe’s iron ore comes 

from Sweden (Ministry of Enterprise Energy and Communications Sweden, 2013). More detailed 

information of the hotspot analyses can be found in appendix N. 

Table 17: Hotspot analysis of the Dutch mineral footprint of the healthcare sector per country where extraction occurs (top 
five countries). 

Country Minerals (kt) Share of total [%] 

China 4043 30.19 

India 3579 26.73 

Germany 715 5.34 

The Netherlands  670 5.00 

RoW Middle East 625 4.67 

 

Table 18: Hotspot analysis of the Dutch metal footprint of the healthcare sector per country where extraction occurs (top 
five countries). 

Country Metals [kt] Share of total [%] 

RoW America 448 26.94 

Sweden 210 12.61 

Indonesia 172 10.38 

China 153 9.18 

United States 121 7.29 

 

The above-mentioned material footprint and the hotspot analyses still lack some essential 

information. What kind of minerals and metals are extracted the most due to the Dutch healthcare 

sector? Therefore, the mineral and metal extensions were disaggregated as explained in section 4.2. 

Important to note is that the EXIOBASE minerals and metal extensions were used to disaggregate the 

hotspot analysis instead of the SNAC-EXIOBASE extension, as explained in section 4.2. This means that 

the total mineral and metal footprint with disaggregated material groups is different from the original 

material footprint calculated in this study. This difference can be explained by the fact that when 

summing the EXIOBASE material extensions to ‘minerals’ and ‘metals’ a difference in the total minerals 

and metals in several sectors can be observed (see Appendix O). Therefore, using this method, the 

material footprint using the SNAC-EXIOBASE extensions compared to the EXIOBASE extensions, do not 

match. This can be prevented by scaling the extensions to the total extraction occurring in the SNAC-

EXIOBASE dataset. However, in this also the EXIOBASE data is altered based on an assumption, which 

is why it is not automatically a better solution. The general idea is that SNAC-EXIOBASE data ensures 

better quality than EXIOBASE data, therefore the originally calculated mineral and metal footprint will 

be used whenever is referred to the total mineral and metal footprint. 
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Table 19 shows that other minerals dominate the mineral footprint of the healthcare sector (65.46%), 

which is quite unusual. Usually, the mineral footprint is dominated by gravel and sand extraction, 

which is also large in this analysis (23.67%). The category ‘other minerals’ consist of (Eurostat, 2013):  

• Bitumen and (natural) asphalt 

• Precious and semi-precious stones, which are mainly used in industrial processes (e.g., 

pumice stone, emery, corundum). 

• Graphite which is mainly used in refractories. 

• Quartz and quartzite which is used in metal manufacturing and the optical industry.  

• Siliceous fossil meals which are mainly used as an absorption agent or as material for heat 

insulation. 

• Asbestos 

• Steatite and talc which are used in different industries (ceramics, architecture, paper making, plastic, 

paint and coatings, rubber, electric cable, food, pharmaceuticals, and cosmetics). 

• Feldspar which is used in the glass and ceramic industry. 

With this disaggregation, the contribution of other minerals to the total mineral footprint can be 

explained for a part. For example, pumice (precious and semi-precious stones) is often used as soap, 

which again is part of ‘chemicals n.e.c.’ (see appendix I) whose mineral extension is used for the Dutch 

‘pharmaceutical industry’ category of SNAC-EXIOBASE in this disaggregation (appendix H). Next to this, 

all other countries only have the ‘chemicals n.e.c.’ sector and not a separate pharmaceutical sector. 

Talc is also used in the pharmaceutical industry, cosmetic industry, paint and coating industry, and the 

paper industry, which again produce products that fall under ‘chemicals n.e.c.’. Corundum is used as 

a grinder for optical glass, which falls under therapeutic tools, which are used in the healthcare sector. 

Quartz is used in spectroscopy, which also falls under therapeutic tools. Feldspar is used in industrial 

cleaning, as well as in the paint and glass industry. However, without actually quantifying the 

healthcare-related products in which ‘other minerals’ are used we cannot be sure if this result is 

correct. 

Salt already has a smaller share. Its share is also explainable as it is essential in the healthcare sector. 

Medical drips consist of 0.9% NaCl to make the fluid isotone, which is essential to safely administer 

drips. Next to this, it is also commonly used in the production of pharmaceuticals as salt enables a 

higher concentration in the solution of the pharmaceutical (Serajuddin, 2007; Elder et al., 2013).  

Table 19: Hotspot analysis sorted per mineral group 

Mineral group Minerals (kt) Share [%] 

Other minerals 10095 68.46 

Gravel and sand 3491 23.67 

Salt 402 2.73 

Chemical and fertilizer minerals 376 2.55 

Limestone, gypsum, chalk, dolomite 340 2.30 

Clays and kaolin 42 0.29 

Slate 0.61 0.004 

Building stones 0.19 0.001 

Total  14747 
 

Original total 13390  
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As explained, the total mineral footprint calculated for the disaggregation of the different minerals 

differs quite a bit from the originally calculated mineral footprint using the original SNAC-EXIOBASE 

data (difference of 9.2%). 

The metal footprint is dominated by iron and copper ore extraction. Both are commonly extracted 

metals. Gold extraction is also responsible for a large share of the metals extracted due to the Dutch 

healthcare sector. This is odd as gold is mostly used in jewellery (83%), and electronics (11%) 

(European Commission, 2017). However, it is also used in dental and medicine applications (2% and 

other applications (4%) (European Commission, 2017). Specifically, gold is used as a medicinal 

application in the way of radiotherapy as part of cancer treatments (Hainfeld et al. 2008). However, 

this use is quite small. One of Europe’s main mining countries of gold is Sweden (European 

Commission, 2017), which could explain the hotspot results of table 18.  

Table 20: Hotspot analysis sorted per material group 

Metal group Metals (kt) Share [%] 

Iron ores 476 29.02 

Copper ores 424 25.83 

Gold ores 179 10.88 

Zinc ores 106 6.46 

Tin ores 102 6.20 

Silver ores 97 5.96 

aluminium ores 89 5.44 

Nickel ores 66 4.05 

Other non-ferrous metal ores 65 3.93 

Lead ores 23 1.38 

Uranium and thorium ores 8 0.49 

Metal Ores - PGM ores 6 0.36 

Total  1640 
 

Original total 1661  

 

The total metal footprint calculated within the disaggregation of the metals is very similar to the 

original total metal footprint calculated using the original SNAC-EXIOBASE data. More detailed 

results of the disaggregated mineral and metal footprint can be found in appendix P. 

Contribution analyses 

Tables 21 and 22 show the contribution analyses per sector where expenditure occurs for the mineral 

and metal footprint of the healthcare sector. The expenses here refer to expenses gathered from 

Statistics Netherlands as explained in table 11. The sectors where expenditure occurs for the Dutch 

healthcare sector are sorted based on the minerals and metals extracted due to this expenditure. For 

both minerals and metals, this order is the same, while for the carbon footprint the order differs, 

where the expenditure in the ‘care and wellbeing’ industry causes more emissions than the 

therapeutic tools, while for materials the order is the other way around. Table 21 and 22 also shows 

that the mineral and metal intensity of the pharmaceutical industry is the highest of all healthcare 

sectors, which could also explain why the pharmaceutical industry and ‘chemicals n.e.c.’ in previous 

studies was responsible for such a large share of the Dutch healthcare sector’s material footprint. 

More detailed results of the contribution analysis can be found in appendix N. 
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Table 21: Contribution analysis per sector where expenditure occurs for the mineral footprint of the Dutch healthcare sector 

SNAC-EXIOBASE category Minerals [kt] Expenses [million euros] Mineral intensity   
[kg minerals/€] 

Healthcare 10619 75002 1.42×10-1 

Pharmaceutical industry 1636 4203 3.89×10-1 

Other industry (therapeutic tools) 581 2355 2.47×10-1 

Care and wellbeing 554 8303 6.67×10-2 

 

Table 22: Contribution analysis per sector where expenditure occurs for the metal  footprint of the Dutch healthcare sector 

SNAC-EXIOBASE category Metals [kt] Expenses [million euros] Metal intensity [kg 
metals/€] 

Healthcare 1220 75002 1.72×10-2 

Pharmaceutical industry 199 4203 4.72×10-2 

Other industry (therapeutic tools) 96 2355 4.09×10-2 

Care and wellbeing 75 8303 8.97×10-3 

 

5.3 The healthcare carbon and material footprint using SNAC-EXIOBASE compared to 

other studies 
This chapter identifies if there is a data limitation that could explain the relatively large contribution 

of ‘chemicals n.e.c.’ to the Dutch healthcare sectors’ carbon and material footprint.  

As identified in the previous section, the study of De Koning (2020) was one of the starting points of 

this study and the main research question. However, it is more useful to compare the results described 

in 5.2 to studies that specifically focus on the healthcare sector. Therefore, the new results will be 

compared to the studies mentioned in the study by Steenmeijer et al. (2022). This would help identify 

if results based on the SNAC-EXIOBASE data, that crucially distinguishes a separate Dutch 

‘pharmaceuticals industry’ category, shows completely different results, and thus if the initial 

remarkable results of De Koning (2020) and Steenmeijer et al. (2022) can be attributed to data 

limitations. 

Table 23 shows important methodological and data decisions made in the different studies. All these 

decisions influence the results and should therefore be mentioned. Also, the healthcare definition 

used in the studies differ.  
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Table 23: Methodology and data comparison of different studies that calculate the carbon footprint of the Dutch healthcare 
sector. Table adapted from Steenmeijer et al. (2022). 

  Gupta Strategists 
(2019) 

ARUP (2019) Steenmeijer et al. 
(2021) 

Pichler (2019) Lenzen et al. 
(2020) 

This study (2022) 

Reference 
year 

2017 2014 2016 2014 2015 2014 

MRIO UK MRIO (2004)4 WIOD (2016) EXIOBASE v3 (2018) EORA v199.82 (full 
version) 

EORA full 
version 

SNAC-EXIOBASE 

Carbon 
emissions 
and GWP 

N/A CO2, CH4, N2O, 
HFCs, PFCs, SF6, 
GWP not N/A  

CO2 = 1 
CH4 = 25 
N2O = 298 
SF6 = 26087 
F-gasses (HFC, PFC) 
= 1 (is converted in 
EXIOBASE)5 
 

Only CO2  CO2  = 1  
CH4= 25  
N2O = 298 
HFC = 3772   
CFC = 8925   
SF6 =22800   
NF3 = 17200 

CO2 = 1 
CH4 = 25 
N2O = 298 
F-gasses (HFC, PFC, 
SF6) = 1 (is 
converted in SNAC-
EXIOBASE) 
   

Healthcare 
definition 

Broad definition 
healthcare 

SHA, 
internationally 
comparable 
definition  

Broad definition 
healthcare and 
wellbeing 

SHA, 
Internationally 
comparable 
definition 

Healthcare 
and social 
work services, 
Internationall
y comparable  
definition 

Broad definition 
healthcare and 
wellbeing 

Total 
footprint 

Adding scope 1, 2 and 3 Footprint 
calculation based 
on final demand.  

Adding scope 1, 2 
and 3 

No division in 
scopes. Footprint 
calculation based 
on final demand. 

Footprint 
calculation 
based on final 
demand. 

No division in 
scopes. Footprint 
calculation based 
on final demand. 

Scope 1  Estimated total gas 
consumption based on 
annual reports of Dutch 
healthcare institutions, 
then linked to CO2 
emission factors. 

Direct CO2 eq. 
emissions of 
SHA-WIOD 
sectors from 
environmental 
extensions. 

Direct CO2 eq. 
emissions of the 
healthcare sector 
reported by 
Statistics 
Netherlands plus 
direct emissions 
from  
anaesthetic gasses. 

Direct CO2 eq. 
emissions from 
SHA-EORA sectors 
from the 
environmental 
extension. 

 Direct CO2 eq. 
emissions of the 
healthcare sector 
as reported by 
Statistics 
Netherlands. 

Scope 2 Estimated total energy 
and heat purchasing 
from a bottom-up 
approach based on 
annual reports of Dutch 
healthcare institutions, 
subsequently linked to 
CO2 emission factors. 

Footprint 
calculations 
based on total 
purchase of 
energy and 
heath of all SHA-
WIOD sectors.  

Indirect emissions 
based on 
expenditure on 
energy and heat 
(under EXIOBASE 
i40) from the 
Health and Social 
Work sector 

Footprint 
calculation for 
total purchasing 
categories of all 
SHA-EORA sectors  

 Footprint 
calculation for 
total healthcare 
purchasing 
categories. 

Scope 3 Purchase expenditure 
adopted from the UK, 
scaled with the ratio of 
healthcare expenditure 
between NL and UK. 
Loose estimate for 
travel movements 
based on data for NL 
and UK. 

Scope 3 = total - 
scope 1 - scope 
2). The indirect 
footprint is 
calculated for 
the contribution 
of all industries 
in the chain 

Indirect emissions 
are calculated for 
the total purchasing 
by the Health and 
Social Work sector 
(minus scope 2) and 
the expenditure on 
pharmaceuticals 
and medical 
equipment. 

 

 

 
4 National IO table of the ONS refined and extended to MRIO with data from Eurostat, GTAP, OECD and IDE-
JETRO (2004) 
5 Steenmeijer et al. (2022) use the characterisation according to DESIRE, while the F-gasses are already 
converted to CO2 equivalents 
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5.3.1 Comparison healthcare carbon footprint 
First, the total carbon and material footprint of the Netherlands was calculated and compared to 

earlier studies to identify if large differences could be observed, which could indicate data limitations. 

As seen in table 24, the total Dutch carbon footprint of this study is quite similar to the one calculated 

by Statistics Netherlands (CB), who made the SNAC-EXIOBASE dataset and also used it for their study 

(Walker et al., 2017). The difference is only 5 Mt CO2 equivalents. After consultation with Walker and 

Wilking, can be concluded this difference is likely caused by the difference in aggregation levels in the 

public SNAC-EXIOBASE which is used in this study, and the more detailed one that is only available to 

Statistics Netherlands (A. Walker & H, Wilting, personal communication, October 15, 2021).  

Table 24 also shows the direct emissions of the healthcare sector and the total carbon footprint of the 

healthcare sector as calculated in each study. Important to note is that not all studies use the same 

definition of healthcare expenditure and that they use different scopes, as explained in table 23. This 

makes them fairly incomparable, but it shows a range of the Dutch healthcare carbon footprint, which 

is also interesting. To be able to compare Steenmeijer et al. (2022) to this study, the calculation was 

also performed for the year 2014. Important to note is that Walker et al. (2017) and Meijer-Cheung, 

Schoenaker, and Schenau (2016) only performed an analysis for the total Dutch carbon footprint. 

Table 24: Total Dutch carbon footprint, direct emissions in the healthcare sector and carbon footprint of the healthcare 
sector in Mt CO2 eq. calculated with SNAC-EXIOBASE 2014 and other studies (ARUP & Health Care Without Harm, 2019; 
Gupta Strategists, 2019; Pichler et al., 2016; Steenmeijer et al., 2022. Walker et al., 2017). (for the definition of healthcare 
sector used in the different studies see table 23) 

Study  Year Dutch carbon 
footprint 

Direct emissions 
healthcare 
sector 

Total 
healthcare 
sector 

Share 
healthcare of 
total [%] 

This study  2014 180 1.65  14 8 

Walker et al. (2017) 
(SNAC-EXIOBASE) 

2014 175 - - - 

Statistics Netherlands 
official (CBS) 

2014 188 - - - 

Gupta Strategists (2019) 2017 163 - 11 7 

ARUP & Healthcare 
Without Harm (2019) 

2014 2206 2.26 13 6 

Steenmeijer et al. (2022) 
(RIVM) 

2014 2277 1.957 187 87 

Steenmeijer et al. (2022) 
(RIVM) 

2016 241 1.87 19 8 

Pichler et al. (2019) 2014 1956 - 16 8 

Lenzen et al. (2020) 2015 2316,8/ 3339 1.788 13 48 /69 

 

As already became clear in table 8 was that the total Dutch carbon footprint calculated in different 

studies has quite a range. The difference between the total Dutch carbon footprint as calculated by 

Steenmeijer et al. (2022) and this study can be assigned to data differences, as both studies perform 

a similar method of calculating the total carbon footprint. Table 24 shows that there is also a large 

range for the healthcare sector’s carbon footprint. However, the share of the Dutch healthcare carbon 

footprint of the total Dutch carbon footprint ranges less (6-8%). Another important finding is that this 

share is the same for the Steenmeijer et al. (2022) using EXIOBASE, as for this study which uses the 

 
6 Based on the CF of healthcare and the share of the Dutch national footprint 
7 Not reported in the referenced study, calculated for the purpose of this study 
8 Sourced or inferred from Eora explorer on its website 
9 Based on supplementary information of Lenzen et al. (2020) 
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SNAC-EXIOBASE database, while the studies use different scopes and approaches and have a very 

different total healthcare carbon footprint due to this. This study has the lowest direct emissions of 

all studies, which can be explained by the fact that only the direct emissions reported by Statistics 

Netherlands are used, and emissions caused by anaesthetic gasses are not included.  

5.3.2. Comparison healthcare material footprint 
Table 25 compares the material footprint of this study with the material footprint of Steenmeijer et 

al. (2022) for the year 2014. The material footprint calculated by Steenmeijer et al. (2022) is more than 

double the material footprint calculated in this study. This difference cannot be explained by the 

different scope of the study, as for the material footprint the only part that is not included in this study 

is the travel by patients and visitors, which is 106 kt. The difference could partially be explained by the 

difference in approach of the two studies. This study assumes that all Dutch consumption of 

pharmaceuticals is sourced domestically, while Steenmeijer et al. (2022) assumed the sourcing to be 

proportional to the sourcing distribution of the ‘chemicals n.e.c.’ in the total final demand (for national 

consumption). Next to this, we used a dedicated pharmaceutical industry to calculate the healthcare 

sectors’ carbon and material footprint, while Steenmeijer et al. (2022) used ‘chemicals n.e.c.’ to 

represent the pharmaceutical industry. This difference is much smaller for the indirect carbon 

footprint, which is why it is also shown in table 25. For this comparison, it is better to use the indirect 

carbon footprint, as these are more comparable than the total carbon footprint. Next to this, this 

comparisons’ goal is to show the effect different datasets used has on the environmental footprints, 

which only affects the indirect footprint 

Table 25: Comparison of the Dutch healthcare sector’s  indirect carbon and material footprint of this study with Steenmeijer 
et al. (2022) 

 Carbon [Mt CO2 eq.] Materials [kt] 

This study 12.61 15051 

Steenmeijer et al. (2022) (RIVM) 14.01 38068 

 

In conclusion, the comparison shows that the material footprint is 61% smaller and the carbon 

footprint is 11% smaller when using the SNAC-EXIOBASE data instead of using the default EXIOBASE 

data. The fact that both footprints diminish when using SNAC-EXIOBASE data implicates that there 

actually might be a data limitation in using EXIOBASE data. The conclusion follows the initial idea that 

aggregation problems will have a larger effect on the material footprint as it occurs only at the 

beginning of the supply chain, while carbon emissions occur in every step along the supply chain. This 

possible aggregation problem will be further investigated by calculating the carbon, mineral and metal 

intensities of ‘chemicals n.e.c.’, the initial sector of concern. 
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5.3.3 Carbon, mineral and metal intensities of ‘chemicals n.e.c.’ in different countries  
The carbon, mineral and metal intensities of all countries’ ‘chemicals n.e.c.’  available in the SNAC-

EXIOBASE dataset as well as for the Dutch ‘pharmaceutical industry’ and the ‘Dutch chemical industry’ 

available in the same dataset are calculated in this section to find out if there is an aggregation 

problem in ‘chemicals n.e.c.’. These intensities are also compared to the Dutch ‘chemicals n.e.c.’ 

sector available in EXIOBASE. More detailed results of the multiplier analysis are available in appendix 

Q & R. 

Carbon 

High carbon intensity of ‘chemicals n.e.c.’ can either be caused by the fact that the techniques used 

by the country for producing one euro of ‘chemicals n.e.c.’, or by the type of products that are 

produced in the country as some products are inherently more polluting. Figure 10 shows how many 

times a certain carbon intensity of ‘chemicals n.e.c.’ or the Dutch ‘pharmaceutical industry’ and the 

Dutch ‘chemical industry’ in the SNAC-EXIOBASE dataset are observed. The number of observations 

thus refers to the number of categories that have this carbon intensity. The carbon intensity of the 

Dutch ‘pharmaceutical industry’ (3.05×10-1 kg CO2 eq./€) is three times smaller than the carbon 

intensity of the Dutch ‘chemical industry’ (1.05 kg CO2 eq./€). The average carbon intensity of all 

‘chemicals n.e.c.’ sectors including the Dutch ‘chemical industry’ and ‘pharmaceutical industry’ in 

SNAC-EXIOBASE is 1.04 kg CO2 eq./€, which means that the Dutch ‘pharmaceutical industry’ has a 

lower carbon intensity than the average Dutch ‘chemical industry’.  

The fact that these two sectors have a carbon intensity that differs so much indicates that combining 

the pharmaceutical industry and the chemical industry into one category ‘chemicals n.e.c.’ (as is 

normally done in EXIOBASE) creates an aggregation problem, where expenses on pharmaceutical 

products are given a too high carbon coefficient. This is because the EXIOBASE carbon intensity of the 

Dutch ‘chemicals n.e.c.’ is 1.74 kg CO2 eq./€, which is 5.6 times the carbon intensity of the SNAC-

EXIOBASE category ‘pharmaceutical industry’. 

 

Figure 10: Carbon intensity of ‘chemicals n.e.c.’ and the Dutch pharmaceutical and chemical industries 

Figure 10 shows that the two countries that have the highest carbon intensity are depicted by Slovakia 

(5.50 kg CO2 eq./€) and South Africa (5.21 kg CO2 eq./€) are outliers. Next to this, ‘chemicals n.e.c.’ of 

the Rest of the World (RoW) Europe also has a fairly high carbon intensity of 3.12 kg CO2 eq./€. China 

has the lowest carbon intensity of 2.11×10-1 kg CO2 equivalents. 
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Minerals 

Figure 11 shows that the outliers are more extreme for the mineral intensity of ‘chemicals n.e.c.’. The 

largest mineral intensity is caused by China, which has a mineral intensity of 12.90 kg of minerals/€. 

The Dutch ‘chemical industry’ from the SNAC-EXIOBASE dataset has a high mineral intensity (2.77 kg 

minerals/€), while the Dutch ‘pharmaceutical industry’ has a relatively low mineral intensity of 

3.89×10-1 kg minerals/€. Again, the EXIOBASE Dutch ‘chemicals n.e.c.’ seems not to depict the 

‘pharmaceutical industry’ that well, as the mineral intensity is 1.30 kg of minerals/€. This can also 

explain the large differences in the material footprint of this study compared to Steenmeijer et al. 

(2022), where the Dutch pharmaceutical and chemical industries are combined into the category 

‘chemicals n.e.c’. This result indicates that at least for the material footprint the aggregation problem 

influences the results.  

 

Figure 11: Mineral intensity of ‘chemicals n.e.c.’ and the Dutch pharmaceutical and chemical industries 

The average mineral intensity is 1.33 and the median is 8.84×10-1, which means that the Dutch 

chemical industry has an above-average mineral intensity, while the Dutch pharmaceutical industry 

has a below-average mineral intensity when comparing them to the ‘chemicals n.e.c.’ sectors available 

in the SNAC-EXIOBASE database.  

Metals 

Most countries have a metal intensity of ‘chemicals n.e.c.’ that falls in the 0-2.50×10-1 kg of metals/€. 

The mineral intensities of the Dutch ‘chemical industry’ (1.37×10-1 kg metals/€) and ‘pharmaceutical 

industry’ (4.72×10-2 kg metals/€) are both below the average of 1.90×10-1, while the Dutch ‘chemical 

industry’ is above the median of 1.01×10-1. The metal intensity of the Dutch ‘chemical industry’ is triple 

that of the Dutch ‘pharmaceutical industry’ category in the SNAC-EXIOBASE dataset. The metal 

intensity of the EXIOBASE Dutch ‘chemicals n.e.c.’ is 1.96×10-1 kg metals/€, which is almost the same 

as the chemical industry in the SNAC-EXIOBASE. This means that the EXIOBASE category ‘chemicals 

n.e.c.’ only depicts the Dutch ‘chemical industry’ well, however, the extraction of the metals caused 

by expenditure on pharmaceutical products is again overestimated. India and Mexico have the largest 

metal intensities of ‘chemicals n.e.c.’ compared to other countries. This is especially interesting 

because India is has a large market share in the ‘pharmaceutical industry’ (WHO, 2021).  
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Figure 12: Metal intensity of ‘chemicals n.e.c.’ and the Dutch pharmaceutical and chemical industries 

In conclusion, can be said that there is an aggregation problem in ‘chemicals n.e.c.’ as was introduced 

in section 5.3.2. It is especially obvious for the mineral footprint as it is halved when using the SNAC-

EXIOBASE dataset. Next to this, the mineral and metal intensity also show that there are aggregation 

problems. The mineral intensity is 4 times as small for the Dutch pharmaceutical industry as for the 

original EXIOBASE ‘chemicals n.e.c.’. The metal intensity is around 1.5 times smaller for the Dutch 

chemical industry than for the original EXIOBASE ‘chemicals n.e.c.’. For the carbon footprint, the 

aggregation problem was not immediately obvious when comparing the healthcare carbon footprint 

of this study with Steenmeijer et al. (2022), however, the carbon intensity analysis showed that there 

is an aggregation problem in ‘chemicals n.e.c.’, which is 3 times higher than for the ‘pharmaceutical 

industry’. The aggregation problem mainly arises in the sector itself, while the carbon footprint is 

caused by every step in the supply chain. This is why the aggregation problem in ‘chemicals n.e.c.’ has 

less impact on the total Dutch healthcare sector’s carbon footprint.   

5.3.4 Structural path analysis 
The structural path analysis give insight into the production paths that contribute most to the carbon, 

mineral and metal footprint of the analysed sector. As the carbon, mineral and metal intensity of the 

‘pharmaceutical industry’ as covered in the SNAC-EXIOBASE dataset is much lower than the ‘chemical 

industry’ and the EXIOBASE ‘chemicals n.e.c.’, the structural path analysis can give insight into why 

this is the case. The detailed results of the SPA can be found in appendix S. 

Carbon 

First, the structural paths of the carbon emissions of the three sectors will be discussed. Figure 13 

shows that except for direct emissions, ‘chemicals n.e.c.’ in Belgium (6.12%) and the Dutch energy 

companies (5.43%) contribute a lot to the total emissions of the ‘pharmaceutical industry’ as 

represented in the SNAC-EXIOBASE dataset. The ‘chemicals n.e.c.’ industries that contribute the most 

to the total emissions are the Belgian, the Dutch, the German (specifically because of gas extraction 

in the Netherlands) and the United States industries. Next to this, large shares are found in Dutch 

waste management, air travel, food industry, agriculture. The extraction of natural gas in Russia also 

has a large share. 
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Figure 13: Structural path analysis of the carbon emissions occurring due to the Dutch ‘pharmaceutical industry’ category 
from SNAC-EXIOBASE. The figure shows 35.8% of the total impact by different paths (cut-off at 0.6%) 

Figure 14 shows that the ‘chemical industry’ has more large share paths compared to the 

‘pharmaceutical industry’, as with the same cut-off the path of the ‘chemical industry’ is responsible 

for almost double the share of the total impact (62.1%) compared to the ‘pharmaceutical industry’ 

(35.8%). The Dutch ‘chemical industry’ is now responsible for a larger share and induces other large 

paths in the second stage. Next to this, the direct emissions are almost double that of the 

‘pharmaceutical industry’, and the Dutch petroleum industry seems to play a larger role in the Dutch 

‘chemical industry’ than in the Dutch ‘pharmaceutical industry’.  

 

 

Figure 14: Structural path analysis of the carbon emissions occurring due to the Dutch ‘chemical industry’ category from 
SNAC-EXIOBASE. The figure shows 62.1.8% of the total impact by different paths (cut-off at 0.6% 
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The SPA of the Dutch EXIOBASE ‘chemicals n.e.c.’ sector shows that almost half of the carbon 

emissions are caused by direct emissions. Next to this, the extraction and refining of petroleum and 

natural gas contribute a lot to the first stage of the structural path analysis. Compared to the Dutch 

‘chemical industry’ and the Dutch ‘pharmaceutical industry’ in (Figures 13 and 14), it is remarkable 

that Belgium ‘chemicals n.e.c.’ does not seem to have a path that is larger than 0.6% of the total carbon 

emissions.  

 

Figure 15: Structural path analysis of the carbon emissions occurring due to the Dutch ‘chemicals n.e.c.’ category from 
EXIOBASE. The figure shows 59.8% of the total impact by different paths (cut-off at 0.6%) 

Minerals  

Mineral extraction only occurs at extracting sectors, which is why we also see more multiple-stage 

paths in the paths that are above the cut-off of 1% of the total mineral emissions caused by 

expenditure on the relevant sectors. Figure 16 shows that in the Dutch ‘pharmaceutical industry’ the 

direct extraction is smaller than the cut-off of 1%. All extraction paths that are shown in figure 16 trace 

to the ‘quarrying of sand and clay’ sectors, which makes sense as the sector ‘quarrying of sand and 

clay’ usually cover a large share of material footprints. Next to this, also ‘other minerals’ are extracted 

in the ‘quarrying of sand and clay’ sectors. Large paths are caused by the Dutch, Belgian, Chinese, and 

France ‘chemicals n.e.c’. Remarkable are the ‘other services’ of Denmark. The sand and clay extraction 

mainly takes place in India and China.  
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Figure 16: Structural path analysis of mineral use occurring due to the Dutch ‘pharmaceutical industry’ category from SNAC-
EXIOBASE. The figure shows 26.71% of the total impact by different paths (cut-off at 1%) 

Figure 16 shows the mineral extraction structural path analysis of the Dutch ‘chemical industry’ as 

depicted in the SNAC-EXIOBASE dataset. Here, India seems to dominate the structural path analysis 

more than in the Dutch ‘pharmaceutical industry’. Looking at this SPA and at the SPA of figure 15 can 

be observed that the Dutch ‘pharmaceutical industry’ consumes more of the Belgian chemicals than 

the Dutch ‘chemical industry’. The ‘chemical industry’ causes a lot of extraction in the ‘quarrying of 

sand and clay’ sector in India in the first stage, as well as in the second stage caused by the ‘petroleum 

industry’, this might be the reason why the mineral intensity of the chemical industry is 7 times as 

high, however, it still gives very little insight in what induces this extraction. 

 

Figure 17: Structural path analysis of mineral use occurring due to the Dutch ‘chemical industry’ category from SNAC-
EXIOBASE. The figure shows 66.29% of the total impact by different paths (cut-off at 1%) 

The mineral structural path analysis of the EXIOBASE ‘chemicals n.e.c.’  shows a lot of large paths that 

end in the quarrying of sand and clay sector in RoW Africa, RoW Middle East and China, while India 

has a smaller contribution compared to figure 16 and 17. The large contribution of RoW Africa and 

RoW Middle East are not visible in the SPA of the Dutch ‘chemical industry’ and the Dutch 

‘pharmaceutical industry’. The sector ‘mining of chemicals and fertilizer minerals, the production of 

salt and other mining’ in the Netherlands is responsible for a large share (6.42%) of the minerals 

extracted by expenditure on the Dutch ‘chemicals n.e.c.’. This category did not pop up in the other 

SPA results. As this study assumes that the SNAC-EXIOBASE data is more accurate, the above-

mentioned differences could indicate errors in the EXIOBASE data, specifically where extraction is 

induced.  
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Figure 18: Structural path analysis of mineral use occurring due to the Dutch ‘chemicals n.e.c.’ category from EXIOBASE. The 
figure shows 50.69% of the total impact by different paths (cut-off at 1%) 

 

Metals 

The structural path analysis of metal used caused by the Dutch ‘pharmaceutical industry’ (figure 19) 

shows that most metal extraction occurs in the RoW Latin America (WL), Sweden, Indonesia, and the 

United States. This matches the hotspot analysis results. Interestingly, the Dutch ‘food industry’ is 

again responsible for 2 large paths, which was also the case for the carbon extension. This is only the 

case for the ‘pharmaceutical industry’ and not for ‘chemicals n.e.c.’ and the ‘chemical industry’. 

 

Figure 19: Structural path analysis of metal use occurring due to the Dutch ‘pharmaceutical industry’ category from SNAC-
EXIOBASE. The figure shows 23.78% of the total impact by different paths (cut-off at 1%) 

The metal structural path analysis of the ‘chemical industry’ (figure 20) is quite similar to the 

‘pharmaceutical industry’ in figure 19. Only, the Dutch ‘food industry’ and the Dutch ‘basic metal 



58 
 

industry’ does not occur in the SPA of the ‘chemical industry’. The mining of iron in Britain is a large 

path for the ‘chemical industry’ (2.04%) while it is not for the ‘pharmaceutical industry’.  

 

Figure 20: Structural path analysis of metal use occurring due to the Dutch ‘chemical industry’ category from SNAC-
EXIOBASE. The figure shows 40.47% of the total impact by different paths (cut-off at 1%) 

Figure 21 shows that the metal structural path analysis of ‘chemicals n.e.c.’ shows more differences. 

The ‘mining of chemical and fertilizers minerals, salt and other chemicals’ sector in RoW Africa and 

the Middle East cause large shares of extraction in the ‘mining of aluminium’ sector (4.2%) and the 

‘mining of lead, zinc and tin sector (1.32%). The ‘mining of uranium and thorium’ sector is a large path 

that occurs due to the Dutch ‘chemicals n.e.c.’ in RoW Africa, while it does not occur in the 

‘pharmaceutical industry’ and ‘chemical industry’ categories.  

 

Figure 21: Structural path analysis of metal use occurring due to the Dutch ‘chemicals n.e.c.’ category from EXIOBASE. The 
figure shows 31.58% of the total impact by different paths (cut-off at 1%) 

In conclusion, the SPA seems to give little insight into why the carbon, mineral, and metal intensities 

differ so much between the different categories. The SPA could provide more insight if the paths were 

aggregated and did not have to be cut-off for representing the results. The most remarkable insight 

for the carbon extension is that the direct emissions of ‘chemicals n.e.c.’ and the chemical industry 

are larger than the ‘pharmaceutical industry’. Also, Belgium ‘chemicals n.e.c.’ does not have a large 

path in the SPA of the Dutch ‘chemical n.e.c.’. An interesting finding for the material extensions is that 
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the ‘chemical industry’ induces large paths towards the ‘quarrying of sand and clay’ sector in India 

(33.61%) in the first stage. This might be the reason why the mineral intensity of the ‘chemical 

industry’ is 7 times as high, however, it still gives very little insight into what induces this extraction. 

Next to this, ‘mining of chemicals and fertilizer minerals, the production of salt and other mining’ in 

the Netherlands are responsible for a large share (6.42%) of the minerals extracted by expenditure on 

the Dutch ‘chemicals n.e.c.’. This category did not pop up in the largest paths in SNAC-EXIOBASE 

categories. Lastly, for the metal extension, an interesting finding is the path ‘mining of thorium and 

uranium’ induced by the Dutch ‘chemicals n.e.c.’. Also, the ‘mining of chemical and fertilizers minerals, 

salt and other chemicals’ pops up in the Dutch ‘chemicals n.e.c’.  
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5.4 The carbon and material footprint of individual pharmaceutical products in 

comparison to IOA aggregated products of ‘chemicals n.e.c.’ 
Based on chapter 5.3 there seems to be an aggregation problem in ‘chemicals n.e.c.’ which is especially 

evident in the material footprint results. This chapter dives deeper into this possible aggregation 

problem by identifying the carbon and material footprint of individual pharmaceuticals (sub-question 

4).  

First, a small literature review was conducted to find out if there are already scientific papers and 

reports that researched the carbon and material footprint of individual pharmaceutical products and 

their contribution to the total healthcare footprint. No relevant studies for the material footprint were 

found. Several studies investigate the carbon footprint. The National Health Service (NHS) (2014) 

published a report aimed to identify prescription pharmaceuticals with high GHG intensities for the 

English healthcare sector. This study identified pharmaceuticals of interest for further study based on 

yearly costs, the quantity of API used, and GHG emissions. This list is shown in table 26.  

Table 26: Priority list of prescription pharmaceuticals for future research identified by the NHS (2014) in alphabetical order. 

Priority prescription pharmaceuticals  

Adalimumab Gabapentin 

Amoxicillin Ibuprofen 

Atorvastatin Metformin Hydrochloride 

Beclometasone Dipropionate Naproxen 

Budesonide Paracetamol 

Co-Codramol (Codeine Phos/Paracetamol) Salbutamol 

Co-Dydramol (Dihydrocodeine /Paracet) Simvastatin 

Enteral Nutrition Sodium Valproate 

Etanercept Sulfasalazine 

Fluticasone Propionate (Inhaler) Tiotropium 

 

Unfortunately, these GHG intensities are not available in the report. The report also mentions, that 

several GHG intensities are based on pharmaceutical manufacturers expert guidance, which means 

there is a large uncertainty on the GHG intensities and therefore on the priority list (NHS, 2014). It 

does, however, give an initial insight into prescription pharmaceuticals that can have a large 

contribution to the total pharmaceutical carbon footprint.  

Belkhir & Elmeligi (2019) calculated the carbon intensities of major pharmaceutical companies for the 

years 2012 and 2015. Excluding outliers, the study showed a range of carbon intensities from 1.40×10-

2 kg CO2/$ for Roche to 7.70×10-2 kg CO2 eq./$ for Elli Lilly for the year 2015. Of 9 of the 15 major 

companies, the carbon intensity was below 3.30×10-2 kg CO2 eq./$. All industries except for TEVA 

showed a decrease in emissions between 2012 and 2015. Weisz et al. (2020) is the only study that 

calculates a national healthcare carbon footprint and also calculates the carbon footprint of several 

commonly used pharmaceuticals like paracetamol and naproxen. However, Weisz (2020) investigated 

too few pharmaceutical products to answer sub-question 4.  

Therefore, an LCA literature review on the carbon and material footprint of individual pharmaceuticals 

was conducted.  
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5.4.1 Literature review of LCA studies on pharmaceutical products 
The literature study shows that there is a lack of LCA studies on pharmaceuticals, as only 17 relevant 

articles were found of which 11 were suitable for this study. Most of these studies have a cradle-to-

gate scope, making it difficult to use these for input-output analysis in the future since input-output 

analysis takes a cradle-to-grave approach. 

Of all reviewed articles, only 2 studies included an indicator that somewhat resembled a material 

footprint, namely an abiotic depletion potential, a metal depletion potential and net mass of materials 

used (Henderson et al., 2008; Ott et al., 2014). This shows that a very limited number of LCA studies 

on pharmaceuticals take material use into account. The review of the LCA studies on pharmaceuticals 

also shows that often different impact assessment methods are used. Owsianiak et al. (2014) show 

that converting the impact scores of different impact assessment methods (IMPACT 2002+, ReCiPe 

2008, and ILCD’s recommended practice) to a common metric can lead to large discrepancies for the 

mineral and metal depletion categories. This means that even if in the future more studies would 

include mineral and metal depletion in their LCA on pharmaceuticals it would be difficult to compare 

these to a material footprint calculated using IOA. Not to forget, LCA impact assessment methods 

often express metal or mineral depletion into one equivalent, for example, the CML 3.02 method 

expresses it in Sb-eq. (antimony equivalents). This means that the materials that are extracted to 

produce the product are multiplied with the characterisation factor (which is in kg antimony/kg 

extraction) to get to the indicator result (van Oers et al., 2020). The problem of calculating a material 

footprint of an individual pharmaceutical product lies in the unavailability of the data behind this 

conversion. This makes it difficult to uncover which metals were extracted to produce 1 kg of API. 

The information in the reviewed articles allowed us to calculate the physical carbon footprint (kg CO2 

eq. per kg API or chemical) and the monetary carbon footprint (kg CO2 eq./€) of 44 substances. This 

highlights that the carbon footprint of many pharmaceutical products is not known Table 27 shows 

the identified articles and the substances documented in them. It also shows the physical and 

monetary carbon footprint of the substances. A more detailed version of the comparison can be found 

in appendix T. As these carbon footprints are per 1 kg or 1 euro, from now on they are referred to as 

carbon intensity in the same way as was done in chapter 5.3.3. Calculating the carbon intensity of 

individual pharmaceutical and chemical products used to produce pharmaceuticals gives a first 

impression of the range in carbon intensities. This chapter tries to get a better understanding of the 

product category ‘pharmaceutical industry’ as depicted in the SNAC-EXIOBASE dataset by comparing 

it to the range of carbon intensities of the individual pharmaceutical based on LCA studies. 

The LCA studies on pharmaceuticals are mainly dominated by studies on anaesthetics, which makes 

sense as anaesthetics are known for their high GHG emissions during release (Hu et al., 2021; Sherman 

et al., 2012), and because these are commonly used pharmaceuticals. The study of Goulet et al. (2017) 

focussed on pressurised metered-dose inhalers (pMDI). The use emissions of pMDI are important to 

mention in this study since Steenmeijer et al. (2022) include 19 kt CO2 eq. for pMDI use in the Dutch 

healthcare sector’s carbon footprint (0.47%). The emissions of using pMDI are difficult to include in 

the standard IOA framework because they occur in households, which in most healthcare carbon 

footprint studies are not included.  Therefore, extra attention should be paid to including pMDI use 

emissions in the carbon footprint calculations of the healthcare sector. 

Table 27 only shows the physical carbon intensity of the Proventil inhaler and the electric nebulizer 

because they are not sold in the Netherlands, which is why the monetary carbon intensity could not 

be calculated. The LCA study by McAlister (2019) is the only cradle-to-grave study shown in table 27. 
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Table 27: A literature review of LCA studies into pharmaceutical products and the calculation of physical and monetary 
carbon intensities (all cradle-to-gate studies except for McAlister, 2019) 

Article Type  Product kg CO2 eq./ 
kg 

kg CO2 eq./ 
€ 

Goulet et al. (2017) 
  

Inhalers 
  

Proventil® HFA inhaler 1.02×102 N/A  

Electric nebulizer, specifically the 
DeVilbiss Pulmo-Aide® nebulizer 

4.68×102 N/A 
 

Jiménez-Gonzales 
(2000) 

Antidepressant Sertraline 2.14×103 3.26 

Ott et al. (2014) Tumour treatment Z-isomeric compound (Sanofi) 2.25×103 N/A 

Parvatker et al. 
(2019) 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Anaesthetics 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Dexmedetomidine 3.01×103 3.78×10-5 

Morphine 1.51×103 1.72×10-1 

Hydromorphone 7.99×102 6.84×10-3 

Midazolam 4.44×102 4.34×10-2 

Phenylephrine hydrochloride 1.71×102 3.29×10-4 

Rocuronium Bromide 1.44×102 1.07×10-3 

Ketamine 1.40×102 5.87×10-4 

Remifentanil 1.03×102 3.54×10-5 

Fentanyl 9.58×101 3.45×10-5 

Ephedrine Hydrochloride 8.20×101 1.92×10-3 

Glycopyrrolate 7.60×101 2.00×10-5 

Ondansetron 3.67×101 1.32×10-3 

Ropivacaine HCl 3.56×101 2.24×10-3 

Epinephrine 3.38×101 2.53×10-5 

Lidocaine 2.86×101 8.00×10-3 

Bupivacaine HCl 2.33×101 2.46×10-3 

Neostigmine methylsulfate 2.18×101 5.60×10-6 

Propofol 2.10×101 2.31×10-3 

Sugammadex 1.16×101 3.73×10-5 

Succinylcholine 1.12×101 4.33×10-4 

Raymond et al. 
(2010) 
  
  
  
  
  
  
  
  
  
  
  
  

Solvents  Acetone 1.86 5.44×10-2 

Acetonitrile 1.95 3.15×10-2 

Diethyl ether 1.08 4.55×10-2 

Ethanol 1.08 3.80×10-2 

Hexane 8.55×10-1 1.33 

2-propanol (IPA)  1.63 1.01×10-1 

Methanol 6.44×10-1 6.24×10-2 

Tetrahydrofuran 5.46 1.45×10-1 

Toluene 1.19 1.85 

Generic solvent 1.75 N/A 

Commodity 
chemicals 

Ammonia  2.02 1.28×10-2 

50 wt % Sulfuric acid 1.35×10-1 8.73×10-3 

Titanium dioxide 4.26 3.26×10-1 

Henderson et al. 
(2008) 

Pharmaceutical 
intermediate 

 7-ACA - chemical synthesis 
process route 

3.87×102 5.33×10-1 

7-ACA - two enzymes catalysed 
process 

2.05×102 2.82×10-1 
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Renteria Gamiz et 
al. (2019) 

Anti-inflammatory 
drugs 

Infliximab 8.00×102-
1.24×103 

3.00×10-4 -
5.00×10-4 

MacAlister et al. 
(2016) 

Analgesics 
  

Morphine 2.04×103 1.97×10-2 

Weisz et al. (2020) 
  
  
  
  
  

Paracetamol 7.80 2.29×10-1 

Acetylsalicylic acid 4.90 3.25×10-2 

Ibuprofen 3.10 3.40×10-2 

Naproxen 2.30 1.31×10-2 

Antibiotics Antibiotics 1.43×101 N/A 

Amoxicillin Amoxicillin 1.43×101 8.63×10-2 

A very large range of physical carbon intensities (2.30–3.01×103 kg CO2 eq./kg) monetary carbon 

intensities (5.60×10-6-3.36 kg CO2 eq./€.) of the pharmaceuticals can be observed in figure 22. The 

median lies at 2.24×10-3 kg CO2 eq./€. In this range, sertraline is an outlier with a carbon intensity of 

3.26 kg CO2 eq./€. When looking at the physical carbon intensity of sertraline it is not an outlier, 

meaning that sertraline is an outlier mainly because of its relatively low price compared to 

pharmaceuticals with similar physical carbon intensities.  

The large range in carbon intensities indicates that the pharmaceutical industry is heterogeneous. 

When comparing this range in carbon intensity of individual pharmaceutical products to the weighted 

carbon intensity of the ‘pharmaceutical industry’ category as available in the SNAC-EXIOBASE dataset 

(3.05×10-1 kg CO2 eq./€), the carbon intensity of the SNAC-EXIOBASE ‘pharmaceutical industry’ is a bit 

above this range, when neglecting the outlier. As mentioned in the methods section, the prices 

gathered for this analysis might be on the high side, as no reliable industry price could be found. When 

lower prices would be used, the carbon intensities would increase because the carbon footprint would 

be divided by a smaller number. In this line of reasoning, the fact that the weighted SNAC-EXIOBASE 

pharmaceutical industry’s carbon intensity is a bit above the range of carbon intensities of individual 

pharmaceuticals does not mean that this carbon intensity is erroneous. Also, when taking into account 

that only 28 different pharmaceuticals have been analysed, we could say that the represented range 

is not complete. More information on how the prices of pharmaceuticals change when using Sigma-

Aldrich, the Farmacotherapeutics Kompas and the PharmaCompass can be found in appendix U. 
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Figure 22: Monetary carbon intensity of pharmaceuticals calculated from LCA studies (also including propofol which is an 
intravenous anaesthetic and therefore not an anaesthetic gas) 

Figure 23 shows the range of monetary carbon intensities of the chemicals studied by Raymond et al. 

(2010). These chemicals are mainly solvents, that are often used in the production of pharmaceuticals, 

however, also the commodity chemicals ammonia, sulfuric acid, and titanium oxide were included for 

comparison. Both the physical and monetary carbon intensities of the commodity chemicals match 

the solvents (also see table 27). The range of the physical carbon intensities of chemicals is between 

1.35×10-1-5.46 kg CO 2eq./kg and for the monetary carbon intensities, it is between 8.73×10-3-1.56 kg 

CO2 eq./€ are smaller than compared to pharmaceuticals. This smaller range could be caused by the 

fact that only 12 substances are compared in the same LCA study. The median lies at lower 5.84 ×10-2 

kg CO2 eq./€. The outliers are hexane (1.33 kg CO2 eq./€.), and toluene (1.85 kg CO2 eq./€.), which is 

probably because lower prices were used for the conversion of these substances. The prices of hexane 

and toluene were taken from PharmaCompass, an online marketplace for APIs, while the prices of the 

other chemicals were taken from Sigma-Aldrich, which are generally a lot higher as these are not 

industry prices as explained in the methods section. The range of the carbon intensities of chemicals 

used in pharmaceutical products (excluding the outliers) seems to match the range in pharmaceutical 

carbon intensities as shown in table 22. 
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Figure 23: Monetary carbon intensity of chemicals (solvents often used in pharmaceuticals and 3 commodity chemicals) 
calculated from LCA studies.  

Table 28 shows the physical carbon intensity per litre of anaesthetic gasses and propofol and their 

corresponding monetary carbon footprint. These LCA studies are in a separate table because the 

physical carbon intensity is per litre, the studies are cradle-to-grave, and they have the unique 

character that the emissions mainly occur during the use phase and are quite high. The high carbon 

footprint of anaesthetic gasses can be observed in both the physical carbon intensity and monetary 

carbon intensity. Both are lower in Hu et al. (2021) compared to Sherman et al. (2012), which can be 

explained by the fact that scenarios 2 and 3 of Hu et al. (2021) do not include N2O release, while in 

Sherman et al. (2012) they do. Scenario 3 of Hu et al. (2021) matches the advice that is given to Dutch 

anaesthesiologists as the use of N2O is discouraged and the use of either intravenous anaesthetics or 

sevoflurane with low gas flows of 0.5 L/minute is advised (Nederlandse Vereniging voor 

Anesthesiologie, n.d.). The use of desflurane and isoflurane is also discouraged by the association of 

Dutch anaesthesiologists. However, this advice is not yet fully followed, which is why scenario 2 is also 

relevant. Table 28 shows that depending on the assumptions made on the gas flows a large difference 

in the monetary and physical carbon intensities occurs.  

It does not make sense to compare the carbon footprints of anaesthetic gasses to the carbon intensity 

of the pharmaceutical industry in the SNAC-EXIOBASE dataset. This is because emissions in anaesthetic 

gasses occur during the use phase as direct emissions (Hu et al., 2021; Sherman et al. 2012). In IOA 

usually are not documented in the carbon extension but are added on top of the indirect emissions.  
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Table 28: Literature review of cradle-to-grave LCA studies of anaesthetic gasses (CO2  eq./L) 

Article Type  Product kg CO2 eq./L kg CO2 eq./ 
€ 

Sherman et al. 
(2012) 

Anaesthetics Desflurane 8.12×103 1.65×101 

Isoflurane 1.85×104 3.10×101 

Sevoflurane 6.97×103 1.19×101 

Intravenous anaesthetics Propofol 1.50×104 5.43×10-2 

Hu et al. (2021) 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Anaesthetics scenario 2 
  
  
  
  
  
  
  

Sevoflurane UK_A 9.78×102 1.66 

Sevoflurane UK_B 1.78×102 2.21×10-1 

Sevoflurane USA_A 1.02×103 1.27 

Sevoflurane USA_B 2.67×102 3.31×10-1 

Isoflurane_A 7.14×102 8.76×10-1 

Isoflurane_B 5.36×102 6.57×10-1 

Desflurane_A 2.82×103 4.18 

Desflurane_B 2.67×103 3.96 

Anaesthetics scenario 3 
  
  
  
  
  

Sevoflurane UK_A 8.90×102 1.11 

Sevoflurane UK_B 3.56×102 4.42×10-1 

Isoflurane_A 1.07×103 1.31 

Isoflurane_B 7.14×102 8.76×10-1 

Desflurane_A 2.85×103 4.23 

Desflurane_B 2.69×103 3.99 

Intravenous anaesthetics Propofol 1.78×101 3.266×10-4 

 

We can conclude that there are only a few studies that analyse the healthcare carbon footprint by 

integrating top-down and bottom-up data in their calculation. Only Weisz et al. (2020) considers this 

approach. Additionally, almost no studies on pharmaceuticals exist that include material extraction or 

depletion, which indicates that there is more interest in the carbon footprint than in the material 

footprint of pharmaceuticals. Most studies take a cradle-to-gate approach, which means that the 

emissions in the use-phase and end-of-life stages are missing in these studies. For better comparison 

of LCA and IOA studies, but also a better description of the pharmaceutical industry in input-output 

tables, cradle-to-grave studies are needed. The emissions of anaesthetic gasses during the use phase 

should be included in the direct emissions from the healthcare sector as reported by Statistics 

Netherlands. The SNAC-EXIOBASE data currently published by Statistics Netherlands does not provide 

enough information to assess if the emissions of anaesthetic gasses have been properly accounted 

for. The large range in the carbon intensity of pharmaceuticals indicates that the pharmaceutical 

industry is heterogeneous. When comparing the observed ranges to the SNAC-EXIOBASE 

pharmaceutical industry’s carbon intensity to the range of pharmaceuticals there is not yet a reason 

to think the SNAC-EXIOBASE carbon intensity is very erroneous. 
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5.5 Improving the calculation of the carbon and material footprint of the Dutch 

healthcare sector 
As became clear in chapter 5.3, calculating the Dutch healthcare carbon and material footprint, an 

aggregation problem arises in the EXIOBASE ‘chemicals n.e.c.’ sector that is commonly used to depict 

the pharmaceutical industry. The comparison of EXIOBASE versus SNAC-EXIOBASE also gives clear 

indications of how this problem could be solved. This chapter answers the third knowledge gap: “To 

what extent is EE-IOA a suitable tool to analyse the carbon and material footprint of the Dutch 

healthcare sector?”. Two possibilities to improve the calculation of the carbon and material footprint 

of the healthcare sector are: 

 

1. A hybrid input-output analysis that connects LCA data to the input-output table. 

2. A better depiction of the healthcare sectors in the standard input-output table.  

 

As it is not in the scope of this study to explain how these options work and how the new models 

should be constructed, only a small introduction to the two possible improvements will be given.  

 

5.5.1 A hybrid input-output-analysis 
Hybrid input-output analysis is not a new method, the methodology already originates from the 

energy analysis studies of the 1970s (Bullard et al., 1978; Wright, 1974). In hybrid input-output analysis 

the IOA background system is connected with a foreground system. Using process-based LCA (PLCA) 

as a background system for input-output analysis is often called hybrid input-output analysis 

(Wiedmann, 2011). Hybrid IOA is used to get more detail in input-output sectors. Even though detail 

is added, the economy-wide view is preserved, which is why Minx et al. (2008), argue that hybrid IOA 

is the best option for carbon footprint analysis. This is also the reason why this method can improve 

the calculation of the carbon and material footprint of the healthcare sector. Using a hybrid IOA can 

solve the aggregation issue in ‘chemicals n.e.c.’ by including life cycle inventory data (LCI as a 

background system.  

There are also several disadvantages to using hybrid IOA:  

1. Hybridization is still evolving and is not yet a standardised approach (Wiedmann et al., 2011) 

2. Constructing a hybrid IOT is, time-consuming, more computing power demanding and 

complex.  

3. IOTs are commonly expressed in monetary value, as a common physical unit for the services 

and products expressed in IOTs is difficult to conceive (Wiedmann, 2009. In contrast, LCI data 

is expressed in physical units. Therefore, bridge matrices are needed. 

4. It requires additional data needs. Next to LCI data also emission factors for specific processes 

are needed. LCI data on pharmaceuticals is lacking, and also very difficult to gain due to trade 

secrets (Jiménez-González & Overcash 2014). Also, specific emission factors are missing. The 

literature study on the carbon and material footprints of pharmaceuticals already showed that 

a limited amount of LCA studies were performed on pharmaceuticals. Especially for calculating 

the material footprint, where the aggregation problem is largest, there is a lack of LCA studies  

Especially due to the additional data needs, and the lack of data availability this improvement option 

is very time-consuming and not feasible. 
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5.5.2 A better depiction of the healthcare sectors in the standard input-output table 
The second option is to use a dataset that better depicts the healthcare sector. Ideally, this dataset 

should distinguish a separate pharmaceutical sector for every country in the dataset in the same way 

as is done for the Dutch sectors in the SNAC-EXIOBASE 2014. In this way, there is less of an aggregation 

problem for pharmaceuticals, as shown in chapter 5.3.3. EXIOBASE does not include a separate 

pharmaceutical industry sector because it is based on the economical classification NACE Rev. 1.1. In 

2021, the Organisation for Economic Co-operation and Development (OECD) published the Inter-

Country Input-Output tables (ICIO) based on the ISIC Rev. 4 classification (NACE Rev. 2). The ICIO, 

therefore, includes a separate pharmaceutical sector for all 66 countries (Organisation for Economic 

Co-operation and Development [OECD], 2021). The ICIO consists of 45 industries and includes no 

environmental extensions as the OECD is mainly focused on economic analyses (OECD, 2021). This IOT 

is available from the years 1998 to 2018 (OECD, 2021). Another advantage of the ICIO is that it is 

developed by the OED, which as an international statistical organization has an ongoing budget to 

keep improving and updating these tables. The OECD is also able to comprehensively collect national 

statistical data. Statistical institutions are better at collecting economic and environmental data of 

their country, as they use data that is often restricted to the public, and companies are compulsory to 

share data with these institutions by law (Wiedmann et al., 2011). Where hybrid IOA increases the 

complexity of the analyses performed, the solution of this section does not increase the complexity. 

This means that more input-output practitioners will be able to perform analyses.  

 

The main limitations of using the ICIO to calculate the carbon and material footprint of the healthcare 

sector:  

 

1. The ICIO does not include environmental extensions yet, and it is unlikely that the OECD 

will add these to the ICIO because it is mainly focused on economic analysis. Therefore, 

environmental extensions still need to be added.  

2. So far, the ICIO has a low resolution (45 industries), which especially for the calculation of 

the material footprint is a bottleneck. The primary industries resolution is low, as it only 

differentiates between the mining of energy and non-energy products. 

3. Due to the large range of carbon intensities observed in chapter 5.4, there is still a chance 

there will still be an aggregation problem when using a separate pharmaceutical industry 

sector, due to the heterogeneous character of these pharmaceutical products.  

 

Creating environmental extensions for the ICIO is time-consuming, however, as these can be based on 

national accounts it is deemed to be less time consuming than performing all LCA’s necessary to be 

able to make a proper hybrid input-output table. The second improvement option is also in line with 

recommendations of other studies, that GMRIOs should be more robust, by being based on statistical 

data (Tukker et al., 2018).   

 

In both options, the direct emissions of the healthcare sector should be considered carefully. In the 

Dutch situation, more clarity is needed on what emissions are included in the sectoral direct emissions 

that are documented by the Statistics Netherlands. As shown in section 5.4, anaesthetic gasses are 

responsible for a very a lot of direct emissions. These should be included in the carbon footprint of 

the healthcare sector. Preferably, also use emissions (e.g. pMDI use) at households should be included 

in the healthcare sector’s carbon footprint.  

 

Previous chapters showed that there are data limitations and that there is an aggregation problem in 

‘chemical n.e.c.’. This chapter showed that there are possible solutions for solving these problems. 
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Both of them involve IOA as the backbone of the analysis. While a hybrid analysis is not feasible due 

to the lack of LCA data, the use of MRIOs that include a separate pharmaceutical industry seems more 

feasible. The ICIO can be the basis for future analyses of the carbon and material footprint of the Dutch 

healthcare sector, especially because the demand for an environmentally-extended high ICIO 

resolution already exists in the scientific debate, which makes it likely these extensions will be 

developed. However, the main limitation of input-output analysis; the assumption of homogenous 

product groups will still have an impact on the results of future studies of the carbon and material 

footprint of the (Dutch) healthcare sector as the pharmaceutical sector seems to be quite 

heterogeneous. In conclusion, can be said that IOA is so far the only suitable tool that can analyse the 

carbon and material footprint of the healthcare sector, however, it comes with a lot of limitations, 

and therefore should not be seen as a representation of reality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

6. Discussion  
In this study, we have analysed the contribution of the consumption of pharmaceuticals to the Dutch 

carbon and material footprint and the suitability of EE-IOA for this analysis. Step by step possible 

reasons that could cause the previously observed high contribution of the consumption of 

pharmaceuticals to the Dutch healthcare sector’s carbon and material footprint were investigated.  

Analysis of previous studies 

First, the previous studies of De Koning (2020) and Steenmeijer et al. (2022) were checked on 

conceptual and calculation errors. Even though Steenmeijer et al. (2022) use better healthcare 

expenditure data in the IOA compared to De Koning (2020), the product category ‘chemicals n.e.c.’ 

still dominates the carbon and material footprint. This indicates that the high contribution of the 

consumption of pharmaceuticals to the Dutch healthcare sector’s carbon and material footprint 

cannot be explained by the different data used in the construction of the final demand stimulus. After 

this, the total Dutch carbon footprint calculated by Steenmeijer et al. (2022) was compared to other 

studies that also calculated the carbon footprint of the Dutch healthcare sector and with the SNAC-

EXIOBASE carbon footprint. This showed a large range in the Dutch carbon footprint, which can be 

explained by the use of different datasets, as identified by previous studies (Tukker et al., 2020; Wood 

et al., 2019). This large range can be caused by the difference in sectoral resolution in these datasets. 

However, when extreme aggregations are avoided (e.g., level of 17 sectors) the errors are below 10% 

(Tukker et al., 2020). The value of a national carbon footprint also depends on if a residential or 

territorial approach is used to calculate a carbon footprint, which for small countries like the 

Netherlands can lead to large deviations (20-70%) (Tukker et al., 2020). Based on the large differences 

in national carbon footprints between using datasets, Tukker et al. (2020) advise using a SNAC 

approach when calculating national footprints. The main reason for this is that SNAC IOTs are based 

on national statistical data. The study of Steenmeijer et al. (2022) falls in the middle to the higher 

range of observed Dutch carbon footprints, which is to be expected when using EXIOBASE data (Tukker 

et al., 2020; Wood et al., 2019). Lastly, the investigation into ‘chemicals n.e.c.’ showed that the 

EXIOBASE category ‘chemicals n.e.c.’ is a heterogeneous sector that next to pharmaceuticals also 

includes products like inks, paints, make-up, soaps, and bulk chemicals. Based on these results, the 

large contribution of ‘chemicals n.e.c.’ to the carbon and material footprint of the Dutch healthcare 

sector cannot be dismissed by conceptual or calculation errors in previous studies. It is either a correct 

observation or it is caused by the EE-IO model or EE-IO dataset used to calculate the carbon and 

material footprint of the Dutch healthcare sector.  

The Dutch healthcare sector’s carbon and material footprint 

The comparisons in the first sub-question showed that using different datasets influences the 

calculation of the Dutch carbon footprint. Therefore, it is to be expected that using SNAC-EXIOBASE 

inherently changes the Dutch healthcare sector’s carbon and material footprint. The Dutch healthcare 

sector’s carbon footprint calculated in this study is 14.26 Mt CO2 eq., of which 1.65 Mt CO2 eq. are 

direct emissions. Mainly energy-related sectors are high contributors to the Dutch healthcare sector’s 

carbon footprint, which is to be expected. Also, ‘chemicals n.e.c.’ (of all countries except the 

Netherlands is responsible for a large share (8%). The material footprint of the healthcare sector 

calculated in this study consists of 15.05 Mt of materials and is dominated by mineral use (89%). The 

hotspot analysis of the mineral footprint showed a large share of ‘other mineral’ use (69%). This large 

share may be explained by the healthcare products that are made of the minerals that fall under ‘other 

minerals’, however, this is not quantitatively checked. The hotspot analysis of the metal footprint 

shows a remarkably high share of gold (11%) and silver (6%). This could be caused by the 

disaggregation of the material footprint with the use of the EXIOBASE extensions on which the SNAC-
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EXIOBASE extensions are based. There is a difference in the total amount of materials extracted per 

sector between SNAC-EXIOBASE and EXIOBASE, which could cause this high share of gold and silver 

observed in the metal footprint.  As no information is available on this difference between these 

datasets, and how the SNAC-EXIOBASE table was constructed, the hotspot analysis per mineral and 

metal group cannot be deemed to be entirely correct.  

Identification of aggregation problems 

Using SNAC-EXIOBASE compared to EXIOBASE data showed that the indirect carbon footprint 

diminished by 11% and the material footprint by 61%. This decrease shows that it is likely there is an 

aggregation problem in the EXIOBASE category ‘chemicals n.e.c.’. The total Dutch carbon footprint 

diminished by 20% when using SNAC-EXIOBASE data compared to EXIOBASE data. This shows that the 

Dutch healthcare sector’s carbon footprint decreases less compared to the total Dutch carbon 

footprint when using SNAC-EXIOBASE data. In both studies, the share of the Dutch healthcare sector’s 

carbon footprint as a share of the national carbon footprint remains the same (8%). However, the 

share of the consumption of pharmaceuticals to the total carbon footprint does diminish. The 

extramural demand for pharmaceuticals attributes to 9% of the carbon footprint, while, for 

Steenmeijer et al. (2022) (for the year 2014) this is 25%. The Dutch healthcare sector’s carbon footprint 

calculated in this study falls in the middle range of all studies compared (ARUP & Health Care Without 

Harm, 2019; Gupta Strategists, 2019; Pichler et al., 2016; Steenmeijer et al., 2022.). The fact that the 

material footprint decreases more than the carbon footprint is in line with previous studies that find 

that aggregation problems have a larger influence on the material footprint compared to the carbon 

footprint (De Koning, 2015).  

Comparing the carbon, mineral and metal intensities of the Dutch ‘pharmaceutical industry’ and the 

Dutch ‘chemical industry’ in the SNAC-EXIOBASE dataset, with the Dutch ‘chemicals n.e.c.’ EXIOBASE 

category showed that the Dutch ‘pharmaceutical industry’ in all cases had lower intensities. The 

largest difference can be seen in the mineral intensity, which is 7 times smaller for the Dutch 

‘pharmaceutical industry’ category of SNAC-EXIOBASE than for the original EXIOBASE ‘chemicals 

n.e.c.’. For the metal intensity, this is 4 times smaller and for the carbon intensity, it is 3 times smaller. 

The carbon, mineral, and metal intensities confirm the aggregation problem in the EXIOBASE category 

‘chemicals n.e.c.’ which initially became clear due to decreases in carbon and material footprint. The 

relatively high carbon and material footprint of the Dutch consumption of pharmaceuticals can, 

therefore, reasonably be explained by the aggregation problems in ‘chemicals n.e.c.’ which is used to 

depict the pharmaceutical industry, which mainly is a data limitation. 

Next to this, a SPA was conducted to identify what causes the carbon, mineral, and metal intensities 

to differ between the EXIOBASE category ‘chemicals n.e.c.’ and the Dutch ‘pharmaceutical industry’ 

and ‘chemical industry’ categories in the SNAC-EXIOBASE dataset. The large paths mainly are in the 

same countries as in the hotspot analyses. The sector quarrying of sand and clay shows to cause large 

paths in the mineral extension SPA. This seems counter-intuitive when considering that the mineral 

footprint is dominated by ‘other minerals’, however, important to note is that multiple mineral 

extensions are linked to one sector. In the case of quarrying of sand and clay, this includes the mineral 

extensions ‘other minerals, ‘sand and gravel’, and ‘clays and kaolin’. The SPA results also show that 

there are clear differences in the largest paths between the 3 categories compared, which again 

confirms the aggregation problem in the EXIOBASE ‘chemicals n.e.c.’ category.  

Literature review on LCA studies 

Because of the observed aggregation problem in the EXIOBASE category ‘chemicals n.e.c.’, a literature 

review was conducted to find the carbon and material footprint of individual pharmaceuticals. LCA 

studies on the carbon and material footprint of pharmaceuticals are lacking. There especially is a very 
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limited number of LCA studies on pharmaceuticals that take material use into account. This study 

found 44 substances that could be compared in both physical and monetary carbon footprints, which 

is very little. Most studies take a cradle-to-gate approach. Since the studies use different assessment 

methods and scopes, they are more difficult to compare. For a better comparison of LCA and IOA 

studies, and a better description of the pharmaceutical industry in input-output tables, cradle-to-grave 

studies are needed. The studies of Hu et al. (2021) and Sherman et al. (2012) showed that anaesthetic 

gasses have a high impact during the use phase, which means these emissions should be included as 

the direct emissions in input-output calculations. Also, the emissions occurring during the use of 

pressurised metered-dose inhalers should be included in IOA studies through bottom-up approaches.  

A large range in both physical (2.30–3.01×103 kg CO2 eq./kg) and monetary (5.60×10-6-3.36 kg CO2 

eq./€) carbon intensities could be found for pharmaceuticals. Comparing the range of monetary 
carbon intensities of pharmaceuticals to the range in monetary carbon intensities of pharmaceutical 
companies (1.40×10-2-7.70×10-2 kg CO2 eq./$) of Belkhir & & Elmeligi (2019), these range ranges seem 
to match. When comparing the range of carbon intensities of individual pharmaceutical products to 
the weighted carbon intensity of the SNAC-EXIOBASE Dutch ‘pharmaceutical industry’ category 
(3.05×10-1 kg CO2 eq./€), the carbon intensity of the ‘pharmaceutical industry’ category is a bit above 
this range, when neglecting the outlier sertraline. The range of carbon intensities of the chemicals 
used in pharmaceuticals falls in the range of the individual pharmaceutical industries. As mentioned, 
the prices gathered for this analysis might be on the high side because no reliable industry price could 
be found. When lower prices would be used, the carbon intensities would increase, because the 
carbon footprint would be divided by a smaller number. In this line of reasoning, the fact that the 
weighted SNAC-EXIOBASE pharmaceutical industry’s carbon intensity lies a bit above the range of 
carbon intensities of individual pharmaceuticals does not indicate that this carbon intensity is 
erroneous. When taking into account that only limited pharmaceuticals have been analysed, however, 
we also have to mention that the observed range of carbon intensities is far from complete. 
 

Discussion on the approach of this study 

The use of SNAC-EXIOBASE for calculating the carbon and material footprint of the Dutch healthcare 

sector has pros and cons. The main limitations of EE-MRIO analysis also apply to this study. One of 

these limitations is incomplete data which means that data entries are the result of balancing and 

reconciliation of the available data (Tukker et al., 2018). A pro of using SNAC-EXIOBASE is that at least 

for the Netherlands the data entries are based on the official national statistics. However, for the rest 

of the world, this is still based on reconciliation. Especially for low-income countries, where little 

detailed data is available this reconciliation can lead to large assumptions. SNAC-EXIOBASE even 

divides these countries into the Rest of the World (Row) countries. In the case of the metal footprint 

of the Dutch healthcare sector, RoW America contributes (66%) to the metal footprint. This is not very 

insightful, and this large share could be a result of the reconciliation. The Dutch part in SNAC-EXIOBASE 

has a low resolution of only 76 sectors, compared to 163 sectors in EXIOBASE. Lower resolutions can 

be problematic for the calculation of material footprints (Giljum et al., 2019). All other countries have 

a higher resolution, which means that this effect is not that large. However, it could still influence the 

mineral footprint results because 5% of the mineral extraction caused by the Dutch healthcare sector 

takes place in the Netherlands. Next to this, the SNAC-EXIOBASE dataset is only available for 3 years 

and is not public, which makes it difficult to compare analyses performed with this data to other 

studies 

Due to the different approaches of the distribution of product supply among countries of origin in this 

study compared to Steenmeijer et al. (2022), it is difficult to assign the decrease of the healthcare 

sector’s carbon and material footprint completely to the use of different data. For the SNAC-EXIOBASE 

carbon and material footprint, we assumed all the pharmaceuticals and medical appliances are 
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sourced domestically. There is a trade-off between a better depiction of the pharmaceutical industry 

and, therefore, assuming the Dutch SNAC-EXIOBASE ‘pharmaceutical industry’ category to be 

representative for all pharmaceuticals bought in the Netherlands. While Steenmeijer et al (2022) 

assumed the sourcing to be proportional to the sourcing distribution of the Dutch EXIOBASE 

‘chemicals n.e.c.’ category in the total final demand (for national consumption) but uses ‘chemicals 

n.e.c.’ to depict the pharmaceutical industry which is a downside. Since the SNAC-EXIOBASE dataset 

only provides the separate pharmaceutical industry for the Netherlands, we cannot derive any 

import/sourcing distribution as is done in Steenmeijer et al. (2022). While we do not know that the 

distribution of ‘chemicals n.e.c.’ is representative of pharmaceuticals, it is also unlikely that they are 

sourced completely domestically.  

Due to the limited number of studies on the material footprint of healthcare sectors, the lack of 

information on how the SNAC-EXIOBASE dataset is constructed, and the not completely explainable 

domination of ‘other minerals’ in the material footprint, it is difficult to value the material footprint 

results of the Dutch healthcare sector as calculated in this study. Giljum et al. (2019) also showed that 

national material footprints differ a lot between calculations when using the same material extension 

but different IO datasets. This difference is mainly caused by the different sectoral resolutions in the 

primary industries. For the Netherlands, when using ICIO the material footprint per capita is 13.9, 

while it is 23.5 tons per capita when using Eora (Giljum et al, 2019). This is almost a doubling, indicating 

that usage of different datasets has a larger influence on the material footprint compared to the 

carbon footprint. 

Lastly, the carbon footprint calculated in this study does not include commuting emissions and 

anaesthetic gasses as direct emissions, because including them surpassed the goal of this study. As 

there is little clarity on if Statistics Netherlands includes the direct emissions of anaesthetic gasses in 

their documentation, we did not include it to avoid double counting. However, as also shown in 

chapter 5.4 anaesthetic gasses have a large impact during their use phase. Steenmeijer et al. (2022) 

estimate the direct emissions of anaesthetics to be 1.6% in 2016. The commuting emissions usually 

are not included in the carbon footprint of a sector, while several studies analysing the Dutch 

healthcare sector’s carbon footprint do include them (Gupta Strategists, 2019; Steenmeijer et al., 

2022). Steenmeijer et al. (2022) show these to be 11% of the Dutch healthcare carbon footprint. 

Suggested improvements 

Lastly, even though the limitations mentioned in the previous chapters, IOA is a suitable tool to 

calculate the carbon and material footprints of the Dutch healthcare sector. It is even essential for it 

can cover direct and indirect emissions that the healthcare sector triggers along the supply chain, 

which other tools are not capable of. This study suggested two options for improving the calculation 

of the carbon and material footprint of the Dutch healthcare sector:  

1. A hybrid input-output analysis that connects LCA data to the input-output table. 

2. A better depiction of the healthcare sectors in the standard input-output table.  

Both options are time-consuming and data demanding. The hybrid-IOA improvement is deemed to be 

not feasible due to the lack of LCA data. For a better depiction of the pharmaceutical industry in IOTs, 

the 2021 version of the ICIO developed by the OECD is promising because it includes a separate 

pharmaceutical industry for all countries in the IOT due to the use of the ISIC Rev. 4 economic 

classification. Before the 2021 ICIO version by the OECD can be used to calculate the Dutch healthcare 

sector’s carbon and material footprint it first needs environmental extensions and a higher sectoral 

resolution. However, we still see this solution as the best option because the use of IOTs developed 

by international statistical organisations has also been seen as the way forward for EE-IOA by other 
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studies (Tukker et al., 2018). Based on the advice of Tukker et al. (2018), the Netherlands 

Environmental Assessment Agency (PBL) already included environmental extensions to the 2018 ICIO 

version based on ISIC Rev. 3 (Wilting, 2021). This showcases the willingness of organisations to use the 

ICIO for environmental footprint calculations.   

Until there is an actual high-resolution MRIO that includes a pharmaceutical industry in all countries 

and has environmental extensions exists, a SNAC approach including a pharmaceutical industry in the 

country of interest could be preferred for national analyses, because it is based on official national 

statistical data. It would be really interesting if a similar analysis would be performed for other 

countries because it offers opportunities to compare the Dutch ‘pharmaceutical industry’ category in 

the SNAC-EXIOBASE dataset to other countries’ pharmaceutical industry categories. Until then, using 

a SNAC approach has limited possibilities because of the lack of pharmaceutical industry categories in 

the other countries in the IOT. A downside of using a SNAC approach or an MRIO that includes the 

pharmaceutical industry category for all countries is that even with a dedicated pharmaceutical 

industry in the IOT, aggregation problems can arise due to the heterogeneous character of the 

pharmaceutical industry itself, as shown in the LCA review of chapter 4. It is important to still use LCA’s 

as a way to identify hotspots in the healthcare sector to be able to improve the carbon and material 

footprint of the healthcare sector. 

 

7. Conclusion and future studies 
This study dived deep into the calculation of the carbon and the material footprint of the Dutch 

healthcare sector. The research question to be answered was: How can the relatively large 

contribution of the product category ‘chemicals n.e.c.’ to the carbon and material footprints of the 

Dutch healthcare sector be explained?  

In conclusion, the main research question is difficult to answer as many different aspects influence 

the observed decrease in the carbon and material footprint of the Dutch healthcare sector. The 

observed decrease of the carbon footprint by 11% and material footprint by 61% in combination with 

the multiplier analysis, and the SPA showed that there is an aggregation problem in the EXIOBASE 

‘chemicals n.e.c.’. This shows that the results observed in previous studies are subject to a substantial 

aggregation problem, which also makes sense due to the heterogeneity of the products that fall under 

‘chemicals n.e.c’. Even though there is a decrease in the carbon and material footprint of the Dutch 

healthcare sector, it is still reasonable to say that the consumption of pharmaceuticals is a large share 

of the carbon and material footprint. This can be observed by the contribution analysis, where the 

pharmaceutical industry has the highest carbon, mineral and metal intensity of all four healthcare-

related sectors. 

This study contributes to the knowledge on the material footprint of the Dutch healthcare sector, 

which was an identified knowledge gap. It also provides a comparison to Steenmeijer et al. (2022), 

which was the only study that calculated the Dutch healthcare sector’s material footprint. However, 

we recommend that the results of the material footprint of the healthcare sector are used carefully 

because this is a new area of research in which we are not yet sure if it represents reality well enough. 

Especially the hotspot analysis of the material footprint calculated in this study showed that the large 

share of ‘other minerals’ is hard to explain. Also, the total minerals extracted per sector in the SNAC-

EXIOBASE extension differs compared to the EXIOBASE extension. Without knowing why these values 

differ, it is unwise to value these results. Therefore, the knowledge gap: “What is the material footprint 

of the Dutch healthcare sector?” remains a knowledge gap.   
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This study showcases that the homogeneity assumption of the product group ‘chemicals n.e.c.’ does 

not hold. It can be seen as a case study that shows the limitations of assuming homogenous product 

groups in IOA. This study can, therefore, be used as a roadmap for future studies that want to identify 

possible aggregation problems in IO categories.  

The research field of calculating environmental footprints for the healthcare sector of a nation or 

globally is still relatively new. So far, all studies have used GMRIOs, while none have used a SNAC 

approach. This study contributes to the field by taking a SNAC approach and by showing that 

aggregation problems in the EXIOBASE category ‘chemicals n.e.c.’ are an issue when calculating the 

carbon and material footprint of the healthcare sector. Also, few studies have focussed on the material 

footprint of the healthcare sector which means there is almost no frame of reference for this study. 

Therefore, it would be beneficial if future studies (of other countries) focussed on calculating a 

national healthcare sectors´ environmental footprint also use a SNAC approach with a separate 

pharmaceutical sector and include a material footprint analysis. It would be interesting to compare 

default MRIO healthcare studies of other countries to a SNAC approach study, as was done in this 

study. It would be interesting to see how the results change when using a SNAC approach based on 

other datasets (SNAC-Eora or SNAC-WIOD). This study also showcased the importance of more 

detailed information on the direct emissions registered by Statistics Netherlands because in the 

current situation it is unclear if anaesthetic gasses are included in this. 

The motivation of this study originates in the Green Deal Sustainable Healthcare in the Netherlands 

(GDDZ) in which RIVM (Steenmeijer et al., 2022) is creating a knowledge base for the environmental 

impacts of the Dutch healthcare sector. We advise RIVM to be careful to use the material footprint 

results for policy advice since the results of this study and Steenmeijer et al. (2022) differ so much, 

and relatively little research has been done on this subject, which makes it hard to value these findings.  

RIVM is also advised to not base their knowledge base too much on the analysis of one year as creating 

a knowledge base on the environmental impacts of a healthcare sector benefits from trends over the 

years. The EXIOBASE dataset is available for many different years and the SNAC-EXIOBASE dataset is 

available for 2010, 2014 and 2016.  

We suggest that future studies on the Dutch healthcare sector should focus on using MRIOs that have 

a separate pharmaceutical industry as this could solve some of these aggregation issues. The 2021 

version of the ICIO by the OECD already apply this because they base their IOT on the ISIC Rev. 4 

classification. Before the ICIO can be used for healthcare footprint analyses, environmental extensions 

should be added and the resolution of sectors in these tables should be increased. Due to the 

economic analysis focus of the OECD, this study recommends that international statistically 

organisations take the responsibility to increase the resolution of these tables, while research groups 

or consultancy firms could focus on adding environmental extensions. As this ICIO table by the OECD 

is a very recent development we advise RIVM to take these developments into account for future 

studies as studies based on older economic classification systems (like EXIOBASE) will become 

outdated. Partnering with PBL could be an option since they have experience in working with the ICIO 

tables. Lastly, LCA studies can be still very useful to indicate hotspots of emissions or material 

extraction caused by the healthcare sector. Mitigation measures should be based on low-hanging fruit 

which can better be found by using LCA.  
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