Signature-based
Model recognition

In financial time series

. J. Kooljman







Slgnature-naseo

Mnoade
recognition

in financial time series

by

. J. Koojman

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday May 25, 2021 at 16:00 PM.

Student number: 4365925
Project duration: September 1, 2020 — May 25, 2021
Thesis committee:  Prof. dr. ir. C.W. Oosterlee, TU Delft/Universiteit Utrecht, supervisor

Dr. A.A. Tsvetkov, ING Bank, daily supervisor
Dr. C. Cantia, ING Bank, daily supervisor
Dr. R.J. Fokkink TU Delft

Prof. Dr.Ir. C. Vuik TU Delft

K. Andersson, MSc. CWiI

An electronic version of this thesis is available at http://repository.tudelft.nl/.
Cover image adapted from http://freepik.com.

]
TUDelft


http://repository.tudelft.nl/
http://freepik.com




Preface

Before you lies the thesis “Signature-based model recognition in financial time series”. This thesis en-
tails my efforts in identifying the generative stochastic process of an observed (financial) time series by
using the signature transformation. It is written in order to successfully complete the master program
Applied Mathematics at the Delft University of Technology. The research is conducted in collaboration
with ING Bank.

| am thankful for the opportunity to collaborate with the Model Development department within ING. |
would like to thank my daily supervisors Artem Tsvetkov and Catalin Cantia from ING for their support,
ideas and guidance, which helped me a lot in the past nine months. Additionally, | would like to thank
Cornelis Oosterlee and Kristoffer Andersson who supervised me from TU Delft/CWI for their sugges-
tions, feedback and kind conversations. Because of the current Covid-19 situations, our meetings were
online, but despite the distance | felt supported in my research, for which | am grateful.

Furthermore, | would like to thank my family and friends for their unwavering support, enthusiasm, op-
timism and coffee breaks. Working on a thesis in times of Covid-19 was challenging, so their support
was very valuable to me, as were the conversations with my fellow TU Delft graduates. Specifically |
would like to thank my boyfriend for his kindness and his willingness to listen to my breakthroughs and
challenges in the past nine months.

| am glad you are taking the time to read my thesis and | wish you a pleasant reading.

1.J. Kooijman
Delft, May 2021






Abstract

In financial mathematics, stochastic processes are regularly used to describe observed financial indica-
tors such as stocks, options, futures or interest rates. Identifying the underlying dynamics of observed
financial time series is crucial in risk management, as it greatly affects pricing and hedging strategies.
The large number of available stochastic processes make selecting the most suitable stochastic pro-
cess a non-trivial problem. Additionally, realisations of stochastic processes are elements of the path
space which is infinite-dimensional and non-locally compact. Given these observations, we find that
model selection methods from classical statistics, such as distribution metrics, are inadequate. In this
thesis a signature-based model recognition method is proposed. The goal of this model is to select the
most suitable stochastic process to describe an observed financial time series. Signatures are transfor-
mations from a path to an infinite-length sequence of properties of that path, which makes signatures a
highly interesting approach to construct input features which can be used by a machine learning model.
In our evaluation, we use the aforementioned methodology to distinguishing between various classifi-
cation settings of Arithmetic Brownian Motion, Geometric Brownian Motion and the exponential jump
diffusion process, both in a binary and multi-class classification setting. This evaluation shows that
the proposed method can adequately distinguish between the same model with different parameters,
models with and without jumps and models with different jump sizes and jump intensities.
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Introduction

The analysis of financial time series is a field that has been extensively studied in the past years. Fi-
nancial time series represent the historical evolution of different financial indicators like interest rates,
stock prices or indices, foreign exchange rates, volatility curves and many more. These time series can
be modelled through stochastic processes and a multitude of these processes were introduced over
the last 50 years, such as Heston’s model, the Hull-White model or the jump diffusion process (see
Oosterlee et al. [41]). The introduction of these new models created a new problem of choosing the
most appropriate model when observing a financial time series. This problem is often referred to as the
model selection problem and is not unique to the financial field, but extends to the entire statistical field.

Selecting the most suitable model is vital for financial institutions like banks, insurance companies and
pension funds. Each financial institution has a risk department whose purpose is to identify and man-
age potential risks for the company. These departments use the aforementioned mathematical models
to model all types of financial risks, ranging from market risk (i.e. the risk of loss due to movement in the
market), credit risk (i.e. the risk of loss due to default of the counter party), interest risk (i.e. risk of loss
due to movement in the interest rate) to many more types of risk. In order to manage these risks, finan-
cial institutions hedge their positions through the trade of financial derivatives like options or futures.
Finding the fair price of these financial products is essential, as they have a great impact on the hedg-
ing strategy. The price of these derivatives depends on the underlying assets, which is often modelled
through a stochastic process. Therefore the choice of stochastic process is important, it influences the
pricing equations and thereby the hedging strategy of the banks. Selecting the most suitable process to
model the observed financial time series is a repeating challenge for the risk management departments.

A significant complication in selecting a suitable stochastic process derives from the fact that time se-
ries - or paths - sampled from a stochastic process are elements of the path space. The path space
is the space that contains all possible paths in a certain time frame and is infinite dimensional and
non-locally compact according to [10]. These properties cause complications when making inferences
on the path space. Traditionally - for time series that belong to spaces that are finite-dimensional and
compact - empirical distribution metrics are used to find the most suitable distribution. One can think of
popular metrics like the Kolmogorov-Smirnov statistic, the Anderson Darling statistic or the Cramér—von
Mises statistic (see [44]). Although these distributional metrics for marginals can be extended to (finite)
multivariate distributions, the extension to the infinite dimensional path space is not straightforward, as
mentioned in [14]. This issue greatly complicates the matter of selecting the correct model.

In summary, the problem can be formulated as shown below.

Problem. Let{t,,t,, ..., t,} be discrete time points on which we observe path path wp = {D;; Dy,; ...; D¢, }-
Given that wp is sampled from the continuous data generating process Dy, identify which class of para-
metric models M; with parameter set 6' from a predetermined set of models M = {M,(8'); M,(8?); ...;
M, (6%)} is likely to have generated the path wp.
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Remark 1. It is essential to remark that in this thesis the focus is put not only on distinguishing be-
tween paths generated by different models, but also between paths generated by the same model with
different parameter sets 6'.

The choice of possible model M; € M is broad, examples are Brownian Motion, Heston Model, the
jump diffusion process, Ornstein—Uhlenbeck etc.

In the remainder of this thesis, a transformation from path space to an alternative space is proposed
in order to enhance the handling of the model selection problem. This transformation is called the sig-
nature transformation and transforms the path to a sequence of iterated integrals over the path, called
the signature. This signature is a vector of infinite length, where every element of the vector is related
to statistical properties of the path.

Before we take an in-depth look at how we can use signatures in solving the model selection problem,
we first describe the stochastic fundamentals that are needed during the rest of this work in chapter
2. We introduce the problem in more detail in chapter 3, followed by a short overview of related ap-
proaches, the introduction of the signature and mathematical considerations of which the reader needs
to be aware. Chapter 4 provides an overview of the methodology and used machine learning methods
in this thesis. These machine learning methods are used to classify path wp to its likely generative
process. The empirical results of this classification are presented in chapter 5. We conclude this thesis
in chapter 6 and present our views on further research in this interesting research domain.



Preliminaries

Before describing the problem and its difficulties in more detail in chapter 3, this chapter describes
mathematical concepts needed to fully define the problem. The set of models

M = {M;(0Y); M5(6?); ...; M (6%)} from which we would like to select the most appropriate model are
taken to be stochastic processes. A stochastic process is a collection of random variables usually in-
dexed by a time component. For financial applications, researchers are interested in the movements
of the market, also called the dynamics of the market. Whereas in standard calculus movements are
often described differentiable Ordinary Differential Equations (ODEs) or Partial Differential Equations
(PDEs), stochastic processes are often driven by objects that are nowhere differentiable. Therefore
the dynamics of the markets are often described Stochastic Differential Equations (SDEs), which will
be introduced in this chapter. Furthermore, the three main stochastic models chosen to focus on in this
thesis are given.

As described in the introduction, the goal in this thesis is to identify the generative process of an ob-
served time series out of a set of stochastic processes. Let (Q, F, P) be a probability space where Q
denotes the space of possible outcomes, (F;)¢(o,r] denotes a natural filtration, P denotes the market
probability measure and t € (0, T] denotes time. The dynamics of stochastic process (X(t)):-, can be
described through its stochastic differential equation.

dX(t) = fi(t, X(£)dt + (¢, X(©))dW (t) fort € (0,T], X(0) = x,. 2.1)

Here x, € R, i : (0,T] X R™ - R" is often referred to as the drift coefficient, i.e. the general direction
of the process and & : (0,T] x R® — R™“ is referred to as the volatility coefficient, i.e. a diffusion
term interpreted as the uncertainty. Notice that both fi(t, X(t)) and a(t, X(t)) are F,-measurable since
(X(t))¢>0 is F-measurable.

Equation (2.1) is interpreted as:

t

t
X(t) = x, +J- (s, X(s))ds + f (s, X(s)dW(s). (2.2)
0 0
It is noteworthy to mention that the solution to equation (2.2) does not always exist, see [40] for details.

There exist many stochastic processes to describe financial processes. Any stochastic process can be
included in the set of models M, the only requirement being that paths of that model can be generated,
either directly through the solution of (2.2) or - if the solution can not be expressed analytically - through
numerical approximations like the Euler or Milstein scheme (see [41]). In this thesis, the focus is put
on the following stochastic processes:

 Arithmetic Brownian Motion

» Geometric Brownian Motion
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» Exponential jump diffusion process

These three processes are chosen because they are frequently used by practitioners in the financial
field and since the density function of the discrete variants of Arithmetic Brownian Motion and Geomet-
ric Brownian Motion is easily obtained, which is useful in further analysis later in the thesis.

Before going into the definitions of the specific stochastic processes mentioned above, we look into the
definition of a Wiener process.

Definition 2.1 (Wiener process, [41]). A Wiener process W = (W (t)):¢ iS a stochastic process char-
acterised by the following properties:

1. W(ty) = 0 (t, is the starting time of the process).

2. (W(t))e>0 Is almost surely continuous in t.

3. (W(t))¢>0 has independent increments.

4. The increments are normally distributed, i.e. for all s,t € R : W(t) — W(s) ~ N(O, |t — s]).
Additionally, 1t6’s lemma is needed. The version of It&’s lemma written below is cited from [43].
Theorem 2.1 (It6’s lemma, [41]). Suppose a process (X(t));so follows the It6 dynamics,

dx(t) = a(t, X(@))dt + a(t, X(t))dW (t), with X(ty) = X,,

where drift coefficient ji(t, X (t)) and volatility coefficient 5(t, X (t)) satisfy the standard Lipschitz condi-
tions on the growth of these functions.

Let g : [0,T] x R = R be a function of X = X(t) and time t, with continuous partial derivatives
dg/0x, d2g/0x?, 0g/dt. LetY = (Y (t))r>o be defined by Y (t) := g(t,X(t)). Then it holds that:

dy(t) = a‘g+'txag+1azg'2tx dt+ag'thWt 2.3
© = 57 +AEX) 7= + 5 =562(6X) |dt + -5 (6, X)W (©). (23)
Proof. The formal prove is given in [43]. O

We will now look into the aforementioned stochastic processes and their properties.

2.1. Arithmetic Brownian Motion
Arithmetic Brownian Motion (ABM) is a well-known adapted stochastic process X“(t), governed by

dX4(t) = udt + cdWP ().

Here 1 € R denotes the drift coefficient, ¢ € R* denotes the volatility coefficient and (WF(t))¢o
denotes the Wiener process described in definition 2.1, under the market measure. The SDE can
easily be solved by integration:

t t t

dXx4(t) J pdt + o | dWP(e),
to to

to
pu(t —to) + (WP () = WF(ty)),

X4() = X4(to)
X4 XA4(to) + u(t — to) + a(WF (&) = WF (t0)). (2.4)

Notice that X4 is normally distributed since X4(t,) and u(t — t,) are deterministic and WP (t) — WP (¢,)
is normally distributed per definition 2.1. Since we have

EP[X4(0)]
VarP (X4 (t))

X4(to) + u(t — to) + oE[WF (£) = WF(to)] = X*(to) + u(t — to),
Var® (e(WF(t) = WF (to))) = o?(t — to),

we see that
XA() ~ N(XA(to) + u(t — to), 0%(t — to)). (2.5)
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Furthermore, it is relevant to note that ABM has independent increments, due to the third property of
the definition of the Wiener process.

Arithmetic Brownian Motion was one of the earliest processes used to model asset prices because
of its relative simplicity; the density function of random variable X(t) is known for all t > 0 and the
increments of (X(t));so are independent. It was introduced by Louis Bachelier in 1900 ([1]) and is
chosen as the underlying model in the Bachelier pricing model, used to price financial derivatives [41].
It can give rise to negative asset prices, which is an unwanted characteristic and caused a decrease
in usage. However, recently it has gained popularity again in the modelling of prices of interest-based
derivatives as a result of the negative interest rates observed in the markets, see [26]. An impression
of the behaviour of the process is shown in figure 2.1.
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Figure 2.1: Five ABM paths, generated with parameters X(t,) = 100, = 0.05,0 = 0.1 and T = 10.

Parameter estimation

An important concern in practice is, once the model M; is chosen, to estimate the parameter theta,.
For ABM we have 6 = (u,0). The estimation of the parameters is known as calibration of the process
and is important for practical purposes like forecasting. Since we are analysing a process under the
market measure P and u, o are assumed to be constant over time, this estimation can be done by
calibrating to historical asset prices. A big advantage of ABM is that the distribution of X(t) is known
and its increments are independent, which means that y, o can be estimated by Maximum Likelihood
Estimators (MLE). This is not always the case for other stochastic processes. The following results are
based on analysis in [41].

In order to use MLE, we need the conditional distribution of X4(t) given its past. Let t denote the current
time and let t + At denote some time in the future. Then, similarly as before, we have that

EP[XA(t + At)|F(0)] EP[XA(t) + u(t + At — t) + s(WP(t + At) — WP (£)|F ()]

= XA(t) + uAt,

where EF[X4(t)|F ()] = X4(t) because (X4 (t)):>o Was assumed to be F(t)-measurable and
EP[WP(t + At) — WP(2))|F(t)] = 0 by property 3 in definition 2.1. Furthermore, we have

VarP (XA(t + AD)|F(t)) = VarP(XA(t) + u(t + At —t) + a(WP(t + At) — WP ()| F(t)
VarP(XA ®|F@) + VarP(J(W“D(t + At) — W]P(t))|iF(t)).

Naturally Var?(X4(t)|F(t)) = 0. Since WP(t + At) — WP(t) ~ N(0,At) according to property 4 in
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definition 2.1, we have that
VarP (X4(t + A)|F (1)) = oAt
Therefore we arrive at
XA(t + At)|XA(t) ~ N(XA(t) + ult, o2At). (2.6)

Now that the conditional distribution of X4(t) is known, the likelihood function can be computed. Let
X(ty), .., X(t,,) denote discrete historical asset prices. Due to the independent increments of (X(t))¢>0,
we can write the likelihood function as

m-—1

L(u, 021X (o), ., XA (tm)) = 1_[fXA(tk+1)|XA(tk)(XA(tk+1))'
k=0

Since the distribution of X4 (t;,1)|X“(t) is known and given in equation (2.6), we have

A _ YA -
LGt 02 XA tg), e X)) = )

1
Q V2malAt P ( 2 ( VAt

In order to find /i, 6 such that L is maximised, we take the logarithm to simplify the maximisation:

m-1
XA(tk+1) X4(t) — pAt
log( ZnazA + Z < oVAt ) )

k=

log L(u, 0?|X4(to), ., XA (tm))

m-—

A A
. log(ZTCO'ZAt) + Z ( X (tk+1) \)/(A_t(tk) [lAt) )
o

Taking the derivative w.r.t u and o2 and setting it equal to zero gives the Maximum Likelihood Estimators:

ﬁ=—(XA(tm) X4(t0)), ¢ Z(X (tisn) — X4 (t) — AAL). (2.7)

mAt mAt

Remark 2. Notice that the availability of the density function of X4(t) and the independence of the
increments of (X4(t))¢>o allow the estimation of u,a through the MLE based on discrete, historical
observations. However, many processes do not have an analytically available density function, nor
independent increments. The calibration of such processes can therefore be challenging and time
consuming since new derivations must be made for every individual stochastic process. Therefore a
model agnostic calibration method, as proposed later in this thesis, can be beneficial.

Quadratic variation
A quantity which will play a role later in the thesis is the quadratic variation of a process.

Definition 2.2 (Quadratic variation). Let (X(t)):-o be a stochastic process defined on probability space
(Q,F,P). Let P = {t,, ..., t,} be a discretisation of the interval [0, T] and ||P|| denotes the mesh, i.e.

n-1
[|P]] := max tiyq — .

The quadratic variation of (X (t)):>g IS given by

2
V@) = lim Zo(xam)—xai)) .
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For ABM, this quadratic variation can be computed analytically. Using equation (2.4), we have
n—1

dim, ZO (XA(t0) + (tirs — £0) + WP (t111) — WP (1))

Qv (X

—XA(to) — u(t; — to) — s(WP(t) — WP(t)))”

n-1

i 2
= H%}ﬁﬂo ; (utizr — t) + a(WP(tir) — WP(L)))

n-1

= B Z B2 (tirr = 6)? + 02 (WP (tipr) = WP ()2 + 2p0 (tigg — t)(WF (tir1) — WP (L),

Since we have ||P]| — 0, certain terms in the expression above will disappear. Notice that

”?”_ﬂ)Zli (tiss — )% =

since (tj;1 —t;)? — 0 faster than t;,; —t; » 0 when ||P|| - 0. Furthermore, we have
n—1 n—1

L) (i = )WP ) = WPED] = ) (b = )BT WP () = WP ()] = 0
i=0 i=0

n-1

Vart (D (e = WP ) = WPED)) = ) (tian = )PVart (WP (e = WH(ED) = ) (b — ),
i=0 i=0 i=0

s0 limyjp||-0 Z?z_ol (tivz1 — t) (WP (tis1) — WP (L)) — 0 since its expectation equals zero and its variance
tends to 0 as ||P]|| —» 0. Therefore we arrive at
n-1
QUXY) = lim > o?(WF(tir1) - WF(t))*.

[PI=
l—O

Since WP (t;11) — WP(t;) ~ N(0, tiyq — t;), we know that

n-1

n-1
EF[) (WP (tin) = WP ()] Z EF[(WF (ti1) = WPGED)] = ) tipa =i =T,
i=0

i

Il
(=}

n—1

Var® () (WP (tin) - WPE))?) X Z Var® (W (1) = WP (6))?)
i=0 i=0

Z EP[(W (614) = WP (60)*] = (BF (WP (e) = WP (0)2)°

....
O

3
[u

= 3(tiv1 — ) — (tiv1 — 4 )2

...
I}
n O

S
|

= 2(tisr — ) (2.8)

i=

o

Similar as before we see that the variance in (2.8) tends to 0 as ||2P]|| — 0, from which we can conclude
that

QV(X4) = a?T. (2.9)
This result implies that if the quadratic variation is known, so is the volitility and vice versa. This is a
helpful result which is used in chapter 3.
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2.2. Geometric Brownian Motion

Geometric Brownian Motion (GBM) is similar to Arithmetic Brownian Motion; the logarithm of a Geo-
metric Brownian Motion is equal to Arithmetic Brownian Motion. Its SDE is given below:

dXe() = (u+ %UZ)XG(t)dt + o X6 (t)dWP(0).

Applying Itd’s lemma (theorem 2.1) with ji(t, X¢) = (u + %aZ)XG(t), G(t,X%) = oX%(t) and g(t,X%) =
log X¢ results in dg/0X¢ = 1/x, 0%2g/0X? = —1/x? and dg/dt = 0. Inserting this in equation (2.3)
gives

1 1 -1

dre) = (0+u+ laz)xﬁ‘(t) += (0X6(£))?)dt + oXC (AW (t)
- kT3 XG(t) 2 (XS ()2 X5 (0)
= pdt + odW ().

Integration gives

t t t

dr(t) = d dw (b,
v L”HL“ ®
Y(t) = Y(to) +u(t—to) +a(W(t) —W(to)).

Recall that Y (t) = g(t,X%) = log X¢. This results in
X6 (t) = XO(ty)ett-to) oW O-WF (to),

Notice that X¢(t) = exp(X4(t)). Since the distribution of X“(t) is known and given in equation (2.5),
we have that X¢(t) is lognormally distributed, i.e.

X6 (t) ~ lognormal(X4(ty) + u(t — to), a2(t — ty))

As is indicated above, Geometric Brownian Motion and Arithmetic Brownian Motion are clearly related.
GBM is an adaptation of ABM which has the advantage that its generated asset paths do not give rise to
negative values, whereas paths generated by ABM do. Additionally, since the process is multiplicative
instead of additive like ABM, the impact of the coefficient u, o is relative to the current asset value. This
is also often observed in the market. It is therefore a popular stochastic model and its dynamics are
used as the underlying dynamics in the Black-Scholes model, which is - like the Bachelier model - also
a model used to price financial derivatives and is considered the standard baseline model in financial
engineering, see [41]. An impression of the behaviour of the paths is shown in figure 2.2.
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Figure 2.2: Five GBM paths, generated with parameters X(t,) = 100, 4 = 0.05,0 = 0.1 and T = 10.
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Parameter estimation

Since GBM is essentially the exponent of ABM, the parameter estimation is very similar. For historical
observations X% (t,), ..., X¢(t,,) which are assumed to follow a GBM, the coefficients y, o can be com-
puted by realising that log X% (t,), ..., log X (t,) are historical observations assumed to follow an ABM
and using the MLE as desribed in (2.7).

Quadratic variation

Next we compute quadratic variation of a GBM. Unlike ABM, the quadratic variation of GBM is not
deterministic and depends on the the process (X¢(t));so. To shorten the derivation, we will use the
integral notation of the quadratic variation, equivalent to definition 2.2.

T
e = fo ((dx6?

T
1
f ((r + 50%)X%de + oXSdWP ())*
0

T
f ((u+ %ch)Z(XG)Z(dt)2 + 02(X9)2(@AWP ()% + 20(u + %UZ(XG)zdt dwP (o).
0

Similar as before in the discrete setting, we have that (dt)? — 0, dedWF(t) —» 0 and (dWP(t))? - dt.
This results in

T
QV(X¢) = fo o2 (X6 (t))2dt. (2.10)

This means that the quadratic variation of GBM still depends on the values of the process. Neverthe-
less, equation 2.10 shows that also for GBM there exists a relationship between the volatility coefficient
and the quadratic variation. Having information about the quadratic variation of a path is therefore use-
ful in determining the volatility parameter. This result is helpful in chapter 3.

2.3. Exponential jump diffusion process

Exponential jump diffusion processes are processes that contain jumps in the generated paths. It is
an adaptation of the GBM where the arrival of jumps is governed by a Poisson process (Xp(t)) o With
jump intensity A > 0 and the size ] of the jump is governed by a certain probability distribution chosen
by the user. For completeness, the definition of a Poisson process is given in definition 2.3.

Definition 2.3 (Poisson process, [41]). A Poisson process (Xp(t)):>o With parameter A > 0 is an
integer-valued stochastic process with the following properties:

1. Xp(0) = 0.

2. Letty=0<ty <--<t,=T. Foralli € {1,..,n}, increments Xp(t;1,1) — Xp(t;) are independent
random variables.

3. Fors =0, t > 0 and integers k = 0, the increments have the Poisson distribution:

(/'lt)"e"“
PXp(s+t) —Xp(s) =k) = —
First, the SDE of ABM with jumps (X/(t)):>¢ is given:

dX/(t) = udt + cdWP(t) + JdXp(t).

This SDE can be solved by integration, resulting in

Xp(t)
XI(©) = X (t0) + i(t — o) + o (WF () = W) + D Ji
i=1
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Since in this section the exponential jump diffusion process is considered, the exponent of X/ (t) called
XEJ(t) is taken:
Xp(t)
XEI () = XET () eh(t=to) +o WP (©-WF (to) 1_[ i,
i=1

Notice that due to the presence of jumps, (X£/(t)),>o is no longer a continuous process. The distribution
of jump size ] can be chosen by the user. Two popular choices are given below.

* Classical Merton’s model ([37]): the jump size ] is assumed to follow a normal distribution, i.e.

» Non-symmetrical double exponential (Kou’s model, [31]): the jump size J is assumed to follow a
distribution F; with density function

fi(x%) = prase” M ys0y + D222  Liycy-
In this thesis the choice is made to analyse the classical Merton’s model with / ~ N(0, 7).

Jump diffusion processes are extensions of the ABM and GBM given in the previous paragraphs. The
main advantage of jump diffusion processes compared to ABM and GBM is that they can generate
paths containing jumps. Jumps are often observed in the asset prices in the market, especially in
volatile times like the 2008 financial crisis or the start of the Covid crisis in 2020. Additionally, accord-
ing to [41], the jump diffusion process generally generates paths of which the increments (often called
returns) have distributions with heavy tails. This, too, is often observed in the financial markets and is
something that ABM and GBM to not exhibit. A disadvantage of jump processes is that jumps are not
“tradable quantities”. Therefore, when the jump diffusion process is chosen as an underlying process
to price financial derivatives, there does not exist a perfect hedging strategy that perfectly replicates
the value of the financial derivative. Nevertheless, it is a popular stochastic model used in practice.

An impression of the behaviour of the process is given in figure 2.3.

250 1

200 1

Xit)

150 A1

100 1

yEars

Figure 2.3: Five exponential jump diffusion paths, generated with parameters X(t,) = 100, 4 = 0.05,0 = 0.1,T = 10,4 = 1,4 =
0and oy = 0.1.



Problem setting

This chapter presents a overview of the problem setting, starting with further background information
on the problem in section 3.1. In section 3.2 a short overview is given of other research fields that are
related to this problem, after which we introduce in section 3.3 the signature and its properties. Section
3.4 provides the proposed solution and the chapter concludes with some important considerations
about the maximum classification accuracy in section 3.5.

3.1. The problem

As touched upon in chapter 1, the goal of this thesis is to identify the generative stochastic process
of an observed financial time series. Correctly identifying the stochastic process is very beneficial, as
stochastic processes can be used for forecasting the asset, pricing of derivatives based on the asset
and thereby influencing the hedging strategies. For this reason the analysis in this thesis is focused on
classifying time series to their generative stochastic process.

Identifying the generative process is problematic when this process is continuous in time. In general,
the modelling of time series is done in two ways:

1. Discrete models,

2. Continuous models.

Discrete models

Discrete models are effective tools in the regression and forecasting of time series. Examples of pop-
ular discrete models are generalised linear models, AR(I)MA, (G)ARCH etc. Every model is a set of
joint probability distributions and assumes that the time series of interest can be viewed as a sequence
of random variables of which the true joint probability distribution is supposed to be in this set of joint
probabilities. The objective is to find the joint distribution function that has the highest likelihood of hav-
ing generated the observed financial time series. Note that this is similar to the objective of this thesis.
The quality of the model for the given time series can then be assessed through distribution metrics like
Kolmogorov-Smirnov, Anderson-Darling etc. or goodness-of-fit criteria like Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), see [44].

Discrete models are effective tools in forecasting and regression and selecting the correct discrete
model provides its own challenges. However, they are typically not used as underlying models in pric-
ing financial derivatives, as they do not describe the dynamics but rather the distributions of financial
quantities. As mentioned before, we focus on the models underlying pricing equations, we will there-
fore not further analyse discrete models.

Continuous models

Please recall that a mathematical introduction of the continuous models is given in chapter 2. As men-
tioned in chapter 1, stochastic processes are used to model the underlying asset when pricing financial

11



12 3. Problem setting

derivatives. For example when pricing options, using ABM to model the underlying asset results in the
Bachelier pricing model, using GBM to model the underlying asset results in the famous Black-Scholes
pricing model and using the exponential jump diffusion process to model the underlying asset results
in the adapted Black-Scholes pricing model with jumps, see [41]. Where discrete models describe
discrete situations (every value in an observed time series is assumed to be a realisation of a random
variable), continuous models are continuous. The observed financial time series is thought of as a
discrete realisation of the continuous process.

The models M;(#%) € M are assumed to be continuous stochastic processes. The result of this is that
the time series - or paths - generated by M;(6") are elements of the path space.

Definition 3.1 (Path space). The path space is the space of continuous functions, denoted as C ([0, T], R%),
ie.
C([0,T],RY) := {f : [0,T] » R%|f is continuous}.

It is infinite dimensional and not locally’ compact? [14].

Remark 3. Notice that the exponential jump diffusion process is discontinuous at the times when jumps
occur and is continuous everywhere else. Therefore it is in theory not an element of the path space.

Deciding which stochastic process is most suitable based on an observed time series is hindered by the
infinite dimensionality and non-locally compactness of the path space. The statistical measures used
to distinguish between discrete models are generally defined over marginal distributions and can be
extended to (finite) multivariate distributions for the purpose of distinguishing between discrete models
when modelling time series. However, extending them to the infinite dimensional stochastic processes
is not possible, according to [14]. Therefore, the wide variety of model selection measures from classi-
cal statistics cannot be used to distinguish between paths generated by different continuous stochastic
processes, as these measures require finite distributions.

3.2. Related approaches

As mentioned in section 3.1, resorting to the classic statistical measures like the distribution metrics
used to distinguish between discrete models do not work when choosing the most suitable continuous
model. However, there exist other approaches in other research fields related to the problem discussed
in this thesis that deserve our attention.

Time series classification

Time series classification is the field which attempts to classify multiple time series in two or more cat-
egories, which is also the purpose of this thesis. In the literature the topic of time series classification
is an active research field. According to [2], until 2016 more than 100 algorithms had been proposed
to solve this problem, this number is even larger today. Applications of time series classification range
from medical (assessing whether an ECG displays anomalies [28] ) to cultural (classifying types of
music [38] ) to financial, the latter being the category of interest in this thesis.

Generally, the methods used to approach the problem can be categorised in two categories:

» Feature-based methods: feature-based methods are methods that classify time series based
on similar features. The idea behind this is that if time series have similar features, they must
belong to the same class. This gives rise to the challenge of selecting features, which might differ
per purpose. Examples of basic features of a time series are expected value, variance, but also
seasonality, starting point of the time series etc. The importance of each feature depends on the
situation and type of time series and are often determined by the user. Several approaches have
been evaluated, of which [2] gives an overview.

A space C is locally compact if for every ¢ € C there exists an open set 0 and a compact set K, such that c € 0 c K, see [11].
2A space C is compact if every open cover of C has a finite subcover. The Heine-Borel theorem provides a more commonly used
equivalent:
C is compact < C is bounded and closed,

see [11].
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» Distance-based methods: distance-based methods are methods that classify time series based
on a measure of distance between the time series, for instance the Euclidean distance. Time
series that are considered ‘close’ in the specific metric are classified to the same category. The
main challenge of this approach is finding the correct measure, which differs per situation.

Often feature-based and distance-based methods are also referred to in machine learning as super-
vised and unsupervised learning, respectively.

Though a lot of research has been done on the problem of classifying time series, the research is often
not applicable to the problem considered in this thesis. In many cases the research is based on paths
being similar to each other, either in shape or having a small distance. This is different from the problem
in this thesis, where even paths generated by the same model can have rather different shapes. An
example of two paths generated by the same stochastic model is given in figure 3.1.

Two paths sampled from a jump diffusion model
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Figure 3.1: Two realisations of the jump diffusion model.

Figure 3.1 shows two realisations or paths that have a different trajectory, despite being generated by
the same underlying process. Extracting features from these paths is futile, as is looking at distance
measures to compare distance between the paths.

Synthetic market data generation

A problem closely linked to the classification of paths generated by stochastic processes is the field of
synthetic market data generation. Synthetic market data generation is the topic of generating artificial
market data (often time series) which is indistinguishable from real market data. One of the reasons
this topic is relevant for this thesis is that, in order to generate synthetic data, the relevant information of
financial time series must be captured. This relevant information is useful when attempting to classify
paths generated by several stochastic processes.

Synthetic market data generation is a relatively new and active research field. Many financial institu-
tions are interested in generating artificial market data in order to train their neural networks on a larger
set of data. Additionally, the use of real market data for training algorithms can be limited by privacy
issues. Since synthetic market data is not limited by privacy issue, this makes the use of artificial data
more interesting.

A popular method to generate artificial data is the General Adverserial network (GAN), introduced by
Goodfellow in [18]. A GAN consists of two neural networks, one generates the data (the Generator),
the other attempts to distinguish real samples from samples from the samples generated by the Gen-
erator (the Adverserial). Adaptations of the GAN have been proposed to make the model better suited
for market data generation, such as the restricted Bolzmann machine (RBM) [29] which deals with the
small amount of available real market data to train the GAN on and the Quant GAN [45] which attempts



14 3. Problem setting

to capture long-range dependencies such as the presence of volatility clusters. Also other methods
have been proposed, such as adaptations of Variational Auto-encoders (VAE) in [10] or agent-based
methods in [39].

All methods mentioned above attempt to extract the relevant information of the financial time series in
order to generate new time series that are similar. Of these methods, we would like to highlight the one
proposed in [10]. Most proposed methods train the neural network directly on the market data, but in
[10] the market data is first transformed to its signature, after which the neural network is trained on this
transformed input. The signature transformation is described as being an effective method to encode
financial data streams parsimoniously and efficiently. For this reason, the next section dives deeper
into this topic.

3.3. Signatures

As mentioned in section 3.1, inferring the underlying stochastic process directly from a path is dis-
advantageous as a consequence of the infinite dimensional and non-locally compact path space. A
transformation from this space to a lower dimensional space eases this inference, as suggested by
[10]. The results obtained from using the signature transformation in synthetic market data generation
indicate that the signature transformation could be this desired transformation to a lower dimensional
space. Signatures are useful transformations of a path to an infinite sequence of descriptive statistics.
We are using continuous paths (at least for ABM and GBM), but in the approximation of the signa-
tures we use a quadrature rule to approximate the integrals, and a truncation to have finite dimensions.
This section introduces the concept of signatures in more detail, starting with definitions of interest in
paragraph 3.3.1, followed by relevant properties in paragraph 3.3.2. Paragraph 3.3.3 gives the math-
ematical motivation supporting the choice to use the signature transformation. The section concludes
with a description of transformations that can be applied to the path in order to capture specific char-
acteristics of interest to the user in paragraph 3.3.4.

The concept of signatures stems from the rough path theory. Rough path theory is the research field
which analyses rough paths, developed by Terry Lyons in the 1990s [34]. Rough paths are solutions to
differential equations driven by highly irregular processes like for example a Wiener process. A signa-
ture transformation is used to map rough paths to a lower dimensional sequence of iterated integrals of
the path which are related to its statistical characteristics. This also has many applications in machine
learning, where the elements of the signature are often used as input for a regression or classification
algorithm.

An efficient overview of signatures and its properties can be found in [13]. In [19] signature transfor-
mations are used to transform handwritten Chinese characters to signatures, which are then used as
input for a Convolutional Neural Network (CNN). This approach gave a test error of 3.58%, compared
with 5.61% for a traditional CNN. [30] uses signatures to detect bipolar disorders and revealed a pre-
viously unobserved indicator of treatment response. In [35] a novel method to price exotic options in
a model-free way is proposed by looking at the implied expected signature of the market dynamics.
Furthermore, the authors in [10] use signature transformations of market data as input for a VAE to
generate market data, as mentioned in the previous paragraph. Using signatures allowed the authors
to train the network on fewer data points. This is beneficial since market data is not widely available. In
[22] the authors use signatures to classify financial data streams. In [13] a compact overview is given
of other research in this field.

The papers mentioned above all use signatures as a transformation to a capture the relevant information
of the path and have generated successful results. This indicates that using signatures is a promising
solution to the problem observed in this thesis.

3.3.1. Definitions

Some definitions of interest described by [10] are given below.

Definition 3.2 (Signature of a path). Let X : [0,T] » R® be a continuous path where d € N denotes the
dimension of the path. Then the signature of X is defined by the sequence of iterated integrals given
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by
SCOS® := (1, SO, .., SCOR, ..),

where
ST = j dXe, @ - @ dX,, € (R%)®n,

0<ty<-<tp<T

where @ denotes the tensor product and t; € [0, T] denotes time. Similarly, given N € N, the truncated
signature of order N is defined by

SXOFN == (1,5, ...,sCOM

Remark 4. Ifthe path is a Brownian motion, the integral is defined in the It sense as defined in chapter
2[32].

Remark 5. If the path is of bounded variation® the above integral can be replaced by the Riemann-
Stieltjes integral [10].

Remark 6. Notice that the observed time series are discrete paths, instead of continuous paths. The
signature can only be computed over continuous paths, so the choice is made to connect the data
points piece-linearly. More details about this is given in chapter 4.

Example 3.1 and 3.2 are given for clarification of these definitions.

Example 3.1. Let X = {(X1(t))r>0, (X?(t))¢>0}. The signature of path X is given by

_ 1) @) (1) o(1,2) o(21) o(22) (1,11)
SX) = (L Spo7y Sjo.ry Stor1» Storri Sior1» Sjor1» Storr] )

with
1
SO0k = [ arm
0<t<T
2
sy = [ e
0<t<T
SCOWD = f f dX(t,)dX1(ty)
[0,T] ‘ 1 2
0<t,<T Jo<t;<t,
s = [ [ e
0<t,<T Jo<t,<t,
soofn = | [ e
0<t,<T Jo<t;<t,
s = | [ aeeerm
0<t,<T Jo<t; <t,
S(X)E;:;’]” = j J j dX1(t)dX (t,)d X2 (t3)
0<t3<T Jo<t,<ts Jo<t;<t,

Example 3.2. Let X = {(X1(t))t>0, (X?(£) >0, (X3()¢>0}. The signature of path X is given by
_ D @ B (11 o(12) (13) 21 (22) (23)
SX) = (L Sy Storry Story Sior ™ Storr1» Sto.r» Sto,r1» Story» So.r]» -+ )-

Intuition: Fourier transform
In a broad sense, one could compare the signature transformation to the Fourier transformation. Fourier
transforms are used to solve partial differential equations (PDEs). The Fourier transform is applied to

3Recall that a path X : [0, T] —» R¢ has bounded variation when
np
sup " X (tisa) = X(6)] < +e0
Pep &

where P = {xy, ..., X, |P is a partition of [0, T] satisfying x; < x;4, for 1 <i < np}
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the PDE, the transformed PDE is then solved in the Fourier domain, after which the solution is trans-
formed back by using the inverse Fourier transform. Using the signature transformation follows this
same principle. Distinguishing between stochastic processes is difficult, so the signature transforma-
tion is applied to change the problem to distinguishing between signatures.

Next to the signature, there exists also the log-signature. Similar to the signature, the log-signature is
also an infinite sequence of elements related to statistical properties of the path. Every element of the
log-signature is a linear combination of elements of the signature. Definition 3.3 gives a mathematical
definition of the log-signature.

Definition 3.3 (Log-signature of a path). Let X : [0,T] » R® be a path such that its signature S(X)ﬁ,‘f;]
is well-defined. The log-signature is then defined by

1 @2 1 ®3
logS(Xor; == —SEor + E(S(X)[o,r]) - §(5(X)[0,T]) + ..
n 1 ®n
+ D EE o)+
which can be shown to be well-defined [10]. In other words, the log-signature is the formal power series
of S(X).
Remark 7. S(X) is a sequence of iterated integrals, making log S(X) a sequence as well.

In order to give some examples about the computation of the log-signature, the Lie bracket is intro-
duced.

Definition 3.4 (Lie bracket). The Lie bracket is an operator such that for X,Y the following holds:
[X,Y] = XY —YX. (3.1)
To give a bit more intuition for the log-signature, observe another example below.

Example 3.3. Suppose X = {(X1(t))¢>0, (X2(t))e>0}. For simplicity, the notation S(X) [o,r] IS abbreviated
by S. The signature is given in example 3.1. Its log-signature is given by

1 1 1 1 1 1 1
= (s ¢ _gl12] _ _gln[12]] _ _gl2[12]] —glL[L[L2]l] —glLi2[12]]] —gl2[L[L2]]] — gl2[2[1.2]]]
logs = (8%, S ’Z!S , 3!5 , 3!5 ,4!5 ,4!5 ,4!5 ,4!5
Using definition 3.4 the Lie brackets can be expanded to allow the elements of the log-signature to be
written in terms of the elements of the signature observed in example 3.1.
sl = ¢@2) _ g2
sluzll = g@l12h _ g(1.211)
s@,@12)-(21) _ g((1,2)-(21D.1)
S(1,1,2) _ 5(1,2,1) _ (5(1,2,1) _ 5(2,1,1))
— 5(1,1,2) _ 25(1,2,1) + 5(2,1,1)
5[2,[1,2]] — _5(2,2,1) + 25(2,1,2) _ 5(1,2,2)
S[l,[l,[l,Z]]] — 5(1,1,1,2) _ 35(1,1,2,1) + 35(1,2,1,1) _ 5(2,1,1,1)

Example 3.4. This example shows how the signature and log-signature can be expressed in terms
of a path X. Let X = {(X1(t))t>0, (X2())e>0}. Simplifying notation and truncating at level L = 2, the
(log-)signature can be expressed as follows:

S(X) = (1,5M,53), 501 §(12) §(21) §(22))
1 1
= (1,Ax%,AX% E(AXl)Z,S(l.Z)’S(Z.l)’ E(sz)z)
1
logS(X) = (§SMW,s®, E5[1,2])

= (XK, 2(s02) — 5eD))
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Here AX' = X{(T) — X'(0), i.e. the last term minus the first term. S and S cannot be expressed
easily directly in terms of the path, but do have a geometrical interpretation, see figure 3.2.

8 8 v
X ! X 1
70 1 7t 1
1 1
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5f 5f
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S
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1
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0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 3.2: A geometrical representation of S(12) and S, taken from [13].

As can be seen from figure 3.2, S(V?) and SV denote the area above an below a path, respectively.

Signature and log-signature in practice

In practice, both signatures and log-signatures are used in the available literature, though more litera-
ture is available on signatures than on log-signatures. Both transformations have their own advantages
and disadvantages. A clear disadvantage for signatures is that signature are elements of the tensor
space, which is not a linear space. This means that small perturbations in signatures might have large
consequences in the corresponding path in the path space. The log-signature spans a linear space, ac-
cording to [10]. This means that perturbations have less impact, which is the reason that log-signatures
are very popular in synthetic market data generation, where this is an important property. Additionally,
as can be seen in example 3.4, the log-signature sequence has a lower dimension than the signature
sequence for the same truncation level. Lower-dimensional input is beneficial when using machine
learning, which suffers from the curse of dimensionality.

An advantage of signatures over log-signatures is that signatures span an algebra (see section 3.3.3
for more details), which in short ensures that classifying based on signatures is possible, whereas it is
more difficult to do this based on paths. The log-signatures do not span an algebra, which means that
it does not have this advantage.

In summary, for the purpose of using (log-)signatures to classify between paths, the literature does not
provide us with a clear preference for one or the other. Since more literature is available on signatures
and they guarantee that classification is possible, the signatures are selected as transformation in this
thesis. Section 5.2.3 gives some empirical insights in the difference between using signatures and
log-signatures in several classification settings.

3.3.2. Properties
The signature has many properties, of which [13] gives an extensive overview. This section describes
the properties of interest to this thesis.

Theorem 3.1 (Signatures). Some relevant properties of signatures are listed below.

1. Signatures are independent of starting point, i.e. paths X(t) and X(t) = X(t) + a (with a € R?
and d the dimension of the path) have equal signatures.

2. Signatures are invariant under time reparametrisations, i.e. for X(t) and X(¢(t)), where ¢ :
[0,T] — [0, T] is a surjective, continuous, non-decreasing reparametrisation, it holds that S(X(t)) =

SX(9(1)))-
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3. Forpath X(t) with X : [0,T] - R% and its time-reversal path X (t) = X(T—-t) we have S(X)QS ()7 )=
1. These paths are called ‘tree-like paths’. The signatures can therefore not be used to distinguish
between a path concatenated with its time reversal path or path X = 1.

4. For all paths excluding the paths described in 1, 2, and 3 the corresponding signature is one-to-
one, i.e. both the transformation from path to signature and its reverse are unique.

Before addressing the proof of property 3.1, an example of a tree-like path is given in figure 3.3.
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Figure 3.3: An example of a tree-like path by concatenation of a path with its time reversal path, taken from [16].

Figure 3.3 shows an example of a path X(t), t € [0, 1] concatenated with its time reversal. Paths of
this type do not have unique signatures.

Proof. The proof is based on the work of [13], [16] and [23].

1. Let X : [0,T] » R® be a path and let X(t) = X(t) + a with a € R% a constant vector with equal
elements. Then
Xt)=X({t)+ae dX() =dX(t)+0

This leads to
dX(t) = dX(t) (3.2)

Since the signature consists of elements which are defined as iterative integrals and equation
(3.2) holds, one can conclude that

SX@®) =SX®) +a)

2. Define paths X,Y : [0,T] —» R and let X,¥ : [0,T] — R such that X(t) = X(¢(t)) and Y(t) =
Y(¢(t)). Assume for simplicity that ¢ is smooth and the derivatives of X exist. Applying the chain

rule gives
dX(6)  dX(t) dg
dt ~  d¢ dt
dX(¢(1)) dg
dp dt
This results in
T iorn (T dX(p(e) dgy (T
fo 7()dk(t) = fo Y(qb(t))(TE)dt— fo Y(a)dX(a) (3.3)

with a := ¢(t). This means that an integral over reparametrisations of paths are equal to the
integral over the original paths. Since the signature consists of a sequence of iterative integrated
integrals and the integrals over the original paths and their time reparametrisations are equal
according to (3.3), one can conclude that

SX®) =SX(@®)) (3.4)
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3. The full proof of this property is quite involved, so only an intuition is given here. The full proof
can be found in theorem 2.3.1in[16]. Let Z = X + X where = denotes the concatenation operator.
As mentioned in the start of this paragraph, rough paths are the solution to differential equations
driven by irregular processes like the Wiener process. So for an arbitrary map f : V - W and
path Y(t) : [0,T] = V where V,W are Banach spaces, observe

dY (t) = f(Y(£))dX(t), Y(0) =a, Y(T)=b, (3.5)

with a, b € R. Notice that the solution Y (t) of equation (3.5) does not change when the equation
changes to
dy(t) = f(Y(t))dX(t), Y(0)=b, Y(T) = a.

Notice that any solution Y (t) of
dY(t) = f(Y(t))dZ(t) Y(0) =a (3.6)

will satisfy Y(2T) = a for any function f. Let my : V —» W be the canonical projection, i.e. a
projection that projects infinite sequences to N-dimensional sequences:

iy : (ag, Ay, -, Ay, Ayg1, ) = (g, Aq, oo, AN)-

It is proven in lemma 2.3.2 of [16] that choosing f = my gives that the solution of equation (3.6)
is equal to S(Z)f(’)‘T] (the signature of path Z, truncated at level N) and that this solution is unique.
However, notice that Y(t) = 1 is also a solution to equation (3.6) if f = my. For this reason we
have forany N > 0

Sy =1

and therefore
S =SK) ®SKX) =1.

4. The proof of this statement is very involved and is the main result of [23]. In short, the authors
prove the opposite of the theorem, i.e. paths X,Y are tree-like if and only if S(X) = S(Y).

O

3.3.3. Mathematical motivation for using signatures

Now that the (log-)signature is defined, we look at the motivation behind the signature transformation.
The purpose of this thesis is to identify the stochastic process that is most likely to have generated
an observed time series. The question that needs to be answered is whether or not signatures are
a transformation that is descriptive enough that we can base our inferences on signatures, instead of
directly on the paths. This motivation builds upon existing knowledge from [16].

In the field of financial engineering, signatures are used for the purpose of market data generation
because of their ability to capture the statistical properties of the time series. Therefore elements
of the signature relate to the mean, variance, skewness, kurtosis and higher order moments. Other
approaches in market data generation make use of statistics, market generators (and mathematical
models) which are designed to replicate often shown features in financial time series - referred to as
stylised facts - such as heavy tails, volatility clustering and the leverage effect (negative return between
volatility and asset returns). According to [10], training market generators directly on real financial time
series has been done, but has proven difficult due to the fact that those time series (or paths) belong
to the path space, see definition 3.1.

The fact that the path space is infinite dimensional and non-locally compact causes trouble when at-
tempting to make inferences directly from paths. The inference we would like to make in this thesis
is classification. Let X € R denote a d-dimensional path with class label y € {0,1} (in case of bi-
nary classification). The function L : X — y is the classification function, also called the classification
boundary. Since X € C([0,T], R%) where C is infinite dimensional and non-locally compact, attempting
to approximate L(X) through machine learning techniques can be challenging.
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X L >y
|

S(X)

Figure 3.4: Schematic overview of classification problem [46].

Figure 3.4 shows a schematic overview of the classification problem. Instead of attempting to approx-
imate L : X — y, the focus is put on approximating L : S(X) — y. The question remains whether
signatures are descriptive enough such that a combination of elements of the signature sequence will
lead to a reasonable approximation of L. One can compare this to the approximation of smooth func-
tions, where it is known through Taylor’s theorem that every smooth function can (at least locally) be
uniformly close approximated by a linear combination of monomials. In this situation, one can wonder
if signatures can act as the "monomials of the path space”.

Fortunately, this is possible. The reason for this is that signatures span an algebra. Recall that the
definition of an algebra is the following:

Definition 3.5 (Algebra, [11]). An algebra is a vector space A on which there is defined a multiplication
(f,9) » fg (from A x A into A) satisfying

1. (fg)h = f(gh), forall f,g,h € A
2. f(g+h)y=fg+fh (f+gh=fh+ghVf,gheA
3. a(fg) = (af)g = f(ag), forall f,g € A and for all scalars a.

For signatures, the multiplication is defined as the shuffle product. This product ensures that the product

Definition 3.6 (Set of all shuffles, [13]). LetI = (iy, ..., i) and ] = (jy, ---, jn) be two sets of indices and
write (ry, ..., Tpyr) = (i1, -, i, j1, > ju)- Then the set of all shuffles of indices I and ] is denoted by I LI ],
with

I L|] = {(rO'(I)! '"!TO'(n+k)|O- € Sh(n, k)}

Hereo(1) < ..o(n) and o(n+1) < ...o(n+k) denote permutations on the set {1, ...,n+k} and Sh(n, k)
is the set of all permutations.

Definition 3.7 (Shuffle product). LetI = (iy, ..., i) and] = (jy, ..., jn) be two sets of indices. The shuffle
product between two signatures is then defined as

SX)S(xY = Z SCOK.

KeIuj
[13]
An example to clarify the shuffle product is given below.

Example 3.5. Consider a two-dimensional path X : [a,b] —» R2. Then the shuffle product implies that

SXHWs@ = 5x)1D + 5x)>D),
SEAS® = 251D 4 5(x)(E2D),
SXEDS@ = 2500)E2D 4 5(X)@12),

Lemma 3.1. The space of signatures endowed with the shuffle product is an algebra.
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Proof. To show that this is true, we need to show that the three requirements in definition 3.5 are
satisfied. Let S(X)!,S(X)’,S(X)K be tree signatures with I,/, K defined similar to definition 3.7.

1. We see that:

(SE'SENSEN = ( ). SIMSF = > SEOF =S DT SE0H) = SO SESH).
LEIUJ LEIUJUK LEJUK

2. We have:

SCOISX) + SX)ISX)K = Z SCO + Z SCOM = SO (SCXY + SOK)

LEIUJ MEIUK
3. We have:
a(SH'SH) =a Y SEF= ) @S = (@SN
LEILJ LEILUJ
The shuffle product respects the demands in definition 3.5, so the signatures span an algebra. O

To prove that signatures are descriptive enough such that a linear combination of them can uniformly
approximate L, we use the well-known Stone-Weierstrass theorem.

Lemma 3.2 (Stone-Weierstrass, [11]). Let X be a compact space, A a sub-algebra of C(X). If A sepa-
rates points * in X and vanished at no point ® of X, then A is dense in C(X).

We can now state and proof the main result of this section:

Theorem 3.2. Let D be a compact subset of path space C([0,T], R%) containing paths that have the
same starting point, equal time parametrisation and are not tree-like. Let L : D — R. Then for every
€ > 0, there exists w € R such that for all X € D:

IL(X) — (@, SCO) < €.
Here k is the number of signature elements in the sequence and (-) denotes the inner product.
Proof. To prove this theorem, we need to apply the Stone-Weierstrass theorem. Consider
A =span{f : X » (w,S(X))}.

It indicates that A is a linear subspace of C(D, R). In order to use the Stone-Weierstrass theorem, we
need to show that A separate points and vanish at no point in D. The first property holds since the
fourth property of theorem 3.1 ensures that each path has an unique signature. The second property
holds since the first element of every signature sequence is equal to one, see definition 3.2. Therefore
S(X) is never equal to the vector containing only zeros, i.e. A vanishes nowhere in D. Applying the
Stone-Weierstrass theorem tells us that 4 is dense in C(D, R). Define

A:= AU {lim ay|a, € A for alln € N}.
n—oo

Since A is dense in C(D, R), by definition A = ¢(D, R) and from which directly follows that
IL(X) — (w, SCO) < e
O

Theorem 3.2 implies that a linear combination of signatures exists that can be uniformly close to the
function L that is being approximated. Therefore L can be found through a combination of the elements
of S(X), whereas L cannot be found through a combination of X. This justifies the choice of the signature
transformation in this thesis.

4 A separates points in X if given x # y there is some function f € A such that £(x) # f(¥).
54 vanishes at no point of X if given x € X there is some f € 4 such that f(x) # 0.
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3.3.4. Transformations

Until now we have only discussed applying the signature transformation directly on the observed path
X. However, there are a number of transformations that can be applied to the path before the sig-
nature transformation is taken. This is mostly done for numerical benefits, as these transformations
can be used to explicitly capture certain characteristics of the path. The optimal type of transformation
differs per situation, since it depends on the interests of the user. In this section the popular lead-lag
transformation is introduced and some background is given on how the setting changes when no trans-
formation is used, as opposed to when the lead-lag transformation is used.

No transformation
When no transformation is used, the path is two-dimensional:

X = {tX(©®}
with
t = (tl,tz,...,tN),
X(t) = (X1!X2!"'iXN)'

where X; is short notation for X (t;).The signature and log signature truncated at level 2 are given below:

Sx) = (5(1),5(2),5(1,1)’5(1,2)’5(2,1)’5(2.2))
1 1
= (ty —ty, Xy — Xq, E(tN —t1)%, 512,522, E(XN - X1)?), (3.7)
logsS(X) = (SMW,s@,sl12ly

1
= (tN - tl;XN - Xl! 5(5(1‘2) — 5(2,1))).

Lead-lag transform

The lead-lag transform is a popular transformation, since it explicitly captures the volatility of a path.
The volatility is often a parameter of interest in financial time series, making this transformation quite
interesting. The lead-lag transformation of a path X introduces a lead and lag component of a path,
increasing the dimension of the path by one.

Definition 3.8 (Lead-lag transform, [22]). Let X = {X;,X,, ..., Xy} be a one-dimensional path of length
N. Its lead-lag transformation is given by

Xlead—lag — {Xlead Xlag}
where

Xl_ead= Xi If}=2l
J X, ifj=2i—1

X, ifj=2i+1

The path is transformed to a lead and a lag component, where the lag component follows the lead
component. To make this definition more intuitive, an example is shown in figure 3.5.
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Figure 3.5: Left: one path. Right: lead-lag transform where with lead (blue) and lag (orange) of path on the left.
The path X = {t, X(t)} is transformed to X'®3%129 = (¢ xlead(t) x1a9(¢)}. Since the parameter t does not

add information relevant to the distinction between paths generated by different stochastic processes,
it can be dropped and the path Xx'°@41a9 can be plotted as in figure 3.6:

10

o]

05

0.0

lead

-1.0

-15

-2 -1 0 1
lag

Figure 3.6: A plot of the lead-lag transformation of the path shown in figure 3.5.

Figure 3.6 shows the lead-lag transformation of the path shown in figure 3.5. Indeed, notice that the
starting point (-1.5, -1.5) and final point (1.1, 1.1) of the lead-lag in figure 3.6 path indeed correspond

to the starting point (0, -1.5) and final point (9, 1.1) of the original path in figure 3.5.

The (log-)signature (truncated at level 2) are then defined as:
(3.8)

X = {Xlead Xlag}
S(X) ¢ 5(1), 5(2),5(1,1)’5(1.2), 5(2,1)‘ 5(2,2))
1 1
1 1 l l
(LXII\;zad _ lead’XNag _ Xlay’ E(Xllveaal _ Xiead)z’s(l,z)'g(z,z)’ E(XNag _ Xlag)z)’(&g)

logs(X) = (sM,s®),sM12]y
(Xllvead _ Xﬁead’levag _ Xiag' %(5(1,2) _ 5(2,1))).

Notice from definition 3.8 and figure 3.5 that
Xy = Xllead = Xllag
Xy = X4 = X0,
Combining this with equations (3.7) and (3.9) we see that
S(Z) (X) — 5(2) (Xlead-lag) - XN _ Xl.
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Recall from equation (2.7) that this is exactly equal to the MLE of the drift coefficient of ABM, up to a
multiplicative constant. Also for GBM the quantity X, — X; appears, through taking the exponential.
This means that the signature captures the drift for ABM and GBM similarly to the manner in which the
MLE is computed in classical statistics.

We explain how the volatility is captured by the lead-lag transform through example 3.6.

Example 3.6. This example is based on an example in [13]. Observe apath X = {(X*(t))t>0, (X?(t))t>0} =
{t, X(©))e>0} with

t [0,1,2,3]
X@© = [X(0),X(1),X(2),X(3)]
= [1,4,2,6]

The path and its lead-lag transform are shown in figure 3.7.

8
X Lead
X ' !
6 > .,A.X"‘
5
A X o
4l >——%
3 Y
."‘. i
2 - X3 -
1| X
0
0 0O 1 2 3 4 5 6 7 8
0 1 2 3 X Lag

Figure 3.7: A path (left) and its lead-lag transform (right), taken from [13].
Let A denote the total area enclosed by the blue, red and black triangle in figure 3.7, i.e.

1
A = SIXQ) = XO)* + K@) - X(1))* + KB3) = X(2))°]
2

= ) K+ D -X®)

t=0

Recall from definition 2.2 that the quadratic variation (QV) of a path X is given by QV(X) := thvzo(X(t +
1) — X(t))?, so in general we have for a path X (¢t):

1
Alead-lag = E QV(X)

Recall from example 3.4 that S(1?) and 5>V denote the area above and below the path, respectively.
This means that for X'2d129 we have that $(12) — §(21) denotes the area enclosed by the triangles in
figure 3.7, i.e.

§(12) (ylead-lagy _ g(2,1) (ylead-lagy — %QV(X)

For this reason the signature is able to capture the quadratic variation. Recall in chapter 2 how the
quadratic variation is related to the volatility coefficient of the stochastic processes. Then, by capturing
the quadratic variation, the signature is also able to capture the information about the volatility. This
is beneficial because of the importance the parameter plays in practice. Therefore, in this thesis the
lead-lag transform is used as a standard transformation in the further analysis of the problem.
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3.4. Proposed solution

Recall the problem as stated in chapter 1. The proposed solution in this thesis is to randomly generate
paths w,, iy from the set of parametric models M and label each generated path by its model name.
Using this very large (generated) data set, a classification model can be trained to distinguish paths
generated by different stochastic processes. After this, the trained classifier can be used to classify
wp into one of the classes Mj(ef) or, alternatively, produce the likelihood of each model considered
{My(81); My (62); ...; My (6%}

As seen in section 3.1, a naive approach is to train the classifier directly on the generated paths. Unfor-
tunately, this does not work. A reason for this is the infinite dimensionality of the path space. Learning
a classification function on an infinite dimensional input space is challenging and would - in theory -
require an infinite number of input samples. Additionally, as mentioned in section 3.2, both feature-
based and distanced-based classifiers do not perform satisfactory on this type of input. As explained
in section 3.3, signatures could provide a solution. Based on the results observed in available litera-
ture, transforming paths to their signatures and training the classifier to distinguish signatures instead
of paths seems to be promising. This avoids the issue of the difficult path space by transforming the
problem to the less difficult signature space. A schematic overview of the proposed solution can be
seen in figure 3.8.

M
Mo S| — c — Y
M; 93
path signature classifier label
wp S ——=ser|— | ¢ | — M2
path signature classifier label

Figure 3.8: Schematic overview of the proposed solution. Up: training of the classifier, down: inference of the generative model
of the observed time series.

The advantage of this proposed solution is that it is model agnostic, i.e. it can be applied to any type
of model which can generate paths. Usually every model considered in the set of models has their
own assumptions about the distribution of the samples and the temporal dependence between the el-
ements of the time series. When using an empirical distribution metrics - a popular method to detect
from which distribution a sample has been drawn in finite dimensional settings - these assumptions
often complicate this discovery. These complications are circumvented by using this model agnostic
proposed solution, since they no longer play a role there. This means that there is a wide range of
situations where this can be used, making it a flexible and general solution.
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3.5. Maximum classification accuracy

An important consideration before attempting to classify observed paths to their generative stochastic
process is the question whether there is a theoretical upper bound to the classification accuracy when
classifying between a number of stochastic processes. To clarify this statement, we give the following
illustrative example.

Example 3.7. Observe stochastic processes (X(t))¢>o and (Y (t));>o, both following the law as de-
scribed in equation (2.1). Assume they have the same volatility (t, X (t)) = o, but have unequal drift
terms:

AGLX@®) =
At Y(®) Hy,

where pq,u, € R and u, # w,. When attempting to classify a generated sample to belong to either
process (X(t))e>o or (Y (t)) >, One easily realises that the maximum classification accuracy heavily
depends on the difference between the two drift terms. For example, when p, = —10 and u, = 10,
the classification is significantly easier than when p,, = —0.01 and u,, = 0.01. A 100% classification
accuracy is therefore only possible in trivial cases.

It is important to realise that there is a theoretical best classification accuracy, which depends on the
parametric model and the specific parameter choice.

To compute this theoretical best classification accuracy, the optimal classification rule is used. To
simplify the setting, only a binary classification rule is given, but its extension to multi-class classification
is straightforward. Let X(t) and Y (t) be two known random variables and let Z(t) be a random variable

of which either Z(¢t) < X(t) or Z(t) < Y (¢t) for a fixed t > 0. Observe one sample z(t) from Z(t).The
optimal classification rule is given by

)X@ i fyy(z() 2 frry (2(D)),

Y (t) otherwise.

Z(t) (3.10)

Here fyx) (), frt)(-) denote the density functions of X(t), Y (¢), respectively, at fixed time ¢. Notice that
the classification rule above simply classifies a sample z(t) based on which random variable is more
likely to have generated it.

Unfortunately, only a select number of stochastic processes have analytically available density func-
tions. In the remainder of this section, for several stochastic processes of which the density func-
tions are known the theoretical maximum (binary) classification accuracy will be analytically computed.
These will be compared to the empirical classification accuracy obtained by implementing the proposed
solution given in section 3.4.

3.5.1. Discrete ABM: different drifts

The first process analysed is an ABM with different drifts. The attention is restricted to discrete ABM.
Let & "~ N(0,1) for all k € N.

Xk+1 = Xk +[1At+0'\/A_t$k,
Xk+1|Xk ~ N(Xk + /.lAt, O'ZAt).

Here 1 € Rand ¢ € R*.

Simplified case: one time step

To avoid a multivariate distribution, observe a path with just one time step. Assuming X, = x, is known,
this gives us X; = xy + uAt + oVAtE ~ N(x, + pAt, 6?At).

For simplicity assume that x, = 0. Let X ~ N(u,At,0?At) and Y ~ N(u,At,a%At) where p, > p,.

Assume either Z £ X or z Y, i.e. Z has either u, or u, as drift. The goal is to find out which drift
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corresponds to Z.

Given one observation z from Z, the optimal classification is of the shape as given in equation (3.10).
In other words, Z is classified as having the same distribution as X if the sample is more likely to be a
sample from X than a sample from Y.

Naturally, this classification rule does not always classify the sample correctly. Assuming that Z ~ X,
the probability of correct classification is given by:

P(fx(2) = fy (2)|Z ~ X) ( 1 1(Z—#xAt)2 1 1z ﬂyAf)z . X)
z) = fy(2)|Z ~ = o2 > =
’ ' 2mo? 2mo?

_1 Z—HxAt 1 Z-pyAt

Notice that taking the logarithm on both sides does not influence the inequality sign, since the logarithm
is an increasing function. This gives:

17— xA 1 Z —pyAt
PU(2) 2 frD|2 ~ %) = P(— 5 (22 2 ——(F 27 - x)

= IP(ZAt(_Zﬂx +2py) < Atz(.uy — DIz ~ X)
At
= P(Z < 5 (u + my)IZ ~ X)
1
= Fe(5 0+ 1)), (3.11)

Here Fy(-) is the cumulative distribution function of X. Since its known that X ~ N(u,At, 02At), F(-) is
known and the value in (3.11) can be computed. Notice that a similar calculation gives

1
P2 @DIZ~YV) = K50 +1))
1
P < r@DIZ~X) = 1=F(50+m))
1
PU(D) <fr@DIZ~Y) = 1-F(50+m)),

which represent the probability of misclassifying a sample from Y, misclassifying a sample from X and
correctly classifying a sample from Y, respectively.

This means that the total probability of correct classification is given by
P(Correct classification) = P(fx(2) = fy(2)|Z ~ X)P(Z ~ X) + P(fx(2) < fy(2)|Z ~ V)P(Z ~ Y).
To simplify the notation, the event C is introduced as
cA dift .= (7 : 7z is correctly classified}.

This results in .
P(CA ¥ty := P(Correct classification). (3.12)

Since from both processes an equal number of paths is sampled, we set P(Z ~ X) = P(Z ~Y) = =
This results in the following probability of correct classification:

A ity _ L 1
PN = SPUx@) 2 (@DIZ ~ X) + 5P (2) < (@D)IZ ~Y)

= %(FX(%(ﬂx + liy)) +1- Fy(%(ﬂx + ﬂy)))

- i) )
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This resultis intuitive, since the probability to correctly classify z depends on %(yx +u,), Which is exactly
halfway between the two peaks of the density functions, as is indicated in figure 3.9:

Two overlapping density functions.

fix)

X

Figure 3.9: Density functions with different mean. The value %(ux + uy) is located exactly halfway the two peaks.

Using classification boundary l(ux + u,) maximises the probability of correct classification, as is indi-

cated by Figure 3.9. It is the optimal classification boundary; choosing a higher or lower classification
boundary decreases the probability of correct classification.

Multiple time steps
Now assume a path following ABM with n time steps, i.e. observe a sample z = (zy,...,2z,) from
Z=(Zy, ..., Zy). Let& ~ N(0,1) forall i € {1, ...,n}. Define the increments of Z as

2 = Zi—Zi,
= Zi_; + uAt + oVALE — 7,
= At + oVALE, (3.13)
~ N(uAt,o?At). (3.14)

Notice that the increments are independent and identically distributed (i.i.d.).
Let X = (Xq,..,Xp) and (Y3, ...,Yy) follow an ABM with volatility o and drifts u, and u, respectively.
Given one observation z from Z, the optimal classification rule is

Xif fx(zq, o, 20) 2 fy (24, v\ 2),

Z~ .
Y otherwise.

Notice that this is equivalent to

Xf fy(Bay s 20) = fo(Bar s ).

Z ~ .
Y otherwise.

where X = (X, ..., X,)), ¥ = (¥4, ..., ¥,) and X;, ¥; denote the increments of X and Y respectively.

Since Z,, ..., Z, are i.i.d distributed ,this gives us:

P(fy (o er2) 2 i 2012~ X) = B[ [ @) 2 | [ o212 ~ )
i=1 i=1

_ IP< 1 _ e_ﬁ Sie1 Zimuxb? 1 _ e__ZJ;At Yier (Zi—pyAt)? |Z ~ X).

(2mo?At) 2 B (2ma?At) 2
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Taking the logarithm on both sides and rearranging gives:

P(fx(Z1, wr %) = f3(Z1, o, Z)IZ ~ X)
n n
= P(Z(Z — uebt)? < Z(Zi — uyAt)?|Z ~ X)
i=1 i=1

n
IP’(Z —2u AtZ; + 20, AtZ; + (A% — (uyAt)? < 0|z ~ X>

=1

n n
P( - Z,uxAtz 2+ ZMyAtZZi + n(xAt)? = nuyAt)? < 0]Z ~ X)

=1 =1

n
P(286(ty — 1) ) 21 < n(pyA0)? = n(ueB0)2|Z ~ X)
i=1

n
ZA nAt(u? — pz

Z]P( ZL,SM|Z~X>
2(#y_#x)

Notice that Z?zl Z;—Zi_1 = Zy, — Z,y, since it is a telescoping sum. Additionally Z, = z, is known and
nAt = T, where T is the time horizon of the path. This results in

T
P (Z1r e 2) 2 fy(Grr s 5|2~ X) = P(Zy < 20 + 5 (e + 1y)IZ ~ X)
FXn(ZO + ;(l‘x + ﬂy))
T .
= Fxn(xo + E(M" + uy)) (since zy = x).

Here Fx, (-) denotes the cumulative distribution function of X;,.

Remark 8. The result above shows that only the first and last element of the path are relevant for the
classification of this specific time series, all elements in between are not needed.

Shifting distribution
Observe again

T
P(fy (1, r20) 2 fy (1, s 2012 ~ X) = By, (%0 + 5 (a + 1) ). (3.15)

The manner in which this probability is presented can be misleading, since equation (3.15) might give
the impression that the probability of correct classification increases when, for instance, x, increases.
However, this reasoning is incorrect since u, and x, appear in the argument, but are also parameters
of the distribution of X,,, as can be seen below:

Xn = Xpo1+pAt+ O-\/Efn—l = Xn_2 + 2p, At + Gm(fn—l +¢n-2)

n

Xo + nu,At + a\/A_tZ & ~ N(xo + nu,At,no?At)
i=1

= N(xo + u,T,a%T).

Therefore, random variable K, is now defined as

Xn = Xo = xT

K
X 0'\/?
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Notice that K, ~ N(0,1). This leads to

FXn (xO + g(ﬂx + #y))

T
Xo + E(“x +“y) — Xo _.uxT
Fy, T

T
FIQ(Z(H}/ - ﬂx))-

P(fx(Z21 - 20) 2 fp (21, -, 20)|Z ~ X)

From this result three interesting facts can be derived:

1. As the time length of the path increases, so does the probability of correctly classifying a sample
from X.

2. As the difference in drifts increases, so does the probability of correctly classifying a sample from
X.

3. As the volatility increases, the probability of correctly classifying a sample from X decreases.

Similar calculations give
. . T VT
P(f (1, r2) 2 fyGas2)IZ ~¥) = Fr(yo+ 50 t1m)) = Fig | 5 (e =) )
. . VT
P(fg(Z1, s 2n) < fy(Gr, 2|2 ~X) = 1 — Fx, %(ﬂy — ) )

. . VT
P(fg(Z1, s 2n) < fp(Z1, s 212 ~Y) = 11— ny<%(ux - uy)>.

where
K. = Yn — Yo — ,uyT
Y oNT

Recall from equation (3.12) that P(C* 9y = P(Correctly classification). Again setting P(Z ~ X) =
P(Z~Y)= % leads to

IP(CA’ drift)

1 1
= Ep(ff((zli '"!Zn) = f};(zli !Zn)lz ~ X) + EPUX(Zlﬂ ""Zn) < ff/(zlt ""Zn)lz ~ Y)

(e (3 Gty = 2) + 1= By (o 1~ 1))

1 1, AT
5430005

\/_
2 2 (#y - #x)) - q)(z_:(.ux - .uy)))-

Here @ is a common notation for the cumulative distribution function of a standard normal random
variable, since K,, K, ~ N(0,1). This gives an analytic expression for the theoretical maximum accu-
racy that can be obtained when classifying between paths of n time steps following a ABM with equal
volatility and different drifts.

Empirical results

The results above are compared with empirical findings using the proposed solution explained in section
3.4. The precise structure of the empirical classification process is revealed in chapter 4, this section
merely serves as an initial justification of the proposed method. Suppose X, =Y, = Z; = 100, 0 = 0.2
and n = 1000, i.e. a path with 1000 time steps. 10,000 paths are generated per model and a random
forest classifier is used. The data is split in a 70% training set and a 30% testing set. In table 3.1 the
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theoretical maximum classification accuracy is compared with the accuracy obtained by the signature
method proposed in this thesis. The displayed empirical accuracy is computed over the test set.

Uy #y | Theoretical maximum accuracy | Obtained empirical accuracy
0.1 ] 0.15 0.654 0.623
01| 0.2 0.785 0.771
0.1 0.25 0.882 0.878

Table 3.1: Theoretical and empirical classification accuracy for classification between ABMs with different drifts.

Notice that the theoretical and empirical classification accuracies are similar. This indicates that the
theory and practice are in agreement. The values chosen for u,, u, are values that are commonly
observed in financial time series. Table 3.1 shows that distinguishing between ABMs with different
drifts will be challenging - especially for small differences between u, and u,, - as the maximum possible
classification accuracy is quite low.

3.5.2. Discrete ABM: different volatilities

The situation is similar to the setting in the previous paragraph, only the difference is in the volatility
parameters instead of the drift parameters. Assume a path following a discrete ABM with n time steps,
i.e. observe a sample z = (zy, ..., z,) from Z = (Z4, ..., Z,).

AgainletX = (X4, ..., Xp)andY = (Y4, ..., ¥;,) follow a discrete ABM with equal drift 4 and volatility o, and
ay respectively, with g), > ay. Let X, Y, Z denote the increments of the discrete processes X, Y, Z, respec-

tively in the same manner as in equation (3.13). Recall from equation (3.14) that Z; LLa N (uAt, o?At).

In the same manner as before, the probability of correctly classifying a sample from X is described
below:

P(fg 21, s 20) = fy (21, s 2)IZ ~ X)

n n
- P(Hffr(fd > [reolz~ x)
i=1 =1
1 n . ]
<( 1 )"e_zo,%m Yic1 (Zi—pAt)? S (;)ne Zo’zAtZl Ci—udt)

V2mogAt /ZnafAt
Z ~ X).

1 n R .
= P((l)"e"za,%m Yic1(Zi-pat)? N (Ui)ne ZGZM ST (Zmnt)
y

P

Z~X>

Taking the logarithm of the argument gives:

P(fe 21, 0 20) 2 fy (2, s 20) |2 ~ X)

= P(~ nlog(c;) - ZAtZ(z — pAt)? = —nlog(a,) — 2AtZ(z uAt)?2|z ~ X)

—P(Zzt( 2(2 uAt)2>nlog( )|Z X)

n n log( <)

=P(Z(ZAL-—#M)2ST|Z X).
i)

i=1

Notice that the inequality sign flips in the last step, since both sides are divided by E(% — 0—12) <0,
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because o, > g,, by assumption. We see that

n 2nAt log(g—x)
P(f¢ (21, 0 20) = f3 (21, ...,2n)|z ~X) = P<Z(2i — pAt)? < 1—1"y|z ~ x)
= (z-2)
n 2nAt log(?)
= P<Z(Xi — ult)? < p 2 )
=1 ( o%o} )

Since X; LLd N (uAt, 62At), it follows that
5 iid 5
A; = X, — ubt KN, 02A0).

Since every 4; is normally distributed and independent, it follows that

4 iia
~" N(0,1),
oAl D
n n
A; z 2 Zi=1ALZ 2
( ) ~ X 2—A ~ Xn-
= O'XN/E ox At
This implies that
n 2nAt log(j—")
]P’(ff((fp wr2n) 2 fp(2y, e, 22 ~ X) = P(Z(Xi — pht)? < ((,T(,}z,)y>
=1 0203

n 2nAt log(Z
Yis1 ALZ < 1 g(Uy)
oZAt T oZAt (g;_g;, )

ofo}

2no? log(=

So, A2 _ 2oy los(E)
ofAt T of —o0f '

Remark 9. Notice that the probability of correctly classifying a sample from X following an ABM where

the volatility parameters differ depends on all elements {1, ...,n} of the time series. This is in contrast

with the classification between processes with different drifts, where the probability only depends on
the first and last element of the observed sample.

A similar derivation gives:

gn pr 2no?log(Z)
P rs o 20) 2 fy Gy, o Z)IZ ~ V) P(”ll< y)

2 - 2 2

T 42 2no; log(z—")
IP’(f;((z“l, wr8n) < fo(Bay s 2)IZ ~ X) 1- 11>< =1 y )

oAt T of —o}

i=1"1

2 ’

- s p2 2no§10g(j—;)
ofAt T of

P(fg 21, s 20) < fy (21, s 20)|Z ~ Y) =
y

n 2
Yi=1 Bf

2
oy At

2

where B; := ¥; — u and ~ x2.
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Recalling equation (3.12) and setting again P(Z ~X) =P(Z ~Y) = % results in:
]P(CA’ Vol.)
1 . . . . 1 . . . .
= Ep(ff((zl' ...,Zn) = ff/(zl' ...,zn)|Z ~ X) + E]P(f)?(zll ""Zn) < f?(zll ""Zn)lz ~ Y)

n 2no2 log(Z 2no2 log(Z
S, A? y1og(5) #log(3*)

1 1 Y B2
—_p < +o(1-P(2E1L <
2 (JgAt 0,%—032, ) 2( (Jf,At 6,?—03% )
2 Ox 2 Ix
1 N 1 2(27103, log(oy) ) 2(Zn(fx log(ay) )
=—+= ——n) - ———;n] )
2 T2\ X 0% — 0% X 0% — of

Here x?(x;n) denotes the cumulative distribution function of the y? distribution with argument x and n
degrees of freedom.

Empirical results

Again the computed theoretical maximum accuracy is compared to the empirical results obtained using
the proposed solution as described in section 3.4. As mentioned before, the precise structure of the
empirical classification process is revealed in chapter 4, this section merely serves as an initial justi-
fication of the proposed method. Suppose X, = Y, = Z, = 100, u = 0.1 and n = 1000, i.e. a path
with 1000 time steps. 10,000 paths are generated per model and a random forest classifier is used.
The data is split in a 70% training set and a 30% testing set. In table 3.2 the theoretical maximum
classification accuracy is compared with the accuracy obtained by the signature method proposed in
this thesis. The displayed empirical accuracy is computed over the test set.

Ox

0.

Theoretical maximum accuracy

Obtained empirical accuracy

0.1 0.1}(1)5 0.8623 0.800
0.1 | 0.1 0.9834 0.955
0.1 0.2 1.0 1.0
0.1 0.3 1.0 1.0
0.1 0.4 1.0 1.0

Table 3.2: Theoretical and empirical classification accuracy for classification between ABMs with different volatility.

Again the empirical accuracy is similar to the theoretical maximum accuracy. Table 3.2 shows that
the theoretical maximum accuracy is close to 1 for most parameter settings and only declines when
the difference between o, and o, gets smaller than 0.01. When comparing the results in table 3.2 to
the results listed in table 3.1, we immediately see that distinguishing ABMs with different volatilities is
significantly easier than distinguishing between ABMs with different drifts, for the parameter choices in
this thesis.

3.5.3. Discrete GBM: different drifts
The next process analysed is discrete Geometric Brownian Motion (GBM). GBM is a often used stochas-
tic process in the simulation of financial variables and therefore deserves attention in this thesis. Let

again &, L N(0,1) for all k € {1, ...,n}. The discrete GBM Uy, is represented by

Upry = UpehdtroVatsy, (3.16)
Define the increments of U as
. U+1
Oesr = 7 (3.17)
k
— e,uAt+m/E§k
iid.

<" lognormal(uAt, a?At).

Now assume a path following GBM with n time steps, i.e. observe a sample u = (uy, ..., u,) from
U= (Uy,..,Uy). LetS = (S4,...,S,) and R = (R4, ..., R,) follow a GBM with volatility o and drift p, At
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and u, At respectively. Given one observation u from U, the optimal classification rule is given by

U~ Sif fo(uy, ., up) = frlug, .., up),
R otherwise.

Notice that this is equivalent to

N Sif fo(@yg, ..., Up) = fr(y, ..., Up),
R otherwise.

where §$ = (84, ...,5,), R = (R4, ..., R,) are defined in a similar way as in equation (3.17). Recall that
in equation (3.13) we defined Z,,; = uAt + oVAtE,. Notice that for all increments Uy, the following
holds:

Uk+1 — e[lAf+0’VAffk — eZk+1.

So equivalently,
log(Uks+1) = Zisr- (3.18)
Since in a similar way Xy,1 = u At + ovAtE, and Yyy = p, At + oVAtE, is defined, the following holds:
108(§k+1) = Xis1 log(ék+1) = Yis1-

In the same way as in the sections 3.5.1 and 3.5.2, the goal is to compute the probability of correctly
classifying a sample from S:

P(fs (g, oo, Tl) = fa (g, o, 1)U ~ S). (3.19)
Notice that
FG) = PE<8)=PeEf<d)
= F;(log(%).

In a similar way F;(#) = F;(log(#)). This implies that

f:® = frlog®), fa(R) = f(log()). (3.20)

This is useful, since fy, f; are known and given by equation (3.14). Combining this with equation (3.19)
gives

P(fs(@y, .., Up) 2 fo (@, -, W)U ~ S) = P(fz (log(@y), ..., log(#n)) = fy(log(tty), ..., log(@n))|U ~ S).

(3.21)
Using equation (3.18) gives
P(fe(Qy, ..., Uy) = fp(Qq, ..., W)U ~ S) = P(f3(21), ... 2) = f3 (24, ..., 2)|U ~ S).
Since additionally U ~ S & Z ~ X we arrive at
P(fs(Qy, ..., Uy) = fp(ly, ..., W)U ~ S) = P(f3(21), -, 20) = fp (21, o, 20)|Z ~ X). (3.22)

In the same manner, notice that

P(fs(ty, ., Un) 2 fo(lhy, -, W)U ~ R)
P(fs(ty, ., Un) < fo(lly, -, W)U ~ S)
P(fs(ty, -, Un) < fo(ly, -, Un)|U ~ R)

]P)(f)?(ZAl), '"'ZATL) = f?(ZAll 'ZAn)lz ~ Y),
P(f3(21), ) 2) < f3 (21, ., 20)|Z ~ X)),
P(f3(21), s 2) < f3p (21, ..., 29)|Z ~ Y).
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This is a convenient result, since these probabilities are known and given in section 3.5.1. Recalling
equation (3.12), this implies that

P(CC oMy = P(fe(ily, .., ) = fa(tly, -, Un)|U ~ S) +
P(f (@, .o, W) < fo(@g, -, 2)|U ~ R)
= P(fr(21), . 2n) 2 3 (21,0, 20)|Z ~ X) +
P(f3(Z21), s 20) < fp(Z1, -, Z0)1Z ~ Y)
— IP)(CA’ drift)_

Empirical results

Again the computed theoretical maximum accuracy is compared to the empirical results obtained using
the proposed solution as explained in section 3.4. As mentioned before, the precise structure of the
empirical classification process is revealed in chapter 4, this section merely serves as an initial justi-
fication of the proposed method. Suppose X, = Y, = Z, = 100, ¢ = 0.2 and n = 1000, i.e. a path
with 1000 time steps. 10,000 paths are generated per model and a random forest classifier is used.
The data is split in a 70% training set and a 30% testing set. In table 3.3 the theoretical maximum
classification accuracy is compared with the accuracy obtained by the signature method proposed in
this thesis. The displayed empirical accuracy is computed over the test set.

Uy #y | Theoretical maximum accuracy | Obtained empirical accuracy
0.1 0.15 0.654 0.629
01| 0.2 0.785 0.772
0.1 0.25 0.882 0.877

Table 3.3: Theoretical and empirical classification accuracy for GBM with different drift.

Again the results show a close approximation of the theoretical maximum accuracy and are indeed sim-
ilar to those in table 3.1, showing that distinguishing between GBMs with different drifts is complicated
when the difference between the drifts is small.

3.5.4. Discrete GBM: different volatilities

Let again &, "<* N(0,1) for all k € {1,..,n} and U, follow a GBM represented by equation (3.16).
Now assume a path following GBM with n time steps, i.e. observe a sample u = (uy, ..., u,) from
U= (Uy,..,Uy). LetS = (S;,...,Sy) and T = (T4, ..., T,,) follow an GBM with equal drift x and volatility
Oy, 0y respectively.

Notice that with a similar derivation as in section 3.5.3, one arrives at
H))(cG, vol.) — ]P(CG’ VOI.).

Empirical results
In this section we compare the results above with our empirical findings, using the same setting as in
tables 3.1- 3.3.

Oy ay Theoretical maximum accuracy | Obtained empirical accuracy
0.1 | 0.105 0.862 0.822

01 1] 0.1 0.983 0.961

0.1 0.2 1.0 1.0

0.1 0.3 1.0 1.0

0.1 0.4 1.0 1.0

Table 3.4: Theoretical and empirical classification accuracy for classification between GBM with different volatility.

Again a close relation between the empirical accuracy and the maximum possible accuracy is observed
and we see that distinguishing between GBMs with different volatilities results in higher classification
accuracies than distinguishing GBMs with different drifts as shown in table 3.3.
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3.5.5. Conclusion
In summary, the maximum theoretical binary classification accuracy for ABM and GBM with different
drifts or different volatilities is given by:

| 1 1, T VT
A, drift _ - _ — — - —
PO =~ 4 (05 — 1) = O3 e = 1)), (3:23)
2no? log(Z) 2no? log(Z)
11 y o8l x 108( 5
A, vol. I v Y . 2 Y .
P = g+ 50d(—r ) = (—r — in)), (3.24)
P(CG ity = p(cA drity, (3.25)
P(CG’ vol.) — IP(CA’ V0|-)’ (3.26)

where ®(-) denotes the cdf of the standard normal distribution and y2(-) denotes the cdf of the y?
distribution with n degrees of freedom.

An important conclusion based on sections 3.5.1 - 3.5.4 is that it is significantly easier to distinguish
between ABMs or GBMs with different volatilities than it is to distinguish between ABMs or GBMs with
different drifts. It is essential to keep this in mind when assessing the results obtained in chapter 5.



Methodology

In this chapter, the methods used for the classification of the signature of a path are described, along
with some mathematical properties of the methods. Additionally, the pre-processing and dimension
reduction techniques are described.

In practice, multiple actions are needed in order to find the signature of a path. As described in [13],
the workflow can be summarised as

I 1 I
data — path - signature of path — features of path

| Since financial data streams consist of discrete elements and signatures are computed on contin-
uous paths, an adjustment to the data must be made in order to apply the transformation. Though
many ways exist to transform discrete elements to a continuous path, the most straightforward
way is to connect the elements linearly, creating a piece-wise linear path.

II The signature is computed by integrating multiple times along the piece-wise linear path.

Il Not all features are equally important, the most relevant information is stored in the first 4 ele-
ments. A possibility is to use lasso regression or Principle Component Analysis (PCA) to perform
feature selection and dimension reduction.

4.1. Pre-processing

Before the data can be used as input for the classifier, it needs to be pre-processed. Section 4.1.1
explains the case when there are two models between which the classifier has to differentiate. The
extension to multiple models is mostly straightforward, but issues that arise are briefly mentioned and
dealt with in section 4.1.2.

4.1.1. Binary classification

First, the paths have to be generated. Generate N paths per model, where every path consists of M
time steps. This gives a data set which can be stored in a matrix X € R?V*M_ Attach to every path the
label of the model it belongs to: either 0 or 1 and save this in the vector y. The classifier is a certain
function f : X » y where

[ X1 X% X},, ] (0]

X? X2 - X4 0

[ P < 7 I [V
= X11v+1 X12v+1 X,’\‘,’,” y Y= 1|

X’lV+2 X’ZV+2 X,’?,’,*Z 1

[ x2v xav o xay 1]

Hereafter the following steps are performed:

37
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» Perform a lead-lag transformation on X (optional).

Transform the paths to their signatures or log signatures, depending on which is more suitable for
the situation. In Python, the package esig [36] is available that performs this transformation.

Shuffle the paths (row-wise).

+ Standardise the features (column-wise, optional).

Split the matrix (row-wise) in a training part (70%) and a test part (30%).

4.1.2. Multi-class classification
The extension to multi-class classification is straightforward, except for the label encoding of the output,
where several approaches are available. When dealing with multiple classes, one can choose the
output (labels) to either be label-encoded or one-hot encoded. The illustration below explains the
difference between the two encodings.

(0] 11010
1 0[1(0
2 0(0 |1
1 0[1(0
2 0(0 |1
0 11010

Table 4.1: Suppose there are three classes. On the left is an example of label-encoding, every sample is assigned a class label
out of {0, 1,2}. On the right is an example of one-hot encoding. It has three columns - one per class - where per row the number
1 is placed in the column of the correct class, all other elements of the row equal zero.

The underlying algorithm works the same, regardless of which encoding is used. However, the ad-
vantage of using one-hot encoding is that it is a simple technique to quickly get an intuition on the
confidence of the classifier of the class of the sample. As an example, compare two potential outputs
of a classifier in table 4.2.

0.99 | 0.005 | 0.005 0.36 | 0.30 | 0.34
0.10 | 0.85 | 0.05 0.25 | 0.40 | 0.35
0.03 | 0.07 | 0.90 0.30 | 0.27 | 0.43

Table 4.2: Two potential outputs of a classifier distinguishing between three classes. The column number of the maximum per
row is the class as which the sample is classified. Both give exactly the same number of correct classifications, but the output
on the left is more certain than output on the right. Obtaining this information about the classification is useful in further analysis.

In other words, one-hot encoding allows for output which can be interpreted as similar to a ‘probability
distribution’ over the classes, which is interesting information. Itis relevant to notice that this information
about the confidence of the prediction is also available for label-encoded output by going back one
processing step in the classifier (see 4.3 for an overview of the classifiers), but using one-hot encoding
the information is immediately visible in the output. For this reason, the output is one-hot encoded in
this thesis.

4.2. Feature selection and feature extraction

Once the data has been pre-processed and transformed to signatures, the training of the classifier
can begin. One of the problems that immediately becomes apparent, is that the truncation level of the
signature needs to be determined.

As mentioned before, the untruncated signature completely determines the path. Truncating this se-
quence therefore inescapably leads to a loss of information, indicating that a high truncation level might
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be preferable. This is not entirely the case, though, since a higher truncation level leads to more el-
ements in the signature sequence, which means that the classifier has a higher dimensional feature
input. The signature elements with the highest impact are located at the beginning of the signature se-
quence [10]. Intuitively, this is similar to Taylor expansion, where the terms in the start of the expansion
have a greater impact than later terms. Dimensionality reduction techniques can be used to combine
features (feature extraction) or remove features (feature selection).

4.2.1. Feature selection

Even though according to [10] the most relevant characteristics of the path are at the start of the signa-
ture sequence, it is desirable to have an indication of which features are important in the classification
between paths generated by different models, so that the level of truncation can be chosen in such a
way that these important features are included.

The topic of feature selection has been extensively studied over the years; [12] gives a valuable
overview of the different methods to achieve feature selection. According to [12], three types of feature
selection methods exist:

1. Filter methods: filter methods rank the features from most relevant to least relevant based on a
certain relevance criterion.

2. Wrapper methods: wrapper methods go over all subsets of features to determine the optimal
classification accuracy. The idea behind this method is that irrelevant features introduce noise and
therefore reduce the classification accuracy. Going over all subsets of features quickly becomes
NP-hard, so often special heuristics are used, see [12].

3. Embedded methods: embedded methods include feature selection as part of the training pro-
cess.

Since wrapper methods are computationally expensive and embedded methods embed feature selec-
tion in the classification process and therefore do not explicitly give the important features, the focus is
put on filter methods.

Several filter methods have been tried in this thesis. Think of the y?-test to test the statistical signifi-
cance of the feature in relation to the class label, Wald z-statistic, which has as null-hypothesis that the
coefficient of the feature equal zero, Lasso regression etc. However, for all methods the results were
ambiguous. Running the classifier multiple times led to different features being identified as important,
for all classifiers mentioned in section 4.3.

The reason that the filter methods mentioned above failed to indicate the important features is because
of the multicollinearity of the features. Multicollinearity occurs when two or more features are highly
linearly related, see definition 4.1.

Definition 4.1 (Multicollinearity). Variables X4, ..., X,, are said to be perfectly multicollinear if there exist
Aoy -, An € R sUCh that
AO + llei + -+ Aanl =cC, (C € [R)

holds, for every i observation of the j™ variable X ;.

An easy way to check for multicollinearity is to compute the correlation between every pair of features.
In general, one speaks of multicollinearity if the correlation between the features is higher than 0.7.
In the figure below the correlation between the features is shown, where the signatures are used as
features.
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Figure 4.1: Correlation between the signature elements truncated at level 4 of a GBM. The colour indicates the correlation
between the two signature elements. Correlation plots of other type of processes look similar.

As can be seen in figure 4.1, many features are almost perfectly correlated.

Multicollinearity among features does not impact the classification accuracy, but it makes the identi-
fication of important features complex. The reason for this can best be explained through example
41.

Example 4.1. Let X,, X, € R be two features used to predict the output Y € R through a simple, linear
model:

Y = W1X1 + W2X2.

Here wy,w, can be interpreted as the weights of the features, with 0 < wy,w, < 1 and w; + w, = 1.
Assume X, and X, are perfectly (Pearson) correlated with p(X,,X,) = 1. It indicates that one can
express X, as X, = aX, + B. For simplicity, assume a« = 1, = 0, so X; = X,. When determining
whether X, or X, is more important for determining the output Y, one could look at the weights. However,
in this case the weights do not give any information. The weight combinations {0, 1}, {1, 0}, {%, %} all give
the same value output Y since p(X4,X,) = 1. It is not possible to determine whether X, or X, is more
important.

The problem described in example 4.1 extends in the same manner to the feature selection problem
in the classification process. High multicollinearity of the features is undesirable, since it makes the
identification of important features unfeasible.

Feature selection is therefore not useful in this case to reduce the dimensionality of the input. Therefore
the next paragraph looks into the concept of feature extraction.

4.2.2. Feature extraction

Feature extraction methods do not focus on selecting important features, but rather combine features
together to reduce dimensionality while keeping the most important information. [21] gives a profound,
though slightly outdated, overview of the possible methods. Many methods exist, ranging from classi-
cal methods like Principle Component Analysis (PCA) or Singular Value Decomposition (SVD) to deep
learning methods where extracting features from the data is done with neural networks. For the pur-
pose of this thesis a simple, fast feature extraction method is preferable, since the goal is to reduce the
dimensionality for a as high as possible truncation level of the signature. Since PCA is simple, fast and
works well on multicollinear data [21], this method is chosen.
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Principle Component Analysis (PCA)

PCA is a non-parametric, statistical technique often used to reduce the dimensionality of a data set
consisting of many interrelated variables, while preserving as much variance as possible. This is done
by projecting the features on its principle components. These principle components are uncorrelated
and ordered from components with most variance to least variance. The following explanation is based
on [27].

Consider an N x M matrix X of input data, where every row represents one observation and the columns
represent the features.Let x; € RM be one observation. Suppose the features are closely correlated.
Figure 4.2 gives an example for M = 2.

Scatterplot of two normal random variables.

Xz

Figure 4.2: Scatterplot of two correlated random variables.

The first step is to look for the direction in the coordinate system for which the variance is maximum,
i.e. look for alx; with a; = (ayy, ..., @1y) such that the variance of alx; over observations i is max-
imised. The next step is to look for alx; where p(alx;,alx;) ~ 0 where the variance is maximised
over observations i. Here p denotes the correlation. Continuing this results in M linear functions a;x
which are uncorrelated. In this way, a coordination transformation has been made to a space where
the features are uncorrelated, where a;x is called the j™ principle component.

An example of the principle components of the data set in figure 4.2 is given in figure 4.3.
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Scatterplot of two normal random variables.

Figure 4.3: Coordination transformation from the X,, X, axes to the new axes (called principle components).

The dimension reduction takes place by removing the last few principle components. Since the com-
ponents are ordered by variance, these components contain the least variance and therefore the least
information about the data set. For further information about PCA, the reader is referred to [27].

Remark 10. In this thesis, PCA is only used as a pre-processing technique for the random forests, not
for the neural network. The reason for this is that neural networks are able to handle multicollinear and
high-dimensional input data, so using PCA in pre-processing is not necessary.

4.3. Classification

Now that the data is processed and the dimensionality-reduction techniques are introduced, the clas-
sification can start. In this thesis two classifiers are used:

* Random forests: this method is included because it is fast to implement and train.

» Neural network: this method gives for many classification settings the best accuracy, but is slow
to train and requires a considerable amount of hyper-parameter tuning.

Both classifiers have known advantages and disadvantages. Random forests is a machine learning
technique for which is known that it works well for sparse data and for input data of which the dimen-
sion is moderate. When the dimension is high, dimensionality reduction techniques like the previously
mentioned PCA need to be applied on the input data before the random forest algorithm can be ap-
plied. Additionally, for data which is not multicollinear, it can often be used to determine the feature
importance, which is helpful for interpreting the classification problem. Unfortunately, as mentioned
in section 4.2, the elements of the signature are multicollinear, therefore the advantage does not hold
within this thesis. Compared to the neural network, it requires less training data. Its main advantage
is that it is a fast method, both to implement and to train and that it generally performs well when com-
pared to other machine learning techniques [17].

Neural networks are known to perform well when a lot of training data is available. Since the training
data in this thesis is generated by the user, as much training data as required can be generated, which
means that the neural network can be used. Furthermore, neural networks tend not to suffer from
the earlier mentioned ‘curse of dimensionality’ [4], meaning that the level of truncation of the signature
could optionally be chosen higher than for random forest.

4.3.1. Random forests
Random forests are a combination of decision trees. Originally proposed by Ho in 1995 in [24] and
extended by Breiman in 2001 [5], it quickly gained popularity because of its flexibility (it can be used
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for both classification and regression problems), its practicality (it is a fast method with few hyper-
parameters) and the advantage that the default hyper-parameter setting often already give quite good
results. In this thesis the popular package sklearn in Python is used for the implementation.

A random forest is a collection of independent tree-structured classifiers that each get a vote on the
classification. A schematic representation is shown in the figure 4.4.

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

L»{ Majority Voting / Averaging

Final Result

Figure 4.4: Schematic representation of a random forest [42].

From the input, the algorithm forms bootstrapped clusters (drawn with replacement), which serves as
input for the individual trees. Note that the individual trees are therefore trained independently from
each other. The advantage of this is that it corrects for decision trees’ habit of overfitting to their train-
ing set.

A decision tree is a training algorithm that takes as input observations about an event and carries the
observations to the event’s target value (i.e. class label in this case). It is build up from nodes and
branches, where at every node one of the features of the data is evaluated in order to split the input ob-
servations in the training process. The idea is that the input can be grouped into classes by observing
the feature values. This grouping is done on the notion that observations with similar feature values
should be classified as being from the same class.

The decision tree works from the top down, where at every level a feature is chosen that best splits the
set of observations. A decision is made to which direction to go based on a metric. Gini impurity is an
often used metric for this.

The gini impurity is a metric proposed by Breiman et al in [6] to measure the quality of a split in data, in
order to find the best possible split.

Definition 4.2 (Gini impurity). Recall that S is the matrix containing the signatures of every path and
let p; = p(i|S) be the proportion of signatures belonging to class i, where i € {1, ... k} is the class label.
The gini impurity is defined as

k
Igni($) = ) pi(1 = o).
i=1

It measures how frequently a random sample from S would be classified incorrectly if it was randomly
labelled according to the distribution of labels in the subset. The Gini impurity obtains its minimum
value zero when all elements of the subset are from the same class.

Summarising, the algorithm looks like this:
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Algorithm 1 Random forest classification

1: Create clusters of the input data by bootstrapping from the data (drawing with samples with replace-
ment). Nodes are created such that the mean squared error in the resulting branches is minimized.

2: The random forest algorithm generates a significant amount of these trees, resulting in a "forest”.
Note that each tree is different since the training data for each tree are chosen at random.

3: The validation set is used to evaluate how well the fitted model performs. The data from the val-
idation set is put into the trees and the predictions from all trees are averaged for a final random
forest prediction.

By splitting the data based on these features we try to minimise the variance in the resulting branches.
For this purpose the quality of every node is assessed by calculating how much the node reduces the
mean squared error compared to the original branch. A node in a tree is the point where the path splits
into two branches.

A random forest model consists of a large number of individual decision trees. Each individual tree
in the random forest gives a prediction for a certain data set and the final result of the random forest
model is the average of all these predictions.

4.3.2. Artificial Neural Networks

This section gives a brief introduction to Artificial Neural Networks (ANNs), explaining the basic struc-
ture and purpose. For a complete overview, the reader is referred to [4], on which this section is based.
This section describes the basic neural network called the ‘feed-forward neural network’. Note that
many adaptations of the feed-forward neural network exist, of which [3] gives a brief literature review.
The implementation of the neural network is done with keras, which is a package in Python.

Architecture

ANNSs are deep learning methods which have gained massive popularity in the past 20 years, as they
can be used for a broad range of applications in regression and classification. An ANN consists of mul-
tiple connected layers where only the input and output layer are visible to the user. The other layers
in between the input and output layer are not visible and are therefore called the hidden layers. Every
layer consists of a number of neurons Nj.

Let x4, ..., xp denote the input. A neural network with one hidden layer, containing one neuron N is

depicted below.
@>

input hidden layer

Figure 4.5: Schematic representation of a neural network with one hidden layer, containing one neuron.

Within neuron N two actions are performed:

* Linear combination with weights w;: k := Z?zj w;x; +wy. W is commonly referred to as the bias.

+ Activation function h(k) where h : R — [a,b]. The activation function is typically chosen to be

non-linear and in such a way that [a, b] is either [—1, 1] or [0, 1]. Additionally, h(k) is required to
be differentiable with respect to k.
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A neural network is essentially a network of several layers consisting of neurons, where every neuron
in layer i is connected to every neuron in the adjacent layer i + 1 through weights w}'”,j €{1,..,li+1}
Here [;,, denotes the number of nodes in layer i+ 1. Commonly the number of hidden layers is referred
to as the width of the network and the number of neurons per layer is referred to as the depth of the

network. A schematic representation is depicted in figure 4.6.

input hidden layers output

Figure 4.6: Schematic overview of a feed-forward neural network with m hidden layers. Layer Ni has I; nodes per layer. The
black neurons x,, N ... NJ* are commonly set equal to 1 and are multiplied by the bias w§ such that Njw§ = wi.

Intuitively one can picture the information passing through the network from the input layer to the output
layer, hence the name feed-forward neural network.

The neural network used in this thesis is a feed-forward network with the specifications as listed below.

» Number of hidden layers: 3.

» Number of neurons per hidden layer: 1024, 512, and 256 respectively.

» Number of neurons in input layer: D. This is required to be equal to the dimension of the input
and therefore depends on the level of truncation of the signature sequence.

» Number of neurons in the output layer: p. This is equal to the number of classes between which
one attempts to classify.

* Value of bias neurons: 1.

The architecture is schematically represented in figure 4.7.
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input hidden layers output

Figure 4.7: Schematic representation of the ANN used in this thesis.

Pre-processing: no PCA

Recall from remark 10 that PCA is not used as pre-processing technique when using the neural net-
work. The reason for this is that, according to [15], multicollinearity does not have a big impact on
neural networks, since the final output of the neural network is a combination of many combinations of
the (non-linear) activation functions. This means that the original (multicollinear) input data is subjected
to so many non-linear transformations, that the multicollinearity does not play an important role on the
weights.

Choice of activation function

The activation function h(+) is chosen by the user. As mentioned before, h(k) needs to be differentiable
with respect to k (in order to perform backward propagation in the training phase, see next paragraph).
Additionally, a non-linear activation function ensures that non-linear relations between the input and
output can be learned. The activation functions do not need to be identical for every layer, but common
practice is to have the same activation function for all hidden layers and optionally a different activation
function for the output layer. The choice of activation function depends on the purpose of network and
the type of data. For a rigorous overview of commonly used functions, the reader is referred to [4].

The activation function chosen for the hidden layers in the neural network used in this thesis is h(x) =
tanh(x) with

e¥ —e™*
eX + e %
Notice that this is indeed a differentiable and non-linear function. The activation function for the output
layer is standard in classification, where the sigmoid function h(x) = Z(x) with

tanh(x) =

2(x) = 14+e™>

is chosen for binary classification and the softmax function h(x) = softmax(x) with
Xi

softmax(x) = oz— fori € {1,..,p}
e’

7
j=1

is chosen for multi-class classification with p classes. The softmax function is chosen because it nor-
malises the input of the output layer to values in [0,1] which sum up to 1, meaning that this can be
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interpreted as a probability distribution over the classes. When analysing the classification accuracy,
the predicted label is chosen for which the probability is maximal, i.e.

arg ierﬁ%}y"'

Training: backpropagation

A crucial detail overlooked until now is the value of the weights w' = [wj, ... w;,]. Naturally before one
can pass the input x4, ..., xp through the network, one needs to know the weights with which the values
are multiplied in the linear combination within each neuron. These weights are determined through
the training process. As is common in statistical learning, one splits the data in a training set and a
test set. For the training set several instances of input x4, ..., x, and target output t,, ..., t, are known
and a method called backpropagation is used to iteratively determine the weights of the network which
minimise a specific loss function L(w') set by the user for all w'. This loss function measures the
difference between the output y, ..., y, of the network and the actual (known) target values ¢, ..., t,.
The choice of loss functions is broad and again depends on the purpose of the network, but it is required
to be a smooth, continuous function of w. For classification the cross entropy loss function is regularly
used [4]. The cross entropy loss function to be minimised is defined as:

CE =— ti log(yl)

Mws

=1

Recall that t; € {0, 1} is the target label and y; € [0, 1] is the output of the softmax function, as that is
done in the last layer of the network. Ideally, y; is close to 1 when t; = 1 and y; is close to 0 when
t; = 0. Notice that CE indeed attains its minimum when y; = t; forall i € {1, ..., p}.

Backpropagation is a method used in deep learning to determine the weights in the network. Intuitively
it starts from the error measured by the loss function at the output of the network and passes through the
network to its input. To illustrate the concept, notice that when a small step is made from weights w to
w + Aw where Aw is the update of the weight vector (defined differently for every choice of optimisation
algorithm), the loss changes with §L. ~ Aw’ - VL(w), where V is used to denote the gradient. VL(w)
points in the direction where the increase of the loss function is greatest, meaning that moving in the
direction of —VL(w) will decrease the loss. Notice that this means that the loss is minimal for w such
that

VL(w) = 0. (4.1)

The goal is to find w such that the gradient vanishes, but this is hindered by the typically non-linear
dependence of the loss function on the weights. An analytical expression for w such that (4.1) holds is
seldom available, so practitioners resort to numerical methods to find this w. A wide variety of methods
are available, but most methods start with an initialisation w® and move through the weight space by

witl = w' + Aw?, (4.2)
where t denotes the iteration step and A is often referred to as the learning rate.

Naturally the above is merely a short introduction to the complex training process of the neural network.
For more details on this, the reader is referred to [4].

Hyper-parameter settings

Neural networks have many hyper-parameters, which makes it challenging to find the best performing
set of hyper-parameters. An extra challenge in this thesis is that the network should be suitable to
be used for many different classification settings. Usually, when learning data, networks are trained
on one type of data and the hyper-parameters can be tuned to that type of data. In this thesis, we
look at several different classification settings such as classifying between different drifts, classifying
between different volatilities, classifying on the presence of jumps etc. It is not necessarily true that
in each classification setting the same hyper-parameter setting will be the optimal setting. However,
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since hyper-parameter tuning is time-consuming and since we would like to have a network which per-
forms stable regardless of the models included in M, we will search for the set of hyper-parameters
that perform best in the classification settings observed in this thesis, as opposed to finding the best
hyper-parameter settings for every situation individually.

Batches

Recall equation (4.2) and suppose we have one data input x = (x4, ...,xp). X is passed through the
network and results in one observed value of L(w). The weights are then updated in such a way that
for the observed input x the loss decreases. However, introducing the training data like this, one by
one, can result in unstable training, since the updated weights are decided on only one input data
point. An alternative idea is to introduce the data to the network in larger batches B of k data points:
B = (x;, ...,X;+x). This ensures that we have k observations of the loss instead of one, which allows the
weights to be updated in such a way that the average loss observed over all k input values is reduced.
In general a larger batch size results in a better updating of the weights and therefore in a more stable
training process. However, the batch size is limited by the memory of your computer. Practitioners
suggest using a batch size “ between 1 and a few hundreds” [8]. In this thesis a batch size of 1000 has
proven to be work well in most settings.

Number of epochs

The number of epochs is the number of times the full training data set is passed through the network.
There is no analytical way to determine the best number of epochs, but the rule of thumb is to choose
the smallest number of epochs for which the training accuracy stops increasing. However, in this thesis
many different classification settings are observed. There is no single smallest number of epochs such
that the training accuracy stops increasing for all classification settings analysed. However, choosing
a number of epochs higher than the optimal number does not hurt the classification accuracy either, it
merely increases the computation time. Figure 4.8 shows how the number of epochs influences the
training accuracy for two different classification settings.

Training accuracy Training accuracy

0.65

0.64

Accuracy

0.62 0.70
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Figure 4.8: Influence of the number of epochs on the training accuracy. Left: classification between different drifts in GBM. Right:
classification between different jump sizes in an exponential jump diffusion process.

Figure 4.8 shows that when classifying between different drifts in GBM (left picture), there does not
seem to be an significant increase in accuracy after around 50 epochs. However, when classifying
between different jump sizes in the jump diffusion process (right picture), the training accuracy is still
increasing after 50 epochs (notice the different scale on the y-axis) and would suggest 150 or even 200
epochs to be sure. We would like to choose one single number of epochs for all settings to simplify the
situation. The number of epochs is chosen as the maximum of the optimal number of epochs observed
in the classification settings, which in this thesis was 200 epochs.

Dropout

Because neural networks typically have many parameters (i.e. weights), they are prone to overfitting.
Overfitting occurs when models are too much tailored to the training data that they fail to make infer-
ences on unseen test data. To circumvent this problem, a popular technique for neural networks is to
use dropout. Dropout is a simple, but very effective technique, where during the training per layer a
certain percentage of the output of the neurons is ignored or “dropped out”. The neurons whose output
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are ignored are chosen randomly and differ per every batch. In this way, the training of the network
is hindered slightly, preventing overfitting of the network. The dropout percentage can differ per layer,
though practitioners suggests to use a dropout of close to 0 for the input and output layer and a dropout
of around 0.5 for the hidden layers [7]. Through empirical testing and observing the train- and testing
error, we found that a dropout percentage of 0.3 for hidden layers and 0.0 for the visible layers works
best in most settings tried in this thesis, and therefore these are the values chosen for the dropout.

Learning rate

Recall equation (4.2). A was defined as the learning rate, which denotes by how much the weights
are updated after every iteration. Choosing the learning rate is a tight balance between computational
speed and convergence, as illustrated in figure 4.9.

25 25

20 20

L(w)

Figure 4.9: An illustration of how the learning rate influences the training. Left: low learning rate, right: high learning rate. Figure
taken from [20].

Figure 4.9 illustrates that when attempting to find the weights that minimises the loss function, choos-
ing a too high learning rate can lead to divergence (right figure) and choosing a too low learning rate
will lead to convergence, but will become computationally intensive since more epochs are needed to
lead to the same result. Typically the learning rate is chosen between 0.1 — 0.001 [9]. In this thesis, a
learning rate of 0.001 has proven not to lead to a diverging training process, while the computational
time was still acceptable.

Universal approximation of the target function

An important concern that needs to be addressed before using a neural network is whether the neural
network is descriptive enough to find the possibly non-linear relation between the input and the target.
Fortunately, this concern is answered by the universal approximation theorem. The classical form of the
universal approximation theorem provided in [25] states that a neural network with one hidden layer
of arbitrary depth can approximate any relation between the input and output uniformly close. This
theorem was extended by [33] which claims that a network of bounded depth and arbitrary width can
also uniformly close approximate the relation between the input and the output. Though the framework
with a finite depth and a finite width has not been proven to being able to do the same, these theorems
- combined with the notion that computationally large networks of thousands of neurons or thousands
of hidden layers are possible - provide a solid basis to promote the usage of neural networks. As
mentioned at the start of this section, in this thesis the neural network equals or outperforms the other
two classifiers in every setting. The universal approximation theorems are the likely reason for this.






Experiments

In this chapter the results of the several experiments conducted in this thesis are discussed. Recall
that the purpose in this thesis is to classify observed time series to their likely generative stochastic
process. As indicated before, the collection of stochastic processes is broad and the choice was made
to focus on ABM, GBM and the exponential jump diffusion process. Since ABM and GBM are very
similar and analytical results on ABM are available in section 3.5, in this chapter we focus on empirical
results from:

» Geometric Brownian Motion,
» Exponential jump diffusion process.

These are processes following laws as described in chapter 2. In this chapter we aim to classify be-
tween these models, but also to classify between paths generated by the same model with different
parameter settings, as this is useful for calibration purposes.

The chapter starts with an overview of the default settings used in the experiments throughout the
chapter in section 5.1, followed by the results of several binary classification settings in section 5.2 and
results of multi-class classification in section 5.3.

5.1. Settings

In the consecutive sections, the following settings are used unless specified otherwise.

» The data set is split in a 70% training set and a 30% test set. The classification accuracy listed
are computed over the test set.

+ All paths have 1000 equidistant time points and the total time horizon equals T = 10.
+ All paths have equal starting point X, = 100.

» The signature transformation is used. Section 5.2.3 investigates the difference in classification
accuracy between signatures and log signatures.

» The signature is truncated at level L = 4. Section 5.2.4 investigates the difference in classification
accuracy between signatures truncated at different levels.

* The lead-lag transformation is used.

* When using random forests, PCA is applied using 25 components. When using the neural net-
work, no PCA is applied and the network is trained directly on the signatures.

* The random forest is uses data sets of 10,000 paths per model. The neural network uses 100,000
paths per model.

* The labels of the paths are one-hot encoded, see section 4.1.2.

51
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For a schematic overview of the classification setting, the reader is referred back to figure 3.8. Notice
that the choice is made to apply the lead-lag transformation as the standard setting. This transforma-
tion (recall paragraph 3.3.4) captures the volatility parameter explicitly and has proven to work best in
most experiments conducted in this chapter. In section 5.2.3 the effect of the lead-lag transformation
on the classification accuracy is examined.

Computational note

Ideally, we would like to try a large number of different classification problems to give an complete
overview of the efficiency of the signature method. Though in this chapter many classification prob-
lems are observed, we are limited in the number of experiments by the computational power available.
For every experiment, many paths for all M;(6") € M need to be generated, which all need to be
transformed to their lead-lag equivalent, over which the signature is computed. This means that many
pre-processing computations are done before the input enters the classifier. Especially the computa-
tion of the signature is time consuming. The random forest classifier does not need a lot of training
data, in this thesis it was found that the classification accuracy over the test set does not increase if the
number of training samples is extended to more than 10,000 per model. The computational issue for
this classifier is therefore minor. However, the neural network needs much more training data, usually
around 100,000 paths per model at least. This has as consequence that analysing, for example, the
influence of level of truncation on the classification accuracy can be problematic when using a neu-
ral network. For this reason, those inferences are all done by using the random forest in classification
problems where the difference in accuracy between random forest and the neural network is negligible.

5.2. Binary classification

The first setting analysed is binary classification, i.e. classifying between two models. Binary classifi-
cation is more straightforward to analyse than multi-class classification, so in addition to the results of
classification between different stochastic processes in subsection 5.2.1, this section will also discuss
how different combinations of parameters and models influence the classification accuracy.

5.2.1. Relevant classification problems

Many different binary classification settings can be considered, this section describes those settings
that are most relevant in practice, see chapter 2.

Two GBM processes with different parameters
The first classification setting concerns two GBM processes X (t), X?(t) with different parameters, fol-
lowing the dynamics:

dx1(t) = u X1(O)dt + o X1 (t)dW (t)
dX?(t) = upX?(t)dt + 0, X% (t)dW (t) (5.1)

Though X(t), X?(t) are assumed to follow the same model, performing this classification can help
practitioners in the calibration of the parameters y and o.

Table 5.1 shows the classification accuracy computed for various values of uq, iy, 04 and g,. To give
an impression of what the paths of the chosen parameters in table 5.1 look like, several paths for two
settings are plotted in figure 5.1. More sample paths examples can be found in Appendix A.1.



5.2. Binary classification 53

Paths generated from a GBM for various parameters Paths generated from a GBM for various parameters
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Figure 5.1: Overview of the classification between paths generated by two GBMs. Left: paths with different volatilities. Right:
paths with different drifts.

Using the setting as described in 5.1, table 5.1 lists the classification accuracies for various parameter
values.

Parameters Accuracy

U1 Uy o4 0y Theoretical max. accuracy | Random forest ANN

01| 0.1 |0.1]0.105 0.862 0.800 (0.026) | 0.788 (0.025)
011] 01 | 01| 011 0.983 0.955 (0.015) | 0.973 (0.018)
0.1 0.1 | 0.1 0.2 1.000 1.0 (0.000) 1.0 (0.001)
0.1 0.1 | 0.1 0.3 1.000 1.0 (0.000) 1.0 (0.001)
0.1 0.1 | 0.1 0.4 1.000 1.0 (0.000) 1.0 (0.000)
011015 02| 0.2 0.654 0.629 (0.025) | 0.651 (0.025)
011020 |02]| 0.2 0.785 0.772 (0.021) | 0.779 (0.017)
01]1025|02]| 0.2 0.882 0.877 (0.013) | 0.881 (0.016)

Table 5.1: Percentage of paths correctly classified for two GBM processes with different parameters. The random forest classifier
has been trained once on 10,000 paths per model and tested 50 times on test sets of 600 paths. The neural network has been
trained once on 100,000 paths per model and tested on the same 50 test sets of 600 paths per test. The results for random
forest and the neural network are presented as mean accuracy over the 50 test sets, followed by the sample standard deviation
of the accuracy in between brackets.

Notice that the first three rows in table 5.1 relate to GBMs with different volatilities and the last three
rows relate to GBMs with different drifts. The results are the same as discussed previously in tables 3.3
and 3.4 and we see again that classification between different volatilities is significantly more straight-
forward than classifying between different drifts. Based on table 5.1, we can conclude that with the
specific parameter settings chosen in section 5.1, distinction between GBMs with different drifts is rea-
sonable when |y, — 4| > 0.1 and distinction between GBMs with different volatilities is reasonable
when |o, — 04| > 0.005.

Both the random forest classifier and the neural network perform satisfactory, reporting classification
accuracies that are close to the theoretical maximum. This demonstrates that, for this specific situation,
using the signature method is successful in distinguishing between different models. However, in prac-
tice we would recommend using the theoretical optimal classification rule in this specific classification
problem. This classification rule, as explained in section 3.5, attains the maximum possible classifica-
tion accuracy and is computationally cheaper, as the GBM paths and their signature transformation do
not need to be generated '

A GBM and an exponential jump diffusion process
In the next classification problem, paths from a GBM and an exponential jump diffusion process are clas-
sified. Unlike the previous setting, there is no analytical result available about the theoretical maximum

"Notice that the optimal classification rule is not suitable in more general classification problems, for example testing whether a
distribution contains jumps (see next experiment). It is only suitable for calibration purposes.
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classification accuracy. This classification problem is relevant, since it allows the user to determine
whether the observed path stems from a GBM or from the exponential jump diffusion process, both of
which are popular processes in practice. Consider the following setting:

dx(t) = 0.1X1()dt+ o X (t)dW (b),
dx2(t) = 0.1X%(t)dt + o, X?()dW (t) + JX?(t)dx(t), (5.2)

where y(t) denotes the Poisson process (independent of the Wiener process) with intensity 4 and let
J ~N(0,ay).

Remark 11. The parameters o4, 0,,5; and A need to be chosen carefully in order to obtain a meaningful
classification. Notice that X?(t) follows dynamics very similar to X*(t), the only difference being a term
added to represent the jumps. Adding this extra term introduces extra overall volatility in the paths. We
have already seen in table 5.1 that classifying between paths with different volatilities results in high
classification accuracies. To avoid classification based on the overall volatility of the path, the following
requirement is set:

Var(X1(t)) = Var(X%(t)) (5.3)

This ensures that the classification is purely based on the presence of jumps in the paths, instead of
on the increased volatility.

Table 5.2 shows the classification results for parameters chosen such that (5.3) holds.

Parameters Classifier
A o1 0, g; | Random forest ANN
0.01 ] 0.2 |0175| 0.1 | 0.853(0.019) | 0.798 (0.0)
0.02 02| 013 | 0.1 | 0.959(0.011) | 0.973 (0.0)
0.03 0.2 | 0.08 | 0.1 | 0.977 (0.007) | 0.985(0.0)
0.04 | 02| 0.05 | 0.1 | 0.981(0.008) | 0.928 (0.0)
005 02| 00 | 0.1 0.992(0.004) | 0.985(0.0)

Table 5.2: Percentage of paths correctly classified for one GBM process and one jump diffusion process. The intensity A
increases and o, is decreased in order to meet the demand in equation (5.3). The random forest classifier has been trained
once on 10,000 paths per model and tested 50 times on test sets of 600 paths. The neural network has been trained once on
100,000 paths per model and tested on the same 50 test sets of 600 paths per test. The results for random forest and the neural
network are presented as mean accuracy over the 50 test sets, followed by the sample standard deviation of the accuracy in
between brackets.

Figure 5.2 shows several paths for one of the classification settings in table 5.2 to give an impression.
Examples of sample paths from the other classification problems can be found in Appendix A.1.

Paths generated from GBM and the exponential jump diffusion process
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Figure 5.2: Paths generated by a GBM (blue) and an exponential jump diffusion process (red).
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Table 5.2 shows the classification accuracy for an increasing intensity, i.e. an increasing expected
number of jumps per path. The distribution of the jump size, governed by g;, remains equal, the overall
volatility o, is decreased in order to compensate for the increased intensity. Table 5.2 indicates that as
the number of expected jumps per path increases, so does the classification accuracy. The results are
intriguing, since they imply that the signatures are able to capture the difference between GBM and the
exponential jump diffusion process through the presence or absence of jumps. This is an important
result, since - though it was known that signatures can capture higher order statistics of a path - these
relations could not be made explicit analytically. The results of table 5.2 imply that the presence of
jumps (as governed by the exponential jump diffusion process) is one of the statistics that the signa-
ture can describe and that the signature method is suitable for distinguishing between paths generated
by GBM and paths generated by the exponential jump diffusion process.

There is no clear preference for using a random forest or a neural network based on the classification
accuracies in table 5.2. However, since random forest is faster in the training process and requires
less training data, we would recommend to use the random forest in this classification setting.

Two exponential jump diffusion processes

In the next classification problem two exponential jump diffusion processes are compared with different
intensities and jump sizes. Again no analytical maximum classification accuracy is available for this
situation. Let

dxi(t) 0.1X1(t)dt + 0.2X1 ()dW (t) + J, X1 (t)dx1 (D),
dX?(t) = 0.1X2(t)dt + 0.2X2(t)dW (t) + J; X?(£)dx?%(b), (5.4)

where J; ~ N(0,0y,), J, ~ N(0,0y,), x1(t) is a Poisson process with intensity 1, and y?(t) is a Poisson
process with intensity 1,. Similar to remark 11, the parameters 1,,1,,0;, and o;, need to be chosen
such that equation (5.3) holds. In table 5.3 the classification results are shown for increasing jump size
in X1(t) and increasing intensity in X2(t).

Parameters Classifier
A Ay o, | g;, | Random forest ANN
0.01 | 0.02 | 0.15| 0.1 | 0.603(0.024) | 0.658 (0.
0.01 | 0.041 | 0.2 | 0.1 | 0.719(0.021) | 0.830 (0.
0.01 | 0.082 | 0.3 | 0.1 | 0.853(0.019) | 0.913 (0.
0.01 | 0.103 | 0.4 | 0.1 | 0.844 (0.016) | 0.928 (0.

Table 5.3: Percentage of paths correctly classified between two jump diffusion processes. The intensities 1, 4, and volatilities
g,,0y, are chosen order to meet the demand in equation (5.3). The random forest classifier has been trained once on 10,000
paths per model and tested 50 times on test sets of 600 paths. The neural network has been trained once on 100,000 paths
per model and tested on the same 50 test sets of 600 paths per test. The results for random forest and the neural network
are presented as mean accuracy over the 50 test sets, followed by the sample standard deviation of the accuracy in between
brackets.

Figure 5.3 shows several paths for one of the classification problems in table 5.3 to give an impression.
Examples of sample paths from the other classification problems can be found in Appendix A.1.
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Path generated from the exponential jump diffusion process for various parameters
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Figure 5.3: Paths generated by the exponential jump diffusion process for various parameters.

Table 5.3 shows that the classification accuracy increases as the jump size increases in X1(t) and the
expected number of jumps per path increases in X2(t). This is in line with the expectation, as intuitively
one expects that a path with a larger number of small jumps is more easily distinguishable from a path
with higher (absolute) jump sizes. This result indicates that not only is the signature able to capture the
whether jumps of the type as introduced by the jump diffusion process are present, but is also able to
capture the intensity and size of the jumps. This means that the signature method can be used to give
information about the parameters 1 and g; when fitting an exponential jump diffusion process.

Where in the previous two settings we saw an equal performance of both classifiers, we see in table
5.3 that the neural network outperforms the random forest. Though the signature captures information
about the jump intensity and the jump size, the relation between these features and the output is likely
of such a non-linear type that cannot be captured by the random forest. The neural network, as a
consequence of the universal approximation theorem (see section 4.3), can capture any type of relation
between the input and the output. This explains the difference in observed performance between the
two classifiers.

5.2.2. Increasing drift classification accuracy

In practice, the drift parameter u plays a prominent role in the modelling of financial time series. Es-
pecially when the time series spans many years, selecting an accurate drift parameter can make a
big difference in the movement of the time series and thereby influences the inference obtained from
using the model. The classification accuracy of the proposed signature method provided in table 5.1 -
though very close to the theoretical maximum - might not present the user with sufficient confidence in
the selected drift parameter.

Increasing the accuracy within the setting of table 5.1 is barely possible, the theoretical maximum is
almost attained. However, equations (3.23) and (3.25) show the relation between the classification
accuracy and the parameters T, o and u, — ;. According to these equations, the probability of correct
classification increases with u, — i, (as table 5.1 empirically confirms), increases as VT increases and
increases as % increases. Though in practice both ¢ and T are determined by the observed time series
one wishes to classify, it is worth investigating to what extend they influence the classification accuracy
and which settings are ideal for obtaining a high classification accuracy when determining the drift pa-
rameter.

Influence of the time horizon

The purpose of this experiment is to visualise the relation between the time horizon T and the classifi-
cation accuracy when classifying between paths with different drifts. This experiment focuses on GBM
with different drifts, but the situation for ABM or jump diffusion processes with different drifts is very
similar. Let X1(t), X?(t) be two GBMs as described in equation (5.1) with equal volatility o; = ¢, = 0.2
and drifts p, # u, with u, > p,. Figure 5.4 shows the classification accuracy where Ay 1= p, — u;.
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Influence time horizon T on the classification accuracy
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Figure 5.4: Accuracy binary GBM classification between different drifts with fixed o = 0.2 using random forest.

Figure 5.4 shows that indeed the classification accuracy increases as T increases; there appears to be
a linear translation upwards as T increases. As T increases, the positive effect of this increase on the
accuracy grows smaller. Recall equation (3.25) and notice that for T — o we have

‘D(g(#z —ul)) -1,

q’(g(lﬁ - Mz)) -0,

because by assumption u, > u;. This results in

]P(CGBM‘ drift) - 1.

In other words, the probability of correct classification tendsto 1 as T — oo. Similarly, for T = 0 we have

) 1
GBM, drift =
P(C ) - >

A classification accuracy of L is the worst possible result, since it signifies that the classifier is no more
accurate than a simple flip of a coin.

It is up to the user of the signature method to determine what level of accuracy is required and whether
the time horizon of the observed path is sufficiently long to obtain this accuracy. The information in
figure 5.4 can be useful in this determination.

Influence of the volatility

Increasing the volatility strains the classification between paths with different drifts, as the increase in
‘noise’ makes it difficult to distinguish the signal. Let the setting be the same as in the previous para-
graph, but with fixed T = 10. Figure 5.5 demonstrates the influence of the volatility on the classification
accuracy.
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Accuracy

Figure 5.5: Accuracy binary GBM classification between different drifts with fixed T = 10 using random forest.

Figure 5.5 shows that the volatility has a profound influence on the classification accuracy. Especially
the combination of small Ay and high ¢ severely complicates the classifying process. It is again up to
the user to determine if the setting in the observed path results in a sufficient accuracy, where he or
she can make use of the information in figure 5.5.

5.2.3. Impact of transformations

Recall that in this thesis the choice is made to use signatures instead of log-signatures (see section
3.3.1) and to use the lead-lag transformation instead of no transformation (see section 3.3.4). This
section analyses what the effect is of these choices on the classification accuracy on the relevant clas-
sification problems discussed in section 5.2.1.

Signature vs. log-signature

As mentioned in section 3.3.1, there is no clear preference from the literature between the usage of
signatures or log-signatures, as both have their advantages and disadvantages. Log-signatures span
a linear space and capture paths in a more parsimonious way than signatures, but they do not form
an algebra whereas signatures do (see section 3.3.3). Therefore they cannot offer the guarantee that
the classification function can be uniformly closely be approximated by a combination of log-signature
elements, whereas this is possible for the signature elements.

In this section we empirically investigate the influence of using the signature or log-signature transfor-
mation on the classification accuracy of the three classification settings as described in section 5.2.1.
Both the signature and log-signature are truncated at L = 4 and are computed over the same lead-lag
transformation of the paths. For both settings, a random forest classifier is used for classification. The
first setting we observe is the classification between two GBMs with different parameters, as described
by equation (5.1). The results are shown in table 5.4.

Parameters Accuracy

H1 U2 0y | 02 S(X) log S(X)
01| 01 | 01|02 1.0(0.000) 1.0 (0.001)
01| 01 |01|0.3]| 1.0(0.000) 1.0 (0.001)
011] 01 |01|04]| 1.0(0.000) 1.0 (0.000)
0.1 0.15| 0.2 | 0.2 | 0.629 (0.025) | 0.605 (0.027)
0.110.20| 0.2 | 0.2 0.772 (0.021) | 0.755 (0.025)
0.1]1025|0.2|0.2] 0.877(0.013) | 0.876 (0.014)

Table 5.4: Percentage of paths correctly classified for two GBM processes with different parameters. The difference between
using signatures and using log-signatures is presented.

Table 5.4 shows that there is no significant difference in accuracy between using the signature or the
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log-signature transformation. This means that, despite the fact that the log-signature does not span
an algebra, its elements are descriptive enough to distinguish between GBMs with different drifts or
volatilities. This is consistent with the findings in section 3.3.4, which shows that the drift and volatility
are related to the second-order terms of both the signature and the log-signature.

The next analysed classification setting is the classification between paths with and without jumps (see
equation (5.2)). Table 5.5 shows the classification accuracy where the parameters are equal to the
parameters used in table 5.2 in order to generate paths with overall equal variance.

Parameters Accuracy
A 01 0y | S(X) logS(X)
0.01 | 0.2 | 0.175 | 0.1 | 0.853 (0.019) | 0.586 (0.022)
0.02 | 0.2 | 0.13 | 0.1 | 0.959 (0.011) | 0.737 (0.018)
0.03 | 0.2 | 0.08 | 0.1 | 0.977 (0.007) | 0.788 (0.017)
0.04 | 0.2 | 0.05 | 0.1 | 0.981 (0.008) | 0.796 (0.018)
0.05|0.2| 0.0 | 0.1]0.992(0.004) | 0.805 (0.021)

Table 5.5: Percentage of paths correctly classified for one GBM process and one exponential jump diffusion process. The
difference between using signatures and using log-signatures is presented.

Table 5.5 shows that there is a significant difference between using signatures or log-signatures; us-
ing signatures results in higher classification accuracies for all parameters observed. This implies
that jumps within the jump diffusion process are not completely captured by a combination of the log-
signature elements, whereas they are captured by the signature elements. This is a consequence
of the fact that log-signatures do not span an algebra. The results of the classification between two
exponential jump diffusion processes with the parameters as in table 5.3 are given in Appendix A.4
and show a similar result: using the signature transformation leads to higher accuracies than using the
log-signature transformation. This indicates that log-signatures are less suitable for handling classifica-
tion problems which include distinguishing between paths generated by the exponential jump diffusion
process.

Lead-lag transformation

In section the definition of the lead-lag transformation is given, which is often used in combination with
the signature transformation. In the start of this chapter we revealed that the lead-lag transformation
works best in the classification settings used in this thesis, but this section provides a deeper insight
in how the transformation affect the classification accuracy and the results show that the application of
the lead-lag transformation substantially improves the accuracy of the classification.

The signature can be expressed in terms of the path as shown in equations (3.7) and (3.9). Let again
X1(t), X?(t) follow two GBMSs with parameters as given in table 5.6. This table provides the classification
accuracy for when different transformations are applied.

Parameters Accuracy
e Us 01 0y No transformation | Lead-lag transformation
011 0.1 | 0.1]0.105 0.789 (0.019) 0.800 (0.026)
01| 01 |01 0.11 0.809 (0.021) 0.995 (0.015)

01] 01 01| 02 0.910 (0.014) 1.0 (0.000)
01]01 01| 03 0.953 (0.012) 1.0 (0.000)
01] 01 |01]| 04 0.979 (0.006) 1.0 (0.000)

01015 |02 02 0.612 (0.023) 0.629 (0.025)
0.1]020|02]| 02 0.766 (0.026) 0.772 (0.021)
0102502 02 0.877 (0.014) 0.877 (0.013)

Table 5.6: Percentage of paths correctly classified for several different transformations, using a random forest.

The influence of the lead-lag transformation on the other classification problems discussed in section
5.2.1 is similar and the results are added in Appendix A.2. As mentioned in section 3.3.4, the lead-lag
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transformation allows the signature to capture the volatility parameter explicitly. Table 5.6 indeed shows
that the classification accuracy is higher when the lead-lag transformation is used when classifying
between processes with different volatilities. The classification accuracy when classifying between
different drifts only depends on the first and last value of the path (see equation (3.15)) and since these
values are equal for the case of the lead-lag transformation as for applying no transformation, these
results remain (almost) equal. Since the volatility is an important parameter, also in other processes like
the exponential jump diffusion process, this transformation is recommended when making inferences
about observed paths.

5.2.4. Level of truncation

The level of truncation L is an important parameter, since it essentially controls the amount of ‘informa-
tion’ that is captured from an observed path. From an information perspective, selecting L as high as
possible is beneficial, since theoretically more information should lead to a higher classification accu-
racy. However, choosing L too high leads to practical issues, as the length of the signature sequence
increases rapidly when one level higher is taken, resulting in a high dimensional input which can reduce
the classification accuracy (also known as the ‘curse of dimensionality’). In this section we consider
the influence of the level of truncation on the classification accuracy.

The optimal level of truncation differs per classification setting. For example, we know from section
3.3.4 that SM(X), S@ (X) relate to the drift and S*2(X), SEV(X) to the volatility when the lead-lag
transformation is applied. This means that when we are classifying between GBMs with different drifts
or different volatilities, truncating at L = 2 will likely already provide enough information to distinguish
between the processes. Let X1(t), X?(t) described in equation (5.1) and choose the same parameters
as in table 5.1. Table 5.7 shows the influence of the level of truncation on the classification between
GBMs with different drifts or different volatilities.

Parameters Accuracy

Uq Us o, | 0Oy L=2 L= L=4 L=5
0.1| 0.1 | 0.1 0.2 0.99 (0.003) | 1.0( ) 1.0 (0.000) 1.0 (0.000)
0.1| 0.1 | 0.1 |0.3]0.99 (0.001) | 1.0(0.001) 1.0 (0.000) 1.0 (0.000)
01| 01 |01|04]| 1.0(0.001) 1.0 (0.000) 1.0 (0.000) 1.0 (0.000)
0.1]0.15| 0.2 | 0.2 | 0.597 (0.028) | 0.617 (0.023) | 0.629 (0.025) | 0.630 (0.021)
0.1]0.20 | 0.2 | 0.2 | 0.755(0.025) | 0.763 (0.021) | 0.772 (0.021) | 0.774 (0.022)
0.1]0.25|0.2| 0.2 0.860(0.017) | 0.876 (0.018) | 0.877 (0.013) | 0.877 (0.017)

Table 5.7: Percentage of paths correctly classified for two GBM processes with different parameters where the signature is
truncated at various levels.The results were generated using a random forest. PCA was applied to reduce the ‘curse of dimen-
sionality’.

Indeed, table 5.7 shows that the classification accuracy only slightly increases as the level of trunca-
tion increases when classifying between different drifts and remains constant when classifying between
different volatilities. However, the computational cost increases significantly as the level of truncation
increases. Since S(X)L=% € R?“"'~1 we have that S(X)=2 € R, S(X)L=3 € R!5, S(X)!=* € R3! and
S(X)E=> € R®3. Therefore, for this specific setting, the truncation level can be chosen lower than the
standard level L = 4 used in this thesis.

The situation is different when models containing jumps are included. Table 5.8 shows the classification
accuracy when classifying between a GBM process and an exponential jump diffusion process, where
the parameters are equal to the parameters in table 5.2.
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Parameters Accuracy
A 04 0y J L=2 L=3 L=4 L=5
0.01 | 0.2 | 0.175 | 0.1 | 0.512(0.025) | 0.746 (0.019) | 0.853 (0.019) | 0.890 (0.015)
0.02 | 02| 013 | 0.1 | 0.534 (0.025) | 0.879 (0.016) | 0.959 (0.011) | 0.987 (0.005)
0.03 | 0.2 | 0.08 | 0.1 | 0.545(0.021) | 0.832(0.017) | 0.977 (0.007) | 0.983 (0.003)
0.04 | 0.2 | 0.05 | 0.1 | 0.540(0.018) | 0.942 (0.012) | 0.981 (0.008) | 0.990 (0.005)
0.05 02| 0.0 |0.1]0.561(0.022) | 0.815(0.013) | 0.992 (0.004) | 0.983 (0.005)

Table 5.8: Percentage of paths correctly classified for one GBM process and one jump diffusion process where the signature
is truncated at different levels. The results were generated using a random forest and PCA was applied to reduce the ‘curse of
dimensionality’.

Table 5.8 indeed shows that the classification accuracy increases as L increases. This is consistent
with our expectation, as truncating the signature at a higher level includes more information about
the process. The table also shows that truncating the signature at L = 2 reduces the classification
accuracies. This is coherent with the analysis of the signature elements of S(X)L=2 in section 3.3.4,
which shows that the elements are related to the drift and volatility, but contain no information about
possible jumps. This means that we expect to be unable to distinguish between the two processes,
resulting in a classification accuracy around 0.5. We see that the accuracy increases for L = 3 and
L = 4, indicating that jumps in paths are captured by a combination of 3" and 4™ order elements of
the signature sequence. Unfortunately, due to the high collinearity of the features (see section 4.1), it
is not possible to identify these signature elements. Furthermore, table 5.8 shows using signatures of
L = 5 does not increase the accuracy significantly, so it suffices to use signatures truncated at L = 4 in
this specific classification setting.

Remark 12. Though table 5.8 indeed shows accuracies around 0.5 for L = 2, it also shows that the
classification accuracy increases slightly as the jump intensity A increases. This is likely a result of the
choice of parameters in order to satisfy equation (5.3). The parameters are chosen in such a way that
(5.3) holds in theory, but in practice 10,000 paths are generated, meaning that the sample variance can
always differ a little bit.

Distinguishing between two exponential jump diffusion processes with different jump intensities and
jump sizes (see equation (5.4)) shows the same type of results as listed in table 5.8. These results are
included in Appendix A.3.

5.2.5. Influence of the number of time steps on signature

In this thesis, paths with 1000 time steps are used when computing the signature. This paragraph
illustrates the effect of the number of time steps on the value of the signature. We generate one GBM
path (see equation (2.2) ) of 1,000,000 time steps with 4 = 0.1, = 0.1 and all other parameters as
described in 5.1. The number of time steps is varied by sub-sampling from the original path in order to
make a valid comparison. E.g. for a path of 10 time steps, the 15!, 10,001, 20,001t etc. time step of
the original path are taken. Figure 5.6 shows the paths and its sub-sampled path.
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Path sampled for various number of time steps
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Figure 5.6: A path plotted with 10 and 1,000,000 time steps.

Recall that the signature is a vector of elements as described in example 3.1. Table 5.9 lists several of
these elements of the path represented in figure 5.6. The total signature truncated at level 3 is given
in Appendix A.5.

N S(l,Z) 5(2,1) 5(1,1,2) 5(2,1,1)

10 7447 | 4283 | 313596 | 142 298
100 7289 | 4440 | 310 540 | 156 233
1000 6958 | 4771 | 281 972 | 163 579
10 000 7020 | 4709 | 285124 | 160 001
100 000 7046 | 4683 | 286 936 | 158 984
1000 000 | 7041 | 4668 | 286 595 | 159 195

Table 5.9: Value of the signature for N number of time steps, rounded at whole numbers.

From the table in Appendix A.5 a number of interesting observations can be made:

o SM,52) 511 5(22) 511D gnd 5§(222) stay the same for every N. Recall from section 3.3.4 that
SM, 52 are defined as Xy — X; which remain equal for every value of N since we are sub-

sampling from the same sequence. Additionally, S(D = %(5(1))2, §22) = ~(§@))2 and similarly
1,11) — L (D)3 c(222) — 1213
s(111) — 3!(5( )3, 853222 = 3!(5( N3,

1
2

» The other elements of the signature sequence get better approximated as the time step de-
creases, which is consistent with what we would expect.

Table 5.10 gives more information about the convergence of the elements listed in table 5.9 by looking at

the decrease in increments percentage. For this purpose, write SO (N) with I € {(1,2),(2,1),(1,1,2),(2,1,1)}

as a function of N and define d as the percentage difference between two consecutive values , i.e.

Table 5.10 lists the percentage difference computed over the values in table 5.9.

ISO(N) = SO(N/10)]|
SO (N/10) '

d(s®) :=

100.
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N d(S(l'Z)) d(5(2,1)) d(5(1,1,2)) d(5(2,1,1))

10 - - - -

100 2.0% 3.7% 0.97% 9.8%

1000 4.5% 7.4% 9.2% 4.7%

10,000 0.88% 1.2% 1.1% 2.2%

100,000 0.37% 0.55% 0.64% 0.63%

1,000,000 | 0.07% 0.03% 0.11% 0.13%

Table 5.10: Percentage difference in signature element for various numbers of time steps.

Table 5.10 shows that the difference between the signature elements decreases as N increases and
that the signature gets better approximated. Based on table 5.10 either N = 10,000 or N = 100,000
would give a good numerical approximation of the signature.

However, in this thesis the choice is made to use paths of 1000 time steps. There are two main reasons
for this choice:

1. Computational power: generating paths, their lead-lag transformation and their signature trans-
formation is already quite a costly process. Since especially the neural network needs about
100,000 - 200,000 samples in order to be trained properly, generating the signatures becomes
exceedingly computationally expensive as N increases.

2. Classification accuracy: the classification accuracy of the signature method is very close to
the theoretical maximum classification accuracy for those cases where the theoretical maximum
could be computed (see section 3.5). Increasing N leads to a more accurate numerical approx-
imation of the actual signature, but since the accuracy for N = 1000 already almost attains the
theoretical upper bound, increasing N in hopes of a higher classification accuracy is futile.

5.3. Multi-class classification

In the previous section, we focused on binary classification and how certain changes in the classifi-
cation setting influence the classification accuracy. However, in practice it is very useful to be able
to distinguish between multiple stochastic processes at the same time. In this section, we extend the
binary classification settings as observed in the previous setting to a multi-class classification setting.

5.3.1. GBM with different parameters

Section 5.2.1 showed the accuracy for the classification between two GBM processes with several
different parameter settings, so M = {M(6'),M(6%)} with 8 = (u,0). In this section we analyse
how the classification accuracy is impacted when p parameters settings are analysed, i.e. M =
{M(6Y), ..., M(6P)}.

Different volatility

The first setting analysed is GBM with constant drift = 0.1 and different volatility ¢ € {0.05, 0.1, 0.2, 0.3, 0.4}.
Where for binary classification the overall classification accuracy gave a good representation of the fit

of the machine learning model, the classification accuracy for multi-class classification is split per class
and listed in table 5.11.

o Accuracy per class
0.05 1.0

0.1 1.0

0.2 0.999

0.3 0.951

0.4 0.964
Overall 0.983

Table 5.11: Percentage of paths correctly classified for five GBMs with equal drift © = 0.1 and different volatilities. The classifi-
cation accuracy is split per class. This result was generated with a neural network.
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Table 5.11 shows high classification accuracies, indicating that using the signature method for calibra-
tion of the volatility parameter in GBM is feasible. This is consistent with the results obtained for binary
classification, which also showed high classification accuracies for GBMs with different volatilities. Ta-
ble 5.11 also illustrates that samples with ¢ = 0.3 or ¢ = 0.4 are slightly fewer times correctly classified,
though the difference in accuracy is small.

Itis relevant to further analyse the misclassified samples. If a sample is misclassified, it is interesting to
know whether it was misclassified to a class with a volatility close to the actual volatility of the sample or
not. For this purpose, we use the confusion matrix. The confusion matrix shows per class the number
of samples classified to that class and their actual class. As mentioned in section 5.1, from every model
100,000 paths are generated of which 30% are set aside to use for testing, meaning that every class
contains 30,000 testing samples. Figure 5.7 shows the confusion matrix of the results listed in table
5.11.

Confusion matrix for several GBMs with i = 0.1 and different o. soono

M 30000 0
- 25000

- 20000

0 - 15000

Actual o
0

- 10000
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@ - 0 0 1 1094 28905

I}‘Z
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Figure 5.7: Confusion matrix for several GBMs with equal drift © = 0.1 and different volatilities, using a neural network.

Figure 5.7 shows that the misclassified samples are indeed samples with ¢ € {0.2,0.3, 0.4} as indicated
in table 5.11, but it also shows how they are misclassified. The diagonal of the matrix represents the
number of correctly classified samples per class, off-diagonal elements of the matrix represent misclas-
sified samples. Since there are 30,000 samples per class, the sum of every row equals 30,000. The
confusion matrix shows that the samples that are misclassified are indeed classified to a class with a
value of ¢ close to the actual value of a.

Different drift

The next problem analysed is GBM with constant volatility ¢ = 0.2, but different drift 4 € {0.05, 0.1, 0.15, 0.2, 0.25}.
The results for binary classification in table 5.1 show that classification between paths with different

drifts is challenging, since it is not always possible to distinguish between paths generated from differ-

ent models (see section 3.5). This same concept also holds for multi-class classification, of which the

results are presented in table 5.12.
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u Accuracy per class
0.05 0.672
0.10 0.291
0.15 0.275
0.20 0.321
0.25 0.668
Overall 0.445

Table 5.12: Percentage of paths correctly classified for five GBMs with equal volatility o = 0.2 and different drifts. The classifi-
cation accuracy is split per class. This result was generated with a neural network.

Table 5.12 shows an overall classification accuracy of 44.5%, significantly lower than the overall clas-
sification for the classification between different volatilities, which is in line with the expectation. The
classification accuracy of the first and last class are significantly higher. To further analyse this, the
confusion matrix is given in figure 5.8.
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Figure 5.8: Confusion matrix for several GBMs with equal volatility o = 0.2 and different drifts, using a neural network.

The confusion matrix shows how the samples are classified, notice again that all rows sum up to 30,000.
Though the classification accuracy is low, the confusion matrix shows that when samples are misclas-
sified, they are classified to classes close to their actual class. To give more insight in this, figure 5.9
shows a histogram representation of the rows of the confusion matrix in figure 5.8.
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Classification for u=0.15 Classification for u=0.20
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Figure 5.9: Histogram per class indicating the predicted class of the samples. The red value on the x-axis denotes the actual
value of the samples.

Figure 5.9 indeed shows that misclassified samples are classified to a class close to the actual class.
Especially for u = 0.15 we see that the misclassified samples are symmetrically distributed around the
true class. For the other classes, especially u = 0.1 and 4 = 0.2, we see that this is not the case: the
misclassified samples are not symmetrically distributed around the true class. The reason for this is the
limited number of classes. For example for the class with u = 0.2, there is only one class with a higher
drift. Therefore the samples which according to the neural network have u > 0.2 are all classified in the
class with u = 0.25, since there is no class available with a higher drift. This explains the asymmetric
shape of the histograms for classes in the lower or higher part of the range in drifts.

Different drift and different volatility
For practical purposes it is also interesting to observe how the classification accuracy is impacted when
both u and ¢ are different. Since in this situation the class labels can no longer be represented by u or
o, we set the class labels as indicated below. Recall that 8 = (y, 7).

« 91:=(0.1,0.2)

+ 62 :=(0.15,0.2)

« 63 :=(0.2,0.2)

s 9*:=(0.25,0.2)

+ 65 :=(0.1,0.1)

« 0°:=(0.1,0.3)

. 67 :=(0.1,0.4)
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Notice that 8! : 8% contain different drifts and 8° : 87 contain different volatility. Classification between
classes 81 : 87 results in the accuracies as listed in table 5.13.

0 Accuracy per class

o1 0.664

62 0.291

63 0.275

0* 0.352

6> 1.0

6° 0.963

07 0.952
Overall 0.642

Table 5.13: Percentage of paths correctly classified for five GBMs with different drift and volatility. The classification accuracy is
split per class. This result was generated with a neural network.

The confusion matrix in figure 5.10 gives more insight in the classification accuracies listed in table

5.13.

Confusion matrix for several GBMs with 8 = (u, 0).

g 19920 6505

&

w - 10580 8716

% - 3701 6513
1]
wn
ol
u
& 789 2708
3
=1
[}
<
£ 0 0
kS 19 10
@ 0 0
o &

3015

7811

10548

550 0 10
2878 0 15
9210 0 28

8083 18395 0 25

0

26

5

&
Predicted class

0 30000 0

- 30000

- 25000

- 20000

0 -15000

0
-10000

85 0 28891 969
-5000

B8 0 1440 28556

& &

&

Figure 5.10: Confusion matrix for classification between several GBMs with different drift and different volatility, generated using

a neural network.

Recall that 8 : 8* are classes with different drifts. The confusion matrix again shows that distinguishing
between drifts remains difficult, but it also shows that again the misclassified samples are classified to
a class close to their actual class, and it also shows that the classification accuracy of samples with
different volatilities remains high, it is not impacted by the inclusion of samples with different drifts.






Conclusion and discussion

In this chapter a summary is given of the signature-based method proposed in this thesis, followed by
a discussion of the implications and limitations of the method. This thesis concludes with a section on
topics for further research.

6.1. Concluding summary

This research aimed to identify the stochastic process that has most likely generated an observed fi-
nancial time series wp = {D¢,, D,, ..., D¢, } out of a set of stochastic models M = (M, (6Y), ..., M (6%)}
where M; denotes the stochastic model and 8% denotes the parameters. Though methods are available
to achieve this when M; are assumed to be discrete-time stochastic processes, these methods cannot
easily be extended to continuous time stochastic processes. The reason for this is that the time series
- or paths - generated by these models are elements of the path space, which is infinite-dimensional
and non-locally compact, making classification based on the paths directly infeasible.

In this thesis a signature-based classification method is proposed. The signature transformation trans-
forms the paths to the signature space. A signature of a path is a infinite-length sequence, where every
element of this sequence is an iterated integral over the path. In this thesis it is shown how these iter-
ated integrals are related to well-known properties of paths like the drift and the volatility. Higher order
elements of the signature are related to the skewness, kurtosis etc. In general, the most relevant sta-
tistical properties are located at the start of the signature sequence and the full infinite-length signature
is known to capture all relevant information about a path. This thesis affirms the proof given in [16] that
signatures span an algebra and that therefore any function on the signature space can be uniformly
closely approximated through a combination of the elements of the signature. This means that the
elements of the signature are suitable to use as input in machine learning methods for classification.
In practice the signature is truncated in order to obtain a finite sequence.

Three stochastic processes were chosen to distinguish between: Arithmetic Brownian Motion (ABM),
Geometric Brownian Motion (GBM) and the exponential jump diffusion process. ABM and GBM have
analytically available density functions, which are used in this thesis to compute the maximum pos-
sible classification accuracy when distinguishing between models with different drifts or models with
different volatilities. Two machine learning methods are used to classify between different stochastic
processes by training on their signatures: random forest and neural network. Random forest is used
in combination with PCA to reduce the dimensionality and the multicollinearity of the signatures. Itis a
fast method and requires few training samples. The neural network is trained directly on the signatures.
It is a slow method and requires many training samples, but equals or outperforms the random forest
for every classification setting in this thesis.

The proposed signature-based classification method is tested in binary and multi-class classification.
In binary classification this research illustrated that classification between ABM or GBM with different
parameters using the signature-based method results in classification accuracies which are very close
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to the theoretical maximum classification accuracy. This research showed that classification between
paths with different volatilities lead to higher accuracies than classification between paths with different
drifts and analysed how the classification accuracy depends on other parameters like the time horizon
and the number of steps of the path. Furthermore, using the proposed method allowed for classification
between models with and without jumps. This indicates that signatures are able to effectively capture
information about jumps in paths. The effect of various choices of the classification setting were exam-
ined, like the impact of the level of truncation on the signature and the number of time steps of the path
on the classification accuracy. Most notably, the research revealed that increasing the time horizon or
decreasing the volatility could increase the classification accuracy when attempting to classify between
paths with different drift. Multi-class classification was conducted on several GBM models with different
parameters. The experiments indicated that the signature-based method is able to classify between
paths with different volatilities, but the classification accuracies for paths with different drifts declined.

6.2. Discussion

This section reflects on the contribution of this thesis and discusses the results obtained. The signature
method is a model agnostic method, indicating that the method can be used to distinguish between any
type of stochastic process from which generated samples are available. Itis therefore a flexible method
and can be used in a wide range of practical applications in finance, but also in other application areas.
However, we are aware that the research has limitations, which we discuss below.

The effectiveness of the method is limited by the similarity of the models between which one attempts
to classify. Using the proposed method to distinguish between highly similar models can result in low
accuracy scores. We provided examples of this limitation by experimenting with classification between
GBMs with different drift. Deciding which stochastic process is most suitable is more difficult in these
situations.

Additionally, efficiency can become problematic as the signatures on which the classifier is trained
need to be generated. This is a slow process, because it involves many steps like generating the path,
computing the lead-lag transformation and computing the signature over the lead-lag transformation.
Since each new stochastic process requires a fixed number of signatures to be generated for training,
including more of these processes results in the need for more signatures. This process can be paral-
lelised in order to speed up the process, but nevertheless it is making the classification time-consuming.
Therefore this method is not recommended for situations were computational resources are scarce.

Furthermore, the hyper-parameters of the classifiers used in this thesis have been calibrated to work
well on average on the classification problems discussed. Though the performance of both classifiers is
observed to be stable over these classification problems, there is no guarantee that the chosen hyper-
parameters generalise well to every individual classification problem. Calibrating the hyper-parameters
per individual classification problem could potentially increase the classification accuracy slightly.

Lastly, the signatures used for training the classifier are computed over discrete paths that are con-
nected piece-wise linearly. This means that the computed signatures are approximations of the true
signatures of continuous paths. A consequence of this is that generation of paths with long time hori-
zons and few time steps might lead to inaccurate approximations of the true signature.

6.3. Topics for further research

In this thesis the focus is put on the stochastic processes ABM, GBM and the exponential jump dif-
fusion process, chosen because of their available analytical results and their popularity in practice.
An interesting topic for further research would be to analyse the effectiveness of the signature-based
classification methods on other type of stochastic processes. Examples are to classify between the
Cox-Ingersoll-Ross (CIR) process and the Ornstein-Uhlenback (OU) process. Both are processes
that are mean-reversion processes, i.e. processes that tend to reverse back to the mean. Itis interest-
ing to include these processes in M, in order to analyse whether the signature can effectively capture
the mean-reversion property of the paths. Another classification problem of interest is classification



6.3. Topics for further research 71

between stochastic volatility models. In the models introduced in this thesis, the volatility coefficient is
assumed to be a constant. However, in practice many local volatility models exist, where the volatility is
assumed to be a function depending on time, or even is assumed to follow a stochastic process. Since
the results in this research indicate that the signature-based method is able to distinguish well between
models with different (constant) volatility coefficients, it is worthwhile to analyse the performance of the
signature-based classification methods in other models with non-constant volatility.

The signature is known to capture all statistical properties of a path, but the interpretation of the ele-
ments of the signature is not known explicitly. It is known which elements capture the drift and volatility,
but especially the higher order terms of the signature are still unexplained. As shown in this thesis, the
signature is able to capture the presence and size of jumps, as we are able to distinguish between
stochastic processes with different jump sizes and intensities and we are able to classify between
stochastic processes with and without jumps. Identifying which signature elements are linked to the
jumps would help the interpretation of the signature elements. However, as mentioned in this thesis,
this is complicated by the multi-collinearity of the signature elements. Further research in identifying
which signature elements are capturing specific properties despite this multi-collinearity will be benificial
for the understanding of the signature transformation.
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Appendix

A.1. Paths sampled from various processes
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Figure A.1: Paths generated from a GBM for various parameters
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Paths generated from GEM and the exponential jump diffusion process  Paths generated from GBM and the exponential jump diffusion process
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Figure A.2: Paths generated from a GBM (blue) and the exponential jump diffusion process (red).
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Path generated from the exponential jump diffusion process for various parameters
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Figure A.3: Paths generated from the exponential jump diffusion process for various parameters.

A.2. Impact lead-lag transformation

Parameters Classifier
A 01 0y g; | No transformation | Lead-lag transformation
0.01 | 0.2 | 0.175 | 0.1 0.504 (0.027) 0.853 (0.019)
0.02 02| 013 | 0.1 0.517 (0.030) 0.959 (0.011)
0.03 | 0.2 | 0.08 | 0.1 0.520 (0.025) 0.977 (0.007)
0.04 | 0.2 | 0.05 | 0.1 0.515 (0.023) 0.981 (0.008)
005|02| 00 |01 0.562 (0.024) 0.992 (0.004)

Table A.1: Percentage of paths correctly classified for one GBM process and one jump diffusion process, using a random forest.
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Parameters Classifier
A Ay o5, | gj, | No transformation | Lead-lag transformation
0.01 | 0.02 | 0.15]| 0.1 0.504 (0.027) 0.603 (0.024)
0.01 | 0.041 | 0.2 | 01 0.503 (0.025) 0.719 (0.021)
0.01 | 0.082 | 0.3 | 0.1 0.521 (0.028) 0.853 (0.019)
0.01 | 0.103 | 0.4 | 01 0.566 (0.022) 0.844 (0.016)

Table A.2: Percentage of paths correctly classified between two jump diffusion processes, using a random forest.

A.3. Level of truncation

Parameters Accuracy
A Ay o, | g L=2 L=3 L=4 L=5
0.01 | 0.02 | 0.15 | 0.1 | 0.505 (0.029) | 0.554 (0.030) | 0.603 (0.024) | 0.592 (0.019)
0.01 | 0.041 | 0.2 | 0.1 | 0.515(0.019) | 0.644 (0.028) | 0.719 (0.021) | 0.763 (0.023)
0.01 | 0.082 | 0.3 | 0.1 | 0.514 (0.026) | 0.761 (0.020) | 0.853 (0.019) | 0.843 (0.014)
0.01 | 0.103 | 0.4 | 0.1 | 0.523 (0.021) | 0.727 (0.023) | 0.844 (0.016) | 0.858 (0.012)

Table A.3: Percentage of paths correctly classified between two jump diffusion processes where the signature is truncated at
different levels. The results were generated using a random forest and PCA was applied to reduce the ‘curse of dimensionality’.

A.4. Signature vs.

log-signature
Parameters Accuracy
Al /12 Ujl 0_12 S(X) IOgS(X)
0.01 | 0.02 | 0.15 | 0.1 | 0.603 (0.024) | 0.522 (0.021)
0.01 | 0.041 | 0.2 | 0.1 | 0.719 (0.021) | 0.595 (0.027)
0.01 | 0.082 | 0.3 | 0.1 | 0.853(0.019) | 0.715(0.019)
0.01 | 0.103 | 0.4 | 0.1 | 0.844 (0.016) | 0.771 (0.022)

Table A.4: Percentage of paths correctly classified between two jump diffusion processes. The difference between using signa-
tures and using log-signatures is presented.
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A.5. Number of steps
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Table A.5: Value of the signature for various number of time steps, rounded at whole numbers.
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