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Abstract: Cliff coasts are dynamic environments that can retreat very quickly. However, the
short-term changes and factors contributing to cliff coast erosion have not received as much attention
as dune coasts. In this study, three soft-cliff systems in the southern Baltic Sea were monitored with
the use of terrestrial laser scanner technology over a period of almost two years to generate a time
series of thirteen topographic surveys. Digital elevation models constructed for those surveys allowed
the extraction of several geomorphological indicators describing coastal dynamics. Combined with
observational and modeled datasets on hydrological and meteorological conditions, descriptive
and statistical analyses were performed to evaluate cliff coast erosion. A new statistical model of
short-term cliff erosion was developed by using a non-parametric Bayesian network approach. The
results revealed the complexity and diversity of the physical processes influencing both beach and
cliff erosion. Wind, waves, sea levels, and precipitation were shown to have different impacts on each
part of the coastal profile. At each level, different indicators were useful for describing the conditional
dependency between storm conditions and erosion. These results are an important step toward a
predictive model of cliff erosion.

Keywords: cliff coastlines; time-series analysis; terrestrial laser scanner; southern Baltic Sea;
non-parametric Bayesian network

1. Introduction

Coastal areas are highly susceptible to changes in hydrometeorological conditions, as they
constitute the boundary between land and sea. The geomorphological resilience of a particular
segment of coast depends on several variables including storm intensity and topographical properties,
because most changes appear during severe storms or as an effect of a series of subsequent storms [1].

Soft cliff coasts experience storms strongly, and they can retreat relatively fast. However, most
monitoring systems, analyses, and models have been implemented along dune coasts [2–6], largely
because of the technical difficulties in registering the morphological changes on cliff coasts. Despite
such difficulties, mainly connected with accessibility of high cliffs, the factors influencing cliff erosion
have been investigated through quantitative numerical methods. These approaches have varied from
simple correlation matrices [7] to stochastic simulations [8] and from local to continental scales [9].
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In recent years, Bayesian networks (BNs) have gained popularity as probabilistic tools for both
descriptive and predictive applications [10]. However, the available studies using BNs have only
addressed long-term shoreline changes [11–13], of which only Hapke and Plant [11] carried out an
analysis limited strictly to cliff coasts. Furthermore, all applications have been based on discrete
BNs, which generally dominate coastal hazard analyses [14]. Short-term cliff erosion has not been
investigated with BNs in either discrete or continuous mode.

This study aims to propose reproducible solutions for analyzing the relationship between the
erosion rate on coastal cliffs and selected variables. For this purpose, obtaining very precise topographic
data was paramount [15]. The light detection and ranging (LiDAR) surveys enabled gathering datasets
that were used to analyze erosion speed and its relationship to various elements that influence the
geosystem of coastal cliff zones. The geomorphological analysis was based on several commonly
considered indicators: sediment budgets [16], mean sea level contour [5,17], cliff base line [1,18], and
cliff top line [19].

All indicators were monitored on three study sites in the southern Baltic Sea coast for a period of
1.5 years, resulting in a time series of 13 LiDAR datasets. A preliminary descriptive analysis of these
results was presented by Terefenko et al. [1], but this preliminary analysis was based on only one test
site and on the first five topographic surveys. In the present study, the analysis has been extended in
time and space, and an original statistical model of the geomorphological response of a beach and cliff
system has been developed using a non-parametric, continuous Bayesian network. This methodology
will provide a foundation for creating a probabilistic solution in the prediction of unconsolidated
coastal cliffs erosion.

2. Materials and Methods

2.1. Study Sites

The cliff retreat analysis was performed for a non-tidal basin of the Baltic Sea (Figure 1). The
Baltic Sea is dominated by winds from southwest and west directions. The prevailing directions in
particular seasons are as follows: spring—east and northeast; summer—southwest and northwest;
autumn—northwest; winter—north, south, southwest, and northwest. The highest strength of wind
(> 6◦B) reaches from November to March [20].

In recent decades, the highest absolute amplitude of sea level changes in the study area was
recorded during year 1984 (2.79 m), whereas the most extreme storm surge occurred in November
1995 (+1.61 m above mean) [21]. However, extreme value analysis have shown that a 100-year storm
surge in the western part of the Polish coast could reach +1.71 m above mean, and a 500-year event
would exceed 2 m [22].

The study area covered three 500 m long cliff sites that have different geomorphological
configurations. The first two research areas were located in Poland near two popular seaside resorts,
Międzyzdroje (Wolin Island, Biała Góra cliffs) and Wicie, representing similar northwestern coastal
exposures but with different geomorphological contexts. The third area was located in Germany
next to the Bansin resort (Usedom Island, Langer Berg cliffs) and was characterized not only by
different exposure (northeastern), but also by a much wider beach protecting the cliffs. Detailed in situ
investigations were not performed for any of the analyzed cliff test sites.

The cliff formations selected to represent the effects of marine abrasion have long been subjects of
widespread research interest. Moraine hills built of glacial and glaciofluvial deposits, till, and eolian
deposition predominate the relief of these areas in which the landscape varies greatly from beaches
to its characteristic element: high cliffs. This region is among the stormiest in Europe, experiencing
high surges and strong winds [23]. The erosion rate has been frequently debated, as different rates are
measured using a variety of techniques, either directly in the field (both with traditional and modern
measurement techniques) or by analyzing historical maps [24].
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Figure 1. Location map showing the study sites, tide gauges, and grid data points.

The cliff coast of the Usedom Island, with the highest cliff (ca. 58 m) at this section named
Streckelsberg, was subjected to largest coastal erosion in the area, endangering the town of Koserow,
located partially on its stoss side. Generally Usedam Island cliff has been protected since the end of the
19th Century [25] by a cliff rampart, strengthened by a triple wall, groynes, three wave-breakers, and
sand nourishment in modern times. For the study need a shorter, but unprotected by human made
structures, an active cliff section of similar height (ca. 54 m) was chosen. This cliff, named Langer Berg,
retreated ca. 100 m in 300 years [26] and is leaded by a sandy beach up to 30 meters wide.

As storms, wind, precipitation, and the sun contribute to the cliffs’ erosion the Wolin cliffs (ca.
90 m high in heights parts and ca. 57 m high in investigation site), the cliffs retreat approximately
80 cm per year, although the exact erosion rate is a subject that has been discussed for years [1,16,24].
The front of the high cliffs is protected by a series of flat concrete blocks, reaching up on average up
to several meters, mostly covered by mix of sand and gravels beach, dogged deep into the sand and
uncovered occasionally by strong storms [1].

The Wicie study site represents a slightly different geomorphological context. The beach in front
of the cliffs is covered by mix of sand and gravels similarly to Międzyzdroje test site, but its width
varies from less than 1 m to up to 20 m, depending of the analyzed section. The cliff face itself is
much lower in highest sections, reaching only 11 m. The investigated area is protected by a series of
manmade groins. No detailed geomorphological or geological investigations have been performed on
this section of the Polish coast.

2.2. Data

The data used in this study covered a survey timeline from November 2016 to June 2018.
Thirty-nine topographic surveys (thirteen for each study site) were conducted with terrestrial laser
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scanner (TLS) technology. The significant advantage of TLS data collection compared to traditional
techniques or airborne laser scanning is related to time limitations. Coasts are extremely dynamic
environments. To track cliff changes and identify the processes of its modifications, data must be
collected frequently over consistent time intervals [27]. Data collection using classic field methods
is a long and laborious process, which in the case of numerous and extensive research areas may
not provide the required results. The implemented laser-based survey technique allowed for rapid
and accurate collection of large amounts of topographic data. During the last decade, TLS has been
successfully applied to topographic surveys and to the monitoring of coastal processes [28–30]. In this
study, highly accurate measurements of coastal changes were performed with the use of Riegl VZ-400
equipment. Each of the 500 m long test sites were scanned from 10 spots, acquiring 90 to 100 points
per square meter, with an estimated vertical accuracy of more than 5 mm. A list of all surveys and the
resulting analytical periods is included in Supplementary Information 1 (Table S1).

The hydrometeorological data used in this study combined both observational and modeled
datasets (Table 1). Wave parameters from the high-resolution operational WAve Model (WAM) were
validated for the Baltic Sea in the framework of the Hindcast of dynamic processes of the ocean and
coastal areas of Europe (HIPOCAS) project [31]. One minor gap lasting 6–7 h for two WAM points
corresponding to the Bansin and Międzyzdroje cliffs was filled by interpolation. Three larger gaps in
the wave and wind parameters for all locations, lasting a total of 36 days (within December 2016, June
2017, and February 2018), were filled using the fifth major global climate reanalysis dataset produced
by the European Center for Medium-Range Weather Forecasts (ERA5) [32]. As the resolution of the
ERA5 reanalysis model, which represents wave conditions further from the coast, is far coarser than
the WAM data, the ERA5 values were corrected by a constant factor for each location, variable, and
data gap. The constant factor was computed by dividing the average WAM values for the available
days within each month during which a gap occurred by the average ERA5 reanalysis values.

Table 1. Sources of hydromet variables of interest by study area and so eorological data. Locations of
tide gauges and grid data points are shown in Figure 1.

Variable Source Provider Resolution

Wave parameters WAM wave model hindcast
Interdisciplinary Centre for

Mathematical and Computational
Modelling of Warsaw University (ICM)

hourly, 1/12◦

Wave parameters ERA5 wave reanalysis European Center for Medium-Range
Weather Forecasts (ECMWF) hourly, 0.36◦

Sea level Observations at Koserow,
Świnoujście and Darłowo

German Federal Institute of Hydrology
(BfG), Institute of Meteorology and

Water Management (IMGW)
hourly, at tide gauges

Temperature,
precipitation ERA5 atmosphere reanalysis European Center for Medium-Range

Weather Forecasts (ECMWF) hourly, 0.28◦

Information on water levels was derived from tide gauges located at the shortest distance
from each case study site through personal communication with the institutions responsible for
the gauge upkeep. Finally, hourly precipitation and temperature data were collected from the ERA5
reanalysis model.

2.3. Geomorphological Indicators

Depending on the study objectives, five major geomorphological indicators were extracted from
the LiDAR-derived digital elevation models (DEMs), namely shoreline retreat, beach volume balance,
cliff foot retreat, cliff volume balance and cliff top retreat (Figure 2.). Because part of the topographic
measurements were realized directly after storms while the water level was still quite high, some
limitations in the high-resolution dataset availability caused the shoreline retreat indicator to be
extracted as a 1 m contour above mean sea level (MSL) instead of at zero MSL.
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Figure 2. Scheme of measuring procedure of major geomorphological indicators extracted from the
LiDAR-derived digital elevation models.

Extracting the shoreline contour from DEM was rather straightforward; however, acquiring the
cliff base line was more challenging and required some deliberation. Because the purpose of this study
was to create reproducible solutions for analyzing the relationship between the erosion rates on coastal
cliffs, a comparable procedure for extracting cliff base line was needed. While several studies realized
on cliffs analyzed volumetric changes, to our knowledge, all assumed manual delineation of the cliff
baseline, relying mainly on aerial photographs, topographic maps, or in situ surveys [1,18,33,34].
Some attempts of advanced automatic delineation were performed on the cliff bases of generalized
coastal shoreline vectors by approximating the distance between shoreline and the cliff top [19]. In
our study, a simplified methodology was implemented that considered a rapid change in altitude
(higher than 0.5 m for a distance of 1 m). This procedure appeared to be a sufficient solution, because
the delineation of the cliff base line can be a subject of interpretation, even by operators during
field surveys. Moreover, as presented by Palaseanu-Lovejoy et al. [19], the manual digitization of
geomorphological breaklines on DEMs not only has lower precision but also lacks reproducibility.
The assumed simplified procedure was fully reproducible and comparable for all test sites and was a
sufficient indicator that was independent of human skill.

Mapping the cliff top line and its migration over time is one of the most common methodologies for
investigating cliff recession [24]. Traditionally obtained during field surveys or based on hand-digitized
procedures [35], the cliff top line can also be extracted automatically [19]. Due to TLS limitations
mainly related to data shortages on parts of the cliff edge densely overgrown by vegetation, the highest
available point existing on two successive topographic surveys was assumed as the cliff top line for
the analyzed time period.

Finally, to explore how the beach–cliff system changed between each LiDAR survey, line indicator
migration as well as volumetric changes was analyzed. The results were separately determined for
beach and cliff areas between the lines in 50 m wide sections. Similarly, for the needs of Bayesian
network analysis, all line indicators were marked on profiles using the same 50 m spacing as the
volumetric measurements.
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2.4. Bayesian Networks

Bayesian networks, also known as Bayesian belief nets, are graphical, probabilistic models [36]
that have a wide range of applications in the environmental sciences, particularly in coastal zone
problems [10,14]. The main advantage of BNs is the ability to model complex processes and, at least
for models with a small number of nodes, the explicit representation of uncertainty and intuitive
interpretation. BNs can be discrete or continuous, depending on the type of data available. In this
study, a continuous BN was applied as it better suits the data collected (for discussion on pros and
cons of various BN types, we refer to Hanea et al. [37]).

In general, a BN consists of a directed acyclic graph with associated conditional probability
distributions [38,39]. The graph consists of “nodes” and “arcs” in which the nodes represent random
variables connected by arcs, which represent the dependencies between variables. Arcs have a defined
direction: the node on the upper end is known as the “parent” node, and the node on the lower
(receiving) end is the “child” node. Each variable is conditionally independent of all predecessors
given its parents: if one conditionalizes the parent node and there is no arc connecting the child
node with any of the predecessors of the parent node (directly or through another parent node), the
conditional distribution of the child node does not change if the predecessors of the parent node
are conditionalized. The joint probability density f(x_1,x_2, . . . ,x_n) for a given node is therefore
written as

f (x1, x2, . . . , xn) =
n

∏
i=1

f
(

xi

∣∣∣xpa(i)

)
(1)

where pa(i) is the set of parent nodes of X_i. One possibility of BNs is to update the probability
distribution of child nodes given the new evidence at parent nodes. Two elements are needed to
quantify a BN: the marginal distribution for each node and a dependency model for each arc. In this
study, we used non-parametric margins, which were the same as the empirical distribution of data
collected for this study. The dependencies were represented by normal (Gaussian) copulas. Basically, a
copula is a joint distribution on the unit hypercube with uniform (0,1) margins. While there are many
types of copulas (we refer to Joe [39] for detailed descriptions), the assumption of a normal copula is a
limitation of the available computer code [38]—though most dependencies between variables used
here did not indicate tail dependence—a property that can be represented as either normal, Frank,
or Plackett copulas. A goodness-of-fit test for copulas proposed by Genest et al. [40] indicates that
several copula types are, on average, similarly suitable for the analysis (Frank, Plackett, t, Gumbel,
Gaussian), while others much less (Clayton and Joe copulas). A normal copula was parameterized
using Spearman’s rank correlation coefficient; hence, in all cases, the results refer to this measure of
correlation. For the detailed procedure of obtaining conditional probabilities from a non-parametric
continuous BN with a normal copula, we followed the procedure of Hanea et al. [37]. The algorithms
from that study were implemented in the Uninet software used to build our model.

The configuration of nodes and arcs is researcher dependent. Yet a good BN incorporates existing
knowledge of the process in question, in this case the factors influencing the cliff erosion and the
physical processes in action. For this study, a total of 41 variables were tested while preparing the
BN. The full list of variables and their descriptions is available in the SI1 file. Five erosion indicators
(Section 2.3) and two further geomorphological indicators, namely beach width (i.e., between shoreline
and cliff foot) and cliff slope (i.e., above cliff foot), were used as variables. The following rules were
used to design the BN model in this study:

1. Cliff erosion indicators were connected with each other, starting from the shoreline retreat
indicator and moving toward the cliff top.

2. In every case, the cliff erosion indicator was used as the first parent node when other parent
nodes were added.

3. Meteorological, hydrological, and morphological variables were added starting from the shoreline
retreat (Shore) node and moving toward the cliff top.
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4. Each variable was connected only to one node containing a cliff erosion indicator.
5. Meteorological and hydrological variables were not given any parent nodes and were not

connected with each other.
6. The first meteorological or hydrological variable to be connected with a cliff erosion indictor was

the variable with the highest unconditional correlation within the model. The unconditional
correlation matrix is shown in Supplementary Information 2.

7. Further meteorological or hydrological variables were selected based on the conditional
correlation with cliff erosion indicators.

8. Only parent nodes with (conditional) correlations higher than 0.1 were included in the model,
except for the parents of cliff top retreat (Top), where only the correlation with the cliff volume
balance (Cliff) exceeded this threshold.

The meteorological and hydrological factors, such as significant wave height, wave direction,
mean wave period, peak wave period, water level, wind speed, temperature, and precipitation, were
used in several configurations where applicable: mean (total), maximum (minimum) values between
measurement campaigns, mean value during storm surges, and the 95th (5th) percentile during
the period between measurement campaigns. Synthetic indicators of storm conditions were also
investigated, including storm energy [41], accumulated excess energy [42], and wave power [43]. For
the purposes of this study, a storm surge was defined as a water level of at least 0.45 m above mean
sea level (545 cm Normal Null); this value was selected on the basis of (unconditional) correlations
between erosion and hydrological variables. Moreover, if after a storm, the water level fell below this
level for less than 6 h before the next storm, the whole series was considered to be one storm surge.
The value of the upper and lower percentile in some indicators was similarly selected to maximize
(unconditional) correlations across multiple variables.

3. Results

3.1. Hydrological Conditions during the Period of Study

Many storms reached the coast during the measurement period. Using the definition of storm
surge described in Section 2.4 (based on sea levels of at least 0.45 m above mean sea level), a total of 61
storms affected the cliffs in Bansin, compared to 43 in Międzyzdroje and 62 in Wicie. The distribution
of surges was highly uneven, as shown in Figure 3. The most intense period lasted from late November
2016 to mid-January 2017. Around 10 surges were distinguished during that period, with water levels
exceeding 1.4 m above average at all locations on 4–5 January 2017. This water level corresponded to
an event with a return period of 15–20 years [44]. The maximum water level of 1.55 m was observed
at the Koserow tide gauge close to the Bansin cliffs. Conversely, the waves reached their maximum
height throughout late 2016, culminating on 7 December 2016.
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Another period of stormy weather lasted from mid-October 2017 to early January 2018, during
which around 20 surges affected the coast. However, neither the water levels nor the wave heights
were as extreme as those during the 2016–2017 storm season. The most intense storm in the 2017–2018
storm season occurred around 29–30 October 2017 during which the water levels slightly exceeded
1 m above mean in all study areas. Considering the stricter definition of storm surge presented by
Wiśniewski and Wolski [44], i.e., the exceedance of water levels of 0.6 m above mean, the first half
of the study period had three times more storms than the long-term average of about four per year,
including a very unusual occurrence of a storm surge in June; the second half of the study period was
close to an average year.

3.2. Descriptive Analysis of Cliff Erosion

During the monitoring period, the sediment budget was definitely negative with a total loss of
49,330 m3. Erosion was most significant on the cliffs (over 58,000 m3), while a positive budget was
observed on the beaches, with a value slightly exceeding 9000 m3. This positive balance shows that
not all of the cliffs’ material was swept into the sea, but some of it remained on the beaches.

Erosion and sedimentation were unevenly distributed in time and space (Figure 4). At the
beginning of the 2016–2017 storm season, erosion was principally visible on the beach (over 80% of
total erosion volume in Bansin and Międzyzdroje). As the successive lowering of beach proceeded,
the proportions changed, and the cliff erosion started to dominate, reaching over 85% of the total
erosion volume. Due to the very narrow beach, the Wicie area suffered cliff-dominated erosion of more
than 90% of the total loss in this coast section. In fact, the sediment budget was obviously negative
both for the beach and cliff during the winter season. The maximum negative volume of eroded
material measured between the third and fourth topographic campaigns was also the highest during
the monitoring period. Erosion volume on the beach varied at different test sites, reaching from 627 to
2191 and 2566 m3 for Międzyzdroje, Bansin, and Wicie beaches, respectively. However, the first group
of severe storms affected the cliff face much stronger than the beach, exceeding the maximum volumes
of 6000, 12,000, and 18,000 m3 for Międzyzdroje, Bansin, and Wicie cliffs, respectively. Notwithstanding
the clear erosion dominance across the whole study area during the 2016–2017 storm season, the retreat
of the cliff top was relatively small compared to changes of the 1 m contour line and the cliff base
line. While the cliff top retreated by a maximum of 11 m in Wicie, the average change on all areas was
less than 1 m, and the median was only 0.03 m. The maximum changes of shoreline and cliff base
lines were similar, reaching around 11 m. However, the average change of shoreline and cliff base
lines of 2.5 and 1.3 m, respectively, as well as medians of 1.7 and 0.15 m, respectively, suggested more
even distribution.

The period between storm seasons contained higher variability in both the time and space
distributions, even though the total volumes were much lower. Furthermore, the compilation of the
next five surveys revealed both accumulation and erosional patterns with a rather modest positive
overall sediment budget (1800 m3). Before the 2017 winter season approached, the dominant processes
were much weaker, but cliff erosion still occurred along with the overall recovery of beach height and
length. The volume values between surveys fluctuated from –2870 to 9280 m3 and –3520 to 3683 m3,
respectively, for beach and cliff. However, the negative values for the beach and the positive for the
cliffs were a consequence of landslide processes that pushed the cliff base line in the seaward direction
rather than significant erosion or deposition episodes.

The second period of stormy weather as well as the following spring season (2017–2018) revealed
strong similarities to the corresponding earlier periods. This observation was supported by a
comparison of data from the last four topographic surveys. Erosion was still principally visible
on the cliffs, though the water levels and wave heights were not as extreme as those during the
2016–2017 storm season. The much weaker waves were not able to clean all the debris, and in some
of the investigated areas, the cliff base line migrated seawards, and the volume values presented an



Remote Sens. 2019, 11, 843 10 of 16

inverse pattern to what was observed during the first storm season. The after-storm period was again
characterized by beach recovery processes.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 
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3.3. Statistical Analysis of Cliff Erosion

The statistical analysis was performed using the BN presented in Figure 5. The final model,
constructed following the procedure explained in Section 2.4., included five cliff erosion indicators
explained by two morphological factors, eleven hydrological factors, and two meteorological
factors. The morphological factors were additionally explained by two hydrological factors and
one meteorological factor.
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Figure 5. Proposed Bayesian network for cliff coast erosion. The ordering of parent variables is
clockwise, starting from the leftmost node. The numbers below the histograms indicate the average
and standard deviation, and the numbers on the arcs are Spearman’s (conditional) rank correlations.
See the SI1 file for full explanations of variables. The letter “P” before the name of some variables
indicates that the values are for the preceding period, rather than for the period during which the
erosion occurred.

The shoreline is the most dynamic component of the coastline; therefore, its changes (Shore)
have the highest number of explanatory variables. The highest correlation was observed with the
95th percentile of wind speed (WindSpeed_95), which gave a slightly higher correlation than the
wave height indicators. A likely explanation for this relationship is that wind is more dynamic than
offshore waves containing significant inertia and hence is a better predictor of the small wind-driven
waves that contribute to shoreline retreat. The second factor influencing shoreline retreat was the
width of the beach (Width) before the occurrence of erosion. Wider beaches have more material to be
eroded, resulting in larger shoreline retreat. The beach width was influenced by both the maximum
wave height (P_WaveHeight_Max), which resulted in shorter beaches, and the average temperature
(P_Temp_Avg), which is an indicator of the time of the year, as beaches tend to be shorter during the
autumn and winter storm season than during the warmer spring or summer. Other factors contributing
to shoreline retreat were the 95th percentile of water levels (WaterLevel_95), average wave direction
during storm surges (WaveDirect_Storm), and average wave peak period (WavePeakPer_Avg), all of
which resulted in higher and longer waves attacking the shoreline, resulting in erosion.

Beach volume balance (Beach) was highly correlated (0.72) with shoreline retreat, which incorporated
the influence of several factors. The average water level during storms (WaterLevel_Storm) further
contributed to beach erosion, as higher baseline sea levels allowed waves to reach further onto the beach,
while the 95th percentile of significant wave height (WaveHeight_95) indicated the importance of high
waves in beach erosion.

Cliff foot retreat (Foot) showed a relatively low correlation (0.24) with beach volume balance, as
more complex mechanisms were observed: material from cliff erosion could be deposited on the beach,
which would result in a weak dependency between beach and cliff erosion. However, some of the
waves eroding the beach still cut into the cliff. Specifically, waves that were both particularly high and
long contributed to cliff foot retreat, as revealed by the wave power (WavePower_95) indicator, which
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was proportional to the product of significant wave height and the mean wave period. Additionally,
the cliff was more prone to erosion if more vertical than inclined, as shown by the cliff slope (Slope)
variable. The cliff slope showed the highest correlation with the average mean wave period in the
preceding period (P_WaveMeanPer_Avg), where stormy periods resulted in lower cliff slopes due
to erosion.

The cliff volume balance (Cliff) depended primarily on waves undercutting the cliff, resulting
in the eventual collapse of the cliff. Erosion was further increased by very high waves, as shown
by the accumulated excess energy (Storm_AEE) indicator. The accumulated excess energy indicator
represented the energy of waves above a 2 m threshold (including sea level), which was close to
the average elevation of cliff foots in the study area; hence, this indicator counted only the waves
that actually eroded the cliff. Two other variables correlated with the cliff volume balance were the
maximum mean wave period (WaveMeanPer_Max), which indicated the occurrence of very long
waves, and the maximum water level (WaterLevel_Max), as the high baseline sea level increased the
number of waves that could reach the cliff.

Finally, erosion of the cliff could also result in retreat of the cliff top (Top). This erosion indicator
was the least dynamic and depended mostly on factors already included in previous erosion indicators.
Some correlation existed with the total precipitation recorded during storms (Prec_Storm), as rainfall
could weaken the structure of the cliff, making it more susceptible to collapse. Other factors showed
only a small conditional correlation; the largest was for the maximum wave height (WaveHeight_Max),
which indicated the occurrence of extreme waves having the biggest impact on the cliff.

The model was validated by analyzing the correlation between predicted and observed changes
in the variables of interest (Table 2). This was carried out for different choices of input sample, thus
analyzing how transferable is the model between locations. The small sample size resulted in a
non-negligible variation of results between different model runs; therefore, the results shown are
averages of 100 model runs per each variant of location or sample source. A split-sample validation
(using half of the data as input sample, and the other half to run the model) showed only marginally
lower performance than using the same data for both purposes. Of the three study sites, data from
the Bansin cliff is the most transferable. For individual variables, the highest correlation between
modeled and observed data is for beach volume balance, followed by shoreline retreat and beach
width (correlations of 0.4-0.6). Correlations for cliff foot and volume balance are in the 0.3–0.4 range,
and lower for the cliff top, which was the least dynamic part of the cliff in the timeframe of the study.

Table 2. Validation results for variables of interest by study area and source of sample for the model.
Values indicate Spearman’s rank correlation.

Study Area Source of Data
Variable

Shore Beach Foot Cliff Top Width Slope

All

All 0.50 0.60 0.36 0.31 0.19 0.40 0.24

All (split-sample) 0.48 0.59 0.35 0.30 0.18 0.37 0.24

Bansin 0.50 0.59 0.34 0.30 0.17 0.33 0.23

Międzyzdroje 0.49 0.62 0.34 0.25 0.18 0.36 −0.11

Wicie 0.47 0.59 0.34 0.31 0.17 0.37 0.13

Bansin
All 0.60 0.74 0.32 0.25 0.01 0.26 0.19

Międzyzdroje +
Wicie 0.59 0.71 0.32 0.19 0.01 0.20 0.19

Międzyzdroje
All 0.41 0.29 0.46 0.10 −0.16 0.42 −0.02

Bansin + Wicie 0.41 0.28 0.46 0.07 −0.16 0.40 −0.02

Wicie
All 0.50 0.72 0.22 0.50 0.45 0.15 0.01

Bansin +
Międzyzdroje 0.47 0.70 0.26 0.47 0.31 0.12 0.02
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4. Discussion

The tracking of cliff changes requires very detailed topographic data to be acquired repeatedly
in time, not only for revealing patterns of coastal behavior [18,45] but also for providing better
understanding of the relations between processes and indicators. As the comparison of two datasets
provided only a cumulative result for coastal analysis [15,16], multiple measurements enabled
the analysis of both isolated events and storm series on erosion, as well as the processes for
cliff modifications.

In this study, we demonstrated that changes to coastal cliffs are very complex, and physical
processes that influenced both beach and cliff may be responsible for erosion processes. Our results
confirmed the impact of sea activity as well as enabled evaluation of the effects of unfavorable weather
conditions to coastal cliffs [18,24]. In fact, the cliff coast develops as a result of numerous overlapping
processes. While storm surges undercut and destabilize cliff faces [46], waves are mainly responsible
for temporal shoreline changes with correlation to temperature, which acts as a season indicator.
Consequently, the beach is successively eroded and lowered, resulting in the occurrence of favorable
hydrometeorological conditions for cliff erosion. These conditions are not directly linked to the highest
waves, but to longest waves during maximum water levels. While high-magnitude events advance
cliff face erosion, when these events weaken, part of the transported debris is lost, which starts the
process of beach recovery [47,48]. Finally, the most powerful events were not able to directly influence
the cliff top line. As presented by Kostrzewski et al. [24], changes of the cliff top line are linked with
precipitation factors, especially during storm events.

In this study, as suggested by Andrews et al. [27], numerous topographic “snapshots” realized
more than several times during a year were analyzed with increasingly popular Bayesian networks.
This analysis enabled an understanding of the complex changes of coastal systems from the event
scale to seasonal variations. The BN model presented here is the first BN application for analyzing
short-term cliff erosion and therefore is not comparable with the few existing models due to the
different spatial or temporal scales and model designs. Some similarities could be found; however, as
certain common factors were identified to contribute to erosion, such as the cliff/beach slope, sea level,
and wave height. On the other hand, recurring variables were not included in this study, such as the
tidal range and geology/geomorphology of the coast. Tides have negligible amplitude along the coast
in question. The qualitative properties of the cliffs were not included due to the similarity of the study
sites. Moreover, inclusion of the geomorphology would necessitate the use of a discrete or hybrid BN,
which would require a very different model set up in the context of our relatively small sample size.

In this study, the model was used for data analysis without making predictions. The inclusion
of prediction capability in our model would require validation based on another cliff erosion
dataset. For instance, the annual cliff top erosion since 1985 for multiple sections of the Wolin Island
cliffs [24] could be used for this purpose. However, such an analysis is limited by the availability
of hydrometeorological data. Existing reanalyses (ERA5, ERA-Interim) have much lower resolution
than the WAM model used here; therefore, the wave conditions indicated in those reanalyses differ
substantially from those in WAM: they show much bigger wave heights. Moreover, tests with an
operational BN model have shown that such models are too sensitive, given the amount of data
available. Therefore, more LiDAR scanning campaigns performed would be needed to improve the
performance of the model, especially for the less dynamic upper parts of the cliff. The model than could
be reworked using ERA5 as the input hydrometeorological dataset, which planned to be extended
back to 1950 [32]. Moreover, the assumption of a normal copula for modeling the dependencies
would need to be validated before the model could be used for prediction [49], and the graph would
need to be further investigated to better represent the joint distribution [50]. The SI1 file presents an
example of a modified BN with many additional arcs between the hydrometeorological variables, as
those are the most highly correlated, and such connections are relevant for properly representing the
joint distribution.
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5. Conclusions

1. Our study demonstrates the advantages of using Bayesian network for analysis of surface
morphological changes on cliff coasts even on relatively short analyzed shore segments. Despite
the site-specific geomorphological settings for different test areas, the implementation of the
proposed Bayesian network model enabled the determination of relationships between the
erosion rates and selected factors. The proposed model explained the general behavior of the cliff
coast with respect to different hydrometeorological conditions, indicating variables most relevant
at each segment along the profile. Validation of the model showed good performance along the
beach and cliff foot, but weaker in predicting cliff mass balance or cliff top recession.

2. Our study proves that high temporal resolution in TLS surveys enables the analysis of correlations
between the influence of several factors (wave height, length and period, water level, storm
energy, precipitation, etc.) and the geomorphological response of coast during isolated storm
events, as well as with cumulative effects for season-long analysis. In general, a presentation of
short and mid-term analyses expands possibilities in coastal morphological studies. Although
we have seen a rapid increase of TLS usage in recent years, most of these have focused on a small
quantity of realized surveys or long-term analysis.

3. The automatic extraction of all geomorphological indicators from DEMs enabled reproducible
and comparable cliff recession analysis. However, caution should be taken when interpreting the
beach recovery, because some erosion and deposition processes may be masked by an automatic
delineation of the cliff base line.
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Formulas to the Polish Baltic Sea Coast. PLoS ONE 2014, 9, e105437. [CrossRef] [PubMed]
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41. Furmańczyk, K.K.; Dudzińska-Nowak, J.; Furmańczyk, K.A.; Paplińska-Swerpel, B.; Brzezowska, N. Critical

storm thresholds for the generation of significant dune erosion at Dziwnow Spit, Poland. Geomorphology
2012, 143, 62–68. [CrossRef]

42. Hackney, C.; Darby, S.E.; Leyland, J. Modelling the response of soft cliffs to climate change: A statistical,
process-response model using accumulated excess energy. Geomorphology 2013, 187, 108–121. [CrossRef]

43. Earlie, C.; Masselink, G.; Russell, P. The role of beach morphology on coastal cliff erosion under extreme
waves. Earth Surf. Process. Landf. 2018, 43, 1213–1228. [CrossRef]
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