
 
 

Delft University of Technology

Improved Microwave Imaging by Wavenumber Domain Multiband Data Fusion

Wang, Jianping; Aubry, Pascal; Yarovoy, Alexander

DOI
10.1109/RADAR.2018.8557254
Publication date
2018
Document Version
Final published version
Published in
2018 International Conference on Radar, RADAR 2018

Citation (APA)
Wang, J., Aubry, P., & Yarovoy, A. (2018). Improved Microwave Imaging by Wavenumber Domain
Multiband Data Fusion. In 2018 International Conference on Radar, RADAR 2018 (pp. 1-6). IEEE.
https://doi.org/10.1109/RADAR.2018.8557254

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RADAR.2018.8557254
https://doi.org/10.1109/RADAR.2018.8557254


Improved Microwave Imaging by Wavenumber
Domain Multiband Data Fusion

Jianping Wang, Pascal Aubry, and Alexander Yarovoy
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Delft, the Netherlands, 2628CD

Email: {J.Wang-4, P.J.Aubry, A.Yarovoy}@tudelft.nl

Abstract—A matrix-pencil based wavenumber-domain multi-
band fusion approach is proposed for improved microwave
imaging. The suggested fusion approach is based on the fact
from the Born approximation that the wavenumber-domain signal
in a given scattering direction can be represented as a sum of
the same number of contributions over the whole bandwidth.
Utilizing this fact, the wavenumber-domain signal in each radial
direction can be modeled as a superposition of damped/undamped
exponential functions, where measured multiband data are part
of the observations of the whole-band signal. Then the multiband
signal fusion is addressed by estimating a unified signal model
over the while bandwidth with the matrix pencil approach in
the wavenumber domain. By using the estimated signal model,
the missing data in the frequency gap can be extrapolated, thus
synthesizing an equivalent wideband signal spectrum. After an
inverse Fourier transform, the synthesize spectrum leads to a
focused image with enhanced resolution. Compared to the existing
frequency-domain method, the proposed fusion approach can
be used for radar imaging with the signals acquired by either
collocated or non-collocated arrays in different frequency bands.
The effectiveness and accuracy of the proposed fusion approach
are demonstrated through some numerical simulations.

I. INTRODUCTION

Microwave imaging has been broadly used for remote sens-
ing, non-destructive testing (NDT), security check, medical
imaging, etc. In these applications, pursuing increasingly high-
resolution imaging is always an objective of many researchers.
Generally, imaging radar systems exploit wideband signals and
antenna arrays to achieve high resolution in both down- and
cross-range directions. In terms of down-range resolution, it
is inversely proportional to the operational signal bandwidth
of the imaging system. So wideband/ultra-wideband (UWB)
signals with several GHz or even larger bandwidth are typically
required to achieve cm/sub-cm level resolutions, especially for
short-range applications. However, to radiate such wideband
signals, some challenges/problems are frequently encountered
in practical implementations. Firstly, antennas and front-ends
with sufficiently wide operational bandwidth are needed. Un-
fortunately, designing and manufacturing an UWB front-ends
including antennas for a particular application is a challenging
task, especially for subsurface imaging systems. In practice,
the problem is typically circumvented by splitting the desired
operational ultrawide bandwidth into several sub-bands over
while narrow-band antennas are used to cover the entire desired
bandwidth. Moreover, sometimes the availability of continuous
wide/UWB spectrum for high-resolution imaging can also be
a problem due to constraints of, for example, FCC radio
spectrum allocation. In such circumstances, only some separate

spectral bands can be used. This problem is encountered by
users of commercial UWB radar systems. In addition, some-
times strong interference signals at certain frequency spectrum
during the imaging system operation have to been clipped,
which leads to non-continuous signal bandwidth. Therefore, in
all these situations it becomes essential to coherently process or
fuse the subband signals/images acquired in different subbands
so as to get high-resolution images.

Multiband signal fusion has been widely discussed to
improve the down-range resolution of radar systems [1]–[11].
Generally, the approaches in open literature can be divided
into two categories: (1) signal-level fusion, and (2) Data-
level fusion. Signal-level fusion methods directly process the
multiband signals measured by monostatic/collocated radars,
which are usually implemented in the frequency domain with
model-based estimation methods. The multiband data are
modeled with autoregressive (AR) models or autoregressive
moving average (ARMA) models over a wide bandwidth
according to the scattering behaviors of canonical scatterers.
Then the signal models can be estimated with root MUltiple
SIgnal Classification (MUSIC) algorithm [1], [3], matrix pencil
aproach [4] singular-value decomposition (SVD) [2], sparse
Bayesian learning algorithm [5] and support vector machine
[6]. In addition, a fusion method that combines all-phase fast
Fourier transform (apFFT) and iterative adaptive approach [8]
was proposed to fuse the dechirped multiband signals, which
is more dedicated to the linear frequency modulated (LFM)
signals.

On the other hand, the data-level fusion methods are
carried out on the pre-focused data in the frequency-
wavenumber/wavenumber domain [9], [11]. More precisely,
the fusion operations So it is possible to use these methods to
fuse multiband signals acquired with different spatial sampling
intervals in the cross-range direction, which is very attractive
for many practical cases with multiband fusion imaging. In [9],
AR model based multiband coherent signal fusion processing
was proposed for inverse synthetic aperture radar imaging
(ISAR). The fusion operations are performed in the frequency-
wavenumber domain after the cross-range focusing operation,
which alleviates the effects of the possible error caused
by the bandwidth interpolation/extrapolation in the fusion
processing on the cross-range response. Moreover, a Matrix
Fourier Transform (MFT) was proposed to integrate multiple
separated wavenumber domain data to implement multi-look
ISAR images fusion in [11]. However, the frequency gaps
between the different subbands are usually neglected, which
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Fig. 1: Geometrical configuration of 2-D imaging with a linear
array.

could cause increased sidelobes/artifacts in fused images.

To address the problem of MFT and extrapolate the missing
data in the wavenumber domain, we propose a wavenumber-
domain (i.e., k-space [12]) multiband signal fusion algorithm
with the matrix-pencil approach (named as k-MPA) for en-
hanced microwave imaging. By modeling the wavenumber-
domain signals in each radial direction at different subbands
as a superposition of damped/undamped exponential functions,
the multiband fusion problem is converted to parameter es-
timation of the exponential components. Similar to [4], the
signal model in each radial direction is estimated by using
the matrix-pencil approach for signal extrapolation in the
frequency gap between different frequency subbands. Finally,
coherently processing the available data and extrapolated one,
a resolution-enhanced image can be obtained.

The paper is organized as follows. In Section II, the signal
model in k-space is formulated and analyzed for microwave
imaging. Following that, the k-space signal fusion is discussed
in detail based on the matrix-pencil approach in Section
III, which includes both signal incoherence correction and
multiband signal fusion. Then, some numerical simulations are
performed to demonstrate the effectiveness and accuracy of the
proposed approach in Section IV. Finally, some conclusions are
drawn in Section VI.

II. k-SPACE SIGNAL FORMULATION

Let us consider the two-dimensional (2-D) imaging con-
figuration, as shown in Fig. 1. A linear antenna array is
placed on the x-axis, where (xa, 0) is used to denote an
antenna’s position. An illuminated object is located in the near
field of the array and its position is represented by (x, y).
The associated reflectivity function of the object is given by
f(x, y).

After correcting the spectrum weighting of the radiated
wavelet and compensating the wave propagation effect (i.e.,
propagation spreading loss) and the wavefront curvature [13],
then the resultant signal spectrum in the 2-D k-space can be
represented as

S(kxa
, ky) =

∫∫
o(x,y)

f(x, y) exp[−j(kxa
x + kyy)] dxdy (1)

In the polar coordinate system, the wavenumbers kxa , and ky
are expressed as {

kxa = k cos θ

ky = k sin θ
(2)

where k = 4πf/c is the wavenumber related to the frequency
f . θ is the observation angle of an antenna with respect to a
scatterer and defined as

θ = arctan

(
y

x− xa

)
(3)

From (2) and (3), one can see that the point (kxa , ky) is located
on a circle of the radius k (aka, a slice of Ewald sphere [14]),
and for a specific frequency the signal spectra of a point target
lie on an arc spanned by the observation angles of the antennas
with respect to the target. Meanwhile, from (2), one can see
that the signal spectrum of a point target with the increase of
the radar signal frequency expands along a radial direction of
the polar coordinate system at a given observation angle.

Substituting (2) for kxa
and ky , (1) can be rewritten as

S(kxa
, ky) =

∫∫
o(x,y)

f(x, y) exp [−jk(x cos θ + y sin θ)] dxdy

= S(k, θ)
(4)

In a discrete form, the target signal spectrum along a particular
radial direction from the origin in the k-space can be repre-
sented as

S(k, θ) =

N∑
n=1

f(xn, yn) exp[−jk · (xn cos θ + yn sin θ)]

=

N∑
n=1

f(xn, yn) exp[−jk · dn(θ)]

(5)

where

dn(θ) = xn cos θ + yn sin θ (6)

and f (xn, yn) is the reflectivity function of a point-like
scatterer at (xn, yn), N is the number of point-like scatterers
that contribute to the signal spectrum at (k, θ) in the k-space.
Note the summation cell ∆V = ∆x · ∆y has been omitted
in (5) for simplification. According to (3), the observation
angles are just determined by the relative geometry between
the antennas and the scatterers, which are independent of the
signal frequency. Therefore, assuming the antenna beamwidth
at all frequencies is wide enough compared to the imaging
area, the number of scatterers N is constant over all the
frequencies at a specific aspect angle θ. So the signals at
different frequency bands share the same signal model as
in (5) where the signal is expressed as a superposition of
exponential components. Therefore, the multiband signal fu-
sion can be converted to parameters estimation of exponential
damped/undamped sinusoids. By estimating the number of
scatterers and the reflectivity function f (xn, yn), the signal
model in (5) is obtained for a specific aspect θ. Then the signal
can be extrapolated based on the estimated signal model.



III. MULTIBAND SIGNAL FUSION

A. Signal Incoherence Compensation

Without loss of generality, two subband signals are con-
sidered below. According to (5), the k-space signals in a
spherical (polar) coordinate system at the low- and high-
frequency subbands can be written as

S1(k1 +m∆k, θ) =

N∑
n=1

f(xn, yn)

× exp[−j(k1 +m∆k)dn(θ)] + n1(m),

m = 0, 1, · · · ,M1 − 1 (7)

S2(k2 +m′∆k, θ) =

N∑
n=1

f(xn, yn) exp[j(α+ βm′)]

× exp [−j(k2 +m′∆k)dn(θ)] + n2(m′),

m′ = 0, 1, · · · ,M2 − 1 (8)

where ∆k = 4π∆f/c is the wavenumber counterpart of the
frequency sampling interval ∆f , M1 and M2 are the numbers
of frequency samples in the two subbands, k1 = 4πf1/c
and k2 = 4πf2/c are the wavenumbers associated with
the starting frequencies f1 and f2 of the low- and high-
frequency subbands, respectively, and k2 > k1 + M1∆k. n1
and n2 are with zero-mean Gaussian distribution and represent
measurement errors and noise. In (8), the first exponential
term exp[j(α + βm′)] accounts for the phase incoherence
between the two subbands which may acquired with different
systems. To simplify the notation, S1(m) and S2(m′) are used
to denote S1(k1+m∆k, θ) and S2(k2+m′∆k, θ) below. After
some algebraic operations, the signals in both subbands can be
rewritten as

S1(m) =

N∑
n=1

f (1)n Zm
n + n1(m), m = 0, 1, · · · ,M1 − 1 (9)

S2(m′) =

N∑
n=1

f (2)n Z ′m
′

n + n2(m′), m′ = 0, 1, · · · ,M2 − 1

(10)

where

f (1)n = f (xn, yn) exp [−jk1 · dn(θ)] (11)
Zn = exp[−j∆k · dn(θ)] (12)

f (2)n = f(xn, yn) exp[jα] · exp[−jk2 · dn(θ)] (13)
Z ′n = exp[−j∆k · dn(θ) + jβ] (14)

From (11) to (14), it can be seen that the possible phase
differences between the two subbands affect both the signal
poles and their coefficients in (9) and (10). Specifically, the
constant phase difference affects the coefficients while the
linear phase difference term rotates signal poles over the unit
circle in the complex plane. So, to compensate the phase
differences between the two subbands, both signal poles and
their coefficients have to be estimated. As the signal models
in (9) and (10) basically are the basis all-pole models, their
parameters can be estimated with root MUSCI or matrix pencil
approach. In this paper, we use the matrix-pencil approach as
in [15]. Then the phase differences between different subbands
can be corrected.
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Fig. 2: The geometrical configuration of point-targets simula-
tion.

B. Subband Signal Fusion

After incoherence correction, the k-space coherent multi-
band signals, i.e., S1 and S′2, are obtained. For the convenience
of notation, S′2 will be replaced by S2 in the following. The
common signal model of the S1 and S2 can be expressed as

S̃ (k1 +m∆k, θ) =

N∑
n=1

f̃nZ̃
m
n + b(m) (15)

where {f̃n}Nn=1 and {Z̃n}Nn=1 are the coefficients and the
signal poles, respectively. b is the Gaussian noise. The signal
poles and their coefficients in (15) can be estimated with
the MPA based on the S1 and S2 again. After getting the
estimations of the signal poles {Z̃n}Nn=1 and their coefficients
{f̃n}Nn=1, the full-band signal model in (15) is obtained. Then
the full band signals S̃(m), m = 0, 1, · · · ,M − 1, can be
estimated, where M is the number of the samples in the full
band with sampling intervals of ∆k. To refine the estimation
of the full band signals, the similar iterative scheme as in [4]
is applied.

IV. NUMERICAL SIMULATIONS

A. Point Targets

A numerical simulation was performed for point targets
with two-band signals. The simulation configuration is illus-
trated in Fig. 2. Assume a linear antenna array was placed on
the x-axis with its center at the origin and the y-axis pointing
towards the illuminated scene. The antenna array was 2 m in
length and operated in two separate bandwidths, namely, 2–
4.5 GHz and 6–8 GHz. Five point targets (i.e., small spheres
of the radius 1 cm) were placed at the positions (−0.5, 1)m,
(0, 0.95)m, (0, 1.05)m, (0, 1.15) and (0.4, 1.2)m, respectively.
The Hertz dipole was used as the radiator in the antenna
array, and the intervals between antenna elements were 1 cm
at both bandwidths. The electromagnetic (EM) data at the two
bandwidths were synthesized by the Commercial EM software
FEKO with the Method of Moments in the frequency domain
with frequency steps of 20 MHz.

Focusing the EM data at the two frequency subbands with
the range migration algorithm, the images of the illuminated
scene were reconstructed, as shown in Fig. 3. The two focused
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Fig. 3: Image fusion of point targets: (a) and (b) are the images
of point targets with bandwidths of 2∼4.5 GHz and 6∼8 GHz,
respectively. (c) is the fused image with bandwidth of 2∼8
GHz and (d) is the reference image obtained with bandwidth
of 2∼8 GHz.
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Fig. 4: Signal fusion of point targets with non-collocated
antennas in low- and high-frequency subbands. (a) is the low-
frequency images acquired with a down-sampled linear array
and (b) the fusion image with the signals collected by down-
sampled low-frequency array and the same high-frequency
array as in Fig. 3.

images with the bandwidth of 2–4.5 GHz and 6–8 GHz are
presented in Fig. 3(a) and (b). As the same antenna aperture
was used for both low and high frequency band signals, high-
frequency band signal results in finer cross-range resolution of
the focused image compared to that of the low-frequency band
signal. In the down-range direction, the similar resolutions are
achieved for both high- and low-frequency signals as their
bandwidths were equal. Fig. 3(c) shows the focused image
by fusing the EM signals of the bandwidth 2–4.5 GHz and
6–8 GHz with the proposed fusion method. As an equivalent
bandwidth of 2–8 GHz is achieved in the fused image, we can
see that in Fig. 3(c) the two point-targets on the y-axis are
more clearly resolved than those in the two subband images
[Fig. 3(a) and (b)]. For comparison, the focused image with the

Fig. 5: Geometrical configuration for a perfect electric con-
ductor target simulation.

EM data of the full bandwidth 2–8 GHz is shown in Fig. 3(d).
One can see that the fused image is comparable to the real
image reconstructed with wideband signals in terms of the
spatial resolution.

To emulate the non-collocated arrays in different bands, we
kept the element spacing of high-frequency array but doubled
the sampling intervals (i.e., down-sampled the spatial samples
by a factor of two) of the low-frequency array for a second
experiment. After image formation, the EM signals collected
with the down-sampled low-frequency array were focused and
the image is shown in Fig. 4(a), which is comparable to
Fig. 3(a). The high-subband image obtained is the same as
Fig. 3(b) that we omit it for the sake of conciseness. Applying
the proposed fusion approach to the signals in low- and high-
frequency subbands, a fused wideband image was obtained
again, as shown in Fig. 4(b). One can see that the image in
Fig. 4(b) is nearly identical to that in Fig. 3(b) and the two
point-targets on the y-axis are well resolved again compared
to those in the two subband images.

B. Extended Target

A corner-like perfect electric conductor (PEC) object is
used for extended target simulation here (see Fig. 5). The two
inclined bars of the object are 16 cm in length and they form
an obtuse angle of 102.7◦. The length of the horizontal bar is
10 cm, and both the width and thickness of all the parts of
the object are 5 mm. Similar to the point targets simulation,
a linear antenna array formed by Hertz dipoles was used as
the radiator. The linear antenna array was set along the x-axis
with its center at the origin and the PEC object was placed on
the xoy plane with a shortest distance of 0.4 m from the array,
as shown in Fig. 5. The linear array was 108 cm in length.
The operational bandwidths, i.e., 2–5.5 GHz and 8.5–12 GHz,
were utilized as the low- and high-frequency signal bands. The
intervals of antenna elements in the low- and high-frequency
subbands are 1.4 and 0.7 cm, respectively. The EM synthetic
data for the two operational bandwidths were generated by the
EM software FEKO in the frequency domain with frequency
steps of 100 MHz.

The focused images for the signals acquired with the low-
and high-frequency linear arrays are shown in Fig. 6(a)–(b).
Taking the fusion operation for the two subband signals in the
k-space, a focused image with the enhanced resolution was
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Bandwidth: 2~12GHz
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Fig. 6: Image fusion for the extended target with non-collocated arrays. (a) and (b) are the focused images of the corner-like
scatterer with bandwidths of 2–5.5 GHz and 8.5–12 GHz, respectively. (c) is the fused image of the corner-like scatterer with
bandwidth of 2–12 GHz and (d) is the reference image obtained with bandwidth of 2–12 GHz.
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Fig. 7: Image fusion for the extended target with a 4 GHz frequency gap. (a) and (b) are the focused images with bandwidths
of 2–5 GHz and 9–12 GHz, respectively. (c) is obtained by fusing the focused images with the two subbands.
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Fig. 8: Image fusion for the extended target with a 5 GHz frequency gap. (a) and (b) are the focused images with bandwidths
of 2–4.5 GHz and 9.5–12 GHz, respectively. (c) is obtained by fusing the focused images with the two subbands.

obtained, as shown in Fig. 6(c). For comparison, Fig. 6(d)
shows the focused image with the synthetic full-band signal
from 2–12 GHz. One can see that the fused image [Fig. 6(c)]
is comparable to the full-band image in Fig. 6(d), especially
in terms of the spatial resolutions. Therefore, the proposed k-
space fusion method works effectively for the signals acquired
with non-collocated antenna arrays as well in the extended
target circumstance.

Finally, to demonstrate the effects of the frequency gap on
the fusion results, simulations with different frequency gaps
between the two operational subbands are also performed. The
fusion result with two subbands of 2–5 GHz and 9–12 GHz is
shown in Fig. 7(c), where the frequency gap occupies 40% of
the whole bandwidth. Compared to the two subband images in
Fig. 7(a) and (b), the spatial resolution of the fused image is

significantly improved and more or less similar to that of the
full-band image in Fig. 6(d). Moreover, a fusion simulation
with a frequency gap of 5 GHz (i.e., 50% data missing), is
performed and the results are presented in Fig. 8. Although
a big improvement of the spatial resolution is observed in
Fig. 8(c), artifacts around the focused image of the target
dramatically increase and the qualities of the fused image with
the proposed method degrade. Nevertheless, from Figs. 6(c),
7(c) and 8(c), one can see that the proposed fusion method
enables to get well-formed images with upto 40∼50% of data
missing in the whole bandwidth.

V. CONCLUSION

In this paper, we propose a matrix-pencil based approach
to fuse multi-band signals in the wavenumber domain (i.e., k-



space) for high-resolution microwave imaging. The proposed
approach fuses the multi-band data along each radial direction
in a polar coordinate system in the k-space for 2-D imaging
after some preprocessing (i.e., wavelet spectrum weighting
compensation and wavefront curvature correction). Through
the fusion operation, the k-space spectrum corresponding to
an equivalent (ultra-)wideband signal is formed, which leads
to resolution-enhanced images after focusing. Thanks to its
operations in the k-space, the proposed fusion method works
for the data collected by either collocated or non-collocated an-
tennas in different frequency bands. Moreover, it also enables
to get high-quality fused images with a frequency gap upto
40∼50% of the whole bandwidth. Finally, we want to mention
that the proposed approach can be conveniently extended for
multiband data fusion for improved 3-D imaging.
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