
Acoustic-Based Aircraft Detection
and Ego-Noise Suppression
for Micro Aerial Vehicles

Mark van der Woude

Fa
cu

lty
of

A
er

os
pa

ce
E
ng

in
ee

rin
g

Acoustic-Based Aircraft
Detection and Ego-Noise

Suppression
for Micro Aerial Vehicles

by

Mark van der Woude
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on March 4th, 2021.

Student number: 4100379
Thesis committee: Prof. Dr. G. C. H. E. de Croon, TU Delft, supervisor

Prof. Dr. Ir. M. Snellen, TU Delft, external member
Ir. C. De Wagter, TU Delft, external member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

List of Symbols xi

1 Introduction 1
1.1 Motivation and Research Question . 2
1.2 Structure . 2

I Scientific Paper 3
I Introduction . 5
II Related Work . 6

A Audio Classification with Convolutional Neural Networks 6
B Ego-noise Suppression. 6

III Methodology . 7
A Data Acquisition . 7
B Preprocessing and Feature Extraction . 8

IV Experiments . 12
A Scenario 1 . 12
B Scenario 2 . 15

V Conclusions. 15

Bibliography 17

Scientific Paper Appendices 19

A Detailed Classification Breakdown 19

B Simplifying the Ego-Noise Predictor 23

II Literature Review 25

2 Properties and Representation of Aircraft Sound 27
2.1 Aircraft Sound Sources . 27

2.1.1 Doppler Effect . 28
2.2 Digital Representation of Sound . 28

2.2.1 Frequency Domain Representation . 28
2.2.2 Time-Frequency Representation . 29

2.3 Feature Extraction . 30
2.3.1 Time-Domain Features . 30
2.3.2 Frequency-Domain Features . 31
2.3.3 Cepstral Features . 31
2.3.4 Spectrogram Image Features . 32
2.3.5 Feature Learning . 32

3 Sound Event Detection for Aircraft 35
3.1 Supervised Classification in SED . 35

3.1.1 Classification for Aircraft Detection . 35
3.1.2 Classifier Evaluation . 36

iii

3.2 Generative Classifiers . 37
3.2.1 Gaussian Mixture Model . 37
3.2.2 Hidden Markov Model . 37

3.3 Discriminative Classifiers . 38
3.3.1 Support Vector Machine . 38
3.3.2 Logistic Regression. 38

3.4 Artificial Neural Networks. 39
3.4.1 Multi-Layer Perceptron . 39
3.4.2 Convolutional Neural Networks . 40
3.4.3 Recurrent Neural Networks . 41

3.5 Classifier Comparison. 43

4 Ego-Noise Analysis 45
4.1 MAV Noise Sources . 45
4.2 Self-contained Approaches . 45

4.2.1 Beam Forming . 46
4.2.2 Blind Source Separation . 47
4.2.3 Time-Frequency Processing . 47

4.3 Dependent Approaches . 47
4.3.1 Order-Analysis . 47
4.3.2 Template Methods . 47

4.4 Denoising Autoencoders . 48

5 Literature Synthesis 49
5.1 Properties and Representation of Aircraft Sound . 49
5.2 Sound Event Detection for Aircraft . 49
5.3 Ego-Noise Analysis . 50

III Preliminary Analysis 51

6 Aircraft Classification 53
6.1 Data Acquisition . 53
6.2 Feature Extraction . 54
6.3 Preliminary Analysis . 57

6.3.1 Experiment Setup . 57
6.3.2 Results . 57

7 Ego-Noise Prediction 59
7.1 Data Acquisition and Pre-processing . 59
7.2 Experiments . 60

8 Discussion of Preliminary Results 63
8.1 Classification . 63
8.2 Ego-Noise . 63

Bibliography 65

iv

List of Figures

1 Example of the noise spectrum of an MAV flight (top), and several corresponding states. 9
2 Overview of the feature extraction process for aircraft classification in scenario 1. 10
3 Example features of an aircraft segment (airplane) and a non-aircraft segment (engine), without

added MAV noise. 11
4 Example features of an aircraft segment (airplane) and a non-aircraft segment (engine), mixed

with MAV noise at a ratio of 1.00. 11
5 MAV ego-noise spectra: original (top), predicted (middle) and residual (bottom). 12
6 Architecture of the CNN used for aircraft classification in scenario 1 and 2. The second input,

indicated in cursive, is only used in scenario 2. 14
7 Scenario 1: ROC curves for segment-based performance, trained without data augmentation

and evaluated on denoised data. 14
8 Scenario 1: ROC curves for segment-based performance, trained without data augmentation

and evaluated on mixed data. 14
9 Scenario 2: ROC curves for segment-based performance, trained with all augmentations and

evaluated in matching and mismatched conditions. 15

B.1 MAV ego-noise spectra obtained from the simple network. 23
B.2 MAV ego-noise spectra obtained from the optimized network. 23

2.1 Various spectrograms of an aircraft fly-over. Aircraft audio obtained from the ESC-50 dataset [1]. 30

3.1 Covariance matrices belonging to MFC coefficient 1 and 2 of a GMM trained on aircraft and
non-aircraft samples of the ESC-50 dataset [1]. 38

3.2 Schematic of a simple multilayer perceptron with 4 input units, 2 hidden layers and 1 output
unit. 40

3.3 Schematic of a shallow 1-D CNN with convolution in the time dimension [2]. 41
3.4 Schematic of a shallow 2-D CNN with convolution in the time and frequency dimension [2]. . . 41
3.5 Schematic of a bi-directional recurrent layer with hidden units h and g [3]. 42
3.6 Schematic of an LSTM layer.1 . 43

6.1 Example spectra (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and
’wind’. 55

6.2 Example constant-Q spectra (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’en-
gine’ and ’wind’. 55

6.3 Example Mel spectra (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and
’wind’. 56

6.4 Example MFCCs (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and
’wind’. 56

6.5 ROC-curve of the classifier. Area under the curve = 0.914. 58

7.1 One of the manual MAV flights. 60
7.2 Synchronization of the data. 60
7.3 Original (top), predicted (middle) and residual (bottom) Mel spectrogram generated by the best

performing model (MSE loss = 4.976e-3). 61
7.4 Original (top), predicted (middle) and residual (bottom) Mel spectrogram generated by the

worst performing model (MSE loss = 6.102e-3). 61

v

List of Tables

1 The measured state vector (left), alterations made to the components of the measured state
vector (middle), and scaling applied to the altered state vector (right). 9

2 Overview of the lowest MSE loss (1e-3) of each type of ego-noise model for each state vector
sequence length. 13

3 Influence of data augmentation on model performance under clean, denoised (D) and mixed
(M) conditions. 14

4 Scenario 2: classification performance in matching and mismatched conditions. 15

A.1 General overview of the classification performance for various data augmentations. 19
A.2 Detailed classification performance of the network trained without augmentation at clean, de-

noised (D) and mixed (M) settings. 19
A.3 Detailed classification performance of the network trained with class mix augmentation at clean,

denoised (D) and mixed (M) settings. 20
A.4 Detailed classification performance of the network trained with pitch shift augmentation at

clean, denoised (D) and mixed (M) settings. 20
A.5 Detailed classification performance of the network trained with time stretch augmentation at

clean, denoised (D) and mixed (M) settings. 20
A.6 Detailed classification performance of the network trained with denoised augmentation at clean,

denoised (D) and mixed (M) settings. 21
A.7 Detailed classification performance of the network trained with all augmentations at clean, de-

noised (D) and mixed (M) settings. 21

B.1 Classification accuracy in mismatched conditions using denoised data obtained from the sim-
plified network (left) and optimized network (right). 24

3.1 Overview of classification/detection tasks and the used feature, input shape, type of classifier
and accuracy. 44

6.1 Overview of the classes in the ESC-50 dataset. Classes considered as ’aircraft’ are typeset in
bold, while classes considered ’non-aircraft’ are typeset in bold italics. All other classes are not
considered for training/evaluation. Table adapted from https://github.com/karolpiczak/
ESC-50 . 53

6.2 Relationship between the number of frequency bins used for the constant-Q transform, the
frequency of the highest tone, and the minimum necessary frequency out of the ranges {24,000,
32,000, 44,100} Hz. 54

6.3 Comparison of the architecture of [4] (left) and the modifications made to it (right). 57
6.4 Comparison of the architecture of [5] (left) and the modifications made to it (right). 57
6.5 Results of prelim classification . 58
6.6 Highest classification accuracy per feature for the modified Piczak architecture. 58
6.7 Highest classification accuracy per feature for the modified Salamon architecture. 58

7.1 The ten best (i.e. lowest MSE loss) combinations of network structure and MAV states. 61

vii

https://github.com/karolpiczak/ESC-50
https://github.com/karolpiczak/ESC-50

List of Abbreviations

ABF Adaptive Beamformer

ADC Analog-to-Digital Converter

ADS-B Automatic Dependent Surveillance Broadcast

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BF Beamformer

B-LSTM Bidirectional Long Short-Term Memory

BPTT Back-propagation through Time

BSS Blind Source Separation

CNN Convolutional Neural Network

CRNN Convolutional Recurrent Neural Network

CQT Constant-Q Transform

DAA Detect and Avoid

DAE Denoising Autoencoder

DBN Deep Belief Network

DCT Direct Cosine Transform

DFT Discrete Fourier Transform

DNN Deep Neural Network

DOA Direction of Arrival

DSBF Delay-and-Sum Beamformer

FFT Fast Fourier Transform

FOV Field of View

FN False Negative

FP False Positive

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

HOG Histogram of Oriented Gradients

HMM Hidden Markov Model

ICA Independent Component Analysis

I-DFT Inverse Discrete Fourier Transform

LIDAR Light Detection and Ranging

LSTM Long Short-Term Memory

ix

MAV Micro Aerial Vehicle

MFC Mel Frequency Cepstrum

MFCC Mel Frequency Cepstral Coefficient

MLP Multi-Layer Perceptron

NMF Nonnegative Matrix Factorization

OCC One-Class Classification

RBM Restricted Boltzmann Machine

ReLu Rectified Linear Unit

RMS Root-Mean-Square

RNN Recurrent Neural Network

ROC Receiver Operation Characteristic

RPM Revolutions per Minute

SAR Synthetic Aperture Radar

SEC Sound Event Classification

SED Sound Event Detection

SGD Stochastic Gradient Descent

SIF Spectrogram Image Feature

SNR Signal-to-Noise Ratio

STE Short-Time Energy

STFT Short-Time Fourier Transform

SVM Support Vector Machine

TCAS Traffic Alert and Collision Avoidance System

T-F Time-Frequency

TN True Negative

TP True Positive

UAV Unmanned Aerial Vehicle

VLOS Visual Line-of-Sight

ZCR Zero-Crossing Rate

x

List of Symbols

Greek Symbols

ε Learning rate of an optimizer

θ Set of learnable parameters

θd Direction of arrival

µk mean of the k th Gaussian of a GMM

φk mixture coefficient of the k th Gaussian of a GMM

ρ Activation function of a layer in an ANN

Σk covariance matrix of the k th Gaussian of a GMM

τ Transmission delay

Roman Symbols

b Bias vector of a classifier

B Cut-off Frequency

c Speed of sound

c Hidden-to-output bias vector of a recurrent layer

c[t] New cell state of an LSTM cell at time step t

c̃[t] Proposed new cell state of an LSTM cell at time step t .

E [m] Short-time energy

E [k,m] Band energy

f Frequency

f ′ Observed frequency

fc Cylinder firing frequency of a piston engine

fe Exhaust frequency of a piston engine

fmel Mel-scale frequency

fs Sample frequency

f1 Blade passage frequency

F [m] Spectral flux

f [t] Forget gate of an LSTM cell at time step t

f (x , y |θ) Surrogate function

g (θ) Regularization term

g [t] Additional hidden units of a bi-directional recurrent layer at time step t

xi

h[t] Hidden units of a recurrent layer at time step t

h(x |θ) Predictor for input x , given parameters θ

i [t] Input gate of an LSTM cell at time step t

L(h(x |θ), y) Loss function

o[t] Output gate of an LSTM cell at time step t

p Number of rotors on an MAV

Pθ Probability density w.r.t. θ

P (c j) Prior probability of c j

p
(
x , y

)
Joint probability distribution of x and y

p
(
xi |c j

)
Conditional probability of xi , given c j

Q Quality factor

r Mix ratio

R[k,m] Correlation matrix of a time-frequency signal

s[k,m] Discrete time-frequency signal of the target sound

s[n] Discrete time-domain signal of the target sound

t Time

U Input-to-hidden weight matrix of a recurrent layer

V Hidden-to-output weight matrix of a recurrent layer

v[n] Discrete time-domain signal of the ego-noise

W Weight matrix of a classifier

w[k,m] Spatial filter

w[k,n] Windowing function (CQT)

w[n] Windowing function (STFT)

x Set of inputs to classifier

X [k] Discrete frequency-domain signal

X [k,m] Discrete time-frequency signal

x[n] Discrete time-domain signal

x(t) Continuous time-domain signal

x[t] Input units of a recurrent layer at time step t

Xc [n] Cepstrum of X [k]

y Labels corresponding to x

z Layer in an ANN

z[t] Hidden state of an HMM at time step t

Superscripts

H Hermitian Transpose

k k th layer in an ANN

T Transpose

xii

1

Chapter 1

Introduction

The widespread usage of Micro Air Vehicles (MAVs) has led to various airspace safety breaches, such as unin-
tentional near mid-air collisions with other aircraft [6]. Because these MAVs are typically too small to be de-
tected by manned aircraft, they must be equipped with autonomous Detect and Avoid (DAA) systems when
operating outside the visual line-of-sight (VLOS) of the operator, to ensure safe integration into general avia-
tion1. The purpose of a DAA system, consisting of a detection and an avoidance subsystem, is thus to provide
surveillance, alerting and ultimately guidance to the UAV [7]. A separation distance of 500ft is required to
prevent (near) mid-air collisions [8].

A DAA system can be categorized as cooperative or non-cooperative [9, 10, 11]. A cooperative detection
method requires the invading aircraft to be equipped with a system compatible with the DAA system on the
MAV, while a non-cooperative method does not have this requirement. A non-cooperative detection method
is considered active when the DAA emits a signal, and passive when it does not.

Examples of cooperative detection methods are the Traffic Alert and Collision Avoidance System (TCAS) and
Automatic Dependent Surveillance Broadcast (ADS-B). While both transponder-based methods are reliable,
they are not feasible as a detection method for MAVs. TCAS is too heavy, too large and has a too high power
consumption to be equipped on any MAV. On the other hand, ADS-B transceivers such as the pingRx2 are
light-weight with low power consumption, but light-weight aircraft are not (required to be) equipped with
the system.

Active non-cooperative detection methods include radar and laser systems. Several small-scale radar systems
have been developed to be equipped on an MAV[12, 13]. In [12], aircraft are differentiated by their Doppler
signature, which depends on engine dimensions of the target aircraft. Other small-scale systems use a Syn-
thetic Aperture Radar (SAR), but mainly for terrain mapping and not for aircraft detection [13]. Detection
based on laser methods such as LIDAR (Light Detection and Ranging) suffer from a narrow field-of-view [10].

Passive non-cooperative detection include optical and acoustic systems. An Optical system must be com-
bined with a thermal (infrared) camera to provide coverage in non-clear weather conditions. Detection meth-
ods for optical system include sky segmentation[14, 15], motion-based approaches[16] or classification using
deep neural networks [17].

Acoustic systems require a single microphone for aircraft detection, or a microphone array for localization.
An advantage of a such a system is that a single microphone can capture sound from any direction, whereas
an optical system would require an array of cameras to obtain a full Field of View (FOV). While an acoustic
vector sensor, mounted on an MAV, is used in [18] to localize nearby sounds, general research regarding the
feasibility of aircraft detection based on their acoustic signature is limited.

1https://www.easa.europa.eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%20for%
20the%20operation%20of%20unmanned%20aircraft.pdf

2https://uavionix.com/products/pingrx/

https://www.easa.europa.eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%20for%20the%20operation%20of%20unmanned%20aircraft.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%20for%20the%20operation%20of%20unmanned%20aircraft.pdf
https://uavionix.com/products/pingrx/

1.1 Motivation and Research Question

Therefore, the objective of this thesis is to design an autonomous system which enables an in-flight MAV to
register the presence or absence of aircraft in real-time by analyzing the sound in its environment. While
research specifically targeting aircraft sound is limited, more general topics such as Sound Event Detection
(SED) or -Classification (SEC) have been researched for decades. Research into robust SEC is especially of in-
terest, as the introduction of random noise to the dataset more accurately reflects the noise-corrupted sound
recorded by the MAV. In the preliminary work of this thesis, the methodology and performance of recent
sound classification methods will be analyzed, such that a selection can be implemented during the thesis.

The main research question is formulated as follows:

How can an in-flight Micro Aerial Vehicle, equipped with an acoustic sensor, detect the presence of nearby
aircraft?

1.2 Structure

The report is divided into three main parts, structured as follows. The main contributions of the thesis are
presented in the scientific paper in Part I. The paper, which can be read as a standalone document, is di-
vided into five sections. The first section gives a brief overview of current aircraft detection methods and
their applicability to MAVs. Section II of the paper summarizes work related to sound classification and ego-
noise reduction, applicable to aircraft detection and/or MAVs where possible. Section III outlines the data
acquisition and feature extraction/pre-processing of the acquired data. Section IV describes the experiments
conducted and their outcome. Finally, section V lists the conclusions of the research and suggestions regard-
ing future aircraft detection research.

Part II, consisting of chapters 2 to 5, concerns an extensive literature review. Chapter 2 provides a brief sum-
mary of aircraft sound characteristics, as well as an overview of common sound representations suitable for
classification and detection. In Chapter 3, sound classifiers are introduced and analyzed. Chapter 4 reviews
approaches for ego-noise removal. Finally, Chapter 5 provides a synthesis regarding the literature survey.

In Part III, consisting of chapters 6 to 8, the preliminary analysis is conducted. Chapter 6 investigates the per-
formance of various established feature representations in combination with Convolutional Neural Network
architectures based on prior research. Chapter 7 assesses whether ego-noise prediction based on MAV flight
data is a viable approach. Finally, Chapter 8 summarizes and discusses the findings of both analyses.

2

I
Scientific Paper

3

Acoustic-Based Aircraft Detection and Ego-Noise
Suppression for Micro Aerial Vehicles

C.A.M. van der Woude∗‡, J.C. van Dijk†‡, G.C.H.E. de Croon†‡

∗MSc.student, †Supervisor,
‡ Control and Simulation, Department of Control and Operations

Delft University of Technology, Delft, The Netherlands

Abstract — Widespread usage of Micro Aerial Vehicles (MAVs) has led to various airspace safety breaches,
including near mid-air collisions with other aircraft. To ensure safe integration into general aviation, it is
paramount that MAVs are equipped with an autonomous detect and avoid system when flying beyond
the visual line-of-sight of the operator. The purpose of this research is to investigate the feasibility of
acoustic-based aircraft detection, which has generally been overlooked in favor of optical or radar-based
technology. Effective sound-based aircraft detection on-board an MAV requires suppressing the dynamic
ego-noise it generates during flight, which would otherwise pollute the recorded environmental sound.
This paper proposes using a recurrent neural network to predict the generated noise, given a sequence
of MAV flight data, so that it can be effectively removed from noisy recordings. For aircraft detection, a
convolutional neural network in combination with Mel spectrogram features is designed to classify noise-
free environmental sound as either aircraft or non-aircraft, achieving 97.5% accuracy. To reconstruct the
noisy environment of an MAV flight, these noise-free sounds are mixed with ego-noise at mix ratios up to
1.00. When evaluating in these mismatched conditions, accuracy decreases to 95.0% and 47.5% with- and
without ego-noise suppression, respectively. Although ego-noise suppression can not prevent a drop in
performance, the large difference between the mismatched conditions does demonstrate the benefits of
the proposed denoising approach on aircraft detection.

Index Terms — Aircraft Detection, Sound Event Classification, Ego-Noise Suppression, Mel Spectrogram,
Artificial Neural Networks

I Introduction

Widespread usage of Micro Aerial Vehicles (MAVs)
has led to various airspace safety breaches, such as
near mid-air collisions with other aircraft [1]. As
these MAVs are too small to be detected by manned
aircraft, they must be equipped with autonomous
Detect and Avoid (DAA) systems when operating out-
side the visual line-of-sight of the operator, to ensure
safe integration into general aviation. The purpose of
the DAA system is then to provide surveillance, alert-
ing and ultimately guidance to the MAV [2]. This sec-
tion aims to summarize current and potential aircraft
detection systems and their applicability to MAVs.
The design of an avoidance system is a different mat-
ter and beyond the scope of this research; the pro-
posed maneuver when a threat is detected is simply
to land immediately.

The detection system can be categorized as ei-
ther cooperative or non-cooperative. As the name
implies, a cooperative module requires both the in-
vading aircraft and the MAV to be equipped with
a compatible detection method. Examples of ro-
bust cooperative detection modules in modern avia-
tion are the Traffic alert and Collision Avoidance Sys-

tem (TCAS) and Automatic Dependent Surveillance-
Broadcast (ADS-B). Naturally, systems such as TCAS
are too heavy, large, and power-consuming to be
equipped on any MAV. On the other hand, light-
weight low-power ADS-B transceivers are commer-
cially available. However, lighter aircraft such as
emergency helicopters and general aviation, are not
required to be equipped with an ADS-B system, and
as such compliance with ADS-B detection can not be
guaranteed.

Non-cooperative methods do not required the
invading aircraft to be equipped with it, and can be
further divided into active and passive modules. Ac-
tive modules, such as laser or radar systems, transmit
a signal to the environment. Although light-weight
radar systems appropriate for MAVs exists, and have
been used successfully for terrain imaging [3], the
technology is still in an early stage. Passive mod-
ules include optical and acoustic sensors. Optical
systems are often combined with thermal sensors to
provide coverage in non-clear weather conditions.
Detection methods using optical sensors include sky
segmentation[4, 5], motion-based approaches[6] and
classification with deep neural networks[7].

Compared to optical systems, research regard-

5

ing acoustic detection systems is still in an early
stage. In [8],a feasibility study was conducted regard-
ing sound localization from an MAV with an acoustic
vector sensor. Since then, various approaches to de-
tect intruding MAV using sound have been proposed,
most of which involve the design of a spatial filter us-
ing a microphone array.

The objective of this research is to investigate
the feasibility of acoustic-based aircraft detection on
an in-flight MAV, using only a single microphone. As
the microphone is mounted close to the body of the
vehicle, non-stationary noise generated by the mov-
ing MAV (ego-noise) will be present in the recordings.
The approach taken during this research is to employ
an Artificial Neural Network (ANN) to learn the rela-
tion between data measured from the MAV (e.g. mo-
tor speed, velocity) and ego-noise, such that the latter
can be effectively filtered out. The noise-free remain-
der of the sound can then be used for aircraft detec-
tion, by classifying the incoming sound as either air-
craft or non-aircraft.

Two scenarios have been considered in this re-
search. In the first scenario, a separate ANN is de-
signed for the ego-noise prediction stage and the air-
craft classification stage. The denoised input for the
aircraft classifier is then obtained by subtracting the
predicted ego-noise from the noise-corrupted sig-
nal. In the second scenario, the ego-noise removal
and aircraft classification is performed simultane-
ously in a single ANN, which is given both the noise-
corrupted audio and MAV data.

The structure of this article is as follows. Sec-
tion II discusses research performed in the audio
classification- and ego-noise removal domains, re-
spectively. Section III elaborates on the acquisition
and processing of the data required for the two test
scenarios. Section IV explains the model selection
process and describes the results for both test scenar-
ios. Finally, the conclusions of the research are out-
lined in Section V,

II Related Work

A Audio Classification with Convolu-
tional Neural Networks

Research into audio processing tasks (e.g. automatic
speech recognition, sound event detection) has been
conducted for decades. Initially, established classi-
fiers like Gaussian Mixture Models (GMMs) and Hid-
den Markov Models (HMMs) were used in combina-
tion with manually engineered features such as the
Mel-Frequency Cepstral Coefficients (MFCCs). In re-
cent years, a shift has taken place in which feature
learning using ANNs has become favored over these
traditional classifiers [9].

Convolutional Neural Networks (CNNs) in par-
ticular achieve state-of-the-art performance in visual
recognition tasks by taking advantage of the data lo-
cality in images [10]. This also translates to the audio
processing domain, where the best performing input
feature is usually an image representation, i.e. a time-
frequency spectrogram [11]. The most frequently
used variation is the log-power Mel-frequency spec-
trogram (referred to as Mel spectrogram for brevity).
Although the Mel scale has historically been used for
speech processing tasks, as it is based on human per-
ception of frequencies, the higher frequency resolu-
tion at low frequencies has proven beneficial for gen-
eral audio processing tasks as well [9]. Variations
of the Mel spectrogram are used regularly, such as a
frequency smoothed spectrum[11] or augmentation
with the time-derivative of the spectrum [10, 12].

Network architectures have remained relatively
shallow, with 2-3 convolutional followed by 2-3 fully-
connected (FC) layers [10, 11, 12, 13]. In [10], a tall
kernel is used in the first convolutional layer to learn
filters spanning almost the entire frequency band.
Kernels with a small receptive field are used in [13]
to learn small, localized patterns which can be fused
in subsequent layers to detect larger time-frequency
signatures. In [12] it is suggested that by making use
of dilated kernels, the extracted features are more
separable than those extracted from traditional ker-
nels, which implies a better capability for providing
discriminative high-level features.

The majority of the research regarding audio
classification using ANNs focuses on multi-class clas-
sification, on datasets with 10-50 classes such as Ur-
banSound8k [14] or ESC-50[15]. Binary classification
tasks are usually limited to speech- or music onset
detection. Research regarding aircraft/non-aircraft
classification specifically is especially limited. In [16],
a GMM classifier using MFCC features is used to de-
tect airplane take-off sound events in noisy environ-
ments, with 94% accuracy. To the authors best knowl-
edge, the only study regarding aircraft detection us-
ing MAVs is conducted in [17]. In [17], a CNN in com-
bination with Mel spectrogram features is used to de-
tect aircraft presence in audio recorded from an air-
port runway. Although MAV noise is mixed onto the
recordings to simulate its ego-noise, this is not ac-
counted for during training. This work is intended as
a continuation of [17], with the aim of predicting the
ego-noise generated by an MAV such that it can be
effectively filtered from noisy input data to improve
classification.

B Ego-noise Suppression

The noise emitted by a multi-rotor UAV can be con-
sidered a mixture of narrow-band harmonic noise

6

and broadband noise [18]. The harmonic compo-
nent consists of the mechanical noise generated by
the rotating motors, with the fundamental frequen-
cies of these components proportional to the rota-
tional speed of the rotor, while the broadband com-
ponent is comprised of noise generated by the pro-
peller blades cutting through the air [19]. They also
deduce that the ego-noise of a quad-rotor UAV can
be modeled as the sum of four directional point-
sources and one directionless diffuse noise which
results from superposition of the point-source and
broadband noise. Although the noise spectra vary dy-
namically with the motor rotation speed, the mixing
network itself can be assumed stationary even on a
moving MAV, as long as the relative positions between
microphone(s) and motors is kept constant [19].

Ego-noise suppression methods can be divided
into self-contained and dependent methods. Self-
contained methods rely solely on information from
an array of microphones, usually mounted on or
around the MAV in a circular configuration. In [20], a
delay-and-sum beamformer consisting of 16 micro-
phones, mounted around a hovering MAV, identifies
the location of a speaker based on the sound intensity
in the captured environment. In [19], blind source
separation is applied to denoise a speech signal con-
taminated with ego-noise of a moving quad-rotor, re-
sulting in Signal-to-Noise Ratio(SNR) improvements
up to 20dB for configurations with at least six mi-
crophones. In [21], ego-noise is reduced by exploit-
ing the time-frequency sparsity of the energy peaks
of speech and MAV noise in a mixed recording. Af-
ter estimating the direction of arrival of the sound in
each bin via a spatial likelihood function, the bins be-
longing to the target sound are extracted based on
their proximity to the target direction. Although this
method provides better noise attenuation than blind
source separation, it does require the target direction
to be known a priori. This method is extended in [22]:
instead of providing the target DOA beforehand, it is
estimated under the assumption that the output of
a spatial filter which successfully extracts the target
sound shows a higher non-Gaussianity at low SNR
scenarios. In [23], this method is applied to a mov-
ing sound source by tracking the noisy estimations of
the DOA with a particle filter.

Dependent approaches require additional sen-
sory information, such as the rotational speed of the
motors. Research regarding such approaches for de-
noising of multi-rotor MAVs is rather limited. An or-
der analysis-based approach is suggested in [24] for
a single-propeller fixed-wing UAV, where the noise
spectrum is represented in a revolution-order do-
main instead of the time-frequency domain. Because
only a single motor is present, the ego-noise gener-

ated occurs in narrow bands at orders of its funda-
mental frequency. The mixed signal is then denoised
by subtracting all energy at the harmonic orders from
the total energy within the spectrum. A drawback
of this method is that it does not discriminate be-
tween target sound and unwanted noise; any target
sound present at the orders will not be observable in
the noise-free signal. This may especially be a prob-
lem for a moving multi-rotor MAV, where the bands
are less narrow due to deviations between the rota-
tional speed of each motor. In [25], the ego-noise
spectrum of a ground-based robot is predicted via
template-based online learning. Prior to the exper-
iments, a template database is generated contain-
ing pairs of joint states and ego-noise spectra. For
each new recording, the ego-noise spectrum is esti-
mated by retrieving the noise template correspond-
ing to the state vector in the database which is closest
to the recorded states. If the difference between these
state vectors exceeds a given threshold and no other
sounds are present, the pair is added to the database
instead.

This paper uses a dependent ego-noise filter-
ing approach because the extra sensor data provided
by the MAV is likely to improve ego-noise predic-
tion. The template learning method in [25] is not
too dissimilar to the method used in this paper; the
key difference is that the neural network-based ego-
noise prediction is not bounded by the finite size of a
database.

III Methodology

This section contains the methodology of the report,
which is divided into two parts. Section III-A outlines
the data acquisition process for ego-noise prediction
and aircraft classification, while Section III-B details
the preprocessing and feature extraction of the ac-
quired data.

A Data Acquisition

Ego-Noise Prediction

The data required for ego-noise prediction has been
obtained by logging short flights of a Parrot Bebop2
drone within an 8-by-8 meter indoor area. Com-
mands to the MAV (e.g. take-off, flight, landing) were
given via Paparazzi UAV3, which was running on a
nearby Ubuntu 18.04 laptop. In flight, the MAV nav-
igated autonomously through the arena by guiding
itself towards waypoints, which were generated ran-
domly and on-the-fly. The horizontal components of
each waypoint were within 3 meters of the center of
the area; the height of each waypoint was constrained
between 0.5 and 3.5 meters.

3https://github.com/paparazzi/paparazzi

7

The data gathered during each flight contains a
sequence of state vectors, measured at approximately
10 ms intervals. Each state vector contains seven
subgroups, totaling 23 states: the rotational speed of
each of the four rotors (RPM), the four stabilization
commands (thrust, roll, pitch and yaw), the position
(NED), velocity (NED), acceleration (NED), body at-
titude angles (pitch, roll, yaw) and body rotational
rates (pitch rate, roll rate, yaw rate). With the ex-
ception of position and velocity, which were relayed
to the drone via a motion capture system within the
arena, all aforementioned states were measured on-
board the MAV itself.

The in-flight MAV noise has been recorded at
a sample rate of 44.1 kHz using a USB microphone,
connected to a Raspberry Pi 3 (Pi), which itself was
powered by the battery of the drone. The Pi was
mounted on the bottom of the drone, allowing for
battery swapping without needing to remove the de-
vice. This ensured that the microphone remained in
a fixed position w.r.t the MAV, which is crucial for ob-
taining consistent noise measurements. A drawback
of this configuration is the increase in noise in the
recordings due to the downward airflow generated by
the propellers.

The data collection process is done automati-
cally. As soon as the motors are turned on using Pa-
parazzi, the MAV starts transmitting state data via
UDP to the ground station (laptop). In turn, the
ground station signals the Pi to begin recording and
transmitting audio. The time delay between the MAV
and microphone recordings caused by this signal
transmission is negligible (¿ 1 ms). Likewise, data
transmission ends when the motors are turned off af-
ter landing. 14 recordings were obtained in total, with
an approximate duration of 50 seconds each. These
were split into a training, validation and test set with
a {0.6, 0.2, 0.2} split between the respective sets. With
14 recordings available, this resulted in a division of
{8, 3, 3} for the dataset.

Aircraft Classification

The ESC-50 dataset [15] is used for training and
evaluating the aircraft classifier, as it is one of the
few datasets containing environmental recordings
of helicopters. This dataset comprises 50 classes,
each class itself containing 40 five-second recordings.
ESC-50 was preferred over the much larger dataset
AudioSet [26], since the labeling in the latter was less
accurate.

For aircraft classification, the classes ’airplane’
and ’helicopter’ are labeled as ’aircraft’ (1), while the
classes ’engine’, ’train’ and ’wind’ are labeled as ’non-
aircraft’ (0). The ’wind’ class was chosen as a counter-
example because the sound recorded by an outdoor
MAV will likely be contaminated with wind, which

should not result in false positives. Learning to clas-
sify wind as non-aircraft sound is especially impor-
tant because all MAV recordings have taken place in-
doors, thus it will not be detected by the ego-noise
suppressor. The ’engine’ class was chosen since en-
gine noise is often periodic in nature, as is the ro-
tor blade noise found in the recordings belonging
to the ’helicopter’ class. The engines in this class
belong predominantly to road vehicles; no aircraft
engines appear within the class. Finally, the ’train’
class was selected because the passing by of trains
and aircraft both result in an observed change in fre-
quency (Doppler shift) in the recording. The remain-
ing classes have been discarded as they should rarely
occur during an MAV flight. Silent fragments within
recordings, most of which were present in the ’en-
gine’ and ’helicopter’ classes, have been pruned as
well.

The dataset was then split into a training, vali-
dation and test set with a ratio of {0.64, 0.16, 0.20} be-
tween sets and even distribution between categories
({25, 7, 8} recordings per category per set). The train-
ing set is augmented in order to increase the vari-
ety of available training data, without altering the se-
mantics of each label. Three types of data augmen-
tation were applied separately to each recording of
the training set, increasing the size of the training set
from 125 to 1,625 recordings:

• Intra-class mixing: mix each recording with a ran-
dom recording of the same class (within the train-
ing set). The mix ratio is randomly chosen between
0.2 and 0.5, and a random offset is applied to the
chosen recording. The mixing is done four times,
with a different recording each time. The objective
of intra-class mixing is to ensure that a mix of two
similar events occurring within one recording, e.g.
two airplane fly-overs, should still be identified ap-
propriately.

• Time stretching: slow down or speed up the record-
ing. Each recording was time stretched by the fac-
tors (0.70, 0.85, 1.15, 1.30), resulting in four addi-
tional recordings.

• Pitch shifting: lower or raise the pitch of the record-
ing. Each recording was pitch shifted by (-2, -1, 1, 2)
semitones, resulting in four additional recordings.
In [13], a significant increase in classification accu-
racy was reported with pitch shift augmentation.

B Preprocessing and Feature Extraction

This section describes the steps necessary to make
the raw data suitable for analysis in the two scenar-
ios.

8

0 5 10 15 20 25 30 35
Time

0

512

1024

2048

4096

8192

16384

Hz

Mel-spectrogram (60 frequency bins)

0 5 10 15 20 25 30 35
Time [s]

0.4

0.5

0.6

0.7

0.8

0.9

Ro
to
r s

pe
ed

 (s
ca

le
d)

Rotor speed over time
Rotor 1
Rotor 2
Rotor 3
Rotor 4

0 5 10 15 20 25 30 35
Time [s]

−0.4

−0.2

0.0

0.2

0.4

0.6

St
ab

ili0
at
io
n
co

m
m
an

ds
 (s

ca
le
d)

Stabili0ation commands o−e) time
Th)ust command
Roll command
Pitch command
Ya. command

0 5 10 15 20 25 30 35
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

He
ig
ht
 (s
ca
le
d)

Height over time
Height [m]

0 5 10 15 20 25 30 35
Time [s]

−0.5

0.0

0.5

1.0

Ve
lo
cit

y
(s
ca

le
d)

Velocity over time
Horizontal Velocity
Vertical Velocity

0 5 10 15 20 25 30 35
Time [s]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

At
tit
ud
e
(s
ca
le
d)

Attitude over time
roll angle
pitch angle
yaw angle

0 5 10 15 20 25 30 35
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

At
tit
ud

e
ra
te
 (s

ca
le
d)

Attitude rate over time
roll rate
pitch rate
yaw rate

Figure 1: Example of the noise spectrum of an MAV flight
(top), and several corresponding states.

Scenario 1: Ego-Noise Prediction

The data required for ego-noise prediction consists
of state data as well as audio data. The preprocess-
ing of the MAV states consists of three main adjust-

ments to the gathered data. The first adjustment
concerns the pruning of unnecessary states and the
merging of redundant states. The x- and y-coordinate
of the position vector are discarded, as they should
have no influence on the ego-noise. The z-coordinate
(’down’) is kept, since ground effects may influence
the noise footprint when the MAV is close to the
ground. It is negated and referred to as height The
x- and y-coordinate of velocity and acceleration are
combined into horizontal velocity and acceleration,
respectively. For consistency, downward velocity and
acceleration are negated and referred to as vertical
velocity and vertical acceleration. The second adjust-
ment is the scaling of all states to an interval close
to [0, 1] or [-0.5, 0.5] using a constant factor for each
state. The third and final adjustment is the augmen-
tation of the state vector with the time-derivative of
the motor speed and stabilization commands. The
aim of these two augmentations is to provide addi-
tional dynamics to the network. All aforementioned
changes, including the scaling factors, are summa-
rized in Table 1.

Measured [Unit] Altered Scaling

Motor speed [rpm] - 12,000
- Motor speed (delta) -
Stabilization commands [-] - 12,000
- Stabilization commands (delta) -
Position (z) [m] Height 3.5
Velocity (x, y) [m/s] Velocity (horizontal)

p
8

Velocity (z) [m/s] Velocity (vertical) 2
Acceleration (x, y,) [m/s2] Acceleration (horizontal)

p
800

Acceleration (z) [m/s2] Acceleration (vertical) 20
Attitude angles (φ, θ, ψ) [rad] - π

Attitude rates (p, q, r) [rad/s] - π

Table 1: The measured state vector (left), alterations made
to the components of the measured state vector (middle),
and scaling applied to the altered state vector (right).

The predicted ego-noise must be subtracted
from the noise-contaminated data obtained during
regular flight, so that a denoised feature can be fed
to the aircraft classifier. It is therefore logical to pre-
dict the noise in a format compatible with the fea-
tures extracted from the ESC-50 dataset, which are ul-
timately used to train the classifier. The chosen time-
frequency representation is a Mel spectrogram with
60 frequency bins, extracted using a window length of
1024 samples (23.2 ms) and a hop length of 512 (11.6
ms). The rationale behind choosing this representa-
tion is described in detail in the next section.

The state vectors and time-frequency spectra
must now be synchronized, i.e. each state vector
(input) must be coupled to one frame of the spec-
trogram (target). A new state vector is obtained ev-
ery 10 ms, while a new spectrogram frame is gener-
ated approximately every 11.6 ms. Synchronization
is done by matching each frame with the state vec-
tor closest in time, while the state vectors without a

9

matching frame are discarded. An overview of the
obtained ego-noise and corresponding scaled states,
with the exception of acceleration, delta-rpm and
delta-commands due to space limitations, is given in
Figure 1

Two more adjustments are made to finalize the
dataset. The first is to omit the take-off phase, iden-
tified by a spike in the rpm and delta-rpm early on in
the recording. In Figure 1, this spike occurs around
the 1-second mark. The second adjustment stems
from the assumption that noise induced by the MAV
does not vanish instantaneously; instead it gradually
dissipates over subsequent frames. This context in
time is added to the dataset by transforming each
input-output pair into a sequence which includes the
previous six pairs (i.e. the sequence length is 7). In
other words, state vector 1-7 are used to predict the
ego-noise at frame 7, state vector 2-8 predict the ego-
noise at frame 8, etc. Although the first six pairs of
each recording (roughly 70 ms) must be discarded be-
cause they contain an incomplete sequence, this is a
negligibly small loss of data. The final dataset con-
tains approximately {29k, 11k, 10k} samples for the
training, validation and test set, respectively.

Scenario 1: Aircraft Classification

Prior to being fed to the classifier, the audio wave-
form is converted to a time-frequency representa-
tion via the Short-Term Fourier Transform (STFT).
The Mel spectrogram is the representation of choice,
as it outperformed both linear and constant-Q fre-
quency scaling in a preliminary analysis conducted.
Most noteworthy was the abysmal performance of
the constant-Q spectra, despite having the highest
frequency revolution at lower frequencies, where ve-
hicle sounds are expected to dominate. The Mel
scale, based on human perception of speech, is lin-
ear until 700 Hz and then scales logarithmically with
frequency:

fmel = 2595log10

(
1+ fH z

700

)
. (1.1)

Extracting the feature from each recording is as
follows:

1. The recording is (re-)sampled at 44.1 kHz and
silent fragments at the start and/or end of the
recording are trimmed. A preliminary analysis in-
dicated that maintaining a high sample rate was
beneficial for performance, despite aircraft sound
dominating at frequencies below 12 kHz (i.e. a
cut-off sample rate of 24 kHz).

2. The Mel spectrogram of each recording is ex-
tracted, where the STFT uses a window length
of 1,024 (≈23.2 ms), hop size of 512 (≈11.6 ms),
which are fairly standard values. 60 frequency bins

were chosen for the Mel filterbank, as this led to
the best performance under noise-free conditions
in scenario 1. The obtained power spectrum is
then converted to a logarithmic scale to magnify
the differences found in the spectra, which is es-
pecially important for classification. This is step 1
in Figure 2

3. The Mel spectrum of the recording is then split up
into segments of 60 frames each (approximately
0.7 seconds), with 50 % overlap between consec-
utive segments. As with the number of Mel fil-
terbank bins, this segment length was chosen be-
cause it led to the best performance under clean
conditions. By using an overlap between consec-
utive segments, the size of the resulting dataset is
increased. The splitting of segments is centered
w.r.t. the recording: a five-second recording con-
sists of 431 frames, and is split using frame indices
{6-65, 36-95, ..., 366-425}. This is step 2 in Figure 2.

4. The segment is smoothed in frequency via a Sav-
itzky–Golay filter with a width of 3 and padding
with first-order interpolation. After the initial ex-
periments, this led to an additional 1.5% increase
in accuracy. [11] report similar findings after fre-
quency smoothing.

5. The spectrum is re-scaled to a [0, 1] interval, serv-
ing as the first input channel to the network.

6. The second input channel is the smoothed time-
derivative of the first channel (delta for brevity).
The delta is extracted via a first-order Savitzky-
Golay filter with a width of 9 and ’mirror’ padding,
similar to [10] and [12]. The above three steps are
summarized as step 3 in Figure 2.

Extract Mel spectrogram

Feature extraction process

Frequency smoothing and delta extraction

Split into overlapping segments

Figure 2: Overview of the feature extraction process for
aircraft classification in scenario 1.

10

Scenario 2: Aircraft Classification

In the second scenario, a single network is trained
to simultaneously filter noise and classify incoming
sound. This network requires two inputs; the first
is the noisy Mel spectrum containing aircraft/non-
aircraft sound and MAV ego-noise, the second the
sequence of state vectors corresponding to the ego-
noise. To simulate noise-contaminated recordings,
the noise-free spectra extracted from the ESC-50
subset for scenario 1 (obtained from step 1 in Fig-
ure 2) are mixed with MAV noise. Each ’clean’ spec-
trum is mixed with a random segment of a random
ego-noise spectrum from the same respective subset
(train/validation/test) at a constant mix ratio. Given
a clean spectrum C and an ego-noise spectrum R,
mixed at a ratio r , the mix M is generated as follows:

M = C+ r ·N. (1.2)

Unlike the spectra generated for the clean
dataset (Figure 2), the resulting mix is not scaled back
to a [0, 1] interval. Studies concerning robust audio
classification, which investigate classification perfor-
mance in mismatched conditions, commonly vary
their signal-to-noise ratio (SNR) from 20 to as low as
0 dB [11]. Because the mixing in scenario 2 is done
with scaled log-power spectra and not audio wave-
forms, the term SNR is not applicable here. Instead
an r of 1 is chosen to resemble 0 dB SNR.

The mixed recording and corresponding state
sequence are then split into segments, as per step 2
of Figure 2. Unlike the spectra generated for the clean
dataset, the resulting mix is not scaled back to a [0, 1]
interval. Frequency smoothing and delta extraction
are applied to each segment as per step 3 in Figure 2.
Examples of noise-free and mixed features belonging
to the ’airplane’ and ’engine’ class are shown in Fig-
ure 3 and Figure 4, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

Mel spectrogram (60 bins) of class 'airplane'

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

Mel spectrogram (60 bins) of class 'engine'

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

Figure 3: Example features of an aircraft segment (air-
plane) and a non-aircraft segment (engine), without
added MAV noise.

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

Mel spectrogram (60 bins) of class 'airplane'

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

Mel spectrogram (60 bins) of class 'engine'

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

512

1024

2048

4096

8192

16384

Hz

Figure 4: Example features of an aircraft segment (air-
plane) and a non-aircraft segment (engine), mixed with
MAV noise at a ratio of 1.00.

Scenario 1 and 2: Mismatched Conditions

To test the robustness of the classifier, additional
evaluation sets are created in mismatched noise con-
ditions. In mismatched conditions, the amount of
noise present during training (if any) differs from the
noise at evaluation. For scenario 2, where the net-
work is trained at r =1.00, additional evaluation sets
with r = {0.75, 0.50, 0.25} are created.

Because the classifier from scenario 1 is trained
on noise-free input (r =0) and does not have access to
the state vector to suppress the additional noise, mis-
matched conditions are created by evaluating on the

11

denoised estimate of the clean spectrum. This esti-
mate Ĉ is obtained by subtracting the predicted ego-
noise spectrum P from the mixture M (obtained via
Equation (1.2)), at the appropriate noise ratio r :

Ĉ = M− r ·P. (1.3)

To compare the robustness with scenario 2, r = {0.25,
0.50, 0.75, 1.00} is used to generate the mismatched
evaluation datasets for scenario 1. Additionally, a
fourth augmentation set is generated solely for sce-
nario 1, consisting of a denoised mixture at r =1.00.

IV Experiments

This section outlines the chosen model architecture
and assesses the outcome of the experiments regard-
ing scenario 1 and 2. Section IV-A covers scenario 1,
which consists of separate aircraft classification and
ego-noise prediction. Scenario 2, where aircraft clas-
sification and ego-noise suppression is done simulta-
neously, is covered in section IV-B.

A Scenario 1

Ego-Noise Prediction

Two types of networks have been considered for
the ego-noise prediction. The first is a Multi-Layer
Perceptron (MLP), a regular feedforward network
consisting only of fully-connected (dense) layers.
The second is a Recurrent Neural Network (RNN),
which consists of recurrent layers followed by fully-
connected layers. The recurrent layer allows for
learning long-term temporal dependencies found in
the data by sharing parameters across several time
steps. In the context of ego-noise prediction, a time
sequence containing the previous and current state
vectors can be used to predict the current ego-noise
spectrum. Because the standard recurrent layer suf-
fers from vanishing and exploding gradients, its acti-
vation function is replaced by a memory cell to mit-
igate these problems. Two common cells are the
Gated Recurrent Unit (GRU) [27] and the Long Short
Term Memory (LSTM) [28], both of which will be in-
vestigated during the experiment.

Bayesian Optimization (BO) [29] has been used
to find the optimal sequence length, network archi-
tecture (layer width, depth) and network type (MLP,
GRU or LSTM). The advantage of BO over a grid
search is that observations from previous evaluations
determine the next parameterization to be evaluated.
For each sequence length (1-10) and network type, 20
searches were conducted through the network depth
and width. Each recurrent layer was bounded be-
tween 40 and 120 units, while each fully-connected
layer was bounded between 40 and 200 units. A layer

depth of 1-3 was considered for the MLP, while the
GRU and LSTM would consist of 1-2 recurrent layers
followed by 1-2 fully-connected layers.

The training for each parameterization was
identical. The AdamW algorithm[30] was used with
a learning rate of 0.001 and weight decay of 0.01.
Training was done for 20 epochs, using a batch size
of 256. The lowest validation loss achieved by each
combination of sequence length and network type af-
ter 20 epochs is tabulated in Table 2. A recurrent net-
work using GRU cells in the recurrent layer, with a
sequence length of 7 leads to the best performance.
This network contains two recurrent layers with 120
and 90 units, followed by two dense layers contain-
ing 190 and 160 units, respectively. To provide the
predicted ego-noise spectra, the network was trained
for 200 epochs, with an early stopping patience of 25
epochs.

Ego-noise spectra are illustrated in Figure 5. The
top row indicates the original spectrum, the middle
row the predicted spectrum, and the bottom row is
the residual, obtained by subtracting the predicted
spectrum from the original. It appears the model es-
timates the ego-noise considerably well. The domi-
nant frequency, fluctuating around 400 Hz, as well as
higher order harmonics are followed adequately. The
model also notices the instances of broadband noise
around the 15- and 36-second mark. The abrupt
changes in direction caused by the autopilot setting
a new waypoint, most notable around the 4-, 13-, 19-
and 23-second mark, are also compensated for by the
model.

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Original spectrum

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Predicted spectrum

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Residual spectrum

Figure 5: MAV ego-noise spectra: original (top), predicted
(middle) and residual (bottom).

12

1 2 3 4 5 6 7 8 9 10

MLP 1.535 1.549 1.572 1.562 1.576 1.558 1.569 1.575 1.561 1.565
GRU 1.561 1.561 1.546 1.524 1.552 1.517 1.512 1.540 1.550 1.519

LSTM 1.567 1.550 1.537 1.540 1.533 1.534 1.531 1.520 1.536 1.523

Table 2: Overview of the lowest MSE loss (1e-3) of each type of ego-noise model for each state vector sequence length.

Aircraft Classification

The network chosen for the aircraft classification is
naturally a CNN, as this type of model has achieved
state-of-the-art performance in audio classification
problems when combined with spectrogram input.
While many network configurations are readily avail-
able through prior research, these networks are typi-
cally used for multi-class or multi-label classification
of datasets orders of magnitude larger than the one
used in this article, and are therefore far more com-
plex than required. Instead, the architecture of the fi-
nal network was obtained via trial and error by man-
ually testing combinations with varying input shape,
filter size, layer depth and layer width. To speed up
this process, the optimal network configuration was
selected by evaluating on the dataset without aug-
mentation, which is approximately 14 times smaller
than the fully augmented dataset.

The best performing architecture consist of
three convolutional layers, followed by two fully-
connected layers and one linear output layer. The
first two convolutional layer contain 16 output chan-
nels, with a kernel size of (5, 5) and a kernel dila-
tion of (2, 2). An advantage of the dilated kernels is
that they offer an increased receptive field (9 by 9)
without the increase in model complexity that comes
with a larger kernel [12]. Both layers are also fol-
lowed by (2, 2) max pooling with identical stride,
which is a common procedure to down-sample the
layer output while retaining the features that trig-
ger a strong response. The third and final convolu-
tional layer contains 32 output channels and also has
a kernel shape of (5, 5), but contains neither dilation
nor is it followed by pooling. All convolutional lay-
ers use the Rectified Linear Unit (ReLU) as the acti-
vation function between layers. Additionally, batch
normalization[31] is applied before the ReLU oper-
ation of each convolutional layer, speeding up the
learning. The two fully-connected layers that follow
contain 128 and 32 output units, respectively. Both
layers also use ReLU activation, as well as a dropout
of 0.5 during training to mitigate over-fitting. The
output layer is linear, with a sigmoid function which
transforms the output to a score between 0 and 1. An
overview of the model is given in the top section of
Figure 6.

The experiment considers the performance and
robustness of the classifier with and without data

augmentation. After optimization using limited
training data, the network is re-trained once for each
of the four individual augmentations, and once with
all augmentation data, to assess whether the aug-
mentations are beneficial. Each of these six models
was then evaluated in mismatched denoised condi-
tions, which were the result of the mismatch between
predicted and actual ego-noise. These tests were also
repeated under regular mixed conditions (i.e. with-
out ego-noise reduction) to demonstrate the effects
of the ego-noise reduction on classification perfor-
mance.

Each model is trained in identical fashion. The
AdamW algorithm[30] is used for training, which is
an adaptation of the established Adam algorithm
that decouples the gradient update and weight decay.
Training is done for 100 epochs with a learning rate
of 0.0001 and a weight decay of 0.01. Early stopping
terminates training if the validation loss does not im-
prove after 25 epochs. The batch size used for train-
ing is 256.

The models that performed best in at least one
of the evaluation conditions (clean or denoised) are
tabulated in Table 3. In the table, two metrics of ac-
curacy are given. The first is the segment-based ac-
curacy, which is simply the percentage of the input
data that is classified correctly. The second metric
is the recording-based accuracy. The classification
score of a recording is obtained by averaging the clas-
sification scores of its individual segments. For exam-
ple, if one or two out of the 13 segments in a record-
ing are incorrectly classified, the complete recording
is still likely to be classified correctly. As such, the
recording-based accuracy is generally higher than the
segment-based accuracy.

13

Figure 6: Architecture of the CNN used for aircraft classification in scenario 1 and 2. The second input, indicated in cursive, is
only used in scenario 2.

None Class Mix All

Clean 95.0% (97.5%) 91.0% (95.0%) 91.5% (92.5%)

0.25D 95.0% (97.5%) 92.2% (95.0%) 91.5% (92.5%)
0.50D 93.7% (97.5%) 91.7% (95.0%) 91.5% (92.5%)
0.75D 90.5% (97.5%) 90.7% (95.0%) 91.2% (92.5%)
1.00D 83.9% (95.0%) 87.4% (95.0%) 88.7% (92.5%)

0.25M 89.2% (90.0%) 86.2% (87.5%) 85.2% (87.5%)
0.50M 77.9% (77.5%) 80.4% (82.5%) 76.1% (77.5%)
0.75M 68.6% (70.0%) 74.4% (75.0%) 71.4% (67.5%)
1.00M 56.5% (47.5%) 64.8% (65.0%) 64.3% (57.5%)

Table 3: Influence of data augmentation on model perfor-
mance under clean, denoised (D) and mixed (M) condi-
tions.

The network trained without data augmentation
achieves the best performance for the clean dataset,
with 95.0% and 97.5% accuracy for segment- and
recording-based accuracy, respectively. As the mis-
match increases, the models trained with intra-class
mixing augmentation and all augmentations over-
take its segment-based accuracy. By comparing the
top- and bottom half of Table 3, the benefits of the de-
noising approach become clear. Without denoising,
the classifier would only achieve a recording-based
accuracy of 47.5% at the highest noise setting, com-
pared to 95.0% at the equivalent denoised setting.

The ROC curves of the classifier trained without
any augmentation are given in Figure 7 and Figure 8,
evaluated on denoised and mixed settings, respec-
tively. Comparing both figures reaffirms the benefits
of denoising the mixed data prior to classification.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

ROC Curve: no augmentation, denoised evaluation

Noise ratio = 0.00 (AUC = 0.974)
Noise ratio = 0.25 (AUC = 0.974)
Noise ratio = 0.50 (AUC = 0.974)
Noise ratio = 0.75 (AUC = 0.969)
Noise ratio = 1.00 (AUC = 0.949)

Figure 7: Scenario 1: ROC curves for segment-based per-
formance, trained without data augmentation and evalu-
ated on denoised data.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

ROC Curve: no augmentation, mixed evaluation

Noise ratio = 0.00 (AUC = 0.974)
Noise ratio = 0.25 (AUC = 0.949)
Noise ratio = 0.50 (AUC = 0.863)
Noise ratio = 0.75 (AUC = 0.825)
Noise ratio = 1.00 (AUC = 0.806)

Figure 8: Scenario 1: ROC curves for segment-based per-
formance, trained without data augmentation and evalu-
ated on mixed data.

Although binary classification is used, some in-
sight into classification of the original class labels is
still retained. A detailed breakdown of classification
performance per category (i.e. ’airplane’ classified as
’aircraft’, ’engine’ classified as ’non-aircraft’, etc.) is
provided in appendix A for each of the six models at

14

all noise settings.

B Scenario 2

In this scenario, ego-noise filtering and aircraft clas-
sification is done in a single network. This network
consists of two inputs: the two-channel spectrum
contaminated with ego-noise and the states corre-
sponding to the ego-noise. The architecture of the
network is depicted in Figure 6. The top half of the
figure indicates the forward pass of the spectral in-
put, which is identical to the network used in sce-
nario 1. The state input is flattened (27x60 → 1620)
and passes through two fully-connected layers, both
with ReLU activations, with a dropout of 0.2 on the
first layer and 0.5 on the second layer. The state in-
put then merges with the flattened spectral input af-
ter the third convolutional layer.

The network is trained and evaluated five times:
once without augmentation, once for each augmen-
tation, and once with all augmentations given in Sec-
tion III-A. Each network is trained with a mix ratio r of
1.00, and evaluated in the mismatched conditions r =
{0.75, 0.50, 0.25}. The training configuration is identi-
cal to scenario 1: AdamW is used with a learning rate
of 0.0001 and a weight decay of 0.01 and training ends
after 100 epochs with an early stopping patience of
25.

The network trained with all augmentations
achieved the best results in matching conditions,
and its performance is tabulated in Table 4. With a
segment-based accuracy of 91.7% and a recording-
based accuracy of 92.5% in matching conditions, its
performance is not dissimilar to the networks of sce-
nario 1 in Table 3. The ROC curve belonging to this
network is plotted in Figure 9.

All augmentations

r =1.00 91.7% (92.5%)
r =0.75 77.1% (75.0%)
r =0.50 63.8% (65.0%)
r =0.25 60.6% (57.5%)

Table 4: Scenario 2: classification performance in match-
ing and mismatched conditions.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

ROC Curve: scenario 2, all augmentations

Noise ratio = 1.00 (AUC = 0.963)
Noise ratio = 0.75 (AUC = 0.894)
Noise ratio = 0.50 (AUC = 0.826)
Noise ratio = 0.25 (AUC = 0.785)

Figure 9: Scenario 2: ROC curves for segment-based per-
formance, trained with all augmentations and evaluated
in matching and mismatched conditions.

Unfortunately, the network is unable to adapt
when faced with data generated at a different noise
setting and Table 4 shows that its performance
quickly degrades. In the evaluations presented here,
the network likely continues to overcompensate for
the noise level it learned during training. While the
spectrum of each input feature changes at differ-
ent noise settings, the state vector remains constant.
Thus, the network has no way of knowing that the in-
coming spectrum contains less noise, making the im-
plicit denoising network infeasible in practice. When
denoising and classification is separated as in sce-
nario 1, any increase or decrease in noise is accom-
panied by a change in the state vector, and the noise
can continue being attenuated by the denoising net-
work.

V Conclusions

In this paper, a novel ANN-based approach has been
presented which mitigates the effects of MAV ego-
noise on aircraft detection by using on-board sen-
sor data to predict the noise spectrum recorded by a
single microphone. To the author’s best knowledge,
this is the first research which applies ANNs to reduce
ego-noise of an in-flight MAV.

Two aircraft detection pipelines are outlined in
the paper. In the first approach, noise reduction and
aircraft detection is done separately. An RNN with
GRU cells is used to predict the Mel spectrum cor-
responding to a sequence of MAV flight data. This
predicted spectrum is then subtracted from the spec-
trum of a mixed recording, to obtain a denoised
recording that is split into shorter segments and fed
into a CNN-based classifier. The second approach
merges the denoising and classification stages into a
single ANN. The mixed spectra are fed through con-
volutional layers, while the corresponding MAV flight
data is fed through regular feedforward layers and
then merged with the output of the final convolu-
tional layer.

15

Experiments have been performed in match-
ing and mismatched noise conditions. The first ap-
proach achieves an accuracy of 97.5% in the clean
configuration, which decreases to 95.0% on the high-
est noise setting when denoising is applied. With-
out the denoising step, accuracy is a mere 47.5%,
signifying the importance of denoising the noise-
contaminated input prior to classification. The sec-
ond approach achieves an accuracy of 92.5% in
matching conditions, but is unable to adapt to the
mismatched conditions.

The mismatched conditions evaluated in this
article are not dissimilar to robust SED with back-
ground noise. There, the SNR typically does not go
lower than 0dB, which is approximated by setting the
highest noise ratio to 1.00. It is unknown what a re-
alistic SNR (or mix ratio) is for in-flight aircraft clas-
sification. Moreover, recording with an in-flight MAV
in the proximity of other aircraft composes a serious
safety hazard. The primary contribution of this paper
is therefore to illustrate the benefits of ANN-based
MAV ego-noise reduction on aircraft detection.

Lastly, the created ego-noise dataset, as well as
the code used to generate the results is publicly avail-
able on https://github.com/mvanderwoude/aircraft_detector.

https://github.com/mvanderwoude/aircraft_detector

Bibliography

[1] G. Wild, J. Murray, and G. Baxter, “Exploring civil
drone accidents and incidents to help prevent
potential air disasters,” Aerospace, vol. 3, no. 3,
p. 22, 2016.

[2] M. G. Wu, A. C. Cone, S. Lee, C. Chen, M. W. Ed-
wards, and D. P. Jack, “Well clear trade study for
unmanned aircraft system detect and avoid with
non-cooperative aircraft,” in 2018 Aviation Tech-
nology, Integration, and Operations Conference,
p. 2876, 2018.

[3] G. Ludeno, I. Catapano, G. Gennarelli, F. Sol-
dovieri, A. R. Vetrella, A. Renga, and G. Fasano,
“A micro-uav-borne system for radar imaging: A
feasibility study,” in 2017 9th International Work-
shop on Advanced Ground Penetrating Radar
(IWAGPR), pp. 1–4, June 2017.

[4] T. G. McGee, R. Sengupta, and K. Hedrick, “Obsta-
cle detection for small autonomous aircraft us-
ing sky segmentation,” in Proceedings of the 2005
IEEE International Conference on Robotics and
Automation, pp. 4679–4684, April 2005.

[5] T. Zsedrovits, A. Zarandy, B. Vanek, T. Peni,
J. Bokor, and T. Roska, “Visual detection and im-
plementation aspects of a uav see and avoid sys-
tem,” in 2011 20th European Conference on Cir-
cuit Theory and Design (ECCTD), pp. 472–475,
IEEE, 2011.

[6] A. Rozantsev, V. Lepetit, and P. Fua, “Detecting fly-
ing objects using a single moving camera,” IEEE
Transactions on Pattern Analysis and Machine In-
telligence, vol. 39, pp. 879–892, May 2017.

[7] S. Hwang, J. Lee, H. Shin, S. Cho, and D. Shim,
“Aircraft detection using deep convolutional neu-
ral network in small unmanned aircraft systems,”
in 2018 AIAA Information Systems-AIAA Infotech
Aerospace, 01 2018.

[8] E. Tijs, G. de Croon, J. Wind, B. Remes,
C. De Wagter, H. de Bree, and R. Ruijsink, “Hear-
and-avoid for micro air vehicles,” in Proceed-
ings of the International Micro Air Vehicle Con-
ference and Competitions (IMAV), Braunschweig,
Germany, vol. 69, 2010.

[9] T. Virtanen, M. D. Plumbley, and D. Ellis, Com-
putational analysis of sound scenes and events.
Springer, 2018.

[10] K. J. Piczak, “Environmental sound classifica-
tion with convolutional neural networks,” in 2015
IEEE 25th International Workshop on Machine
Learning for Signal Processing (MLSP), pp. 1–6,
IEEE, 2015.

[11] H. Zhang, I. McLoughlin, and Y. Song, “Ro-
bust sound event recognition using convolu-
tional neural networks,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 559–563, April 2015.

[12] X. Zhang, Y. Zou, and W. Shi, “Dilated convolu-
tion neural network with leakyrelu for environ-
mental sound classification,” in 2017 22nd Inter-
national Conference on Digital Signal Processing
(DSP), pp. 1–5, IEEE, 2017.

[13] J. Salamon and J. P. Bello, “Deep convolutional
neural networks and data augmentation for envi-
ronmental sound classification,” IEEE Signal Pro-
cessing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[14] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset
and taxonomy for urban sound research,” in Pro-
ceedings of the 22nd ACM international confer-
ence on Multimedia, pp. 1041–1044, 2014.

[15] K. J. Piczak, “Esc: Dataset for environmen-
tal sound classification,” in Proceedings of the
23rd ACM international conference on Multime-
dia, pp. 1015–1018, 2015.

[16] C. Asensio, M. Ruiz, and M. Recuero, “Real-time
aircraft noise likeness detector,” Applied Acous-
tics, vol. 71, no. 6, pp. 539–545, 2010.

[17] D. Wijnker, T. van Dijk, M. Snellen, G. de Croon,
and C. De Wagter, “Hear-and-avoid for uavs using
convolutional neural networks,” in Proceedings of
the 11th International Micro Air Vehicle Competi-
tion and Conference (IMAV2019), Madrid, Spain,
vol. 30, 2019.

[18] G. Sinibaldi and L. Marino, “Experimental anal-
ysis on the noise of propellers for small uav,” Ap-
plied Acoustics, vol. 74, no. 1, pp. 79 – 88, 2013.

[19] L. Wang and A. Cavallaro, “Ear in the sky: Ego-
noise reduction for auditory micro aerial vehi-
cles,” in 2016 13th IEEE International Conference
on Advanced Video and Signal Based Surveillance
(AVSS), pp. 152–158, Aug 2016.

17

[20] T. Ishiki and M. Kumon, “Design model of mi-
crophone arrays for multirotor helicopters,” in
2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 6143–6148,
Sep. 2015.

[21] L. Wang and A. Cavallaro, “Microphone-array
ego-noise reduction algorithms for auditory mi-
cro aerial vehicles,” IEEE Sensors Journal, vol. 17,
no. 8, pp. 2447–2455, 2017.

[22] L. Wang and A. Cavallaro, “Acoustic sensing
from a multi-rotor drone,” IEEE Sensors Journal,
vol. 18, no. 11, pp. 4570–4582, 2018.

[23] L. Wang, R. Sanchez-Matilla, and A. Cavallaro,
“Tracking a moving sound source from a multi-
rotor drone,” in 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
pp. 2511–2516, IEEE, 2018.

[24] P. Marmaroli, X. Falourd, and H. Lissek, “A uav
motor denoising technique to improve localiza-
tion of surrounding noisy aircrafts: proof of con-
cept for anti-collision systems,” in Acoustics 2012,
2012.

[25] G. Ince, K. Nakadai, and K. Nakamura, “On-
line learning for template-based multi-channel
ego noise estimation,” in 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems, pp. 3282–3287, IEEE, 2012.

[26] J. F. Gemmeke, D. P. Ellis, D. Freedman,
A. Jansen, W. Lawrence, R. C. Moore, M. Plakal,

and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in
2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 776–
780, IEEE, 2017.

[27] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using rnn
encoder-decoder for statistical machine transla-
tion,” arXiv preprint arXiv:1406.1078, 2014.

[28] F. Gers, J. Schmidhuber, and F. Cummins,
“Learning to forget: Continual prediction with
lstm,” Neural computation, vol. 12, pp. 2451–71,
10 2000.

[29] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton,
B. Letham, A. G. Wilson, and E. Bakshy, “BoTorch:
Programmable Bayesian Optimization in Py-
Torch,” arXiv e-prints, p. arXiv:1910.06403, Oct.
2019.

[30] I. Loshchilov and F. Hutter, “Decoupled
weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[31] S. Ioffe and C. Szegedy, “Batch normalization:
Accelerating deep network training by reducing
internal covariate shift,” in International confer-
ence on machine learning, pp. 448–456, PMLR,
2015.

18

Appendix A

Detailed Classification Breakdown

The tables found in this appendix show a detailed breakdown of the classification accuracy of the networks
trained for scenario 1. In Table A.1, performance of all network in clean and denoised settings is summa-
rized. Table A.2 to Table A.7 show the detailed classification breakdown for the network with no augmenta-
tion, class mix augmentation, pitch shift augmentation, time stretch augmentation, denoised augmentation
and all augmentations, respectively. Generally speaking, the networks have the most trouble detecting heli-
copters, especially as the mismatch increases.

None Class Mix Pitch Shift Time Stretch Denoised All

Clean 95.0% (97.5%) 91.0% (95.0%) 91.5% (95.0%) 92.0% (95.0%) 89.7% (92.5%) 91.5% (92.5%)

0.25D 95.0% (97.5%) 92.2% (95.0%) 90.5% (95.0%) 92.2% (95.0%) 90.5% (95.0%) 91.5% (92.5%)
0.50D 93.7% (97.5%) 91.7% (95.0%) 87.9% (95.0%) 90.7% (95.0%) 89.7% (95.0%) 91.5% (92.5%)
0.75D 90.5% (97.5%) 90.7% (95.0%) 85.4% (92.5%) 88.4% (95.0%) 88.2% (92.5%) 91.2% (92.5%)
1.00D 83.9% (95.0%) 87.4% (95.0%) 79.9% (85.0%) 83.4% (90.0%) 86.2% (87.5%) 88.7% (92.5%)

Table A.1: General overview of the classification performance for various data augmentations.

Overall Airplane Helicopter Engine Train Wind

Clean 95.0% (97.5%) 97.1% (100%) 84.2% (87.5%) 100% 100% 98.1% (100%)

0.25D 95.0% (97.5%) 97.1% (100%) 84.2% (87.5%) 100% 100% 98.1% (100%)
0.50D 93.7% (97.5%) 94.2% (100%) 82.1% (87.5%) 100% 100% 98.1% (100%)
0.75D 90.5% (97.5%) 91.4% (100%) 73.7% (87.5%) 100% 100% 95.2% (100%)
1.00D 83.9% (95.0%) 74.0% (87.5%) 68.4% (87.5%) 100% 100% 95.2% (100%)

0.25M 89.2% (90.0%) 88.5% (87.5%) 70.5% (62.5%) 100% 95.7% (100%) 99.0% (100%)
0.50M 77.9% (77.5%) 86.5% (87.5%) 71.6% (75.0%) 95.8% (100%) 57.5% (50.0%) 76.0% (75.0%)
0.75M 68.6% (70.0%) 84.6% (87.5%) 83.2% (87.5%) 79.2% (25.0%) 21.3% (25.0%) 55.8% (62.5%)
1.00M 56.5% (47.5%) 85.6% (87.5%) 86.3% (87.5%) 56.3% (37.5%) 10.6% (12.5%) 21.2% (12.5%)

Table A.2: Detailed classification performance of the network trained without augmentation at clean, denoised (D) and mixed
(M) settings.

19

Overall Airplane Helicopter Engine Train Wind

Clean 91.0% (95.0%) 88.5% (87.5%) 80.0% (87.5%) 95.8% (100%) 100% 97.1% (100%)

0.25D 92.2% (95.0%) 88.5% (87.5%) 82.1% (87.5%) 95.8% (100%) 100% 100%
0.50D 91.7% (95.0%) 86.5% (87.5%) 81.0% (87.5%) 97.9% (100%) 100% 100%
0.75D 90.7% (95.0%) 83.7% (87.5%) 80.0% (87.5%) 97.9% (100%) 100% 100%
1.00D 87.4% (95.0%) 76.9% (87.5%) 79.0% (87.5%) 97.9% (100%) 100% 95.2% (100%)

0.25M 86.2% (87.5%) 87.5% 56.8% (62.5%) 100% 97.9% (87.5%) 100%
0.50M 80.4% (82.5%) 85.6% (87.5%) 65.3% (62.5%) 100% 74.5% (87.5%) 82.7% (75.0%)
0.75M 74.4% (75.0%) 84.6% (87.5%) 77.9% (87.5%) 91.7% (87.5%) 36.2% (37.5%) 70.2% (75.0%)
1.00M 64.8% (65.0%) 84.6% (87.5%) 85.3% (87.5%) 70.8% (75.0%) 17.0% (25.0%) 45.2% (50.0%)

Table A.3: Detailed classification performance of the network trained with class mix augmentation at clean, denoised (D) and
mixed (M) settings.

Overall Airplane Helicopter Engine Train Wind

Clean 91.5% (95.0%) 87.5% 82.1% (87.5%) 100% 100% 96.2% (100%)

0.25D 90.5% (95.0%) 87.5% 77.9% (87.5%) 100% 100% 96.2% (100%)
0.50D 87.9% (95.0%) 85.6% (87.5%) 69.5% (87.5%) 100% 100% 96.2% (100%)
0.75D 85.4% (92.5%) 76% (87.5%) 67.4% (75.0%) 100% 100% 98.1% (100%)
1.00D 79.9% (85.0%) 64.4% (75.0%) 56.8% (50.0%) 100% 100% 98.1% (100%)

0.25M 85.7% (87.5%) 87.5% (87.5%) 66.3% (62.5%) 100% 85.1% (87.5%) 95.2% (100%)
0.50M 75.6% (72.5%) 87.5% (87.5%) 76.8% (75.0%) 93.8% (100%) 38.3% (37.5%) 71.2% (62.5%)
0.75M 63.8% (62.5%) 87.5% (87.5%) 83.2% (87.5%) 60.4% (62.5%) 14.9% (12.5%) 46.2% (62.5%)
1.00M 54.3% (47.5%) 86.5% (87.5%) 86.3% (87.5%) 45.8% (37.5%) 6.38% (12.5%) 18.3% (12.5%)

Table A.4: Detailed classification performance of the network trained with pitch shift augmentation at clean, denoised (D) and
mixed (M) settings.

Overall Airplane Helicopter Engine Train Wind

Clean 92.0% (95.0%) 88.5% (87.5%) 80.0% (87.5%) 100% 100% 99.0% (100%)

0.25D 92.2% (95.0%) 88.5% (87.5%) 81.1% (87.5%) 100% 100% 99.0% (100%)
0.50D 90.7% (95.0%) 87.5% 76.8% (87.5%) 100% 100% 98.1% (100%)
0.75D 88.4% (95.0%) 86.5% (87.5%) 68.4% (87.5%) 100% 100% 98.1% (100%)
1.00D 83.4% (90.0%) 75.0% (87.5%) 61.1% (62.5%) 100% 100% 97.1% (100%)

0.25M 86.9% (87.5%) 87.5% (87.5%) 61.1% (62.5%) 100% 95.7% (87.5%) 100%
0.50M 79.6% (82.5%) 84.6% (87.5%) 71.6% (75.0%) 95.8% (100%) 48.9% (62.5%) 88.5% (87.5%)
0.75M 71.1% (72.5%) 84.6% (87.5%) 78.9% (87.5%) 79.2% (87.5%) 19.1% (25.0%) 70.2% (75.0%)
1.00M 60.8% (55.0%) 84.6% (87.5%) 84.2% (87.5%) 52.1% (37.5%) 12.8% (12.5%) 41.3% (50.0%)

Table A.5: Detailed classification performance of the network trained with time stretch augmentation at clean, denoised (D) and
mixed (M) settings.

20

Overall Airplane Helicopter Engine Train Wind

Clean 89.7% (92.5%) 94.2% (100%) 70.5% (75.0%) 100% 100% 93.3% (87.5%)

0.25D 90.5% (95.0%) 94.2% (100%) 73.7% (87.5%) 100% 100% 93.3% (87.5%)
0.50D 89.7% (95.0%) 93.3% (100%) 73.7% (87.5%) 100% 100% 91.3% (87.5%)
0.75D 88.2% (92.5%) 89.4% (100%) 71.6% (75.0%) 100% 100% 91.3% (87.5%)
1.00D 86.2% (87.5%) 84.6% (87.5%) 69.5% (62.5%) 100% 100% 90.4% (87.5%)

0.25M 86.2% (90.0%) 85.6% (87.5%) 61.1% (62.5%) 100% 100% 97.1% (100%)
0.50M 78.9% (82.5%) 83.7% (87.5%) 71.6% (75.0%) 95.8% (100%) 57.4% (62.5%) 82.7% (87.5%)
0.75M 65.8% (62.5%) 84.6% (87.5%) 76.8% (75.0%) 66.7% (62.5%) 19.1% (25.0%) 57.7% (62.5%)
1.00M 56.8% (52.5%) 84.6% (87.5%) 85.3% (87.5%) 47.9% (50.0%) 10.6% (12.5%) 27.9% (25.0%)

Table A.6: Detailed classification performance of the network trained with denoised augmentation at clean, denoised (D) and
mixed (M) settings.

Overall Airplane Helicopter Engine Train Wind

Clean 91.5% (92.5%) 88.5% (87.5%) 76.8% (75.0%) 100% 100% 100%

0.25D 91.5% (92.5%) 88.5% (87.5%) 76.8% (75.0%) 100% 100% 100%
0.50D 91.5% (92.5%) 88.5% (87.5%) 76.8% (75.0%) 100% 100% 100%
0.75D 91.2% (92.5%) 88.5% (87.5%) 75.8% (75.0%) 100% 100% 100%
1.00D 88.7% (92.5%) 83.7% (87.5%) 70.5% (75.0%) 100% 100% 100%

0.25M 85.2% (87.5%) 87.5% 54.7% (62.5%) 100% 93.6% (87.5%) 100%
0.50M 76.1% (77.5%) 86.5% (87.5%) 64.2% (75.0%) 85.4% (100%) 48.9% (50.0%) 84.6% (75.0%)
0.75M 71.4% (67.5%) 84.6% (87.5%) 78.9% (87.5%) 68.8% (62.5%) 25.5% (25.0%) 73.1% (75.0%)
1.00M 64.3% (57.5%) 85.6% (87.5%) 84.2% (87.5%) 50% (37.5%) 12.8% (12.5%) 54.8% (62.5%)

Table A.7: Detailed classification performance of the network trained with all augmentations at clean, denoised (D) and mixed
(M) settings.

21

Appendix B

Simplifying the Ego-Noise Predictor

This appendix briefly investigates the influence of model simplification on the ability to predict ego-noise,
and the influence of the subsequent change in ego-noise prediction on the classification performance in
mismatched denoised conditions.

The proposed network is a simple feedforward network consisting of only 1 hidden layer with 100 hidden
units, which only uses the 4 rotor rpms to predict the ego-noise. In comparison, the ideal network obtained
through Bayesian Optimization, as defined in the article, consists of 2 GRU layers and 2 dense layers, and uses
all 27 available states as input.

It is not surprising that the simple network performs worse, with an MSE loss of 1.630e-3 compared to an
MSE loss of 1.507e-3 for the optimized network. Nevertheless, the simple network (Figure B.1) still predicts
adequately. For comparison, the optimal network is shown in Figure B.2.

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Original spectrum

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Predicted spectrum

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Residual spectrum

Figure B.1: MAV ego-noise spectra obtained from the sim-
ple network.

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Original spectrum

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Predicted spectrum

0 5 10 15 20 25 30 35 40
Time

0
512

1024
2048
4096
8192

16384

Hz

Residual spectrum

Figure B.2: MAV ego-noise spectra obtained from the opti-
mized network.

23

The spectra predicted by the simplified network can now be subtracted from the mixed dataset at the given
noise ratios (r ={0.25, 0.50, 0.75, 1.00}) to obtain unique sets of denoised spectra. A comparison in classifica-
tion performance between these sets and the denoised sets used in the article is displayed in Table B.1. From
this it becomes apparent that the simplified model does hinder the accuracy as the mismatch increases.

Simplified Optimized

0.25D 95.0% (97.5%) 95.0% (97.5%)
0.50D 93.2% (97.5%) 93.7% (97.5%)
0.75D 88.9% (97.5%) 90.5% (97.5%)
1.00D 83.7% (92.5%) 83.9% (95.0%)

Table B.1: Classification accuracy in mismatched conditions using denoised data obtained from the simplified network (left)
and optimized network (right).

24

II
Literature Review

25

Chapter 2

Properties and Representation of Aircraft
Sound

Sound is essentially a vibration propagating through a medium as a weak, longitudinal wave of pressure.
Since the particle displacements occur in the same direction as the movement of the wave, this produces a
series of local compressions and rarefactions. The difference between the ambient pressure and instanta-
neous pressure caused by these disturbances is denoted as the sound pressure. A sound signal is considered
discrete when it is dominant at one or several frequencies, while broadband sound has a varying frequency
distribution.

A brief overview of the generation of aircraft sound is given in Section 2.1, while Section 2.2 contains required
background knowledge for the digital processing of sound. Finally, Section 2.3 gives an overview of historical
and state-of-the-art feature extraction methods for sound classification.

2.1 Aircraft Sound Sources

The aircraft sound perceived on the ground is generated primarily by its engine, while airframe noise is also
of significance [19]. The noise characteristic thus depend on the engine type, of which several classes can be
distinguished. Small aircraft for general aviation generally make use of a piston engine in combination with
a propeller, while commercial and military aircraft use some kind of turbo engine (jet, prop or fan).

As noted by [19], an N -cylinder piston engine operating at an RPM of ne generates noise predominantly at
the exhaust frequency

fe = N ne

120
, (2.1)

as well as at integer multiples (harmonics) of the cylinder firing frequency

fc = ne

120
. (2.2)

Each piston engine consists of either 4 or 6 cylinders, while the RPM in cruise typically lies between 2-3,000.

A propeller generates discrete rotational noise, caused by the periodic excitation of the air within the propeller
disk by the blades. This noise occurs at harmonics of its blade passage frequency

f1 =
Bnp

60
, (2.3)

where B indicates the number of blades and np the propeller rpm. The propeller also causes weak broad-
band vortex noise, due to random airflow disturbances caused by the blades. The total noise generated by a
piston-prop engine can be considered omnidirectional.

Turbojet and turbofan engines generate noise via the compressor, fan, turbine, combustor and exhaust jet.
All noise sources are highly directional noise, at ± 45deg relative to the direction of motion of the aircraft. As

27

28 2. Properties and Representation of Aircraft Sound

a result, noise of a turbojet/fan aircraft appears attenuated when directly overhead. On approach, fan noise
is dominant, while exhaust noise is dominant when the aircraft recedes. A fan with subsonic blade tip speed
generates predominantly discrete noise at harmonics of the fan blade passage frequency (Equation (2.3).
When supersonic tip speeds occur, shock waves are created which cause additional noise, harmonic with the
engine rpm. The noise of the jet exhaust is broadband, and generated from the high-velocity exhaust air mix-
ing with the ambient air.

Airframe noise is aerodynamic noise generated by the turbulent flow of air over the surface of the aircraft,
with cavities such as high-lift devices causing substantial radiation. As such, airframe noise dominates during
landing approaches.

2.1.1 Doppler Effect
A moving sound source such as an aircraft causes an observed frequency which differs from the actual fre-
quency of the sound emitted. This phenomenon, dubbed the Doppler effect, is caused by the continuously
changing distance between sound source and receiver. The ratio between observed frequency f ′ and true
frequency f can be expressed as follows:

f ′

f
= 1

1+ dr /d t
c

, (2.4)

where dr /d t indicates the (time) rate of change in distance from source to receiver, and c is the speed of
sound. As such, f ′ increases when the source moves towards the observer, and decreases when it moves
away from the observer. The change in observed frequency (f ′− f) is referred to as the Doppler shift.

2.2 Digital Representation of Sound

Sound is captured by an electroacoustic transducer such as a microphone as an analog (i.e. continuous) sig-
nal x(t). To analyze this sound digitally, x(t) must be converted to a digital (discrete) signal x[n] which has
finite intervals between measurements, a finite bandwidth and a finite range of values. This is done via an
Analog-to-digital converter (ADC) and occurs in three steps.

First, the bandwidth of x(t) is made limited via a low-pass filter, such that it falls between 0 and a cut-off fre-
quency B . Second, the filtered signal is sampled with a sample frequency fs >= 2B , as defined by the Nyquist
theorem, to avoid aliasing. Finally, the obtained digital signal x[n] is quantized, such that its amplitude can
take on a finite number of values. Sampling an audio signal with a bandwidth which covers the audible spec-
trum (20-20,000Hz) thus requires an fs of at least 40,000 Hz. Typical sampling rates for audio signals are
44,100 Hz or 48,000 Hz, with 16-bit quantization (i.e. the amplitude has 65,536 possible values) [20].

2.2.1 Frequency Domain Representation
A time-domain signal x[n] can be converted to a frequency-domain signal X [k] via the Discrete Fourier Trans-
form (DFT):

X [k] =
N−1∑
n=0

x[n]e−
j 2π
N kn . (2.5)

The frequency bins in X [k] are linearly separated, with its frequency resolution determined by the sample
frequency fs divided by the number of samples N used for the DFT. For a real-valued time signal such as an
audio signal, only the first N

2 +1 frequency bins of the DFT are of interest; the others are redundant complex
conjugates. The DFT is invertible, and as such a reconstruction of x[n] can be obtained from X [k] via the
Inverse Discrete Fourier Transform (I-DFT):

x[n] = 1

N

N−1∑
k=0

X [k]e
j 2π
N kn . (2.6)

In practice, the (I-)DFT is implemented via a Fast Fourier Transform (FFT) which essentially de-composes it
into smaller (I-)DFTs, greatly reducing computational time. A typical FFT algorithm (e.g. radix-2) requires
2k samples, with k a strictly positive integer, otherwise zero padding is applied which can result in spectral
leakage [20].

2.2. Digital Representation of Sound 29

2.2.2 Time-Frequency Representation

The DFT as described above captures global properties of the signal, and preserves no temporal information.
For the localization of audio events within the signal, a time-frequency representation which divides it into
M frames each containing K frequency bins may provide more information. A single frame typically covers
20-40 ms [21, 22].

Short-Time Fourier Transform

The time-frequency signal X [k,m] is obtained by applying the (discrete) Short-time Fourier Transform (STFT)
to x[n], which is essentially a DFT applied to N samples of x[n], multiplied by a windowing function w[n]:

X [k,m] =
N−1∑
n=0

x[n]w[n]e−
j 2π
N kn . (2.7)

The windowing function in Equation (2.7) is usually a raised cosine variant such as the Hann or Hamming
window, since they prevent discontinuity between STFT frames [23]. The amount of samples between suc-
cessive windows (hop size) determines the frame length of the STFT. The hop size is usually less than N ,
resulting in overlapping samples between windows, which account for the decreased weight of the samples
near the border of the window. Hop size is generally dependent on the windowing function; a narrow window
requires larger overlap (i.e. a smaller hop size) and vice versa [23].

X [k,m] is often represented visually in the form a spectrogram, which is defined as the squared magnitude
of the STFT of x[n]:

Spectrogram[k,m] = |STFT(x[n])|2, (2.8)

with the time/sample index m indicated on the horizontal axis, frequency k indicated on the vertical axis,
and amplitude or power denoted by intensity. Although this transformation discards the phase information
and is therefore not invertible, the original signal can be approximated via e.g. the Griffin-Lim algorithm [24]

Constant-Q Transform

The Constant-Q Transform (CQT), as introduced by [25], is closely related to the STFT, but instead uses loga-
rithmically spaced frequency bins when transforming the signal x[n] to X [m,k]:

X [k,m] = 1

N [k]

N [k]−1∑
n=0

x[n]w[n,k]e−
j 2πQn
N [k] (2.9)

Here, Q is the (constant) quality factor, defined as the k-th center frequency divided by the k-th filter width.
Because of the varying filter width, the window size N [k] also varies for each filter. As a result of the logarith-
mic spacing, the CQT has a higher frequency resolution at low frequencies than an STFT with an identical
number of bins. The idea of the CQT stems from the Western musical scale, which uses the same logarithmic
spacing [25]. As such, it is widely used in Music Information Retrieval (MIR) and SEC tasks [26, 27].

Mel Scale

The human ear does not perceive sound linearly with frequency over the audible spectrum, but finds equally-
spaced low-frequency sounds easier to differentiate than high-frequency sounds. When a detection problem
involves sounds that are easily recognized by humans, such as aircraft noise, a detector may benefit from a
frequency scaling more suitable to the human ear [28]. The Mel scale [29] scales the conventional spectrum
such that each pitch is perceived equidistant from its neighbors:

fmel = 2595log10

(
1+ f

700

)
. (2.10)

Figure 2.1 displays several spectra of an aircraft fly-over. All spectra have been logarithmically scaled, stan-
dardized and scaled to a 0-1 interval. The top-left image displays the spectrogram (obtained from the STFT)
an a linear frequency scale. On the bottom-left, the same spectrum is displayed on a logarithmic scale. The

30 2. Properties and Representation of Aircraft Sound

Figure 2.1: Various spectrograms of an aircraft fly-over. Aircraft audio obtained from the ESC-50 dataset [1].

top and bottom right image show the Mel-frequency spectrogram and constant-Q spectrogram, respectively.
This figure illustrates the inherent advantage of (pseudo-)logarithmically scaled frequency bins for SEC: the
lower frequency components, where most of the characteristics of the signal appear to be contained, are
sampled at a higher resolution so that more information is captured.

2.3 Feature Extraction

Although any of the above representations for the audio signal can be used as direct input into the aircraft
detector, they may not always serve as a good representation of the data. Instead, features can be extracted,
reducing the dimensionality and redundancy of the input while still retaining useful information. Feature
selection depends heavily on the field and the problem at hand. Feature engineering involves the extraction of
features based on field-specific knowledge. Alternatively, feature learning allows the detector to learn which
type of feature is best suitable for the problem. This section provides an overview of features used frequently
in audio processing tasks.

2.3.1 Time-Domain Features

Time-domain features work directly on the raw audio signal in the time domain, without directly using any
spectral properties of the signal.

Short-Time Energy

The Short-Time Energy (STE) is a simple feature which describes the amplitude variations of a signal over
time, by dividing it into frames via a fixed window w of size N , and computing the total energy within each
frame:

E [m] = 1

N

N∑
n

(x[n]w[m −n])2. (2.11)

Zero-Crossing Rate

The (short-time) Zero-Crossing Rate (ZCR) is the number of times the amplitude of the time signal changes
sign (i.e. crosses zero) within a fixed time frame. The ZCR of a signal frame can thus be considered a rough
estimate of its frequency.

2.3. Feature Extraction 31

Due to their simplicity, applications using solely the STE and ZCR of a signal are rather limited. [30] combine
the STE and ZCR to detect the presence of speech within a frame. A frame with high STE and low ZCR is
assumed to contain speech, while a frame with low STE and high ZCR is assumed to contain predominantly
noise. [31] use the ZCR in combination with the frame root-means-square (RMS) to discriminate between
music, speech and silence.

2.3.2 Frequency-Domain Features

Frequency-based features are extracted from the frames obtained by transforming the time signal with an
STFT. They may also use Mel or constant Q frequency scaling and/or logarithmic amplitude scaling instead
of linear scaling.

Band Energy

The band energy is the total energy contained in a given frequency band k of a frame m in the time-frequency
representation of a signal X [k,m], defined as the square of its magnitude:

E [k,m] = |X [k,m]|2. (2.12)

A powerful feature related to the band energy is the log Mel-band energy, which uses Mel frequency scaling
and logarithmic amplitude scaling. It is one of the few purely spectral features suitable for more complex
tasks such as polyphonic SED [32] and multi-channel SED [33]. Another feature related to the band energy is
the band energy ratio, defined as the band energy divided by the total energy in the frame [34].

Spectral Flux

The spectral flux measures the spectral change between successive frames. It is defined as the square of the
difference between the normalized magnitude X̂ of two frames:

F [m] =
N∑

k=1

(
X̂ [k,m]− X̂ [k,m −1]

)2
(2.13)

As a stand-alone feature, [35] use the Mel spectral flux of a signal for speech activity detection.

Spectral Roll-off

The spectral roll-off of a frame indicates the skewness of its spectral shape, and is defined as the frequency
below which a predefined amount (usually 85% to 99% of the total energy) of spectral energy is contained [2].

As most of these individual spectral features are simplistic, they are usually combined into a single feature
vector which provides more information [34, 36, 37]. This combination of time- and frequency domain fea-
tures is often referred to as the low-level feature vector of a signal.

2.3.3 Cepstral Features

Cepstral features are features which operate in the cepstral domain, which is related to the frequency spec-
trum of a signal. The cepstrum Xc [n] of the spectrum X [k] is obtained by applying the inverse DFT to the
logarithm of its power spectrum:

Xc [n] = I-DFT(log(|X [k]|2)). (2.14)

According to the source-filter model of speech generation [38], a speech signal is generated in the vocal
chords, and then convoluted in time via the vocal tract and tongue which act as linear filters. The advan-
tage of the cepstral domain is that it allows for separation of the source and filter(s), since a convolution in
time is represented as an addition in the cepstral domain (due to the log-operation on the spectrum). As
such, cepstral features have been widely used in Automatic Speech Recognition (ASR) and speech synthesis
tasks [39].

32 2. Properties and Representation of Aircraft Sound

Mel Frequency Cepstrum Coefficients

The Mel Frequency Cepstrum (MFC), as introduced by [40], represents the cepstrum of a signal on the Mel
scale. The coefficients which make up the MFC are defined as the Mel-Frequency Cepstral Coefficients
(MFCCs). They have been widely used in speech processing applications as well as general sound scene anal-
ysis over the past decades, and were in the past regarded as the baseline when evaluating the performance of
a new acoustic feature [26].

The MFCCs can be obtained from a time signal x[n] as follows [41]. First, the signal is divided in overlapping
frames of which the power spectrum estimate is obtained. This is equivalent to the squared magnitude of
the STFT of x[n] divided by the number of samples per frame. A Mel-scaled triangular filterbank with 50%
overlap is then applied to the power spectrum. Finally, the discrete cosine transform (DCT) is applied to the
logarithm of the filterbank coefficients to obtain the (real-valued) MFCCs. The DCT expresses a signal as a
sum of cosines:

x[n] =
K−1∑
k=0

X [k]cos

(
(2k +1)n

2K
π

)
. (2.15)

In essence, the MFCCs look for periodicity within the log-spectrum. The application of the DCT instead of
the I-DFT has the advantage of decorrelating the filterbank coefficients, which became correlated due to the
overlapping STFT windows. The MFCCs are also real-valued coefficients due to the DCT.

For a signal with a bandwidth of 16 kH z, the number of filters in the Mel filterbank usually ranges from 12 to
30 [2]. The MFCC feature vector may also be truncated by discarding the first coefficient, which represents
the signal energy [42], and/or by discarding high coefficients that are deemed unnecessary [43]. The MFCC
feature vector can also be augmented with the delta-MFCCs and delta-delta-MFCCs, defined as respectively
the first- and second derivate of the (truncated) MFCCs. These delta-coefficients model the dynamics of the
coefficients and increase classification accuracy [42]. [36] compared MFCCs with a low-level audio feature
vector, and found that the former had a higher classification accuracy for audio classification as well as music
classification tasks.

2.3.4 Spectrogram Image Features

A spectrogram image feature (SIF) treats the recorded sound as a time-frequency structure, rather than a time
series of frequency bins. Inspired by computer vision techniques, these features intend to obtain characteris-
tics regarding the shape and evolution of the time-frequency contents of the signal [2]. To obtain a grey-scale
spectrogram image from a spectrogram, the spectrum energies must first be mapped to a 0-1 scale. [44]
add an additional step which quantizes the grey-scale image into several monochrome channels via pseudo-
colormapping, and found it improves the classification accuracy. They also observe that SIFs vastly outper-
form MFCCs under noisy conditions, because the presence of noise causes mismatches, and thus inaccura-
cies, in the MFC coefficients. An alternative approach by [45] is to extract the region surrounding the three
maximum energy peaks of a smoothed, de-noised spectrogram image. They report that it outperforms the
SIF introduced by [44] under clean and noisy conditions.

Histogram of Orientated Gradients

The Histogram of Orientated Gradients (HOG), as introduced by [46], is a feature used in computer vision
applications for object detection in images. It uses the intensity and orientation of image gradients to pro-
vide local shape information, and bins them into a histogram. In audio scene classification, the objective
of the HOG is to extract the shape of certain time-frequency structures which may be characteristic for an
audio scene [26]. [26] note that the HOG has several advantages over power spectrum-based features such as
MFCCs. Not only are they invariant to small time- and frequency translations, they also provide information
regarding the local direction of variation of the power spectrum.

2.3.5 Feature Learning

The learning of features has become a popular and viable alternative to selecting manually engineered fea-
tures for sound analysis in recent years [2]. This section lists some notable feature learning algorithms. Artifi-
cial neural networks, of which the hidden layers are essentially feature learners, are discussed in Section 3.4.

2.3. Feature Extraction 33

Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a feature learning technique popularized by [47], where it is used
to learn a part-based representation of human faces in grey-scale images. Given a set of N images which
each contain M pixels, the NMF decomposes the N xM data matrix V into two non-negative matrices W and
H, with W ∈ RN xK and H ∈ RK xM . The basis images are contained in the K columns of W, while the image
encoding is present in the M columns of H. Due to the nonnegativity constraint, each human face is thus
approximated as a linear summation of all basis images, according to the encoding in the columns of H.

Naturally, the NMF can also be applied to time-frequency images obtained from audio signals, such as the
spectrogram image. [48] introduce the convolutive NMF, which accounts for the temporal relationship that is
often found between nearby time-frequency frames. This temporal dependency is modelled by making the
basis images and encoding time-variant. [49] have found that the convolutive NMF outperformed the NMF
for a multi-class acoustic scene classification task.

Chapter 3

Sound Event Detection for Aircraft

Sound Event Detection (SED) is the temporal localization of an event (e.g. an aircraft fly-over) within a record-
ing based on its acoustic signature. This is similar to Sound Event Classification (SEC), which yields a class
from the predicted class probabilities of a given audio clip. A common method is to consider a sound ’de-
tected’ in a recording, when the classification of several subsequent clips of the recording has yielded its class.

This chapter explains the preliminaries of classification theory, then elaborates on commonly used classifiers
and their application in the SED field. Section 3.1 provides a brief theoretical background for classification,
applied to aircraft detection. Section 3.2 and Section 3.3 list common examples of generative and discrim-
inative classifiers used for SED, respectively. Section 3.4 provides a detailed introduction of artificial neural
networks (ANNs), which extract features from their hidden layers. Finally, Section 3.5 provides an overview
of state-of-the-art classifiers for SED.

3.1 Supervised Classification in SED

A supervised classifier maps each input xi to a class label y j by means of a predictor h(xi |θ), defined by
the set of parameters θ. The objective of the classifier is to find the θ that minimizes its error rate, which is
approximated by a loss function L:

min
θ

1

n

n∑
i=1

L(h(xi |θ), yi). (3.1)

When L is non-differentiable (such as with the 0-1 loss, where L is 0 if the label is predicted correctly, 1 other-
wise), it must be replaced with a differentiable surrogate function f (x , y |θ). This can be coupled with a regu-
larization term g (θ), which adds a penalty for undesirable configurations such as high parameter weights or
high deviation from a given prior distribution. The new loss function to be minimized is then:

min
θ

1

n

n∑
i=1

f (xi , yi |θ)+ g (θ). (3.2)

The available dataset containing sample pairs of (x , y) is split into a mutually exclusive training set and test
set, where the former is used to optimize θ, and the latter to evaluate the resulting θ. The training set is
commonly further split up in an actual training set and a validation set. The validation set is evaluated during
training, with the purpose to identify and prevent over-fitting during optimization of the model.

3.1.1 Classification for Aircraft Detection

For the aircraft detector, each evaluation sample must be classified as aircraft/non-aircraft. There are two
approaches towards building such a classification model: binary classification or one-class classification.

A binary classifier is discriminatory, i.e. it learns to discriminate between classes based on the data available
for both classes. Classification for classes y1 and y2 with prior probabilities P (y1) and P (y2) is done as follows:

35

36 3. Sound Event Detection for Aircraft

Classification(xi) =
{

y1, if p
(
xi |y1

)
P (y1) > p

(
x|y2

)
P (y2)

y2, otherwise
(3.3)

When there is only sparse availability of class y2, i.e. P(y1) >> P(y2), this will almost always result in p(xi |y1)
>> p(xi |y2), leading to a biased classifier. A one-class classifier only learns the representation of a single class
y , with the aim of recognizing instances of the target class based on a threshold α:

Classification(xi) =
{

y, if p
(
x|y)≥α

none, otherwise
(3.4)

Since it does not rely on prior probabilities, a one-class classifier will not be biased when imbalance is present
in the evaluation data. Such an approach is especially useful when only one of the classes in a selection of
objects can be described with precision [50]. [51] observed that the performance of binary classifiers starts to
deteriorate at an imbalance ratio of 1:2.5, although they denote that this ratio is dependent on the data and
the classification problem, and not set in stone.

3.1.2 Classifier Evaluation

There are several metrics to evaluate a binary classifier, which are all applicable to a one-class classifier as
well. The most obvious one would be the accuracy, which sums the amount of correctly classified samples
over the total samples:

Accur ac y = T P +T N

T P +T N +F P +F N
(3.5)

Unfortunately, accuracy alone fails to account for class imbalances, and is also not an adequate metric when
false positives (FP) are far less desirable than false negatives (FN) or vice versa. For this reason, classifier
evaluation using precision, recall, and the F1-score is usually preferred. Precision is the ratio of true positives
(TP) over all predicted positives:

Pr eci si on = T P

T P +F P
. (3.6)

Recall is the ratio of true positives over all actual positives:

Recal l = T P

T P +F N
. (3.7)

The F1-score is the harmonic average of precision and recall:

F1 = 2
Pr eci si on ∗Recal l

Pr eci si on +Recal l
. (3.8)

Naturally, all the above metrics lie between 0 and 1, with a score of 1 indicating perfect performance. Per-
formance is often visualized using the Receiver Operator Characteristic (ROC) curve, which plots the True
Positive Rate (TPR or recall) against the False Positive Rate (FPR). The score of each ROC curve is given by
the Area Under the Curve (AUC) which measures model separability, i.e. the probability of distinguishing
between aircraft and non-aircraft.

While binary- and one-class classifiers can be distinguished based on their usage of training data, another
distinction can be made as to how p(y j |xi) is estimated. A generative classifier attempts to model the joint
probability distribution p(xi , y j) per class for each input, and then find p(y j |xi) using Bayes’ rule:

p(y j |xi) = p(xi |y j)P (y j)

P (xi)
(3.9)

On the contrary, a discriminatory classifier approximatees p(y j |xi) by learning the differences between classes.

3.2. Generative Classifiers 37

3.2 Generative Classifiers

Since the goal of a generative classifier is to model the feature space, the loss is related to the dissimilarity
of the model distribution and the (unknown) data generating distribution. Without the inclusion of a prior,
this is equivalent to Maximum Likelihood Estimation (MLE), i.e. maximizing the probability that the training
data is generated by Pθ, the probability density w.r.t. θ. The objective function f (x , y |θ) is then the negative
log-likelihood function:

f (x , y |θ) =− logPθ(x , y). (3.10)

3.2.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is an unsupervised generative classifier which assumes that the distri-
bution which generates the training data can be approximated by a weighted mixture of K Gaussians, with
probability density function

Pθ(xi) =
K∑

k=1
φk

1√
2π|Σk |

e−
1
2 (xi−µk)TΣ−1

k (xi−µk), (3.11)

where the parameters θ to be learned consist of the mixture coefficient φk (with each φk ≥ 0 and
K∑

k=1
φk = 1),

mean µk and positive definite covariance matrix Σk of each Gaussian. To reduce the amount of parameters
to be learned, each Σk can be restricted to be diagonal, spherical (Σk = σk I) or even isotropic (Σk = I). The
choice for K must be fixed before optimizing for θ, but is usually not known a priori. For classification, it is
often treated as a hyper-parameter and optimized using cross-validation.

The GMM classifier introduced in Equation (3.11) does not rely on the labels (y), but can be made supervised
by fitting a separate GMM (Pθ(x|y)) for each class. The predictor is then defined as

h(x |θ) = argmax
y

Pθ(y |x) = argmax
y

Pθ(x |y)Pθ(y). (3.12)

GMMs have often been combined with MFCC features, because the linear GMM benefits from the decorre-
lated coefficients. [28] used a feature vector consisting of the first 13 MFC coefficients in combination with
a GMM classifier, trained with an OCC approach. Similar sounding objects, such as high-speed trains, were
included in their evaluation set. They observed an accuracy of 95%, which deteriorated to 60% as SNR de-
creased.

Figure 3.1 displays the covariance matrices, with the diagonal restriction, of MFC coefficient 1 and 2 of a
GMM trained on aircraft and non-aircraft data. The GMM was made supervised by assigning one Gaussian
to each class. While 40 MFCCs were obtained from each audio recording, only the first 13 coefficients were
used for the classification, in accordance with [28].

3.2.2 Hidden Markov Model

A limitation of the previously discussed GMMs is that they are not able to model the (temporal) dynamics
of sound. For a general sequence of observations, the current observation at time t would depend on all
prior observations. A Markov process is a sequence in which the current state x[t] is dependent only on
the previous state x[t − 1], and an initial state x[0]. The idea behind it is that the current observation x[t]
adequately summarizes all previous information. A hidden Markov model (HMM) is a Markov process where
the (discrete) states which govern the dynamics are not directly observable, and the outcome x[t] is only
influenced by the current hidden state z[t]. An HMM is then defined as

Pθ(x , z) =
T∏

t=1
Pθ(z[t]|z[t −1])Pθ(x[t]|z[t]), (3.13)

and consists of three main components. The initial state model Pθ(z[1]|z[0]) defines the probability of start-
ing the sequence in each state. The transition model P (z[t]|z[t + 1]) governs the dynamics of the hidden
states. Assuming z[t] can take on K different values, the transition model is defined by a K xK transition ma-
trix V . Finally, the emission model Pθ(x[t]|z[t]) governs how each observation is generated from each hidden
state.

38 3. Sound Event Detection for Aircraft

Figure 3.1: Covariance matrices belonging to MFC coefficient 1 and 2 of a GMM trained on aircraft and non-aircraft samples of
the ESC-50 dataset [1].

3.3 Discriminative Classifiers

A discriminative classifier aims to predict label y for input x, but does not model the input space and joint
distribution.

3.3.1 Support Vector Machine

The support vector machine (SVM) introduced by [52] is a linear, discriminative classifier mainly used for
binary classification. Given a set of features x with corresponding class labels y indicated as +1 or -1, the
objective is to construct a hyperplane which separates the inputs from each class with maximum margin.
With a hyperplane defined as W · x −b = 0, the SVM operates on the margin hinge loss (a surrogate function
for the 0-1 loss) plus a weight penalty governed by λ:

min
W ,b

λ

2
||W ||2 + 1

n

n∑
i=1

max(0,1− yi (W · xi −b)). (3.14)

In Equation (3.14), the loss of an input-output pair is 0 if the input is on the correct side of the hyperplane,
and proportional to the distance from the margin otherwise. The λ term balances accuracy and complexity.

The SVM as introduced above is limited to solving linear problems. To provide a non-linear solution, a kernel
function φ(xi , x j) is required which maps the input data to a higher-dimensional space such that a hyper-
plane can be fitted through the new representation [53]. Examples of common kernels are the Gaussian
kernel, polynomial kernel and sigmoid.

3.3.2 Logistic Regression

Logistic regression [54] is an alternative to the SVM for binary classification problems. It has the same param-
eterization as the SVM, but maps the scores obtained from the hyperplane defined by W ·xi −b to a 0-1 scale
via the logistic sigmoid function. Instead of the hinge-loss, logistic regression uses the negative log-likelihood
as a surrogate function for the 0-1 loss:

min
w,b

λ

2
||w ||2 + 1

n

n∑
i=1

(
1− yi

2

)(
w · xi −b + log

(
1+ew ·xi−b)

))
. (3.15)

Unlike the scores of the SVM, the scores of the logistic regressor contain a probabilistic interpretation, which
may prove useful for confidence-related predictions or integration with larger models such as the transition
model of an HMM [2]. Kernel methods can be applied to logistic regression to solve non-linear problems in
an identical manner as the SVM.

3.4. Artificial Neural Networks 39

3.4 Artificial Neural Networks

The artificial neural network (ANN) is a family of models inspired by, but not modelled after, the biological
brain. A deep neural network (DNN) consists of an input layer, several hidden layers (artificial neural net-
works with none or few hidden layers are considered shallow), and an output layer. The trainable parameters
of the network are the nodes (’neurons’) of each layer, where the nodes of a layer are obtained from those of
the previous layer via a non-linear mapping (activation function). For a DNN classifier, the final layer of the
network is typically a linear discriminative classifier such as a logistic regression model or SVM. In essence,
the purpose of the hidden layers is to extract the appropriate features from the input layer.

The cost function used for a DNN classifier is usually the negative log-likelihood function, also known as the
cross-entropy cost. Due to the non-linear interaction between layers, this term does not have a closed form,
and the network must instead be trained using an iterative approach such as stochastic gradient descent
(SGD), where θ moves in the direction of the steepest negative gradient:

θ← θ−ε
(

1

M ′∇θ

M ′∑
i=1

− log p(y |x ;θ)

)
. (3.16)

The gradient obtained from SGD serves as an estimate of the actual gradient, by randomly sampling a mini-
batch of fixed size M ′ from the available training set of size M to obtain the next update for θ. The SGD
algorithm terminates after a given amount of epochs, where one epoch indicates a complete pass through all
samples in the training set. The advantage of SGD over batch gradient descent is that the computational time
of the gradient is independent of the size of the training set.

The learning rate ε determines the sensitivity of θ to a new update. Too large of a learning rate may increase
the training error between updates, or even lead to a positive feedback loop which eventually results in nu-
merical overflow. On the other hand, too small of a learning rate leads to slow training progress which may
result in getting stuck at high training errors. While ε can be kept constant, a common choice is to reduce
it linearly for the first few hundred epochs, and then keep it constant [3]. Tuning of the learning rate and
other hyperparameters can be done via a random search, i.e. evaluating performance on the validation set
for several different learning rates.

Several notable variations or improvements of SGD exist. SGD-momentum accelerates the learning of SGD
by updating θ according to a ’velocity’, calculated from an exponentially decaying moving average of past
gradients. The rate of decay of the influence of previous gradients is governed by another hyperparameter
α, such that α and the velocity determine the momentum of θ in parameter space. RMSProp [55] instead
adapts the learning rates of the individual parameter weights, inversely proportional with the square root of
the sum of an exponentionally decaying moving average of its squared values. As such, parameter weights
with a large partial derivative get a larger decrease in their learning rate. Adam [56] is essentially a combina-
tion of RMSProp and momentum with added bias correction. Both RMSProp and Adam are considered the
go-to for deep learning algorithms [3].

When the model parameters vastly outnumber the available training data, overfitting can occur. Bagging can
prevent overfitting by creating several training subsets, sampled with replacement from the original training
set, and training a separate model on each subset. The final model (ensemble) is then obtained by averaging
all trained models. A less computationally expensive alternative to bagging is dropout [57]. Dropout applies
a random binary mask over the non-output neurons in the network for each training example. This prevents
neurons from co-adapting to the training data, thus making it more robust to overfitting [57]. The probability
of dropping a neuron is regulated via a dropout term. Common values are 0.2 for input units and 0.5 for
hidden units [3].

3.4.1 Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a fully-connected network, i.e. every node in layer k is connected to every
node in layer k + 1. The information provided by the input layer simply propagates forward, through the
hidden units, to the output layer, without any feedback connections. The layer-to-layer mapping of each unit

40 3. Sound Event Detection for Aircraft

is done via a non-linear transfer function ρ applied to an affine transformation of the unit in the previous
layer:

z(k+1)
i = ρ

(
Mk∑
j=1

W T
i , j zk

i +bi

)
(3.17)

The weights Wi , j and biases bi in Equation (3.17) define the affine transformation of each unit and are usu-
ally referred to as weights for brevity. The parameter vector θ thus consists of the weights of the units in each
layer. Figure 3.2 illustrates the structure of a small MLP with two hidden layers.

Figure 3.2: Schematic of a simple multilayer perceptron with 4 input units, 2 hidden layers and 1 output unit.

The preferred activation function for a feedforward network such as an MLP is the Rectified Linear Unit
(ReLU) or one of its variants. Usage of sigmoidal activation functions such as the logistic sigmoid (σ) or the
hyperbolic tangent (tanh) in a feedforward network is discouraged, since they have a large saturating region
where the function is insensitive to changes in the gradient [3].

Computation of the gradient of the cost function of a feedforward network is done via the back-propagation
algorithm. Starting at the output layer, it recursively applies the chain rule of calculus to compute the total
gradient from the sub-gradients between layers. To avoid exploding gradients when initiating the algorithm,
weights must be intialized to a small, non-zero value or random value.

3.4.2 Convolutional Neural Networks

A convolutional neural network (CNN), introduced by [58], is a feedforward network which uses the convolu-
tion operation, instead of the matrix multiplication used by MLPs, for at least one of its layers. A convolutional
layer learns a set of filters, each comprised of one or more convolutional kernels. In audio processing, both
1D and 2D convolutions can be applied to spectrogram image representations. Although 2D convolution re-
quires log-scaling between frequency bins in order to cover a constant frequency ratio per filter [2], research
indicates that linear scaling remains feasible in practice [59]. An advantage of 2D convolution over 1D is that
it enables the modelling of events which move in frequency. The first layers of a 2D CNN then learn local,
transient tones, which can then be integrated over the frequency range by subsequent layers [2].

Due to the sharing of parameters, a convolutional layer is equivariant to translation; when a time-frequency
structure in the input is shifted in time (and/or frequency, in case of 2D convolution), the output of the layer
will reflect this. After applying the activation function to the input convoluted with each filter, a set of fea-
ture maps is obtained. A convolutional layer may also be followed by a pooling layer, which reduces the
dimensionality of the layer. Such a pooling function outputs a single summary statistic (e.g. the maximum
or average) of the region it is applied to. Max pooling also introduces invariance to small translations in the
input across the pooling dimension [3].

3.4. Artificial Neural Networks 41

Figure 3.3 and Figure 3.4 illustrate a one- and two-dimensional CNN respectively (indicated by the shaded
receptive field of the filters) with a 94x252 spectrogram image as input. All filters use ’valid’ convolution, i.e.
the convolution is not padded with zeroes.

Figure 3.3: Schematic of a shallow 1-D CNN with convolution in the time dimension [2].

Figure 3.4: Schematic of a shallow 2-D CNN with convolution in the time and frequency dimension [2].

[59] note that for tasks which require audio recognition in the presence of noise, images perform best as
input features. [45] also denote that CNNs fed with spectrogram images significantly outperform all other
feedforward architecture Furthermore, they deduce that neural networks have a trade-off between noise-free
and noisy performance. The most common input feature to a CNN is the log-scaled Mel-spectrogram image
or a related variant. [60] observed that raw waveforms did not reach the performance of spectrogram images.

3.4.3 Recurrent Neural Networks

Unlike MLPs and CNNs, a Recurrent Neural Network (RNN) is able to model long-term temporal dependen-
cies found in sequential data by sharing parameters across several time steps. A recurrent layer encodes
temporal dependencies via hidden units h[t], which depend on the layer input x[t] and the hidden units at
the previous time step h[t −1]:

h[t] = ρ(U T x[t]+W T h[t −1]+b), (3.18)

where U denote the input-to-hidden weights, W denote the hidden-to-hidden weights and b is a bias term.
The activation function ρ is commonly the tanh function [3]. The output o[t] of the recurrent layer is derived
from the hidden units h[t] via a matrix transformation with hidden-to-output weights V and bias c :

o[t] =V T h[t]+c . (3.19)

The gradient of an RNN is computed with the back-propagation through time (BPTT) algorithm. BPTT is
essentially standard back-propagation, with the additional constraint that the gradient flows backwards in
time until the starting point of the sequence is reached. A drawback of BPTT is that is considerably slower
than back-propagation, because of the sequential nature of RNNs. Another disadvantage intrinsic to RNNs is

42 3. Sound Event Detection for Aircraft

that they are sensitive to vanishing or exploding gradients, since the gradient is multiplied by the hidden-to-
hidden weight matrix W every time step. Exploding gradients make learning unstable, but can be mitigated
somewhat by gradient clipping. Vanishing gradients make the direction in which to move in unclear.

Several adaptations to the recurrent layer can be made. Bi-directional RNNs are used for problems where
an input x[t] may depend on past and future values. This is encoded via a separate hidden state vector g [t]
which propagates information backwards in time similarly to Equation (3.18). The output o[t] of the layer
is then the weighted sum of the forwards- and backwards-propagating state vectors. In general audio pro-
cessing tasks such as speech detection or event recognition, bi-directional RNNs generally outperform their
causal counterparts [2]. An example schematic of a bi-directional RNN consisting of a single recurrent layer
is illustrated in Figure 3.5

Figure 3.5: Schematic of a bi-directional recurrent layer with hidden units h and g [3].

The tanh activation function in a recurrent layer can also be replaced by Long Short-Term Memory (LSTM)
cells which ensure that the gradient vanishes nor explodes by introducing a self-looping memory unit with
gated weights [61]. Because the weight of the self-loop is gated, the time scale of the layer is dynamic, i.e. it
may vary per input sequence. Each LSTM cell consists of a memory unit c[t] and hidden state h[t], which are
governed by the input gate i [t], forget gate f [t] and output gate o[t]:

i [t] =σ
(
uT

i x[t]+wT
i h[t −1]+bi

)
, (3.20)

f [t] =σ
(
uT

f x[t]+wT
f h[t −1]+b f

)
, (3.21)

o[t] =σ
(
uT

o x[t]+wT
o h[t −1]+bo

)
, (3.22)

c̃[t] = tanh
(
uT

c x[t]+wT
c h[t −1]+bc

)
, (3.23)

c[t] = f [t]c[t −1]+ i [t]c̃[t], (3.24)

h[t] = tanh(c[t])o[t]. (3.25)

The forget gate f [t] controls which information from the previous hidden state h[t −1] is passed to the new
cell state c[t]. The influence of the proposed new cell state c̃[t] on c[t] is controlled by the input gate i [t].
Finally, the output (i.e. the hidden state) of the LSTM is controlled by the output gate o[t] which selects the
parts of the cell state that will be outputted. A schematic of a recurrent layer consisting of LSTM cells is illus-
trated in Figure 3.6.

1Image adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

3.5. Classifier Comparison 43

Figure 3.6: Schematic of an LSTM layer.1

A bi-directional LSTM (B-LSTM) network generally outperforms any other type of recurrent architecture (in-
cluding regular LSTMs). [62] report state-of-the-art performance for polyphonic SED using a B-LSTM net-
work with log Mel-band features, although a direct comparison with CNNs is not made. [63] use a Convolu-
tional Recurrent Neural Network (CRNN), which combine the invariance in the frequency domain captured
by CNN and the integration of information from previous timestep for the RNN.

3.5 Classifier Comparison

Based on the literature covered in this chapter, it has become evident that discriminative classifiers based
on a DNN outperform previously established classifiers such as the GMM and HMM. To distinguish between
the performance of the types of DNNs (MLP, CNN, RNN, CRNN) covered in this chapter, Table 3.1 shows an
overview of classifier performance and feature selection on audio-related research topics. Most papers use
dropout regularization in FC layers, as well as Adam optimization.

[4], [64], [5] and [65] all evaluated on UrbanSound8K [66], a dataset with over 8,000 four-second recordings
of distinct environmental sound sources (e.g. dog bark, gun shot, siren) divided into ten classes. Aside from
down-sampling and standardisation of the audio signal, [64] did not pre-process the input of their network.
Instead, the input was reduced via a large convolutional and max pooling strides. They opted for a very deep,
fully convolutional network with global average pooling as they hypothesised that when most of the learning
occurs in the convolutional layers, a deep enough convolutional network would require no fully connected
layers. While the resulting 18-layer deep network led to satisfactory performance, it did not out-perform the
log Mel-SIF features.

[4] and [65] split the non-silent parts of the recordings into segments of approximately 950 ms with 50% over-
lap between them, with the log Mel-spectrogram as well as their deltas provided as input (2x60x41). On the
other hand, [5] randomly extract 128 frames from the log Mel-spectrogram of the first three seconds of each
clip. [5] and [65] also augment the data via time stretching, pitch shifting and adding background noise.

These network architectures each consist of two to three convolutional layers followed by two fully connected
layers. [4] uses filters wide in frequency, to learn patterns over the whole frequency range. [5] use a small re-
ceptive field to learn small, localized patterns which can be fused in subsequent layers to detect larger time-
frequency signatures. [65] use dilated kernels, which are padded with zeroes in the center, in combination
with Leaky ReLu. This leads to features which are more clearly separable than those of traditional kernels,
and as such improves classification accuracy.

The robust sound event classification problem as researched by [59], [45], [67] and [68] is evaluated on the
RWCP dataset, which consists of 50 classes with 50 files of training data per class. Noise is added from the
NOISEX-92 database, resulting in mixtures with SNRs of 20dB, 10dB and 0dB. While higher performance was
achieved on the multi-condition set, only performance on mismatched condition (i.e. train without noise,

44 3. Sound Event Detection for Aircraft

Topic Feature Shape (CxFxT) Frame (Overlap) Classifier Best Performance

ESC [4] log mel-SIF + deltas (2x60x41) 46 (23) ms CNN (10) 73.7% acc.
ESC [64] raw waveform (fs =8 kHz) n/a Fully CNN (10) 71.8 % acc.
ESC [5] log mel-SIF (1x128x128) 23 (0) ms CNN (10) 79.0 % acc.
ESC [65] log mel-SIF + deltas(2x60x-) - CNN (10) 81.9 % acc.
Robust SED [59] log mel-SIF (1x24x30) - DBN (50) 92.9 % mean acc.
Robust SED [45] energy-based SIF (1x40x52) 64 (60) ms CNN (50) 94.0 % mean acc.
Robust SED [67] energy-based SIF (1x52x-) 100 (90) ms CNN (50) 98.6 % mean acc.
Robust SED [68] quantized SIF (3x513x93) 64 (63) ms CNN (50) 98.6 % mean acc.
Polyphonic SED [32] log mel-band energy (1x40x1) 50 (25) ms MLP (61) 61.7 % acc.
Polyphonic SED [62] log mel-SIF (1x40x[10, 25, 100]) 50 (25) ms RNN (61) 65.5 F1
Polyphonic SED [63] log mel-SIF (1x40x73) 40 (20) ms CRNN (61) 68.3 F1
Large-scale SED [70] log mel-SIF (1x96x64) 25 (15) ms CNN (3,000) 0.93 AUC

Table 3.1: Overview of classification/detection tasks and the used feature, input shape, type of classifier and accuracy.

evaluate on noise) has been reported in the table, because this is more in line with the aircraft detection sce-
nario.

[59] constructed a 2-layer neural network, with each hidden layer constructed from a pre-trained Restricted
Boltzmann Machine (RBM) pair, forming a Deep Belief Network (DBN). Under mismatched conditions, best
performance is achieved via energy-scaled voting weights, as high-energy regions offer more discriminative
capability than low-energy regions. [45] use highly overlapped STFT windows to capture instantaneous in-
formation. From each recording, 18 SIFs are obtained from the 6-frame context of the three frames with the
highest time-domain energy. A fairly standard CNN with 2 convolutional layers and 1 fully-connected layers
is used. [67] learn sets of filters with varying shape simultaniously. They use 1-max pooling and 1D (temporal)
convolution since it allows the detection of a specific feature which may occur at any time in a signal. [68]
perform RGB-quantization on their spectrogram image input, with a shape of (3x513x93), where the time-
domain length was obtained from downsampling the full-time spectrum. Their network was pre-trained on
the ImageNet dataset, consisting of 5 convolutional layers and 2 fully-connected layers.

[32], [62] and [63] evaluated on a database of real-life recordings categorized into 61 different event classes,
with overlap between events [69]. Highest performance was achieved by [63] with log Mel-SIF input, using 4
convolutional layers, 3 recurrent layers and 1 fully-connected layer. The convolutional layers serve as feature
extractors, the recurrent layers provide context by integrate these features over time, providing context, and
the fully-connected layer produces class activity probabilities.

Chapter 4

Ego-Noise Analysis

Ego-sound suppression of an MAV concerns the suppression or filtering of the noise generated by its motors
and airframe. Due to the limited dimensions of an MAV, the acoustic sensor(s) must be placed near the noise
sources out of necessity. This can lead to a signal-to-noise ratio as low as -20 dB [71], which limits SED appli-
cability severely.

The outline of this chapter is as follows. Section 4.1 provides a brief overview of MAV noise sources. In Sec-
tion 4.2 and Section 4.3, self-contained and dependent methods for MAV ego-noise suppression are elabo-
rated upon. Finally, Section 4.4 discusses the Denoising Auto-Encoder (DAE) and its purpose in ego-noise
suppression.

4.1 MAV Noise Sources

The sound signal x[n] recorded by the microphone is a combination of the target sound s[n] and ego-noise
v[n]:

x[n] = s[n]+ v[n] (4.1)

The signal v[n] emitted by a multi-rotor UAV can be considered a mixture of narrow-band harmonic noise
and broadband noise [72]. The harmonic component consists of the mechanical noise generated by the
rotating motors, with its fundamental frequencies proportional to its rotational speed, while the broadband
component is comprised of noise generated by the propeller blades cutting through the air [73]. As such, [73]
propose the following model for the ego-noise v[n] of a p-rotor MAV:

v[n] =
P∑

p=1
vp [n]+ v f [n] (4.2)

Each motor generates a directional noise source v p , while the superimposition of the noise of all propellers
is modelled as a directionless diffuse noise source v f . Noise generated by the rest of the airframe of the MAV
is neglected. Naturally, the intensity of the noise rises as the motor rotational speed rises. As a consequence,
the noise cannot be assumed to remain stationary during flight.

Ego-noise suppression methods can be divided into self-contained and dependent methods. Self-contained
methods use only information available from the microphone(s), and typically require multiple microphones
to suppress the noise of a multi-rotor UAV. Dependent methods required information from other sensors,
such as the motor speed, but only require a single microphone.

4.2 Self-contained Approaches

Self-contained approaches suppress MAV ego noise by designing a spatial filter w [l ,n] which localizes and
extracts the target sound s[n] from the set of recorded sounds x[l ,n]:

45

46 4. Ego-Noise Analysis

s[n] = w H[]l ,n]x[]l ,n], (4.3)

with superscript H denoting the Hermitian transpose [71].

Because the noise of a p-rotor MAV is a mixture of p+1 components (Equation (4.2)), at least p+2 microphones
are required to adequately suppress the ego-noise [73]. The position of the microphone array relative to the
MAV must also remain fixed, to ensure that the acoustic mixture remains stationary.

4.2.1 Beam Forming

In signal processing, a beamformer (BF) is a processor which acts as a spatial filter by outputting a linear
combination of the signals obtained from an array of sensors [74]. In the audio processing domain, the sens-
ing object is naturally a microphone which perceives a time series of audio waves. A distinction can be made
between fixed beamformers (also known as delay-and-sum beamformers) and adaptive beamformers.

Delay-and-Sum Beam Forming

A delay-and-sum beamformer (DSBF) requires a priori knowledge about the spatial layout of the microphone
array and sound source direction. Taken from [71], the sound from this specified direction is then amplified
by delaying and summing the signals from the microphone array:

sBF [k, l ,θd] = 1

M

M∑
m=1

x [k, l]e j 2π fkτ(1,m,θd). (4.4)

The time constant τ indicates the relative transmission delay of the source sound to two individual micro-
phones:

τ(m1,m2,θd) = ‖r m2 − r θd
‖−‖r m1 − r θd

‖
c

. (4.5)

[75] have implemented DSBF to locate a speech sound source while the MAV is hovering, in combination
with an array of 16 microphones in an octagonal configuration with a diameter of 2.3m. They concluded that
DSBF provided satisfactory localization in 60% of the test cases.

Adaptive Beam Forming

An adaptive beamformer (ABF) generally outperforms a DSBF [73] and does not require the location of the
target sound and acoustic sensors. Instead, only the correlation matrices of the target sound or the noise is
required. The correlation matrix R ss (k, l) of the target sound s[k, l] is computed by

R ss (k, l) = E{s(k, l)sH(k, l)} = 1

L

L∑
l=1

s(k, l)sH(k, l). (4.6)

Correlation matrices R v v (k, l) and R xx (k, l) for the noise sources and sensor output respectively are defined
in an identical manner. Under the assumption that the target sound and noise signals are generated indepen-
dently, R xx (k, l) can also be expressed as the sum of R ss (k, l) and R v v (k, l). When these correlation matrices
are known, a filter w can be obtained from e.g. a generalized eigen-vector decomposition of R xx and R v v ,
with w corresponding with the generalized eigenvector of the largest eigenvalue [71].

Unfortunately, the correlation matrices of s or v are difficult to obtain since s and v themselves are unknown.
An alternative is to estimate R v v from frames where no target sounds are present, i.e. where v[k, l] = x[k, l],
but there exists no feasible way to detect these frames for an in-flignt MAV with non-stationary noise and low
SNR.

4.3. Dependent Approaches 47

4.2.2 Blind Source Separation

Blind Source Separation (BSS) aims to separate all individual sources from the mixed signal obtained from the
p+2 microphones, by performing an Independent Component Analysis (ICA) followed by permutation align-
ment [71]. The ICA estimates a demixing matrix which transforms x[k, l] into a set of maximally independent
components. According to the Central Limit Theorem, a sum of non-Gaussian signals is more Gaussian than
its individual components. One way to interpret ICA is to find a demixing matrix which maximizes the non-
Gaussianity of each individual signal. This can be accomplished via e.g. the InfoMax algorithm [76], under
the assumption that all signals are independently generated. The permutation ambiguity can be solved based
on the inter-frequency dependency of separated signals, such that a frequency-independent global reference
is obtained for each source [77].

A limitation of the BSS approach is that it requires a stationary mixing network for a given interval, i.e. the
position of noise- and target source must remain fixed relative to the microphone array. While it has led
to promising results for a moving MAV recording a static speaker [73], it is not clear how it will work in an
outdoor environment.

4.2.3 Time-Frequency Processing

Time-frequency (T-F) processing methods exploit the time-frequency sparsity of audio signals, by estimating
the Direction Of Arrival (DOA) of the target sound at each time-frequency bin and then combining these re-
sults to reduce noise [71]. Like DSBF, the T-F process does require an angle of arrival of the target sound. The
time-frequency bins belonging to the target sound are then detected by measuring how close each bin is to
the direction of the target sound. From here, a target correlation matrix is computed, such that an adaptive
beamformer can be formulated. A drawback of T-F processing is that its performance deteriorates when the
DOA of the target sound is close to the DOA of one of the noise sources. The T-F method slightly outperforms
BSS for signals with low SNR, while both vastly outperform delay-and-sum as well as adaptive beamformers
[71].

[78] extend their T-F method to track moving sound sources with a hovering MAV. by dividing the audio
streams into temporal windows, and estimating the target location using a time-frequency filter. This filter
consists of three steps: spatial filtering, spatial confidence estimation and peak tracking.

4.3 Dependent Approaches

Dependent approaches use additional sensory information to construct an adaptive filter or to predict the
ego-noise signature of the robot. MAV applications typically require the rotational speed of the rotors is nec-
essary [79]. Because of the limited research into dependent approaches for MAVs, this section also highlights
ego-noise estimation approaches for ground-based robots.

4.3.1 Order-Analysis

[79] use an order-analysis approach for a hovering MAV, resulting in a spectral filter obtained by representing
the microphone signal in the revolution-order domain instead of the time-frequency domain. They make use
of the assumption that ego noise is predominantly generated by the motors at harmonic orders of the fun-
damental frequency. The noise-free signal is then obtained by subtracting the energy at the harmonic orders
from the total energy within the spectrum. A drawback of this method is that it does not discriminate between
target sound and unwanted noise; any target sound present at the harmonic orders will not be observable in
the noise-free signal. This may especially be a problem for a manoeuvring MAV with motors operating at
different rotational speeds.

4.3.2 Template Methods

Template-based methods utilize a database of ego-noise templates, where each template contains the ego-
noise signature generated from a set of feature vectors. [80] apply template-based online learning to a ground-
based robot. They make use of the nearest neighbor algorithm to match the observed feature vector with the
closest feature vector in the database, and retrieve the corresponding template. If no external noise is present,
and the estimated template is not similar to the closest template from the database, the estimated template
and corresponding feature vector are added to the database.

48 4. Ego-Noise Analysis

4.4 Denoising Autoencoders

An autoencoder is a type of feedforward network which uses an encoder-decoder scheme in attempt to out-
put a reconstruction of an input x . The autoencoder is usually restricted to be undercomplete: by making the
hidden layer(s) smaller than the input layer, the encoder is forced to compress the most salient features of
the input. The loss function of an autoencoder is usually a function that penalizes the reconstruction of the
input for being dissimilar to the original, such as the MSE.

A denoising autoencoder (DAE) aims to reconstruct x from a copy of x corrupted by noise. This way, the au-
toencoder is forced to implicitly learn the distribution of the input. Recently, the DAE has had some success
for the denoising/enhancement of speech signals. [81] used a DAE consisting of a single hidden layer, in com-
bination with the 40-band Mel frequency power spectrum. Evaluating on car- and factory noise at SNRs of
+10, +5 and 0dB, the DAE outperformed existing algorithms for all six test cases. It should be noted, however,
that these noise datasets are significantly more stationary than MAV ego-noise.

Chapter 5

Literature Synthesis

This chapter concludes the literature study for the preliminary phase of this thesis. The research topic of the
thesis is the recognition of aircraft based on their acoustic signature, from an in-flight MAV. The literature
study has been divided into three main areas, which have been analyzed in detail. Firstly, the properties of
aircraft sound were analyzed, and many audio representations suitable for detection were covered. Secondly,
an overview of existing methods for general sound event detection (SED) methods suitable for aircraft detec-
tion was presented. Finally, the feasibility of existing methods regarding the suppression of MAV ego-noise
are discussed. The main findings of each topic are synthesized in this chapter.

5.1 Properties and Representation of Aircraft Sound

Aircraft sound as perceived on the ground consists primarily of harmonic sounds generated by its rotating
engines, as well as broadband noise from the turbulent flow across the airframe [19]. Furthermore, an air-
craft passing by is characterized by a Doppler shift for any (near-)stationary observer.

When classifying a sound signal, it is often necessary to extract relevant features from it and discard irrele-
vant information. Engineered features can be divided into purely time-, purely frequency- or time-frequency
features. The application of purely-time frequency features, such as the short-time energy (STE) and the
zero-crossing rate (ZCR), is limited to simple cases such as silence presence/absence detection [30]. The log
Mel-band energy is a powerful frequency-based feature suitable for more complex tasks such as polyphonic
SED [32] and multi-channel SED [33]. The Mel Frequency Cepstrum Coefficients (MFCCs), operating in the
cepstral domain, have been the standard for audio classification tasks for decades, but have recently been
outperformed by time-frequency features such as the spectrogram image feature (SIF). Inspired by recent
advances in computer vision, these features use a spectrogram representation of the signal to obtain charac-
teristics regarding the shape and evolution of its time-frequency contents [2].

5.2 Sound Event Detection for Aircraft

Aircraft presence/absence detection can be considered a binary detection task, and can be accomplished by
piece-wise classification of the incoming audio signal. Classifiers can be divided into generative classifiers,
which model the feature space, and discriminative classifiers, which learn the difference between classes.
Generative classifiers include the Gaussian Mixture Model (GMM) and the Hidden Markov Model (HMM). In
the past, these classifiers have been frequently combined with MFCCs for audio classification [28]. Discrim-
inative classifiers such as the Support Vector Machine (SVM) and logistic regression generally outperform
generative classifiers.

Due to advances in computer processing power in recent years, Artificial Neural Networks (ANNs) have
emerged as the main choice for audio analysis tasks such as automatic speech recognition (ASR), environ-
mental sound classification (ESC) and robust SED. State-of-the-art performance has been achieved by con-
volutional neural networks (CNNs) in combination with log-amplitude Mel-frequency SIFs. As such, this
combination will be chosen for further analysis during the remainder of the thesis.

49

50 5. Literature Synthesis

5.3 Ego-Noise Analysis

Classification of aircraft sound by an in-flight MAV is impeded by its ego-noise. This noise can be considered a
mixture of narrow-band harmonic noise, generated by the rotating engines, and broadband noise, generated
by the propeller blades cutting through the air [73]. Self-contained ego-noise filtering approaches sucn as
beam forming (BF) and blind source separation (BSS) use a microphone array to design a spatial filter which
localizes and extracts the target sound. However, these methods do not account for a dynamic environment.

Dependent approaches make use of additional information provided by sensors on the MAV. Research re-
garding these approaches has been limited. [79] used an order-analysis approach to filter out all incoming
sound at harmonic frequencies of the fundamental frequency of the motors. [80] made use of a template-
based approach for estimating the ego-noise of a ground-based robot. A different type of approach is to use a
denoising autoencoder, which has been applied successfully for denoising speech signals contaminated with
noise [81].

The remainder of the thesis will focus on two test cases for ego-noise removal and aircraft classification. The
first test case filters the ego-noise via a regression approach, and then detects aircraft using the denoised
audio signal. The second test case will filter ego-noise and detect aircraft simultaneously.

III
Preliminary Analysis

51

Chapter 6

Aircraft Classification

This chapter considers a preliminary analysis of acoustic-based aircraft classification. The goal of this anal-
ysis is to compare the performance of various feature representations and input dimensions coupled with
CNN architecture found in literature. The method of obtaining the data required for analysis is outlined in
Section 6.1. In Section 6.2, the feature extraction process is explained in detail. Finally, the evaluated archi-
tectures and results of the analysis are given in Section 6.3.

6.1 Data Acquisition

During flight, it is important that the MAV does not register nearby road vehicles as aircraft due to their en-
gine noise. Likewise, wind noise during flight must also not be mistaken for aircraft sound. For this reason,
a classifier that distinguishes between aircraft and non-aircraft sound is necessary. The ESC-50 dataset [1] is
used for training and evaluation of the classifier, as it is one of the few publicly available datasets contain-
ing environmental recordings of helicopters. The dataset consists of 50 classes which can be arranged into 5
major categories. Each class itself contains 40 five-second recordings. An overview of all classes per category
is given in Table 6.1. Naturally, the classes ’helicopter’ and ’airplane’ are considered as ’aircraft’. To keep a
balanced dataset, only two other classes will be designated as non-aircraft. Out of the ones remaining, the
classes ’wind’ and ’engine’ appear to be the two most prominent external sound sources during MAV flight
and are denoted as the ’non-aircraft’ class. The dataset is then split into a training, validation and test set
with {0.64, 0.16, 0.20} ratios between the respective sets. Each of the classes is evenly represented in each set,
resulting in {25, 7, 8} recordings per class in the training, validation and test set, respectively.

The 46 remaining classes are not considered for training/evaluation of the classifier during this preliminary
analysis. A disadvantage of this approach is that the remainder of the dataset is rather small: only 160 record-
ings, equivalent to 800 seconds of audio, remain. AudioSet [82] is a significantly larger dataset, consisting

Animals Nature Human Interior Exterior/Urban

Dog Rain Crying baby Door knock Helicopter
Rooster Sea waves Sneezing Mouse click Chainsaw
Pig Crackling fire Clapping Keyboard typing Siren
Cow Crickets Breathing Door creaks Car horn
Frog Chirping Coughing Can opening Engine
Cat Water drops Footsteps Washing machine Train
Hen Wind Laughing Vacuum cleaner Church bells
Insects Pouring water Brushing teeth Clock alarm Airplane
Sheep Toilet flush Snoring Clock tick Fireworks
Crow Thunderstorm Drinking Glass breaking Hand saw

Table 6.1: Overview of the classes in the ESC-50 dataset. Classes considered as ’aircraft’ are typeset in bold, while classes con-
sidered ’non-aircraft’ are typeset in bold italics. All other classes are not considered for training/evaluation. Table adapted from
https://github.com/karolpiczak/ESC-50

53

https://github.com/karolpiczak/ESC-50

54 6. Aircraft Classification

of over 2 million 10-second audio clips. The set uses multi-class labeling, i.e. a clip may contain more than
1 label. Although the set offers approximately 12,000 clips of aircraft sound (’aircraft’, ’helicopter’), speech-
dominated events such as a conversations in an airplane cockpit or a crowd jeering during an airplane fly-
over are also included in this labeling. Even when filtering all clips containing any kind of ’speech’ label, clips
where the aircraft is simply background noise are still present. For this reason, the small but accurate fraction
of the ESC-50 dataset is preferred over AudioSet.

6.2 Feature Extraction
After acquiring the data, an input feature must be extracted from the raw audio. The Mel-Frequency Cepstral
Coefficients (MFCCs) were considered the go-to feature for sound-related tasks, particulary speech recogni-
tion, prior to the advent of deep learning in the 2010s. Gaussian Mixture Models (GMMs) especially benefited
from the decorrelation of the filterbank coefficients that the DCT provided. Given the ability of Convolutional
Neural Networks (CNNs) to efficiently learn local structures within a 2D input, image-like features based on
the spectrogram of a waveform have outperformed manually engineered features such as the MFCCs. Even
for environmental sound classification tasks, the Mel-frequency scale remains a popular alternative to linear
scaling. Four feature variations will be evaluated during this analysis: the MFCCs, the (linear) spectrogram,
the Mel-spectrogram (scaling based on human perception of pitch) and the constant-Q spectrogram (scaling
based on the Western musical scale).

Unlike the Mel-scale, which is linear until approximately 700 Hz, the constant-Q scale is purely logarithmic.
This requires a minimum frequency to be chosen, which is set at the ’C1’ tone (32.7 Hz). The scale also as-
sumes 12 steps per octave. An overview of the constant-Q tones and corresponding frequencies, as well as
the resulting frequency bins and minimum required sample rate out of the ranges {24,000; 32,000; 44,100} Hz
are shown in Table 6.2.

Frequency bins 0 12 24 36 48 60 72 84 96 108

Max. tone C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Max. frequency (Hz) 32.7 65.4 130.8 261.6 523.2 1,046.5 2,093.0 4,186.0 8,372.0 16,744.0
Min. sample frequency (Hz) - - - 24,000 - 24,000 - 24,000 - 44,100

Table 6.2: Relationship between the number of frequency bins used for the constant-Q transform, the frequency of the highest
tone, and the minimum necessary frequency out of the ranges {24,000, 32,000, 44,100} Hz.

All spectra are extracted from the audio using the librosa python library[83]. The complete feature extraction
process for each recording is almost identical for each feature, and consists of the following steps:
1. Trim the silent fragments in the recording.

2. Extract the Short Time Fourier Transform, using a hop size of 512 frames and a window length of 1,024
frames (the constant-Q transform uses a variable window length), with appropriate frequency scaling (lin-
ear, Mel or constant-Q) and appropriate number of frequency bins and sample rate. For MFCCs, only the
first 13 coefficients are used, computed from the Mel filterbank.

3. Convert the time-frequency representation to the decibel scale.

4. Split the recording into segments with the appropriate number of frames, with 50% overlap between seg-
ments. The frames are offset such that they are centered w.r.t. the recording, e.g. a five-second recording
sampled at 44.1 kHz (containing 431 frames) with a segment length of 60 is split using frame indices {6-65,
36-95, ..., 366-425}.

5. Rescale each segment to a [0, 1] range. Scaling or normalization generally improves the learning capability
and numerical stability of the model.

6. Use a first-order Savitzky–Golay filter to compute the smoothed time derivative (delta) of the feature, with
’mirror’ padding at the edges. This provides dynamic information to go along with the static spectra.

Example features of each class (airplane, helicopter, engine, wind) are displayed in Figure 6.1 to Figure 6.4.
Each feature was generated using a sample rate of 44.1 kHz, 108 frequency bins (13 coefficients for MFCCs)
and 84 frames.

6.2. Feature Extraction 55

Figure 6.1: Example spectra (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and ’wind’.

Figure 6.2: Example constant-Q spectra (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and ’wind’.

56 6. Aircraft Classification

Figure 6.3: Example Mel spectra (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and ’wind’.

Figure 6.4: Example MFCCs (top) and deltas (bottom) of the classes ’airplane’, ’helicopter’, ’engine’ and ’wind’.

6.3. Preliminary Analysis 57

6.3 Preliminary Analysis

6.3.1 Experiment Setup

Various settings for the analysis will be explored, for a total of 42 combinations per feature. The first set-
ting to be varied is the sample frequency. Because the majority of the energy of aircraft sound appears to be
contained at frequencies below 12kHz, the sample frequency is varied at 24.0, 32.0 and the default 44.1 kHz.
Second is the number of frequency bins, the ’height’ of each input to the network, varied at 36, 60, 84 and 108
bins. Because the constant-Q scale contains twelve steps per octave, these are all integer multiples of 12. A
height of 108 requires a sample frequency of at least 32.5 kHz (Table 6.2) and is thus only done for the default
sample rate. For MFCCs, only the first 13 coefficients are used, computed from the Mel filterbank. Third is
the ’width’ of each input, which is determined by the frames per split segment. Each test case contains one
square input (i.e. frequency bins = frames per segment) and a fixed size at 60. An additional test with 108
frequency bins and 84 frames is done to compensate for the lack in frequency variation. Finally, each test is
repeated with and without the delta-channel as the second channel input.

Two CNN architecture types will be explored for each set of features. The first type is based on the work of
[4], who also created the ESC-50 dataset. Characteristic of this network is the tall filters found in the first
convolutional layer, which span almost the entire frequency range. The second network is based on the work
of [5], which is a more conventional CNN with square filters in all convolutional layers. Both networks are
relatively simple, consisting of 2-3 convolutional layers and 1-2 fully-connected layers. As is convential with
CNNs, both networks use ReLu connections for every hidden layer. Because the dataset used is considerably
smaller, the number of parameters has been reduced greatly by reducing the width of each layer for both
models. Table 6.3 and Table 6.4 shows the modifications made to the networks of [4] and [5], respectively.

Piczak Modified

Input (2, 60, 41) various
Conv1 (80, 57, 6) (16, H-3, 7)
Mp1 (4, 3) kernel, (1, 3) stride identical
Conv2 (80, 1, 3) (16, 1, 3)
Mp2 (1, 3) identical
Fc1 (240, 5000) (various, 64)
Fc2 (5000, 5000) (64, 32)
Out (5000, 50) (32, 1)
Dropout Conv1, Fc1, Fc2 Fc1, Fc2

Table 6.3: Comparison of the architecture of [4] (left) and
the modifications made to it (right).

Salamon Modified

Input (1, 128, 128) various
Conv1 (24, 5, 5) (16, 5, 5)
Mp1 (2, 4) (2, 2)
Conv2 (48, 5, 5) (16, 5, 5)
Mp2 (2, 4) (2, 2)
Conv3 (48, 5, 5) (16, 5, 5)
Fc1 (10000, 64) (various, 64)
Out (64, 50) (64, 1)
Dropout Conv3, Fc1 Fc1

Table 6.4: Comparison of the architecture of [5] (left) and
the modifications made to it (right).

Because this is a binary classification problem, the loss function of choice is the binary cross-entropy (BCE):

LBC E = 1

N

N∑
i=1

[
yn log ŷn + (

1− yn
)

log
(
1− ŷn

)]
, (6.1)

where yn indicates the target output (0/1) and ŷn the predicted output. A batch size of 256 is used during
training (i.e. N =256 in Equation (6.1)), as it increases computational speed (due to parallelization) without
negatively affecting the generalization performance of the network. The model is implemented using Pytorch
[84] and trained on a single GeForce GTX 1050Ti GPU via CUDA [85]. The AdamW algorithm is used to train
the model, with a learning rate of 0.0001 and weight decay of 0.01. Training is done for a maximum of 500
epochs, with early stopping after the validation loss does not improve after 30 epochs. The random seed,
which determines the batch shuffling and initial weights of the network, is kept fixed and is reset before the
training of each set, in an attempt to reduce the influence of randomness during training.

6.3.2 Results

The 20 best configurations (out of 328) are summarized in Table 6.5, showing the accuracy, model architec-
ture and parameter settings. Table 6.6 and Table 6.7 show the best performing feature for the modified Piczak

58 6. Aircraft Classification

Accuracy Model Feature Sample rate Channels Height Width

87.9% Salamon Mel spectrogram 44,100 2 108 84
87.8% Salamon Mel spectrogram 44,100 1 84 60
87.5% Salamon Mel spectrogram 44,100 1 108 84
87.1% Salamon Mel spectrogram 44,100 2 84 60
86.7% Salamon Mel spectrogram 32,000 2 84 84
86.4% Salamon Mel spectrogram 44,100 2 36 36
86.3% Salamon Mel spectrogram 44,100 1 108 60
86.3% Salamon Mel spectrogram 44,100 1 36 36
86.3% Salamon Spectrogram 44,100 2 108 108
86.1% Salamon Mel spectrogram 44,100 1 36 60
86.0% Salamon Mel spectrogram 24,000 1 84 84
85.7% Salamon Mel spectrogram 24,000 1 60 36
85.6% Salamon Spectrogram 44,100 2 108 60
85.4% Piczak Mel spectrogram 24,000 2 60 36
85.1% Salamon Mel spectrogram 32,000 1 84 84
84.9% Salamon Spectrogram 44,100 1 108 84
84.6% Salamon Mel spectrogram 44,100 1 108 108
84.6% Salamon Mel spectrogram 44,100 2 36 60
84.3% Salamon Spectrogram 44,100 1 84 60
84.3% Salamon Spectrogram 44,100 1 60 60

Table 6.5: Results of prelim classification

Accuracy Feature

85.4% Mel spectrogram
84.1% Spectrogram
82.3% Constant-Q spectrogram
82.3% MFCCs

Table 6.6: Highest classification accuracy per feature for the
modified Piczak architecture.

Accuracy Feature

87.9% Mel spectrogram
86.3% Spectrogram
81.5% Constant-Q spectrogram
75.2% MFCCs

Table 6.7: Highest classification accuracy per feature for the
modified Salamon architecture.

and Salamon architecture, respectively. From these results, several observations can be made. It is clear that
the network with square filters, derived from [5], outperforms the one from [4]. The Mel spectra also con-
sistently outperform all other features. It is also apparent that the constant-Q spectra perform considerably
worse than the other spectra, despite having the highest resolution at lower frequencies, were vehicle sound
is expected to be dominant. It seems that the high frequency components are necessary to differentiate them.
Tall input features also appear to outperform square ones, with detailed input (108, 84) appearing to have a
slight edge over coarse inputs (36, 60). Finally, the delta-channel does not appear to influence the results
significantly (87.9% and 87.1% with compared to 87.8% and 87.5% without deltas). The Receiver Operator
Characteristic (ROC) curve is displayed in Figure 6.5.

Figure 6.5: ROC-curve of the classifier. Area under the curve = 0.914.

Chapter 7

Ego-Noise Prediction

The objective of the preliminary ego-noise analysis is to assess whether a meaningful relationship between
ego-noise and MAV states (e.g. rotor rotational speed, body angular velocities). Section 7.1 explains the steps
taken to generate and prepare the dataset for learning and evaluation. Section 7.2 provides the motivation
and outcomes of the experiments conducted during this phase of the research.

7.1 Data Acquisition and Pre-processing

A Parrot Bebop2 drone was provided by the faculty to collect the training- and evaluation data. A Raspberry
Pi 3 (RPi), fitted with a USB microphone, was mounted on (and powered by) the MAV to record audio data.
The measured states consist of the rotor rpm (4), the stabilization commands by the autopilot (4), attitude
angles (3) and body angular rates (3), all of which were logged internally on the MAV. Four manual flights,
lasting approximately 30 seconds each, were performed for the data collection, inside an indoor area of 8 by
8 meter.

Paparazzi UAV, running on a nearby laptop, is used to control the drone. Data transmission from MAV to
ground station is done via UDP, while transmission from RPi to ground station is done via TCP. As soon as
all motors are turned on, the MAV signals the ground station and starts transmitting state data at a 100 Hz
frequency. In turn, the ground station signals the RPi to start recording (and transmitting) audio. The micro-
phone records at a frequency of 48 kHz, while the data is sent in chunks of 512 samples. When the motors are
turned off, the MAV signals the laptop again, which in turn signals the RPi to stop recording audio.

Several adjustments must be made to the raw measurements before the ego-noise analysis. Similar to the
audio data obtained from the ESC-50 dataset (Section 6.1), the recorded noise is converted to a suitable time-
frequency representation. In this case, the audio is converted to the best performing feature representation
from the aircraft classification task: a Mel spectrogram sampled at 44.1 kHz, containing 108 frequency bins,
with a hop size and window length of 512 and 1024 samples, respectively. Each state vector is augmented with
the time-derivative (delta) of the rotor rpm and stabilization commands to provide dynamic information. All
recorded states are then scaled so that they fall within a reasonable interval.

The Mel spectrogram of the flight, along with the scaled rotor speed, stabilization commands and attitude
rates are displayed in Figure 7.1. In this recording, the MAV is on the ground, with motors on, for 2.5 seconds.
It then takes off and reaches a stable position after another 1.5 seconds. It then performs mostly horizontal
flight for 15 seconds, with a sharp yaw motion at t=13, and ends the flight with a rough landing.

It is important that the data from each individual source is synchronized: each frame of the Mel-spectrogram
must be matched with a corresponding state vector. With 10 ms between successive state vectors and ap-
proximately 11.6 ms between frames, each frame is simply matched with the state vector closest in time.
State vectors without a matching frame are discarded. The synchronization is illustrated in Figure 7.2 for the
first five spectrogram frames. In this case, the spectra at tmi c = {0.0, 11.6, 23.2, 34.8, 46.4} ms are matched
with the state vectors at tmav = {0.0, 10.0, 20.0, 30.0, 50.0}, respectively. The state vector at tmav = 40 ms is
discarded.

59

60 7. Ego-Noise Prediction

Figure 7.1: One of the manual MAV flights.

Figure 7.2: Synchronization of the data.

The complete dataset, consisting of the synchronized state-spectrogram pairs of the four recordings, is split
up into a training, validation, and test dataset. Two recordings (5,057 datapoints) have been used for training,
one (2,849 datapoints) is used for validation and one (1,627 datapoints) is used for testing purposes.

7.2 Experiments

A simple feedforward network, in the form of a Multi-Layer Perceptron (MLP), is used as the model for the
ego-noise predictor. The optimal architecture is determined by randomly selecting the number of layers (2-4)
and number of units per layer (40-200) for a total of 30 trials. For each randomly selected architecture, eight
different state configurations are examined, varying in complexity. The attitude angles are ignored for this
analysis.

The chosen loss function is the mean-squared error (MSE), which is standard for a regression analysis:

LMSE = 1

N

N∑
i=1

(
yi − ŷi

)2, (7.1)

where yi is the target output and ŷi the predicted output. Training is done using the established Adam al-
gorithm, with a learning rate of 0.001 and weight decay of 0.01 (default parameters). A batch size of 256 is
used for training, which is stopped after 30 epochs. Again, ReLu activations are used for all hidden layers.
Table 7.1 shows the ten best performing network-state combinations (i.e. lowest MSE loss) out of the 240
configurations tested. The indices in the ’States’ column denote the used states: rotor RPM (1), stabilization
commands (2), rotational rates (3), rotor RPM-delta (4) and stabilization commands-delta (5).

There appears to be little consistency between network architecture and performance, likely due to the mini-
batch gradient descent-induced randomness and/or weight initialization during training. The rotor RPM and
stabilization commands appear to be the most important states, considering their occurrence in Table 7.1.

To illustrate the difference in performance between configurations, the models with the best performance
(MSE=4.976e-3) and worst performance (MSE=6.102e-3, not tabulated in Table 7.1) are illustrated in Fig-
ure 7.3 and Figure 7.4, respectively. In each figure, the original spectrum (top), predicted spectrum (mid-
dle) and residual spectrum (bottom) are displayed. From the two figures, it becomes clear that the model on
the right is unable to follow the changing harmonic frequencies of the MAV during flight, resulting in higher
discrepancies. The highest discrepancies for the model on the left occur during take-off, the yawing around
13 seconds, and landing. The inability to adapt to these rapid maneuvers suggests that the availability of
acceleration and/or velocity flight data could be beneficial.

7.2. Experiments 61

MSE loss (e-3) Structure States

4.976 19x120, 120x100, 100x140, 140x108 1, 2, 3, 4, 5
5.021 4x60, 60x120, 120x100, 100x108 1
5.044 19x180, 180x160, 160x108 1, 2, 3, 4, 5
5.059 7x140, 140x80, 80x120, 120x108 2, 3
5.070 4x60, 60x160, 160x140, 140x108 2
5.078 4x120, 120x180, 180x108 1
5.093 19x120, 120x140, 140x120, 120x108 1, 2, 3, 4, 5
5.095 11x80, 80x140, 140x108 1, 2, 3
5.097 8x80, 80x108 1, 2
5.111 11x120, 120x180, 180x108 1, 2, 3

Table 7.1: The ten best (i.e. lowest MSE loss) combinations of network structure and MAV states.

Figure 7.3: Original (top), predicted (middle) and residual
(bottom) Mel spectrogram generated by the best perform-
ing model (MSE loss = 4.976e-3).

Figure 7.4: Original (top), predicted (middle) and residual
(bottom) Mel spectrogram generated by the worst perform-
ing model (MSE loss = 6.102e-3).

Chapter 8

Discussion of Preliminary Results

In the preliminary analyses presented in Chapter 6 and Chapter 7, investigations into aircraft detection via
classification and ego-noise prediction using MAV flight data were conducted. This chapter summarizes and
discusses the findings of the investigations, which form the basis for the experiments conducted in the scien-
tific paper in part I.

8.1 Classification

The preliminary analysis concerning aircraft classification consisted of finding the best combination of fea-
ture representation and model architecture. The data for aircraft classification consisted of 40 recordings of
airplane, helicopter, engine and wind sound extracted from the ESC-50 dataset [1]. All recordings were con-
verted to a time-frequency representation via the Short-Time Fourier Transform, providing a more suitable
representation for classification.

Four different time-frequency features that were either commonly used in the past or showed promising
results in recent research regarding sound event classification were investigated during the analysis: the (reg-
ular) spectrogram, the constant-Q spectrogram, the Mel spectrogram and the Mel Frequency Cepstral Coef-
ficients (MFCCs). Each of the features was tested in combination with two Convolutional Neural Networks
(CNNs) adapted from prior research. One network, inspired by [4], contains tall filters spanning most of the
frequency range. The second is a variation of [5], which makes use of square filters. Furthermore, audio sam-
ple rate and input dimensions (width, height) were varied during the analysis.

The best performing combination consisted of a 108 by 84 Mel spectrogram, sampled at 44.1 kHz, achieving
87.9% accuracy on the test set. While this is an adequate result for the preliminary analysis, improvements
are still necessary. Furthermore, the final model must also be robust to residual ego-noise, caused by the
discrepancy between actual and predicted ego-noise.

8.2 Ego-Noise

The objective of the preliminary ego-noise analysis was to assess whether ego-noise could be satisfactorily
predicted using MAV flight data such as rotor rotational speed, stabilization commands and angular veloc-
ities. Audio data was obtained from a microphone located near the Bebop2 MAV, flight data was logged by
the MAV itself. To remain consistent with the aircraft classification, the audio was transformed to the optimal
time-frequency representation described in the previous section. The gathered MAV states (input) and Mel
spectra (output) were then synchronized to construct the dataset used for ego-noise prediction.

The chosen network configuration was a Multi-Layer Perceptron (MLP). The best architecture (number of
layers, units per layer) and state vector combination was found by conducting a random grid search through
the network depth and layer width for each combination of state vectors (motor speed, stabilization com-
mands, angular velocity, motor speed differential and stabilization command differential).

63

64 8. Discussion of Preliminary Results

The best model consisted of 3 hidden layers with 100 to 140 units each and made use of the complete state
vector. However, no clear relationship between the architecture of the best, near-best and worst configu-
rations could be found; it could simply be the result of randomness during training. While the best model
was able to follow the wave-like variations in dominant frequencies during flight, major discrepancies were
still present during rapid movements such as take-off. This may indicate that positional data (acceleration,
velocity) is required. Another shortcoming of the models used during this analysis is the lack of temporal
integration between successive data; the noise generated by a rapid acceleration may still be present several
frames later. This introduces a need for learning sequential data through e.g. a Recurrent Neural Network
(RNN), which must be investigated further.

Bibliography

[1] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in Proceedings of the 23rd Annual
ACM Conference on Multimedia, pp. 1015–1018, ACM Press, 2015.

[2] T. Virtanen, M. D. Plumbley, and D. Ellis, Computational analysis of sound scenes and events. Springer,
2018.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[4] K. J. Piczak, “Environmental sound classification with convolutional neural networks,” in 2015 IEEE 25th
International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2015.

[5] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmentation for environmen-
tal sound classification,” IEEE Signal Processing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[6] G. Wild, J. Murray, and G. Baxter, “Exploring civil drone accidents and incidents to help prevent potential
air disasters,” Aerospace, vol. 3, no. 3, p. 22, 2016.

[7] M. G. Wu, A. C. Cone, S. Lee, C. Chen, M. W. Edwards, and D. P. Jack, “Well clear trade study for unmanned
aircraft system detect and avoid with non-cooperative aircraft,” in 2018 Aviation Technology, Integration,
and Operations Conference, p. 2876, 2018.

[8] L. R. Salazar, R. Sabatini, S. Ramasamy, and A. Gardi, “A novel system for non-cooperative uav sense-
and-avoid,” in Proceedings of european navigation conference, 2013.

[9] S. Ramasamy, R. Sabatini, and A. Gardi, “Avionics sensor fusion for small size unmanned aircraft sense-
and-avoid,” in 2014 IEEE Metrology for Aerospace (MetroAeroSpace), pp. 271–276, May 2014.

[10] X. Yu and Y. Zhang, “Sense and avoid technologies with applications to unmanned aircraft systems:
Review and prospects,” Progress in Aerospace Sciences, vol. 74, pp. 152–166, 2015.

[11] D. M. Marshall, R. K. Barnhart, S. B. Hottman, E. Shappee, and M. T. Most, Introduction to unmanned
aircraft systems. Crc Press, 2016.

[12] A. Moses, M. J. Rutherford, and K. P. Valavanis, “Radar-based detection and identification for miniature
air vehicles,” in 2011 IEEE International Conference on Control Applications (CCA), pp. 933–940, Sep.
2011.

[13] G. Ludeno, I. Catapano, G. Gennarelli, F. Soldovieri, A. R. Vetrella, A. Renga, and G. Fasano, “A micro-uav-
borne system for radar imaging: A feasibility study,” in 2017 9th International Workshop on Advanced
Ground Penetrating Radar (IWAGPR), pp. 1–4, June 2017.

[14] T. G. McGee, R. Sengupta, and K. Hedrick, “Obstacle detection for small autonomous aircraft using sky
segmentation,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
pp. 4679–4684, April 2005.

[15] T. Zsedrovits, A. Zarandy, B. Vanek, T. Peni, J. Bokor, and T. Roska, “Visual detection and implementation
aspects of a uav see and avoid system,” in 2011 20th European Conference on Circuit Theory and Design
(ECCTD), pp. 472–475, IEEE, 2011.

65

http://www.deeplearningbook.org
http://www.deeplearningbook.org

66 Bibliography

[16] A. Rozantsev, V. Lepetit, and P. Fua, “Detecting flying objects using a single moving camera,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 879–892, May 2017.

[17] S. Hwang, J. Lee, H. Shin, S. Cho, and D. Shim, “Aircraft detection using deep convolutional neural net-
work in small unmanned aircraft systems,” in 2018 AIAA Information Systems-AIAA Infotech Aerospace,
01 2018.

[18] E. Tijs, G. de Croon, J. Wind, B. Remes, C. De Wagter, H. de Bree, and R. Ruijsink, “Hear-and-avoid for
micro air vehicles,” in Proceedings of the International Micro Air Vehicle Conference and Competitions
(IMAV), Braunschweig, Germany, vol. 69, 2010.

[19] G. J. J. Ruijgrok, Elements of Aviation Acoustics. VSSD, 2007.

[20] T. F. Quatieri, Discrete-time speech signal processing: principles and practice. Pearson Education India,
2006.

[21] A. Pico, G. Schillaci, V. V. Hafner, and B. Lara, “How do i sound like? forward models for robot ego-noise
prediction,” in 2016 Joint IEEE International Conference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob), pp. 246–251, Sep. 2016.

[22] G. Schillaci, C.-N. Ritter, V. V. Hafner, and B. Lara, “Body representations for robot ego-noise modelling
and prediction. towards the development of a sense of agency in artificial agents,” in Proceedings of the
Artificial Life Conference 2016 13, pp. 390–397, MIT Press, 2016.

[23] G. Heinzel and A. Rüdiger, “Spectrum and spectral density estimation by the discrete fourier transform
(dft), including a comprehensive list of window functions and some new flat-top windows,” Max Plank
Inst, vol. 12, 01 2002.

[24] D. Griffin and J. Lim, “Signal estimation from modified short-time fourier transform,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 32, no. 2, pp. 236–243, 1984.

[25] J. C. Brown, “Calculation of a constant q spectral transform,” The Journal of the Acoustical Society of
America, vol. 89, no. 1, pp. 425–434, 1991.

[26] A. Rakotomamonjy and G. Gasso, “Histogram of gradients of time–frequency representations for au-
dio scene classification,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23,
pp. 142–153, Jan 2015.

[27] T. Lidy and A. Schindler, “CQT-based convolutional neural networks for audio scene classifica-
tion,” in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), pp. 60–64, September 2016.

[28] C. Asensio, M. Ruiz, and M. Recuero, “Real-time aircraft noise likeness detector,” Applied Acoustics,
vol. 71, no. 6, pp. 539–545, 2010.

[29] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement of the psychological magni-
tude pitch,” The Journal of the Acoustical Society of America, vol. 8, no. 3, pp. 185–190, 1937.

[30] R. Bachu, S. Kopparthi, B. Adapa, and B. Barkana, “Voiced/unvoiced decision for speech signals based on
zero-crossing rate and energy,” in Advanced Techniques in Computing Sciences and Software Engineering
(K. Elleithy, ed.), (Dordrecht), pp. 279–282, Springer Netherlands, 2010.

[31] C. Panagiotakis and G. Tziritas, “A speech/music discriminator based on rms and zero-crossings,” IEEE
Transactions on multimedia, vol. 7, no. 1, pp. 155–166, 2005.

[32] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound event detection using multi label
deep neural networks,” in 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, July
2015.

[33] S. Adavanne, G. Parascandolo, P. Pertila, T. Heittola, and T. Virtanen, “Sound event detection in multi-
channel audio using spatial and harmonic features,” in Scenes and Events 2016 Workshop (DCASE2016),
p. 6, 2016.

Bibliography 67

[34] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa, “Computational auditory scene recogni-
tion,” in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. II–
1941–II–1944, May 2002.

[35] S. O. Sadjadi and J. H. L. Hansen, “Unsupervised speech activity detection using voicing measures and
perceptual spectral flux,” IEEE Signal Processing Letters, vol. 20, pp. 197–200, March 2013.

[36] M. McKinney and J. Breebaart, “Features for audio and music classification,” in ISMIR, 2003.

[37] T. Giannakopoulos, D. Kosmopoulos, A. Aristidou, and S. Theodoridis, “Violence content classification
using audio features,” in Advances in Artificial Intelligence (G. Antoniou, G. Potamias, C. Spyropoulos,
and D. Plexousakis, eds.), (Berlin, Heidelberg), pp. 502–507, Springer Berlin Heidelberg, 2006.

[38] W. B. Kleijn and K. K. Paliwal, Speech coding and synthesis. Elsevier Science Inc., 1995.

[39] D. G. Bhalke, C. B. R. Rao, and D. S. Bormane, “Automatic musical instrument classification using frac-
tional fourier transform based- mfcc features and counter propagation neural network,” Journal of In-
telligent Information Systems, vol. 46, pp. 425–446, Jun 2016.

[40] S. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recog-
nition in continuously spoken sentences,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 28, pp. 357–366, August 1980.

[41] B. Milner and X. Shao, “Speech reconstruction from mel-frequency cepstral coefficients using a source-
filter model,” in Seventh International Conference on Spoken Language Processing, 2002.

[42] M. A. Hossan, S. Memon, and M. A. Gregory, “A novel approach for mfcc feature extraction,” in 2010 4th
International Conference on Signal Processing and Communication Systems, pp. 1–5, Dec 2010.

[43] S. Chu, S. Narayanan, and C. . J. Kuo, “Environmental sound recognition with time–frequency audio
features,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, pp. 1142–1158, Aug
2009.

[44] J. Dennis, H. D. Tran, and H. Li, “Spectrogram image feature for sound event classification in mis-
matched conditions,” IEEE Signal Processing Letters, vol. 18, pp. 130–133, Feb 2011.

[45] H. Zhang, I. McLoughlin, and Y. Song, “Robust sound event recognition using convolutional neural
networks,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 559–563, April 2015.

[46] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), vol. 1, pp. 886–893, IEEE, 2005.

[47] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature,
vol. 401, no. 6755, p. 788, 1999.

[48] P. D. O’grady and B. A. Pearlmutter, “Convolutive non-negative matrix factorisation with a sparseness
constraint,” in 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Pro-
cessing, pp. 427–432, IEEE, 2006.

[49] V. Bisot, R. Serizel, S. Essid, and G. Richard, “Acoustic scene classification with matrix factorization for
unsupervised feature learning,” in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6445–6449, March 2016.

[50] D. M. J. Tax, One-class classification: Concept learning in the absence of counter-examples. PhD thesis,
Technische Universiteit Delft, 2001.

[51] C. Bellinger, S. Sharma, and N. Japkowicz, “One-class versus binary classification: Which and when?,”
in 2012 11th International Conference on Machine Learning and Applications, vol. 2, pp. 102–106, Dec
2012.

[52] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

68 Bibliography

[53] J. Shawe-Taylor, N. Cristianini, et al., Kernel methods for pattern analysis. Cambridge university press,
2004.

[54] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 20, no. 2, pp. 215–232, 1958.

[55] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude,” COURSERA: Neural networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[56] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learn-
ing Representations, 12 2014.

[57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[58] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backprop-
agation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[59] I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao, “Robust sound event classification using deep
neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, pp. 540–
552, March 2015.

[60] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,” in 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6964–6968, IEEE, 2014.

[61] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,” Neural
computation, vol. 12, pp. 2451–71, 10 2000.

[62] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neural networks for polyphonic sound event
detection in real life recordings,” in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6440–6444, March 2016.

[63] E. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, “Convolutional recurrent neural net-
works for polyphonic sound event detection,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, pp. 1291–1303, June 2017.

[64] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very deep convolutional neural networks for raw waveforms,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 421–425,
March 2017.

[65] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network with leakyrelu for environmental
sound classification,” in 2017 22nd International Conference on Digital Signal Processing (DSP), pp. 1–5,
IEEE, 2017.

[66] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound research,” in Proceedings
of the 22nd ACM international conference on Multimedia, pp. 1041–1044, 2014.

[67] H. Phan, L. Hertel, M. Maass, and A. Mertins, “Robust audio event recognition with 1-max pooling con-
volutional neural networks,” in 17th Annual Conference of the International Speech Communication As-
sociation (INTERSPEECH 2016), (San Francisco, USA), pp. 3653–3657, ISCA, September 2016.

[68] I. Ozer, Z. Ozer, and O. Findik, “Noise robust sound event classification with convolutional neural net-
work,” Neurocomputing, vol. 272, pp. 505–512, 2018.

[69] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event detection in real life recordings,” in
2010 18th European Signal Processing Conference, pp. 1267–1271, IEEE, 2010.

[70] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A.
Saurous, B. Seybold, et al., “Cnn architectures for large-scale audio classification,” in 2017 ieee interna-
tional conference on acoustics, speech and signal processing (icassp), pp. 131–135, IEEE, 2017.

Bibliography 69

[71] L. Wang and A. Cavallaro, “Microphone-array ego-noise reduction algorithms for auditory micro aerial
vehicles,” IEEE Sensors Journal, vol. 17, no. 8, pp. 2447–2455, 2017.

[72] G. Sinibaldi and L. Marino, “Experimental analysis on the noise of propellers for small uav,” Applied
Acoustics, vol. 74, no. 1, pp. 79 – 88, 2013.

[73] L. Wang and A. Cavallaro, “Ear in the sky: Ego-noise reduction for auditory micro aerial vehicles,” in 2016
13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 152–
158, Aug 2016.

[74] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE assp
magazine, vol. 5, no. 2, pp. 4–24, 1988.

[75] T. Ishiki and M. Kumon, “Design model of microphone arrays for multirotor helicopters,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6143–6148, Sep. 2015.

[76] A. Hyvarinen, J. Karhunen, and E. Oja, Independent component analysis, vol. 46. John Wiley & Sons, 2004.

[77] L. Wang, “Multi-band multi-centroid clustering based permutation alignment for frequency-domain
blind speech separation,” Digital Signal Processing, vol. 31, pp. 79 – 92, 2014.

[78] L. Wang, R. Sanchez-Matilla, and A. Cavallaro, “Tracking a moving sound source from a multi-rotor
drone,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2511–
2516, Oct 2018.

[79] P. Marmaroli, X. Falourd, and H. Lissek, “A uav motor denoising technique to improve localization of
surrounding noisy aircrafts: proof of concept for anti-collision systems,” in Acoustics 2012, 2012.

[80] G. Ince, K. Nakadai, and K. Nakamura, “Online learning for template-based multi-channel ego noise
estimation,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3282–3287,
IEEE, 2012.

[81] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based on deep denoising autoencoder.,”
in Interspeech, pp. 436–440, 2013.

[82] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter,
“Audio set: An ontology and human-labeled dataset for audio events,” in 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780, IEEE, 2017.

[83] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto, “librosa: Audio and
music signal analysis in python,” 2015.

[84] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[85] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation and Research Question
	Structure
	I Scientific Paper
	Introduction
	Related Work
	Audio Classification with Convolutional Neural Networks
	Ego-noise Suppression

	Methodology
	Data Acquisition
	Preprocessing and Feature Extraction

	Experiments
	Scenario 1
	Scenario 2

	Conclusions

	Bibliography
	Scientific Paper Appendices
	Detailed Classification Breakdown
	Simplifying the Ego-Noise Predictor

	II Literature Review
	Properties and Representation of Aircraft Sound
	Aircraft Sound Sources
	Doppler Effect

	Digital Representation of Sound
	Frequency Domain Representation
	Time-Frequency Representation

	Feature Extraction
	Time-Domain Features
	Frequency-Domain Features
	Cepstral Features
	Spectrogram Image Features
	Feature Learning

	Sound Event Detection for Aircraft
	Supervised Classification in SED
	Classification for Aircraft Detection
	Classifier Evaluation

	Generative Classifiers
	Gaussian Mixture Model
	Hidden Markov Model

	Discriminative Classifiers
	Support Vector Machine
	Logistic Regression

	Artificial Neural Networks
	Multi-Layer Perceptron
	Convolutional Neural Networks
	Recurrent Neural Networks

	Classifier Comparison

	Ego-Noise Analysis
	MAV Noise Sources
	Self-contained Approaches
	Beam Forming
	Blind Source Separation
	Time-Frequency Processing

	Dependent Approaches
	Order-Analysis
	Template Methods

	Denoising Autoencoders

	Literature Synthesis
	Properties and Representation of Aircraft Sound
	Sound Event Detection for Aircraft
	Ego-Noise Analysis

	III Preliminary Analysis
	Aircraft Classification
	Data Acquisition
	Feature Extraction
	Preliminary Analysis
	Experiment Setup
	Results

	Ego-Noise Prediction
	Data Acquisition and Pre-processing
	Experiments

	Discussion of Preliminary Results
	Classification
	Ego-Noise

	Bibliography

