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Twin-Delayed Deep Deterministic Policy Gradient for altitude
control of a flying-wing aircraft with an uncertain aerodynamic

model

Willem Völker∗, Yifei Li† and Erik-Jan van Kampen ‡

Faculty of Aerospace Engineering, Delft University of Technology, Delft, 2629HS, The Netherlands

Recent research on the Flying V - a flying-wing long-range passenger aircraft - shows that
its airframe design is 25% more aerodynamically efficient than a conventional tube-and-wing
airframe. The Flying V is therefore a promising contribution towards reduction in climate
impact of long-haul flights. However, some design aspects of the Flying V still remain to be
investigated, one of which is automatic flight control. Due to the unconventional airframe
shape of the Flying V, aerodynamic modelling cannot rely on validated aerodynamic-modelling
tools and the accuracy of the aerodynamic model is uncertain. Therefore, this contribution
investigates how an automatic flight controller that is robust to aerodynamic-model uncertainty
can be developed, by utilising Twin-Delayed Deep Deterministic Policy Gradient (TD3) - a recent
deep-reinforcement-learning algorithm. The results show that an offline-trained single-loop
altitude controller that is fully based on TD3 can track a given altitude-reference signal and is
robust to aerodynamic-model uncertainty of more than 25%.

I. Introduction

Aviation is responsible for 3.5% of the human impact on climate change - measured in amount of radiative forcing -
or even 5% if the effect of cirrus cloud enhancement is taken into account [1]. As global flight traffic is projected to

increase with 4.3% annually [2], while average fuel burn of new commercial jet aircraft decreases by only 1% annually
[3], novel solutions are needed.

Airframe designers conventionally decrease fuel burn of next-generation aircraft by increasing aerodynamic efficiency
and decreasing structural weight through optimisation of current-generation airframe designs. Aerodynamic-efficiency
gains (measured by the increase in lift-to-drag ratio) seem to have reached an asymptote though [4], which may mean
that the traditional tube-and-wing airframe is approaching its limits [5]. Therefore, a rethink of the tube-and-wing
airframe is needed.

The Flying V is a novel aircraft concept that may enable a step change in aerodynamic efficiency. The V-shaped
aircraft concept proposed by Benad [6] of the Berlin University of Technology and Airbus in 2015 promises a lift-to-drag
ratio 25% higher than conventional wide-body commercial passenger aircraft [7]. Like other flying wing designs
the Flying V realises aerodynamic efficiency gains mainly by having a smaller wetted area for a given payload than
tube-and-wing aircraft, as for flying wings providing lift, trimming the aircraft and accommodating the payload are all
performed by the same integrated component. Moreover, the Flying V promises to have a lower structural weight than
comparable tube-and-wing aircraft [6].

Despite several promising studies on flying wings over the past century, none have made it to market as commercial
passenger aircraft. Doubts on the stability and control of flying wings are an important factor hindering acceptance
[8]. To ensure stable, controlled and thereby safe flight an automatic flight control system (AFCS) may be a solution.
However, the design of an AFCS is difficult for novel aircraft, as no off-the-shelf modelling and design tools are available
and thereby accurate simulation models are hard to obtain and control design cannot rely on standard methods and
software tools. Furthermore, the flight dynamics of novel aircraft often involve non-linearities, which are particularly
hard to model and control. This means that conventional control design - which is usually based on linear control theory
- may not provide an adequate solution, as it requires an accurate simulation model for initial gain tuning and its ability
to control a plant with non-linear dynamics is limited.
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This research proposes the application of reinforcement learning (RL) - a bio-inspired method based on the principle
of learning through interaction with a potentially unknown environment - to automatic flight control of the Flying V. RL
methods have several attractive properties that make them promising for AFCS design, especially for novel aircraft.
Firstly and most importantly, RL methods are well suited to systems for which no (accurate) model is available. An
RL agent may learn without any prior knowledge of the plant dynamics, thereby allowing online learning, on the real
system. Alternatively an RL agent may learn offline with a simulation model and subsequently generalise the learned
behaviour to the real world. If learning takes place in simulation a function approximator such as a deep artificial neural
network that is robust to model uncertainties may be integrated in the RL method. And secondly, an RL agent with
function approximation may find a solution to a problem that involves non-linear and complex plant dynamics, even if
the designer does not know the general shape of a solution a priori.

Fully online learning of more complex control tasks is a subject of ongoing research and recent experiments such
as the work by Lee and Kampen [9] show promising results. However, the failure rates reported in state-of-the-art
literature on online RL such as [9] indicate that online RL methods are currently not mature enough to meet regulatory
requirements, if they were to be used to develop a baseline controller for commercial passenger aircraft. Moreover,
validation of a flight controller that learns online is hard. Predicting the way the controller will adapt to unforeseen
circumstances is after all inherently difficult.

Occasional failures and unclear validation methods of an AFCS for the Flying V would not contribute to the
acceptance of flying wings, which is one of the aims of this research. Therefore, this research will use an offline-learning
approach. Offline learning has as its main advantages over online learning that more complex control tasks can be
learned and the danger of trying unsafe control signals during the learning phase is not present. As offline learning
requires no restrictions on the safety of control signals tried during learning and as offline learning allows for a larger
amount of samples to be collected than online learning, a wider variety of RL methods is available. A particularly
promising family of RL methods that may not be sample-efficient enough for online learning for flight control, but do
show state-of-the-art performance on a wide variety of complex problems (such as the game of Go [10]) is the family of
deep reinforcement learning (DRL) algorithms.

The amount of literature on DRL for fixed-wing flight control is limited, but the available literature shows promising
results. An example of a state-of-the-art DRL algorithm applied to flight control is [11], in which a controller based on
proximal policy optimisation (PPO) outperforms a PID-controller. The flight controller is applied to a small, unmanned
tailless aircraft. More recently [12] showed that with soft actor-critic (SAC) a successful AFCS can be designed for
coupled manoeuvres, such as a 40-degree-bank climbing turn.

An important downside of offline learning is that the adaptive nature of RL is not exploited. Whereas an RL
controller that continually learns online (or switches on when a failure is detected) can adapt its behaviour when a
control failure occurs or a discrepancy between the simulation model and reality exists, an offline RL controller has to
rely purely on behaviour learned in simulation. However, Dally and van Kampen [12] showed that with SAC a robust
controller can be designed, which can generalise behaviour learned in simulation to, for example, failure cases and
biased, noisy sensors that it has not experienced in simulation.

The contributions of this paper are the following. Firstly, this paper presents an assessment of the robustness of a
flight controller based on TD3 to uncertainties in the aerodynamic model of the Flying V. Secondly, this paper provides
an indication of the usefulness of TD3 for flight control of an aircraft for which the aerodynamic model is uncertain.
Finally, this paper presents the first application of RL to the Flying V. Therefore, the methods presented in this paper
may serve as a starting point for further research into RL for flight control of the Flying V.

To investigate whether an AFCS based on TD3 is indeed robust to aerodynamic model uncertainties an altitude
controller was developed. Hereby control was fully based on TD3, without inner-loop PID control. Moreover, the
controller was structured as a single loop, in order to investigate the ability of TD3 to learn the nonlinear and coupled
dynamics associated with altitude control. An additional reason for using a single control loop was to exploit the
ability of an RL agent to autonomously learn a task, with minimal input based on domain knowledge from the human
control engineer. To the best knowledge of this author this research represents the first application of a model-free DRL
algorithm for single-loop altitude control of a passenger aircraft. The offline-trained altitude controller was tested on a
flight-simulation model of the Flying V that simulated varying levels of aerodynamic-model uncertainty. The effect of
model uncertainty on the altitude-tracking error was then used to evaluate the robustness of an AFCS based on TD3 to
aerodynamic-model uncertainty.

The paper is structured as follows. Section II describes the algorithm behind TD3, the modelling and simulation
methodology used to simulate the Flying V, and the methodology used to train a TD3 agent offline for flight control of
the Flying V. Section III shows the responses and errors corresponding to simulations of the trained TD3 agent for the
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nominal Flying-V model, as well as the model with simulated aerodynamic-model uncertainty, sensor noise and altered
initial conditions. Finally section IV presents the conclusion of the present research.

II. Methodology
This section introduces the methodology used to produce the results in this paper. Firstly, subsection II.A introduces

the reinforcement-learning algorithm, TD3, used to develop the altitude controller. Secondly, subsection II.B introduces
the controlled system: the Flying V and its flight-simulation model. Thirdly, subsection II.C describes how altitude
control for the Flying V was formulated as a reinforcement-learning problem. Fourthly, subsection II.D presents the
settings of the hyperparameters and other parameters used to train a TD3 agent for altitude control. Lastly, subsection
II.E describes how aerodynamic-model uncertainty, sensor noise, and altered initial conditions were modelled.

A. Twin-Delayed Deep Deterministic Policy Gradient
Twin-Delayed Deep Deterministic Policy Gradient or TD3 is a state-of-the-art model-free DRL algorithm for

continuous action spaces introduced by Fujimoto et al. [13] in 2018. As TD3 is based on predecessor algorithm Deep
Deterministic Policy Gradient (DDPG), published by Lillicrap et al. [14] in 2016, this section starts with an introduction
to the fundamentals of DDPG.

While conventional policy-gradient methods use a stochastic policy to ensure sufficient exploration, Deep Determin-
istic Policy Gradient (DDPG) improves on these methods by using a deterministic policy 𝜇(𝑠, 𝑎, 𝜽), with 𝑠 the state, 𝑎
the action, and 𝜃 the parameter vector. DDPG is similar to earlier reinforcement-learning algorithms Q-learning and
DQN in the way it approximates the optimal action-value function, through an implementation of the Bellman optimality
equation. The parameters that define the action-value function are approximated by networks known as Q-Networks.

Also similarly to DQN, DDPG uses experience replay. A set of previous experiences at each time step 𝑒𝑡 =

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), with 𝑟 the reward, is stored in a replay buffer 𝐷. DDPG applies Q-learning updates to samples of
experience (𝑠, 𝑎, 𝑟, 𝑠′) which are randomly chosen from the replay buffer.

Furthermore, DDPG borrows the idea of using target networks from DQN. As the target 𝑦𝐷𝑄𝑁 , given by Eq. (1)
(with 𝛾 the discount factor), depends on the same parameters w which are being updated, learning can become unstable.
With the use of a separate parameter vector w− (a time-delayed version of w) to construct a target network �̂�, stability is
improved. �̂� is constructed by simply cloning 𝑄 every 𝐶 steps. DDPG updates and averages the target networks once
every main network update, instead of every 𝐶 steps as DQN does.

𝑦𝐷𝑄𝑁 = 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′,w) (1)

DDPG adds an additional technique to DQN to enable maximisation over continuous action spaces, which would be
too expensive with a normal optimisation algorithm. The optimal action-value function is assumed to be differentiable
with respect to its action arguments, such that its gradient can be computed and maximisation can be approximated.
For this DDPG uses a target policy network 𝜇𝑡𝑎𝑟𝑔𝑒𝑡 , which is constructed in the same way as the target Q-network.
The target policy network approximates the maximising action for the target action-value function. The resulting loss
function is mimised by stochastic gradient descent.

DDPG can be characterised by its target formulation. The target of DDPG can be represented by

𝑦𝐷𝐷𝑃𝐺 = 𝑟 + 𝛾𝑄𝑡𝑎𝑟𝑔𝑒𝑡

(
𝑠′, 𝜇𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠′, 𝜽) ,w

)2
. (2)

The policy learning step in DDPG is performed by applying gradient ascent with respect to the policy parameters to
solve

max
𝜃

E
𝑠∼𝐷

[𝑄 (𝑠, 𝜇(𝑠, 𝜽))] . (3)

TD3 aims to improve on DDPG and other actor-critic methods by addressing function approximation errors that
cause overestimation of action values and sub-optimal policies. Fujimoto et al. [13] brought about this improvement by
adapting DDPG with three techniques, the first of which is double learning, introduced by van Hasselt [15, 16]. Double
learning works by first producing two independent estimates (i.e., from different samples) of a value and using one
estimate to choose the maximising action, while using the other to estimate its value. The value estimate will then be
unbiased. Secondly the process is repeated with the role of the two estimates reversed, resulting in a second unbiased
estimate. TD3 applies double learning by constructing the target in its loss functions with the smallest of the two action
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values it learns and names this clipped double Q-learning. Thereby underestimation is favoured, which is unlikely to
persist during learning, as the policy will not favour actions with low values.

The term delayed refers to the second technique, namely that of delaying policy improvement until policy evaluation
converges. TD3 improves its policy once for every two policy evaluation steps. Delaying the policy together with the
use of target networks should reduce variance, a possible cause of overestimation bias.

The third technique is target policy smoothing. The smoothing is performed to avoid that incorrectly highly valued
estimates are exploited by the agent. By adding noise to the target policy and averaging over mini-batches, variance
in the target (caused by function approximation errors) can be smoothed. The reasoning behind this technique is that
similar actions should have similar values and outliers are therefore probably incorrect.

Target policy smoothing is applied by injecting clipped noise to the target policy and then clipping the action that
results from the target policy with added noise. The target action is then:

𝑎′ (𝑠′) = clip
(
𝜇target (𝑠′, 𝜽) + clip(𝜖,−𝑐, 𝑐), 𝑎Low , 𝑎High

)
, 𝜖 ∼ N(0, 𝜎), (4)

in which 𝑐 is the maximum noise value, and 𝜖 the probability of taking a random action. The action is subsequently
clipped to ensure it lies within the valid action range 𝑎𝐿𝑜𝑤 ≤ 𝑎 ≤ 𝑎𝐻𝑖𝑔ℎ.

Clipped double Q-learning is performed by constructing the target 𝑦𝑇𝐷3 for both action-value functions as

𝑦𝑇𝐷3 = 𝑟 + 𝛾 min
𝑖=1,2

𝑄𝑖,target (𝑠′, 𝑎′ (𝑠′) ,w) , (5)

and then choosing the smallest target value of the two, to which both action-value functions are regressed.
Then, like in DDPG, Eq. (3) is used for policy improvement, although less frequently than in DDPG, as prescribed

by the delay technique. For this DDPG simply uses the first of the two action-value function approximations it has
learned. Also similar to DDPG, noise in the behaviour policy is added to ensure exploration.

With the improvements to DDPG, which is known to be unstable [17, 18] but already often outperformed competitor
algorithms on benchmark tasks when it was introduced, Fujimoto et al. [13] produced a relatively stable state-of-the-art
RL algorithm. Benchmarking research by Lazaridis et al. [19], Ball and Roberts [20] shows that comparison of
RL algorithms is not straightforward, as performance is highly task-dependent, but it is clear that SAC [21] shows
comparable performance to TD3 on benchmark tasks. However, research published by Dong et al. [22] suggests that the
stochastic nature of SAC (randomness is maximised during training) might lead to learning more oscillatory behaviour,
compared to TD3. Whilst the oscillations might not increase tracking error, they would likely increase actuator wear
and decrease passenger comfort in flight. Therefore, to decrease the chance that the RL agent learns a policy that is
more oscillatory than desirable for flight control, TD3 was chosen for the present research.

B. Flying-V Model and Simulation
The Flying V is a V-shaped flying wing with a pressurised cabin that extends through both wings, as illustrated in

Fig. 1. The cabins are located in the wing’s leading edge and the engines at the trailing edge, on top of the wing to
reduce noise propagation to the ground. The Flying V design aims to outperform state-of-the-art commercial passenger
aircraft designs similar to that of the Airbus A350-900, mainly in terms of lift-to-drag ratio and structural weight. The
aircraft has a capacity of 314 passengers in a two-class configuration, a cruise speed of M=0.85, a range of 15,000 km
and a wing span of 64.75m, all similar to those of the Airbus A350-900.

The flight control system of the Flying V consists of a pair of inboard elevons 𝛿𝑒𝑖 , a pair of outboard elevons 𝛿𝑒𝑜 , a
pair of rudders 𝛿𝑟 and two engines. The present research will use a conventional approach to control allocation and
thereby allocate the inboard elevons to pitch control (through symmetrical deflection), the outboard elevons to roll
control (through asymmetrical deflection) and the rudders to yaw control (through deflection in the same direction
around the aircraft body’s vertical axis).

The flight simulation model used for this research was based on stability-and-control derivatives obtained from the
vortex-lattice method applied to a numerical model of the Flying V [25]. From the stability-and-control derivatives
the force and moment coefficients 𝐶𝑋, 𝐶𝑌 , 𝐶𝑍 , 𝐶𝐿 , 𝐶𝑀 , and 𝐶𝑁 were computed according to Eq. (6), in which 𝑋 is
interchangeable with a force along, or moment around, a different axis. Hereby 𝑋 , 𝑌 and 𝑍 are the forces along, and 𝐿,
𝑀 and 𝑁 are the moments around the body x-, y- and z-axes.

𝐶𝑋 = 𝐶𝑋 (𝛼) + 𝐶𝑋 (𝛼, 𝛽) + 𝐶𝑋 (𝛼, 𝑝) + 𝐶𝑋 (𝛼, 𝑞) + 𝐶𝑋 (𝛼, 𝑟) + 𝐶𝑋 (𝛼, 𝛿𝑟𝑙𝑒 𝑓 𝑡
) + 𝐶𝑋 (𝛼, 𝛿𝑒𝑜,𝑙𝑒 𝑓 𝑡

)+
𝐶𝑋 (𝛼, 𝛿𝑒𝑖,𝑙𝑒 𝑓 𝑡

) + 𝐶𝑋 (𝛼, 𝛿𝑟𝑟𝑖𝑔ℎ𝑡 ) + 𝐶𝑋 (𝛼, 𝛿𝑒𝑜,𝑟𝑖𝑔ℎ𝑡 ) + 𝐶𝑋 (𝛼, 𝛿𝑒𝑖,𝑟𝑖𝑔ℎ𝑡 ) (6)
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Fig. 1 Illustration of the control-surface layout and outer dimensions of the Flying V [23, 24].

The computed force and moment coefficients, the current state and control input and the geometrical properties of
the Flying V were subsequently used as inputs for the equations of motion, from which the 12 states in Table 1 could be
obtained, describing the position, velocity, Euler angles and angular rates of the Flying V. The control input consisted of
the deflection of the three pairs of control surfaces and the thrust force, as summarised in Table 2, whereby rudder
deflection is positive to the left, and elevon deflection is positive down.

Table 1 States in the flight-simulation model of the Flying V

State Definition Unit
𝑋𝑒 position along earth x-axis m
𝑌𝑒 position along earth y-axis m
𝑍𝑒 position along earth z-axis m
𝑈𝑏 speed along body x-axis m/s
𝑉𝑏 speed along body y-axis m/s
𝑊𝑏 speed along body z-axis m/s
𝑝 rotational rate around body x-axis rad/s
𝑞 rotational rate around body y-axis rad/s
𝑟 rotational rate around body z-axis rad/s
𝜙 rotational angle around body x-axis rad
𝜃 rotational angle around body y-axis rad
𝜓 rotational angle around body z-axis rad
𝛼 angle of body x-axis w.r.t. airflow vector (around body y-axis) rad
𝛽 angle of body x-axis w.r.t. airflow vector (around body z-axis) rad
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Table 2 Control inputs to the flight-simulation model of the Flying V

Control input Definition Unit
𝛿𝑟𝑙𝑒 𝑓 𝑡

left rudder angle deg
𝛿𝑒𝑜,𝑙𝑒 𝑓 𝑡

left outboard-elevon angle deg
𝛿𝑒𝑖,𝑙𝑒 𝑓 𝑡

left inboard-elevon angle deg
𝛿𝑒𝑖,𝑟𝑖𝑔ℎ𝑡 right inboard-elevon angle deg
𝛿𝑒𝑜,𝑟𝑖𝑔ℎ𝑡 right outboard-elevon angle deg
𝛿𝑟𝑟𝑖𝑔ℎ𝑡 right rudder angle deg
𝑇1 left-engine thrust force N
𝑇2 right-engine thrust force N

For this research actuator dynamics were modelled as a first-order system with a time constant of 0.05 s, which
approximates the dynamics of a fast elevator actuator. The actuator time constant and rate limit values were based on
examples from [26]. Control surface deflections were limited at angles of ± 30 deg, as proposed by Cappuyns [25].

C. Altitude Control as a Reinforcement-Learning Problem
The task of the TD3 agent in this research was to track a given altitude reference signal ℎ𝑟𝑒 𝑓 . The reward was

defined as Eq. (7), meaning that the agent measures performance through the absolute value of the altitude error
ℎ𝑒𝑟𝑟𝑜𝑟 = ℎ − ℎ𝑟𝑒 𝑓 , where ℎ is the measured altitude and ℎ𝑟𝑒 𝑓 the given reference altitude. The reward space was limited
by clamping the altitude error value if it was larger than 50 m.

𝑟 = −|ℎ𝑒𝑟𝑟𝑜𝑟 |, ℎ𝑒𝑟𝑟𝑜𝑟 ≤ 50 m (7)

To learn and subsequently perform an altitude reference tracking task the agent could manipulate the Flying V’s
pitch rate by deflecting the inboard elevons symmetrically. The agent effectively controlled the elevon-deflection change
Δ𝛿𝑒𝑖 , which was restricted to the interval (−0.6, 0.6) deg. The restriction of Δ𝛿𝑒𝑖 effectively imposed a rate limit of 60
deg/s, as the sampling rate was set to 100 Hz. Control of Δ𝛿𝑒𝑖 by the agent was implemented through Eq. (9) (inspired
by the work of Dally and van Kampen [12]) in which Δ𝛿𝑒𝑖𝑚𝑖𝑛 = −0.6 and Δ𝛿𝑒𝑖𝑚𝑎𝑥 = 0.6.

𝛿𝑒𝑖 𝑡 = 𝛿𝑒𝑖 𝑡−1 + Δ𝛿𝑒𝑖 𝑡 , −0.6 deg ≤ Δ𝛿𝑒𝑖 ≤ 0.6 deg (8)

Δ𝛿𝑒𝑖 = Δ𝛿𝑒𝑖𝑚𝑖𝑛 + (𝑎 + 1)
Δ𝛿𝑒𝑖𝑚𝑎𝑥 − Δ𝛿𝑒𝑖𝑚𝑖𝑛

2
, 𝑎 ∈ (0, 1) (9)

To learn a relation between aircraft states, the agent’s actions and performance with respect to the reward, the agent
was given four observations. The first observation available to the agent was the altitude error ℎ𝑒𝑟𝑟𝑜𝑟 , necessary to
distinguish between positive and negative altitude errors, as the reward was defined in terms of the absolute value of
ℎ𝑒𝑟𝑟𝑜𝑟 . The second observation was the measured pitch angle 𝜃, which directly influences change in altitude. The third
observation was the pitch rate 𝑞, which in turn directly influences pitch angle. Pitch rate is itself directly influenced by
the inboard elevon deflection angle 𝛿𝑒𝑖 . The fourth observation was the inboard elevon angle 𝛿𝑒𝑖 , which was added
because action 𝑎 was formulated in terms of a change with respect to an otherwise-unknown current deflection angle.
All observations were normalised through before being given to the agent, with the ranges given in Table 3. The
observation 𝑠 is summarised in Eq. (10). The agent-environment interaction resulting from the reward, action and
observation specified in this section is summarised by the block diagram shown in Fig.2.

𝑠 = [ℎ𝑒𝑟𝑟𝑜𝑟 , 𝜃, 𝑞, 𝛿𝑒𝑖 ]𝑇 (10)

D. Training
Training of the TD3 agent was performed in episodes of 20 seconds each, with a sampling rate of 100 Hz. The

reference signal during training was given by Eq. (11), where ℎ0 is the initial altitude and 𝑔𝑐𝑙𝑖𝑚𝑏 is the climb gradient.
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Table 3 Ranges for normalisation of the observation

Observation Range Unit
ℎ𝑒𝑟𝑟𝑜𝑟 (-300,300) m
𝜃 (-20,20) deg
𝑞 (-20,20) deg
𝛿𝑒𝑖 (-30,30) deg

Fig. 2 Agent-environment interaction used to train the TD3 agent for altitude control.

𝑔𝑐𝑙𝑖𝑚𝑏 was randomly initialised at the start of each episode and was drawn from a uniform distribution in the interval
[−3000, 3000] ft/min. Thereby the climb gradients during training approximately corresponded to the climb gradients
prescribed for an Airbus A350-900 [27], the reference aircraft for the Flying V.

ℎ𝑟𝑒 𝑓 =

{
ℎ0, if 𝑡 < 2
ℎ0 + 𝑔𝑐𝑙𝑖𝑚𝑏 (𝑡 − 2), otherwise

(11)

For this research the Flying V was simulated in the cruise condition, with a neutral centre of gravity location and a
weight equal to the maximum takeoff weight. The Flying V was initialised with initial conditions at or near the trimmed
state at 10 km at the start of each episode, resulting in the initial conditions summarised in Table 4, whereby random
initialisation was based on a uniform distribution. The outboard elevons and rudders were kept constant at zero degrees.
The thrust force was kept constant at the trim value for this flight condition, equal to 17479 N per engine. All states that
are not included in Table 4 were initialised as zero.

Table 4 Initial conditions

State Value or range Unit
𝑀 0.85 -
ℎ0 10 km
𝑈𝑏 253.9 ± 1 m/s
𝑊𝑏 18.2 ± 0.5 m/s
𝜃 4.1 ± 1 deg
𝑞 0 ± 1 deg/s

Hyperparameters were tuned manually through trial and error. Most hyperparameter values were copied from
Fujimoto et al. [13], but some hyperparameters required tuning. Especially the exploration noise required a relatively
large increase compared to the value originally used by Fujimoto et al.. The same type of artificial neural network
was used to represent the actor and the critic. The networks’ first layers consisted of 4 input neurons (one for each
observation), followed by two fully connected hidden layers with 128 neurons each. The hidden layers were followed by
a ReLu layer, a fully connected output layer, and finally a tanh function. Hyperparameter settings are summarised in
Table 5.
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Table 5 Hyperparameter settings (adapted from [13])

Parameter Value
hidden units per layer 128
hidden layers 2
exploration noise 0.4
smoothing noise 0.2
smoothing noise limits ± 0.5
learning rate 1e-3
discount rate 0.99
batch size 100
experience buffer length 1e6
target smoothing factor 0.005
policy update frequency 2
target update frequency 2
optimiser Adam

The episode-reward curve for training a TD3 agent for altitude control typically did not converge to a steady
episode-reward value. Therefore, the learned policy was saved every time the average episode reward reached a value of
at least -20,000. Hereby the episode reward was averaged over the last 5 episodes. After a successful training run all
saved policies were compared, based on their mean-absolute error when following a predefined test-reference signal.
Hereby the test-reference signal included climb and descent sections as well as horizontal sections. The climb and
descent gradients were equal to ± 1500 ft/min, comparable to the standard gradients of the Airbus A350-900 at high
altitude [27]). The policy that resulted in the lowest mean-absolute-reference-tracking error for the test-reference signal
was used to produce the results presented hereafter.

E. Simulation of Altered Conditions for Robustness Testing

1. Aerodynamic-Model Uncertainty
To simulate the discrepancy that may exist between the aerodynamic model of the Flying V and the real-world

Flying V, uncertainty factors were applied to the stability-and-control derivatives on which the flight simulation model
for this research was based. Each of the 11 stability-and-control derivatives, as named in Eq. (6), was multiplied
by an uncertainty factor 𝜈𝑖 , whereby the left and right surfaces of a control surface pair were given the same factor.
This process resulted in an altered aerodynamic coefficient �̂�𝑋 (. . . , . . . ), as summarised in Eq. (12), where 𝑋 can be
substituted for a different force or moment coefficient.

�̂�𝑋 (. . . , . . . ) = 𝐶𝑋 (. . . , . . . ) · 𝜈𝑖 , 𝜈𝑖 ∼ N(1, 𝜎) and 𝜎 ∈ [0.0625, 0.125, 0.25] (12)

Hereby the means of the stability-and-control derivatives of the Flying V were assumed to be at the values obtained
from the vortex-lattice method applied to a numerical model of the Flying V. As reported by van Overeem and van
Kampen [28] the maximum error in the aerodynamic model of the Flying V used for the present research is estimated
to be 25%. To simulate an uncertainty with a maximum of 25% the uncertainty factors were drawn from a normal
distribution with a standard deviation of 0.125, such that 95% of the uncertainty-factor samples would fall in the
aerodynamic-error range [−25%, 25%]. After the main set of simulation runs with a standard deviation of 0.125, two
other sets of simulations were run, of which one had a standard deviation of 0.0625, to simulate the scenario that the
actual maximum aerodynamic-model uncertainty is less than 25%, and the other had a standard deviation of 0.25,
to simulate the scenario that the actual maximum aerodynamic-model uncertainty is more than 25%. For each of
the three standard deviations a set of 100 simulations of 100 s each was run. During each simulation of 100 s the
altitude-reference signal remained horizontal for 0 ≤ 𝑡 < 10 s, descended at a rate of 1500 ft/min for 10 ≤ 𝑡 < 30
s, was again horizontal for 30 ≤ 𝑡 < 50 s, climbed at a rate of 1500 ft/min for 50 ≤ 𝑡 < 70 s and was horizontal for
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70 ≤ 𝑡 < 100 s. This reference signal will hereafter be used as the standard reference signal for testing the altitude
controller developed for this research and will be referred to as reference signal RS.

2. Sensor Noise
As the Flying V is still under development it is hard to precisely estimate the noise that will be present in the

real-world aircraft. However, by using measurements of the sensor noise in other aircraft as a reference, a first assessment
of the robustness of the altitude controller developed in this research can be made. To assess the robustness of the
altitude controller, sensor noise was not simulated during training, but only added to the simulated Flying V during tests
for robustness to sensor noise.

Research by Grondman et al. [29] into sensor noise in the Cessna Citation PH-LAB aircraft was used as a reference
for simulating sensor noise in the present research, because of the well-documented noise bias and standard deviation
values for several types of sensors. Noise was simulated for the present research by adding a noise sample at each time
step, from normal distributions with the biases and standard deviations shown in Table 6.

Table 6 Sensor noise [29]

Sensor Bias Standard deviation Unit
altitude 8.0e−3 6.7e−2 m
pitch angle 4.0e−3 3.2e−5 rad
pitch rate 3.0e−5 6.3e−4 rad/s

3. Altered Initial Conditions
Altered initial conditions were simulated by randomly initialising states at the start of each of 100 simulation runs of

100 s in duration each. Hereby the trimmed initial condition 𝐼𝑡𝑟𝑖𝑚 was altered through Eq. (13), resulting in altered
initial condition 𝐼𝑎𝑙𝑡 . 𝜉 is a scaling factor drawn from a uniform distribution.

𝐼𝑎𝑙𝑡 = 𝐼𝑡𝑟𝑖𝑚 + 𝜉 · 𝐼𝑚𝑎𝑥 , 𝜉 ∼ U(−1, 1) (13)

III. Results and Discussion
This section presents results obtained from simulated tests with the altitude controller developed for this research,

accompanied with a discussion of these results. Firstly, subsection III.A shows and discusses the altitude-tracking
performance of the controller under nominal conditions. Secondly, subsection III.B shows and discusses the robustness
of the controller to aerodynamic-model error. Thirdly, subsection III.C shows and discusses the robustness of the
controller to sensor noise, in combination with alternative reference-signal shapes. Fourthly, subsection III.D shows and
discusses the robustness of the controller to altered initial conditions. Lastly, subsection III.E shows and discusses the
stability during training and the sampling efficiency of TD3, as observed in this research.

A. Altitude-Tracking Performance under Nominal Conditions
In [30] the Federal Aviation Authority (FAA) specifies that for aircraft to be authorised to fly in Reduced Vertical

Separation Minimum airspace (between 8.8 and 12.5 km altitude), an automatic altitude control system should be

“. . . capable of controlling aircraft height within a tolerance band of ±65 ft (±20 m) about the acquired
altitude when the aircraft is operated in straight and level flight under nonturbulent, nongust conditions.”.

Therefore, a maximum-absolute-altitude-tracking error of 20 m, under nominal flight conditions, is used to determine
whether the altitude controller in this research is successful. Figure 3 shows the simulated response of an offline-trained
TD3 agent to a given altitude-reference signal with climb and descent gradients of 1500 ft/min, whereby the Flying V
started from trimmed initial conditions and thrust was kept constant during the whole manoeuvre. Figure 3a shows that
the agent is able to track the altitude-reference signal in both horizontal, descent, and climb phases. The mean-absolute-
altitude-tracking error for the reference signal shown in Fig. 3a was 3.0 m, and the maximum-absolute-altitude-tracking
error was 11.6 m. Therefore, even as the reference signal included climb and descent phases, rather than level flight as
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specified by the FAA [30], the test shown in Fig. 3 indicates that the altitude controller is successful under nominal
conditions.

The measured altitude ℎ in Fig. 3a oscillated around the reference altitude ℎ𝑟𝑒 𝑓 during the limited simulation time
shown. However, the response for 𝑡 ≥ 70 s shows that the oscillations died out over time. Oscillations were also
visible in the angle of attack (Fig. 3e). As angle of attack is related to load factor, the oscillations may cause passenger
discomfort if the policy that was simulated to produce Fig. 3 were applied in the real-world aircraft. Moreover, as
Fig. 3b shows, oscillations were also present in the inboard-elevon-deflection angle during the whole manoeuvre, which
may increase actuator wear. Passenger comfort and actuator wear were not part of the scope of the current research
however. Therefore the reward function (Eq. (7) did not include a penalty for oscillations.

One source of the oscillations is likely the short-period eigenmode of the Flying V. At the flight condition simulated
in Fig. 3 the short-period frequency is approximately 0.34 Hz, as determined by simulating an impulse response of
the Flying V at 10 km altitude, starting from a trimmed condition, and subsequently measuring the frequency of the
short-period oscillation in the pitch rate∗. The pitch-rate signal shown in Fig. 3d has a spike in the frequency content at
a frequency of 0.34 Hz†, which may be related to the short period. However, a larger spike in the frequency content of
the pitch-rate signal shown in Fig. 3d, compared to the spike at 0.34 Hz, is at a frequency of 0.14 Hz, which is not close
to the short-period frequency nor the phugoid frequency of 0.0084 Hz. Therefore, the oscillations with a frequency of
0.14 Hz are likely caused mainly by the oscillating inboard-elevon deflections resulting from the policy learned by the
TD3 agent.

Oscillations in the policy learned by the agent were already greatly reduced by formulating the action as a change in
elevon angle. Earlier attempts to allow the agent to manipulate the elevon-deflection angle directly consistently resulted
in a policy with excessively high-gain control. Adding a penalty term for high elevon-deflection rates in the reward
function was not found to offer a solution, as the added penalty term caused learning to be unsuccessful. Thereby it is
hypothesised that this added penalty term makes the reinforcement-learning problem too complex for the TD3 agent.

(a) Altitude (b) Inboard-elevon-deflection angle

(c) Pitch angle (d) Pitch rate

(e) Angle of attack (f) True airspeed

Fig. 3 Nominal response of the TD3 altitude-control agent to an altitude-reference signal with climb and descent
gradients of 1500 ft/min.

∗The eigenmode frequencies were obtained from the non-linear simulation model. Therefore, the mentioned eigenmode frequencies are an
approximation of the values that would have been obtained by first linearising and reducing the simulation model.

†Spikes in the frequency content were found from the periodogram of the pitch-rate signal.
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B. Robustness to Aerodynamic-Model Error
Figure 4 shows the mean-absolute-altitude-reference-tracking errors for three levels of aerodynamic uncertainty. The

middle boxplot in Fig. 4 corresponds to simulations of the previously estimated aerodynamic-model-uncertainty range
of the Flying-V model used for this research. The right boxplot shows the scenario that the actual uncertainty range
is higher than the previously estimated range. As Fig. 4 shows, the mean, third quartile, and highest outlier increase
with aerodynamic uncertainty. The outlier that can be seen in Fig. 4 at a mean-absolute error of 3.6 m, for a standard
deviation of 𝜎 = 0.25, represents the worst-case scenario that came forth from the simulations that were run for this
research.

As van Overeem and van Kampen [28] adopted a similar methodology for simulating aerodynamic-model uncertainty
to the present research, with also a maximum standard deviation of 0.25, the results presented in this paper indicate
that the TD3 controller presented here is robust to at least the same level of aerodynamic-model uncertainty as the
INDI controller presented by [28]. However, differences between the research of van Overeem and van Kampen and
the present research in the flight control task and the flight conditions simulated limits the possibilities for a direct
comparison.

Fig. 4 Altitude-reference-signal-tracking error for three levels of aerodynamic-model uncertainty. The middle
boxplot corresponds to a simulation of the uncertainty range estimated in previous research. The left and right
boxplots show the scenarios that the uncertainty range is lower or higher than was estimated.

To assess whether flight control is safe in the worst-case scenario in terms of aerodynamic uncertainty, the response
corresponding to the simulation with a mean-absolute error of 3.6 m was plotted, shown in Fig.5. The signal shown in
Fig. 5a shows that the measured altitude ℎ remains close to the reference altitude ℎ𝑟𝑒 𝑓 . The maximum-absolute-altitude-
tracking error was 14.4 m, which is smaller than 20 m and thereby complies with the requirement set in subsection III.A.
The transient response dies out and the steady-state response has a small error, as can be most clearly observed at 𝑡 > 70
s in Fig. 5a. Moreover, Fig. 5e shows that the angle of attack does not come near the stall angle of 18 degrees [25], nor
the angle of attack at which the Flying V has a pitch-break tendency, equal to 20 degrees [31].

C. Robustness to Sensor Noise and Alternative Reference-Signal Shapes
As mentioned in subsection III.A the nominal mean-absolute-reference tracking error was 3.0 m. Figure 6 was

simulated for the same reference signal and therefore shows that sensor noise (which the TD3 agent did not encounter
during training) results in an increase of approximately 0.02 m in the mean-absolute reference tracking error. The figure
also shows that the worst outlier for the 100 simulations that were run for this research was at an increase of 0.06 m in
the mean-absolute-reference tracking error. Therefore, these simulations show that the altitude controller developed for
the present research is robust to the simulated sensor noise.

To assess how the shape of the altitude-reference signal affects tracking error and safety of the control policy, the
altitude controller developed for this research was simulated for two alternative reference-signal shapes, with simulated
sensor noise. The same policy as was simulated to produce the results presented in previous sections of this paper
was used, so the agent had not encountered these reference signals nor experienced the sensor noise during training.
Figure 7 shows the response to a sinusoidal signal with a frequency of 0.01 Hz and an amplitude of 500 m, thereby
simulating average climb and descent gradients of approximately 4000 ft/min. Figures 7b-7e show that oscillations
in the control signal and the Flying V’s attitude subside faster than for the reference signal shown in Fig. 5, which
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(a) Altitude (b) Inboard-elevon-deflection angle

(c) Pitch angle (d) Pitch rate

(e) Angle of attack (f) True airspeed

Fig. 5 Worst response out of 100 runs in terms of altitude-tracking error for the TD3 altitude-control agent on
a model of the Flying V with a simulated maximum aerodynamic-model error of 50%.

Fig. 6 Robustness to sensor noise and bias measured in terms of the altitude-reference-signal-tracking error.
The error for the same reference signal with ideal sensors was 3.0 m.

may be explained by the more gradual change in flight path angle corresponding to the sinusoidal altitude-reference
signal. The oscillations that start after around 80 s may be explained by the relatively large decrease in airspeed
(larger than for the nominal signal, see Fig. 3f), which causes aerodynamic damping and control effectiveness to
decrease. The mean-absolute-reference-tracking error for this sinusoidal signal was 13.3 m. The increase in error with
respect to standard reference signal RS is reasonable because of the higher gradients of the sinusoidal signal. The
maximum-absolute-reference-tracking for the sinusoidal signal was 50 m, but this maximum error occurred at the start
of the simulation (after 3.6 s), when a sudden change in climb gradient of -4000 ft/min was commanded. After allowing
a settling time of 15 s to adapt to the initial sudden change in climb gradient, the maximum-absolute-reference-tracking
was 25 m.

Figure 8 shows the response to a triangular altitude-reference signal with a gradient of 1500 ft/min and simulated
sensor noise, for which the mean-absolute-reference-tracking error was 5.9 m and the maximum-absolute-reference-
tracking error was 22.2 m. The triangular signal has more extreme changes in climb gradient than a realistic reference
signal that would be encountered in the real world, but it provides insight into the safety of the controller in case
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(a) Altitude (b) Inboard-elevon-deflection angle

(c) Pitch angle (d) Pitch rate

(e) Angle of attack (f) True airspeed

Fig. 7 Robustness to sensor noise and reference-signal shape, shown through the response to a sinusoidal
reference signal.

sudden changes in climb gradient are commanded by the pilot. Although oscillations are visible in all signals shown in
Fig. 8, the angle of attack shown in Fig. 8e does not come near the stall or pitch-break angle and the airspeed shown in
Fig. 8f remains near the nominal value of 254 m/s, so the controller keeps the aircraft in a safe state. Furthermore, as
the maximum-absolute-reference-tracking error for a sinusoidal signal exceeds the requirements stated in subsection
III.A for level flight (i.e., a horizontal reference signal) by only 2.5%, and the error for a triangular signal exceeds the
requirements by only 1%, the controller is considered robust to alternative reference signals with sensor noise.
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(a) Altitude (b) Inboard-elevon-deflection angle

(c) Pitch angle (d) Pitch rate

(e) Angle of attack (f) True airspeed

Fig. 8 Robustness to sensor noise and reference-signal shape, shown through the response to a triangular
reference signal with climb gradients of 1500 ft/min.
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Random initialisation of the flight condition during training, as specified in subsection II.D, was found to have a
large positive effect on robustness to alternative reference-signal shapes and altered initial conditions (see subsection
III.D) during testing. However, randomly initialising the flight condition was found to only work for small ranges near
the trimmed condition, as the problem became too hard for the agent to find a successful policy if the initial flight
condition differed too much from the trimmed condition. Therefore, it is recommended to experiment with the range in
initial conditions implemented during training if a similar future research project is undertaken, to find a range that is
not too large to hinder training, nor too small to diminish the effect on robustness of the resulting policy.

D. Robustness to Altered Initial Conditions
In the real world the Flying V may not always be in a trimmed state when the altitude controller is engaged, due to

atmospheric disturbances or pilot inputs that temporarily force the Flying V to deviate from the trimmed state. Therefore
the robustness of the altitude controller to initial conditions that deviate from the trimmed state was tested, hereafter
referred to as altered initial conditions. Hereby the states that directly affect longitudinal motion - 𝑈𝑏, 𝑊𝑏, 𝑞 and 𝜃 - and
the altitude ℎ were altered. A maximum deviation 𝐼𝑚𝑎𝑥 (see Eq. (13)) was chosen for each altered state, as shown in
Table 7. Figure 9 shows that for some combinations of altered initial conditions the mean-absolute-reference-tracking
error is higher than the nominal error of 3.0 m for the same reference signal. However, the increase in error is limited to
a maximum of 1.3 m. Moreover, Fig. 9 shows that, for reference signal RS, the mean-absolute-reference-tracking error
for some combinations of initial conditions is lower than for the nominal initial conditions.

Table 7 Limits of altered initial conditions

Initial condition 𝐼𝑚𝑎𝑥 Unit
𝑈𝑏 10 m/s
𝑊𝑏 1 m/s
𝜃 2 deg
𝑞 2 deg/s
ℎ 100 m

Fig. 9 Robustness to random combinations of initial horizontal and vertical airspeeds, pitch angles, pitch rates
and altitudes that differ from the nominal values, measured in terms of the altitude-reference-tracking error in
response to reference signal RS.

To assess how well the altitude controller can generalise behaviour to initial conditions that differ more extremely
from the conditions that the TD3 agent was trained for (namely trimmed cruise flight at 10 km altitude), additional
simulations were run for more extremely altered initial altitudes. Simulation starting at 8 km altitude for reference signal
RS resulted in a mean-absolute-reference-tracking error of 2.8 m, which is 0.3 m smaller than the error at the nominal
altitude of 10 km. Simulation at 12 km altitude, on the other hand, resulted in a mean-absolute-reference-tracking error
of 27.7 m, which is 24.7 m larger than the error at the nominal altitude of 10 km. The smaller error at 8 km altitude may
be explained by the higher air density at lower altitude, resulting in more control effectiveness and more damping of
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eigenmodes, while the larger error at 12 km altitude may similarly be explained by less control effectiveness and less
damping of the eigenmodes. As Fig. 10a shows, the agent is not able to accurately follow the commanded reference
signal. However, as Fig. 10e shows, the controller does keep the Flying V in a safe flight regime, as the angle of attack
does not come near the stall angle of 18 deg. Moreover, airspeed barely falls to values lower than the nominal airspeed,
as Fig. 10f shows.

(a) Altitude (b) Inboard-elevon-deflection angle

(c) Pitch angle (d) Pitch rate

(e) Angle of attack (f) True airspeed

Fig. 10 Response of the altitude controller when initialised at an altitude of 12 km, which is 2 km higher than
the altitude it was trained for.

E. Training Stability and Sampling Efficiency of TD3
Figure 11 shows the moving average of the episode reward of the training run that produced the TD3 agent used to

produce the results presented in this paper, averaged over 50 episodes of 20 s each. The figure shows that the TD3 agent
improved its policy relatively consistently during the first approximately 150 episodes, but did not converge to that
policy. Only after approximately 1300 episodes did the policy temporarily converge to a policy that more consistently
resulted in relatively high episode rewards. Three aspects visible from the reward curve shown in Fig. 11 are typical for
the reward curves of the several flight control problems tested for the research presented in this paper.

Firstly, fast initial improvement in the policy did not immediately lead to finding a successful policy, but was usually
followed by divergence to unsuccessful policies. Secondly, once a successful policy was found, the agent eventually
diverged from this policy. Thirdly, sample efficiency was low, leading to long training times. Finding the policy used to
produce the results for this research (at 1466 episodes) took approximately 18 hours on an Intel Xeon CPU E5-1620 v3
@ 3.50GHz.
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Fig. 11 Average reward during training of a TD3 agent for altitude control of the Flying V. The policy obtained
at 1466 episodes (marked in red) was used to produce the results presented in this paper.

IV. Conclusion
The research presented in this paper shows that a single-loop controller based on TD3 can learn altitude control of

a non-linear simulation model of the Flying V in an offline setting, and satisfies the set requirement of a maximum-
absolute-altitude-tracking error of 20 m. Hereby the controller only observes the altitude-tracking error, the pitch angle,
the pitch rate, and the elevon-deflection angle. The results also show that the controller is robust to aerodynamic-model
error, sensor noise, various shapes of the altitude-reference signal, and unfavourable initial flight conditions. Therefore,
the research presented in this paper suggests that deep-reinforcement learning and in particular TD3 has the potential to
be used for creating robust flight controllers. However, several questions remain open to investigation.

To build on this research we recommend to investigate how robust a controller with the structure proposed in this
research is to faults and atmospheric disturbances that were not simulated for this research. Furthermore, to increase the
applicability of the controller to a wider variety of flight regimes we recommend to investigate the addition of airspeed
and height in the observation and training at various altitudes and airspeeds. To prevent the problem from becoming
too inconsistent during training and too complex for the TD3 agent to find a successful policy, we suggest the use of a
learning curriculum. The learning curriculum may include progressively more difficult initial conditions, atmospheric
disturbances and a varying aerodynamic model to increase robustness of the learned policy. Lastly, the use of TD3 or
similar RL algorithms for lateral-directional control or a combination of lateral-directional and longitudinal control may
be investigated.

By continuing research into reinforcement learning for flight control, with the use of more sample-efficient
reinforcement-learning algorithms, the development of new methods to explain control policies, and the creation of
standardised practices to develop reinforcement-learning-based flight controllers, researchers may bring reinforcement
learning for flight control to a level at which it can be used in industry. In that way, safer, more autonomous flight of
passenger aircraft with novel airframe designs such as the Flying V may one day become reality.
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