<]
TUDelft

Delft University of Technology

HAS-RL.: A Hierarchical Approximate Scheme Optimized With Reinforcement Learning for
NoC-Based NN Accelerators

Li, Siyue ; Zhou, Shize ; Xue, Yonggqi ; Fan, Wenijie; Cheng, Tong ; Ji, Jinlun ; Dai, Chenyang ; Song,
Wengqing ; Gao, Chang; More Authors

DOI
10.1109/TCSI.2024.3359912

Publication date
2024

Document Version
Final published version

Published in
IEEE Transactions on Circuits and Systems |: Regular Papers

Citation (APA)

Li, S., Zhou, S., Xue, Y., Fan, W., Cheng, T., Ji, J., Dai, C., Song, W., Gao, C., & More Authors (2024).
HAS-RL: A Hierarchical Approximate Scheme Optimized With Reinforcement Learning for NoC-Based NN
Accelerators. IEEE Transactions on Circuits and Systems I: Regular Papers, 71(4), 1863-1875.
https://doi.org/10.1109/TCSI.2024.3359912

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TCSI.2024.3359912
https://doi.org/10.1109/TCSI.2024.3359912

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

1863

HAS-RL: A Hierarchical Approximate Scheme
Optimized With Reinforcement Learning for

NoC-Based NN Accelerators

Siyue Li™, Shize Zhou, Yongqi Xue™, Wenjie Fan™, Tong Cheng", Jinlun Ji*, Chenyang Dai, Wenqing Song ",
Qinyu Chen™, Member, IEEE, Chang Gao, Member, IEEE, Li Li~, Member, IEEE,
and Yuxiang Fu™, Member, IEEE

Abstract— Network-on-Chip (NoC) is a scalable on-chip com-
munication architecture for the NN accelerator, but with the
increase in the number of nodes, the communication delay
becomes higher. Applications such as machine learning have a
certain resilience to noisy/erroneous transmitted data. Therefore,
approximate communication becomes a promising solution to
improving performance by reducing traffic loads under the
constraint of the acceptable maximum accuracy loss of neural
networks. It is a key issue to balance the result quality and
the communication delay for approximate NoC systems. The
traditional approximate NoC only considers the node-to-node
approximation-based dynamic traffic regulation. However, the
dynamically changing traffic patterns across different nodes,
different times, and different applications lead to a huge search
space, which makes it hard to explore an optimal global approx-
imation solution. In this paper, we propose a quality model
for different neural networks, which presents the relationship
between the quality loss and the data approximate rate. Then,
a hierarchical approximate scheme optimized with reinforcement
learning (HAS-RL) is proposed and we reduce the complexity
of the HAS-RL by reducing the state space and action space,
which will reduce the resource overhead as well. After that,
we embed a global approximate controller in the NoC system,

Manuscript received 21 August 2023; revised 13 December
2023 and 5 January 2024; accepted 23 January 2024. Date of publication
12 February 2024; date of current version 29 March 2024. This work was
supported in part by the National Natural Science Foundation of China
under Grant 62104098, in part by the Joint Funds of the National Natural
Science Foundation of China under Grant U21B2032, in part by the Natural
Science Foundation of Jiangsu Province for Youth under Grant BK20210178,
in part by the National Key Research and Development Program of China
under Grant 2021YFB3600104, in part by the National Key Research and
Development Program of China under Grant 2023YFB2806802, and in
part by the “Xiaomi Youth Scholar—Innovation and Technology Award.”
This article was recommended by Associate Editor H. Stratigopoulos.
(Corresponding authors: Li Li; Yuxiang Fu.)

Siyue Li, Shize Zhou, Yongqgi Xue, Wenjie Fan, Tong Cheng, Jinlun
Ji, Chenyang Dai, Wenqing Song, Li Li, and Yuxiang Fu are with the
School of Integrated Circuits and the School of Electronic Science and
Engineering, Nanjing University, Qixia, Nanjing, Jiangsu 210023, China,
also with the Interdisciplinary Research Center for Future Intelligent Chips
(Chip-X), Nanjing University, Suzhou 215163, China, and also with the State
Key Laboratory of Spintronics Devices and Technologies, Nanjing University,
Suzhou 215163, China (e-mail: lili@nju.edu.cn; yuxiangfu@nju.edu.cn).

Qinyu Chen is with the Institute of Neuroinformatics, University of Zurich
and ETH Zurich, 8057 Zurich, Switzerland.

Chang Gao is with the Electronic Circuits and Architectures (ELCA)
Group, Faculty of Electrical Engineering, Mathematics, and Computer Science
(EEMCS), Delft University of Technology, 2628 CD Delft, The Netherlands.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCS1.2024.3359912.

Digital Object Identifier 10.1109/TCS1.2024.3359912

in which we deploy a policy network trained with the offline
reinforcement learning algorithm to adjust the data approximate
rates of each node at run time. Compared with the state-of-the-
art method, the proposed scheme reduces the average network
delay by 13.5% while their accuracies are similar. The proposed
HAS-RL only causes an additional area overhead of 1.24% and
power consumption of 0.77% compared with the traditional
router design.

Index Terms— Offline reinforcement learning, neural network,
approximate communication, network-on-chip.

I. INTRODUCTION

PPLICATIONS such as machine learning and image pro-
A cessing have a certain error-resilience of data. In essence,
approximate computing is the computing paradigm that trades
quality for performance [1]. Ye et al. [2] and Ha and
Lee [3] designed an approximate adder and an approxi-
mate multiplier that can be used for approximate computing.
Wang et al. [4] used software to identify the noncritical portion
of computations that can be approximated. These works focus
on approximate computing but ignore the approximation in
communication. With the increase in the number of nodes,
on-chip communication plays an increasingly important role
in multi-core chips. The communication delay of NoC systems
becomes higher and the real-time performance becomes worse,
especially for data-intensive applications.

In previous works, some researchers have used global
congestion awareness [5] or regional congestion awareness [6]
adaptive routing algorithms, or different topologies like
CMesh [7], 3D torus [8], and 3D butterfly fat-tree [9] to allevi-
ate the congestion in the NoC. Ramakrishna et al. [5] proposed
an adaptive routing algorithm based on global link states and
congestion information for on-chip routers. Xu et al. [6] used
both local and non-local/aggregated congestion information to
estimate network congestion and proposed an adaptive routing
based on efficient regional congestion. Ebrahimi et al. [10]
designed a fully adaptive routing algorithm for 3D NoCs
which uses the congestion information at the input buffer
of the neighboring routers as the congestion metric to select
among the output channels. However, these schemes can
not reduce the number of flits transmitted, which are only
applicable to the congestion situation caused by unbalanced
loads rather than heavy loads.

1549-8328 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0004-4649-041X
https://orcid.org/0009-0003-0152-9571
https://orcid.org/0009-0000-3582-6353
https://orcid.org/0009-0007-2099-040X
https://orcid.org/0009-0009-5260-5726
https://orcid.org/0000-0002-8806-8717
https://orcid.org/0000-0001-5356-537X
https://orcid.org/0000-0002-1047-6067
https://orcid.org/0000-0003-1351-5460

1864

To solve these problems, some recent works have focused on
approximate communications [11], [12], [13], [14], [15], [16],
[17], [18], [19]. Approximate communication can reduce the
average delay and the energy consumption of NoC systems,
which will sacrifice some accuracy at an acceptable quality
loss [11]. Boyapati et al. [12] compressed data in different
compression patterns but did not consider network congestion.
The data approximate method of the Approximation-Based
Dynamic Traffic Regulation (ABDTR) [13] is a feedback
process essentially, which senses congestion by monitoring
the number of free buffer slots in different nodes and adjusts
the approximate rate of the source node according to the
congestion information. The Accuracy and Congestion-aware
Dynamic traffic Control method (ACDC) [14], [15] contains a
quality model and a lightweight heuristic algorithm to control
each traffic route’s approximate rate. The Slack-Aware Packet
Approximation technique (SAPA) [17] includes a slack-aware
control policy to identify low-slack packets and accelerates
these packets using two approximation mechanisms.

However, for quality control, ABDTR simply considers that
the data approximate rate has a linear relationship with the
quality, which is not accurate. Meanwhile, a more complex
nonlinear quality model has been proposed in ACDC and it
is related to the statistical characteristics of input data, but it
does not consider the data approximations in the middle layers.
The two methods all use linear interpolation to recover data,
but SAPA uses a 32-bit quantization method and approximates
data through truncation. However, for neural networks, low-
bit quantization is typically used, so the bit width that can
be further truncated is limited. In this paper, we propose a
quality model in the form of the quadratic function for neural
networks, which drops part of the outputs of each layer rather
than truncations and considers not only the data approximate
in the input layer but also the middle layers.

Performance optimization at run time is also a compli-
cated problem in these previous methods. In ABDTR, for
example, in the NoC system with n routers, if each router
can be adjusted with v available approximate rates, the total
number of regulation combinations is as large as v" in each
control interval. The NoC system must respond quickly to
the change of network congestion at run-time, which is a
challenge for approximate system design. In ACDC, there are
n x (n — 1) different traffic routes. A lot of area resources
and time are consumed in the process of finding the route
of the maximum traffic, which results in limited performance
improvements. SAPA, which allows high-slack packets to be
dropped in halfway, also loses some performance because it
makes the transmission of previous hops before the dropped
node meaningless.

In this paper, we want to maximize the performance of
the system with minimal quality loss, so there is a trade-off
between the average delay and the data quality. Reinforcement
learning is a better choice to solve the problem with a huge
exploration space and performs well at sequential decision-
making [20], [21], [22]. Based on the policy update algorithm,
the agent can constantly learn from the environment to update
the policy and find a better solution than traditional methods.
Because online reinforcement learning requires repeatedly

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

‘ Approx Rate Down
f Approx Rate Up

I:l Light Congestion
I:I No Congestion

@ Destination Node

[Severe Congestion

[Moderate Congestion

@ Source Node
T

Fig. 1. Concept of the hierarchical approximate scheme optimized with
reinforcement learning (HAS-RL), which classifies the network according to
the congestion cases and adjusts the approximation rate at run time. The flit
is dropped at the source node and recovered at the destination node.

gathering experience through interaction with the environment,
and in many cases, the cost of online learning, including
money, energy, and so on, is high, training agents with pre-
existing datasets is preferred [23]. The reinforcement learning
algorithm can sequentially make a series of policies to adjust
the data approximate rates to maximize the cumulative reward
at run time and get a better trade-off between quality and
performance. In this paper, we find the relationship between
the number of free buffer slots and congestion and then
explore the rationality of using local free buffer slots to
represent congestion, which reduces the state space. We further
reduce the action space by categorizing nodes according to
different congestion situations, as shown in Fig. 1. Therefore,
it reduces the resource overhead and improves the availability
of reinforcement learning. To sum up, we propose a hier-
archical approximate scheme optimized with reinforcement
learning (HAS-RL) for accurately controlling the approximate
rates of different nodes in different traffic patterns to achieve
performance improvement.

We make the following contributions to this paper:

(1) A quality model for the neural networks is proposed.
We obtain the result accuracy of different neural networks
under different approximate rates. Then the optimization
objective function is determined according to the quality
model.

(2) To optimize the objective function, The hierarchical
approximate scheme is proposed, which is composed of one
global approximate controller optimized with offline reinforce-
ment learning and n local data controllers. We train the policy
network used for decision-making in offline reinforcement
learning with software and then deploy it on the global approx-
imate controller with hardware. The local data controller
consists of a data dropper and a data recoverer, which is used
to conduct data approximate and recovery operations.

(3) We use local free buffer slots to represent the state
to reduce the state space and categorize nodes with differ-
ent congestion conditions to reduce the action space, which
reduces resource overhead and improves the availability of
reinforcement learning.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HAS-RL FOR NoC-BASED NN ACCELERATORS

(4) Compared with two recent works [15], [17], experi-
mental results show that the HAS-RL can achieve a better
balance between performance and data quality. This method
can adapt to different mappings of different applications.
Compared with [15] and [17], the average network delay is
reduced by 9.3% and 13.5%, respectively. And the data quality
improved by 0.5% compared with [15] and is similar compared
with [17].

The rest of this paper is organized as follows. We first
review the related works in Section II. The quality model and
the objective function are proposed in Section III. We elaborate
on the HAS-RL structure and its working mechanism in
Section IV. In Section V, we evaluate the average delay,
quality loss, energy consumption, throughput, and hardware
overhead. Finally, we summarize our work in Section VI.

II. RELATED WORKS
A. Approximate Communication in NoC

Approximate communication provides a feasible high-
performance communication solution by relaxing the restric-
tions on the accuracy of data transmitted, especially in
data-intensive applications. We divide the previous approxi-
mate communication schemes into two classes: approximate
the entire data in flits and approximate LSBs of data in flits.

1) Approximate the Entire Data in Flits: Wang et al. [13]
proposed Approximation-Based Dynamic Traffic Regulation
(ABDTR), which drops packets at the source node and
recovers packets at the destination node. It uses a simple
negative feedback adjustment mechanism to control the data
approximate rate and monitors congestion by using the number
of free slots of buffers per node but does not distinguish
the direction, resulting in inaccurate control. Xiao et al. [14],
[15] proposed the Accuracy and Congestion-aware Dynamic
traffic Control method (ACDC), which puts forward the model
of on-chip network congestion under the constraint of the
result quality. At the same time, the lightweight heuristic
algorithm is proposed which can relieve congestion in the
NoC. However, the lightweight heuristic algorithm can not
solve congestion very well because it may not detect congested
links correctly. In this case, the effect of this control method
is not obvious. Wang et al. [24] proposed the Approximate
Bufferless method (ABNoC), which reduces network con-
gestion and packet retransmission through an approximate
allocation mechanism and a packet approximation method.
Ahmed et al. [25] proposed a two-type voltage management
method (AxNoC), but transmissions with low voltages can
cause unexpected bit reverses and lead to some errors.

2) Approximate LSBs of Data in Flits: Boyapati et al. [12]
proposed a hardware data approximation framework
(APPROX-NoC), which reduces the amount of data
transmitted in the NoC by providing a variety of different
approximate patterns for accurate data. Stevens et al. [16]
proposed an approximate bus architecture framework (AxBA),
which is a compression technique based on approximate
deduplication. Chen et al. [18] proposed an approximate
framework based on Dynamic Error Control (DEC-NoC),
which can dynamically adjust the data accuracy based on

1865

the error tolerance to reduce retransmissions significantly
and achieve half latency reduction. Reza and Ampadu [19]
summarized the approximate techniques based on the
truncations in NoCs and proposed a general approximate
communication scheme based on the error tolerance to explain
the importance of approximate communication techniques
in NoCs. Chen et al. [l1] proposed an approximate
communication framework (ACF), which analyzes the
source code and marks error-resilient variables to reduce
transmission. Chen et al. [17] proposed the Slack-Aware
Packet Approximation technique (SAPA), which includes
a slack-aware control policy to identify low-slack packets
and accelerates these packets using two approximation
mechanisms. However, SAPA approximates data through
truncation, whose performance is limited for neural networks
using low-bit quantization.

All the above studies are based on the optimization of net-
work architecture, but their control methods are insufficient to
solve the key problem of how to balance the result quality and
the communication delay for approximate NoC systems. They
have room for performance improvements using approximate
communication under the limited quality loss.

B. ML for NoC Designs

Machine learning methods have exploded in many fields in
recent years. Some researchers have applied machine learning
algorithms to NoC optimization. Chen and Liao [26] proposed
a Predictive Dynamic Thermal Management (PDTM) method,
which uses machine learning to control the temperature of
multicore systems. Reza et al. [27] proposed a Neuro-NoC
model, which utilizes neural networks to dynamically monitor,
predict, and configure NoC resources. Rao et al. [28] proposed
a method to realize the design of high-dimensional NoC using
machine learning, which can quickly produce near-optimal
NoC design. Rapp et al. [29] proposed the run-time algorithm
PCMig which is based on a lightweight neural network to
predict the performance impact of task migrations.

Reinforcement learning can make better decisions than tra-
ditional design and is widely used in architecture optimization.
Chen et al. [30] proposed an Online Distributed Reinforcement
Learning (OD-RL) based DVFS control algorithm for the
multicore system under power constraints. Reza [31] used
a reinforcement learning algorithm to proactively configure
NoC link bandwidth in heterogeneous architecture to improve
energy efficiency. Chen et al. [32] proposed learning-based
quality management, which uses a reinforcement learning
algorithm to assign error thresholds to different variables in
programs to achieve approximate effects.

Compared with the previous works, this paper uses the
offline reinforcement learning algorithm to establish a smart
global approximate controller that can adjust the data approx-
imate rate of each node dynamically. It achieves a better
balance between performance and quality requirements.

III. PROBLEM MODELLING

In this section, we establish a quality model for neural
networks. Based on this quality model, we propose the opti-
mization goal.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

1866

Algorithm 1 The Approximate Function Integrated
Between Two Adjacent Layers to Establish the Quality
Model of Approximate Communications

Input: D, (C, L, W): the layer outputs.

Output: D;YT1(C, L, W): the next layer approximate inputs.

1 Initialize Apr for each layer and f;;;
2 for each i € [0,C — 1] do

3 for each j € [0, L — 1] do
4 for each k € [0, W — 1] do
5 Rn < RaRDAAX
6 if R, < Apr then
// The middle body flit
7 if Kk >0and k < W — 1 then
‘ Din(i, ik e D;f(i,j,kfl);ij(i,j,kJrl);
9 end
// The first body flit
10 if k =0 or k% f, = 0 then
1 | DG jk) < DY, jok + 1)
12 end
// The tail flit
13 ifk=W—1or k%f, = fn — 1 then
14 | D)ok < DY, k- 1)
15 end
16 else
y+1,. . V.o .
17 | D!k < DY k;
18 end
19 end
20 end
21 end

A. The Quality Model

We deploy several widely-used neural networks such as
AlexNet [33] and VGG16 [34] for CIFAR-10 datasets to the
NoC-based NN accelerator. Each layer of the neural network is
mapped to one or several processing elements (PEs). We store
a single output value into a flit, and approximate communica-
tion is often achieved by reducing a number of flits between
nodes, which means we approximate data by dropping part of
the outputs of each layer rather than truncating some output
values.

As shown in Algorithm 1, we add the approximate function
between two adjacent layers to establish the quality model of
approximate communications, whose inputs D, are the outputs
of the current layer and outputs Dl.y 1 are the inputs of the
next layer. For the CNN, the output shape is composed of
CxLxW,where C, L, and W represent the dimensions of the
channel, length, and width, respectively. The data approximate
can be simulated by modifying some transmitted data between
the layers. We label some data that can be approximated
based on their magnitude, which takes advantage of the fact
that some data with small magnitude (close to the value
zero) have little impact on the overall accuracy even if they
are approximated [35]. As shown in line 6 in Algorithm 1,
we randomly select some data to change with the probability of
Apr, where Apr represents the data approximate rate. In lines
7 ~ 9, we replace the original value as the average value of
the neighboring data in the case of the middle body flit under
the assumption that the output data of each layer is packaged
in rows, and in lines 10 ~ 15, we replace the original value
as the value of their neighboring data in the case of only one

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

le—4

0.88 2.0
=%¥— accuracy_curve_fit(VGG16) —8— Variance(VGG16)

0.86 * accuracy_original(VGG16) —»— Variance(AlexNet)

0.84 —&— accuracy_curve_fit(AlexNet)

: ® accuracy_original(AlexNet) L5

0.82
I @
2 0.80 2
- 1.0 <
= =
8078 =
< >

0.76

0.5

0.74

0.72

0.70

0.00 0.05 0.10 0.15 0.20
Approx Rate

Fig. 2. Accuracies of neural networks and variance of accuracies for

50 simulations under different data approximate rates.

neighbor. The f, is used to describe the number of flits in a
packet.

Fig. 2 shows the relationship between the data approximate
rate and the accuracy of the neural network. The scatter points
are the original data obtained from software simulations, and
the line is their fitting curve. The relationship between data
approximate rate and quality loss is obtained by data fitting,
which can be shown as follows:

Ag =1 x Apr? +m x Apr + 13, (1)

where Agq is used to describe the accuracy of the neural net-
work, namely the data quality, and Apr is the data approximate
rate. 11, 12, and n3 are different coefficients for different neural
networks.

We approximate neuron data randomly in the input layer
and middle layers 50 times under the same data approximate
rate, whose accuracy variance is also shown in Fig. 2. It can
be obtained that the variance is very small when the data
approximate rate is not large. It means that it has almost
nothing to do with the positions of approximated data in the
labeled data. Therefore, we conclude that in neural networks,
data quality loss is mainly related to the data approximate
rate. We need to determine the coefficients in (1) for different
neural networks.

B. Optimization Goals

According to the quality model, the accuracy of the neural
network decreases when the data approximate rate increases.
A threshold is defined by the user to avoid unacceptable
quality loss of the results after approximate transmissions,
which we assume 4% accuracy loss in this paper. On the
one hand, if the NoC is not congested, the increase in the
data approximate rate may bring only a small reduction in
delay. In this case, quality is the most critical objective. On the
other hand, when the NoC is congested, a little bit of quality
loss may bring a significant delay reduction. Therefore, both
quality and average delay need to be considered, and a penalty
is given if the quality loss exceeds the threshold. The goal of
optimization is a trade-off between the data quality and the

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HAS-RL FOR NoC-BASED NN ACCELERATORS

Phasel:Initialization

1867

Weight Buffer - N NoC Svstem ,
< ¥ Buffer|[Router] * y -~ |Buffer[Router|
Buffer { Buffer ! Buffer o D (
B L PE__INI s NI
E PE |NI oup : PElNI “0 A i P | ['AC DC . N‘bdeo NodelHNode2 PE DC
= 1 ® R ® R - el N ! N RN J R S ~ e
= i) P ~ .
£ »-E’“‘ Buffer [rzzan, | Buffer mel | oo Buffer |7 - 8’ ~ ~, \I S | N | D
2|z T {02t] O /1= oupa S T N | ata Dropper I |
Z 2 | [[. ok g3 Decoder Node3[{Node4-Node5 LD « 2
e w » - =
U = . 1 ? g 9 - - \ > J \ J ﬁl ‘a {-_]/
z2 |8 : P : : g = Policy Unit I I I | DZ[jzln =
Sl= ! ! g & o s N \ = °
= R R ® R = =
N ¢ ; “tle Node6—Node7|{Node8 Data Recoverer | g g
E‘" Buffer | Buffer o ... [Fayert Buffer e < E (4/—') - E
p A SO EIC oy o e 1224 < (3 J - (3
R R R &)
Layer] ' Layer2 ! Layern
(@) (b)
Fig. 3. Overview of HAS-RL. (a) is the NN execution flow in the NoC-based NN accelerator (Take the column-based mapping as an example). (b) is the

architecture overview of HAS-RL, which is composed of one global approximate controller and n local data controllers. The global approximate controller is
located at the center (Node4) and the local data controller is located at each node of the NoC.

average delay. It can be formulated as (2).

&1 x Ag + & x Ad, for Aq > Aqm,

Goal = .)
Pn, otherwise,
where
1 LR Pd;
Ad = ———— 11— —). 3
> omi % ;}Z_:‘)(Avd_na))

In (2), Ag is the data quality in (1), and Ad is the
reward of network performance. &1, &, are weights of each
component. Agy;, is the threshold that is determined by the
user. Pn is a penalty term that prevents the data approximate
rate from exceeding the quality loss threshold and becoming
unacceptable. In (3), we use Pd to reflect the delay of every
packet, m; to represent the number of packets sent by node i
and Avd_na to be the average delay without approximation.
The optimization process is to maximize the goal function.

IV. HAS-RL: HIERARCHICAL APPROXIMATE SCHEME
OPTIMIZED WITH REINFORCEMENT LEARNING

In this section, firstly, we introduce the execution flow of
the applications and the architecture overview of the pro-
posed HAS-RL. Secondly, we show the global approximate
controller optimized with offline reinforcement learning and
reduce the complexity of HAS-RL by reducing the state space
and the action space. Finally, we provide a case study and the
hardware implementation is presented.

A. The Architecture Overview of HAS-RL

We design an NoC-based neural network accelerator.
As shown in Fig. 3a, in this architecture, each node contains
a router and a PE. The router is used for packet transmission,
and the PE is used for computing neural networks. In the
initialization phase, different layers of the neural network are
mapped to different nodes, and the built-in buffer of each
node stores the weight and bias needed for the computation.
In the execution phase, the nodes which are assigned to
the first layer get the required input data from the input

buffer. After receiving the input data required by the node,
the computation starts. Then when the computation of the
first layer is completed, the output data will be transmitted
to the nodes of the next layer as their inputs. The nodes
of the last layer finally write the output data to the output
buffer.

As shown in Fig. 3b, the HAS-RL is composed of one global
approximate controller and n local data controllers. Instead of
using a distributed RL approximate controller, we employ a
global RL approximate controller as the policy unit for four
main reasons:

Challenges with distributed RL approximate controller

1. It is difficult to control the quality in the distributed
RL approximate controller because the accuracy of the NN
applications is related to the global approximation rate instead
of the approximation rate of a single node.

2. It is difficult to achieve global optimization, because the
actions between nodes may affect each other.

Scalability of the global RL approximate controller

1. Since the control signal has the highest priority, and the
interval between each control is relatively long, the control
delay is acceptable.

2. The number of control packets is only a small portion of
data packets.

The global approximate controller includes a policy unit
running the policy network and a decoder for converting the
output of the policy network into control packets.

The local data controller consists of a data dropper and a
data recoverer. The data dropper compresses data by selec-
tively dropping flits based on the data approximate rate
information sent by the global approximate controller. The data
dropper includes a random number generator which generates
a random number between 0 and 1 and a comparator which
is used to compare the data approximate rate with the random
number to determine whether the labeled flit is allowed to
be sent. If the flit is not authorized to send, the location of
the flit is marked in the head flit and the subsequent flits are
moved forward in order to shorten the packet length. The data
recoverer recovers data at the destination node by identifying
the approximated packet and using the average value of its

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

1868
120
110
* *
100 r *
** * ok **
> *" *
= 9 * e Ko
) L % *
*
2 % P X *
%D * ok *‘ PR
™ P Sl *
s 70 ,‘i **
> N *
< rx -
60 ol 3 S s e e
*
*
50 *
* *
* . *y
40
*
1 2 3 4 5 6
Variance

Fig. 4. Relationship between the delay and the variance of free buffer slots
under different mappings of AlexNet.

neighboring flits. For a special case where a flit has only one
neighbor such as the first or the last body flit, the value of its
neighbor is copied.

B. Optimizing Policy Unit With the Offine RL Algorithm in
the Global Approximate Controller

An RL agent is integrated into the global approximate
controller which adjusts the data approximate rate of each node
by monitoring the congestion of the network. We use the Deep
Q Network (DQN) algorithm, which predicts the probability
of each action by calculating the Q value and selects the action
with the maximum Q value as the set of data approximate rates
of each node in the next period.

The reinforcement learning algorithm includes four ele-
ments: Environment, State, Action, and Reward.

1) Environment: The environment is the NoC-based NN
accelerator, which consists of routers, PEs, and links. When
the nodes take different actions, the environment can generate
different rewards depending on the current state.

2) State: Some works analyze the congestion of the NoC
by using hardware utilization. For example, ABDTR [13] and
HREN [36] monitor the congestion by analyzing the free slots
of buffers, and ACDC [15] obtains the congestion information
by monitoring the link utilization in the NoC. For the link
utilization in a 3D NoC with the size of [x w x h (assuming
[= w = h), the total number of links is 3 x /2 x (I —1). With
the increase in the number of nodes, the state space will be
too large, and the power consumption and area overhead will
rise rapidly by using the link utilization as the state.

For the NoC with router buffers, we conduct a pre-
experiment to reflect the relationship between the free buffer
slots and congestion. Fig. 4 shows the relationship between the
delays of different random mappings and the variances of free
buffer slots of each node under the AlexNet. It can be seen that
the two variables are strongly positively correlated, and the
Pearson coefficient is 0.9. Therefore, for different mappings
with the same traffic load volume, the less uniform the traffic
distribution is, the worse the NoC performance will be, and
the higher the average delay will be. We can use the number of
free buffer slots of every node to directly reflect the network
congestion. However, each node has 7 buffers for 3D NoCs,
the state space is still large.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

PE, PE,

57

E North
T I|g
o
=
=
98]
E

Souf
g

v
South

West East

West E Fast

PE; } g PEs
" T
YE=E Re [Rs [
N
o
PE;) £ @ PEg
%
Re [L2 R, Rs [

Sout
Soutl
South

West E East (West E East West E East
= =

Fig. 5. An example of illustration that the number of local free buffer slots
represents the congestion levels.

In Fig. 5, if the west direction of node 1 is congested, the
data transmitted from node 0 to node 2 will be blocked. How-
ever, if congestion is detected in the west direction of node 1,
node 1 cannot be adjusted directly because the congestion is
caused by excessive data sent from node 0. ABDTR adopts an
emergency channel to send the control message. It finds the
source node from the head flit and then controls the source
node by sending the control message through the emergency
channel. This brings the overhead of the emergency channel
and increased power consumption due to the additional control
information. Due to congestion in the west direction of node 1,
the packets generated by node O that should be transmitted to
node 2 are blocked in the local buffer, which leads to a very
high local buffer occupancy rate. We obtained the numbers
of all free buffer slots in the transmission paths from node 0,
including the west direction of R1, the west direction of R2,
the north direction of R3, and the north direction of R6. We get
their minimum value and marked it as P By. The number of
local free buffer slots in node O is marked as LBg. For the
Jen source node, we define the minimum number of free slots
in all buffers that the data will pass through to be PB;, and
the number of local free buffer slots is marked as LB;. Fig. 6
shows the relationship between PB; and LB;. Their Pearson
coefficient is 0.93, indicating that they are very correlated.

If we want to monitor the minimum number of free buffer
slots on all routes, the overhead is very large. Therefore,
we use an indirect but accurate enough scheme to monitor
network congestion, that is, using the number of local free
slots. The size of state space is only n, where n is the
number of nodes in the NoC system. The state space is
7 and 2 ~ 3 times smaller than the buffer-based method and
link-based method, respectively. We set the State to be a one-
dimensional vector with n values. Each value in the vector is
the average number of the local free buffer slots during the
period .

3) Action: First, we assume that the maximum data approx-
imate rate cannot exceed f%. Then we initialize the data

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HAS-RL FOR NoC-BASED NN ACCELERATORS

—— local buffer —e— min in path

N f

P ¥

3 40 50 60
Nodes

& o e 9

w

~

Average free-buffer slots

<

=
s
2
2

Fig. 6. Relationship of local buffer free slots and the minimum buffer free
slots of transmission paths from a node.

approximate rate to f/2% in each node at the beginning.
The adjustment method is as follows: each node can decrease
or increase the data approximate rate by i% at a time.
For an NoC system with n nodes, the number of possible
configurations of approximate control grows at an exponential
rate 2", thereby creating an astronomically large decision
space when n becomes large. Consequently, we confront two
pivotal challenges: firstly, determining the appropriate number
of categories for partitioning nodes across varying NoC scales,
and secondly, devising a method for effectively distributing
these nodes among those categories.

We classify nodes into C_n categories according to the
local free buffer slots and the number of nodes and propose
a hardware-constrained classification optimization scheme.
Firstly, we define the maximum duration of decision-making
in the policy unit as ¢_max (assuming t_max = 400 cycles
in this paper) ensuring the global approximate controller com-
pletes the selection of actions within 7_max. Then the number
of multiply-accumulator (MAC) units required to complete
the decision in 7_max determines the additional hardware
overhead in the global controller. To maintain practicality,
we impose a restriction that the extra hardware overhead does
not exceed more than h% of a traditional router (assum-
ing h = 2 in this paper). Under this hardware constraint,
we maximize the output number of the policy unit to minimize
control granularity, which will obtain better performance. The
classification optimization scheme can be formulated as (4):

D_t <t_max
H o< h% xT _ho

“)

where output_n is the output number of the policy unit. D_t,
H_o, and T_ho represent decision time, additional hardware
overhead, and the hardware overhead of the traditional router,
respectively.

For the challenge of how to divide nodes into C_n cate-
gories, we first pre-run different applications and their different
mappings on an NoC-based system. Then, we sort the occu-
pancy of the local free buffer slots of all nodes, and all nodes
are placed evenly into each category from the lowest to the
highest occupancy. Therefore, the principle of classification is
to divide nodes into each category as evenly as possible instead
of choosing fixed slot occupancy thresholds to divide different

C_n = |log, max(output_n)| under

1869

nodes, which overcomes the challenge of determining different
thresholds for different applications. For example, we could
divide the 64 cores into 4 different categories according to the
classification optimization scheme and the congestion: severe
congestion (SC), moderate congestion (MC), light congestion
(LC), and no congestion (NC). Then the nodes belonging to
the same congestion category are grouped into the same block,
and we treat each block as a whole when adjusting the data
approximate rate.

The data approximate rate can only be adjusted between 0%
and f%. If the data approximate rate is 0% and the action is
to decrease the data approximate rate, we will keep the data
approximate rate to 0%. If the data approximate rate is f%
and the action is to increase the data approximate rate, we will
keep the data approximate rate to f%.

4) Reward: The RL agent outputs the action according to
the congestion in the current state. The environment gen-
erates rewards according to the optimization function. The
optimization function can be formulated as (2). The reward
determines how well the action is taken and the Deep Q
Network algorithm maximizes the cumulative reward, which
is a better trade-off between average delay and quality.

5) Training RL Model Using DON Algorithm: As shown
in Fig. 7, the offline reinforcement learning framework has
the following steps. First, the dataset is obtained from the
NoC simulator. And then the agent is trained on the software
platform. Finally, the trained policy network is deployed to the
hardware platform.

Offline reinforcement learning is trained on offline datasets.
There is no interaction with the environment during the
training. In previous works such as [37] and [38], it has been
demonstrated through experiments that a better model can be
obtained by increasing the diversity and the size of datasets.
Therefore, we added the diversity of data and increased the
size of the dataset to ensure the effectiveness of offline
RL. To increase the data diversity, some traffic variations
are considered, including adding some burst transmission,
throttling, and so on. At the same time, different datasets
corresponding to different mappings are added. On the other
hand, we collected enough datasets to approximately approach
the performance of online learning.

The datasets consist of a series of strategies. A single policy
is composed of a series of actions taken during one episode.
After executing one action, the agent gets a reward from the
environment and observes the next state. When an episode
is completed, the states, actions, and rewards of each step are
stored in an offline dataset. The amount of buffer D that stores
offline datasets depends on the size of the action space and
the state space.

The DQN algorithm is adopted here. It uses a neural
network instead of the Q table in the Q-learning algorithm.
Q value can be updated by using (5) and (6). DQN algorithm
is suitable for the data approximate rate control due to two
reasons: the first is the empirical playback mechanism, which
can solve the problem of high state correlation between succes-
sive steps. The second is that there are two neural networks in
this algorithm, named Q online network and Q target network
respectively, which make fitting parameters easier. At the same

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

1870

— |
Offline RL Agent Action (Adjust |

State §”
(NoC Feature)

@ nmitialization weight and bias

approximate rate)
Random : Offline
Any Random Policy Action ! Datasets
i
J '
i

Data Collection Phase

p uonoy

il ;
Envi ¢) :
nvironment Buffer D :
[NoC Congestion Situation | :
;
| NoC Transmission Data Quality | !

J

1 (N
Sutes’ Offline RLAgent @) Action (Adjust
(NoC Feature) O Initialization weight and bias ~ Choose the| approximate rate)
best action
© Getthe Deep Q Network Update weight and bias

rew: M . 1
max reward \) Train Phase(r[ﬁ) :

Evaluation Phase

s N

Environment

p uonoy

NoC C ion Situation ‘

|| NoC Transmission Data Quality |

;
| Trained Well

. ./ Weight and
””””””””””””””” 7 Bias
Fig. 7. Approximate rate control optimized with offline RL.
Set-up time NN model Run time
Agent
Training

Software

Deploy

Global controller

Action,

Quality
model

Params

Reward,

Fig. 8. Process of HAS-RL, which includes two stages. At set-up time, the
quality model and the policy network are obtained. At run time, the policy
network is deployed and the RL model outputs the control command to adjust
the approximate rate of each node.

time, other hyperparameters are adjusted to make the network
fit better.

Ty if s;41is terminal,
yi(sjt1) = . , .
rj +ymax,Q(sjy1,a;6"), otherwise,
&)
Loss = (yj(sj+1) — Q(sj, a;; 6")7, (6)

where r; is the reward at the current state. The discount factor
y determines the importance of future rewards. s is the next
state. The maxaQ(s 1, a; 0’) represents the largest Q in the
sj+1 state of 0" policy. yj(sj41) is the target Q value. (6)
is the loss function, where Q(sj, aj; 0")) is the prediction Q
value and Loss is the loss value.

C. Case Study

We use VGG16 as an example to provide a case study.
As shown in Fig. 8, the process of HAS-RL includes two
stages as follows:

Set—up time:

1. We adopt a random mapping method to map different
layers of the neural network to the NoC-based NN accelerator.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

At the same time, we simulate the quality model of VGG16
with software to determine the coefficients n; = —0.78, n; =
—0.05, and 13 = 0.802. Based on this, we can obtain the
quality model of VGGI16.

2. The rewards of reinforcement learning are determined
by the optimization goal in (2). In the NoC-based NN accel-
erator, batch processing and pipeline calculation methods are
employed. Besides, due to the large size of the VGG16, the
network load is heavy, so we set £ = 2 and &; = 3 to ensure
&1 < &. In this case, the user-defined maximum quality loss
is defined as 4% accuracy loss. The penalty term Pn whose
absolute value is much larger than the normal case, which
means |Pn| > & + &, so in this case, we set Pn = —5.

3. We generate different offline datasets using random
policies for VGG16. The size of the offline datasets is approx-
imately 10000 episodes, which is large enough for offline
learning [37], with 30 steps in each episode executing different
actions.

4. We use the DQN algorithm for training. After each
iteration, we will use the real NoC platform for evaluation
and get the cumulative reward under this policy. When the
reward converges, we will save the weights and biases under
this policy. We use the policy network with fully connected
layers, with a size of 64 x 128 x 32 x 16 in this case.

Run time:

5. Deploy the trained policy network to the global approx-
imate controller.

6. At run time, the global approximate controller obtains the
congestion information of each node and outputs the action as
the control command through the policy network. Then the
control command is broadcast to each node. Finally, the data
dropper adjusts the approximate rate of each node according
to the control command.

D. Hardware Implementation

We implement the well-trained policy network in hardware.
The input of the neural network is the state value. The output
is the Q values for different actions. Then the agent selects
the action with the maximum Q value.

The basic hardware architecture is shown in Fig. 3b. The
global approximate controller is located at the center of the
NoC, which includes a decoder and a policy unit. Because
the essence of neural networks is the multiplication and
accumulation of matrices, as shown in Fig. 9a, the policy unit
includes a set of multiply-accumulator (MAC) units, which
use low-bit fixed-point multipliers and adders to reduce area
overhead. At the same time, parallel MAC units are used to
accelerate computing. The number of output nodes depends on
the size of the action space. The agent takes the action with
the maximal value as the final output. The decoder decodes
the action into a control packet and transmits it to all nodes.

For the local data controller, as shown in Fig. 9b, we use
a 7-stage linear feedback shift register (LFSR) to generate
a sequence of random numbers and determine the feedback
by choosing whether gop ~ g7 is true or false. The random
number is compared with the current data approximate rate to
determine whether the flit is dropped. We recover the data by
simply using addition and shift following Algorithm 1.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HAS-RL FOR NoC-BASED NN ACCELERATORS 1871
ek A TABLE I
. ' CONFIGURATIONS USED IN THE ACCESSNOXIM
. 0
% b Simulation Parameters
“ Simulation cycles 310 000 \ Warmup cycles 10 000
NoC Parameters
Core number 4x4x4 NoC flit size 32-bit
. ot o Data’ out3 1 Packet size 12 flits NoC buffer depth 7 x 8 flits
aou aaout o Routing algorithm XYZ routing Virtual channel 1
(2) Router delay 2 cycles Link delay 1 cycles
Data
Data Approximate) controller
dropper rate information I pypy| Tecoverer TABLE 11
| 3 CONFIGURATIONS USED IN THE OFFLINE RL
Random Y/N, it
Number | fliel . R
! Parameters Settings \ Parameters Settings
Generator : e
_] Algorithm DQN Discount factor 0.99
i~ 2= — Learning rate 0.0005 Training steps 40 000 steps
! Initialsignal "TT=-—o_ Replay capacity 10 000 steps Iteration number 1000 times
) Batch size 16 Target update period 240 steps
See‘ l
() 2
approximate schemes including ABDTR [13], ACDC [15]
- DFF0 | DFEL = --- DFF6 and SAPA [17]. In different neural networks, we all set the
LFSR maximum quality loss as 4% accuracy loss and set the f and
Clk i t) i to be 20 and 1 respectively (f% is the maximum allowable
®) data approximate rate per packet, i % is the stride by one time).
Fig. 9. Hardware implementation. (a) is the policy unit in the global

approximate controller. (b) is the local data controller.

V. EXPERIMENTAL RESULTS

In this section, we first introduce our experiment settings.
Then we analyze the experiment results.

A. Experiment Settings

To evaluate the proposed HAS-RL, the AccessNoxim [39]
simulation platform is used to evaluate the 4 x 4 x 4 NoC
system. The activation (16 bits) and the neuron index (16 bits)
determine the first body flit size (32 bits) and two acti-
vations (32 bits) determine the rest of the body flits size.
To simplify the problem without loss of generality, we set the
virtual channel to 1. In the case of multiple virtual channels,
we can average the utilization of different virtual channels
in the local direction and then classify them into different
levels. Table I shows the simulation parameter configurations
and NoC parameter configurations. The RL agent takes the
approximate rate adjustment decision every 10,000 cycles.
We generate offline datasets using AccessNoxim to train the
policy network, and offline RL configuration parameters are
shown in Table II. The discount factor is set to 0.99. The
batch size is set to 16. The Q target network is updated every
240 steps.

We map three different neural networks (AlexNet [33],
VGG16 [34], ResNet [40]) to the NoC-based NN acceler-
ator to verify its practicability. To reflect the influence of
mappings, which will bring different traffic patterns to the
HAS-RL, we generate several different mappings randomly.
The proposed scheme is compared with the state-of-the-art

B. Experiment Results

1) Train Agent: We can use the & and & to adjust the
optimization goal. It depends on which one you consider more.
In this experiment, we set £ = 2 and & = 3 to train the policy
network. We try different policy network sizes to evaluate their
influence on optimization results. A large network will occupy
too many cycles to generate the required actions in the next
state, which cannot meet the real-time requirement, whereas
a small network may result in non-convergence. Therefore,
we finally adopted a fully connected neural network with two
hidden layers, and the number of neurons in each hidden layer
is 128 and 32 respectively. Due to the small scale of the
network, the training is very fast, and we terminate the training
after the convergence has lasted a period. It is worth noting that
we use the same size of the policy network for different neural
network applications, and we evaluate different applications
without changing the hardware implementations of HAS-RL,
just updating the parameters of the policy network.

2) Performance and Quality Analysis: As shown in Fig. 4,
the average delay of NoC is strongly positively correlated with
the free buffer slot variance under the same traffic load. We can
get the free buffer slot variance at runtime under a certain
mapping of VGG16 and AlexNet, which is shown in Fig. 10a
and Fig. 10b respectively. The free buffer slot variance of the
scheme without approximate communication is much larger
than the other four schemes with approximate communication.
As simulation time elapses, the variance of HAS-RL decreases
significantly and tends to be stable, while the variance of the
other three schemes is larger than HAS-RL. Therefore, HAS-
RL can alleviate congestion more effectively by adjusting the
data approximate rate.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

1872

—#— NO_APPROX —@— ABDTR[13] == ACDC [15] SAPA[17]

NS A AN

=%— HAS-RL

Variance of free-buffer slots
= = " = » N
5 b 0L 5 b
S & 2 @ 8 &

e
S
P

b
n
e

0 5 10 15 20 25 30
Simulation time (10k cycles)

(a)

1.25

Variance of free-buffer slots

0 5 10 15 20
Simulation time (10k cycles)

(b)

Fig. 10. Variances of free slots of buffers change with simulation time under
different approximate schemes. (a) is VGG16 and (b) is AlexNet.

Then we compare HAS-RL with the scheme with-
out approximate communication (NO_APPROX), ABDTR,
ACDC and SAPA in terms of the average delay, quality loss,
total energy consumption, and throughput. We normalized
based on the average delay, total energy consumption, and
throughput of NO_APPROX, and we also normalized the
error threshold when comparing quality loss. To ensure that
the quality loss is in an acceptable range, the sensitivity of
congestion sensing in ABDTR is adjusted so that it does not
exceed the error threshold at runtime. As shown in Fig. 11a,
HAS-RL reduces the average delay by 23.95% to 48.1%
(37.72% on average), 6.9% to 36.8% (19.59% on average),
1.1% to 15.4% (9.3% on average) and 2.2% to 21.5% (13.5%
on average) compared with NO_APPROX, ABDTR, ACDC,
and SAPA, respectively. As shown in Fig. 11b, the quality
loss of HAS-RL and SAPA is less than 85% of the error
threshold on average, while that of ACDC is very close to
the error threshold, and that of ABDTR is about 65% of the
error threshold on average. The output accuracy is decreased
by 0.64% to 2.81% (1.68% on average), 0.04% to 0.82%
(0.4% on average) compared with NO_APPROX and ABDTR,
and improved by 0.1% to 2% (0.5% on average) compared
with ACDC. And the output accuracy of SAPA is similar to
HAS-RL on average. As shown in Fig. 1lc, the total energy
consumption of ACDC is the lowest due to the minimum
number of flits transmitted. Compared with NO_APPROX,
ABDTR, and SAPA, HAS-RL reduces energy consumption
by about 12.05%, 2.9%, and 1.3% on average. As shown
in Fig. 11d, HAS-RL improves the throughput by 12.5% to
27.8% (20.23% on average), 1.8% to 13% (7.18% on average),
0.8% to 6% (3.5% on average), and 0.8% to 9.2% (4.8% on

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

TABLE III
HARDWARE OVERHEAD (IGHZ@28NM)

Original router Area(um?) 28925.8 Power(mW) 9.84
Submodules of approximate controller HAS-RL ABDTR [13] ACDC [15] SAPA [17]
Local data Area(um?) 24242 344.9 378.16 579.24
controller Power(mW) 0.06 1.0 0.36 0.18
Global approximate Area(um?) 7439.29 —t —* —t
controller Power(mW) 1.01 —t _ _t
Equivalent shared global® Area(um?) 116.24 —t —k —t
controller of each node Power(mW) 0.016 —t —* —t
Equivalent additional # Area(um?) 358.66 3449 378.16 579.24
overhead of each node Power(mW) 0.076 1.0 0.36 0.18

T There is no a global approximate controller in ABDTR and SAPA.

* ACDC uses software to implement a global approximate controller.

8 Dividing the area and power of the global approximate controller by the number of nodes.

4 The sum of the equivalent shared global approximate controller of each node and the local
data controller.

average) compared with NO_APPROX, ABDTR, ACDC, and
SAPA, respectively.

ABDTR can easily lead to underutilization or overutiliza-
tion. The experiment shows that its quality loss is far below
the error threshold and the average delay is much higher than
the other two methods. ACDC makes full use of the error
threshold to drop the flits, so its quality loss is very close to the
error threshold. However, it will ignore other congested links
in the NoC once the traffic load in the route is large but does
not exceed the link capacity. Therefore, it does not achieve the
purpose of minimizing congestion. SAPA approximates data
through truncation. For low-bit quantization neural networks,
the benefits of truncation are limited. Meanwhile, because of
the different truncation bits for different data, it is necessary
to insert marks to distinguish the different data, which will
limit the shortening of the packet length.

Although it is acceptable that the quality loss is less than
the error threshold, the increase in the data approximate rate
still leads to a decrease in the output quality. Therefore,
we need to maximize performance with as little quality loss
as possible. In this paper, the proposed HAS-RL can monitor
global congestion well and achieve a better balance between
average delay and quality by using reinforcement learning
algorithms.

3) Hardware Overhead: We implemented the proposed
approximate controller using Verilog and then evaluated the
area and power consumption using Design Compiler under
CMOS 28nm technology. As shown in Table III, in the global
controller, 32 sets of 4-bit fixed-point MAC units are used to
accelerate the computation of the policy network, with an area
of 7439.29um?. Because only the first 400 cycles are used
for computation in every 10,000 cycles, the average power
consumption is only 0.016m W. For each local data controller,
it consists of the data dropper and the data recoverer, whose
area and power consumption are 242.42 um? and 0.06 mW
respectively.

Because the global controller in the proposed HAS-RL
is shared by all nodes, the equivalent additional overhead
of each node is the sum of the overhead of the equivalent
shared global controller of each node and the overhead of
the local data controller. And the overhead of each node’s

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HAS-RL FOR NoC-BASED NN ACCELERATORS

EHE NO_APPROX % ABDTR [13]

XX ACDC

1873

[15] SAPA [17] 55 HAS-RL

o

PR
>

CRRRRX

S
: E

QXXX

Average delay

AlexNet_M1 AlexNet_M2 AlexNet_M3 AlexNet_M4 AlexNet_M5 VGG16_M1 VGG16_M2 VGG16_M3 VGG16_M4 VGG16_M5 ResNet_M1 ResNet M2 ResNet M3 ResNet_M4 ResNet MS

FEFEFEREREREREREPERERE

RIZRRRRRXKKI

X

(@)
—_

- g e e ————— ————— e R ——— R T e R T DD D
. K4 % K3 | % <) 5] K X ol 39| X g3
=R % K K 23 5 o K % ! % & % g e
= 3 SH ma BH & Bl 2 = B & i K ; B
2% os s B BH R B EH = S B g S G BT
=g i B S =5 B ER % B B B B B B BEE
= E & % 2% %8 1% 2504 2% % 13 £ % B 5% BEA:
s % 74 2% (5 5% 130 RS % o % %% 52 % B
= K £ 2K b {5 S 5508 > b [51208 328 15 0% YA

<] & s £ ER ER B RS B8 B B B B ER i
= 00l 2% B RS 2% B B B 28 B S 5 E% B R
~ AlexNet_M1 AlexNet_M2 AlexNet_M3 AlexNet_M4 AlexNet_ M5 VGG16_M1 VGG16_M2 VGG16_M3 VGG16_M4 VGG16_M5 ResNet_ M1 ResNet_ M2 ResNet_M3 ResNet_M4 ResNet_M:

22 1.00

=]

=

D 095

=

@ 090

—

F]

S 085 ;

= 5 £ % S &

AlexNet_M1 AlexNet_M2 AlexNet

M3 AlexNet_M4 AlexNet_ M5 VGG16_M1 VGG16_M2 VGG16_M3 VGG16_M4 VGG16_M5 ResNet_ M1 ResNet M2 ResNet_ M3 ResNet M4 ResNet M5

(d

Fig. 11.
(c) is total energy. (d) is throughput.

equivalent shared global controller is equal to the overhead
of the global controller divided by the number of nodes. The
HAS-RL only causes an additional area overhead of 1.24% and
power consumption of 0.77% compared with the traditional
router design. Compared with ABDTR, the area overhead of
HAS-RL is increased by 4%, but the power consumption is
reduced by 92.4%. Because the global controller of HAS-RL
only works for a short time, the power consumption is much
lower than ABDTR. Compared with ACDC and SAPA, the
area overhead of HAS-RL is reduced by 5.2% and 38.1%,
and the power consumption is reduced by 78.9% and 57.7%,
respectively.

VI. CONCLUSION

In this paper, to balance performance and output accuracy
well, we propose a hierarchical approximate scheme opti-
mized with reinforcement learning (HAS-RL), consisting of
one global controller and n local data controllers. We first
get the quality model under different neural networks. Then,
we reduce the state space by using the number of free local
slots to monitor the congestion in the network and reduce the
action space by categorizing nodes with different congestion
conditions. Finally, the policy network is obtained by the
offline RL algorithm and deployed to the global controller.
Compared with the state-of-the-art method, the proposed
scheme reduces the average network delay by 13.5% while
their accuracies are similar. The proposed HAS-RL results
in only 1.24% additional area overhead and 0.77% power
consumption over the traditional router design.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9

—

[10]

[11]

Comparisons of different mappings in different neural networks under different approximate schemes. (a) is the average delay. (b) is quality loss.

REFERENCES

and N. S. Kim,
Test, vol.

“Approximate com-
33, no. 1, pp. 822,

Q. Xu, T. Mytkowicz,
puting: A survey,” IEEE Des.
Feb. 2016.

R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in Proc. ICCAD,
2013, pp. 48-54.

M. Ha and S. Lee, “Multipliers with approximate 4—2 compressors and
error recovery modules,” I[EEE Embedded Syst. Lett., vol. 10, no. 1,
pp. 6-9, Mar. 2018.

Y. Wang, J. Dong, Y. Liu, C. Wang, and G. Qu, “A machine learning
based approximate computing approach on data flow graphs: Work-in-
progress,” in Proc. EMSOFT, 2020, pp. 37-39.

M. Ramakrishna, P. V. Gratz, and A. Sprintson, “GCA: Global
congestion awareness for load balance in networks-on-chip,” in
Proc. 7th IEEE/ACM Int. Symp. Networks-Chip (NoCS), Apr. 2013,
pp- 1-8.

S. Xu, J. Wu, B. Fu, M. Chen, and L. Zhang, “Efficient regional
congestion awareness (ERCA) for load balance with aggregated conges-
tion information,” in Proc. 25th Euromicro Int. Conf. Parallel, Distrib.
Network-Based Process. (PDP), Mar. 2017, pp. 93-99.

J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-
chip networks,” in Proc. ICS. New York, NY, USA: Association for
Computing Machinery, 2006, pp. 390-401.

M. A. Khan and A. Q. Ansari, “Quadrant-based XYZ dimension order
routing algorithm for 3-D asymmetric torus routing chip (ATRC),” in
Proc. Int. Conf. Emerg. Trends Netw. Comput. Commun. (ETNCC),
Apr. 2011, pp. 121-124.

A. Bose, P. Ghosal, and S. P. Mohanty, “A low latency scalable 3D NoC
using BFT topology with table based uniform routing,” in Proc. [EEE
Comput. Soc. Annu. Symp. VLSI, Jul. 2014, pp. 136-141.

M. Ebrahimi, X. Chang, M. Daneshtalab, J. Plosila, P. Liljeberg,
and H. Tenhunen, “DyXYZ: Fully adaptive routing algorithm for 3D
NoCs,” in Proc. 21st Euromicro Int. Conf. Parallel, Distrib., Netw.-Based
Process., Feb. 2013, pp. 499-503.

Y. Chen and A. Louri, “An approximate communication framework for
network-on-chips,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 6,
pp. 1434-1446, Jun. 2020.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

1874

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

(32]

(33]

(341

(351

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 4, APRIL 2024

R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: A data approximation framework for network-on-chip
architectures,” in Proc. 44th Annu. Int. Symp. Comput. Archit., Jun. 2017,
pp. 666-677.

L. Wang, X. Wang, and Y. Wang, “ABDTR: Approximation-based
dynamic traffic regulation for networks-on-chip systems,” in Proc. IEEE
Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 153-160.

S. Xiao, X. Wang, M. Palesi, A. K. Singh, and T. Mak, “ACDC:
An accuracy- and congestion-aware dynamic traffic control method
for networks-on-chip,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2019, pp. 630-633.

S. Xiao, X. Wang, M. Palesi, A. K. Singh, L. Wang, and T. Mak,
“On performance optimization and quality control for approximate-
communication-enabled networks-on-chip,” IEEE Trans. Comput.,
vol. 70, no. 11, pp. 1817-1830, Nov. 2021.

J. R. Stevens, A. Ranjan, and A. Raghunathan, “AXxBA: An approximate
bus architecture framework,” in Proc. ICCAD, 2018, pp. 1-8.

Y. Chen, A. Louri, S. Liu, and F. Lombardi, “Slack-aware packet approx-
imation for energy-efficient network-on-chips,” IEEE Trans. Sustain.
Comput., vol. 8, no. 1, pp. 120132, Jan. 2023.

Y. Chen, M. F. Reza, and A. Louri, “DEC-NoC: An approximate
framework based on dynamic error control with applications to energy-
efficient NoCs,” in Proc. ICCD, 2018, pp. 480—487.

M. F. Reza and P. Ampadu, “Approximate communication strategies
for energy-efficient and high performance NoC: Opportunities and
challenges,” in Proc. Great Lakes Symp. VLSI, New York, NY, USA,
May 2019, pp. 399-404.

J. A. Bagnell and J. G. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods,” in Proc. ICRA, vol. 2,
2001, pp. 1615-1620.

R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective
on offline reinforcement learning,” 2019, arXiv:1907.04543.

H. Yu, S. Park, A. Bayen, S. Moura, and M. Krstic, “Reinforce-
ment learning versus PDE backstepping and PI control for congested
freeway traffic,” IEEE Trans. Control Syst. Technol., vol. 30, no. 4,
pp. 1595-1611, Jul. 2022.

S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020,
arXiv:2005.01643.

L. Wang, X. Wang, and Y. Wang, “An approximate bufferless network-
on-chip,” IEEE Access, vol. 7, pp. 141516-141532, 2019.

A. B. Ahmed, D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano,
“AxNoC: Low-power approximate network-on-chips using critical-path
isolation,” in Proc. 12th IEEE/ACM Int. Symp. Netw.-Chip (NOCS),
Turin, Italy, Oct. 2018, pp. 1-8.

K.-C.-J. Chen and Y.-H. Liao, “Adaptive machine learning-based tem-
perature prediction scheme for thermal-aware NoC system,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, p. 14.

M. F. Reza, T. T. Le, B. De, M. Bayoumi, and D. Zhao, “Neuro-NoC:
Energy optimization in heterogeneous many-core NoC using neural
networks in dark silicon era,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2018, pp. 1-5.

N. Rao, A. Ramachandran, and A. Shah, “MLNoC: A machine learning
based approach to NoC design,” in Proc. 30th Int. Symp. Comput. Archit.
High Perform. Comput. (SBAC-PAD), Sep. 2018, pp. 1-8.

M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Neural network-based
performance prediction for task migration on S-NUCA many-cores,”
IEEE Trans. Comput., vol. 70, no. 10, pp. 1691-1704, Oct. 2021.

Z. Chen and D. Marculescu, “Distributed reinforcement learning
for power limited many-core system performance optimization,” in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2015,
pp. 1521-1526.

M. F. Reza, “Reinforcement learning based dynamic link configuration
for energy-efficient NoC,” in Proc. IEEE 63rd Int. Midwest Symp.
Circuits Syst. (MWSCAS), Aug. 2020, pp. 468—473.

Y. Chen and A. Louri, “Learning-based quality management for approx-
imate communication in network-on-chips,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3724-3735, Nov. 2020.
A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 2, 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 1-13.

[36] P. Bhamidipati and A. Karanth, “HREN: A hybrid reliable and energy-

efficient network-on-chip architecture,” IEEE Trans. Emerg. Topics
Comput., vol. 10, no. 2, pp. 537-548, Apr. 2022.

[37] R. Agarwal, D. Schuurmans, and M. Norouzi, “Striving for simplicity

in off-policy deep reinforcement learning,” 2019, arXiv:1907.04543.

[38] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement

learning without exploration,” in Proc. Int. Conf. Mach. Learn., 2018,
pp- 2052-2062.

[39] K.-Y. Jheng, C.-H. Chao, H.-Y. Wang, and A.-Y. Wu, “Traffic-thermal

mutual-coupling co-simulation platform for threedimensional network-
on-chip,” in Proc. VLSI-DAT, 2010, pp. 135-138.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. CVPR, 2016, pp. 770-778.

Siyue Li received the B.E. degree in microelec-
tronics science and engineering from Yangzhou
University, Yangzhou, China, in 2021. He is cur-
rently pursuing the M.E. degree with the School
of Electronic Science and Engineering, Nanjing
University.

His current research interests include network-on-
chip mapping optimization, neural networks, and Al
for chip architecture design.

Shize Zhou received the B.E. degree from the
School of Electronic Science and Engineering, Nan-
jing University, Nanjing, China, in 2020, where he is
currently pursuing the M.E. degree with the School
of Electronic Science and Engineering.

& His current research interests include network-on-
chip architecture design, neural network accelera-
tors, and approximate communication.

)
%)

Yongqi Xue received the B.E. degree in electronic
and information engineering from the Nanjing Uni-
versity of Science and Technology, Nanjing, China,
in 2021. She is currently pursuing the M.E. degree
with the School of Electronic Science and Engineer-
ing, Nanjing University, China.

Her current research interests include network-on-
chip mapping optimization, neural networks, and Al
for chip architecture design.

Wenjie Fan received the B.E. degree from the
School of Electronic Science and Engineering, Nan-
jing University, Nanjing, China, in 2022, where he is
currently pursuing the M.E. degree with the School
of Electronic Science and Engineering.

His current research interests include network-on-
chip (NoC) and neural network accelerators.

Tong Cheng received the B.E. degree from the
School of Electronic Science and Engineering, Nan-
jing University, Nanjing, China, in 2022, where he is
currently pursuing the M.E. degree with the School
of Integrated Circuit Engineering.

His research interests include network-on-chip
design and thermal management for NoC-based mul-
ticore systems.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HAS-RL FOR NoC-BASED NN ACCELERATORS

Jinlun Ji received the B.S. degree in physics from
Nanjing University, Nanjing, China, in 2022, where
he is currently pursuing the M.E. degree with the
School of Electronic Science and Engineering.

His current research interests include Al for chip
architecture design and network-on-chip mapping
algorithms/architectures.

Chenyang Dai received the B.E. degree from the
School of Electronic Information, Soochow Uni-
versity, Suzhou, China, in 2022. He is currently
pursuing the M.E. degree with the School of Elec-
tronic Science and Engineering, Nanjing University.

His current research interests include network-on-
chip (NoC) and neural network accelerators.

Wenging Song received the B.S. degree from
the School of Electronic Science and Engineer-
ing, Southeast University (SEU), Nanjing, China,
in 2017. She is currently pursuing the Ph.D. degree
in electronic science and engineering with Nanjing
University (NJU), Nanjing.

Her current research interests include polar coding
algorithms, homomorphic encryption, and efficient
reconfigurable architecture.

Qinyu Chen (Member, IEEE) received the Ph.D.
degree in electronic science and technology from
Nanjing University, Nanjing, China, in June 2021.

In February 2024, She joined the Leiden Institute
of Advanced Computer Science, Leiden University,
Leiden, the Netherlands, as an Assistant Professor,
before that, she was a Postdoc at the Institute of
Neuroinformatics, University of Ziirich and ETH
Ziirich, Zurich, Switzerland. In 2022, she received
a Bridge Fellowship Grant from the Swiss National
Science Foundation (SNSF) and Innosuisse. Her cur-
rent research interests include the seamless neuromorphic artificial intelligence
system at the edge, and its application in healthcare, AR/VR with a focus on
event-based processing.

Dr. Chen serves as a member of the Neural Systems and Applications (NSA)
Technical Committee in the IEEE Circuit and System Society (CASS).

1875

Chang Gao (Member, IEEE) received the joint
Ph.D. degree (Hons.) in neuroscience from the Insti-
tute of Neuroinformatics, University of Zurich, and
ETH Zurich, Ziirich, Switzerland, in March 2022.

In August 2022, he joined the Department of
Microelectronics, Delft University of Technology,
The Netherlands, as an Assistant Professor. His cur-
rent research interests include computer architectures
for deep learning, with an emphasis on recur-
rent neural networks. He received the 2022 Misha
Mahowald Early Career Award in Neuromorphic
Engineering, the 2022 Marie-Curie Post-Doctoral Fellowship, and the Title
of 2023 MIT Technology Review Innovators Under 35 in Europe.

Li Li (Member, IEEE) received the B.S. and Ph.D.
degrees from the Hefei University of Technology,
Hefei, China, in 1996 and 2002, respectively.

She is currently a Professor with the School of
Electronic Science and Engineering, VLSI Design
Institute, Nanjing University, Nanjing, China. Her
current research interests include VLSI design for
digital signal processing systems reconfigurable
computing and multiprocessor system-on-a-chip
(MPSoC) architecture design methodology. She is a
member of Circuits & Systems for Communications
(CASCOM) TC of the IEEE CAS Society.

Yuxiang Fu (Member, IEEE) received the B.S.
degree in microelectronics and solid-state electronics
and the Ph.D. degree in electronic science and tech-
nology from Nanjing University, Nanjing, China, in
2013 and 2018, respectively.

In 2018, he joined the School of Electronic Science
and Engineering, Nanjing University, where he is
currently an Assistant Professor with the School of
Integrated Circuits. His current research interests
include Al for chip architecture design, network-
on-chip algorithms/architectures, low-power digital
systems, and 3D IC design.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 12,2024 at 12:18:13 UTC from IEEE Xplore. Restrictions apply.

