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2Pattern Recognition and Bioinformatics, Delft University of Technology 

Abstract 
Motivation: Transformers have dominated the field of natural language processing due to their competency in learning 
complex relationships within a sequence. Reusing a pre-trained transformer for a downstream task is known as Transfer 
learning. Transfer learning restricts the transformer to a fixed vocabulary; modification in transformer implementation will 
extend the utility of the transformer. Implementing transformers for complex biological problems can be beneficial in ad-
dressing the complexities in the biological sequences. One such biological problem is to capture the specificity of diverse 
T-cell repertoire to the unique antigens (i.e., immunogenic pathogenic elements). Using transformers to assess the 
relationship between T-cell receptors and antigen at the sequence level can provide us with better insights into the 
processes involved in these precise and complex immune responses in humans and murine.  
Method: In this work, we determined the specificity of multiple TCR to unique antigens by classifying the CDR3 regions of 
TCR sequences to a particular antigen. For this problem, we used three pre-trained auto-encoder (ProtBERT, ProtAL-
BERT, ProtELECTRA) and one pre-trained auto-regressive (ProtXLNet) transformer model wherein, to adapt to the chal-
lenges of the complex biological problem at hand, we implemented modifications in the transformers chosen here. We 
used the VDJdb to obtain the biological data for training and testing the selected transformers. After pre-processing data, 
we predicted the TCR specificity for 25 antigens (classes) in a multi-class setting. 
Results: Transformers could predict the specificity of TCRs to an antigen with just the CDR3 sequences from the TCRB 
chain (weighted F1 score 0.48), the data that was unseen by the transformers. With additional features incorporated, i.e., 
gene names for TCRs, the weighted F1 improved to 0.55 in the best performing transformer. We demonstrated that differ-
ent modifications in transformers recognized out-of-vocabulary features with these results. When comparing the AUC from 
the transformer model to other previously developed methods for the same biological problem such as TCRGP, TCRDist 
and DeepTCR, we observed that the transformers outperformed the previously available methods. To exemplify, the 
MCMV epitope family that suffered from restricted performance in TCRGP due to fewer training samples (~100 samples) 
showed 10% improvement in AUC with transformers under similar training samples. 
Conclusion: Transformer's proficiency in learning from fewer data combined with holistic modifications in transformers 
implementations proves that we can extend its capabilities to explore other biological settings. Further ingenuity in utilizing 
the full potential of transformers either through attention head visualization or introducing additional features can further 
extend T-cell research avenues. 
Availability: Dataset and scripts will be available on github.com/arkhan19/tcrformer 
Contact: a.r.khan@student.tudelft.nl  
Supplementary information: Supplementary data is separately available with this document. 

 
 

1 Introduction  
The human's immune system can mount the immune response by gener-
ating multiple T-cell receptors (TCR) in response to a pathogenic infec-
tion. Principally, this response involves interaction between T-cell recep-
tors (antigen-recognition receptors on T cells) and the epitopes (short 
peptides from pathogenic proteins) from proteins present in infectious 
agents (bacteria/viruses). Complementarity determining region 3 (CDR3) 
on both α and β chains of TCR bind with the epitope, and recognition of 
a highly diverse range of antigens is thus due to the remarkable specifici-

ty of CDR3 to each antigen (Robins, Campregher et al. 2009). Epitope 
specificity of a TCR is defined by the unique CDR3 sequence specific to 
a particular T cell and its progeny. The diversity is estimated to be ap-
proximately 1018 in humans and 1015 in mice. The high specificity of the 
CDR3 region results from the hypervariability of the CDR3 region im-
parted during V(D)J recombination and junctional diversity (See Appen-
dix 1 for more detail). Due to this reason, not only does TCR have a 
clonotypic nature, but it is also the focus when determining TCR speci-
ficity (Petrova, Ferrante et al. 2012). Determining the specificity of such 
highly diverse and variable TCR sequences will require extracting pat-
terns from an enormous search space. Learning specificity of these se-
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quences will provide a broad range of applications in immunological 
studies (Attaf, Huseby et al. 2015); however, with a caveat to decipher 
the immense diversity of CDR3 sequences found in TCRs. 

Translating data into information has fascinated linguists and mathe-
maticians alike, which led them to leverage their skills to delegate trans-
lation tasks to machines (Hutchins 2007). Linguistic expertise in finding 
similarities in source and target language was converted to mathematical 
equations by mathematicians. Neural networks for machine translation 
(Schwenk 2007) has opened up avenues for extending their support in 
understanding biological interactions, e.g. identifying binding sites in 
proteins or assessing protein-protein interactions. 

Machine translation (or MT) poses a unique problem for any neural 
network, where the encoding of the source sequences plays a vital role to 
reach an accurate translation of a source sequence to a target sequence. 
The inception of many innovative translation methodologies 
(Kalchbrenner and Blunsom 2013) (Sutskever, Vinyals et al. 2014) (Cho, 
Van Merriënboer et al. 2014) revolved around the sphere of providing 
the best possible representation of input data using either information 
about placement or information about the surrounding words of the word 
to encode. Effectively ascertaining relationships of each word to one 
another led towards conceptualizing the relevancy of a word towards 
accurate translation (Koehn 2017). A famous quote that goes around in 
the MT community, "You shall know a word by the company it keeps", 
best describes the significance of relevant words in encoding a word. The 
objective of mathematically providing relevancy to neural networks led 
to the eventual introduction of the alignment model (Bahdanau, Cho et 
al. 2014); which was used while translating source sequence to any target 
sequence to account for relevant relationships within source sequence.  

An alignment model or attention focuses the neural network on learn-
ing relevant relationships, reducing heavy translations and improving 
translation performance. One of the deep neural architectures using 
attention is Transformers (Vaswani, Shazeer et al. 2017). Unlike long 
short-term memory (LSTM) models, transformers are not restricted by 
the input sequence length. Transformers are trained using Transfer 
Learning, in which transformer models are first pre-trained on task-
analogous objectives and finally fine-tuned on task-oriented objectives 
(See Appendix 2 for more detail on transformers). Through transfer 
learning, a transformer can learn contextual information from a large 
dataset during pre-training and then apply the knowledge learnt from 
pre-training towards a downstream task, which generally has scarcity in 
data. Since the introduction of transformers, many variations of its archi-
tecture have been released. Common in all these transformer architec-
tures is the self-attention mechanism.  

Attention mimics the psychology of our brain when it is paying atten-
tion to only certain parts of the information to reach a conclusion 
(Lindsay 2020). Self-attention, on the other hand, supplements such 
complexity by adding context. While attention focuses on parts of the 
input that leads to a better conclusion, self-attention will focus on sur-
rounding words to delineate meaning between similar words. On the 
other hand, multi-headed self-attention learns multiple representations of 
each token, each of these are termed as heads. Different transformer 
models implement different strategies to utilise attention mechanisms 
more efficiently. 

Remarkably, Transformers are not just limited to natural languages; 
given sufficient corpus, they can be tailored towards any sequence-based 
inference. ProtTrans are transformer models trained on a large corpus of 
protein data (Elnaggar, Heinzinger et al. 2020), and they prove that trans-
formers can learn the contextual grammar of amino-acid sequences. 
Analogous to NLP tasks, the ProtTrans pre-training task involved a 
vocabulary of twenty amino acids. Therefore, sentences and words are 

analogous to protein sequences and amino acids. Four of these Trans-
former models, three auto-encoder (ProtBERT, ProtAlbert, ProtElectra) 
and an auto-regressive model (ProtXLNet), are publicly available as of 
November 2021. Attention mechanism’s ability to find the most relevant 
regions in a protein sequence (pattern of amino acids) will accurately 
emulate knowledge needed to understand the mechanisms behind a pro-
tein function. Transformers can potentially learn patterns of a TCR-
epitope interaction and understand the process that determines the affini-
ty between a TCR and an epitope.  

This work will demonstrate the transformer’s feasibility in determin-
ing TCR specificity to the antigens using the CDR3 protein sequences. 
Additionally, we will confront the inherent challenge of imbalanced 
classes in the TCR-epitope data. Additionally, transformers are infamous 
for accepting just input sequence albeit of variable length. Due to inher-
ent complexities in any biological interaction, additional features are 
indispensable; therefore, it was pertinent to find a way to circumvent this 
restriction in transformers. As it is known that the gene names of the 
TCR can impart some level of specificity to recognize an antigen 
(Hodges, Krishna et al. 2003), we will perform holistic transformer mod-
ification to include additional features while preserving pre-trained 
knowledge. Finally, we will compare our results with the previously 
available tools implemented using distance metrics or deep learning to 
address the same problem of TCR specificity. 

2 Methods 

2.1 Data acquisition and preparation  
VDJdb (Shugay, Bagaev et al. 2018) provides a centralised source from 
where we can retrieve the data for TCR-epitope pairs. For a given TCR 
sample, the database provides CDR3 sequences of TCRβ and/or TCRα 
gene; TCR βV and/or TCRαV gene; TCRβJ and/or TCRαJ genes, MHC 
Class I/II and organism. In addition, the database provides the epitope 
sequence, parent gene of the epitope, and the antigen species for the 
epitope. The confidence score associated with each TCR-epitope pair 
was provided wherein zero scores indicate that the sequences were only 
obtained by the sequencing technologies without any support from wet-
lab experiments; however, higher scores (1, 2, and 3) would represent the 
pairs that were validated using one or more than one wet-lab based tech-
niques. The database provides information regarding how the TCR-
epitope pairs were validated, e.g., assay identification, TCR sequencing 
or verification procedure. 

Data obtained from VDJdb consists of 81,762 entries, which includes 
data from various sources (including (Dash, Fiore-Gartland et al. 2017), 
(Sidhom, Larman et al. 2021)). We used the complete dataset (updated 
on November 2021) and applied our filtering criterion inspired by prior 
works. We utilised only TCR-β chains of Human and Murine antigens in 
this work with a confidence score greater than 0. We also removed du-
plicate CDR3 sequences with the same V-gene, J-gene, MHC A, MHC 
B, ensuring unique data entries for each label are used for training. Sub-
sequently, we removed certain epitope species resulting in autoimmune 
disorders or allergies. Table 1 summarises the filtration process applied 
before providing the data to the transformers. 

Unique categories of each V and J gene, rather than allele, were re-
tained. The ordinal encoder encodes genes (63 V genes and 13 J genes) 
associated with each sequence. Labels of input data are created by con-
catenating Epitope's species, genes, and sequence, then labels with more 
than 50 samples were retained. The dataset is divided into 70% training, 
15% validation, and 15% testing dataset. Out of 25 labels, as shown in  
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Fig. 1. ProtTrans Overview Data flow common in all Transformers. (a) CDR3 sequence is provided. (b) Sequence provided to transformer block and gene usage information directly to 

classification head. (c) Sequence along with gene usage information from embedding block is provided to transformer block. 
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Fig. 2, 10 were more than 100 samples, and 15 were less than 100 sam-
ples; the former is considered the easy-to-classify label and later is con-
sidered hard-to-classify label for this work. 

 Table 1.  Data filtering on VDJdb data. The final sample count indi-
cates sample count before splitting of data. 

*Duplicates are removed based on the same gene and MHC gene values and CDR3 
sequence. 

2.2 Multi-class classification 
ProtTrans are built using Hugingface framework (Wolf, Debut et al. 

2019) and pre-trained on Uniref (Suzek, Wang et al. 2015) and BFD 
(Steinegger and Söding 2018, Steinegger, Mirdita et al. 2019)  datasets. 
We used models trained on uniref except for ProtElectra as its uniref 
version was not available. Even though CDR3 sequences are protein 
sequences, there are challenges in training ProtTrans with just CDR3 
sequences. Predominantly, the filtration we applied in the previous sec-
tion has left us with highly imbalanced data. High imbalance can lead to 
poor model training, not generalising well on unseen data.  Another 
challenge is that transformers could only ingest data that complies with 
the vocab on which it was pre-trained, in this case, amino-acid sequenc-
es. Additional features will be out of vocabulary but contain pertinent 
information that can aid in classification.  

Gene usage has proven to contribute significantly to the epitope speci-
ficity of a TCR (Hodges, Krishna et al. 2003). These features are out of 
vocabulary for our pre-trained models. At the same time, additional 
features will not help us if we cannot handle an imbalance in our TCR 
data. Therefore, this leaves us discovering ingenious ways to address 

issues complicating our task. We addressed these challenges in the fol-
lowing two ways: (1) including a modified loss function (Section 2.2.1) 
and (2) modifying model implementations to include additional features 
along with input protein sequences (Section 2.2.2).  

2.2.1 Loss Function for Imbalance data 

Imbalance in our dataset prompted us to either make compensation in the 
dataset population or replace the loss function. Compensating datasets 
through oversampling would defeat the purpose of removing duplicate 
sequences from the dataset. Therefore, we address the imbalance in the 
data by overriding our loss function.  

A binary loss function created upon cross-entropy is Focal-loss (Lin, 
Goyal et al. 2017) which adds a modulating factor (or Focusing parame-
ter) to cross-entropy. Modulating factor is adjusted using gamma (𝛾	 >
0), which allows diminishing the contribution of easily classified labels 
(i.e., samples belonging to the majority class) and enhancing the contri-
bution of hard to classify labels (i.e., samples belonging to minority 
class) to the loss value. Enhanced loss value of hard-to-classify labels 
informs the model to accommodate more for these labels, which other-
wise would have been overlooked during training. The loss appears 
normal to the model; the adjusted loss value is the manipulation per-
formed before providing it to the model, and the model can then direct 
the gradient accordingly.   
 

CE = -∑ 𝑡!"
!#$ log	(𝑓(𝑠)!) (1) 

 
FL = -∑ 𝑡!"

!#$ (1 − 𝑓(𝑠)!)%log	(𝑓(𝑠)!) (2) 
 
Multi-class focal loss, which is just an extension of multi-class cross-

entropy, is required for our problem. Multi-class cross-entropy (Eq. 2) 
calculates the sum of losses for each class, c, extending it to focal loss 
would require applying a modulating factor to the sum of losses ob-
tained. A recommendation of 𝛾 = 2 was made by the authors of focal 
loss; however, they only assumed binary cases. Therefore, we will use 𝛾 
as hyperparameter in our model optimisation to estimate which value 
works best for our data. 

2.2.2 Gene usage in Transformers 

Each transformer has its specific tokeniser, which would prepare input 
using its pre-trained vocabulary for a transformer to process. A general 
overview of the transformer model is depicted in Fig 1. (a). The embed-
ding block prepares input for the transformer, which includes adding 
special tokens to denote special relationships (such as padding), an atten-
tion mask to denote if a token is to be considered for attention calcula-
tion or segment ID to denote two separate sequences in the same input. 
The tokeniser in the embedding block also performs encoding of labels 
and presents sequences to the transformer block. Each tokeniser main-
tains homogeneity of the sequence encoding and presents each sample 
(or in batches) to the transformer to learn a representation. 

The representation of the input sequence is fed to a classification 
block, which will perform sequence inference tasks such as classifica-
tion. This highlights a constraint in transfer learning regarding the vo-
cabulary of a transformer model. If we want to allow the transformer to 
understand new information, it will take a considerable amount of time 
and data to pre-train and learn new data (See Appendix 2: Transfer 
Learning). Fine-tuning with just new information, in our case, gene 
usage as features can circumvent the issue of training the entire trans-
former again. Once the transformer block accepts the information, we 
cannot alter the data transformation, which is based mainly on pre-

S. no. Filtration criteria Sample 
count 

1 Raw data 81762 
2 Post removing N/A 80679 
3 Selecting only human and murine antigen 78647 
4 Selecting TCR-epitope pairs with confidence score > 0 9580 
5 Post removing allergen and cancer antigen 8547 
6 Post removing duplicated entries* 5680 
7 Selecting the TCR-epitope pairs with TRB sequences 4057 
8 Selecting the TCR-epitope pairs with >=50 samples 2674 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Label distribution.  Post-filtering epitope label distribution of data. 
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trained knowledge. We will ruin the benefits of transfer learning and 
diminish the performance of the transformers.  

The tokenizer can be altered to accommodate additional features along 
with sequences, leading to two potential sites to introduce gene usage 
information, either before or after the transformer blocks. Former will 
require modification in the classification block of the model (Fig 1 b), 
while later will require modification in the embedding block (Fig 1. c). 
Both methods rely on the tokeniser of each transformer model to encode 
gene features along with amino acid sequences. Weaving gene usage into 
either classification block or embedding block would require associating 
a sequence to both V and J genes to predict specificity to an epitope. 

Gene usage in classification block 

In a standard transformer (Fig 1. a), the classification block receives an 
n-dimensional (n is 768 in the case of ProtBert) representation of each 
amino acid as input from the final hidden state of the transformer block 
(Devlin, Chang et al. 2018). The first token of every sequence is a spe-
cial classification token [CLS] which contains the aggregated representa-
tion of the input sequence in the final hidden state. This representation is 
termed as pooled output. The pooled output is the input to the classifica-
tion block to perform the sequence inference task.  

In classification block modification, the classification block receives 
gene information directly from the tokenizer, bypassing the transformer 
block (Fig.1.b). Each CDR3 sequence has V and J genes associated with 
it. An ordinal encoding for genes is provided to the tokenizer, which it 
associates with each sample and then given to the classification block  

  
𝑦 = 	𝑥𝐴& + 𝑏																									 (3) 

 
𝑦 = 	𝑥'&𝐴𝑥( + 𝑏																									 (4) 

 
The standard classification block consists of a linear layer mapping 

pooled output vector (𝑥	of the size of the hidden layer) from the trans-
former block as shown in Eq. 3 to class label (𝑦). We replaced the linear 
layer with a bilinear layer where the pooled output (𝑥' of the size of the 
hidden layer) and gene encoding (𝑥( of size 2) are mapped to a class 
label (𝑦). Bilinear transformation, as shown in Eq. 4, will calculate 
weight matrix (A) and bias (b) based on the two input vectors (of se-
quence and genes), which will express the interaction between sequence 
and genes. 

Gene usage in embedding block. 

The embedding block of a pre-trained model contains a learnt representa-
tion of its vocabulary. The introduction of additional information would 
then require learning new representations.  There are two possible ways 
to adjust the embedding block towards additional features. The first is to 
add unique V and J genes as new special tokens to the tokeniser, and the 
second is to add embedding layers for all unique V and J genes.  

Our initial approach was to add genes as tokens (63 for V-genes and 
13 for J genes) to the vocabulary, which gets assimilated into the word 
embedding. These word embeddings are then learnt during fine-tuning. 
Tokeniser alters the sequence to add V-gene to the beginning and J-gene 
to the end of the sequence (replicating how it occurs in the TCR chain). 
There were slight issues with this approach. ProtTrans vocabulary com-
prises 30 tokens (both unique and amino acid tokens), introducing addi-
tional 76 (63+13) tokens, which occurs only twice in a sequence does not 
provide enough information to learn dependencies for transformers. So, 
this approach was discarded for a convoluted yet novel approach.  

Creating embedding layers for both V and J genes will put less burden 
on a transformer to learn the new information (Fig 1. c). Two embedding 
layers, one for all unique V genes and another for all unique J genes, is 
created. The padding index for these layers is different from the padding 
for the word embedding layer, so we explicitly passed an alternative 
padding index. Special tokens are added before and after a protein se-
quence during tokenization. A separate padding index will associate a 
gene embedding to just a protein sequence and not to the special tokens. 
Special tokens are not associated with any genes, so we explicitly passed 
an additional vector that conveys this relationship (0 indexes of V and J 
genes embedding layer). Each sequence’s word embedding and V and J 
gene (Fig 1. c) are merged. The new representations are presented to the 
classification block to perform the classification task. 

Padding index, unique genes and special token consideration will re-
sult in a total size of V-gene embedding layer to 65 and J gene embed-
ding layer to 15. These new layers are randomly initialised in fine-
tuning, so they need to keep up with fine-tuning of the rest of the model. 
Hence, they are operated to learn at an increased rate than the rest of the 
model. For the sake of simplicity, we increased the learning rate of new 
embedding layers by a factor of 10. Our prime concern for not introduc-
ing an explicit learning rate for new layers was to avoid overriding 
weights learned in pre-training for the original layers in the embedding 
block. Overridden weights will make the transformer oblivious towards 
amino acid relationships it learnt during pre-training.  

2.3 Hyperparameter optimisations and performance evalu-
ation.  

Bayesian algorithm (Tree Parzen Estimator) is utilised to optimise hy-
perparameters in Optuna (Akiba, Sano et al. 2019), which is preferred for 
cases requiring exploration for many hyperparameters. Experiments are 
tracked using comet.ml and PyTorch for training each model. Optimiza-
tion is done for ten major hyperparameters: gradient accumulation, learn-
ing rate, weight decay, attention layer dropout (not included in auto-
regressive or AR model), hidden layer dropout (‘dropout’ in AR model), 
classifier layer dropout (‘summary last dropout’ in AR model), ad-
am_beta1, adam_beta2 warmup ratio and gamma. Seed as a hyperpa-
rameter ensures model stability, but performance is not evaluated on 
seed values. 

Table 2.  Hyperparameters and their sampling strategy. 

*For model stability 
 

Hyperparameters Sample count 

Gamma (0, 10) with step of 0.5 
Adam beta 1 [0.5, 0.9] with step of 0.01 
Adam beta 2 [0.5, 0.99] step of 0.001 
Learning rate [10-5, 10-2] from log domain 
Weight decay 0, 0.01, 0.001, 0.0001, 

0.00001, 0.000001 
Gradient accumulation steps [1, 128] 
Classifier / Summary layer dropout [0.5,0.9] with step of 0.1 
Hidden layer / dropout [0.5, 0.9] with step of 0.1 
Attention layer dropout [0.5, 0.9] with step of 0.1 
Warmup ratio 0.10, 0.20 
Seed* [1, 100] 
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Optimisations with plenty of hyperparameters helped us gain insight 
into the behaviour of transformers when trained with TCR data. Optuna 
provides sampling strategies depending on choices of hyper-parameter. 
Table 2 presents the sampling strategy for each hyper-parameter and its 
range. Since training steps are directly dependent on training batch size 
and we have small training data of 1871 samples, we used training batch 
size and evaluation batch size of 1 and 8, respectively. Fixing training 
and evaluation batch size will prevent training steps from dropping too 
low, which will occupy hyperparameter search in unproductive search 
space. In preliminary experiments, we experienced high fluctuations in 
evaluation loss, which made transformer training susceptible to prema-
ture early stop. Therefore, each experiment is trained with early-stopping 
for 50 training epochs giving sufficient training time to adjust fluctua-
tions caused by focal loss. 

While the standard methodology used the exact data for testing and 
validation due to fewer TCR samples, many works would use in-silico 
CDR3 sequences to test their model’s performance on unseen data. Our 
filtration step has removed duplicate sequences, and hence our test da-
taset contains unseen sequences, which conforms with standard practice 
to measure performance on unseen data. 

2.3.1 Evaluation metrics 

Metrics to assess the predictability of the transformer models includes a 
weighted f1-score that is used as an objective value for hyperparameter 
optimization. Additional metrics included are balanced accuracy score, 
weighted precision, and weighted recall to provide an overview of per-
formance by a model. Parallel coordinate plots and parameter importance 
are plotted to evaluate the contribution of parameters towards objective 
value. 

After optimization, an overview of performance is provided through 
confusion metrics and ROC plots for each implementation. ROC plots 
are generated after binarizing labels, followed by calculating false posi-
tive rate and true positive rate using logit scores for the binarized labels. 
Multiple ROC curves are plotted on the same ROC plot using this tech-
nique. Furthermore, the confusion matrix will describe classification 
performance on the test dataset. 

2.3.2 Evaluation of different transformer implementations 

In our multi-class setting, assessment of transformers on the problem of 
TCR is done through the epitope-specific perspective and model-specific 
perspective. The area under the ROC curve provides us with an epitope-
specific perspective where performance comparison for TCR specificity 
can be made. The weighted f1-score of the model provides us with a 
holistic measure for comparing different models (across all methods) in a 
multi-class setting and hence a model-specific perspective.  

For the sake of clarification, the transformer model with numbers in-
dicates the implementation (or modification applied). For example, the 
standard ProtXLNet model with no modification is denoted by 
ProtXLNet-0, with classification block modification is denoted by 
ProtXLNet-1, and with embedding layer modification is denoted by 
ProtXLNet-2. 

In order to evaluate the performance of all 12 transformers implemen-
tation, we utilised ROC plots produced from all implementations. The 
area under ROC (AUROC) curve for all 25 labels is then used by the 
paired Wilcoxon test to compare performance across different implemen-
tations of the same transformer model. We assume each model imple-
mentation with no modification as a baseline since it consists of no other 
modification apart from focal loss. Out of 25 labels (Fig. 2), there are 15 

labels with less than 100 samples, and we term them as hard to classify 
labels in our comparison. 

2.3.3 Evaluation of transformer with publicly available tools  

We compared TCRGP, TCRdist and DeepTCR, using CDR3 sequences 
and gene usage as input; this is done to ensure that similar input features 
are employed to reach the results. As prior works focus on epitope-
specific models while this work specifies a multi-class model, a common 
ground for comparison is an epitope-specific metric, i.e., area under 
ROC curve for each epitope. However, the number of samples between 
different tools differs since we used a newer version of VDJdb data.  

TCRGP and TCRDist both have 24 common epitopes, while 
DeepTCR has only 20 common epitopes with our approach. In the case 
of DeepTCR, not all murine antigens were present in our filtered data. 
Out of the nine murine antigens used in their work, we had only three 
(m139, m38, m45) murine antigens present. We utilised their script to 
get AUC values for these three antigens. We then used the values pro-
vided in their work to compare with ours. Mean AUC over 24 epitopes 
obtained from TCRGP, TCRDist is compared with transformers and 
mean AUC over 20 epitopes obtained from DeepTCR is compared with 
the transformer models developed in this study. 

3 Results 
Herein, we tuned the hyperparameters of transformer models to provide 
us with model-specific performance. Each model differs either in pre-
training methodology or the architecture of transformer blocks. Opti-
mised transformer models predict on a test dataset (unseen by the model 
while training) to test the performance of the models. The following 
section will highlight the key takeaways after optimizations, their per-
formance on TCR data and compare them with prior works. 

3.1 Assessment of different implementations of transform-
ers from optimisation. 

Auto-encoder optimisation had eleven hyperparameters (including seed 
value), while the auto-regressive model had ten (including seed value); 
understanding their behaviour during optimisation will help us assess 
how transformers react to TCR data. We ran optimizations for at least 
100 runs for each implementation and generated parameter importance 
plots and parallel coordinate plots for all 12 implementations of four 
transformer models (Supplementary 5, 6, 7, 8). The area under ROC for 
each transformer is provided in Supplementary section 4 Table 4-7. 

Optimization of all three ProtBert implementations displayed higher 
importance towards hidden-layer dropout probability (Supplementary 4). 
A similar tendency was also seen in ProtElectra. Regarding ProtAlbert, 
the contribution was more spread out with 30% to hidden-layer dropout 
probability and 21% to the learning rate. Auto-encoders are encoder 
blocks stacked one after another, each block improving representation 
sent by the previous encoder block. In the case of ProtBert and ProtElec-
tra, there is no parameter sharing among the encoder blocks, which re-
sults in large size and higher dependence on representation. This is im-
proved in ProtAlbert by enabling parameter sharing among encoder 
blocks resulting in more diminutive size (number of 
weights/parameters). Therefore, ProtAlbert optimization displays less 
affinity towards hidden-layer dropout when encoding CDR3 sequences. 
Since ProtAlbert was not solely dependent on encoding representation 
but also on learning rate, this high importance to learning rate also im-
plies learning new relationships for TCR data. 
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The two-stream self-attention mechanism in ProtXLNet would exhibit 
different behaviour than auto-encoders. While auto-encoders suffered 
from having a high burden on transformer block to better sequence rep-
resentation, ProtXLNet did not suffer from the same. The learning rate in 
ProtXLNet-0 and ProtXLNet-2 displayed 30% and 36% contribution, 
while in ProtXLNet-1, it was reduced to 6%. This drastic reduction could 
be attributed to the newly introduced gene usage in the classification 
block, where ProtXLNet-1 is trying to generate better representation 
from the transformer block to make sense of the gene usage in the classi-
fication block. ProtXLNet-1 reacted similarly to auto-encoders during 
optimization with a 62% contribution of dropout probability, while 
ProtXLNet-0 and ProXLNet-2 were able to utilise optimizations well 
with contributions spread out across all parameters. 

Table 3. Performance metrics on the test dataset. 

 
Deduction from a parallel coordinate plot can help us gain further in-

sight into the behaviour of models towards TCR data during optimiza-
tion. Models with high importance (across all methods) towards hidden 
layer dropout displayed a tendency towards 0% probability. After 
providing gene information in embedding block, transformers required 
more regularisation (adam-beta1 and adam-beta2) and preferred 0% 
dropout probability of hidden layers. We can conclude from these find-
ings that in transformers with embedding layer modifications, the pre-
trained knowledge was still playing an essential role in achieving objec-
tive value even with new and fewer TCR data. Additionally, High regu-
larisation in embedding block modification indicates overfitting on new 
information and keeps most of the load on the transformer block to gen-
erate a relevant input representation (from new embedding layers) to 
reach objective value. 

A trend in the behaviour of classifier dropout (or summary dropout in 
the case of ProtXLNet) would indicate the behaviour of the classification 
block to ease optimization. Similarly, assessment of embedding layer 
modification on optimization could be provided through learning rate. 
ProtXLNet-1 preferred higher dropout, whereas ProtXLNet-2 implemen-
tations showed varied preferences towards higher dropout. ProtBert 
showed similar behaviour as ProtXLNet, unlike ProtAlbert and ProtElec-
tra. ProtAlbert-1 preferred lower dropout than ProtAlbert-2 implementa-
tions, similarly ProtElectra-1 preferred lower dropout than ProtElectra-2 
implementation. All learning rates were concentrated towards lower 
values, and hence no differences were observed. It was concluded that 
there was no trend seen to support the claim that classification or embed-
ding modification would ease optimization. Although based on perfor-
mance metrics in Table 3, models with classification modification were 

economical as they had the least training time when compared with other 
implementations. 

Gamma is a hyper-parameter directly linked to focal loss, which will 
help us deduce improvement over cross-entropy. None of the models 
preferred cross-entropy (gamma = 0) loss. Another trend related to focal 
loss is seen in parallel coordinate plots. Lower modulating factors are 
preferred for methods 0 and 2, but intermediate values (around 5) are 
preferred for method 1. Less diversity in gamma values for the bilinear 
layer implies fine-tuning was concentrated towards the classification 
block for method-1. We can conclude that focal loss contributed to opti-
misation and classification performance.  

3.2 Assessment of different implementations of transform-
ers on TCR data. 

Assessment of different implementations is done among transformers 
with confusion matrix (Supplementary 1), ROC plots (Supplementary 2) 
and paired Wilcoxon test (Supplementary 3) on AUROCs from individu-
al transformers. Misclassification is compared based on confusion ma-
trix, and epitope specificity is evaluated using ROC plots, and AUROC 
for each epitope is provided in Supplementary 4. Implementational sig-
nificance for each Transformer is compared using the paired wilcoxon 
test results. 

Misclassification in ProtBert-0 was scattered mostly for the CMV 
epitope family, with even many unclassified labels such as CMV IE2 or 
HCV NS3. ProtBert-1 improved the results of ProtBert-0 by reducing the 
number of unclassified labels from seven in ProtBert-0 to one in Prot-
Bert-1, while ProtBert-2 managed to keep unclassified labels to five. 
Comparison between the different implementations of ProtBert by Wil-
coxon (Supplementary Fig 26) test showed all implementations in Prot-
Bert worked similarly. 

Comparing ProtBert-0 with ProtAlbert-0 showed clear improvement 
over misclassification and the number of unclassified labels. A more 
significant number of hard to classify examples are correctly classified in 
ProtAlbert-0 compared to ProtBert-0. ProtAlbert-0 had three unclassified 
labels, which is more than ProtBert-1 but comparing ProtBert-0 and 
ProtAlbert-0, ProtAlbert-0 showed improvements in classifying hard-to-
classify labels. The most striking improvement over ProtBert-1 is how 
ProtAlbert-2 improved on all its misclassification. Misclassification with 
HIV-1 Gag, which was highly confused with CMV and EBV epitopes in 
ProtBert-2, is reduced in ProtAlbert-2. ProtAlbert seemed to perform 

Model Duration (hours) Weighted f1-score Balanced Accuracy Mean AUC 

ProtBert-0 4.49 0.39 0.33 0.79 
ProtBert-1 1.99 0.41 0.37 0.80 
ProtBert-2 2.21 0.41 0.35 0.79 
ProtAlbert-0 3.16 0.42 0.37 0.79 
ProtAlbert-1 0.57 0.38 0.33 0.78 
ProtAlbert-2 3.21 0.46 0.44 0.81 
ProtElectra-0 1.29 0.46 0.41 0.86 
ProtElectra-1 0.90 0.44 0.41 0.80 
ProtElectra-2 0.99 0.47 0.40 0.84 
ProtXLNet-0 1.57 0.48 0.44 0.81 
ProtXLNet-1 1.21 0.46 0.38 0.80 
ProtXLNet-2 1.23 0.55 0.50 0.88 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 F1-score for all models.  Weighted f1-score on test dataset for all methods and 

across all models. Performance of ProtBert-1, ProtAlbert-2, ProtElectra-2 and ProtXLNet-

2 on test dataset are best among same transformer model. 
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well with embedding layer modification based on the Wilcoxon test 
among ProtAlbert implementation (Supplementary Fig 27). In addition 
to that, in ProtAlbert-2, hard-to-classify classes have drastically im-
proved, for example, the MCMV epitope family. Moreover, unclassified 
labels came down from five in ProtAlbert-0 to one in ProtAlbert-2. 

ProtElectra had a very different response to modification than others 
models. The unclassified labels increased from two in ProtElectra-0 and 
ProtElectra-1 to four in ProtElectra-2. Many samples were misclassified 
in ProtElectra-1 when comparing confusion matrices of all ProtElectra 
models, implying it performed poorly among all the implementations. 
Wilcoxon test showed a higher mean AUC for ProtElectra-0 than all 
other implementations (Supplementary Fig 28). Even though this could 
be attributed to lower AUC for HIV-1 Gag epitope (0.77 in ProtElectra-0 
and 0.53 in ProtElectra-2) in ProtElectra-2, which caused the mean AUC 
to drop from 0.856 (ProtElectra-0) to 0.836 (ProtElectra-2) but weighted 
f1-score for ProtElectra-2 was still higher among all the ProtElectra 
implementations. Among all the auto-encoders, ProtElectra2 showed the 
best f1-score (Fig 4).  

We only used one auto-regressive model for TCR data, but it showed 
the most receptiveness towards all modifications. Wilcoxon test showed 
ProtXLNet-2 performing better among all implementations of 
ProtXLNet where an improvement in mean AUC from 0.812 in 
ProtXLNet-0 from 0.870 in ProtXLNet-2 was observed. Observing 
ROCs of ProtXLNet-0 showed improved results over ProtElectra-2. For 
the HCV family, ProtElectra-2 produced higher AUC for ease to classify 
(HCV NS3 ATDALMTGY: 0.88) and lower AUC for hard to classify 
(HCV NS3 KLVALGINAV: 0.69). ProtXLNet-2, on the other hand, was 
able to learn patterns within the HCV family to produce higher AUC for 
both classes (0.87). A similar improvement for the CMV epitope family 
was observed when comparing the AUC of hard-to-classify labels among 
ProtXLNet-2 and ProtElectra-2. In all, ProtXLNet-2 performed well by 
reaching the highest F1-score of 0.55 (Fig.4) among all models, with 
better classification performance for hard to classify labels. 

3.3 Transformers in comparison with publicly available 
tools. 

VDJdb comprises the TCR-epitope pairs from multiple independent 
studies, and the database keeps on adding the sequenced or validated 
TCR-epitope pairs.  It allowed previously built tools to use similar da-
tasets (with substantial overlap in epitopes) and compare their outcomes 
to benchmark the different available tools. In our approach, we reported 
the ProtElectra-2 and ProtXLNet-2 to be best among various implemen-
tations based on weighted f1-score. To estimate the performance of the 
best models from our approach, we compared our best-performing meth-
ods with TCRGP, TCRdist and DeepTCR. We first compare our best 
performing models with TCRGP and TCRdist, where we have the most 
(24 out of 25) common epitope classes. An additional comparison is 
made with another Deep Learning implementation, DeepTCR, with 
which we have 20 epitopes in common. 

The mean AUC for TCRGP and TCRdist is 0.831 and 0.781 calculat-
ed over 24 epitopes. ProtElectra-2 showed improvements of just 1% 
(0.841) over TCRGP but ProtXLNet-2 was able to show an improvement 
of almost 5% (0.876) (Fig 6). TCRGP had utilised epitope-specific mod-
els in a binary setting. TCRGP and TCRdist had a mean AUC of 0.843 
and 0.807, respectively, for the MCMV family with three hard-to-
classify classes. ProtXLNet-2 and ProtElectra-2 had mean AUC of 0.946 
and 0.953, respectively for the MCMV family. An improvement of 
≥10% by both auto-encoder and auto-regressive models proves the 
superiority of transformer models over TCRGP and TCRdist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 AUROC comparison for Transformers.  Performance of ProtBert-1, ProtAlbert-

2, ProtElectra-2 and ProtXLNet-2 on TCR test dataset provide us an overview of how 

transformers perform on unseen TCR data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Comparison with TCRGP and TCRdist.  Area under ROC for twenty-four 

epitopes common with TCRGP and TCRdist are presented. Mean of each model over 

given epitopes are also mentioned.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Comparison with DeepTCR.  Area under ROC for twenty epitopes common with 

DeepTCR are presented. Mean of each model over given epitopes are also mentioned. 
 
 
 



Determining epitope specificity of T-cell receptors with Transformers. 

DeepTCR performance is compared on common epitope classes with 
our work. AUC for twenty epitopes is compared (Fig. 7) between 
DeepTCR and Transformers. ProtXLNet-2, with a mean AUC of 0.856, 
showed improvement over DeepTCR with a mean AUC of 0.784. Most 
lack of performance in DeepTCR was due to hard to classify classes, 
while transformers show improved performance with such labels. For 
example, the MCMV family, DeepTCR produced results with a mean 
AUC of 0.843 and while ProtElectra-2 and Prot-XLNet-2 produced 
results with 0.953 and 0.946 mean AUC. 

4 Discussion and Limitations 
In this work, we addressed the biological problem of TCR specificity 
through Transformers. Due to their self-attention mechanism, transform-
ers in NLP have outperformed on all translation and sequence inference 
tasks. We utilised the self-attention mechanism of multiple transformer 
architectures to learn the antigen specificity of TCRs. Each architecture 
of transformer has improved shortcoming of previous architecture, and 
we demonstrated which transformer performs best on TCR data. As pre-
trained transformers are attuned to a specific vocabulary, providing 
additional features to the transformers was never explored. The trans-
former’s capabilities can be extended by adding additional features along 
with sequences to improve sequence inference. We demonstrated poten-
tial modification in pre-trained Transformers for improved classification 
and compared our results with other works. We introduced measures in 
the form of multi-class focal loss, gene usage in classification block and 
gene usage in embedding block to aid our specificity classification. We 
presented the possibility that methodologies on biological problems can 
be streamlined to utilise a transformer for sequence inference accompa-
nied by non-sequence-based features. 

Previous works tackled TCR specificity either through sequence simi-
larity (Pogorelyy, Minervina et al. 2019), k-mer sequence features 
(Tong, Wang et al. 2020), convolutional models (Jurtz, Jessen et al. 
2018) , utilising amino acid physicochemical properties (Gielis, Moris et 
al. 2018), learning a non-parametric function (Jokinen, Huuhtanen et al. 
2021) or enhancing sequence feature into a high-dimensional space 
(Sidhom, Larman et al. 2021), even utilising molecular structures 
(Weber, Born et al. 2021) or just recently published, pre-training BERT 
model on TCR data (Wu, Yost et al. 2021). A common theme in all these 
works is to improve encoding of input data to exemplify TCR specificity 
for an antigen. Usually, a binary classification model is trained to exhibit 
antigen specificity among a background of antigens. However, 
DeepTCR, along with binary setting, included a multi-class setting; they 
did not employ it for the entire TCR data, just for the GAG TW10 
epitope family (with ten variants). To the best of our knowledge, the 
multi-class approach has never been utilised in such a fashion because of 
the scarcity of TCR data or lacking computational resources. This work 
provided an alternative approach towards TCR classification for similar 
data sizes and reduced training time by utilising pre-trained transformers. 

We only used CDR3 sequences and gene usage of the beta chain of 
TCR, which is a simplified approach. A more widely utilised approach is 
utilising both alpha and beta chain sequences (along with gene usage for 
both chains). TCR-BERT used two different BERT models (one for beta 
sequences other for alpha sequences) and combined their embeddings for 
the classifier block. A similar approach can modify all ProtTrans models 
to accommodate alpha sequences, providing more performance in deter-
mining TCR specificity. 

A tendency we observed during optimisation was the early stopping of 
potentially good runs. As early stopping was performed based on evalua-

tion loss values, the potential origin for this issue was loss function. 
Depending on modulating factor, the focal loss causes many spikes in 
loss values; in turn, these fluctuations are misinterpreted by early stop-
ping as loss value worsens. We were increasing the tolerance threshold 
for early stopping but was led to more stale runs and immense waste of 
training time. Exploring how to best tackle this problem could increase 
the productivity of optimisations.  

Comparing transformers with other methods proved that they outper-
formed in determining TCR specificity. A recent work utilising trans-
formers using a similar configuration of data is TCR-BERT. Although 
we outperformed all previous methods in epitope-specific AUCs, it 
would be insightful to compare our methodology with TCR-BERT. 
Despite not making a head-to-head comparison with TCR-BERT, their 
approach resulted in an AUC of 0.837 for CMV-pp65-NLVPMVATV 
(using both TRA and TRB sequences), whereas ProtXLNet-2 classified 
CMV-pp65-NLVPMVATV (using only TRB sequences) with 0.86. 
Their work utilises the entire 81K entries from VDJdb to pre-train a 
BERT model as opposed to ours, where we utilised data with a confi-
dence score of more than 0. TCR-BERT fine-tuned TCR specificity for 
binding to a positive (antigen) class. Our preliminary approach included 
all confidence scores, where we fine-tune our transformers with 78647 
samples on 48 labels. The drawback of this approach was that we are 
fine-tuning with entries that are not adequately validated, so we would 
not get comparable results. Nevertheless, comparing two approaches 
could provide greater insight into which approach (fine-tuning or pre-
training) is better suited for TCR data.  

Although our approach demonstrates the potential of transformers by 
fine-tuning on CDR3 sequences and how additional features can be 
juxtaposed cohesively, some limitations remain. Problematic events such 
as hallucination and catastrophic forgetting (Sun, Qiu et al. 2019) were 
not evaluated. These problems are prevalent in deep neural networks and 
contribute significantly to misclassification. While hallucination occurs 
in generated sequence at the last transformer block, leading to unlikely 
content. Catastrophic forgetting is prevalent in transformers where the 
weights learned during pre-training gets overridden during fine-tuning.  

Predominantly, hallucination (Kolouri, Ketz et al. 2019) (Ji, Lee et al. 
2022) often occurs when generating natural languages. Hallucinating 
amino acid is less likely due to our models' small vocab size (amino 
acids). Vulnerability to hallucination was a prime reason for not adding 
gene usage as additional tokens to the vocabulary but instead adding 
them through embedding layers. If we had added 76 new tokens upon 30 
tokens in the vocab, which occurs only twice with the sequence (V and J 
gene associated with the sequence), either there would be hardly any-
thing to learn, or there would be hallucinations of genes in place of ami-
no acids or vice-versa.  

For catastrophic forgetting, we had employed early stopping. We low-
ered the learning rate (which, as discussed in results, was preferred by all 
Transformers) to prevent pre-trained knowledge from being erased dur-
ing fine-tuning. Although we used a factor of 10 to train new embedding 
layers, comparison with different factors could help us evaluate whether 
different transformers perform better at a different rate. Appropriate 
assessment of the limitations, as mentioned earlier, can help us improve 
on the results of transformers even with such highly imbalanced data.  

Modification in embedding block gave us a new perspective towards 
the attention masking procedure. As protein binding leads to a 3D con-
formation in protein structures, information about bindings in these 
structures is learned by the attention mechanism for a given sequence. 
An as epitope binding involves very few amino acids of a sequence, 
explicitly indicating non-relevant amino acids (known as junctional 
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regions) puts less load on the attention mechanism. Information about 
which regions in CDR3 are junctional regions is provided in the VDJdb 
meta description. Piecing this knowledge, we can instruct the tokeniser 
to calculate attention for specific regions in CDR3 sequences. The results 
can further be evaluated using attention head visualisation (Vig 2019), 
where the attention heads playing the most vital role towards correct 
classification gets highlighted. 

We have demonstrated the feasibility of transformers in determining 
antigen specificity of a TCR from CDR3 protein sequences. Diversity 
conveyed in CDR3 sequences has long been a challenge in T-cell re-
search; we aimed to diminish the challenge with this work. We concep-
tualised modifications in transformers to convey additional features that 
improved classification performance. Results of these modifications 
were compared and shown to outperform prior tools that addressed a 
similar problem. Additional opportunities in examining implications of 
the approach adopted in this work can be helpful for many other fields 
utilising transformers for either its self-attention mechanism or transfer 
learning.  
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Appendix 

1 Biology behind antigen recognition by T-Cell 
Understanding T cell receptors (TCRs) relates directly to the understanding of 
mechanisms involved in the adaptive immune system. While adaptive immunity 
involves both B and T cells, we will focus on T cells which will provide us insight 
into cell-mediated adaptive immunity.  

Antigen Presentation and MHC Restriction 

Presenting peptides to the TCRs is done through a class of cells known as antigen-
presenting cells (APC) and is presented through Major Histocompatibility com-
plexes (MHC); this process is termed antigen presentation. Degradation of antigen 
is done inside APC; this degradation is undertaken through two different pathways 
depending on if MHCI or MHCII is expressed on the APC. The affinity of degrad-
ed peptide (or epitope) to the MHC dictates which peptide will be presented by the 
MHC and also to which T-Cell (CD4+ or CD8+) (Zareie, Farenc et al. 2020). 

Antigen Recognition 

TCR expressed on either CD8+ or CD4+ T cells binds to MHC for antigen recogni-
tion by their respective T cells. T cells' clonal nature dictates the unique binding 
site on its TCRs and hence its specificity. T-Cell consists of Variable (V) and 
Constant (C) region; it is on V region where the sequence diversity is the most 
concentrated and is present on both Alpha and Beta chain of TCRs. TCR genes 
undergo V, D and J gene rearrangement providing TCR with high diversity. 

Gene rearrangement 

Although Gene rearrangement provides TCR diversity expected at 1018 in humans 
and 1015 in mice, it is not random at all, and thus regulation is governed by multiple 
factors (Attaf, Huseby et al. 2015). TCR beta locus comprises 46 V gene segments, 
followed by two groups of D, J and C gene segments (D1, J1, C1 or D2, J2, C2). D 
to J recombination first occurs between a D gene and one of J gene of first group or 
D and J gene of the second group; followed by V to the newly rearranged D and J 
gene. V(D)J recombination of TCR genes plays a vital role in governing the diver-
sity of a repertoire (all unique TCR within an individual’s immune system). Addi-
tionally, random insertion and deletion of nucleotides at junctions of V, D and J 
give rise to hypervariable regions, known as complementarity determining regions. 

Complementarity-determining region on TCR 

Complementarity-determining regions are present at the junction of V and D seg-
ment of TCRs Fig.8. This region of TCR interacts the most with both MHC and 
epitope for recognition, which is due to its hypervariability. Two types of TCR, i.e., 
TCRAB and rarely TCRGD are mounted by the adaptive immune system for an 
immune response. These receptors (at protein level) are generated from two differ-
ent chains, i.e., TCRAB from TCRA and TCRB and TCRGD from TCRG and 
TCRD. Each of these four receptors is generated from the recombination of Varia-
ble (V), diversity (D) and Joining (J) genes from their individual loci. Several V, D 
and J genes for TCRB and TCRD and V and J genes for TCRA and TCRG are 
distributed over a long stretch of chromosomes 7 and 14 in the human genome. 
Any of these V, D and J genes can be selected for each locus and any of the chains, 
i.e., TCRA/TCRB can be randomly selected to generate diverse receptors to raise 
an efficient immune response against infections. Overall, 1016 receptors can alone 
be generated by the V(D)J recombination events. Apart from V(D)J recombination, 
another factor that adds to the diversity of these receptors is the addition of nucleo-
tides on both sides of D gene during V(D)J recombination. This region is known as 
complementarity determining region 3 (CDR3), which is fundamental in interacting 
with and recognising the antigen. Determining binding specificity to an antigen 
thus helps us to assess the immune system's ability to engage with pathogens and 
also to evaluate the response undertaken by it. 

2 Transformers 
Transformers are a type of Sequence to Sequence (or Seq2Seq) model that trans-
forms a source sequence's representation to a representation of a target sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. TCRβ gene rearrangement and structure.  Overview of V(D)J recombina-

tion.  Region in blue indicates junctional sites which are assembled by random addi-

tional and deletion. CDR3β region shown in grey on TCR protein. 
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Machine translation (also known as sequence transduction) which were widely 
performed using LSTM (long-short-term-memory) models or RNN (recurrent 
neural networks) models, had limitations. Limitations of fixed sequence length in 
traditional methods (and even the bottleneck between encoder and decoder archi-
tectures) were then overcome with the introduction of Transformers. Transformers 
retained the encoder-decoder architecture and introduced a new form of attention 
mechanism, self-attention, which outperformed standard practices.  

Encoder-Decoder Architecture 

Given a source sequence to be translated to a target sequence, the encoder would 
generate vector representation for each word in the source sequence, and the de-
coder would then read these vectors and generate words in the target sequence. 
Certain limitations were discovered; translating word to word doesn't account for 
languages written from left to right or with different grammar compositions. Sub-
sequently, to reduce computational resources instead of encoding the entire source 
sequence, a need to focus on relevant words arise. 

Recurrent Neural Network (Bahdanau, Cho et al. 2014) would solve the former 
issue by including a weighted sum of preceding and succeeding words in a se-
quence whilst encoding a word. It employed RNN to encode each word, and a 
decoder would then decode from this representation. With the introduction of 
LSTMs (Sutskever, Vinyals et al. 2014) long-range dependencies for a word were 
also accounted for. 

Ditching recurrent and convolutional layers was Transformers, replacing it with 
an attention mechanism. Transformers introduced encoding through self-attention, 
which would amplify the contribution of relevant words and diminish the contribu-
tions of irrelevant words while encoding a vector representation for a word. All this 
whilst retaining encoder-decoder architecture (there are encoder-only architectures 
like BERT). 

Attention, Self-attention and multi-head attention  

Origins of attention lie in the field of psychology, where the observations in behav-
ioural patterns were attributed to where the brain was paying attention. The brain 
preserves computation resources by paying attention to only crucial details to reach 
an answer (Lindsay 2020), which can be mimicked by utilising a weighted sum of 
relevant words while encoding a word. Mathematically formulating this "flexibil-
ity" in a neural network is known as the attention mechanism. Global and Local 
attention are some of the early attention mechanisms which were applied in com-
puter vision (Luong, Pham et al. 2015, Xu, Ba et al. 2015). With the introduction of 
transformers, self-attention came into the limelight.  
While traditional attention mechanisms would include the contribution of surround-
ing words blindingly, self-attention would also include the position of the word to 
introduce the sense of context in encoding a word. In summary, similar words in 
different positions in a sequence would get different encoding.   

Fig. 9 shows encoding the second word in the output sequence. Three different 
representation of input is used to calculate self-attention. Learning the weights for 
every three representations is equivalent to learning self-attention. Query and Key 
are used to compute scores, which undergoes some processing before taking a dot 
product with the Value representation. This dot product will enhance values in the 
Value matrix, which corresponds to higher relevance and hence augment the effect 
of those words into the resulting representation of the word. This can be done 
multiple times in parallel for a single word, termed as multi-headed attention. 
Multi-headed attentions allow transformers to accommodate relevance from multi-
ple positions in a sequence. 

Transfer Learning and Transformers architectures 

Training a transformer involves the concept of transfer learning; in transfer learn-
ing, we divide training a model into two different parts: pre-training and fine-
tuning. Pre-training involves two tasks mask language modelling and Next Sen-
tence prediction. In the case of ProtTrans, only mask language modelling was 
utilised. The weights learned in pre-training are fine-tuned on downstream tasks, 
consequently saving time and resources in training a transformer from the begin-
ning and prime advantage of transfer learning. Additionally, different Transfer 
models employ different approaches for pre-training tasks, which is motivated by 
their methodology.  
There are two architectures utilised in this work, Auto-encoder and Auto-
regressive. BERT, Albert, Electra are auto-encoder models with only encoders and 
no decoders. XLNet is an autoregressive language model. While BERT learns 
bidirectional language modelling, ALBERT (A lite BERT) is a more efficient 
version of BERT with parameter sharing among different encoder layers. Both of 
them use the same mask language modelling. On the other hand, ELECTRA utilis-
es Generator-Discriminator based approach; the discriminator then detects corrupt-
ed tokens generated by the generator during masked language modelling. The 
discriminator trained is then used for fine-tuning on downstream tasks.  
While auto-encoder models reconstruct original data during mask language model-
ling. They lack obvious information; masked token (it is a type of special token 
[MASK]) will not be seen in downstream tasks, dependency learnt for the masked 
token (and the original token) is then not transferred (or would never be needed); 
termed as the pretrain-finetune discrepancy. The pretrain-finetune discrepancy is 
addressed in XLNet. XLNet is an auto-regressive model which implements two-
stream self-attention as a means to address both forward and backward dependen-
cies as well as to address pretrain-finetune discrepancy. Providing different factori-
sation orders during permutation language modelling enables the model to gather 
positional information from a possible position for a given token. 
On the other hand, two-Stream self-attention uses additional self-attention to isolate 
the content while the model learns positional information (or context) during pre-
training. Any difference between XLNet and BERT is due to this very difference in 
pre-training objective, which helps it retain a more significant number of depend-
encies than BERT. In summary, XLNet is a bidirectional transformer similar to 
BERT but utilises permutation language modelling. 
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