
Determining epitope specificity of
T-cell receptors with

Transformers

by

Abdul Rehman Khan

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science – Data Science and Technology Track

at Delft University of Technology
to be defended publicly on Monday March 21st, 2022 at 10:00.

Student number: 5135028
Project duration: August, 2021 – March, 2022
Thesis committee: Prof. dr. ir. M.J.T. Reinders, TU Delft, supervisor, committee chair

Dr. I. Khatri, Leiden University Medical Center, daily supervisor
Dr. Pradeep Kumar Murukannaiah, TU Delft, external committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Subject Section
Determining epitope specificity of T-cell receptors with
Transformers.
A.R.Khan (5135028)
Supervisors: Dr Indu Khatri1, Prof.dr.ir. MJT Reinders2

1Department of Immunology, Leiden University of Medical Center.
2Pattern Recognition and Bioinformatics, Delft University of Technology

Abstract
Motivation: Transformers have dominated the field of natural language processing due to their competency in learning
complex relationships within a sequence. Reusing a pre-trained transformer for a downstream task is known as Transfer
learning. Transfer learning restricts the transformer to a fixed vocabulary; modification in transformer implementation will
extend the utility of the transformer. Implementing transformers for complex biological problems can be beneficial in ad-
dressing the complexities in the biological sequences. One such biological problem is to capture the specificity of diverse
T-cell repertoire to the unique antigens (i.e., immunogenic pathogenic elements). Using transformers to assess the
relationship between T-cell receptors and antigen at the sequence level can provide us with better insights into the
processes involved in these precise and complex immune responses in humans and murine.
Method: In this work, we determined the specificity of multiple TCR to unique antigens by classifying the CDR3 regions of
TCR sequences to a particular antigen. For this problem, we used three pre-trained auto-encoder (ProtBERT, ProtAL-
BERT, ProtELECTRA) and one pre-trained auto-regressive (ProtXLNet) transformer model wherein, to adapt to the chal-
lenges of the complex biological problem at hand, we implemented modifications in the transformers chosen here. We
used the VDJdb to obtain the biological data for training and testing the selected transformers. After pre-processing data,
we predicted the TCR specificity for 25 antigens (classes) in a multi-class setting.
Results: Transformers could predict the specificity of TCRs to an antigen with just the CDR3 sequences from the TCRB
chain (weighted F1 score 0.48), the data that was unseen by the transformers. With additional features incorporated, i.e.,
gene names for TCRs, the weighted F1 improved to 0.55 in the best performing transformer. We demonstrated that differ-
ent modifications in transformers recognized out-of-vocabulary features with these results. When comparing the AUC from
the transformer model to other previously developed methods for the same biological problem such as TCRGP, TCRDist
and DeepTCR, we observed that the transformers outperformed the previously available methods. To exemplify, the
MCMV epitope family that suffered from restricted performance in TCRGP due to fewer training samples (~100 samples)
showed 10% improvement in AUC with transformers under similar training samples.
Conclusion: Transformer's proficiency in learning from fewer data combined with holistic modifications in transformers
implementations proves that we can extend its capabilities to explore other biological settings. Further ingenuity in utilizing
the full potential of transformers either through attention head visualization or introducing additional features can further
extend T-cell research avenues.
Availability: Dataset and scripts will be available on github.com/arkhan19/tcrformer
Contact: a.r.khan@student.tudelft.nl
Supplementary information: Supplementary data is separately available with this document.

1 Introduction
The human's immune system can mount the immune response by gener-
ating multiple T-cell receptors (TCR) in response to a pathogenic infec-
tion. Principally, this response involves interaction between T-cell recep-
tors (antigen-recognition receptors on T cells) and the epitopes (short
peptides from pathogenic proteins) from proteins present in infectious
agents (bacteria/viruses). Complementarity determining region 3 (CDR3)
on both α and β chains of TCR bind with the epitope, and recognition of
a highly diverse range of antigens is thus due to the remarkable specifici-

ty of CDR3 to each antigen (Robins, Campregher et al. 2009). Epitope
specificity of a TCR is defined by the unique CDR3 sequence specific to
a particular T cell and its progeny. The diversity is estimated to be ap-
proximately 1018 in humans and 1015 in mice. The high specificity of the
CDR3 region results from the hypervariability of the CDR3 region im-
parted during V(D)J recombination and junctional diversity (See Appen-
dix 1 for more detail). Due to this reason, not only does TCR have a
clonotypic nature, but it is also the focus when determining TCR speci-
ficity (Petrova, Ferrante et al. 2012). Determining the specificity of such
highly diverse and variable TCR sequences will require extracting pat-
terns from an enormous search space. Learning specificity of these se-

Main report.

quences will provide a broad range of applications in immunological
studies (Attaf, Huseby et al. 2015); however, with a caveat to decipher
the immense diversity of CDR3 sequences found in TCRs.

Translating data into information has fascinated linguists and mathe-
maticians alike, which led them to leverage their skills to delegate trans-
lation tasks to machines (Hutchins 2007). Linguistic expertise in finding
similarities in source and target language was converted to mathematical
equations by mathematicians. Neural networks for machine translation
(Schwenk 2007) has opened up avenues for extending their support in
understanding biological interactions, e.g. identifying binding sites in
proteins or assessing protein-protein interactions.

Machine translation (or MT) poses a unique problem for any neural
network, where the encoding of the source sequences plays a vital role to
reach an accurate translation of a source sequence to a target sequence.
The inception of many innovative translation methodologies
(Kalchbrenner and Blunsom 2013) (Sutskever, Vinyals et al. 2014) (Cho,
Van Merriënboer et al. 2014) revolved around the sphere of providing
the best possible representation of input data using either information
about placement or information about the surrounding words of the word
to encode. Effectively ascertaining relationships of each word to one
another led towards conceptualizing the relevancy of a word towards
accurate translation (Koehn 2017). A famous quote that goes around in
the MT community, "You shall know a word by the company it keeps",
best describes the significance of relevant words in encoding a word. The
objective of mathematically providing relevancy to neural networks led
to the eventual introduction of the alignment model (Bahdanau, Cho et
al. 2014); which was used while translating source sequence to any target
sequence to account for relevant relationships within source sequence.

An alignment model or attention focuses the neural network on learn-
ing relevant relationships, reducing heavy translations and improving
translation performance. One of the deep neural architectures using
attention is Transformers (Vaswani, Shazeer et al. 2017). Unlike long
short-term memory (LSTM) models, transformers are not restricted by
the input sequence length. Transformers are trained using Transfer
Learning, in which transformer models are first pre-trained on task-
analogous objectives and finally fine-tuned on task-oriented objectives
(See Appendix 2 for more detail on transformers). Through transfer
learning, a transformer can learn contextual information from a large
dataset during pre-training and then apply the knowledge learnt from
pre-training towards a downstream task, which generally has scarcity in
data. Since the introduction of transformers, many variations of its archi-
tecture have been released. Common in all these transformer architec-
tures is the self-attention mechanism.

Attention mimics the psychology of our brain when it is paying atten-
tion to only certain parts of the information to reach a conclusion
(Lindsay 2020). Self-attention, on the other hand, supplements such
complexity by adding context. While attention focuses on parts of the
input that leads to a better conclusion, self-attention will focus on sur-
rounding words to delineate meaning between similar words. On the
other hand, multi-headed self-attention learns multiple representations of
each token, each of these are termed as heads. Different transformer
models implement different strategies to utilise attention mechanisms
more efficiently.

Remarkably, Transformers are not just limited to natural languages;
given sufficient corpus, they can be tailored towards any sequence-based
inference. ProtTrans are transformer models trained on a large corpus of
protein data (Elnaggar, Heinzinger et al. 2020), and they prove that trans-
formers can learn the contextual grammar of amino-acid sequences.
Analogous to NLP tasks, the ProtTrans pre-training task involved a
vocabulary of twenty amino acids. Therefore, sentences and words are

analogous to protein sequences and amino acids. Four of these Trans-
former models, three auto-encoder (ProtBERT, ProtAlbert, ProtElectra)
and an auto-regressive model (ProtXLNet), are publicly available as of
November 2021. Attention mechanism’s ability to find the most relevant
regions in a protein sequence (pattern of amino acids) will accurately
emulate knowledge needed to understand the mechanisms behind a pro-
tein function. Transformers can potentially learn patterns of a TCR-
epitope interaction and understand the process that determines the affini-
ty between a TCR and an epitope.

This work will demonstrate the transformer’s feasibility in determin-
ing TCR specificity to the antigens using the CDR3 protein sequences.
Additionally, we will confront the inherent challenge of imbalanced
classes in the TCR-epitope data. Additionally, transformers are infamous
for accepting just input sequence albeit of variable length. Due to inher-
ent complexities in any biological interaction, additional features are
indispensable; therefore, it was pertinent to find a way to circumvent this
restriction in transformers. As it is known that the gene names of the
TCR can impart some level of specificity to recognize an antigen
(Hodges, Krishna et al. 2003), we will perform holistic transformer mod-
ification to include additional features while preserving pre-trained
knowledge. Finally, we will compare our results with the previously
available tools implemented using distance metrics or deep learning to
address the same problem of TCR specificity.

2 Methods

2.1 Data acquisition and preparation
VDJdb (Shugay, Bagaev et al. 2018) provides a centralised source from
where we can retrieve the data for TCR-epitope pairs. For a given TCR
sample, the database provides CDR3 sequences of TCRβ and/or TCRα
gene; TCR βV and/or TCRαV gene; TCRβJ and/or TCRαJ genes, MHC
Class I/II and organism. In addition, the database provides the epitope
sequence, parent gene of the epitope, and the antigen species for the
epitope. The confidence score associated with each TCR-epitope pair
was provided wherein zero scores indicate that the sequences were only
obtained by the sequencing technologies without any support from wet-
lab experiments; however, higher scores (1, 2, and 3) would represent the
pairs that were validated using one or more than one wet-lab based tech-
niques. The database provides information regarding how the TCR-
epitope pairs were validated, e.g., assay identification, TCR sequencing
or verification procedure.

Data obtained from VDJdb consists of 81,762 entries, which includes
data from various sources (including (Dash, Fiore-Gartland et al. 2017),
(Sidhom, Larman et al. 2021)). We used the complete dataset (updated
on November 2021) and applied our filtering criterion inspired by prior
works. We utilised only TCR-β chains of Human and Murine antigens in
this work with a confidence score greater than 0. We also removed du-
plicate CDR3 sequences with the same V-gene, J-gene, MHC A, MHC
B, ensuring unique data entries for each label are used for training. Sub-
sequently, we removed certain epitope species resulting in autoimmune
disorders or allergies. Table 1 summarises the filtration process applied
before providing the data to the transformers.

Unique categories of each V and J gene, rather than allele, were re-
tained. The ordinal encoder encodes genes (63 V genes and 13 J genes)
associated with each sequence. Labels of input data are created by con-
catenating Epitope's species, genes, and sequence, then labels with more
than 50 samples were retained. The dataset is divided into 70% training,
15% validation, and 15% testing dataset. Out of 25 labels, as shown in

Determining epitope specificity of T-cell receptors with Transformers.

(a)

 (b)

(c)

Fig. 1. ProtTrans Overview Data flow common in all Transformers. (a) CDR3 sequence is provided. (b) Sequence provided to transformer block and gene usage information directly to

classification head. (c) Sequence along with gene usage information from embedding block is provided to transformer block.

Main report.

Fig. 2, 10 were more than 100 samples, and 15 were less than 100 sam-
ples; the former is considered the easy-to-classify label and later is con-
sidered hard-to-classify label for this work.

 Table 1. Data filtering on VDJdb data. The final sample count indi-
cates sample count before splitting of data.

*Duplicates are removed based on the same gene and MHC gene values and CDR3
sequence.

2.2 Multi-class classification
ProtTrans are built using Hugingface framework (Wolf, Debut et al.

2019) and pre-trained on Uniref (Suzek, Wang et al. 2015) and BFD
(Steinegger and Söding 2018, Steinegger, Mirdita et al. 2019) datasets.
We used models trained on uniref except for ProtElectra as its uniref
version was not available. Even though CDR3 sequences are protein
sequences, there are challenges in training ProtTrans with just CDR3
sequences. Predominantly, the filtration we applied in the previous sec-
tion has left us with highly imbalanced data. High imbalance can lead to
poor model training, not generalising well on unseen data. Another
challenge is that transformers could only ingest data that complies with
the vocab on which it was pre-trained, in this case, amino-acid sequenc-
es. Additional features will be out of vocabulary but contain pertinent
information that can aid in classification.

Gene usage has proven to contribute significantly to the epitope speci-
ficity of a TCR (Hodges, Krishna et al. 2003). These features are out of
vocabulary for our pre-trained models. At the same time, additional
features will not help us if we cannot handle an imbalance in our TCR
data. Therefore, this leaves us discovering ingenious ways to address

issues complicating our task. We addressed these challenges in the fol-
lowing two ways: (1) including a modified loss function (Section 2.2.1)
and (2) modifying model implementations to include additional features
along with input protein sequences (Section 2.2.2).

2.2.1 Loss Function for Imbalance data

Imbalance in our dataset prompted us to either make compensation in the
dataset population or replace the loss function. Compensating datasets
through oversampling would defeat the purpose of removing duplicate
sequences from the dataset. Therefore, we address the imbalance in the
data by overriding our loss function.

A binary loss function created upon cross-entropy is Focal-loss (Lin,
Goyal et al. 2017) which adds a modulating factor (or Focusing parame-
ter) to cross-entropy. Modulating factor is adjusted using gamma (𝛾	 >
0), which allows diminishing the contribution of easily classified labels
(i.e., samples belonging to the majority class) and enhancing the contri-
bution of hard to classify labels (i.e., samples belonging to minority
class) to the loss value. Enhanced loss value of hard-to-classify labels
informs the model to accommodate more for these labels, which other-
wise would have been overlooked during training. The loss appears
normal to the model; the adjusted loss value is the manipulation per-
formed before providing it to the model, and the model can then direct
the gradient accordingly.

CE = -∑ 𝑡!"
!#$ log	(𝑓(𝑠)!) (1)

FL = -∑ 𝑡!"

!#$ (1 − 𝑓(𝑠)!)%log	(𝑓(𝑠)!) (2)

Multi-class focal loss, which is just an extension of multi-class cross-

entropy, is required for our problem. Multi-class cross-entropy (Eq. 2)
calculates the sum of losses for each class, c, extending it to focal loss
would require applying a modulating factor to the sum of losses ob-
tained. A recommendation of 𝛾 = 2 was made by the authors of focal
loss; however, they only assumed binary cases. Therefore, we will use 𝛾
as hyperparameter in our model optimisation to estimate which value
works best for our data.

2.2.2 Gene usage in Transformers

Each transformer has its specific tokeniser, which would prepare input
using its pre-trained vocabulary for a transformer to process. A general
overview of the transformer model is depicted in Fig 1. (a). The embed-
ding block prepares input for the transformer, which includes adding
special tokens to denote special relationships (such as padding), an atten-
tion mask to denote if a token is to be considered for attention calcula-
tion or segment ID to denote two separate sequences in the same input.
The tokeniser in the embedding block also performs encoding of labels
and presents sequences to the transformer block. Each tokeniser main-
tains homogeneity of the sequence encoding and presents each sample
(or in batches) to the transformer to learn a representation.

The representation of the input sequence is fed to a classification
block, which will perform sequence inference tasks such as classifica-
tion. This highlights a constraint in transfer learning regarding the vo-
cabulary of a transformer model. If we want to allow the transformer to
understand new information, it will take a considerable amount of time
and data to pre-train and learn new data (See Appendix 2: Transfer
Learning). Fine-tuning with just new information, in our case, gene
usage as features can circumvent the issue of training the entire trans-
former again. Once the transformer block accepts the information, we
cannot alter the data transformation, which is based mainly on pre-

S. no. Filtration criteria Sample
count

1 Raw data 81762
2 Post removing N/A 80679
3 Selecting only human and murine antigen 78647
4 Selecting TCR-epitope pairs with confidence score > 0 9580
5 Post removing allergen and cancer antigen 8547
6 Post removing duplicated entries* 5680
7 Selecting the TCR-epitope pairs with TRB sequences 4057
8 Selecting the TCR-epitope pairs with >=50 samples 2674

Fig.2. Label distribution. Post-filtering epitope label distribution of data.

Determining epitope specificity of T-cell receptors with Transformers.

trained knowledge. We will ruin the benefits of transfer learning and
diminish the performance of the transformers.

The tokenizer can be altered to accommodate additional features along
with sequences, leading to two potential sites to introduce gene usage
information, either before or after the transformer blocks. Former will
require modification in the classification block of the model (Fig 1 b),
while later will require modification in the embedding block (Fig 1. c).
Both methods rely on the tokeniser of each transformer model to encode
gene features along with amino acid sequences. Weaving gene usage into
either classification block or embedding block would require associating
a sequence to both V and J genes to predict specificity to an epitope.

Gene usage in classification block

In a standard transformer (Fig 1. a), the classification block receives an
n-dimensional (n is 768 in the case of ProtBert) representation of each
amino acid as input from the final hidden state of the transformer block
(Devlin, Chang et al. 2018). The first token of every sequence is a spe-
cial classification token [CLS] which contains the aggregated representa-
tion of the input sequence in the final hidden state. This representation is
termed as pooled output. The pooled output is the input to the classifica-
tion block to perform the sequence inference task.

In classification block modification, the classification block receives
gene information directly from the tokenizer, bypassing the transformer
block (Fig.1.b). Each CDR3 sequence has V and J genes associated with
it. An ordinal encoding for genes is provided to the tokenizer, which it
associates with each sample and then given to the classification block

𝑦 = 	𝑥𝐴& + 𝑏																									 (3)

𝑦 = 	𝑥'&𝐴𝑥(+ 𝑏																									 (4)

The standard classification block consists of a linear layer mapping

pooled output vector (𝑥	of the size of the hidden layer) from the trans-
former block as shown in Eq. 3 to class label (𝑦). We replaced the linear
layer with a bilinear layer where the pooled output (𝑥' of the size of the
hidden layer) and gene encoding (𝑥(of size 2) are mapped to a class
label (𝑦). Bilinear transformation, as shown in Eq. 4, will calculate
weight matrix (A) and bias (b) based on the two input vectors (of se-
quence and genes), which will express the interaction between sequence
and genes.

Gene usage in embedding block.

The embedding block of a pre-trained model contains a learnt representa-
tion of its vocabulary. The introduction of additional information would
then require learning new representations. There are two possible ways
to adjust the embedding block towards additional features. The first is to
add unique V and J genes as new special tokens to the tokeniser, and the
second is to add embedding layers for all unique V and J genes.

Our initial approach was to add genes as tokens (63 for V-genes and
13 for J genes) to the vocabulary, which gets assimilated into the word
embedding. These word embeddings are then learnt during fine-tuning.
Tokeniser alters the sequence to add V-gene to the beginning and J-gene
to the end of the sequence (replicating how it occurs in the TCR chain).
There were slight issues with this approach. ProtTrans vocabulary com-
prises 30 tokens (both unique and amino acid tokens), introducing addi-
tional 76 (63+13) tokens, which occurs only twice in a sequence does not
provide enough information to learn dependencies for transformers. So,
this approach was discarded for a convoluted yet novel approach.

Creating embedding layers for both V and J genes will put less burden
on a transformer to learn the new information (Fig 1. c). Two embedding
layers, one for all unique V genes and another for all unique J genes, is
created. The padding index for these layers is different from the padding
for the word embedding layer, so we explicitly passed an alternative
padding index. Special tokens are added before and after a protein se-
quence during tokenization. A separate padding index will associate a
gene embedding to just a protein sequence and not to the special tokens.
Special tokens are not associated with any genes, so we explicitly passed
an additional vector that conveys this relationship (0 indexes of V and J
genes embedding layer). Each sequence’s word embedding and V and J
gene (Fig 1. c) are merged. The new representations are presented to the
classification block to perform the classification task.

Padding index, unique genes and special token consideration will re-
sult in a total size of V-gene embedding layer to 65 and J gene embed-
ding layer to 15. These new layers are randomly initialised in fine-
tuning, so they need to keep up with fine-tuning of the rest of the model.
Hence, they are operated to learn at an increased rate than the rest of the
model. For the sake of simplicity, we increased the learning rate of new
embedding layers by a factor of 10. Our prime concern for not introduc-
ing an explicit learning rate for new layers was to avoid overriding
weights learned in pre-training for the original layers in the embedding
block. Overridden weights will make the transformer oblivious towards
amino acid relationships it learnt during pre-training.

2.3 Hyperparameter optimisations and performance evalu-
ation.

Bayesian algorithm (Tree Parzen Estimator) is utilised to optimise hy-
perparameters in Optuna (Akiba, Sano et al. 2019), which is preferred for
cases requiring exploration for many hyperparameters. Experiments are
tracked using comet.ml and PyTorch for training each model. Optimiza-
tion is done for ten major hyperparameters: gradient accumulation, learn-
ing rate, weight decay, attention layer dropout (not included in auto-
regressive or AR model), hidden layer dropout (‘dropout’ in AR model),
classifier layer dropout (‘summary last dropout’ in AR model), ad-
am_beta1, adam_beta2 warmup ratio and gamma. Seed as a hyperpa-
rameter ensures model stability, but performance is not evaluated on
seed values.

Table 2. Hyperparameters and their sampling strategy.

*For model stability

Hyperparameters Sample count

Gamma (0, 10) with step of 0.5
Adam beta 1 [0.5, 0.9] with step of 0.01
Adam beta 2 [0.5, 0.99] step of 0.001
Learning rate [10-5, 10-2] from log domain
Weight decay 0, 0.01, 0.001, 0.0001,

0.00001, 0.000001
Gradient accumulation steps [1, 128]
Classifier / Summary layer dropout [0.5,0.9] with step of 0.1
Hidden layer / dropout [0.5, 0.9] with step of 0.1
Attention layer dropout [0.5, 0.9] with step of 0.1
Warmup ratio 0.10, 0.20
Seed* [1, 100]

Main report.

Optimisations with plenty of hyperparameters helped us gain insight
into the behaviour of transformers when trained with TCR data. Optuna
provides sampling strategies depending on choices of hyper-parameter.
Table 2 presents the sampling strategy for each hyper-parameter and its
range. Since training steps are directly dependent on training batch size
and we have small training data of 1871 samples, we used training batch
size and evaluation batch size of 1 and 8, respectively. Fixing training
and evaluation batch size will prevent training steps from dropping too
low, which will occupy hyperparameter search in unproductive search
space. In preliminary experiments, we experienced high fluctuations in
evaluation loss, which made transformer training susceptible to prema-
ture early stop. Therefore, each experiment is trained with early-stopping
for 50 training epochs giving sufficient training time to adjust fluctua-
tions caused by focal loss.

While the standard methodology used the exact data for testing and
validation due to fewer TCR samples, many works would use in-silico
CDR3 sequences to test their model’s performance on unseen data. Our
filtration step has removed duplicate sequences, and hence our test da-
taset contains unseen sequences, which conforms with standard practice
to measure performance on unseen data.

2.3.1 Evaluation metrics

Metrics to assess the predictability of the transformer models includes a
weighted f1-score that is used as an objective value for hyperparameter
optimization. Additional metrics included are balanced accuracy score,
weighted precision, and weighted recall to provide an overview of per-
formance by a model. Parallel coordinate plots and parameter importance
are plotted to evaluate the contribution of parameters towards objective
value.

After optimization, an overview of performance is provided through
confusion metrics and ROC plots for each implementation. ROC plots
are generated after binarizing labels, followed by calculating false posi-
tive rate and true positive rate using logit scores for the binarized labels.
Multiple ROC curves are plotted on the same ROC plot using this tech-
nique. Furthermore, the confusion matrix will describe classification
performance on the test dataset.

2.3.2 Evaluation of different transformer implementations

In our multi-class setting, assessment of transformers on the problem of
TCR is done through the epitope-specific perspective and model-specific
perspective. The area under the ROC curve provides us with an epitope-
specific perspective where performance comparison for TCR specificity
can be made. The weighted f1-score of the model provides us with a
holistic measure for comparing different models (across all methods) in a
multi-class setting and hence a model-specific perspective.

For the sake of clarification, the transformer model with numbers in-
dicates the implementation (or modification applied). For example, the
standard ProtXLNet model with no modification is denoted by
ProtXLNet-0, with classification block modification is denoted by
ProtXLNet-1, and with embedding layer modification is denoted by
ProtXLNet-2.

In order to evaluate the performance of all 12 transformers implemen-
tation, we utilised ROC plots produced from all implementations. The
area under ROC (AUROC) curve for all 25 labels is then used by the
paired Wilcoxon test to compare performance across different implemen-
tations of the same transformer model. We assume each model imple-
mentation with no modification as a baseline since it consists of no other
modification apart from focal loss. Out of 25 labels (Fig. 2), there are 15

labels with less than 100 samples, and we term them as hard to classify
labels in our comparison.

2.3.3 Evaluation of transformer with publicly available tools

We compared TCRGP, TCRdist and DeepTCR, using CDR3 sequences
and gene usage as input; this is done to ensure that similar input features
are employed to reach the results. As prior works focus on epitope-
specific models while this work specifies a multi-class model, a common
ground for comparison is an epitope-specific metric, i.e., area under
ROC curve for each epitope. However, the number of samples between
different tools differs since we used a newer version of VDJdb data.

TCRGP and TCRDist both have 24 common epitopes, while
DeepTCR has only 20 common epitopes with our approach. In the case
of DeepTCR, not all murine antigens were present in our filtered data.
Out of the nine murine antigens used in their work, we had only three
(m139, m38, m45) murine antigens present. We utilised their script to
get AUC values for these three antigens. We then used the values pro-
vided in their work to compare with ours. Mean AUC over 24 epitopes
obtained from TCRGP, TCRDist is compared with transformers and
mean AUC over 20 epitopes obtained from DeepTCR is compared with
the transformer models developed in this study.

3 Results
Herein, we tuned the hyperparameters of transformer models to provide
us with model-specific performance. Each model differs either in pre-
training methodology or the architecture of transformer blocks. Opti-
mised transformer models predict on a test dataset (unseen by the model
while training) to test the performance of the models. The following
section will highlight the key takeaways after optimizations, their per-
formance on TCR data and compare them with prior works.

3.1 Assessment of different implementations of transform-
ers from optimisation.

Auto-encoder optimisation had eleven hyperparameters (including seed
value), while the auto-regressive model had ten (including seed value);
understanding their behaviour during optimisation will help us assess
how transformers react to TCR data. We ran optimizations for at least
100 runs for each implementation and generated parameter importance
plots and parallel coordinate plots for all 12 implementations of four
transformer models (Supplementary 5, 6, 7, 8). The area under ROC for
each transformer is provided in Supplementary section 4 Table 4-7.

Optimization of all three ProtBert implementations displayed higher
importance towards hidden-layer dropout probability (Supplementary 4).
A similar tendency was also seen in ProtElectra. Regarding ProtAlbert,
the contribution was more spread out with 30% to hidden-layer dropout
probability and 21% to the learning rate. Auto-encoders are encoder
blocks stacked one after another, each block improving representation
sent by the previous encoder block. In the case of ProtBert and ProtElec-
tra, there is no parameter sharing among the encoder blocks, which re-
sults in large size and higher dependence on representation. This is im-
proved in ProtAlbert by enabling parameter sharing among encoder
blocks resulting in more diminutive size (number of
weights/parameters). Therefore, ProtAlbert optimization displays less
affinity towards hidden-layer dropout when encoding CDR3 sequences.
Since ProtAlbert was not solely dependent on encoding representation
but also on learning rate, this high importance to learning rate also im-
plies learning new relationships for TCR data.

Determining epitope specificity of T-cell receptors with Transformers.

The two-stream self-attention mechanism in ProtXLNet would exhibit
different behaviour than auto-encoders. While auto-encoders suffered
from having a high burden on transformer block to better sequence rep-
resentation, ProtXLNet did not suffer from the same. The learning rate in
ProtXLNet-0 and ProtXLNet-2 displayed 30% and 36% contribution,
while in ProtXLNet-1, it was reduced to 6%. This drastic reduction could
be attributed to the newly introduced gene usage in the classification
block, where ProtXLNet-1 is trying to generate better representation
from the transformer block to make sense of the gene usage in the classi-
fication block. ProtXLNet-1 reacted similarly to auto-encoders during
optimization with a 62% contribution of dropout probability, while
ProtXLNet-0 and ProXLNet-2 were able to utilise optimizations well
with contributions spread out across all parameters.

Table 3. Performance metrics on the test dataset.

Deduction from a parallel coordinate plot can help us gain further in-

sight into the behaviour of models towards TCR data during optimiza-
tion. Models with high importance (across all methods) towards hidden
layer dropout displayed a tendency towards 0% probability. After
providing gene information in embedding block, transformers required
more regularisation (adam-beta1 and adam-beta2) and preferred 0%
dropout probability of hidden layers. We can conclude from these find-
ings that in transformers with embedding layer modifications, the pre-
trained knowledge was still playing an essential role in achieving objec-
tive value even with new and fewer TCR data. Additionally, High regu-
larisation in embedding block modification indicates overfitting on new
information and keeps most of the load on the transformer block to gen-
erate a relevant input representation (from new embedding layers) to
reach objective value.

A trend in the behaviour of classifier dropout (or summary dropout in
the case of ProtXLNet) would indicate the behaviour of the classification
block to ease optimization. Similarly, assessment of embedding layer
modification on optimization could be provided through learning rate.
ProtXLNet-1 preferred higher dropout, whereas ProtXLNet-2 implemen-
tations showed varied preferences towards higher dropout. ProtBert
showed similar behaviour as ProtXLNet, unlike ProtAlbert and ProtElec-
tra. ProtAlbert-1 preferred lower dropout than ProtAlbert-2 implementa-
tions, similarly ProtElectra-1 preferred lower dropout than ProtElectra-2
implementation. All learning rates were concentrated towards lower
values, and hence no differences were observed. It was concluded that
there was no trend seen to support the claim that classification or embed-
ding modification would ease optimization. Although based on perfor-
mance metrics in Table 3, models with classification modification were

economical as they had the least training time when compared with other
implementations.

Gamma is a hyper-parameter directly linked to focal loss, which will
help us deduce improvement over cross-entropy. None of the models
preferred cross-entropy (gamma = 0) loss. Another trend related to focal
loss is seen in parallel coordinate plots. Lower modulating factors are
preferred for methods 0 and 2, but intermediate values (around 5) are
preferred for method 1. Less diversity in gamma values for the bilinear
layer implies fine-tuning was concentrated towards the classification
block for method-1. We can conclude that focal loss contributed to opti-
misation and classification performance.

3.2 Assessment of different implementations of transform-
ers on TCR data.

Assessment of different implementations is done among transformers
with confusion matrix (Supplementary 1), ROC plots (Supplementary 2)
and paired Wilcoxon test (Supplementary 3) on AUROCs from individu-
al transformers. Misclassification is compared based on confusion ma-
trix, and epitope specificity is evaluated using ROC plots, and AUROC
for each epitope is provided in Supplementary 4. Implementational sig-
nificance for each Transformer is compared using the paired wilcoxon
test results.

Misclassification in ProtBert-0 was scattered mostly for the CMV
epitope family, with even many unclassified labels such as CMV IE2 or
HCV NS3. ProtBert-1 improved the results of ProtBert-0 by reducing the
number of unclassified labels from seven in ProtBert-0 to one in Prot-
Bert-1, while ProtBert-2 managed to keep unclassified labels to five.
Comparison between the different implementations of ProtBert by Wil-
coxon (Supplementary Fig 26) test showed all implementations in Prot-
Bert worked similarly.

Comparing ProtBert-0 with ProtAlbert-0 showed clear improvement
over misclassification and the number of unclassified labels. A more
significant number of hard to classify examples are correctly classified in
ProtAlbert-0 compared to ProtBert-0. ProtAlbert-0 had three unclassified
labels, which is more than ProtBert-1 but comparing ProtBert-0 and
ProtAlbert-0, ProtAlbert-0 showed improvements in classifying hard-to-
classify labels. The most striking improvement over ProtBert-1 is how
ProtAlbert-2 improved on all its misclassification. Misclassification with
HIV-1 Gag, which was highly confused with CMV and EBV epitopes in
ProtBert-2, is reduced in ProtAlbert-2. ProtAlbert seemed to perform

Model Duration (hours) Weighted f1-score Balanced Accuracy Mean AUC

ProtBert-0 4.49 0.39 0.33 0.79
ProtBert-1 1.99 0.41 0.37 0.80
ProtBert-2 2.21 0.41 0.35 0.79
ProtAlbert-0 3.16 0.42 0.37 0.79
ProtAlbert-1 0.57 0.38 0.33 0.78
ProtAlbert-2 3.21 0.46 0.44 0.81
ProtElectra-0 1.29 0.46 0.41 0.86
ProtElectra-1 0.90 0.44 0.41 0.80
ProtElectra-2 0.99 0.47 0.40 0.84
ProtXLNet-0 1.57 0.48 0.44 0.81
ProtXLNet-1 1.21 0.46 0.38 0.80
ProtXLNet-2 1.23 0.55 0.50 0.88

Fig. 4 F1-score for all models. Weighted f1-score on test dataset for all methods and

across all models. Performance of ProtBert-1, ProtAlbert-2, ProtElectra-2 and ProtXLNet-

2 on test dataset are best among same transformer model.

Main report.

well with embedding layer modification based on the Wilcoxon test
among ProtAlbert implementation (Supplementary Fig 27). In addition
to that, in ProtAlbert-2, hard-to-classify classes have drastically im-
proved, for example, the MCMV epitope family. Moreover, unclassified
labels came down from five in ProtAlbert-0 to one in ProtAlbert-2.

ProtElectra had a very different response to modification than others
models. The unclassified labels increased from two in ProtElectra-0 and
ProtElectra-1 to four in ProtElectra-2. Many samples were misclassified
in ProtElectra-1 when comparing confusion matrices of all ProtElectra
models, implying it performed poorly among all the implementations.
Wilcoxon test showed a higher mean AUC for ProtElectra-0 than all
other implementations (Supplementary Fig 28). Even though this could
be attributed to lower AUC for HIV-1 Gag epitope (0.77 in ProtElectra-0
and 0.53 in ProtElectra-2) in ProtElectra-2, which caused the mean AUC
to drop from 0.856 (ProtElectra-0) to 0.836 (ProtElectra-2) but weighted
f1-score for ProtElectra-2 was still higher among all the ProtElectra
implementations. Among all the auto-encoders, ProtElectra2 showed the
best f1-score (Fig 4).

We only used one auto-regressive model for TCR data, but it showed
the most receptiveness towards all modifications. Wilcoxon test showed
ProtXLNet-2 performing better among all implementations of
ProtXLNet where an improvement in mean AUC from 0.812 in
ProtXLNet-0 from 0.870 in ProtXLNet-2 was observed. Observing
ROCs of ProtXLNet-0 showed improved results over ProtElectra-2. For
the HCV family, ProtElectra-2 produced higher AUC for ease to classify
(HCV NS3 ATDALMTGY: 0.88) and lower AUC for hard to classify
(HCV NS3 KLVALGINAV: 0.69). ProtXLNet-2, on the other hand, was
able to learn patterns within the HCV family to produce higher AUC for
both classes (0.87). A similar improvement for the CMV epitope family
was observed when comparing the AUC of hard-to-classify labels among
ProtXLNet-2 and ProtElectra-2. In all, ProtXLNet-2 performed well by
reaching the highest F1-score of 0.55 (Fig.4) among all models, with
better classification performance for hard to classify labels.

3.3 Transformers in comparison with publicly available
tools.

VDJdb comprises the TCR-epitope pairs from multiple independent
studies, and the database keeps on adding the sequenced or validated
TCR-epitope pairs. It allowed previously built tools to use similar da-
tasets (with substantial overlap in epitopes) and compare their outcomes
to benchmark the different available tools. In our approach, we reported
the ProtElectra-2 and ProtXLNet-2 to be best among various implemen-
tations based on weighted f1-score. To estimate the performance of the
best models from our approach, we compared our best-performing meth-
ods with TCRGP, TCRdist and DeepTCR. We first compare our best
performing models with TCRGP and TCRdist, where we have the most
(24 out of 25) common epitope classes. An additional comparison is
made with another Deep Learning implementation, DeepTCR, with
which we have 20 epitopes in common.

The mean AUC for TCRGP and TCRdist is 0.831 and 0.781 calculat-
ed over 24 epitopes. ProtElectra-2 showed improvements of just 1%
(0.841) over TCRGP but ProtXLNet-2 was able to show an improvement
of almost 5% (0.876) (Fig 6). TCRGP had utilised epitope-specific mod-
els in a binary setting. TCRGP and TCRdist had a mean AUC of 0.843
and 0.807, respectively, for the MCMV family with three hard-to-
classify classes. ProtXLNet-2 and ProtElectra-2 had mean AUC of 0.946
and 0.953, respectively for the MCMV family. An improvement of
≥10% by both auto-encoder and auto-regressive models proves the
superiority of transformer models over TCRGP and TCRdist.

Fig. 5 AUROC comparison for Transformers. Performance of ProtBert-1, ProtAlbert-

2, ProtElectra-2 and ProtXLNet-2 on TCR test dataset provide us an overview of how

transformers perform on unseen TCR data.

Fig. 6 Comparison with TCRGP and TCRdist. Area under ROC for twenty-four

epitopes common with TCRGP and TCRdist are presented. Mean of each model over

given epitopes are also mentioned.

Fig. 7 Comparison with DeepTCR. Area under ROC for twenty epitopes common with

DeepTCR are presented. Mean of each model over given epitopes are also mentioned.

Determining epitope specificity of T-cell receptors with Transformers.

DeepTCR performance is compared on common epitope classes with
our work. AUC for twenty epitopes is compared (Fig. 7) between
DeepTCR and Transformers. ProtXLNet-2, with a mean AUC of 0.856,
showed improvement over DeepTCR with a mean AUC of 0.784. Most
lack of performance in DeepTCR was due to hard to classify classes,
while transformers show improved performance with such labels. For
example, the MCMV family, DeepTCR produced results with a mean
AUC of 0.843 and while ProtElectra-2 and Prot-XLNet-2 produced
results with 0.953 and 0.946 mean AUC.

4 Discussion and Limitations
In this work, we addressed the biological problem of TCR specificity
through Transformers. Due to their self-attention mechanism, transform-
ers in NLP have outperformed on all translation and sequence inference
tasks. We utilised the self-attention mechanism of multiple transformer
architectures to learn the antigen specificity of TCRs. Each architecture
of transformer has improved shortcoming of previous architecture, and
we demonstrated which transformer performs best on TCR data. As pre-
trained transformers are attuned to a specific vocabulary, providing
additional features to the transformers was never explored. The trans-
former’s capabilities can be extended by adding additional features along
with sequences to improve sequence inference. We demonstrated poten-
tial modification in pre-trained Transformers for improved classification
and compared our results with other works. We introduced measures in
the form of multi-class focal loss, gene usage in classification block and
gene usage in embedding block to aid our specificity classification. We
presented the possibility that methodologies on biological problems can
be streamlined to utilise a transformer for sequence inference accompa-
nied by non-sequence-based features.

Previous works tackled TCR specificity either through sequence simi-
larity (Pogorelyy, Minervina et al. 2019), k-mer sequence features
(Tong, Wang et al. 2020), convolutional models (Jurtz, Jessen et al.
2018) , utilising amino acid physicochemical properties (Gielis, Moris et
al. 2018), learning a non-parametric function (Jokinen, Huuhtanen et al.
2021) or enhancing sequence feature into a high-dimensional space
(Sidhom, Larman et al. 2021), even utilising molecular structures
(Weber, Born et al. 2021) or just recently published, pre-training BERT
model on TCR data (Wu, Yost et al. 2021). A common theme in all these
works is to improve encoding of input data to exemplify TCR specificity
for an antigen. Usually, a binary classification model is trained to exhibit
antigen specificity among a background of antigens. However,
DeepTCR, along with binary setting, included a multi-class setting; they
did not employ it for the entire TCR data, just for the GAG TW10
epitope family (with ten variants). To the best of our knowledge, the
multi-class approach has never been utilised in such a fashion because of
the scarcity of TCR data or lacking computational resources. This work
provided an alternative approach towards TCR classification for similar
data sizes and reduced training time by utilising pre-trained transformers.

We only used CDR3 sequences and gene usage of the beta chain of
TCR, which is a simplified approach. A more widely utilised approach is
utilising both alpha and beta chain sequences (along with gene usage for
both chains). TCR-BERT used two different BERT models (one for beta
sequences other for alpha sequences) and combined their embeddings for
the classifier block. A similar approach can modify all ProtTrans models
to accommodate alpha sequences, providing more performance in deter-
mining TCR specificity.

A tendency we observed during optimisation was the early stopping of
potentially good runs. As early stopping was performed based on evalua-

tion loss values, the potential origin for this issue was loss function.
Depending on modulating factor, the focal loss causes many spikes in
loss values; in turn, these fluctuations are misinterpreted by early stop-
ping as loss value worsens. We were increasing the tolerance threshold
for early stopping but was led to more stale runs and immense waste of
training time. Exploring how to best tackle this problem could increase
the productivity of optimisations.

Comparing transformers with other methods proved that they outper-
formed in determining TCR specificity. A recent work utilising trans-
formers using a similar configuration of data is TCR-BERT. Although
we outperformed all previous methods in epitope-specific AUCs, it
would be insightful to compare our methodology with TCR-BERT.
Despite not making a head-to-head comparison with TCR-BERT, their
approach resulted in an AUC of 0.837 for CMV-pp65-NLVPMVATV
(using both TRA and TRB sequences), whereas ProtXLNet-2 classified
CMV-pp65-NLVPMVATV (using only TRB sequences) with 0.86.
Their work utilises the entire 81K entries from VDJdb to pre-train a
BERT model as opposed to ours, where we utilised data with a confi-
dence score of more than 0. TCR-BERT fine-tuned TCR specificity for
binding to a positive (antigen) class. Our preliminary approach included
all confidence scores, where we fine-tune our transformers with 78647
samples on 48 labels. The drawback of this approach was that we are
fine-tuning with entries that are not adequately validated, so we would
not get comparable results. Nevertheless, comparing two approaches
could provide greater insight into which approach (fine-tuning or pre-
training) is better suited for TCR data.

Although our approach demonstrates the potential of transformers by
fine-tuning on CDR3 sequences and how additional features can be
juxtaposed cohesively, some limitations remain. Problematic events such
as hallucination and catastrophic forgetting (Sun, Qiu et al. 2019) were
not evaluated. These problems are prevalent in deep neural networks and
contribute significantly to misclassification. While hallucination occurs
in generated sequence at the last transformer block, leading to unlikely
content. Catastrophic forgetting is prevalent in transformers where the
weights learned during pre-training gets overridden during fine-tuning.

Predominantly, hallucination (Kolouri, Ketz et al. 2019) (Ji, Lee et al.
2022) often occurs when generating natural languages. Hallucinating
amino acid is less likely due to our models' small vocab size (amino
acids). Vulnerability to hallucination was a prime reason for not adding
gene usage as additional tokens to the vocabulary but instead adding
them through embedding layers. If we had added 76 new tokens upon 30
tokens in the vocab, which occurs only twice with the sequence (V and J
gene associated with the sequence), either there would be hardly any-
thing to learn, or there would be hallucinations of genes in place of ami-
no acids or vice-versa.

For catastrophic forgetting, we had employed early stopping. We low-
ered the learning rate (which, as discussed in results, was preferred by all
Transformers) to prevent pre-trained knowledge from being erased dur-
ing fine-tuning. Although we used a factor of 10 to train new embedding
layers, comparison with different factors could help us evaluate whether
different transformers perform better at a different rate. Appropriate
assessment of the limitations, as mentioned earlier, can help us improve
on the results of transformers even with such highly imbalanced data.

Modification in embedding block gave us a new perspective towards
the attention masking procedure. As protein binding leads to a 3D con-
formation in protein structures, information about bindings in these
structures is learned by the attention mechanism for a given sequence.
An as epitope binding involves very few amino acids of a sequence,
explicitly indicating non-relevant amino acids (known as junctional

Main report.

regions) puts less load on the attention mechanism. Information about
which regions in CDR3 are junctional regions is provided in the VDJdb
meta description. Piecing this knowledge, we can instruct the tokeniser
to calculate attention for specific regions in CDR3 sequences. The results
can further be evaluated using attention head visualisation (Vig 2019),
where the attention heads playing the most vital role towards correct
classification gets highlighted.

We have demonstrated the feasibility of transformers in determining
antigen specificity of a TCR from CDR3 protein sequences. Diversity
conveyed in CDR3 sequences has long been a challenge in T-cell re-
search; we aimed to diminish the challenge with this work. We concep-
tualised modifications in transformers to convey additional features that
improved classification performance. Results of these modifications
were compared and shown to outperform prior tools that addressed a
similar problem. Additional opportunities in examining implications of
the approach adopted in this work can be helpful for many other fields
utilising transformers for either its self-attention mechanism or transfer
learning.

Acknowledgements
I would like to thank Dr. Khatri for sharing her experience and expertise to tackle
challenges in this arduous journey. I also want to thank Prof. Reinders for provid-
ing direction and focus to this work. This work would not have been possible
without their feedback, guidance and unwavering support. I would also like to
express my gratitude towards T-cell and NLP research community for their exten-
sive documentation of their work, which kept me inspired and motivated for the
entirety of this work. Lastly, to the people dearest to me, thank you for your sup-
port.

Appendix

1 Biology behind antigen recognition by T-Cell
Understanding T cell receptors (TCRs) relates directly to the understanding of
mechanisms involved in the adaptive immune system. While adaptive immunity
involves both B and T cells, we will focus on T cells which will provide us insight
into cell-mediated adaptive immunity.

Antigen Presentation and MHC Restriction

Presenting peptides to the TCRs is done through a class of cells known as antigen-
presenting cells (APC) and is presented through Major Histocompatibility com-
plexes (MHC); this process is termed antigen presentation. Degradation of antigen
is done inside APC; this degradation is undertaken through two different pathways
depending on if MHCI or MHCII is expressed on the APC. The affinity of degrad-
ed peptide (or epitope) to the MHC dictates which peptide will be presented by the
MHC and also to which T-Cell (CD4+ or CD8+) (Zareie, Farenc et al. 2020).

Antigen Recognition

TCR expressed on either CD8+ or CD4+ T cells binds to MHC for antigen recogni-
tion by their respective T cells. T cells' clonal nature dictates the unique binding
site on its TCRs and hence its specificity. T-Cell consists of Variable (V) and
Constant (C) region; it is on V region where the sequence diversity is the most
concentrated and is present on both Alpha and Beta chain of TCRs. TCR genes
undergo V, D and J gene rearrangement providing TCR with high diversity.

Gene rearrangement

Although Gene rearrangement provides TCR diversity expected at 1018 in humans
and 1015 in mice, it is not random at all, and thus regulation is governed by multiple
factors (Attaf, Huseby et al. 2015). TCR beta locus comprises 46 V gene segments,
followed by two groups of D, J and C gene segments (D1, J1, C1 or D2, J2, C2). D
to J recombination first occurs between a D gene and one of J gene of first group or
D and J gene of the second group; followed by V to the newly rearranged D and J
gene. V(D)J recombination of TCR genes plays a vital role in governing the diver-
sity of a repertoire (all unique TCR within an individual’s immune system). Addi-
tionally, random insertion and deletion of nucleotides at junctions of V, D and J
give rise to hypervariable regions, known as complementarity determining regions.

Complementarity-determining region on TCR

Complementarity-determining regions are present at the junction of V and D seg-
ment of TCRs Fig.8. This region of TCR interacts the most with both MHC and
epitope for recognition, which is due to its hypervariability. Two types of TCR, i.e.,
TCRAB and rarely TCRGD are mounted by the adaptive immune system for an
immune response. These receptors (at protein level) are generated from two differ-
ent chains, i.e., TCRAB from TCRA and TCRB and TCRGD from TCRG and
TCRD. Each of these four receptors is generated from the recombination of Varia-
ble (V), diversity (D) and Joining (J) genes from their individual loci. Several V, D
and J genes for TCRB and TCRD and V and J genes for TCRA and TCRG are
distributed over a long stretch of chromosomes 7 and 14 in the human genome.
Any of these V, D and J genes can be selected for each locus and any of the chains,
i.e., TCRA/TCRB can be randomly selected to generate diverse receptors to raise
an efficient immune response against infections. Overall, 1016 receptors can alone
be generated by the V(D)J recombination events. Apart from V(D)J recombination,
another factor that adds to the diversity of these receptors is the addition of nucleo-
tides on both sides of D gene during V(D)J recombination. This region is known as
complementarity determining region 3 (CDR3), which is fundamental in interacting
with and recognising the antigen. Determining binding specificity to an antigen
thus helps us to assess the immune system's ability to engage with pathogens and
also to evaluate the response undertaken by it.

2 Transformers
Transformers are a type of Sequence to Sequence (or Seq2Seq) model that trans-
forms a source sequence's representation to a representation of a target sequence.

Fig. 8. TCRβ gene rearrangement and structure. Overview of V(D)J recombina-

tion. Region in blue indicates junctional sites which are assembled by random addi-

tional and deletion. CDR3β region shown in grey on TCR protein.

Determining epitope specificity of T-cell receptors with Transformers.

Machine translation (also known as sequence transduction) which were widely
performed using LSTM (long-short-term-memory) models or RNN (recurrent
neural networks) models, had limitations. Limitations of fixed sequence length in
traditional methods (and even the bottleneck between encoder and decoder archi-
tectures) were then overcome with the introduction of Transformers. Transformers
retained the encoder-decoder architecture and introduced a new form of attention
mechanism, self-attention, which outperformed standard practices.

Encoder-Decoder Architecture

Given a source sequence to be translated to a target sequence, the encoder would
generate vector representation for each word in the source sequence, and the de-
coder would then read these vectors and generate words in the target sequence.
Certain limitations were discovered; translating word to word doesn't account for
languages written from left to right or with different grammar compositions. Sub-
sequently, to reduce computational resources instead of encoding the entire source
sequence, a need to focus on relevant words arise.

Recurrent Neural Network (Bahdanau, Cho et al. 2014) would solve the former
issue by including a weighted sum of preceding and succeeding words in a se-
quence whilst encoding a word. It employed RNN to encode each word, and a
decoder would then decode from this representation. With the introduction of
LSTMs (Sutskever, Vinyals et al. 2014) long-range dependencies for a word were
also accounted for.

Ditching recurrent and convolutional layers was Transformers, replacing it with
an attention mechanism. Transformers introduced encoding through self-attention,
which would amplify the contribution of relevant words and diminish the contribu-
tions of irrelevant words while encoding a vector representation for a word. All this
whilst retaining encoder-decoder architecture (there are encoder-only architectures
like BERT).

Attention, Self-attention and multi-head attention

Origins of attention lie in the field of psychology, where the observations in behav-
ioural patterns were attributed to where the brain was paying attention. The brain
preserves computation resources by paying attention to only crucial details to reach
an answer (Lindsay 2020), which can be mimicked by utilising a weighted sum of
relevant words while encoding a word. Mathematically formulating this "flexibil-
ity" in a neural network is known as the attention mechanism. Global and Local
attention are some of the early attention mechanisms which were applied in com-
puter vision (Luong, Pham et al. 2015, Xu, Ba et al. 2015). With the introduction of
transformers, self-attention came into the limelight.
While traditional attention mechanisms would include the contribution of surround-
ing words blindingly, self-attention would also include the position of the word to
introduce the sense of context in encoding a word. In summary, similar words in
different positions in a sequence would get different encoding.

Fig. 9 shows encoding the second word in the output sequence. Three different
representation of input is used to calculate self-attention. Learning the weights for
every three representations is equivalent to learning self-attention. Query and Key
are used to compute scores, which undergoes some processing before taking a dot
product with the Value representation. This dot product will enhance values in the
Value matrix, which corresponds to higher relevance and hence augment the effect
of those words into the resulting representation of the word. This can be done
multiple times in parallel for a single word, termed as multi-headed attention.
Multi-headed attentions allow transformers to accommodate relevance from multi-
ple positions in a sequence.

Transfer Learning and Transformers architectures

Training a transformer involves the concept of transfer learning; in transfer learn-
ing, we divide training a model into two different parts: pre-training and fine-
tuning. Pre-training involves two tasks mask language modelling and Next Sen-
tence prediction. In the case of ProtTrans, only mask language modelling was
utilised. The weights learned in pre-training are fine-tuned on downstream tasks,
consequently saving time and resources in training a transformer from the begin-
ning and prime advantage of transfer learning. Additionally, different Transfer
models employ different approaches for pre-training tasks, which is motivated by
their methodology.
There are two architectures utilised in this work, Auto-encoder and Auto-
regressive. BERT, Albert, Electra are auto-encoder models with only encoders and
no decoders. XLNet is an autoregressive language model. While BERT learns
bidirectional language modelling, ALBERT (A lite BERT) is a more efficient
version of BERT with parameter sharing among different encoder layers. Both of
them use the same mask language modelling. On the other hand, ELECTRA utilis-
es Generator-Discriminator based approach; the discriminator then detects corrupt-
ed tokens generated by the generator during masked language modelling. The
discriminator trained is then used for fine-tuning on downstream tasks.
While auto-encoder models reconstruct original data during mask language model-
ling. They lack obvious information; masked token (it is a type of special token
[MASK]) will not be seen in downstream tasks, dependency learnt for the masked
token (and the original token) is then not transferred (or would never be needed);
termed as the pretrain-finetune discrepancy. The pretrain-finetune discrepancy is
addressed in XLNet. XLNet is an auto-regressive model which implements two-
stream self-attention as a means to address both forward and backward dependen-
cies as well as to address pretrain-finetune discrepancy. Providing different factori-
sation orders during permutation language modelling enables the model to gather
positional information from a possible position for a given token.
On the other hand, two-Stream self-attention uses additional self-attention to isolate
the content while the model learns positional information (or context) during pre-
training. Any difference between XLNet and BERT is due to this very difference in
pre-training objective, which helps it retain a more significant number of depend-
encies than BERT. In summary, XLNet is a bidirectional transformer similar to
BERT but utilises permutation language modelling.

References

Akiba, T., et al. (2019). Optuna: A next-generation hyperparameter optimization

framework. Proceedings of the 25th ACM SIGKDD international conference

on knowledge discovery & data mining.

Attaf, M., et al. (2015). "αβ T cell receptors as predictors of health and disease."

Cellular & molecular immunology 12(4): 391-399.

Fig. 9. Self-Attention in Transformers. Overview of self-attention computation for

encoding y2. Two representations (Query and Key) of a word are used to compute

scores (shown in yellow) which enhances or reduces effect of a word (multiplying by

Value). Resultant effect is summed across all words to encode a single word (y2)

Main report.

Bahdanau, D., et al. (2014). "Neural machine translation by jointly learning to align

and translate." arXiv preprint arXiv:1409.0473.

Cho, K., et al. (2014). "On the properties of neural machine translation: Encoder-

decoder approaches." arXiv preprint arXiv:1409.1259.

Dash, P., et al. (2017). "Quantifiable predictive features define epitope-specific T

cell receptor repertoires." Nature 547(7661): 89-93.

Devlin, J., et al. (2018). "Bert: Pre-training of deep bidirectional transformers for

language understanding." arXiv preprint arXiv:1810.04805.

Elnaggar, A., et al. (2020). "ProtTrans: towards cracking the language of Life's

code through self-supervised deep learning and high performance computing."

arXiv preprint arXiv:2007.06225.

Gielis, S., et al. (2018). "TCRex: a webtool for the prediction of T-cell receptor

sequence epitope specificity." BioRxiv: 373472.

Hodges, E., et al. (2003). "Diagnostic role of tests for T cell receptor (TCR) genes."

Journal of clinical pathology 56(1): 1-11.

Hutchins, J. (2007). "Machine translation: A concise history." Computer aided

translation: Theory and practice 13(29-70): 11.

Ji, Z., et al. (2022). "Survey of Hallucination in Natural Language Generation."

arXiv preprint arXiv:2202.03629.

Jokinen, E., et al. (2021). "Predicting recognition between T cell receptors and

epitopes with TCRGP." PLoS computational biology 17(3): e1008814.

Jurtz, V. I., et al. (2018). "NetTCR: sequence-based prediction of TCR binding to

peptide-MHC complexes using convolutional neural networks." BioRxiv:

433706.

Kalchbrenner, N. and P. Blunsom (2013). Recurrent continuous translation models.

Proceedings of the 2013 conference on empirical methods in natural language

processing.

Koehn, P. (2017). "Neural machine translation." arXiv preprint arXiv:1709.07809.

Kolouri, S., et al. (2019). "Attention-based structural-plasticity." arXiv preprint

arXiv:1903.06070.

Lin, T.-Y., et al. (2017). Focal loss for dense object detection. Proceedings of the

IEEE international conference on computer vision.

Lindsay, G. W. (2020). "Attention in psychology, neuroscience, and machine

learning." Frontiers in computational neuroscience: 29.

Luong, M.-T., et al. (2015). "Effective approaches to attention-based neural

machine translation." arXiv preprint arXiv:1508.04025.

Petrova, G., et al. (2012). "Cross-reactivity of T cells and its role in the immune

system." Critical Reviews™ in Immunology 32(4).

Pogorelyy, M. V., et al. (2019). "Detecting T cell receptors involved in immune

responses from single repertoire snapshots." PLoS Biology 17(6): e3000314.

Robins, H. S., et al. (2009). "Comprehensive assessment of T-cell receptor β-chain

diversity in αβ T cells." Blood, The Journal of the American Society of

Hematology 114(19): 4099-4107.

Schwenk, H. (2007). "Continuous space language models." Computer Speech &

Language 21(3): 492-518.

Shugay, M., et al. (2018). "VDJdb: a curated database of T-cell receptor sequences

with known antigen specificity." Nucleic acids research 46(D1): D419-D427.

Sidhom, J.-W., et al. (2021). "DeepTCR is a deep learning framework for revealing

sequence concepts within T-cell repertoires." Nature communications 12(1): 1-

12.

Steinegger, M., et al. (2019). "Protein-level assembly increases protein sequence

recovery from metagenomic samples manyfold." Nature methods 16(7): 603-

606.

Steinegger, M. and J. Söding (2018). "Clustering huge protein sequence sets in

linear time." Nature communications 9(1): 1-8.

Sun, C., et al. (2019). How to fine-tune bert for text classification? China national

conference on Chinese computational linguistics, Springer.

Sutskever, I., et al. (2014). Sequence to sequence learning with neural networks.

Advances in neural information processing systems.

Sutskever, I., et al. (2014). "Sequence to sequence learning with neural networks."

Advances in neural information processing systems 27.

Suzek, B. E., et al. (2015). "UniRef clusters: a comprehensive and scalable

alternative for improving sequence similarity searches." Bioinformatics 31(6):

926-932.

Tong, Y., et al. (2020). "Sete: Sequence-based ensemble learning approach for tcr

epitope binding prediction." Computational Biology and Chemistry 87:

107281.

Vaswani, A., et al. (2017). Attention is all you need. Advances in neural

information processing systems.

Vig, J. (2019). BertViz: A tool for visualizing multihead self-attention in the BERT

model. ICLR Workshop: Debugging Machine Learning Models.

Weber, A., et al. (2021). "TITAN: T-cell receptor specificity prediction with

bimodal attention networks." Bioinformatics 37(Supplement_1): i237-i244.

Wolf, T., et al. (2019). "Huggingface's transformers: State-of-the-art natural

language processing." arXiv preprint arXiv:1910.03771.

Determining epitope specificity of T-cell receptors with Transformers.

Wu, K., et al. (2021). "TCR-BERT: learning the grammar of T-cell receptors for

flexible antigen-xbinding analyses." BioRxiv.

Xu, K., et al. (2015). Show, attend and tell: Neural image caption generation with

visual attention. International conference on machine learning, PMLR.

Zareie, P., et al. (2020). "MHC restriction: Where are we now?" Viral Immunology

33(3): 179-187.

