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Abstract

In the past decades the understanding of fracture of ductile material has increased sub-
stantially. Research has shown that the onset of fracture highly depends on the full state
of stress inside the material. Better understanding of fracture resulted in more advanced
and complex fracture models being conceived, allowing researchers to predict fracture
in ductile solids with improved accuracy.

Nonlinear finite element analysis is a powerful tool at the disposal of researchers
to predict the response of ship and offshore structures. When it comes to simulating
accidental loads, such as collisions, often basic criteria are applied to include fracture
in a finite element model. However, accurate fracture prediction is of great importance
to determine the ice resilience of vessels, or to obtain reliable estimates of the sustained
damage due to maritime collision. This research focuses on the latter.

This thesis is concerned with bridging the gap between the recent developments in
fracture prediction and the application of failure criteria in finite element analysis of
ship collision. A selection of recently published fracture models has been made and
experiments have been conducted on S235 structural steel for calibration and validation
of these models. Four small scale experiments have been conducted. These experiments
serve a dual purpose: first, to gather information on the material behaviour during de-
formation. Second, to obtain information on the effect of different stress conditions on
fracture. An iterative method has been employed to accurately model the material be-
haviour. For the calibration of the fracture models a method has been conceived and
applied that takes into account the full histories of stress and strain during the deforma-
tion process up to fracture.

Before application as failure criteria for finite elements, the calibrated fracture mod-
els require a correction based on the size of the elements: a modification to an already
existing theoretical framework has been proposed and applied to obtain element-size
dependent failure criteria.

A large scale drop tower experiment has been designed to simulate a so called raking
damage scenario. This experiment has been conducted on the same material as the small
scale experiments and serves as a validation for a finite element model that has been
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created using the information on the material behaviour obtained from the small scale
experiments. The different failure criteria have been implemented into the commercial
finite element package LS-DYNA and have been applied to the finite element model.
The results have been compared to the results of the raking damage experiment.

It was concluded that the application of complex multi-parameter failure models
in analysis of maritime collision does not necessarily provide an improvement over
conventional fracture prediction methods. The inability of shell elements to accurately
describe strain concentrations and the effect of the element size introduce uncertainties
that overrule the benefits of stress-state dependent prediction of element failure.
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Chapter 1

Introduction

1.1 Motivation

As our understanding of mechanics progresses and computational resources increase
over time, so does our interest in being able to predict fracture. Fracture is an important
aspect, not only in the event of ship collision, but also in our everyday lives. Often
fracture is associated with undesirable events, such as vehicular crashes and breaking
objects. However, fracture may also often be a desired effect, for example in the event
of opening a tin can or cutting paper.

In the light of the present work, fracture carries a negative connotation as it asso-
ciated with the ultimate state beyond which the ship or offshore structure is critically
damaged. At best, the loss of structural integrity due to fracture may affect the func-
tionality of the vessel. At worst, the vessel, its cargo, and even lives may be lost due to
fracture as a result of maritime crash, possibly also endangering the environment.

Up to this day vessels still perish as a result of collision with another vessel or
by grounding. Recent examples of these events are the collision of the USS John S.
McCain, a destroyer in the United States navy, with the Alnic MC, a Liberian oil tanker.
In this event, which occurred on the 21st of August 2017 just off the coast of Singapore,
ten lives of US sailors were lost, while the structure sustained severe damage (Fig.
1.1). On the 13th of January 2012, the cruise ship Costa Concordia collided with a
submerged rock off the coast of Italy. Subsequently, the vessel capsized and sank (Fig.
1.2), resulting in the death of 32 passengers.

Unfortunately, accurate fracture prediction could neither have saved the victims, nor
avoided these maritime crashes. However, improved fracture prediction might prove
beneficial for engineers in the design of a vessel: A better prediction of fracture produces
better estimates of the damage sustained in the event of collision and is therefore an
invaluable in the analysis of the crashworthiness of vessels.

In the design process of ships and offshore vessels, the Finite Element Method
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Figure 1.1: USS John S. McCain after col-
lision with Alnic MC

Figure 1.2: Costa Concordia capsized af-
ter suffering from severe grounding dam-
age

(FEM) is an advanced and therefore invaluable tool at the disposal of present-day en-
gineers. Normally these finite element analyses are performed implicitly in the linear-
elastic domain. When it comes to simulating collisions using a finite element analysis,
plasticity is to be dealt with, while using explicit time-integration. Typically, naval en-
gineers are only interested in the ship’s structural response to ordinary wave loads, and
therefore do not require the latter approach. However, several specialists, research bu-
reaus and classification agencies are interested in the crashworthiness of ships. When
it comes to simulating collisions using a finite element model, often very basic fracture
criteria are applied. As a result the effect of the state of stress inside the material on
ductile fracture is ignored. Research has shown that ductile fracture is highly affected
by the state of stress within the material (Rice and Tracey [1969]) and therefore the en-
gineering approach is inherently deficient. Many models for the prediction of fracture
that do account for the state of stress have been developed in the past few decades, how-
ever these are rarely used in ship collision analysis. Generally the increase in predictive
capabilities of these failure models comes at the expense of the convenience using them:
the increased required effort to use these models is preventing their application. How-
ever, accurate prediction of fracture is of vital importance for obtaining proper estimates
of the amount of damage that is sustained in the event of ship collision.
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1.2 Scope

Ship structures are typically large assemblies of components made of structural steel.
These components two purposes that contribute to the serviceability of the vessel: struc-
tural components providing the strength of the structure or plate components providing
both strength and the watertight shell that allows the vessel to float. In the event of a
ship collision damage may be sustained to the components in both categories. Damage
to the strengthening components has a potentially deteriorating effect on the vessel’s
structural integrity and serviceability. Failure of structural components does not neces-
sarily result in the perishing of the vessel. Failure of the watertight shell, however, is far
more critical: fracture in the ship’s plating allows water to freely access the structure,
resulting in flooding, and even potential instability or sinking of the ship. Finding a
fracture-prediction method for fracture in the ships plating is therefore the main focus
in this research.

The shell that causes the vessel’s structure to be watertight consists of large struc-
tural steel plating, with typical lengths that far exceed the thickness of the plate material.
When finite-element models are used in the design stage of vessels, the obvious choice
is to use shell elements to model the ships plating due to their large computational
advantage over solid elements. Typically, these models are extensive, therefore shell
element side lengths far exceed their thicknesses to reduce the amount of required ele-
ments thus keeping the computational time at a minimum. However, fracture is a local
phenomenon that cannot be accurately captured by large shell elements. Therefore an
important prerequisite is that a fracture-prediction method is sought after, which bridges
this inherent deficiency.

The type of structural steel that is commonly used in the proximity of the waterline
of the vessel is mild steel, which shows ductile behavior, meaning that fracture is pre-
ceded by a large plastic deformations. However, the amount of plastic deformation up
to fracture highly depends on the state of stress inside the material induced by the load-
ing conditions. In the event of ship collision, the plating of the ship is dented inwards.
During the indentation process the plating experiences bending deformation superseded
by in-plane deformation due to the out-of-plane loading. The first causes compressive
stress in the indented side of the plate and tensile stress at the opposite side. The latter
causes high in-plane tensile stresses. As the plastic deformation progresses the bending
stresses becomes negligible compared to the in-plane tensile stresses: the size of the
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indenter, i.e. the striking ship, rock, or iceberg, is far greater than the thickness of the
plating. As a result, the stresses in the material up to fracture are dominated by tension
in the plane of the plating. Therefore a fracture-prediction method is required that is
applicable as a failure criterion in the finite element method to predict failure of shell
elements, preceded by plastic deformation in tensile stress conditions.

In this thesis, the term fracture is related to crack initiation and propagation: local
phenomena leading to separation of the material. In equations and figures referring to
fracture the subscript ‘F’ is used. The term failure is employed to indicate the state
where the structural integrity (global) is compromised due to fracture (local). Physical
quantities related to failure are herein indicated using the subscript ‘f ’.

A fracture model describes the local conditions under which fracture occurs in a
material. To include failure of elements in the FEM, a failure model is required that
describes the state at which fracture is expected to occur within an element. Therefore a
fracture model can be employed as a failure model for very fine solid elements that are
able to accurately describe local conditions.

1.3 Objective

Towards the objective of this research, a selection is made of fracture models that are
deemed to provide an increase in predictive capabilities over commonly used meth-
ods. This thesis focuses on providing a long overdue solution to employ stress-state
dependent fracture models as failure criteria in finite element analysis of ship collision.
Unfortunately, the effort to use a more complex fracture model is increased as more
experiments are necessary for calibration and implementation into the finite element
method requires expert knowledge of the used finite-element package. Therefore two
restrictions are imposed on the selected fracture models that limit the required effort to
calibrate and to implement the models:

• The fracture model requires no more than three experiments for calibration
• Only the built-in capabilities of the finite-element package are to be used; no user-

defined subroutine is required to implement the fracture model in FEM.

To compare the several selected fracture models, a set of experiments is conducted.
This set is sub-divisible into main experiments, which are drop tower tests designed to
imitate raking damage of vessels as presented in Haag [2017]. These experiments were

4



carried out by TNO on S235 structural steel in November of 2016 and are herein used to
compare the predictive capabilities of fracture models. Besides the main experiments,
several additional experiments are carried out on the same material that provide required
information on the material behaviour. These experiments are used to obtain a material
model and to calibrate the fracture models, allowing simulation of the large scale ex-
periments in the finite element method. The first set of these additional experiments, a
set of flat bar tensile tests, was conducted at the same time as the main experiments. As
a supplement, three additional sets of experiments were conducted on the same mate-
rial to obtain additional information required for the calibration of the fracture models.
The ultimate goal is to apply different failure models (derived from the selected frac-
ture models) to a finite element model of the large scale experiment and compare the
obtained numerical results to the experimental data.

Based on a literature review of the theory behind stress-state dependent fracture
prediction and its application in the finite element method a set of research questions
is defined. An overview of the literature study is presented in Chapter 2. The main
research question is supported by three sub questions.

Which stress-state dependent fracture prediction method yields the smallest error in
terms of energy dissipation by plastic deformation of structural steel plating in the event
of collision?

1. Which failure models satisfy the imposed restrictions?
2. For the application of the material model, a failure model and friction, what pre-

cautions can be taken to restrict the introduction of errors?
3. How can the failure models be applied to a finite element model consisting of

shell elements?

1.4 Thesis Outline

This research provides a theoretical approach for the application of stress-state depen-
dent fracture prediction in finite element analysis of ship collision. The chapters of
this thesis contain descriptions of the different steps that are required for a comparative
analysis of failure models.

Chapter 2 provides an overview of the theory behind fracture of structural steel plat-
ing and presents an approach to apply stress-state dependent fracture prediction in finite
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element analysis containing shell elements. The terminology and notations introduced
in this chapter are used throughout the thesis.

Chapter 3 introduces the selected failure models and the associated considerations
for their selection. The failure models are presented based on their categorization and
a description of the details of each model is provided. Modifications to the models are
included where necessary.

Chapter 4 introduces the small scale experiments that were conducted. Based on
the theory presented in Chapter 2 a model is created for the material, using the results
from these experiments in combination with finite element analysis. Ultimately, the
information required for the calibration of the failure models is presented, preceded by
a description of the required approaches to obtain this information.

Chapter 5 deals with the application of the failure models in the finite element
method: the method for the implementation in the finite element package LS-DYNA
is presented, along with the methods for the calibration of the failure models that enable
their application.

Chapter 6 focuses on the large scale experiment. First, the experiment itself is de-
scribed. Subsequently the associated finite element model is presented and the results
from finite element analysis with the application of the different failure models are com-
pared to the experimental results.

Chapter 7 is dedicated to presenting the conclusions drawn from the discussion of
the results.

Chapter 8 provides several recommendations for future research and for the appli-
cation of failure criteria in finite-element analysis of maritime collision.

The structure of this thesis is presented schematically in Fig. 1.3.
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Figure 1.3: Schematic overview of the structure and contents of this thesis
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Chapter 2

Failure Modelling Theory

This chapter is dedicated to giving an overview of the various aspects that play a part in
the modelling of failure of steel plating during ship collision analysis. Firstly, several
important concepts are introduced to provide the theoretical background for this thesis.
A description of the material behaviour during deformation until fracture is presented
to depict what should be taken into account in the modelling of failure.

2.1 General Concepts

In the current section several general concepts are introduced that are not specifically
related to fracture, yet are required to be understood for the modelling of fracture. More
importantly, the notation presented in this section is used throughout this thesis.

2.1.1 Stress-state

In this section descriptions of several concepts of solid mechanics and fracture mod-
elling are presented. These descriptions aim to provide a sufficient background knowl-
edge for the understanding of this thesis. As a base for the introduction of these concepts
an arbitrary solid volume in an arbitrarily chosen Cartesian coordinate system is used
as presented in Fig. 2.1. On this continuum solid several external point forces F and
pressures p (forces per unit area) are acting which cause the body to deform. Motion of
the solid is constrained by the boundary conditions denoted by b.

The solid volume experiences internal stresses as a result of the external loads and
constraints. According to Cauchy stress theorem, considering an infinitesimal element
A located at any point in the solid, the stresses on the faces of this element can be
represented as normal stresses perpendicular to the faces and shear stresses parallel to
the faces. The normal and shear stresses are denoted respectively by σii and τi j, where i
and j 6= i indicate any Cartesian dimension. This yields nine stress components, which
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Figure 2.1: Infinitesimal element (A) in continuum solid

are depicted in Fig. 2.2a.
The stress tensor [σ ] is formed by organizing the nine stress components in a second

order tensor, which completely describes the stress-state at any location within a solid
(Eq. 2.1). As the load on the body changes, so does the stress-state in the infinitesimal
element. The load path of an element is defined as the evolution of the stress-state
during a deformation process.

[σ ] =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.1)

To satisfy rotational static equilibrium of the infinitesimal element, it can be shown
that coplanar shear stresses are necessarily equal to each other: τi j = τ ji. As a result the
stress tensor becomes symmetrical.

Changing the orientation of the coordinate system changes the individual compo-
nents of tensor, but has no effect on the stress-state of the infinitesimal element. An
orientation of the coordinate system exists where the shear stresses are all equal to zero.
The remaining normal stresses are named the principal stresses and can be obtained by
solving the Eigenvalue problem for the stress tensor. The principal stresses are denoted
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(a) Arbitrary Cartesian coordinates (b) Principal directions

Figure 2.2: Orientations of infinitesimal element

by σi, where i = {1,2,3} indicate the principal directions of the infinitesimal element
(Fig. 2.2b). The order of the principal stresses is defined by σ1 ≥ σ2 ≥ σ3, where
positive stresses indicate tension.

The stress-state can be subdivided in two parts: The hydrostatic stress and the devi-
atoric stress (Malvern [1969]). The hydrostatic stress σm is defined as the mean of the
normal stresses (Eq. 2.2), i.e. the component of normal stress equal in all directions and
is equal to the negative hydrostatic pressure p:

σm =−p =
1
3
(σ1 +σ2 +σ3). (2.2)

The deviatoric stress s is the part of the stress-state that deviates from the hydrostatic
stress. The deviatoric stress tensor [s] is determined according to its definition:

[s] = [σ ]−σm[I ]. (2.3)

Here [I ] indicates the identity tensor. The principal deviatoric stresses si with i =
{1,2,3} are necessarily co-directional with the principal stresses.

Von Mises [1913] proposed a yield criterion, based on the observation that plastic-
ity is independent of the hydrostatic stress and purely depends on the deviatoric part.
He defined the equivalent stress σ̄ as a scalar representation of the magnitude of the
deviatoric stress:

11



σ̄ = σ̄([s ]) =

√
1
2
[(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2]. (2.4)

The hydrostatic and deviatoric parts of the stress-state are depicted in Fig. 2.3 in
principal stress space. In this figure the stress-state is represented by the vector

−→
OA.

Hydrostatic part is represented by the vector
−−→
OO′ along the hydrostatic axis (σ1 = σ2 =

σ3), which are related by |OO′| =
√

3σm. The deviatoric part
−−→
O′A is orthogonal to the

hydrostatic axis and is related to the equivalent stress by |O′A|=
√

2
3 σ̄ .

Figure 2.3: Hydrostatic and deviatoric stress components

Rice and Tracey [1969] have shown that an important parameter in fracture pre-
diction is the stress triaxiality η , which is defined as the ratio of the magnitudes of
hydrostatic stress and the deviatoric stress (Eq. 2.5). The application of triaxiality in
fracture prediction is further discussed in Section 3.1.

η =
σm

σ̄
(2.5)

In Figure 2.3 the triaxiality is therefore proportional to the ratio of |OO′| to |O′A|.
If the deviatoric stresses are small compared to the hydrostatic stress, the stress state
becomes close to equitriaxial, thus the triaxiality parameter reaches to ±∞, depending
on the state being compressive or tensile. On the other hand, if the hydrostatic stress
is small compared to the deviatoric stress, for example in pure shear, the triaxiality
parameter reduces to zero.

12



The importance of the triaxiality parameter lies in its effect on the effective plastic
strain to failure (Bao and Wierzbicki [2004]): the amount of plastic strain at fracture in
a ductile material is dependent on the stress triaxiality as different fracture mechanisms
occur for different triaxiality ranges. It can be stated, for example, that the ductility of a
material depends on whether the stress-state is in shear, uniaxial or triaxial.

The triaxiality parameter holds information on the relation between the hydrostatic
and the deviatoric stresses. However, the direction of the deviatoric stress (perpendic-
ular to the hydrostatic axis) is absent in the formulation of the triaxiality parameter.
Therefore the triaxiality parameter is non-unique for any state of stress. For example
a triaxiality of zero is associated with pure shear as well as the stress state defined by
σ2 = σ3 =−1

2σ1. In order to describe the normalized stress state completely, a second
parameter is required. This parameter is referred to as the Lode parameter (Bai [2008]).
The Lode parameter complements the stress triaxiality by providing information on the
ratios of the principal stresses. In literature many definitions of the Lode parameter ex-
ist (Moxnes and Frøyland [2016]). However, all of these formulations are in some way
dependent on the Lode angle θ (depicted in Fig. 2.4), the angle between the projections
on the deviatoric plane of the stress vector and the first principal stress.

Figure 2.4: Indication of the Lode angle
θ in the projection of the stress-state on
the deviatoric plane

Figure 2.5: Lode angle and shifted Xue Lode
angle

In Fig. 2.4 the Lode angle on the deviatoric plane is depicted. The deviatoric plane
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is the plane perpendicular to the hydrostatic axis (The dotted line in Fig. 2.3) and is
coincident with the origin. The Lode angle is limited to the domain [0,π/3] due to the
principal stress relations σ1 ≥ σ2 ≥ σ3. The Lode angle can be calculated in several
ways using the principal and deviatoric stress components. The most straight-forward
relation is given in Eq. 2.6 and is depicted by the components in Fig. 2.4.

θ = arccos
(3

2
s1

σ̄

)
(2.6)

As mentioned earlier, several formulations of the Lode parameter exist in literature.
Different failure models may use different formulations. The Lode parameters that are
relevant for this research are hereafter presented. All formulations of the Lode parameter
share the common domain [−1,1]. However their relations to the Lode angle differ: The
most common Lode parameter formulation, θ̄ , is a linear mapping of the Lode angle on
the previously mentioned domain:

θ̄ = 1− 6θ

π
. (2.7)

Another regularly encountered formulation in literature on ductility is the Normal-
ized Third Invariant or Deviatoric State Parameter ξ . This formulation is important as
it is used by the finite element package LS-DYNA, which has been used in this research.

ξ =
27
2

s1s2s3

σ̄3 = cos(3θ) (2.8)

In the failure model discussed in section 3.1.1 a shifted version of the Lode angle is
used. This Lode angle is herein referred to as the Xue Lode angle and depicts the angle
between the stress vector and the first principal axis on the deviatoric plane (Fig. 2.5).
The formulation of this angle is given in Eq. 2.9:

θL = arctan
( 1√

3

[
2
(s2− s3

s1− s3

)
−1
])

= θ − π

6
. (2.9)

Transformation between the different formulations can be done by intermediate
transformation to the Lode angle. The required operations are listed in Table 2.1.

Figure 2.6 depicts the different Lode parameter formulations as a function of the
Lode angle. No Lode formulation has any advantage over the others, however dis-
tinction between the different formulations is essential: confusing the Lode parameter
formulations during the implementation of a fracture criterion in FEM has the potential
of causing large errors.
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Table 2.1: Lode transformation operations

To Lode angle To Lode formulation

θ̄ θ = π

6 (1− θ̄) θ̄ = 1− 6θ

π

ξ θ = 1
3arccos(ξ ) ξ = cos(3θ)

θL θ = θL +
π

6 θL = θ − π

6

Figure 2.6: Lode parameter formulations

As mentioned in Section 1.2 using shell elements in the FEM is preferred over solid
elements due to their computational efficiency. Shell elements inherently rely on the
assumption that the stress normal to its plane is equal to zero. It was also mentioned
that in-plane tensional stresses tend to dominate over bending stresses in the indented
plate during ship collision. This causes the out-of-plane shear stresses to be negligible.
Therefore the stress states up to fracture tend to be close to plane-stress conditions.
Plane stress in shell elements means that the out-of-plane principal stress (σ3 in the
case of biaxial tension) is equal to zero. This excludes possible stress-states, reducing
the triaxiality domain to [−2

3 ,
2
3 ] and uniquely relating the Lode parameter to the stress

triaxiality. This relation is given in Eq. 2.10 in terms of the normalized third invariant
and depicted in Fig. 2.7 after conversion of ξ to θ̄ according to Table 2.1.
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ξ =−27
2

η

(
η

2− 1
3

)
(2.10)

Figure 2.7: Triaxiality & Lode relations

This relation is important for stress-state dependent fracture prediction in shell ele-
ments: Due to the absence of one principal stress, the Lode parameter becomes depen-
dent on the stress triaxiality.

2.1.2 Plasticity modelling

In engineering, strain is often defined as the measured elongation ∆L normalized using
the initial, undeformed length L0. The engineering strain e is obtained by:

e =
∆L
L0

. (2.11)

However, when this approach is used for plastic strains, an error is introduced as
higher order terms are omitted: in order to obtain the true plastic strain ε in a material,
the increase in length due to plasticity has to be taken into account in the calculation of
the total strain. The true strain is obtained by normalizing the infinitesimal deformation
dL to the current length L and integrating from the original length L0 to the deformed
length L0 +∆L. This takes into account the increase in length due to plastic strain.

ε =
∫ L0+∆L

L0

dL
L

= ln
(

1+
∆L
L0

)
(2.12)
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The engineering strain e is only an approximation of the true strain for small elon-
gations: the engineering strain is equal to the first order Taylor series expansion of the
true strain around zero.

Figure 2.8: Engineering and true strain

For increasing plastic deformation the error of the engineering strain to the true
strain increases (Figure 2.8). Stress, being defined as force per area, also exists as
both engineering and true stress. Engineering stress is the applied force divided by the
initial load-carrying area. In true stress the change of load-carrying area due to plastic
deformation is accounted for. In ship collision large plastic deformations are present,
therefore the true stress/strain approach is preferred over the engineering approximation
and thus true stresses and strains are adopted in this research.

The total strain consists of an elastic part εe; the part of deformation that is reversed
when the load is removed, and a plastic part εp; the irreversible part of deformation:

ε = εe + εp. (2.13)

For linear elastic, isotropic materials the elastic behaviour is commonly described
by Hooke’s law. Structural steel typically shows linear elastic behaviour up to the pro-
portionality limit (point A in Fig. 2.9) (Ugural and Fenster [2003]). Up to the yield
strength (point B) the deformation response is still elastic, however it deviates from
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the linear behaviour described by Hooke’s law. If the stress exceeds the yield strength,
irreversible, plastic deformation occurs (point C for example).

Figure 2.9: Typical true stress-strain curve for structural steel

Orthotropic material properties may be introduced during the fabrication process:
The rolling direction may affect the directional material properties of structural steel.
In Chapter 4 it is shown that the material considered in this research is highly isotropic
and initially shows linear elastic behaviour. As a result the linear elastic strain response
can be completely described by the stress-state, the Young’s modulus and the Poisson’s
ratio.

Analogously to stress, the equivalent plastic strain (EPS) can be obtained from the
components of strain in the principal directions:

ε̄p =

√
2

3

√
(ε1− ε2)2 +(ε2− ε3)2 +(ε3− ε1)2. (2.14)

Note that the subscript p has been dropped in the notation of the principal plastic
strains in this report for notational purposes. During a deformation process, such as
occurs during maritime crash, the mass of the deformed material is conserved. In fi-
nite element analysis this translates to conservation of mass of each individual element.
Under the assumption that structural steel is a plastically incompressible solid (i.e. the
density is independent of plastic strain), the volume of each element is only affected by
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the elastic part of strain and not by the plastic strain. This is satisfied by the relation in
Eq. 2.15 in terms of true plastic principal strains.

ε1 + ε2 + ε3 = 0 (2.15)

Under the assumption of (plastic) incompressibility the incremental equivalent plas-
tic strain can therefore be written in the form of Eq. 2.16. Note that this relation is only
valid for plastic strain. However, in high plasticity the elastic strains are far smaller than
the plastic strains and therefore become negligible. Thus Eq. 2.16 is a good approxima-
tion of the equivalent total strain if the plastic strain is dominant.

dε̄p =

√
2
3

√
dε2

1 +dε2
2 +dε2

3 (2.16)

By defining the strain ratio as α = ε2/ε1 and assuming incompressibility and pro-
portional deformation (α = constant during deformation), the equivalent plastic strain
can be expressed as

ε̄p =
2√
3

√
1+α +α2 ε1. (2.17)

To model the plastic behaviour of a material, a plasticity model in the form of Eq.
2.18 is required to relate the evolution of plastic strain to the stress that is required for
the material to plastically deform after the onset of yielding.

f (σ ,εp) = 0 (2.18)

In Chapter 3 several models for the prediction of failure are introduced that are
considered in this thesis. All of these models rely on the assumption of Von Mises-
plasticity, which is therefore adopted in this thesis. This theory states that the plasticity
model exists in the form of f (σ̄ , ε̄p) = 0, meaning that the equivalent stress is related to
the equivalent plastic strain by an arbitrary function. This arbitrary function is referred
to as the stress-strain curve of a material.

In plastic deformation of mild structural steel, typically an increase in stress is re-
quired for the material to further plastically deform: plastic deformation is the result of
movement of dislocations in the materials’ crystalline structure. However, new disloca-
tions are also created by plastic deformation, causing the dislocation density to increase.
Dislocations obstruct the movement of other dislocations. A higher dislocation density
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therefore causes a reduction in the mobility of the dislocations. As a result, a stress
increase is required to overcome these obstructions, allowing further movement of the
dislocations and further plastic deformation. This is referred to as work hardening. This
phenomenon is readily observed from a stress-strain curve of a ductile material. An
example is presented in Fig. 2.9. In this example a clear increase of stress is visible
after the yield strength has been exceeded.

Several models to describe the stress-strain curve of structural steel are in existence.
In the context of this thesis two of these models are relevant as the models presented
in Chapter 3 rely on them. Firstly, a common model in literature (Bai and Wierzbicki
[2008], Mohr and Marcadet [2015]) is power-law hardening model as presented by
Swift [1952]:

σ̄ = K
(
ε0 + ε̄p

)n
, (2.19)

where K, ε0 and n are material-dependent calibration parameters. Another approxi-
mation of the stress-strain curve was proposed by Voce [1948] and is given in Eq. 2.20:

σ̄ = k0 +Q
[
1− exp(−β ε̄p)

]
. (2.20)

Here, the parameters k0, Q and β are used to capture the strain response of a specific
material.

Complementary to the stress-strain curve a flow rule is required to model the plastic
behaviour of a material, which relates the individual components of stress and strain.
The finite element package that is used for the realization of this thesis, LS-DYNA,
relates the stress and strain components by the assumption that the increment of plastic
strain has the same direction as the deviatoric stress. This particular case of a flow rule
is referred to as the associated flow rule and is formulated as in Eq. 2.21:

dεi j = dλ
∂ σ̄

∂σi j
, (2.21)

Here the subscripts i and j denote the individual components of the stress and plastic
strain tensors, and dλ is a hardening parameter that is related to the stress-strain curve.
For any von Mises plastic material, the flow rule yields the following relations for the
principal directions, often referred to as Hencky’s equations:

dε1

2σ1−σ2−σ3
=

dε2

2σ2−σ1−σ3
=

dε3

2σ3−σ1−σ2
=

dε̄

σ̄
. (2.22)
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The condition where one principal strain component is equal to zero is referred to as
plane strain. Under the assumption of conservation of volume, this condition is satisfied
if and only if ε1 = −ε3. For proportional loading, this condition is obtained when the
intermediate principal stress is the average of the minimum and maximum principal
stresses:

σ2 =
σ1 +σ3

2
(2.23)

This relation causes the second deviatoric principal stress to be equal to zero, result-
ing in a constant Lode parameter θ̄ = ξ = 0. This condition is depicted in Fig. 2.7 and
is readily obtained by combining Equations 2.3, 2.8 & 2.23.

Several researchers have investigated the effect of the rate of change of strain in
time on the behaviour and established its effect on ductile materials. The strain rate is
defined as the derivative of strain with respect to time:

ε̇ =
dε

dt
. (2.24)

Two well known models that describe the effect of strain rate on strain hardening
are presented in Johnson and Cook [1983] and Cowper and Symonds [1957], which are
given in Equations 2.26 and 2.25 respectively.

σ̄( ˙̄εp) = σ̄0 ·
[
1+CJC ln( ˙̄εp/ ˙̄ε0)

]
(2.25)

Here σ̄0 is the equivalent stress at a base strain rate of ˙̄ε0 = 1 s−1 and a material
coefficient CJC.

σ̄( ˙̄εp) = σ̄0 ·

[
1+
( ˙̄εp

CCS

)1/p
]

(2.26)

A suggested value of CJC = 0.0114 in Eq. 2.25 for mild steel is given by Børvik
et al. [2003]. Storheim and Amdahl [2015] suggest values of CCS = 4 · 105 s−1 and a
strain-rate exponent p = 5 for mild structural steel (Eq. 2.26). Furthermore they found
that strain rates in ship collision are typically in the range of 5-15 s−1. This is supported
by the results obtained from finite element analysis later in this thesis. For this range of
strain rates it is shown in Fig. 2.10 that the influence of strain rate on the mild steel is
negligible using the previously mentioned coefficients from literature.
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Figure 2.10: Cowper-Symonds and Johnson-Cook relations for strain rate de-
pendency for typical mild structural steel

For this range of strain rates it has been shown by Choung et al. [2013] that strain rate
is of negligible influence on the stress-strain curve. This is supported by applying the
suggested values to the equations by Cowper-Symonds and Johnson-Cook (Fig. 2.10).

To scale the strain at fracture associated with a base strain rate of 1 s−1 Johnson and
Cook [1985] suggests the same strain-rate-dependency function as for the stress-strain
curve (The term between square brackets in Eq. 2.25). For structural steel a constant
of 0.002 was proposed. This constant is even smaller than the constant suggested for
the strain-rate dependency of the stress-strain curve, and therefore the strain-rate effect
on fracture strain is even smaller. Based on these notions the effect of strain rate is not
taken into account in this thesis.

2.2 Ductile Fracture

Typically, the structural response to loads below the design load is elastic, meaning the
structure will return to its initial position when the load is removed. When subjected to
larger loads, like accidental loads, plastic (irreversible) deformation may occur within
the structure before failure. Materials that show this behaviour are referred to ductile
materials. Its opposites are called brittle materials, which show close to no plastic
deformation before failure. The ductility of a material is defined as the ability to plasti-
cally deform before fracture occurs. In Fig. 2.11 three fractured specimens of different
ductility are depicted.

Commonly, structural steels are ductile materials, however, their ductility is con-
ditional: For instance, the ductility of a material, expressed as effective plastic strain
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(a) (b) (c) (d)

Figure 2.11: Brittle and ductile fracture under uniaxial tension. (a) original specimen.
(b) brittle fracture. (c) moderately ductile fracture. (d) highly ductile fracture

to fracture, depends on the chemical composition and temperature of the material, but
also on the state of stress and the presence of initial voids. In this section the general
mechanics behind ductile fracture are presented.

2.2.1 Strain Localization

In Section 2.1 the concepts of work hardening and conservation of volume have been
explained. The conservation of volume relation shows that the cross-sectional (load-
carrying) area is reduced due to plastic deformation in the tensile direction. This has
an increasing effect on the stress inside the material. At some point in the deformation
process this increase in stress may become larger than the increase in strength due to
work hardening. At this point the maximum load-carrying capacity, or Ultimate Tensile
Strength (UTS), has been reached. Beyond this point the specimen becomes unstable,
meaning that the load-carrying capacity of the specimen further decreases and the spec-
imen will ultimately fail if the load is not reduced. This phenomenon is called necking.
An example has been presented in Fig. 2.12 for a typical uniaxial tensile test.

Depending on the material, the geometry and the load, necking may affect the strain
distribution in the material and cause a local strain concentration. As a result of the local
changes in geometry due to this strain concentration, stresses develop in the directions
perpendicular to the loading and thus the stress-state is affected: the hydrostatic compo-
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Figure 2.12: Example engineering stress-strain curve of a
uniaxial tension test on structural steel

nent of stress is increased due to the presence of the neck (Bridgman [1952]). As a result
the stress-state becomes more triaxial and the plane stress condition is violated. In the
event of maritime crash, necking may occur in plastically deforming plates, resulting in
a local change of the stress-state from plane stress to a fully three-dimensional one.

Necking typically occurs in plate material loaded by in-plane tension. In plate spec-
imens two types of necking can occur (Lian and Zhou [1989]): the onset of necking in
a uniaxial flat bar test tends to occur in the direction of the width of a specimen. This
type is called diffuse necking (Fig. 2.13a). However, in more biaxial states of stress
fracture may occur without the precedence of diffuse necking. Generally in a later stage
of plastic deformation, through-thickness necking, or localized necking may occur (Fig.
2.13b). Localized necking can also occur without precedence of diffuse necking if the
geometry restrains necking in the direction of the width.

2.2.2 Fracture Initiation

Plastic deformation is followed by fracture if the plastic strain exceeds the material’s
ductility. However, which failure mechanism controls fracture is highly dependent on
the state of stress. In the domain of maritime crash, where the stress-states are dom-
inated by tension, fracture is preceded by the nucleation of voids, their growth, and
eventually coalescence at which point fracture is initiated and cracks start to propagate.
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(a) Diffuse necking (b) Diffuse and localized necking

Figure 2.13: Necking in a flat bar specimen

(a) (b) (c) (d) (e)

Figure 2.14: Illustration of the ductile fracture mechanism. (a) void nucleation. (b) void
growth. (c) void coalescence. (d) crack propagation. (e) fracture.

In Fig. 2.14 the different stages of fracture initiation by void nucleation, growth
and coalescence (VNGC) have been depicted. Note that the voids have been enlarged
for illustrative purposes, actual void sizes are in the order of 100 to 101 µm (Qiu et al.
[2003]). In high plasticity, voids in the material start to nucleate by decohesion or
by fracture of second-phase particles (2.14a). Under increasing plasticity, the voids
grow (2.14b) until their sizes interfere and the voids coalesce (2.14c). A microcrack is
initiated and starts to propagate (2.14d). Continuing crack growth eventually leads to
fracture (2.14e).

The effects of the stress-state on the VNGC mechanism has been studied by McClin-
tock [1968] and Rice and Tracey [1969] who showed that the equivalent plastic strain at
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fracture highly depends on the stress triaxiality. A summary of their pioneering work in
the field of fracture prediction is included in Appendix A.

2.3 Fracture in FEM

Where and when fracture is initiated inside a finite element model is controlled by a
failure model that dictates under which conditions fracture is expected. These failure
models play an important role in this thesis and therefore they are described in separate
sections: Chapter 3 offers a description of the different models and their application
is discussed in Chapter 5. The current section focuses on translating fracture, a phe-
nomenon in a continuum solid, to a discrete domain.

2.3.1 Finite Element Analysis

In this thesis the finite element package LS-DYNA is used to simulate the different exper-
iments that have been conducted. LS-DYNA is suitable for highly nonlinear, dynamic
finite element analysis using explicit time integration, making it very adequate for ap-
plication in this research. This will now be explained.

Linear versus Non-Linear

During the deformation process of ductile steel up to fracture as occurs in maritime
collision, the structural behaviour is highly nonlinear for multiple reasons:

1. Large geometrical deformations
2. Material behaviour after the onset of yielding
For any indentation process, a third cause of nonlinearity exists: the area of con-

tact between two surfaces changes during the deformation process. For these reasons,
nonlinear FEA is an absolute prerequisite to simulate maritime collisions.

Static versus Dynamic

For any structural, dynamic finite element model a system of differential equations is
obtained in the form of Eq. 2.27:

[M]ẍ+[C]ẋ+[K]x = Fe(x, t), (2.27)
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where [M], [C] and [K] indicate respectively the mass, damping and stiffness matri-
ces, which are updated every computational step in the case of nonlinear or dynamic
behaviour. The vector x represents the nodal degrees of freedom. The externally ap-
plied force is denoted by Fe. In static analyses, the inertia terms (proportional to the
accelerations) and the damping terms (proportional to the velocities) are absent, while
the externally applied force is constant in time.

Ship collisions occur in the quasi-static domain, meaning that dynamic vibrations
are of negligible influence on the response. The kinematics, however, are important:
relative motions lead to contact, contact leads to forces exerted on the structure, forces
lead to deformation. The deformation is not instantaneous, since collision is an event
that occurs over a certain time-span. Therefore static FEA is not suitable to model ship
collisions. Moreover, for the prediction of failure in elements, the full histories of stress
and strain are used. This will further be discussed in Chapter 5. For these reasons
dynamic FEA is highly preferred and is therefore adopted in this research.

Time Integration

Numerical time integration of Eq. 2.27 can either be done implicitly or explicitly. In
explicit time integration, the accelerations are determined by solving the equations of
motion, using the known velocities and displacements. Subsequently, the next state
[xT ẋT ]Ti+1 is approximated using the current state [xT ẋT ]Ti , the accelerations, and a
time increment ∆t. The obtained solution is accurate as long as the time increment is
sufficiently small.

Implicit integration uses a similar method to approximate the state at a later time in
the simulation. After each increment the Newton-Raphson method is used iteratively to
find a force equilibrium of the model. This allows the implicit method to use larger time
increments, while still obtaining an accurate solution.

Computationally, explicit time integration has a major advantage over the implicit
method: in the explicit the equations of motions are solved for the accelerations. This
requires computing the inverse of the mass matrix. The explicit method assumes that
the mass matrix is lumped and therefore diagonal. Computing the inverse of a diagonal
matrix is trivial, as the inverse is obtained from the reciprocals of the individual entries
of the diagonal matrix. The implicit method, however, requires solving for the displace-
ments (and rotations, depending on the type of elements), rather than the accelerations.
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This requires computing the inverse of the stiffness matrix. Since the stiffness matrix
is not diagonal, finding its inverse is computationally very expensive. For this practical
reason, using explicit time integration is preferred for dynamic crash analyses.

2.3.2 Crack Propagation

Simulation of a crack propagating through a continuous solid using a discrete model,
such as a finite element model, is not straightforward.

In reality, crack growth is a continuous process in both time and space. The dis-
crete nature of a finite element model is inherently unable to capture this phenomenon
correctly. Several methods exist to incorporate crack propagation in the finite element
method. Three commonly used approaches are herein discussed: cohesive zone ele-
ments, element erosion, and the extended finite element method.

Cohesive Zone

One method to model crack propagation in a finite element model is by disconnection
of elements using cohesive zones (CZ). In a finite element model using cohesive zones,
the elements are not connected to each other by sharing common nodes like in a regular
finite element model, but rather by cohesive zone elements. These elements can be
massless and do not need to represent a physical volume. Their stiffness is based on a
model of the cohesive forces. Therefore this technique requires a model of the cohesive
forces between different elements in the form of a traction-separation curve (Fig. 2.16).
This curve represents the cohesive forces as a function of the separation distance of the
elements. Disconnection between bulk elements (Fig. 2.15) occurs when the separation
between the elements exceeds the domain of the traction-separation curve.

An advantage of using cohesive zone elements is the conservation of mass during
fracture. Crack growth is highly dependent on the mesh, as the crack can only prop-
agate along the cohesive zone elements. This makes the method highly suitable for
known crack paths, for example in the case of separation of laminated materials or com-
posites, but less so for continuous materials. Prediction of ductile fracture would require
CZ elements connecting all bulk elements, demanding an increase in computational re-
sources. Moreover, conversion from a ductile failure model to a traction-separation
curve is required. This conversion has a detrimental effect on the original failure model,
as stress-state dependency is lost: The built-in functionality of LS-DYNA does not allow
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(a) Initial model (b) Deformed situation

Figure 2.15: Cohesive zone illustration. Red: Bulk elements. Yellow: Cohesive zone
elements. Grey: Disconnection.

variation of the maximum separation δsep based on the state of stress.

Figure 2.16: Example cohesive force model

Due to the previously discussed aspects, the CZ method is deemed not to be a viable
fracture prediction method for the current objective and will not be used in this thesis.

Element Erosion

The most commonly used method to incorporate fracture in the finite element method
is Element Erosion. In literature, this method is sometimes also referred to as Element
Deletion or Element Removal. For this method, a fracture criterion is required: If a
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chosen parameter exceeds a critical value in a selected amount of integration points, the
associated element is deleted from the FE model. This criterion is evaluated for each
element in every timestep.

Due to the removal, the element is no longer able to carry any loads and the total
mass of the model is reduced. The size of the elements dictates the size of the crack tip
and therefore results in an error of the stress-state at this location.

Despite the previously mentioned disadvantages, this method is often preferred over
others due to its wide availability in commercial finite element packages, its easy im-
plementation and its computational advantage over more complicated methods. Most
importantly, this method is applicable in combination with sophisticated stress-state de-
pendent failure models. For these reasons, this element erosion is suitable for achieving
the intended purpose of offering a stress-state dependent fracture prediction method for
application by engineers. Therefore this method is employed throughout this research.

Extended Finite Element Method

As opposed to the previously mentioned methods, the Extended Finite Element Method
(XFEM) has no dependency on the mesh. XFEM uses a set of shape functions that are
a partition of unity to locally enrich elements. These shape functions allow jumps in
the element formulation to model discontinuities, ignoring the discrete nature of the FE
model. As a result, crack propagation is allowed to cut through elements. However,
analogous to the other methods, the fractured state of each element is a boolean: XFEM
does not allow for partially fractured elements. This is depicted in Fig. 2.17 where
fractured elements are indicated in gray; the crack ends at the side of an element.

Figure 2.17: Example XFEM crack propagation

Currently, this method has been implemented in LS-DYNA for shell elements and
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2D plane strain elements, but only for brittle to semi-brittle fracture of pre-cracked
materials (Livermore [2016]) and therefore cannot be used towards the intended goal.
However, XFEM has its advantages over element erosion, and might be its future re-
placement for ductile fracture prediction in FEM when its capabilities have been ex-
tended.

2.3.3 Effect of Element Size & Type

In Section 2.2.1 the concept of material instability and the occurrence of necking were
discussed. Whether or not necking occurs before fracture depends on the material,
but geometry and the loading conditions. Necking is a local phenomenon and has a
large effect on the local state of stress, i.e. the state of stress within the neck. In steel
plated structures, the size of a neck is in the order of the thickness of the plate. In
order to capture the stress-state within a neck, solid elements are required that allow to
model the geometry of the neck. The element size should therefore be much smaller
than the thickness of the plate. However, engineers prefer to use shell elements due
to their computational efficiency. Fine shell elements show similar behaviour to solids
for in-plane tension up to the point of necking (Pack and Mohr [2017]). However,
necking locally induces out-of-plane stresses. Therefore shell elements are unable to
approximate the stress-state inside the neck due to their inherent plane-stress condition.
This shortcoming needs to be accounted for in stress-state dependent fracture prediction
for shell elements.

As the size of the shell elements is increased, the effect of the strain localization
on the total elongation of an element is reduced: the size of the neck becomes small
relative to the size of the element and therefore the contribution of the necked region
to the total strain becomes negligible. Few researchers have addressed the problem
caused by the effect of element size on the predicted strain to fracture. A straightforward
and comprehensible method to overcome this problem is suggested by Walters [2014].
His theory states that both a model to predict the onset of necking, a necking model,
and model to predict the onset of fracture, a fracture model, are required to predict
the fracture in shell elements: if fracture is predicted before necking occurs, then the
fracture model is governing. However, if necking is predicted before fracture, then a
combination of the necking model and the fracture model is used. This combination
depends on ratio of the element size to the thickness of the plate material. According to
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this theory, the failure strain ε̄ f is expressed by Eq. 2.28:

ε̄ f = min
{

ε̄N +(ε̄F − ε̄N) · γ , ε̄F
}
, (2.28)

where ε̄N is the equivalent plastic strain at the onset of necking, or necking locus,
ε̄F is the equivalent fracture strain from the calibrated fracture model, or fracture locus,
and γ is a weighting factor dependent on the plate thickness and element size:

γ =
lcal
e

tcal ·
t
le
, (2.29)

where lcal
e and tcal are the element side length and plate thickness that were used for

calibration of the fracture locus. An example of this theory is depicted in Fig. 2.18 for
an arbitrary necking and fracture locus in terms of equivalent plastic strain to failure and
stress triaxiality.

(a) Swift necking and MMC fracture locus (b) Element size dependent failure locus

Figure 2.18: Illustration of the theory to include element size dependency (from Walters
[2014])

This theory provides scaling of the fracture strain for element sizes that are larger
than the element size used for calibration.

Chapter Summary

In this chapter an overview of the important theory behind numerical fracture prediction
is presented. The information contained in this chapter is relevant for the understanding
of this thesis, as not only important aspects were explained, but also the symbols and
notations that are used in this thesis are introduced.
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Chapter 3

Failure Models

To predict ductile fracture in ship collision using finite element analysis by erosion of
elements, a failure criterion is required to determine the final state of the elements at
which deletion occurs. To this goal, failure models are used which can be calibrated to a
certain material. The result of a calibrated failure model is called a locus and represents
a failure criterion as a function of certain state parameters. The characteristics of these
failure models are discussed in this chapter.

A failure model describes the state at which fracture is expected to occur within an
element. Based on the framework presented by Walters [2014] (Section 2.3.3) both a
fracture model and a necking model are required to obtain a failure model.

Many fracture models exist, therefore a selection is made based on analysis of the
history of fracture prediction: the progression in time of the fracture mechanics commu-
nity is studied to gain understanding of the state of the art of ductile fracture prediction.
A literature review of fracture prediction history is included in Appendix A. Based on
the previously mentioned analysis of the progression of modelling of ductile fracture,
several fracture models were selected that relate the equivalent plastic strain at fracture
(EFS) to the stress triaxiality and Lode parameter. Due to the high level of sophistication
of these models, the required effort for calibration exceeds the limitations from Section
1.2. Therefore various modifications are proposed that are required for the application
of these models. For all fracture models the effect of the different calibration parame-
ters is discussed and example fracture loci are presented for a fully three-dimensional
stress states and for tension-based plane stress states to depict the differences between
the failure models.

Subsequently two selected necking models and the reasons for selection are intro-
duced. The amount of necking models commonly used in literature is significantly lower
than the amount of fracture models in existence. Necking models inherently differ from
fracture models: since necking commonly occurs in sheet metal under in-plane tension,
necking models are often presented as Forming Limit Diagrams (FLDs), which depicts
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a necking criterion based on the relation of the in-plane principal strains.
An overview of all selected models is presented in Fig. 3.1.

Figure 3.1: Selected models

3.1 Fracture Models

Based on analysis of fracture prediction history (Appendix A) and the criteria posed in
Section 1.3 the following fracture models were selected: the Xue model (Xue [2007a,b,
2009]), the Modified Mohr-Coulomb model (Bai and Wierzbicki [2008, 2010]) and the
Hosford-Coulomb model (Mohr and Marcadet [2015]). The details of these models are
discussed in the following sections.

3.1.1 Xue

Liang Xue introduced a new model to predict the onset of fracture, taking into account
the effects of hydrostatic stress, Lode parameter, material weakening and non-linear
damage evolution (Xue [2007a,b]). The Xue model assumes that the effects of pressure
and Lode parameter are independent of each other and can therefore be decoupled. The
model is presented in the form of Eq. 3.1:

ε̄F(p,θL) = εF0 µp(p) µθ (θL). (3.1)

In this equation pressure dependency is captured in µp(p). The shape function
µθ (θL) takes care of dependency on Lode angle the effective plastic strain at fracture.
The calibration parameter εF0 affects the height of the locus. Across his many publica-
tions and his thesis, Xue introduces a multiplicity of shape functions that can be used in
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Eq. 3.1. Due to Xue’s acknowledgement of the vast amount of influencing parameters
on ductile fracture, calibration of the original failure model is difficult. Moreover, the
Xue model is expressed as ε̄F(p,θL): To be able to implement this form into LS-DYNA
a user defined subroutine is required. Since one of the goals of the present study is to
provide a practical way to predict fracture in the FEM, implementing a subroutine is
deemed not to be a viable option.

Alternatively, the model has to be converted to the space of ε̄F(η ,θL). A suitable
formulation of the original model has been presented in [Xue, 2007b, p. 86-87] that
holds at least five calibration parameters.

The increased effort to calibrate this formulation conflicts with the goal to provide a
practical solution for fracture prediction. Therefore an adjustment to the Xue model is
herein proposed. This modification is based on a simplified variation of the Xue model,
which will now be discussed.

Simplification

In Xue [2009] a simplification to the original 2007-model is proposed. This simplifica-
tion holds only two calibration parameters and is a stress-based fracture criterion, which
retains the decoupling of pressure and Lode dependence (Eq. 3.2). Note the similarity
between this equation and Eq. 3.1.

σ̄F(p,θL) = σF0 yp(p) yθ (θL) (3.2)

Subsequently, the model was converted to the same space of the original model
under the assumption of an adjusted Swift-type power law to describe the hardening
behaviour of the material:

σ̄ = σy0

(
1+

ε̄p

ε0

)n

. (3.3)

For the pressure and Lode dependency, Xue proposes the shape functions presented
in Eq. 3.4 in Xue [2009].

yp(p) = 1+ kp p, (3.4a)

yθ (θL) =
√

3
2 cosθL

(3.4b)
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In this formulation the reference fracture stress σF0 and the material constant kp are
the only calibration parameters, which only affect the shape of the pressure dependency
and the height of the fracture locus; the mathematical flexibility to adjust the shape of
the Lode dependency is lost.

Triaxiality conversion

By definition, the stress triaxiality is given by:

η =
σm

σ̄
=
−p
σ̄

. (3.5)

The triaxiality was introduced into Eq. 3.2 by substitution of p = −ησ̄F into the
pressure dependency function (Eq. 3.4a):

σ̄F = σF0 (1− kpησ̄F)

√
3

2 cosθL
. (3.6)

The resulting formulation is recursive with respect to σ̄F . Solving for the equivalent
stress at fracture yields:

σ̄F =
σF0

σF0kpη + 2√
3

cosθL
. (3.7)

Analogously to Xue’s approach, the current stress-based formulation was converted
to the required space by equating Eq. 3.7 and the Swift hardening power law (Eq. 3.3).
Solving for ε̄F yields a formulation of the Xue fracture model in the space of triaxiality,
Lode angle and equivalent strain at fracture:

ε̄F(η ,θL) = ε0

{[
σF0

σy0

· 1(
kp σF0η + 2√

3
cosθL

)]1/n

−1

}
. (3.8)

This formulation holds only kp and σF0 as calibration constants. The other parame-
ters ε0, σy0 and n are material constants and are obtained from a power law hardening fit
to the stress-strain curve. After conversion of the Lode formulation according to Table
2.1, this formulation is suitable for implementation in LS-DYNA. This formulation is
hereafter referred to as the Xue model.

The parameter kp regulates the decay of the equivalent strain at fracture as a function
of triaxiality. The constant σF0 only affects the height of the fracture locus. As a result,
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(a) Xue (b) In-plane tension Xue

Figure 3.2: Example Xue fracture loci for kp = 0.00042 [MPa−1] and σF0 = 640 [MPa]
with material constants ε0 = 0.002 [-], σy0 = 213 [MPa] and n = 0.2 [-].

this form of the Xue model does not have the mathematical flexibility to tune the Lode
dependency. Moreover, the fracture locus is assumed to be symmetrical with respect to
plane strain (θ̄ = 0, see Section 2.1).

3.1.2 Modified Mohr-Coulomb

The original Mohr-Coulomb failure model is based on the assumption that fracture oc-
curs when the maximum value of a linear combination of the normal stress σn and shear
stress τ on a plane reaches a critical value (Eq. 3.9).

max(τ + c1σn)F = c2 (3.9)

The coefficient c1 is related to the slope of the linear combination and affects the
relation between the normal and shear stress at fracture. It is often referred to as the
negative tangent of the internal angle of friction of the material. c2 is referred to as the
cohesion of a material and represents the shear stress at fracture in pure shear.

Bai and Wierzbicki [2008] presented a plasticity model with dependency on stress
triaxiality and the Lode parameter. This relation is shown in Eq. 3.10, in which the first
term represents power-law strain hardening, the second term accounts for the hydrostatic
stress dependency in the form of triaxiality, while the last term depends on the Lode
parameter, which is related to the parameter γ .
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σ̄ = [Kε̄
n
p][1− cη(η−ηo)][cs

θ +(cax
θ − cs

θ )γ], (3.10)

where

γ =

√
3

2−
√

3

{
sec
(

θ̄π

6

)
−1
}

(3.11)

and cη , ηo, cs
θ

and cax
θ

are calibration parameters and K and n are material param-
eters associated with power-law hardening. Combination of this plasticity model with
the Mohr-Coulomb failure model and conversion to the ε̄F ,η , θ̄ space results in the
Modified Mohr-Coulomb failure model that is presented in Bai and Wierzbicki [2010].

ε̄F(η , θ̄) =

{
K
c2

[1− cη(η−ηo] ·[
cs

θ +

√
3

2−
√

3
(cax

θ − cs
θ )

{
sec
(

θ̄π

6

)
−1
}]
·

[√
1+ c2

1
3

cos
(

θ̄π

6

)
+ c1

{
η +

1
3

sin
(

θ̄π

6

)}]}− 1
n

,

(3.12)

where

cax
θ =

1, θ̄ ≥ 0

cc
θ
, θ̄ < 0

(3.13)

The MMC model holds six calibration parameters and would therefore require at
least six experiments to calibrate the model. However, the amount of calibration pa-
rameters can easily be reduced: Under the assumption of Von Mises plasticity four
calibration parameters are eliminated: cη = 0, cs

θ
= cc

θ
= 1 and the reference triaxial-

ity ηo becomes idle. The reduced form holds only two calibration parameters and is
presented in Eq. 3.14:

ε̄F(η , θ̄) =

{
K
c2

[√
1+ c2

1
3

cos
(

θ̄π

6

)
+ c1

{
η +

1
3

sin
(

θ̄π

6

)}]}− 1
n

. (3.14)
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Calibration parameter c1 regulates the asymmetry of the fracture locus with respect
to plane strain (θ̄ = 0), but also affects the decay in the direction of positive triaxiality.
In the case of c1 = 0 the fracture locus is fully symmetrical and loses its dependency on
triaxiality and the model is reduced to a maximum shear criterion. Increase the value
of c2 raises the fracture locus. Since c2 only affects the height of the fracture locus, the
triaxiality and Lode dependency cannot be tuned independently.

(a) Modified Mohr-Coulomb (b) In-plane tension MMC

Figure 3.3: Example Modified Mohr-Coulomb fracture loci for c1 = 0.1 [-] and c2 = 330
[MPa] with material constants K = 740 [MPa] and n = 0.2 [-].

The MMC fracture locus (Fig. 3.3a) holds triaxiality dependence and asymmetric
Lode dependence. Combined with the availability of six calibration coefficients, this
model is deemed to be very versatile, but difficult to calibrate. However, using simple
assumptions, it has been shown that the model is easily simplified. The two-parameter
formulation (Eq. 3.14), i.e. the triaxiality and Lode dependent Mohr-Coulomb criterion,
is selected for implementation as it meets the criteria posed in Section 1.3.

3.1.3 Hosford-Coulomb

Similar to the MMC model, Mohr and Marcadet [2015] published a fracture model
based on the original Mohr-Coulomb criterion. By revising Eq. 3.9 and introducing the
Hosford equivalent stress, they obtained a fracture criterion in the form of Eq. 3.15:

{1
2
[
(σ1−σ2)

a +(σ2−σ3)
a +(σ1−σ3)

a]}1/a
+ c(σ1 +σ3) = b, (3.15)
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where a, b and c are calibration parameters. Expressing the principal stresses in
terms of equivalent stress, triaxiality and Lode parameter yields a stress-based fracture
criterion:

σ̄F(η , θ̄) =
b

{1
2 [( f1− f2)a +( f2− f3)a +( f1− f3)a]}1/a + c(2η + f1 + f3)

, (3.16)

where:

f1(θ̄) =
2
3

cos
(π

6
(1− θ̄)

)
(3.17a)

f2(θ̄) =
2
3

cos
(π

6
(3+ θ̄)

)
(3.17b)

f3(θ̄) =−
2
3

cos
(π

6
(1+ θ̄)

)
(3.17c)

To express this stress-based criterion in terms of equivalent plastic fracture strain,
the authors propose power law hardening that is a combination of the formulations as
proposed by Swift [1952] and Voce [1948] (Equations 3.18a & b respectively).

kSwi f t(ε̄p) = K (ε0 + ε̄p)
n (3.18a)

kVoce(ε̄p) = k0 +Q [1− exp(−β ε̄p)] (3.18b)

k(ε̄p) = (1−α)kVoce +αkSwi f t (3.18c)

The power law formulations are combined into Eq. 3.18c using a weighting factor
α . Applying this formulation to Eq. 3.17 yields the final expression as presented in Eq.
3.19. In the current work this suggested formulation is used in the HC model, however
any other Von Mises plasticity rule is applicable to this model.

ε̄F(η , θ̄) = k−1

(
b

{1
2 [( f1− f2)a +( f2− f3)a +( f1− f3)a]}1/a + c(2η + f1 + f3)

)
,

(3.19)
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where k−1 is the inverse function of Eq. 3.18c:

ε̄p = k−1(σ̄). (3.20)

(a) Hosford-Coulomb (b) In-plane tension HC

Figure 3.4: Example Hosford-Coulomb fracture loci for a = 1.4 [-], b = 650 [MPa] and
c = 0.1 [-] with material constants K = 740 [MPa], n = 0.2 [-] and ε0 = 0.002 [-].

It can be seen from Eqs. 3.19 that the parameters a and c affect only the shape of
the fracture locus, while b determines the height. Triaxiality dependency is influenced
solely by c: Increasing this parameter results in a steeper decay with respect to positive
triaxiality. Parameter a regulates the shape of the Lode dependency. In the case of a = 2
and c = 0, the models’ denominator (Eq. 3.19) reduces to a normalized Von Mises
criterion and loses its dependency on both triaxiality and Lode, resulting in the CEFS
model.

3.2 Necking Models

As necking typically occurs in plates loaded in biaxial tension, necking models are often
displayed in the space of first and second in-plane strains (ε1,ε2). Due to the tensional
conditions, the third principal strain ε̄3 is the through-thickness strain and depends on
the in-plane principal strains by the relation of the conservation of volume (Eq. 2.15).
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In literature, four models to predict the onset of necking are regularly encountered:

• Marciniak-Kuczynski forming limit model
• Swift diffuse necking criterion
• Hill local necking criterion
• Bressan-Williams shear instability criterion

As opposed to the other failure models discussed in this section, the Marciniak-
Kuczynski (MK) model does not exist in an analytical form. This model consists of
mathematical model of an infinite plate with an initial defect loaded by in-plane ten-
sion. A set of equations relates the far-field strains to the strains within the initial de-
fect. Combination of these equations yields a complex integro-differential equation
(Marciniak et al. [1973]) that can be solved. A failure locus is obtained by solving for
multiple far-field strain conditions with varying strain ratios α = ε2/ε1. However, this
model fails to account for the orientation of the necking band. Secondly, the obtained
necking locus is highly dependent on the magnitude of the initial defect. Lastly, the MK
model is poorly defined for plane strain conditions. Based on these remarks and the fact
that this model requires far more effort to implement than the other necking criteria,
the MK model is deemed not to be a viable option for application in maritime collision
analysis and is therefore excluded from this thesis.

The remaining three necking models do exist in an analytical formulation and are
readily implemented. However, the Hill diffuse-necking criterion is only defined for
negative strain ratios, while the Bressan-Williams criterion is only valid for positive
strain ratios. To predict the onset of necking, these criteria have been combined in this
research as suggested by Alsos et al. [2008].

Figure 3.5 depicts the different necking loci from the selected necking models to
serve as an example. The formulations used to obtain these loci are presented in the
subsequent sections.

3.2.1 Swift

In Section 2.2.1 it was explained that necking occurs when the decrease of load carrying
area becomes larger than the increase in strength due to work hardening. In the case
of uniaxial tension, this moment during the deformation is indicated by the Considère
condition (Eq. 3.21), which states that necking starts when the ultimate tensile strength
has been reached:
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Figure 3.5: Example necking loci for n = 0.2

d(F/A0)

de1
=

d[σ1 exp(−ε1)]

d[exp(ε1)−1]
= 0. (3.21)

By computing the derivative of both the numerator and the denominator of the cen-
tral expression in Eq. 3.21, the Considère condition is obtained in the form of Eq. 3.22.

dσ1

dε1
= σ1. (3.22)

Swift [1952] expanded the this condition for biaxial tension by adding the same
condition for the orthogonal in-plane direction:

dσ2

dε2
= σ2. (3.23)

By combining these conditions with Hencky’s equations (Eq. 2.22), Swift obtained a
criterion for the onset of diffuse necking. Under the assumption of power law hardening
the Swift necking model is given in Eq. 3.24 as a function of the strain ratio α in terms
of in-plane principal strains:

ε1,N = 2n
(

1+α +α2

2+α +α2 +2α3

)
(3.24a)

ε2,N = αε1,N , (3.24b)
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where n is the hardening exponent and the subscript N indicates the condition at
the onset of diffuse necking. No further calibration parameters are present in the Swift
model. Thus the only material-specific parameter is the hardening exponent, which is
obtained from tensile testing as will be discussed in Section 4.3.

3.2.2 Bressan-Williams-Hill

Two types of necking in ductile plate material may occur: diffuse necking in the plane
of the plate, or localized necking in the thickness direction. The previously discussed
model, Swift, is created for the prediction of diffuse necking. The model discussed in
this section, the Bressan-Williams-Hill model, predicts localized necking. This model
consists of two parts: the Hill criterion for stress-states between uniaxial tension and
plane strain. The Bressan-Williams criterion covers stress-states up to equibiaxial.

Local necking criterion

In the range between uniaxial tension and plane strain the strain ratio is negative (−0.5≤
α ≤ 0). In this range localized necking typically occurs along a line of zero extension.
Hill [1952] defined the angle φ as the angle between this line (the necking band) and
the second principal direction (Fig. 3.6) and expressed the angle in terms of the strain
ratio:

φ = arctan(
√
−α). (3.25)

According to Hill’s relation for the angle of the localization band (Eq. 3.26) the an-
gle is approximately 35 degrees in uniaxial tension. In plane-strain tension (σ2 = σ1/2,
α = 0) the neck is approximately perpendicular to the direction of the first principal
strain (φ = 0). The Hill criterion is invalid for positive strain ratios, as these would lead
to imaginary values of φ .

Since the strain along the necking band is assumed to be zero, localized necking is
predicted when the increase in strength due to work hardening equals the decrease in
thickness due to plastic straining:

dσ̄

σ̄
=−dε3. (3.26)
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Figure 3.6: Angle of the localized necking band

By assuming proportional straining, meaning that the strain ratio remains constant
until necking, and conservation of volume, Eq. 3.26 was rewritten to the form of:

dσ1

σ1
= (1+α)dε1. (3.27)

Hill then proceeds by expressing the criterion in terms of in-plane principal strains
by assuming power law hardening in the form of σ̄ = Kε̄n

p:

ε1,N =
ε̂1

1+α
(3.28a)

ε2,N = αε1,N , (3.28b)

where ε̂1 is equal to the power law exponent n. It can, however, also be used as
a calibration parameter, indicating the strain at the onset of localized necking in plane
strain conditions. The subscript N indicates the condition at the onset of localized neck-
ing. In Fig. 3.5 it is shown that the Hill criterion predicts the onset of necking at a later
stage than the Swift criterion for negative minor strains. This is obviously caused by
the inherent difference between the models: Swift predicts diffuse necking, while Hill
predict localized necking, which typically occurs at a later stage during the deformation
process.
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Shear instability criterion

The Bressan-Williams criterion assumes that necking occurs in a through-thickness
plane of zero extension and instability is caused when the shear stress on this plane
reaches a critical value. The orientation of the shear plane of zero extension is depicted
in Fig. 3.7.

Figure 3.7: Orientation of shear plane Figure 3.8: Mohr circle for strain
with α = 0.5

In Bressan and Williams [1983] the angle of the shear plane, θ , is related to the
principal strain components: the angle is found using a Mohr circle analysis for strain
(Fig. 3.8) and is expressed by:

cos(2θ) =−ε1 + ε3

ε1− ε3
=

α

2+α
. (3.29)

Failure is predicted when a critical value of shear stress is reached. The BW criterion
is expressed as Eq. 3.30 for in-plane tensile conditions:

τcr =
σ1

2
sin(2θ). (3.30)

After combining Equations 3.29 & 3.30, the BW criterion is obtained in terms of the
first principal stress:

σ1 =
2+α√
α +1

τcr. (3.31)

Under the assumption of power law hardening the BW criterion is readily converted
to the FLD space using the Hencky’s equations (Eq. 2.22). For combination with the
Hill criterion, Alsos et al. [2008] suggests calibrating the Bressan-Williams locus to the
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Hill locus at plane strain (α = 0). The critical shear stress τcr calibrated to the Hill locus
then becomes:

τcr =
1√
3

K
(

2√
3

ε̂1

)n

, (3.32)

where K and n are power law hardening parameters.

Bressan-Williams-Hill criterion

After conversion to strains of the BW criterion and combination with the Hill criterion
(Eq. 3.28), the Bressan-Williams-Hill is obtained in the following form:

ε1,N =


ε̂1

1+α
, α ≤ 0

1√
α2+α+1

(
ε̂
−2n
1 (α+1)
α2+α+1

)−1/(2n)

, α > 0
(3.33a)

ε2,N = αε1,N . (3.33b)

This formulation is directly applicable in the FLD space. As suggested by Alsos
et al. [2008] the calibration parameter is set equal to the power law parameter n; cali-
bration of ε̂1 requires an experiment in plane strain conditions. As a result, the BWH
criterion only depends on n and the principal strain ratio.

Chapter Summary

In this chapter all failure models selected for implementation were discussed. These
models are subdivided in fracture models and necking models. Three fracture models
were presented: the Xue model, the Modified-Mohr Coulomb model and the Hosford-
Coulomb model. The selection has been augmented with the Swift model and the
Bressan-Williams-Hill model for the prediction of the onset of both types of necking.
In Chapter 5 these models are calibrated on S235 structural steel and implemented in
the finite element package LS-DYNA.
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Chapter 4

Analysis of Small Scale Experiments

To be able to create a finite element model of the large scale raking damage experiment,
several small scale experiments were conducted. The small scale specimens were cut
from the same S235 structural steel plate as the large scale specimens were. The material
certificate is presented in Appendix B. The small scale experiments serve two purposes:
first, to obtain information on the material’s behaviour. Second, to obtain the load paths
up to fracture of the experiments,which are required for the calibration of the fracture
models. The required theories and assumptions behind the modelling of the material’s
behaviour were presented in Section 2.1. Calibration of the necking models is based on
the material model. This chapter is subdivided in the following parts:

• 4.1 Small Scale Experiments: Description of the small scale experiments that were
conducted and presentation of the results.
• 4.2 Sensitivity Analysis: Study of the sensitivity of the finite element models to

certain modelling parameters.
• 4.3 Material Modelling: Description of how the material model for finite element

analysis was derived from the experimental results.
• 4.4 Critical Elements: Description of how the load paths for calibration were

obtained from the different finite element models.

Each experiment was repeated at least three times to increase the reliability of the
results. In total four small scale experiments have been conducted:

• Flat bar tensile test
• Notched flat bar tensile test
• Circular punch test
• Notched “Hašek” punch test

The results of these experiments as well as the results of parallel finite element
analysis are herein presented. The used finite element models consist of solid elements
to be able to obtain the complex load paths up to fracture. A more detailed description
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of the finite element models associated with the small scale experiments are presented in
Appendix D. In Chapter 5 the results from this chapter are used to calibrate the several
failure models.

4.1 Small Scale Experiments

The calibration of a fracture model requires a number of calibration experiments that is
larger or equal to the amount of calibration parameters of the model. In the selection
of fracture models the largest number of calibration parameters is three (Section 3.1).
For the calibration procedure it is critical that the load paths of the experiments up to
fracture are different from each other: any errors that may be present in the load paths
result in a larger error of the calibrated loci if the load paths are similar to each other.
Using more calibration experiments than calibration parameters reduces this effect and
increases the reliability of the calibration results, i.e. the calibrated fracture loci. There-
fore four different small scale experiments were designed to have different load paths.
The different experiments and their results are presented in this section. The geometries
of all specimens can be found in Appendix C. All specimens were created from the
same structural steel plate as the large scale raking damage specimens.

4.1.1 Flat Bar Tensile Test

The first small scale experiments were conducted concurrently with the large scale rak-
ing damage experiment. These were flat bar tensile “dogbone” tests with a thickness
equal to the thickness of the plate (6.1 mm) and a width of 20.0 mm. In total six
specimens were tested: Two sets of three specimens, cut from the plate in orthogo-
nal directions to obtain information on the orthotropic material properties induced by
the fabrication process (Fig. 3.4). The results of these tests are presented in Fig. 4.2,
the orthogonal directions are distinguished by the letters ‘D’ and ‘L’.

During the entire deformation process the elongation was measured using an exten-
someter with a gauge length of 60 mm. The tensile tests were conducted by Element
Materials Technology according to NEN-EN 10025-2, the associated test report is pre-
sented in Appendix E.

Evidence of orthotropic behaviour is only noticeable at the yield plateau: The load
normalized with the undeformed load carrying area at which the material starts to yield
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(a) Initial geometry (b) Fractured geometry

Figure 4.1: Tensile flat bar specimens

differs approximately 10 MPa between the orthogonal directions. This difference in
material properties becomes imperceptible as the plastic deformation increases. No
relation between the engineering strain at fracture and the direction of the specimens
exist. For these reasons the material is deemed to be isotropic.

The results from Fig. 4.2 were combined for further use in this thesis: the curves
were averaged and truncated at the mean value of the engineering strain at fracture.

4.1.2 Notched Flat Bar Tensile Test

By changing the geometry of a specimen the load path is also changed, for example
by introducing notches: adding a notch to a flat bar specimen has the same effect on
the stress-state as a diffuse neck of similar geometry. Therefore the stress triaxiality is
affected by the presence of the notch. Three notched tensile specimens were tested in
laboratory of TNO’s Structural Dynamics department. The notched specimen geometry
is based on the flat bar tensile specimens, but was adjusted to be compatible with TNO’s
testing equipment. The notches locally reduced the width of the specimen from 20.0
to 10.0 mm and had a radius of 20 mm. As a result, the length of the notches was
approximately 27 mm.

The gauge length of the extensometer was 25.0 mm and was therefore insufficient
to span the height of the notch. Therefore the extensometer was modified to a gauge
length of 43.4 mm. Specifications of the extensometer and details of the modification
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Figure 4.2: Engineering stress-strain results from tensile testing

(a) Initial geometry (b) Fractured geometry

Figure 4.3: Notched tensile flat bar specimens

are presented in Appendix F.

The results from the second and third specimen agree very well to each other (Fig.
4.4). However, in the testing of the first specimen there were irregularities: the spec-
imen was already in slight tension before the experiment started and the machine was
improperly zeroed. For these reasons the first specimen was neglected in the averaging
of the results. Similarly to the flat bar tensile test the results were averaged and truncated
to the mean engineering strain at fracture.
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Figure 4.4: Engineering stress-strain results from notched tensile testing

4.1.3 Circular Punch Test

To produce information on fracture of the considered type of steel in a near-equibiaxial
state of stress a punch test was conducted. The specimens were circular discs with a
diameter of 150 mm. The thickness of the specimen was reduced by 50% near the center
of the disc to reduce the stiffness and bending stresses, while preserving any through-
thickness differences in material properties induced during the fabrication process of the
steel plate (Fig. 4.5a). The specimens were supported by a bottom die and constrained
by a top die. The constraints allowed the mounted specimen to freely rotate, while
vertical displacement was constrained. A spherical indenter with a radius of 45 mm was
used to deform the specimen until fracture. The setup is depicted in Fig. 4.7. Grease
was applied to the contact areas of both the specimen and the indenter to reduce friction.

The punch experiment was displacement-controlled, meaning that the motion of the
indenter was prescribed. During the first punch test the indentation to fracture was
underestimated: Fracture of the specimen had not occurred before the maximum in-
dentation was reached and the indenter automatically started rising again. After the
indenter was raised entirely, the experiment was continued to a larger maximum inden-
tation. In Fig. 4.6 the force-indentation curve for the first punch specimen is therefore
separated in two parts, R1P1a and R1P1b. Fracture can be observed from the curve be-
longing to R1P1b as a sudden decrease in force. It can be seen that fracture of specimen
R1P1 occurred at an indentation that is slightly larger than the initial maximum inden-
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(a) Initial geometry

(b) Fractured geometry

Figure 4.5: Circular punch specimens

tation of R1P1a. Moreover, the maximum force of the continued experiment (R1P1b)
does not exceed the maximum force before the indenter was raised (R1P1a). This is
clear evidence that fracture was nigh at the instant the indenter was prematurely raised.
Therefore experiment R1P1b is ignored and fracture is deemed to occur at the max-
imum indentation of experiment R1P1a. The mean indentation at fracture (obtained
from R1P1a, R1P2 and R1P3) was equal to 46.7 mm (Fig. 4.6).

The presented force-indentation curves have been obtained from the testing machine
output. Therefore the compliance of the test setup is of influence on the results: the
stiffness of the experimental setup is not infinite, therefore the presented indentations
are overestimated. Further testing was required to determine the compliance of the
machine. In this thesis, the stiffness of the experimental setup is assumed to be far
larger than the stiffness of the specimen. Therefore the compliance is neglected. This
potentially has an increasing effect on the fracture loci calibrated in Section 5.2.1.

The radial contraction, defined as the decrease of the final diameter of the specimens,
was derived from the post mortem measurements: After experiments were conducted
the diameter of each specimen was measured across two orthogonal lengths using a
height gauge. The radial contraction was obtained by subtracting the original diame-
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Figure 4.6: Force-indentation results from punch testing

ter. The results are presented in Table 4.1. The average radial contraction amounts to
5.7 mm, which plays an important role in the determination of friction coefficients in
Section 4.3.4.

Table 4.1: Radial contraction of punch specimens

Specimen Direction 1 [mm] Direction 2 [mm]

R1P1 6.1 5.8
R1P2 5.7 4.7
R1P3 6.1 6.0

mean 5.7

Table 4.2: Radial distance of
crack initiation

Specimen S [mm] x [mm]

R1P1 26 24.6
R1P2 32 29.4
R1P3 35 31.6

mean 31 28.5

A second important parameter for the determination of friction coefficients is the
distance of the location of crack initiation to the symmetry axis of the punch specimens.
In Fig. 4.8 this distance is denoted by x. This distance is highly affected by the amount
of friction: a reduction in friction generally reduces the radial crack distance to the
center. The specimens were fabricated on a lathe, and therefore the center is readily
distinguishable. The arc length S between the center and crack was measured along
the indented surface. Assuming that the radius of the arc is equal to the radius of the
indenter, the radial distance x is readily obtained using goniometric relations. The results
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are presented in Table 4.2.

Figure 4.7: Experimental
setup for punch testing

Figure 4.8: Radial distance of the crack to the symme-
try axis

The purposes of both the radial contraction and the radial crack distance are to tune
the finite element model’s deformation field to the experiment. This is discussed in more
detail in 4.3.4.

4.1.4 Hašek Punch Test

The fourth small scale experiment bears great resemblance to the previously mentioned
experiment as it was based on the geometry of the circular punch test. The punch test
specimen geometry was altered to resemble the experiments as proposed by Vladimir
Hašek: two cut-outs were removed from the punch specimen geometry. The thick outer
ring was kept intact (Fig. 4.9). The experimental setup was identical to the punch setup.
As a result, the stress-state of the punch test is reduced to a more uniaxial one. No
irregularities occurred during testing.

Similarly to the circular punch test the mean indentation at fracture was determined
from the force-indentation curves (Fig. 4.10): A mean indentation of 26.1 mm was
obtained. Since the specimens are not axisymmetric, the radial contraction differs de-
pending on the direction of measurement. The remarks in the previous section on the
compliance of the machine also hold for the Hašek test. However, its effect was smaller
for the Hašek test, since fracture occurred at a lower indentation force.
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(a) Initial geometry

(b) Fractured geometry

Figure 4.9: Hašek punch specimens

Figure 4.10: Force-indentation results from Hašek punch testing

From Fig. 4.9b it can be observed that fracture occurred in the region where the
distance between the circular cut-outs was at a minimum. Herein lies the distinction
with respect to the punch test, where crack initiation occurred away from the center:
The radial crack distance cannot be used to tune the model, as it is independent of
friction.
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Table 4.3: Radial contraction of Hašek specimens

Specimen Radial Contraction [mm]

R1H1 0.2
R1H2 0.2
R1H3 0.2
mean 0.2

The results presented in this section are used to tune the deformation field of finite
element model to the experiments. This is discussed in section 4.3.

4.2 Sensitivity Analysis

To obtain the load paths for calibration parallel finite element analysis is required for
each small scale experiment. During the finite element modelling of the experiments
several important modelling parameters that affect the results were encountered. These
influential parameters are hourglass control to avoid erroneous deformations, element
size to obtain converged results, and initial defect to trigger the onset of necking. The
sensitivity and influence of each of these parameters is studied in this section. Finite
element models of the flat bar tensile test were compared in these analyses since the
considered sensitivities affect the necking behaviour of finite element models.

4.2.1 Hourglassing

The default solid element in the finite element package LS-DYNA is an 8-node con-
stant stress element with a single integration point. This element has the computational
advantage over other solid element formulations. However, this element is subject to
zero-energy deformation modes, since it has only a single integration point. The oc-
currence of these deformation modes is known as hourglassing, as the shapes of these
modes resemble the shape of an hourglass, and is likely to be found in structured, rectan-
gular meshes. Therefore the used solid models are prone to hourglassing. Hourglassing
can be avoided by using fully-integrated solid element formulations. However, these
elements are computationally expensive. This is undesired as iterative re-evaluation of
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the dogbone model is required to obtain the material model (Section 4.3.3).
An alternative to avoid hourglassing is to add internal stiffness to the default element

formulation. The introduction of fictitious, non-physical stiffness to avoid hourglassing
has a negative effect on the numerical results. Therefore the effect of stiffness-based
hourglass control has to be established.

LS-DYNA allows its user to control the amount of added internal stiffness by ad-
justing the hourglassing coefficient qh. This coefficient should be high enough to suf-
ficiently counteract the zero-energy modes, yet low enough so that the added stiffness
does not significantly influence the results. To determine the value of the coefficient qh

a finite element model of the flat bar tensile test was created using 8-node solid elements
with a side length of 1 millimeter. An initial guess of the material model based on the
experimental true stress-strain curve up to necking was used. This will be discussed
in more detail in Section 4.3. In the middle of the model, at half the gauge length, a
thickness reduction of 1% was introduced to trigger the onset of necking.

The finite element model was evaluated for different values of the coefficient qh

using the default solid element formulation. The engineering stress-strain results are
presented in Fig. 4.11 and compared to results obtained using fully-integrated 8-node
solid elements with selectively reduced integration (solid element formulation -2 in LS-
DYNA).

Figure 4.11: Effect of stiffness-based hourglass control on the engineering stress-strain
curve

Both element formulations yield results that are in good agreement to each other
if no hourglass modes are present in the model. Since hourglassing occurs during the
deformation of the current model, the hourglassing coefficient that yields the closest
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match to the fully-integrated results is sought after. Figure 4.11 shows that hourglass-
ing coefficients of qh = 0.005 and qh = 0.010 provide an equally close match to the
fully-integrated element results. An hourglassing coefficient of qh = 0.005 is applied in
further finite element modelling, as it adds the least amount of fictitious stiffness, while
ensuring proper results.

4.2.2 Element Size

To model the experiments where strain localization precedes fracture a sufficient amount
of elements in the necking region is required to accurately describe the geometry of the
neck. Since necking typically occurs in tensile tests, the tensile specimen geometry was
modelled using several element sizes to study the convergence of the results.

The material model and thickness reduction that were used in the model for the de-
termination of the hourglassing coefficient were once again applied. The previously
determined hourglassing coefficient was adopted. Figure 4.12 shows the engineering
stress-strain curves that were derived from LS-DYNA by measuring over a gauge length
of 60 mm, which corresponds to the tensile experiments. The simulations were stopped
when the engineering strain exceeded the experimental engineering strain. The corre-
sponding load paths are depicted in Fig. 4.13.

Figure 4.12: Effect of element size on engineering stress-strain curve

The further a neck develops, the finer the elements are required to be to yield accu-
rate results. This can readily be observed from Figure 4.12: the strain is underestimated
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(a) Triaxiality vs EPS (b) Lode vs EPS (c) Triaxiality vs Lode

Figure 4.13: The effect of the element size on the load path

by the larger elements at a earlier stage in the development of the neck. The global
engineering stress-strain results converge reasonably well. Locally, however, the strains
are not converged: Fig. 4.13 shows the load paths associated with the element in the
center of the model, where crack initiation is expected (Section 4.4). The load path re-
sults from the smallest element sizes are not in perfect agreement and thus convergence
has not been reached. For proper calibration of the fracture models a constant element
size across all finite element models of the small scale experiments is required to obtain
consistent results. Reducing the element size drastically increases the required com-
putational resources: an element size of 0.5 mm results already in over 200,000 solid
elements required to model the circular punch specimens; reducing the element size
to 0.33 mm results in over 700,000 elements. Based on the consideration of available
computational resources and the observed global convergence an element size of 0.5
mm was selected for the purpose of calibration, even though this causes a slight error in
the load path if necking precedes fracture.

4.2.3 Initial Defect

The development of a neck in a finite element model is governed by the presence of
an initial defect: in a perfectly prismatic FE-model necking is prohibited due to the
alignment of the nodes. As the imperfection in the model due to numerical noise may
not be sufficient to trigger the onset of necking, a study was performed to the effect of
the size of an initial defect on the necking behaviour. To this goal the thickness of the
flat bar tensile model was locally reduced by 0.5%, 1% and 2%. This reduction was
applied to all elements at the symmetric plane perpendicular to the loading direction.
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(a) Normalized force-displacement curve (b) Load path

Figure 4.14: The effect of including an initial defect on the numerical onset of necking

The results of the finite element analysis (Fig. 4.14) are truncated to the point where
the engineering strain exceeds the mean experimental engineering strain at fracture. In-
cluding an initial defect barely has any effect as long as the straining is uniform. Beyond
necking the influence of the initial defect becomes noticeable. The results show that no
initial defect is required to trigger the onset of necking: The engineering stress-strain
results of having no defect are in good agreement to the those with a 0.5% thickness
reduction. Therefore it is concluded that numerical noise in the model is sufficient to
trigger necking. On the other hand, including an initial defect has an increasing effect
on the equivalent plastic strain at fracture (Fig. 4.14b), which may lead to overestima-
tion of the strain at fracture after calibration. Since including an initial defect has no
apparent advantages, no initial defect is included in the hereafter used finite element
models.

Note that the results from the model with 1% imperfection are not identical to the
results for an element size of 0.5 mm in the previous section: a later iteration of the
material model was used to establish the effect of the initial defect (Section 4.3).

4.3 Material Modelling

In this section the procedures to extract the required information from the additional
experiments to create the model of the used material are presented. All of the consid-
ered fracture models that have been described in Section 3.1 are inherently stress-based
fracture criteria that are converted to strain using stress-strain curves in the form of dif-
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ferent power law hardening relations. The coefficients of these relations are determined
in this section using the results of the flat bar tensile tests. Subsequently, an iterative
procedure is used to obtain a more accurate description of the equivalent stress-strain
relationship. The material is modelled using the following assumptions, which were
explained in Chapter 2:

1. Linear elasticity
2. Von Mises plasticity
3. Associated flow rule
4. Isotropy

4.3.1 Elastic Behaviour

The elastic behaviour is modelled using Hooke’s law, which assumes linear, isotropic
elasticity. Under these assumptions the elastic behaviour can be fully described by
Young’s modulus, yield strength and Poisson’s ratio. Young’s modulus is derived from
the engineering stress-strain relation for each of the flat bar specimens. By averaging
the results a value of Young’s modulus of E = 216 GPa is obtained. The yield strength
has been determined by using the averaged engineering stress-strain curve, the found
Young’s modulus and a 0.2% offset strain. The yield strength is found to be σy = 298
MPa. Poisson’s ratio has not been determined experimentally and therefore a value of
ν = 0.3 is assumed based on recommended practice RP-C208 by DNV-GL [2016].

4.3.2 Power-Law Coefficients

Power-law hardening relations (Eqs. 2.19, 2.20 & 3.18) are used by fracture models to
describe the evolution of equivalent plastic strain as a result of equivalent stress. The
coefficients of these relations are determined using the results of the flat bar tensile
specimen. Before the onset of necking in these specimens (Denoted by a circle in Fig.
4.15), the first principal stress can be approximated by the true tensile stress if the stress
distribution on the load-carrying area is assumed to be uniform. The second and third
principal stresses in the material are negligible, therefore the equivalent stress is approx-
imately equal to the true tensile stress until necking occurs. As a result, the power-law
coefficients can be determined by curve-fitting to the plastic true stress-strain curve be-
fore necking obtained from tensile testing. The power law coefficients were found using
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the least squares method for all power law relations as used by the fracture models.

(a) Engineering stress-strain curve (b) Calibrated power-law hardening relations

Figure 4.15: Power law calibration on experimental results

The coefficients of the power laws associated with the curves in Fig. 4.15b are listed
in Table 4.4. The combined Swift-Voce curve is collinear with the Swift curve: the
contribution of the Voce relation is negligible. This also follows from examination of
the coefficients: the small values of k0 and β eliminate the contribution of the Voce
power law. The obtained coefficients are applied in the determination of the shape of
the fracture loci in Chapter 5.

The power law coefficient σy0 as used by Xue (Eq. 3.3) is readily obtained from the
fitted parameters by using the relation σy0 = Kεn

0 .

4.3.3 Inverse Method

A more detailed description of the true stress-strain curve can be obtained by iterative
finite element analysis. This method is referred to as the inverse method. Each itera-
tion the finite element model of the flat bar tensile test is evaluated in LS-DYNA and
the simulated force-displacement curve (FDC) is compared to the experimental one.
Subsequently the true stress-strain curve is manually adjusted and the FE-model is re-
evaluated. This procedure is repeated until simulated results match the experimental
force-displacement curve up to fracture (Fig. 4.17a); the final true stress-strain curve is
accepted. Figure 4.16 illustrates the procedure.
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Table 4.4: Power law coefficients

Power Law Coefficient Value Unit

Swift K 798 MPa
ε0 6.17 ·10−3 -
n 0.220 -

Swift (ε0 = 0) K 748 MPa
n 0.0186 -

Combined Swift-Voce α 0.724 -
k0 7.96 ·10−12 MPa
Q 0.0801 MPa
β 1.16 ·10−13 -
K 1102 MPa
ε0 6.17 ·10−3 -
n 0.220 -

To start the iteration an initial guess of the true stress-strain curve is required. Since
adjusting is done manually, this procedure can be very time-consuming. Therefore a
good initial guess is beneficial. In this case the experimental true stress-strain curve was
used until necking, beyond necking a linear extrapolation was used as an initial guess.
The linear extrapolation between necking and fracture was based on the tensile force at
fracture and measurement of the fracture surface.

In hindsight the Swift hardening provides a better initial guess, as it is in better
agreement with the accepted stress-strain curve than the linear extrapolation: the Swift
power law is capable of describing this specific material’s stress-strain curve with sur-
prising accuracy (Fig. 4.17b).

The power-law relations in the considered fracture models can be replaced by a
stress-strain curve that was obtained from the inverse method, which provides a more
accurate description of the material’s behaviour. However, the goal of this thesis is to
compare several fracture models rather than to improve them. Therefore no unnecessary
adaptations are made and the fracture models are applied in the ways that their authors
envisioned: using power law relations.
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Figure 4.16: Inverse method flowchart

(a) Normalized force-displacement curves (b) Comparison of stress-strain curves

Figure 4.17: Inverse method results

The normalized force-displacement curve associated with the final material model
(Fig. 4.17a) extends past the experimental results: fracture is not included in the current
model as the fracture loci have yet to be determined. However, when the FEA results
are truncated to the point of fracture, a load path can be obtained to use in the process
of calibration. This procedure is discussed in more detail in Section 4.4.

4.3.4 Coefficients of Friction

In the circular punch test and the Hašek tests friction plays an important role. To ob-
tain proper load paths of these experiments for calibration, the displacement field of
the specimens in finite element analysis needs to be in good agreement with the exper-
iments. To this goal, the finite element models were tuned using friction coefficients:
the friction coefficient between the specimen and the support rings differs from the fric-
tion coefficient between the indenter and the specimen, since grease was applied. The
friction coefficients were assumed to remain constant during the simulations.
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Circular punch friction

The displacement field of the finite element model of the circular punch test was cali-
brated to the experiments using the experimental radial contraction and the location of
fracture. It is assumed that the location of fracture coincides with the location of max-
imum equivalent plastic strain. In Section 4.4 it is shown that this assumption is valid.
The amount of radial contraction in the model is dominated by the support ring fric-
tion coefficient, while the location of maximum plastic strain is mainly affected by the
indenter friction coefficient: increasing the support ring friction coefficient reduces the
radial contraction, and increasing the indenter friction coefficient leads to an increase of
the radial distance to the location of maximum plastic strain. However, these effects are
not independent and thus iterative tuning of the friction coefficients was required until
both the simulated radial contraction and the location of maximum plastic strain match
the experimental results.

Figure 4.18: Final diameter and radial distance to location of maximum plastic strain
(red) of the circular punch model after raising the indenter

The experimental radial contraction was measured post mortem, after the specimen
was removed from the experimental setup. Consequently, the measured radial contrac-
tion does not equal the radial contraction at fracture, as the specimen showed spring-
back after the indenter was raised. This was accounted for in the finite element model
by lowering the indenter to the mean experimental indentation at fracture (46.7 mm)
and subsequently raising the indenter until there was no more contact.

The friction coefficients were varied with a step size of 0.01. The combination of
a support ring friction coefficient of µr = 0.14 and an indenter friction coefficient of
µi = 0.19 were found to yield the best agreement of radial contraction and location of
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maximum plastic strain to the experimental results (Fig. 4.18 and Section 4.1). Since
the specimens and the indenter were greased and the support rings were not, it is not
physical that the indenter friction coefficient is lower that the support ring friction coef-
ficient. However, the physical interpretation of these coefficients is inferior to obtaining
a correct load path. Therefore these friction coefficients were adopted in the circular
punch test model.

Hašek punch friction

Similarly to the circular punch model, the indenter in the Hašek punch model was also
lowered to the mean experimental indentation at fracture (26.1 mm) and raised again
until the contact was lost. The radial contraction of the model is affected mainly by the
support ring friction coefficient, but is not independent of the indenter friction coeffi-
cient. The location of maximum plastic strain, however, is independent of the friction
coefficients: the maximum is located directly under the indenter at the bottom surface
of the specimen (Section 4.4). This is in agreement with the experimental location of
fracture. Therefore the indenter friction coefficient cannot be tuned to this model specif-
ically, thus the value obtained from the circular punch test was adopted: µi = 0.19.

Figure 4.19: Final diameter and location of maximum plastic strain (red) of the Hašek
punch model after raising the indenter

The mean experimental radial contraction of the Hašek punch specimens was de-
termined in Section 4.1 to be equal to 0.2 mm. However, the initial diameters of the
specimens were not measured and therefore the radial contractions (Table 4.3) were
based on the design diameter of 150 mm. Since the final diameter is close to the design
diameter, no estimate can be made on the true radial contraction without knowing the
initial diameter. If the model was to be tuned to the “experimental” radial contraction of
0.2 mm, an unrealistically high friction coefficient would be obtained. Therefore a more
realistic support ring friction coefficient of µr = 0.35 is adopted under the assumption
that the initial diameters were slightly larger than the design diameter.
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4.4 Critical Elements

To calibrate the selected fracture models, the load paths obtained from different experi-
ments are required. More specifically: the load path at the location of crack initiation is
required to be known. This location is determined for all small-scale experiments by ob-
serving experimental data, aided by finite element analysis. The critical element in the
FE-models is located at the position in the specimen where crack initiation is expected
to occur: a single critical element is determined for each FE-model. These elements
provide the load paths that are used for calibration. In this section the procedures of
determining the critical elements and obtaining the load paths are presented.

4.4.1 Flat Bar Tensile Test

Before necking the state of stress inside the prismatic part of the flat bar tensile spec-
imens is uniaxial. After the onset of necking, when strains start to localize due to the
decrease in load carrying area being larger than the work hardening, the change in ge-
ometry alters the state of stress. As a result, tensional stresses in the transverse plane
are induced.

(a) Longitudinal mid-
plane section

(b) Transverse section at the
center of the neck

(c) Color scale

Figure 4.20: Equivalent plastic strain distribution in the flat bar tensile FE model

At the surface of the material the plane stress condition is necessarily maintained
throughout the deformation process. However, at the center of the neck, this condition
is violated after the onset of necking; the transverse tensional stresses result in a local
increase of the stress triaxiality. The location of crack initiation is therefore deemed
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to be at the center of the neck, where both equivalent plastic strain (Fig. 4.20) and
stress triaxiality are at a maximum. This is in agreement with the findings by Bao
and Wierzbicki [2004] and Hancock and Mackenzie [1976]. The finite element model
contained an odd number of elements in all three directions, resulting in the integration
point of the critical element being coincident with the location of crack initiation.

4.4.2 Notched Flat Bar Tensile Test

A notch in a uniaxial tensile specimen acts as an initially present neck, causing strain
localization to start as soon as the material starts to yield: during the notched flat bar
tensile tests no uniform plastic deformation occurred as necking was present as soon as
the yield strength was exceeded.

(a) Longitudinal mid-
plane section

(b) Transverse section at the
center of the neck

(c) Color scale

Figure 4.21: Equivalent plastic strain distribution in the notched flat bar tensile FE
model

All remarks from the previous section regarding the states of stress after the onset
of necking also do apply to the notched flat bar tensile specimens: fracture initiation
occurred at the center of the neck where the locally the stress triaxiality and equivalent
plastic strain are the highest (Fig. 4.21). The critical element in the finite element model
was once again located at the center of the smallest cross-section.

4.4.3 Circular Punch Test

During the circular punch tests, significant friction was present, causing crack initia-
tion to not occur at the apex of the dome of the indented specimen, but rather at some
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distance in the radial direction. In Section 4.3.4 the friction coefficients required for
the modelling of the punch test were determined based on the location of the crack in
the specimens: the location of maximum equivalent plastic strain in the FE model (Fig.
4.22) was matched with the mean experimental location of crack initiation. However,
analysis of the state of stress is required to determine the location of the critical element.

(a) Side view (b) Mid-plane section (c) Color scale

Figure 4.22: Equivalent plastic strain distribution in the circular punch FE model

(a) Side view (b) Mid-plane section (c) Color scale

Figure 4.23: Stress triaxiality distribution in the circular punch FE model

The stress triaxiality is approximately constant across the outer surface of the in-
dented region (Fig. 4.23) and has a value that suggests equibiaxial tension. Further
inspection of state of stress, however, shows a ring of local increase in Lode parameter,
coincident with the location of maximum plastic strain (Fig. 4.24): friction between
the indenter and the specimen causes a local increase of the first principal stress (the
stress in radial direction, tangent to the surface) at the bottom surface. As a result, the
Lode parameter increases, while the triaxiality decreases according to the plane-stress
relation (Fig. 2.7).
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(a) Side view (b) Mid-plane section (c) Color scale

Figure 4.24: Lode parameter distribution in the circular punch FE model

4.4.4 Hašek Punch Test

As opposed to the circular punch results, fracture in the Hašek tests occurred at the
center of the specimens. The cutouts of the Hašek specimens were circular, resulting in
a minimum of the load-carrying area at the center. At this location plastic strain started
to localize as soon as the the yield strength was exceeded.

(a) Section view between notches (b) Section view across notches (c) Color scale

Figure 4.25: Equivalent plastic strain distribution in the Hašek punch FE model

During the deformation process the stresses at the bottom of the specimen were
higher than the stresses at the indenter-contact surface due to bending of the specimen
around the indenter. As a result, the plastic strain had a maximum at the bottom surface
of the specimen directly underneath the apex of the indenter (Fig. 4.25). The element at
this location was selected as critical element.
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4.4.5 Load Paths

After extracting the stress and strain histories from LS-DYNA, the load paths of the
critical elements in terms of stress triaxiality, Lode parameter and equivalent plastic
strain are obtained according to the relations presented in Chapter 2.

(a) (b)

(c) (d)

Figure 4.26: Load paths of critical elements from the small-scale experiments for cali-
bration

Each small-scale experiment provides one load path. The load paths of the different
experiments are depicted in Fig. 4.26 from multiple perspectives. The load paths of the
punch and Hašek tests follow the plane-stress relation of triaxiality and Lode parameter,
since their critical elements are located at the surface. The plane-stress condition in the
notched and unnotched flat bar tensile tests is violated as soon as necking is incipient.
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These four load paths are used in the subsequent chapter to calibrate the fracture models
to S235 structural steel.

Chapter Summary

In this chapter four small scale experiments have been presented that have been con-
ducted to obtain information on the material’s behaviour. The material was modelled
after the theory presented in Chapter 2. The approaches that were used to define the ma-
terial model were presented in this chapter, along with the results that subsequently can
be used in the analysis of the large scale experiment (Chapter 6). Finally, the load paths
for calibration were determined in this chapter based on analysis of critical elements.
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Chapter 5

Application of Failure Models

Several steps are required before a failure model can be used in the finite element pack-
age LS-DYNA. First, the failure models need to be calibrated on the examined material.
Secondly, the calibrated failure models require correct implementation in the finite ele-
ment package. In the course of this research, first a method for the implementation of
the failure models was required that does not depend on a user-defined subroutine, as
was posed as a criterion in Chapter 1. Subsequently the failure models require calibra-
tion to make them compatible with the method of implementation. This chronological
order is maintained in this chapter: First the implementation is presented, succeeded by
the calibration of failure models.

5.1 Implementation

Using the *MAT ADD EROSION keyword in LS-DYNA a failure criterion with both
triaxiality and Lode dependency can be added to any material. This keyword is based on
the GISSMO (Generalized Incremental Stress State dependent damage MOdel), which
is LS-DYNA’s user-friendly solution to provide the user with many options to add dam-
age and fracture to an already existing material model. This model is used in the current
research as it provides the possibility to include stress-state dependent failure in a finite
element model without a user-defined subroutine.

5.1.1 Failure models

One of the options of the GISSMO is to include stress-state dependent fracture models
in the form of equivalent plastic strain at fracture with dependency on both triaxiality
and Lode parameter. Variable load paths during the deformation process up to fracture
are accounted for by damage accumulation. The damage calculation in the GISSMO is
formulated as:
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∆D = m ·D(1− 1
m ) ∆ε̄p

ε̄ f (η , θ̄)
. (5.1)

Here, the accumulated damage parameter D is the summation of the damage incre-
ment ∆D. Whenever, during the explicit integration in the time domain, the damage
parameter exceeds the critical value of 1, the element is deleted from the finite element
model.

The damage exponent m requires calibration and therefore the minimum amount of
calibration tests is increased by one. This is often undesirable and is readily avoided by
setting the damage exponent to unity, reducing Eq. 5.1 to linear damage accumulation
as proposed by Johnson [1980], which is presented in Eq. 5.2 for any failure model with
triaxiality and Lode dependency.

∆D =
∆ε̄p

ε̄ f (η , θ̄)
(5.2)

Using this formulation, the damage increment over each timestep is assumed to
be proportional to the increase in effective plastic strain and depends on the predicted
effective failure strain as a function of the current stress state. The total damage to each
element can subsequently be computed by taking the sum of the damage increments:

D =
ε̄p

∑
ε̄p=0

∆D. (5.3)

Element deletion occurs when the damage variable D exceeds the critical value of 1.
It can be seen that for a constant load path the equivalent strain at fracture is coincident
with the fracture locus. For varying load paths, the equivalent strain at fracture is not
necessarily coincident with the fracture locus, since the entire load path is accounted for
in the damage calculation.

The fracture locus, a continuous function, is discretized and tabulated in MATLAB
and the results are formatted to an LS-DYNA input file using the keywords *DE-
FINE CURVE and *DEFINE TABLE. The discretized fracture locus is linked to the
GISSMO by using the identification number from *DEFINE TABLE as an input for
the variable LCSDG on card 3 of the *MAT ADD EROSION keyword. This variable
interprets the table and curves as a fracture locus in the space of η , ξ and ε̄ f and inter-
polates between the data points. An example keyword file, generated in MATLAB, can
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be found in Appendix G. A validation towards the implementation of the failure models
in LS-DYNA is included in Appendix H.

5.1.2 Conversion

To combine a fracture locus with a forming limit diagram according to the theory pre-
sented by Walters [2014], first the FLD needs to be converted to the space of triaxiality
and equivalent plastic strain; the Lode parameter is dependent on the triaxiality due to
the FLD’s inherent plane stress assumption (Eq. 2.10). The required steps to convert
(ε1,ε2) to (η , ε̄p) are herein presented.

Lee [2005] presented a clear overview of conversion between the FLD and the space
of triaxiality and equivalent plastic strain based on the assumptions of plane stress,
conservation of volume and von Mises plasticity. The relation between stress ratio
β = σ2/σ1 and the strain ratio α = ε2/ε1 is obtained from Hencky’s equations (Eq.
2.22) and is given by:

β =
2α +1
2+α

. (5.4)

The equivalent plastic strain in terms of the strain ratio is given in Eq. 2.17. The
stress triaxiality (Eq. 2.5) can be expressed in terms of the stress-ratio β by:

η =
1
3

1+β√
1−β +β 2

. (5.5)

A more complete overview of the procedure of conversion is depicted in Fig. 5.1.
After conversion the necking model and fracture model are represented in the same

space, making them eligible for application in the framework by Walters [2014].
An example conversion of the BWH necking model is depicted in Fig. 5.2. Note

that the dashed lines correspond between the figures and indicate uniaxial tension, plane
strain and equibiaxial tension.

5.2 Calibration

As discussed in Chapter 2 both a calibrated forming limit diagram from a necking model
and a fracture locus from a fracture model are required in order to predict fracture in
a large shell elements. In this section methods for finding the FLDs from the selected
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Figure 5.1: Conversion of failure loci between spaces. From Lee [2005]. Corrected.

necking models and the fracture loci from the selected failure models are presented. The
current goal is to successfully determine the FLDs and fracture loci for S235 structural
steel using the small scale experiments, so that a prediction of the behaviour of the large
scale experiment can be made. The material models and load curves used for calibration
were presented in Chapter 4.

5.2.1 Fracture Loci

To be able to use a fracture model in the finite element method, first the calibration pa-
rameters of the model need to be determined. To this goal, a set of small scale calibration
experiments was conducted. The amount of calibration experiments used to define the
locus must be equal or exceed the amount of calibration parameters in the failure model.
Fewer experiments than calibration parameters results in a under-determined system of
equations.

A common and simple approach to calibrating a fracture locus is to obtain the av-
eraged Lode and stress triaxiality parameters from finite element analysis. These two
values, along with the equivalent strain at fracture, define a single point on the fracture
locus. Repeating this procedure for all experiments yields a set of points through which
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(a) Original FLD space (b) Converted space

Figure 5.2: Example conversion of Bressan-Williams-Hill locus with n = 0.2

the fracture locus is curve-fitted.
The previously described calibration method serves as an illustration. It is, however,

not very accurate due to the averaging of the load path. To overcome this problem, a
procedure is herein proposed that assumes a damage evolution function in the form of
Eq. 5.2. As a result, no information on the triaxiality and Lode parameter histories is
ignored in the determination of the fracture locus. This method is henceforth referred
to as Variable Load Path Calibration (VLPC) and is similar to the calibration approach
used by Mohr and Marcadet [2015]. In this section the VLPC procedure is described.

A script has been produced which finds the calibration parameters by minimizing
a set of functions using the least squares approach. A validation of this approach is
presented in Appendix I. Using the load paths derived from analysis of the small scale
experiments (Section 4.4), the different fracture loci can be calibrated to the material of
the large scale experiment.

Variable Load Path Calibration

To incorporate the damage evolution into the VLPC procedure, the damage as a function
of the fracture model and its calibration parameters is required. To this goal, the fracture
models’ shape functions are rewritten to a function of the calibration parameters (Eq.
5.6).

ε̄F(η , θ̄)→ ε̄F(C,η , θ̄) (5.6)

Here, C is the array that holds all of the fracture model’s calibration parameters.
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Subsequently, an expression for the damage can be derived from Eqs. 5.2 & 5.3. The
obtained expression is in the form of the left-hand part of Eq. 5.7:

D(C, ε̄p,η , θ̄)→ Di(C) , i = 1,2, ..., Nexp. (5.7)

The right-hand side is the result of the load path substitution and is a system of Nexp

equations, where Nexp is the amount of experiments used for calibration. Fracture is
associated with a damage parameter value equal to 1. Using this information, a min-
imization problem is defined by Eq. 5.8. This set of equations is referred to as the
damage functions:

fi(C) = Di(C)−1. (5.8)

The VLPC procedure has been implemented in MATLAB. The system of equations
in Eq. 5.8 is solved using the least squares approach. This yields a set of calibration
parameters for which the damage variables associated with the calibration experiments
are closest to unity.

The validity of this procedure has been studied and is elaborated in Appendix I. The
validation study of the VLPC procedure shows that proper results are obtained when
a suitable initial guess of the calibration parameters is adopted. Boundary values of
the initial guess for the calibration parameters were suggested, which are listed in the
following 5.1.

Table 5.1: Proposed initial guess domain

Fracture Model Parameter Lower limit Upper limit Unit

Xue σF0 350 1500 MPa
kp 4.2 ·10−6 10−3 MPa−1

Modified Mohr-Coulomb c1 10−4 0.2 -
c2 150 600 MPa

Hosford-Coulomb a 0.3 1.76 -
b 100 1500 MPa
c 10−3 0.2 -
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The values listed in this table have been obtained from an analysis based on fracture
loci calibrated on materials similar to S235. Therefore the proposed domain of initial
guess is not necessarily adequate for all types of steel.

Calibrated parameters

Calibration of the three selected fracture models has been done using the method de-
scribed in the previous section. For each model, several sets of initial guesses for the
calibration parameters were used. These sets were spread across the proposed initial
guess domain (Table 5.1). The results of all initial guesses are presented in Tables 5.2
to 5.5 for all fracture models.

Table 5.2: Xue calibration

σF0 [MPa]
400 800 1200

10−5 Pass Pass Fail
kp [MPa−1] 10−4 Pass Pass Pass

10−3 Fail Pass Pass

Table 5.3: MMC calibration

c1 [-]
10−3 10−2 10−1

200 Pass Pass Pass
c2 [MPa] 400 Pass Pass Pass

600 Pass Pass Pass

Table 5.4: HC calibration (a = 0.1)

b [MPa]
500 1000

c [-]
10−2 Pass Pass
10−1 Pass Pass

Table 5.5: HC calibration (a = 0.2)

b [MPa]
500 1000

c [-]
10−2 Pass Pass
10−1 Pass Pass

These tables depict the outcome of the VLPC procedure for different combinations
of initial guesses for the individual calibration parameters. Each Pass refers to finding
the set of calibration parameters in Table 5.6. Fail indicates the VLPC procedure not
finding a local minimum, and therefore not yielding any results. Finding calibration
parameters that deviate from the values in Table 5.6 did not occur, therefore the values
in this table are adopted.

From the calibrated parameters it can be seen that the models based on Mohr-
Coulomb become purely dependent on the deviatoric part of stress: Coefficients c1 and
c, belonging to MMC and HC respectively, are equal to zero and therefore the models
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Table 5.6: Calibrated Parameters

Fracture Model Parameter Value Unit

Xue σF0 909 MPa
kp 7.31 ·10−5 MPa−1

Modified Mohr-Coulomb c1 0 -
c2 410 MPa

Hosford-Coulomb a 0.474 -
b 1241 MPa
c 0 -

forego their dependency on pressure. This is mainly caused by the high stress triaxiality
at fracture in the flat bar tensile test. Moreover, the MMC criterion is reduced to a max-
imum shear criterion because of this. This is in agreement with the findings in Pack and
Mohr [2017], where it is stated that, for the HC model, the coefficient c, associated with
the internal angle of friction (Eq. 3.9), is negligible in biaxial tension. The Xue model
is inherently different as it is not based on the Mohr-Coulomb criterion and still retains
some pressure dependency in the form of kp.

Figure 5.3: Calibrated loci

A graphical representation of the necking loci and the fracture loci is given by Fig.
5.3 for in-plane tensional states of stress.
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5.2.2 Necking models

Calibration of the necking models is more straight-forward than calibration of fracture
models: the necking models are expressed in terms of power law hardening parameters
and therefore require no separate calibration procedure. These parameters are listed
in Table 4.4. Inserting these in the formulations of the necking models presented in
Chapter 3 yields the necking loci in the space of major and minor strains. Applying
the conversion technique from Lee [2005] (Section 5.1.2) enables the necking loci to be
combined with the fracture loci.

5.2.3 Element Size Dependency

In Section 2.3.3 the framework by Walters [2014] was presented to account for element
size dependency on fracture strain of shell elements due to their inability to describe the
state of stress inside a neck. The theory states that the fracture strain can be described
by a linear combination of a necking locus and a fracture locus, making use of a scaling
parameter γ , which is a function of element size. Unfortunately, problems arise if cal-
ibration of the fracture locus was done using fine solid elements: if the element size is
small enough that the solution is converged, then further reducing the element size has
no effect on the fracture locus obtained from calibration a fracture model. However, the
scaling factor γ is affected by the smaller element size used for calibration. This is illus-
trated in Fig. 5.4, where the thickness equals the calibration thickness and calibration
was done using different but converged element sizes.

Figure 5.4: Effect of element size used for calibration on weighting factor γ
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The continuous lines in this figure depict the scaling factor γ based on two converged
element sizes used for calibration (The red and blue asterisks). If one were to apply this
theory to obtain the equivalent strains at fracture for an element size of le = 10t then
inconsistent values of γ are obtained (The red and blue circles). Therefore a modification
to Walters’ framework is herein proposed: an alternative shape function for element-
size dependency γ(le) is employed, which is based on the assumption that for fine solid
elements fracture strain converges to the fracture locus, and for large solid elements the
fracture strain converges to the necking locus. A suitable formulation is presented in
Eq. 5.9 and is depicted by the dashed lines in Fig. 5.4:

γ = tanh
(

c1

[
t
le

]c2
)
. (5.9)

This formulation includes two coefficients c1 and c2 that are required to calibrate
the shape function: the coefficients capture the element size dependency in the transient
zone for intermediate element sizes (le/t ≈ 1). These coefficients adjust the horizontal
position and the slope of the hyperbolic tangent and need to be determined, for instance
by using finite element analysis or digital image correlation data.

An element size of le/t ≥ 1 results in a single element through thickness if solid ele-
ments are used to model plate material, causing the results from finite element analysis
to be similar to results obtained using shell elements of equal size. Based on this con-
sideration, the herein suggested theory provides a solution of applying a fracture locus
calibrated on solid elements to predict fracture in shell elements.

To achieve successful calibration of this shape function (Fig. 5.4), at least two values
of scaling factor γ associated with two different element sizes are required to determine
the two calibration parameters in Eq. 5.9. To this goal, the effect of the element size on
the scaling factor γ was determined using the finite element model of the flat bar tensile
test. Using the nodes in the FE model several virtual elements have been determined.
Initially, all virtual elements were square, determined by four nodes that are equidistant
to the center of the neck. Figure 5.5a depicts the smallest and largest virtual elements
and their nodes in a deformed state. The length of the largest virtual element was equal
to the width of the specimen (20 mm). Using the nodal displacements and their initial
positions, the virtual strain histories were determined. Subsequently, the conversion by
Lee [2005] (Fig. 5.1) was used to obtain the stress triaxiality and equivalent plastic
strain, defining the virtual load paths.
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(a) Smallest and largest vir-
tual element

(b) Failure loci and load paths for finding γ

Figure 5.5: Calibration method for element-size dependent failure

For each virtual load path (the dotted lines in Fig. 5.5b), associated with a certain
virtual element size, the value for γ is determined by applying inverse damage accu-
mulation (Section 5.2.1) to the linear combination of the failure loci (Eq. 2.28). Note
that the values of γ are therefore not only dependent on the element size, but also on
the fracture and necking loci. The coefficients in the element-size-dependency shape
function (Eq. 5.9) are readily obtained by curve-fitting to the pairs of γ and le obtained
from the virtual elements (Fig. 5.6).

Figure 5.6: Calibrated shape function for the combined MMC-Swift locus

Now that the calibration coefficients of the shape function are known, the obtained S-
curve relation between the scaling factor γ and the element size can be used to determine
the combined failure locus. This procedure was repeated for all combinations of fracture
and necking loci.
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Figure 5.7: Combined loci

It is important to realize that the scaling factor is unique for each combination of a
necking locus with a fracture locus. The height of the combined locus is highly affected
by the load paths on which the the S-curve was calibrated. However, the shape of
the combined locus highly depends on the shapes of the original necking and fracture
locus. The calibrated MMC and Xue loci show large similarity (Fig. 5.3). As a result,
combination of either of these loci with a necking model produces very similar loci. This
can clearly be observed from Fig. 5.7, where the Xue-BWH locus is almost coincident
with the MMC-BWH locus. The same is obviously true for the combinations with the
Swift necking locus.

5.2.4 Practical approach

To be able to make statements on the performance of the combined failure loci with
respect to a more practical approach that requires only a single calibration experiment,
the Modified Mohr-Coulomb model was re-calibrated using the circular punch only:
Voormeeren et al. [2014] has shown that the Modified Mohr-Coulomb coefficients c1

and c2 are related to each other for in-plane tensional states of stress. This means that
only the height of the plane-stress MMC locus is scaled by the calibration parameters,
without affecting the shape. Therefore c1 = 0 was chosen freely, while c2 was calibrated
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on the circular punch test in two ways:
1. using the variable load path calibration procedure (Section 5.2.1)
2. using the equivalent strain at fracture and assuming equibiaxial tension throughout

the deformation process
For the second method, the equivalent failure strain can be obtained from FEA, DIC

or post-mortem thickness measurements. For the punch test no DIC was available. The
results from FEA are in good agreement with the thickness measurements: the obtained
strains at failure were ε̄ f = 0.72 and ε̄ f = 0.71 respectively.

For the VLPC procedure c2 = 380.5 MPa is obtained. Ignoring the stress-state his-
tory and assuming equibiaxiality yields c2 = 351.8 MPa. These parameters lead to pre-
dicted failure strains of ε̄ f = 0.513 and ε̄ f = 0.332 in plane-strain tension. Even though
both loci are calibrated using the punch test only, the results cause a large difference
between the fracture loci due to the assumption of equibiaxiality.

Figure 5.8: Single-parameter failure loci

The most common approach to predict failure is by assuming a constant value of
the equivalent plastic strain at failure, therefore foregoing all dependency on stress-state
and element size. The constant equivalent failure strain (CEFS) was obtained from
the material certificate (ε̄ f = 0.36, Appendix B) and from the flat bar dogbone test
(ε̄ f = 0.28, Section 4.1). Both values are different, even though both are obtained from
tensile testing: the gauge length of the extensometer has a large influence on the failure
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strain due to the presence of a neck. All herein presented failure loci are depicted in Fig.
5.8, along with the combined Xue-Swift locus for comparison.

Chapter Summary

In this chapter a method was presented that allows implementation of failure models
into LS-DYNA without requiring a user-defined subroutine. Subsequently, a method
to convert necking models from the space of (ε1,ε2) to (η , ε̄p) that is required for the
application of necking models was introduced. Lastly, the calibration methods for the
failure models have been presented, as well as a new technique for including element
size dependency. This technique was applied to all possible combinations of necking
and fracture loci to obtain six combined failure loci. These will be applied to the finite
element model in the next chapter.
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Chapter 6

Experimental Validation

In this chapter the raking damage experiment conducted by Stan Haag (Haag et al.
[2017], Haag [2017]) is presented. This experiment is used for experimental valida-
tion of the work presented in the previous chapters of this thesis. Validation obviously
requires a finite element model. The details of this model are also presented in this chap-
ter. Subsequently, the results of both the experiment and of the finite element analysis
are compared to each other and the results are discussed.

6.1 Raking Damage Experiments

The experiment was designed by Haag to mimic a raking-damage scenario where a ship
collides with a submerged rock as often occurs during ship grounding. The raking-
damage specimens were created from the same plate of S235 structural steel as the
specimens of the small-scale experiments presented in Chapter 4.

6.1.1 Experiment

The raking-damage experiment was specifically designed for the drop-tower facility in
the laboratory of the Structural Dynamics department of TNO in Delft, the Netherlands.
A cylindrical indenter with hemispherical ends represents the submerged rock (Fig. 6.1).
The indenter was attached to a drop mass of 4575 kg. Directly underneath the drop mass
two plate specimens were mounted to a frame under an inclination of 15 degrees with
respect to the drop direction, representing the plating in the hull of a ship. Therefore in
the experiment the “rock” collides with the “ship”. The experiment was designed to be
symmetrical to prevent horizontal deflection of the indenter during the experiment.

The frame consists of steel tubes with a square cross-section (140 mm x 140 mm
x 12.5 mm). The specimens are attached to the frame at the flanges using five M30
bolts protruding through the frame per flange. The CAD drawings including the dimen-
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(a) Overview (b) Detailed view

Figure 6.1: Computer-aided design of the experimental setup. Credit: Stan Haag.

sions of the specimens, the frame and the indenter are presented in Appendix J. For
further details and properties of the different parts in the experimental setup the reader
is referred to the original design presented in Haag [2017].

(a) (b) (c) (d) (e)

Figure 6.2: Sequential representation of fracture during the raking damage experiment.
Credit: Stan Haag.

At the start of the experiment the drop mass is released and starts to translate down-
wards (in negative z-direction in Fig. 6.1) under the influence of gravity. The maximum
drop height of the setup was approximately 1.5 m. After the indenter has made contact
with the specimens, the specimens start to deform and eventually fracture occurs (Fig.
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6.2). During the experiments the accelerations of the drop mass were measured using
two accelerometers located close to the indenter. The experiment was conducted four
times. In the first two experiments the drop height was lower than its maximum and
no fracture occurred after a single drop. Consecutive drop tests were performed on the
already deformed specimens until either one of the specimens had ruptured; fracture
never occurred in both specimens due to a misalignment of 20 mm of the frame relative
to the drop tower. In experiments 3 & 4 the maximum drop height was used. Friction
in these experiments was reduced by sanding the specimens and applying grease to the
contact surfaces of both the specimens and the indenter. These measures ensured that
fracture occurred during the first drop.

6.1.2 Finite Element Modelling

The dimensions of the setup of the raking damage experiment are presented in Appendix
J; the finite element model has been created accordingly. The finite element model is
subdivided in three parts: The specimens (Colored blue in Fig. 6.3), the indenter (green)
and the frame (yellow). All parts were meshed using Belytschko-Tsay shell elements
with five integration points through-thickness.

(a) Overview
(b) Front view and drop direction

Figure 6.3: Finite element model of the experimental setup

For the specimens an element size of 25 mm was used. Ideally, elements with a
larger length-over-thickness ratio are desired, since this is more common in numerical
analysis of maritime collisions. However, using larger elements yields poor results as
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these are unable to follow the shape of the indenter during the simulation: the element
size is limited by the radius of the indenter. A mesh convergence study has not been
performed, since obtaining convergence is not a goal: accurate prediction of failure in
shell elements is the goal, regardless of whether the mesh is converged. The material
model used for the specimens was presented in Section 4.3 and was derived using the
flat bar tensile test. For simplicity the bolted connection between the frame and the
specimens were not modelled. In stead the nodes located at the ends of the flanges of
the plates were constrained in all directions. Interaction between the frame and the plate
were treated using a surface-to-surface contact definition. The thicknesses of both the
specimens and the frame were accounted for geometrically.

Excluding the frame from the model results in a significant overestimation of the
stiffness, which could not be neglected. Therefore the inclined tubes of the frame were
added to the model. The mesh of the tubes matches the mesh of the specimens. Fixed
boundary conditions were applied on the nodes located at the ends of the tubes. No
information on the steel-grade of the frame was available. Therefore a linear elastic
material model was adopted with the same elastic properties as the material of the spec-
imens.

For the indenter a rigid material model was used. The part consists of shell elements
of negligible thickness. The mass density was tuned so that the total mass of the part was
equal to the entire drop mass (4575 kg). Displacement of the indenter in any direction
other than the vertical direction was constrained. To account for the misalignment of
the experimental setup, a horizontal offset of the indenter of 20 mm was included in the
model (Fig. 6.3b). A surface-to-surface contact definition that is suitable in combination
with element erosion was applied between the indenter and the specimens. Haag et al.
[2017] conducted experiments to determine the friction coefficients for greased steel-on-
steel contact. For the same grease that was applied to the raking damage experiments,
he observed that the Coulomb friction coefficient during the experiments was fairly
constant and he suggested a value of µ = 0.03. This value has been adopted in the finite
element model.

6.2 Results

During the experiment the accelerations of the indenter in time were measured. By
integration of the acceleration the vertical velocity and displacement of the drop mass
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are readily obtained:

ż =
∫

z̈ dt (6.1a)

z =
∫

ż dt =
∫∫

z̈ dt dt. (6.1b)

Since the measured signal is discrete a trapezoidal integration scheme was used
for numerical integration. Using the results from integration the kinetic and potential
energies of the drop mass are determined:

Ekin =
1
2

mż2 (6.2a)

Epot = mgz. (6.2b)

Due to the law of conservation of energy, the energy dissipated during the experi-
ment is obtained from the kinetic, potential and total energy. No energy is dissipated
until the indenter is in contact with the plate. Therefore the total energy is derived from
the kinetic and potential energy of the indenter at t = t0 before the indenter strikes the
specimens:

Edis(t) = Etot(t = t0)−Ekin(t)−Epot(t). (6.3)

In this formulation the kinetic energy of the specimens is neglected; finite element
analysis shows that this energy is less than 0.1% of the total energy. Unfortunately, the
elastic potential energy of the specimens cannot be distinguished from the measurement
data and is unavoidably included in the dissipated energy. However, at fracture the
elastic strain is small compared to the plastic strain, and therefore the contribution of the
elastic potential energy in the specimens in negligible compared to the energy dissipated
by plastic deformation. The kinetic energy of the specimens, derived from FEA, did not
exceed 0.1% of the total energy, and is therefore also negligible. As a result, the only
dominant contributions to the total energy dissipation are caused by friction and by
plastic deformation:

Edis = E f ric +Epl. (6.4)
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Experiment

The dissipated energy during the deformation process was calculated for the tests where
fracture occurred during the first drop: tests 3 and 4. In Fig. 6.4 the energy dissipation
during the experiment is plotted against the displacement. This is the absolute displace-
ment of the indenter in vertical direction, starting from an arbitrary height where the
indenter was not in contact with the specimens.

Figure 6.4: Dissipated energy during experiments

The results of test 3 and 4 are in good agreement with each other. Their averaged re-
sults are used for validation of the numerical results. The experimental points of fracture
were determined in Haag [2017] by synchronization of the acceleration measurements
with a high-speed-camera system. The average point of experimental fracture is de-
picted by the leftmost vertical line in Fig. 6.4. The rightmost vertical line indicates
when the indenter first touches a damper mounted underneath the experimental setup.

Finite Element Analysis

The finite element model of the raking damage experiment was evaluated without any
failure criterion. The results from FEA are presented together with the experimental
results in Fig. 6.5. Rather than obtaining the dissipated energy directly from the post-
processor, the dissipated energy from FEA has been calculated in the same way as the
experimental dissipated energy.
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Figure 6.5: Finite element results without failure criterion using shell elements of 25
mm

Up to the experimental point of fracture the agreement between the FEA and ex-
perimental results is good. Beyond this point the structural integrity of the plate is
compromised. This leads to a reduction of the rate at which energy is dissipated in the
experiment. However, in the finite element model no elements are deleted and thus the
amount of energy that is being dissipated is overestimated.

Figure 6.6: Load path of the critical element
up to the experimental point of fracture

Figure 6.7: Equivalent plastic strain
distribution from FEA at the experi-
mental point of fracture

The load path of the element that is deemed to be the first element to be deleted is
depicted in Fig. 6.6. This load path was obtained from the integration point where the
equivalent plastic strain was the highest at the moment when the indenter displacement
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in the simulation was equal to the experimental indenter displacement at fracture. As the
indenter approaches, the state of stress is between plane strain and equibiaxial tension.
Similar to the experiment (Fig. 6.2) failure in the model is expected at the apex of the
spherical part of the indenter, where the plastic strain shows a local maximum (Fig. 6.7).
At this point the plate is no longer bulging and therefore the stress triaxiality is reduced
just before failure.

Failure

Subsequently, failure was introduced by applying the failure loci obtained from com-
bining fracture loci with necking loci (Section 5.2.3). Element erosion occurs as soon
as the failure condition D≥ 1 (Section 5.1.1) is met in a single integration point, based
on the assumption that through-thickness crack growth is unstable.

Figure 6.8: Finite element results using combined failure loci as failure criteria

The results in Fig. 6.8 show that the fracture strain is underestimated by all failure
loci, meaning that element erosion occurs too early during the simulations and there-
fore the energy dissipation is underestimated as well. Inspection of the finite element
model shows that failure occurs in triaxialities between plane strain tension and equib-
iaxial tension ( 1√

3
< η ≤ 2

3 ). Therefore the height of the failure loci (Fig. 5.7) in this
range is highly related to the total amount of dissipated energy (Fig. 6.8): a larger un-
derestimation of the equivalent strain at failure causes a larger underestimation of the
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dissipated energy. For further comparison, the Xue-Swift locus is used, since it provides
the smallest underestimation of the energy dissipation.

Element dependency

If the theory on element-size dependency that is presented in Section 2.3.3 and applied
in Section 5.2.3 is correct, then the results obtained from a solid-element model and a
shell-element model must be in agreement with each other. Moreover, scaling the failure
locus for different element sizes according to the theory must not affect the amount of
dissipated energy.

In the finite element model the shell elements belonging to the specimen part were
replaced by solid elements. The dimensions of the solid elements agree with the side
lengths and thickness of shell elements. To account for bending stresses and for the poor
aspect ratio, LS-DYNA’s solid element formulation -2 has been used, which are fully
integrated solid elements.

Figure 6.9: Effect of element type

In Fig. 6.9 the results of both models are presented. First deletion of elements is indi-
cated by a circle. The solid model’s results are in good agreement with the shell-element
results up to element deletion: the rates of energy dissipation are visually indistinguish-
able and the points at which the first element deletion is predicted are fairly close to each
other. This is important as it indicates the validity of the assumption that the response
of shells is similar to that of solids for element sizes larger than the thickness. Also,
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element erosion seems to be barely affected by the element type: The first solid element
is removed from the model at a slightly later moment during the simulation. This is
attributed to the location within the element where the damage is evaluated. However,
after the numerical onset of failure, the solid model overestimates the amount of en-
ergy dissipation. The contact definition used in LS-DYNA accounts for the deletion of
elements. Its applicability on solid elements, however, is questionable.

The element size of the shell-element model (Fig. 6.3) was reduced by splitting the
shell elements in both in-plane directions, resulting in an element size of le = 12.5 mm
and quadruplication of the number of elements. The combined Xue-Swift failure locus
was determined for this element size.

Figure 6.10: Effect of element size

The results of applying the Xue-Swift failure locus for both element sizes are pre-
sented in Fig. 6.10. Failure is predicted at an earlier stage during the simulation for
the smaller element size, even though the failure strain for the smaller element size is
larger: for an equal thickness, the failure locus is higher for a smaller element size, since
the scaling factor γ is higher (Fig. 5.6). However, a strain concentration exists in the
specimens in proximity of the apex of the indenter. Smaller elements are able to model
this strain concentration more accurately, resulting in higher strains than in the original
model. Therefore the failure strain is reached at an earlier stage in the simulation, even
though the failure strain is higher.

For the finite element results presented in Figures 6.8 & 6.10 the equivalent strain
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Table 6.1: Strain at failure and dissipated energy results

le [mm] Failure model ε̄ f error [%] Ebottom
dis [kJ] error [%]

25

Xue-BWH 0.401 -19.0 59.22 -15.8
Xue-Swift 0.446 -9.9 62.74 -10.8
MMC-BWH 0.402 -18.8 59.09 -16.0
MMC-Swift 0.447 -9.7 62.47 -11.2
HC-BWH 0.369 -25.5 53.67 -23.7
HC-Swift 0.401 -19.0 57.25 -18.6
Reference 0.495 70.36

12.5
Xue-Swift 0.531 -29.7 58.43 -17.0
Reference 0.755 70.36

at failure of the first element during the simulation are presented in Table 6.1. The
reference strain is obtained from the simulation where no failure criterion was applied
at the moment of experimental fracture. The results of the dissipated energy are also
presented. These results are associated with the moment that the indenter touches the
damper at the bottom of the experimental setup.

Practical approach

In this section the Xue-Swift locus is compared to several failure models that require
only a single experiment for calibration. In Section 5.2.4 two different single-parameter
Modified-Mohr Coulomb loci and two different values of constant equivalent failure
strains (CEFS) were presented. These failure models were applied directly in the FEM
without combination with a necking locus. The results are depicted in Fig. 6.11 along
with the results from applying the Xue-Swift locus to the finite element model.

The MMC locus obtained by assuming equibiaxial tension during the deformation of
the circular punch test (c2 = 351.8 MPa) underestimates the failure strain, and therefore
the dissipated energy, by a larger percentage than the combined Xue-Swift locus. The
MMC locus calibrated using damage accumulation (c2 = 380.5 MPa) over-predicts the
failure strain and only deleted two elements during the end of the simulation.

The constant equivalent failure strains predict failure of elements at an earlier stage
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Figure 6.11: Single-parameter failure-loci results

during the simulation than the Xue-Swift locus, indicating an even larger underestima-
tion of the failure strain. This is a logical consequence, since the minimum value of the
Xue-Swift locus (Fig. 5.8) is approximately equal to the highest CEFS (ε̄ f = 0.36, from
the material certificate); for most states of stress, the Xue-Swift locus predicts higher
failure strains.

6.3 Discussion

In the previous section the results from finite element analysis have been compared to
experimental results. This section interprets the results and discusses the influence on
the results of various aspects explained in this thesis.

Calibration

In Section 5.2.1 the selected fracture models were calibrated on all four small-scale ex-
periments. Subsequently, the MMC model was also calibrated to only the punch test
using the same procedure (Variable Load Path Calibration). The latter locus (Fig. 5.8)
is substantially lower than the MMC locus calibrated on all four experiments (Fig. 5.3):
the strain at fracture in the tensile specimens is substantially higher than the fracture
strain in the punch-loaded specimens. The two-parameter fracture models (MMC &
Xue) lack the mathematical flexibility to accurately describe fracture in all four speci-
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mens. As a result, the fracture loci calibrated on all four specimens would overestimate
the fracture strain in the punch specimens, while underestimating th fracture strain in
the tensile specimens. The Hosford-Coulomb model is less affected by this phenomenon
due to its increased flexibility, courtesy of the additional calibration parameter.

In Section 5.2.3 a method was presented to obtain a ‘combined’ failure locus based
on the element size, a necking locus, and a fracture locus. The height of the combined
locus depends on the method used to calibrate the S-curve. In this thesis a method was
used to account for the effect that the element size has on the failure strain in a necking
specimen. Two different element sizes were used to model this experiment. However,
the theory to account for element-size dependency could not be validated due to the
differences between the results obtained from using different element sizes. Possible
causes for these differences are discussed in the two following subsections.

Necking

In Figures 4.6 and 4.10 the force-indentation diagrams of the circular punch and Hašek
tests were presented. During the deformation process of the specimens, the force kept
increasing until the indentation at fracture was nearly reached; a slight decrease in force
is observable from the force-indentation curves just before fracture. Whether this is
caused by necking or by loss of integrity due to internal damage cannot be determined.

In Chapter 5 the selected necking and fracture models were calibrated to the material
considered in this thesis. The obtained loci (Fig. 5.3) show that necking is always
expected long before fracture, independent of the state of stress. This conflicts with the
experimental results. Therefore the performance of the necking models is questionable
for biaxial tensile conditions under out-of-plane loading, which are common in the event
of ship collision. A possible explanation for this is that some bending stresses were
present in the bulging specimens, while the necking models were derived assuming
uniform in-plane stresses without any bending component.

The failure loci for application in the FEM are obtained using the theory for com-
bining a necking locus and a fracture locus to predict element-size dependent failure
of shell elements (Sections 2.3.3 & 5.2.3). The theory results in high dependency of
the failure locus on the element size if necking occurs long before fracture, and low
element-size dependence if necking occurs just before fracture. Since the necking loci
predict necking long before fracture in the bulging experiments, high element-size de-
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pendence is obtained for the associated states of stress. Technically, however, small (or
even no) element-size dependence is expected, since necking occurred only just before
fracture (or not at all).

In summary, in the out-of-plane loaded (bulging) specimens:

1. Necking occurs either just before fracture, or not at all
2. Necking is predicted long before fracture by the necking loci

This causes considerable dependence of the failure strain on the element size in bulging
conditions, while no or little element-size dependence is expected. For an increasing
element size the failure locus converges towards the necking locus. As a result, failure
loci for larger elements generally underestimate the failure strain and the dissipated
energy in the raking damage model (Table 6.1 & Fig. 6.8). However, this phenomenon
is counteracted, as will be discussed in the following subsection.

Strain concentrations

Both diffuse and localized necking may lead to strain concentrations. To account for
these strain concentrations, element-size dependence of the failure locus is introduced
by Walters’ framework (Walters [2014]). The effects of this framework were discussed
in the previous subsection. However, not all strain concentrations are caused by necking:
strain concentrations were present in all bulging specimens during the entire deforma-
tion processes, yet these concentrations have been caused by the geometry and the load
rather than by necking (Fig. 6.7).

Since mesh convergence has typically not been reached in finite element analysis of
ship collision, the peak strain within such a strain concentration highly depends on the
size of the elements. The theory used in this thesis accounts for strain concentrations
due to necking, yet does not account for the element-size dependency of the peak strain
in strain concentrations caused by the geometry and the load. If mesh convergence has
not been reached, the peak strain is generally underestimated. Therefore the failure
strain is overestimated by the method used in this thesis if the mesh is not converged.

This effect counteracts the effect discussed in the previous section, which causes a
general underestimation of the failure strain. This can be observed from Fig. 6.10 and
Table 6.1: Generally, the failure strain is underestimated. However, the larger elements
are less able to accurately model the peak strain, resulting in a smaller total underes-
timation of the failure strain and dissipated energy. In other words: larger elements
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underestimate the plastic strain, therefore the failure condition is reached at a later stage
during the simulation.

However, two wrongs do not make a right and both effects only increase the uncer-
tainty in the prediction of failure.

Practical approach

In Figure 6.11 the results of several more practical approaches were compared to the re-
sults obtained by using the combined Xue-Swift locus to predict failure in 25 mm shell
elements. The associated failure loci have been presented in Fig. 5.8. Both values of
constant equivalent failure strain result in a large underestimation of the failure strain
and the dissipated energy: these values have been determined using tensile tests with a
certain gauge length. Therefore CEFS can be interpreted as a failure criterion for a spe-
cific loading condition (uniaxial) and a specific element size (the gauge length). Since
the CEFS was employed on elements of a different size and under different loading
conditions, the poor performance of CEFS is not surprising.

Between the single-parameter Modified-Mohr Coulomb loci, a discrepancy in per-
formance is observed: The failure strain is either over- or underestimated, depending on
the calibration method. Assuming pure equibiaxial stress to calibrate the MMC model
results in a low failure locus (c2 = 351.8 MPa, Fig. 5.8): the MMC locus is very steep
in this region. As a result, a small difference in stress triaxiality has a large effect on the
failure strain. Therefore making the equibiaxiality-assumption is not recommended.

On the other hand, using the MMC locus obtained by employing the Variable Load
Path Calibration procedure causes an overestimation of the failure strain and the dissi-
pated energy: this locus was calibrated on the load path of the punch test, which was
obtained using fine solid elements. Obviously, the inability of the used shell elements
to accurately describe peak strains causes the failure condition to be reached at a later
stage during the simulation. The MMC locus calibrated on the punch test using the
VLPC procedure can therefore be interpreted as an upper-bound of the failure locus for
shell elements, but is not expected to provide accurate prediction of failure.

If mesh convergence has not been reached, applying the single-parameter loci to
smaller elements is expected to result in element failure at an earlier stage in the simu-
lation: smaller elements describe the strain concentration in the plate in the proximity
of the indenter more accurately and yield higher strains, causing the failure condition to
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be reached sooner. For this specific model with an element size of 25 mm the combined
Xue-Swift is preferred over the practical approaches due to its predictive capabilities
in terms of failure strain. However, considered the previously discussed influences of
the size of the shell elements, the same is not necessarily true for different models or
different element sizes.

Friction

The presented dissipated energies contain the contributions of both friction and plastic
deformation. As a result, the error made in the modelling of friction also protrudes
in the presented results. However, Haag [2017] has concluded that energy dissipation
due to friction in the experiment could not be accurately determined from the available
digital image correlation results and infrared measurements. Therefore the total energy
dissipations were compared in this research, assuming that the Coulomb friction model
accurately describes the friction in the experiment and thus assuming that the error due
to friction modelling is negligible compared to the error due to failure modelling.

Chapter Summary

This chapter was dedicated to the validation of the stress-state dependent failure criteria
presented in the previous chapters. First of all, the raking damage experiment that has
been used for validation was introduced, along with the finite element model that has
been created. The different failure criteria have been applied to the finite element model
and the obtained results were presented and discussed.
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Chapter 7

Conclusions

This thesis was set out to offer an improvement in the numerical analysis of ship col-
lision by examining the effect of applying state-of-the-art failure models in LS-DYNA.
A research question containing three sub-questions was formulated in Section 1.3 to
serve as a guideline throughout this research. In this chapter conclusions are presented
in accordance to the research question.

1. Which failure models satisfy the imposed restrictions?

To limit the amount of effort required to use the failure models is LS-DYNA, two re-
strictions were imposed. First, the failure model was not allowed to depend on more than
three calibration parameters. Increasing the amount of calibration parameters highly in-
creases the amount of time required, since more calibration experiments need to be
designed, conducted and analyzed. Second, the user must be able to implement the
model without expert knowledge of the finite element package, using only the built-in
functionality. A method in LS-DYNA was found that allows the application of stress-
state dependent failure models. Three fracture models were found to be eligible for this
method: The Xue model (after modification to depend on stress triaxiality), the Modified
Mohr-Coulomb model (after reduction of the amount of calibration parameters) and the
Hosford-Coulomb model. This selection was supplemented by two models that predict
the onset of necking: the Swift model for diffuse necking and the Bressan-Williams-Hill
model for localized necking.

2. For the application of the material model, the failure models and friction, what
precautions can be taken to restrict the introduction of errors?

A sensitivity analysis was performed for three modelling aspects: the element size,
initial defect size and the hourglass-control coefficient. The four small-scale experi-
ments were modelled in LS-DYNA using solid elements in accordance with the results
of these sensitivity studies.

To determine the material model, an iterative procedure has been used. This proce-
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dure, known as the inverse method, requires updating the material model in the FEM
until a satisfactory match was achieved between the finite element results and an ex-
periment. In this thesis, the uniaxial flat bar tensile test was used: the experiment was
modelled in LS-DYNA using solid elements. The results from FEA were compared to
the engineering stress-strain curve obtained from the experimental data. Iteratively, the
material model was updated and the FE-model was re-evaluated, until the engineering
stress-strain curve from FEA could not be visually distinguished from the experimental
results.

The effect of friction in the punch-loaded small-scale experiments was modelled by
tuning two friction coefficients: one coefficient for the contact between the indenter and
the specimen, and another coefficient for the contact between the specimen and the sup-
port. The combination of friction coefficients that provides the closest match with the
experimental results was used for further analysis. For the raking damage experiment,
separate friction tests were conducted by Haag [2017] to determine the friction coef-
ficient between the specimen and the indenter. The results of these friction tests were
applied to the finite element model of the raking damage experiment consisting of shell
elements.

For the failure models several precautions were taken: LS-DYNA uses an algorithm
called damage accumulation to determine when elements are deleted from the model.
To obtain consistent results, a calibration method was developed based on the inverse
of the damage accumulation algorithm. This method was named Variable Load Path
Calibration and has been used to calibrate the fracture loci. A validation for this method
has been presented. Also, the method used to implement a failure model into LS-DYNA
was validated to ensure correct application of the failure models.

3. How can the failure models be applied to a finite element model consisting of
shell elements?

Walters [2014] provided a theoretical framework to account for element-size depen-
dency of failure in shell elements. This theory combines a fracture locus with a necking
locus by using a scaling factor that depends on the size of the shell elements and the
thickness of the plate. The theory was modified by employing an alternative shape
function, called the S-curve, to determine the scaling parameter as a function of the ele-
ment size. This new shape function required calibration, therefore a calibration method
was also presented. Subsequently, the three calibrated fracture loci were combined with
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two necking loci, using the newly presented method for element-size dependent failure
of shell elements. This resulted in six different failure criteria to be applied to the finite
element model of the raking damage model used for validation.

Which stress-state dependent fracture prediction method yields the smallest error in
terms of energy dissipation by plastic deformation of structural steel plating in the event
of collision?

The combination of either the Xue model or the Modified Mohr-Coulomb model
with the Swift necking model provides the closest estimation of the amount of dissi-
pated energy during the raking damage experiment. The failure loci obtained from both
combinations are very similar and therefore also produce similar results when applied
to any finite element model. However, the relative position of the calibrated (theoreti-
cal) necking and fracture loci is not in agreement with experimental observations. This
causes the applicability of this highly theoretical approach to be questionable. More-
over, the inability of shell elements to accurately describe strain concentrations has a
large influence on the prediction of fracture. As a result, the used theoretical approach
to predict failure in shell elements is subject to large uncertainties due to the size of
these elements.

Besides the theoretical approach, two more practical approaches, the single param-
eter Modified Mohr-Coulomb model and the constant equivalent failure strain, have
been included in this research for comparison. These failure models did not account for
element-size dependency. The Xue-Swift locus provides a more accurate prediction of
the failure strain than the single-parameter approaches in the raking damage model for
the considered element size of 25 mm. This statement can, however, not be made with
certainty for other element sizes or other models.

In this research the application of stress-state dependent failure models on shell ele-
ments for analysis of the crashworthiness of ships in LS-DYNA has been explored. The
merits of applying complex multi-parameter failure models could not be determined.
The uncertainty caused by the inability of shell elements to accurately describe strain
concentrations and the dependence of the failure strain on element size nullifies the ben-
efits of multi-parameter models. Accurate fracture prediction can only be achieved if
the dependency of the failure strain on both the state of stress and the element size is
accurately modelled.
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Chapter 8

Recommendations

Although fracture can be predicted with reasonable accuracy in finite element models
consisting of fine solid elements, fracture prediction in analysis of maritime collision has
been shown to be highly subject to effects related to the size of the used shell elements.
Based on the findings and gained experience during this research, several recommen-
dations are made in this chapter for future research and for prediction of fracture in the
analysis of the crashworthiness of ships.

Future research

Further research towards the effect of element size on failure strain is required. A nu-
merical study towards the effect of different mesh sizes is suggested using, for example,
the raking damage experiment. Starting off by determining the failure strain for a con-
verged mesh and then expanding towards larger shell elements may yield insights in
how the failure strain is related to the element size in FE models of out-of-plane loaded
structures.

For accurate prediction of failure in any type of finite element model consisting of
shell elements, models for the element-size dependence and the stress-state dependence
of the failure strain are required. Until now, element-size dependence and stress-state
dependence have only been treated as uncoupled phenomena. Expanding this research
by coupling both dependencies for in-plane tension might prove fruitful.

An alternative to the previous suggestion, is to distinguish between failure in in-
plane and out-of-plane loading conditions. No clear evidence of the presence of a neck
is found in any of the bulging experiments considered in this research. Further research
is required to determine under which conditions necking needs to be accounted for in
the prediction of fracture for mild structural steel. Possibly, even a failure model for
application in out-of-plane loaded conditions could be conceived.
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Application in FEM

Until a viable solution for the element-size-dependency problem has been found, us-
ing the maximum shear criterion in the form of the single-parameter Modified Mohr-
Coulomb model is suggested. Modelling a punch test using coarse shell elements and
calibration using the inverse damage accumulation (the VLPC procedure) is expected
to provide reasonably accurate results when applied to a FE model of an out-of-plane
loaded plate consisting of shell elements, while the required effort for application re-
mains acceptable.

Continuing on the previous recommendation, calibration on the punch test and ap-
plication of the obtained locus in the raking damage model using a constant ratio of the
shell element size to the indenter radius le/R might prove useful as the strain distribu-
tions over the spherical part of the indenter are expected to be similar.

Calibration based on assuming the state of stress has been shown to have a detri-
mental effect on the failure locus and is therefore highly discouraged.
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Appendix A

Fracture Prediction History

One of the earliest and most basic strain-based failure models simply assumes that frac-
ture occurs when a certain equivalent failure strain is reached (Eq. A.1). This model
is more commonly known as Constant Equivalent Failure Strain (CEFS) and is most
straight-forward to use.

ε̄ f =C (A.1)

The constant C represents a calibration parameter which requires at least a single
test to establish. In hereafter discussed failure models the calibration parameters are
also denoted by C, which are not necessarily interchangeable. In the case of multi-
ple calibration parameters in a single model, subscript indices are attributed. Material
fracture is predicted at the instant that the equivalent strain equals or exceeds the CEFS.

ε̄p ≥ ε̄ f (A.2)

The constant factor in this equation calibrates the equivalent strain to the first princi-
pal strain in the case of uniaxial tension and results in equivalent stress and strain being
energy conjugates.

Even though the CEFS completely neglects all dependency on other potentially in-
fluential parameters, such as triaxiality and Lode parameter, it is until the present day
still an engineer’s favourite due to its simplicity; calibration of this failure model is
straight-forward, as it has only a single parameter, which can be obtained from a mate-
rial certificate. However, the capability of predicting failure by the model is limited to
the domain close to the state at failure of the calibration test.

An example of a stress-based fracture model is the maximum shear stress criterion.
This model is more commonly used for the prediction of material yielding rather than
fracture, in which case it is referred to as the Tresca criterion. However, this criterion
is applicable as a fracture criterion for a fracture shear stress that exceeds the predicted
yielding shear stress.
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τmax =
1
2

max
(
σ1−σ2,σ2−σ3,σ1−σ3

)
(A.3)

Fracture is predicted when the maximum shear stress exceeds a calibrated value.

τmax = (τmax) f (A.4)

Similar to the Von Mises criterion, the maximum shear criterion is prismatic with
respect to the octahedral plane, perpendicular to the hydrostatic axis, and therefore for-
goes dependency on the hydrostatic component of the stress state. Thus these theories
assume that fracture is dependent on the deviatoric stresses only.

In 1968 McClintock studied the void growth response of circular prismatic voids to
an applied far field stress and strain (McClintock [1968]). He observed small fracture
strains at high stress triaxiality and derived an equivalent strain fracture criterion by
assuming that void coalescence occurs if the void length equals the void spacing. The
downside of this criterion is that the initial void size and spacing are required to estimate
the fracture strain.

Directly after McClintocks publication, J.R. Rice and D.M. Tracey continued on
his work by considering spherical voids, publishing their own failure model in Rice
and Tracey [1969]. They derived an analytical formulation for the dependence of the
growth rate of a single spherical void on the far field strain rate and stress triaxiality.
For a perfectly plastic material they found the relation in Eq. A.5, which relates the
effective strain rate to the growth rate of the radii of voids. This relation was obtained
from curve-fitting the results from numerical simulation of the void growth model.

Ṙ
R0

= 0.283 exp
(3

2
η

)
˙̄ε (A.5)

Eq. A.5 can be expressed in terms of equivalent strain to fracture by means of
integration:

ε̄ f =C exp(−3
2

η) (A.6)

Ever since these publications, the stress triaxiality is commonly acknowledged as
one of the dominating parameters in ductile fracture. In Hancock and Mackenzie [1976]
it was stated that a void nucleation threshold strain, εn, exists, which is independent
of the stress state and added it to the Rice-Tracey model. They postulated that the
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equivalent failure strain was a function of the stress triaxiality in the form of Equation
A.7.

ε̄ f =C1 +C2 exp(−3
2

η) (A.7)

This model was adapted in Johnson and Cook [1985] for dynamic loading condi-
tions, such as high-velocity impact and blast, by adding dependency on strain rate and
temperature. The influences of these variables were captured in the form of Eq. A.8.
Based on experimental observations, they replaced the constant in the triaxiality expo-
nent by a coefficient and they introduced dependency on strain rate and temperature.
However, the temperature dependency in this model was established using tests above
room temperature only. Ductile-brittle transition occurs below room temperature and
has a different effect on the failure strain, which the JC model fails to account for.

ε̄ f = [C1 +C2 exp(C3η)][1+C4 ln ( ˙̄ε)][1+C5T ∗] (A.8)

In the analysis of collision the JC model is often used in its reduced form (without
strain rate and temperature dependent terms) since the occurrence is mostly in the quasi-
static domain with temperatures close to room temperature (Wierzbicki et al. [2005],
Lee [2005]). Except for C3 the reduced form of the JC model is equal to the model
proposed by Hancock & Mackenzie: The novelty of the JC model does not lie in the
formulation of the fracture strain; the novel feature of the model was the dependency on
all stress states up to fracture: Johnson [1980] was the first to account for a varying stress
state during loading conditions. This was achieved by introducing a damage parameter
D which comprises a contribution from all past stress states:

∆D =
∆ε̄p

ε̄ f
(A.9)

The onset of fracture is predicted when the damage parameter reaches the critical
value of unity. Clearly, in previous equation, the damage increment varies as the equiv-
alent fracture strain changes due to a variation in triaxiality. As such, a variable load
path is accounted for in the failure prediction. This caused the model to become popular
and has been widely used for a long time; it still finds its way in many commercial finite
element packages.

The dependency of equivalent fracture strain on the stress state of all previously dis-
cussed models was determined using analytical models for void nucleation, growth and
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coalescence. In 2004 Yingbin Bao and Tomasz Wierzbicki presented experimental test
results that contradicted the existing failure models (Bao and Wierzbicki [2004]). They
proposed the a failure model (the BW model) that distinguishes two different fracture
mechanisms and created a combined fracture locus in the space of equivalent strain and
stress triaxiality. It was stated that a transition between mechanisms occurs at η ≈ 0.4,
below which shear fracture dominates, while void coalescence causes failure at higher
stress triaxialities. In the intermediate domain both fracture mechanisms collaborate.
Their failure model holds a cut-off value of η =−1/3, which was observed from their
experiments: Failure did not occur at lower triaxialities, regardless of the equivalent
plastic strain. A failure model was presented in the form of Eq. A.10.

ε̄ f =


C1 · (η + 1

3)
−C2, −1

3 ≤ η < 0

C3 ·η2−C4 ·η +C5, 0≤ η < ηT

C6 ·η−1, η ≥ ηT

(A.10)

Where ηT denotes a triaxiality transition value, depicting the transition from shear
fracture to fracture due to void coalescence, with the remark that the transition value is
a material constant.

Although the BW model contains six constants, fewer tests are required to calibrate
the model. Coefficient C5 determines the equivalent failure strain in pure shear. Since
the first two expressions in eq. A.10 must be coincident at η = 0 to create a continuous
fracture locus (Fig. A.1), C1 and C2 become dependent on one another. Similarly C6 fol-
lows from the second expression evaluated at η = ηT . Thus the amount of independent
coefficients is reduced by two, leading to just four required calibration tests.

The BW results suggest that the equivalent strain at failure is not dependent on the
triaxiality parameter alone. Xue was the first to introduce a failure model with I1-J2-J3

dependency (Xue [2007b]), I and J indicating the invariants of the stress tensor and
deviatoric stress tensor respectively. He presented a failure model where the EFS is a
function of both triaxiality and Lode parameter: The hydrostatic stress is proportional
to I1, the equivalent stress can be obtained from J2. The Lode parameter has many
formulations which are all related to the ratio of J3 to the equivalent stress.

Ever since the publication of the Xue model, the fracture mechanics community
seems convinced of the importance of both stress triaxiality and Lode parameter: Most
of the more recent failure models are presented in the space of triaxiality, Lode param-
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Figure A.1: Fracture locus as determined by Bao and Wierzbicki, calibrated for Al
2024-T351 (From Bao and Wierzbicki [2004])

eter and equivalent failure strain. Several of these models were presented in Section 3.1
and have been implemented into LS-DYNA.
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Appendix B

Material Inspection Certificate

In this part of the appendix the material inspection certificate produced by the manufac-
turer of the steel plate that was used in this thesis is presented.
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Appendix C

Specimen Geometries

In this part of the appendix the geometries of the different specimens associated with
the small scale experiments are presented.

Figure C.1: Flat bar tensile specimen geometry
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Figure C.2: Circular punch specimen geometry

132



Figure C.3: Circular punch specimen geometry
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Figure C.4: Notched punch specimen geometry
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Appendix D

Small Scale Experiment Finite Element
Models

This part of the appendix presents the finite element models associated with the small
scale experiments that were conducted in the course of this research. In Section 4.2
several modelling parameters were determined based on sensitivity analyses of the flat
bar tensile model. The obtained parameters apply to the models associated with the
small-scale experiments:

Table D.1: Parameters determined in sensitivity analyses

Parameter Symbol Value Unit

Element Size le 0.5 mm
Hourglassing coefficient qh 0.005 -
Initial defect - 0 %

Only two types of elements are used across all models, their specifications are listed
in Table D.2. The material model for the specimens was derived using the iterative pro-
cedure as presented in Section 4.3. This material model is implemented into LS-DYNA
using the *MAT PIECEWISE LINEAR PLASTICITY keyword. For all peripheral
parts, such as supports and indenters, a rigid material formulation is used based on the
*MAT RIGID keyword in LS-DYNA. The exact specifications for each part are listed
in the description of each model.
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Table D.2: Specifications of elements

Type Formulation # nodes # integration points

Shell Belytschko-Tsay 4 5
Solid Constant stress 8 1

Flat Bar Tensile Finite Element Model

In the flat bar tensile model two rows of nodes are located at exactly 30 mm from the
center in both longitudinal directions. This total distance between the rows of 60 mm
corresponds to the gauge length of the extensometer as used in the experiment. The
nodes at one end of the specimen are fully clamped, while the nodes at the other end
undergo a linear displacement in longitudinal direction.

Table D.3: Part information

Part Element Type Number of elements Material

Specimen Solid 75299 Piecewise linear plasticity
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(a) Front view

(b) Side view

(c) Front view detail

Figure D.1: Flat bar tensile specimen model

Notched Flat Bar Tensile Finite Element Model

In the notched flat bar tensile model two rows of nodes are located at exactly 21.7 mm
from the center in both longitudinal directions. This total distance between the rows of
43.4 mm corresponds to the gauge length of the extensometer as used in the experiment.
The nodes at one end of the specimen are fully clamped, while the nodes at the other
end undergo a linear displacement in longitudinal direction.

Table D.4: Part information

Part Element Type Number of elements Material

Specimen Solid 28397 Piecewise linear plasticity

137



(a) Front view (b) Side view (c) Front view detail

Figure D.2: Notched flat bar tensile specimen model

Circular Punch Finite Element Model

The finite element model of the circular punch test consists of four parts (Fig D.3a):
the specimen (blue), the indenter (green), and the upper and lower supports (yellow).
The supports are fully clamped rigid bodies. The indenter is also a rigid body and has
been constrained in all directions except the vertical direction. Contact definitions are
applied between the thick part of the specimen and the supports, and between the top of
the thinned part of the specimen and the indenter. All rigid body parts are meshed with
shell elements, whose size is in agreement with the element size of the opposite contact
surfaces (Fig. D.3c).

The vertical displacement of the indenter was prescribed: Similar to the experiments,
the indenter moved downwards with a constant velocity of 1.0 mm/s until a depth of
indentation that matches with the mean experimental indentation at fracture. After one
second the indenter is raised again until there was no more contact with the specimen to
allow spring-back.
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(a) Overview

(b) Meshed specimen mid-plane section view (c) Meshed specimen top view

Figure D.3: Circular punch finite element model

Table D.5: Part information

Part Element Type Number of elements Material

Specimen Solid 194240 Piecewise linear plasticity
Indenter Shell 19200 Rigid
Upper support Shell 4480 Rigid
Lower support Shell 6400 Rigid

Hašek Punch Finite Element Model

The model of the Hašek punch test is very similar to the circular punch: the parts for the
indenter and the supports are identical (Fig. D.4a and Table D.6) in terms of meshes,
but also in contact areas and constraints.

The only difference between the Hašek and the circular punch models is the maxi-
mum depth of indentation: logically, for the current model, it is set to the mean inden-
tation at fracture of the Hašek specimens.
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(a) Overview

(b) Meshed specimen mid-plane section view (c) Meshed specimen top view (detail)

Figure D.4: Hašek punch finite element model

Table D.6: Part information

Part Element Type Number of elements Material

Specimen Solid 78408 Piecewise linear plasticity
Indenter Shell 19200 Rigid
Upper support Shell 4480 Rigid
Lower support Shell 6400 Rigid
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Appendix E

Tensile Test Report

In this part of the appendix the engineering stress-strain curves obtained from the flat bar
tensile tests conducted by Element Material Technologies are presented. The associated
test report is included. The tests were conducted according to the NEN-EN-ISO-6892-
1:2016 standard.

Figure E.1: Engineering stress-strain results from tensile testing
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Appendix F

Extensometer

To measure the displacement of the notched flat bar tensile tests an extensometer was
applied to the specimens. Considering the expected elongation of the specimens, an
extensometer was selected based on its maximum measurable deformation. The selected
extensometer is produced by Epsilon Technology, model 3542-025M-050-LT, having a
maximum measurable deformation of 12.5 mm. Unfortunately the gauge length of this
model is only 25.0 mm, which was insufficient to span the area of localized straining
(i.e. the length of the notch, 27 mm). To overcome this problem the gauge length
was extended using custom made PMMA spacer blocks with a thickness of 6.13 mm.
Stacking three spacer blocks resulted in a gauge length of 43.4 mm (Fig. F.1).

Figure F.1: Modified Epsilon 3542-025M-050-LT extensometer mounted on notched
tensile specimen R1N1

To determine whether or not the geometrical modification has influence on the mea-
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sured results, a simple model was constructed as depicted in Fig. F.2. Points A and B
indicate the unmodified clamping locations of the extensometer. Point C indicates the
shift of B due to the introduction of the custom spacer blocks. The exact hinge loca-
tion is unknown, as it is undocumented and hidden from the eye by the extensometer’s
casing. The hinge was assumed to be in the corner.

Figure F.2: Model to determine the effect
of the modification

Figure F.3: Relation between original
elongation and modified elongation

Taking the hinge as the origin, the coordinates of the points are described by:

xA = 60 cosα yA =−60 sinα

xB = 60 yB = 25
xB = 60 yB = 43.4

The maximum angular rotation αmax can be determined by setting the distance be-
tween points A and B to its maximum value:

∆Lmax
AB =

√
(xA− xB)2 +(yA− yB)2−25 = 12.5→ αmax = 12.00◦ (F.1)

Subsequently the elongations ∆LAB and ∆LAC were determined for the range α =

[0,αmax]. The results are depicted in Fig. F.3. Visually no distinction between the
elongations can be made. A closer numerical inspection shows a maximum error of
∆LAC to ∆LAB of 0.06%. Therefore the geometrical error introduced by the modification
is neglected.
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Visit our website at www.epsilontech.com

Model 3542 with 25 mm gauge length

Model 3542 configured for a very 
large specimen diameter

Model 3542 with 0.5 inch gauge length and 
±25% measuring range

General purpose extensometers for axial tensile, compression, and 

cyclic testing.  Gauge lengths from 10 to 80 mm (and 0.5 to  

2 inches) and full scale measuring ranges from 5% to 100% strain.

These extensometers are designed for testing a wide range  
of materials, including metals, plastics, composites and 
ceramics. All will perform both tension and compression 
strain measurement. The dual flexure design makes them 
very rugged and insensitive to vibrations, which permits 
higher frequency operation.

They come standard with Epsilon’s quick attach kit, 
making it possible to mount the extensometer on the test specimen quickly and 
easily with one hand. The quick attach kit can be removed, allowing mounting of 
the extensometer with springs or rubber bands.

The Model 3542 extensometers are strain gaged devices, making them 
compatible with any electronics designed for strain gaged transducers. Most often 
they are connected to a test machine controller. The signal conditioning electron
ics for the extensometer is typically included with the test machine controller or 
may often be added. In this case the extensometer is shipped with the proper 
connector and wiring to plug directly into the electronics. For systems lacking 
the required electronics, Epsilon can provide a variety of solutions, allowing the 
extensometer output to be connected to data acquisition boards, chart recorders 
or other equipment.

For gauge lengths 100 mm (4 inches) or greater see Model 3542L.
See the electronics section of this catalog for available signal conditioners and 

strain meters.

Model 3542 mounted on a 
D695 compression fixture for 

composite materials

Extensometers for 
Composites  
Compression Testing
Models 3542 and 3442 extensometers 
can be furnished to clip directly onto 
composites compression fixtures, such 
as for ASTM D695. These use specially 
made quick attach kit wire forms for 
the test fixture. Consult the factory for 
specifics. 
Also see the Model 3442 miniature 
extensometer.

•

10

3542 Axial Extensometers

M
O

D
EL

Standard quick attach wire forms included for 
round and flat samples

Rubber band and spring attachment options included with 
Models 3542 and 3442

Model 3542 with 25 mm gauge length and 
±10% measuring range

See the Model 3542 extensometer videos
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O r d e r i n g  i n f O r m a t i O n

Model 3542 Available Versions: ANY combination of gauge length, measuring 
range and temperature range listed below is available, except as noted. Other 
configurations may be available with special order; please contact Epsilon to 
discuss your requirements.

MODEL 3542-xxxx-xxx-xx
General Purpose
Axial Extensometer

MODEL 3542-xxxx-xxx-xx
General Purpose
Axial Extensometer

MODEL 3542-xxxx-xxx-xx
General Purpose
Axial Extensometer

Features

• May be left on through specimen failure.

•  All models can measure in both tension and compression and can be used 
for cyclic testing.

• Standard quick attach kit allows one hand mounting to specimens.

• Applicable for testing to:
 -  ISO 6892-1, 527-2, 527-4, 527-5, 10113
 -  ASTM E8, E9, D3039, D638, A370, D3552, E517, E646

•  Standard units meet ASTM class B-1 requirements for accuracy. A test 
certificate is included. ISO 9513 class 0,5 test certificates are available 
upon request.

•  Rugged, dual flexure design for strength and improved performance. Much 
stronger than single flexure designs, this also allows cyclic testing at 
higher frequencies.

•  All models have mechanical overtravel stops in both directions. Cable 
stops are used for overtravel protection where required. Epsilon’s cable 
stops are fully contained between the arms of the extensometer and do 
not hang below where they can interfere with fixturing – especially during 
compression testing.

•  Hardened tool steel knife edges are easily replaced. A spare set comes with 
every extensometer.

•  Replaceable arms and spacers for ease of repair. This also allows changing 
the gauge length for different test requirements.

•  High and low temperature options extend operation from as low as -270 °C  
to +200 °C (-454 °F to +400 °F).

•  Full bridge, 350 ohm strain gaged design for compatibility with nearly any 
test system.

• Includes high quality foam lined case.

S p e c i f i c a t i o n s

 Excitation: 5 to 10 VDC recommended, 12 VDC or VAC max.
 Output: 2 to 4 mV/V, nominal, depending on model
 Linearity:   ≤0.15% of full scale measuring range
 Temperature Range: Standard (-ST) is -40 °C to +100 °C (-40 °F to 210 °F)
  Optional (-LHT) is -270 °C to +200 °C (-454°F to 400 °F)
 Cable: Integral, ultra-flexible cable, 2.5 m (8 ft) standard
 Standard Quick Attach Kit:  Fits round samples up to 25 mm diameter (1.0 inch) and flats to 

12 mm thick by 31 mm wide (0.5 inch by 1.25 inch)
 Operating Force: 30 g typical

O p t i o n s

Quick attach kit wire forms for large specimens
Adapter kits to change gauge lengths
Connectors to interface to nearly any brand test equipment
Special coatings and stainless steel knife edges available for  

biomedical tests
Shunt calibration module (see page 120)
Specialty knife edges (see page 100)

 DESIGNATION % STRAIN

 -0052 ±5%
 -010 ±10%
 -020 +20%/-10%
 -025 +25%/-10%
 -050 +50%/-10%
 -100 +100%/-10%

Model Number 3542- __ __ __ __ - __ __ __ - __ __

METRIC

 -010M 10.0 mm
 -012M 12.0 mm
 -0125M 12.5 mm
 -025M 25.0 mm
 -050M 50.0 mm
 -080M 80.0 mm

U.S.A.

 -0050 0.500”
 -0064 0.640”
 -0100 1.000”
 -0140 1.400”
 -0200 2.000”

Gauge Length

Measuring Range1

•

Temperature Range

-LT -270 °C to 100 °C (-454 °F to 210 °F)
-ST -40 °C to 100 °C (-40 °F to 210 °F)
-HT1 -40 °C to 150 °C (-40 °F to 300 °F)
-HT2 -40 °C to 200 °C (-40 °F to 400 °F)
-LHT -270 °C to 200 °C (-454 °F to 400 °F)

•

1   Compressive ranges can be adjusted to higher values if required. 
 Please contact Epsilon for your specific testing requirement.

2   Not available in 10 mm, 12.5 mm, or 0.50 inch gauge lengths.

Example: 3542-0100-020-LT: 1.000 inch gauge length, ±20% 
measuring range, low temperature option (-454 °F to 210 °F)

EPSILON TECH–Innovative designs 
and factory direct sales.

•

MODEL 3542 EXAMPLES

CERTIFIED



Appendix G

Erosion Keyword File

In this appendix, an example LS-DYNA input file is presented. The code is generated
in MatLab and is interpreted by LS-DYNA as a fracture locus in the space of triaxiality,
Lode parameter and equivalent strain to fracture. For the sake of brevity, the presented
code holds only five Lode- and nine triaxiality datapoints. By default, the MatLab
file uses a grid of 51 by 101 datapoints (Lode by triaxiality). Note that the triaxiality
distribution is linear in respect to θ̄ and not to ξ , since the presented failure model
(Modified Mohr-Coulomb) uses θ̄ , while LS-DYNA requires ξ as Lode parameter input
formulation. A linear θ̄ -distribution is beneficial, as it ensures a higher grid density
towards the boundaries of the ξ -domain where fracture loci are generally steeper. This
reduces the interpolation error in LS-DYNA.

$# Failure model: Modified Mohr-Coulomb
$# File created on: 14-Aug-2017 13:51:30
$# Calibration parameters:
$# A = 740000000 n = 0.16667 c1 = 0.1 c2 = 330000000 cs = 1 cc = 1 ceta = 0 eta0 = 0 m = 1
*DATABASE_EXTENT_BINARY
$# neiph neips maxint strflg sigflg epsflg rltflg engflg

0 1 3 1 1 1 1 1
$# cmpflf ieverp beamip dcomp shge stssz n3thdt ialemat

0 0 0 1 1 1 1 0
*MAT_ADD_EROSION
$# mid excl mxpres mneps effeps voleps numfip ncs

2 0 0 0 0 0 1 1
$# mnpres sigp1 sigvm mxeps epssh sigth impulse failtm

0 0 0 0 0 0 0 0
$# idam dmgtyp lcsdg ecrit dmgexp dcrit fadexp lcregd

1 01 1001 0 1 1 1 0
$# sizflg refsz nahsv lcsrs regshr rgbiax

0 0 1 0 0 0
$# lcfld epsthin engcrt radcrt

0 0 0 0 0
*DEFINE_TABLE
$# tbid sfa offa

1001 1 0
$# value lcid

-1.000000 1002
-0.707107 1003
0.000000 1004
0.707107 1005
1.000000 1006

*DEFINE_CURVE
$# lcid sidr sfa sfo offa offo dattyp lcint
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1002 0 1 1 0 0 0 0
$# a1 o1

-0.666667 1.450135
-0.500000 1.147643
-0.333333 0.916259
-0.166667 0.737509
0.000000 0.598146
0.166667 0.488557
0.333333 0.401691
0.500000 0.332319
0.666667 0.276529

*DEFINE_CURVE
$# lcid sidr sfa sfo offa offo dattyp lcint

1003 0 1 1 0 0 0 0
$# a1 o1

-0.666667 0.603060
-0.500000 0.492437
-0.333333 0.404778
-0.166667 0.334793
0.000000 0.278525
0.166667 0.232986
0.333333 0.195901
0.500000 0.165523
0.666667 0.140501

*DEFINE_CURVE
$# lcid sidr sfa sfo offa offo dattyp lcint

1004 0 1 1 0 0 0 0
$# a1 o1

-0.666667 0.428684
-0.500000 0.353930
-0.333333 0.293950
-0.166667 0.245499
0.000000 0.206114
0.166667 0.173906
0.333333 0.147419
0.500000 0.125521
0.666667 0.107326

*DEFINE_CURVE
$# lcid sidr sfa sfo offa offo dattyp lcint

1005 0 1 1 0 0 0 0
$# a1 o1

-0.666667 0.488990
-0.500000 0.402035
-0.333333 0.332595
-0.166667 0.276751
0.000000 0.231546
0.166667 0.194725
0.333333 0.164556
0.500000 0.139702
0.666667 0.119119

*DEFINE_CURVE
$# lcid sidr sfa sfo offa offo dattyp lcint

1006 0 1 1 0 0 0 0
$# a1 o1

-0.666667 0.916259
-0.500000 0.737509
-0.333333 0.598146
-0.166667 0.488557
0.000000 0.401691
0.166667 0.332319
0.333333 0.276529
0.500000 0.231365
0.666667 0.194577
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Appendix H

Validation of Implementation

In this part of the appendix the validation procedures for the implementation of the
failure models are presented. Implementing a failure model using the keywords dis-
cussed in the previous section is quite complicated due to the abundance of options of
*MAT ADD EROSION. This section is dedicated to describing the procedure that was
performed to ensure that the implementation was done correctly.

An LS-DYNA input file, holding the formatted fracture locus data, was created for
six different fracture loci:

1. Constant Equivalent Failure Strain (No dependency on triaxiality and Lode)
2. Test model 1 (Linear Lode dependency only)
3. Test model 2 (Linear triaxiality dependency only)
4. Test model 3 (Linear triaxiality and Lode dependency)
5. Modified Mohr-Coulomb (Triaxiality and Lode dependency)
6. Xue model (Triaxiality and Lode dependency)

With this particular set of failure models it was made possible to test either triaxiality
or Lode dependence, or neither, or both. In the case of the test models, the dependency
on triaxiality and/or Lode is linear. The associated arbitrary calibration parameters en-
sure positive equivalent fracture strains on the plane stress Lode and triaxiality domain.
The test models are given by the following relations.

Test model 1: ε̄ f = 0.2+0.05 θ̄ (H.1a)

Test model 2: ε̄ f = 0.2−0.1η (H.1b)

Test model 3: ε̄ f = 0.2+0.05 θ̄ −0.1η (H.1c)

The functions for the actual fracture models are presented in Section 3.1. These
were calibrated to for which the calibration parameters are listed in Table H.1.
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Table H.1: Calibration parameters

Failure Model Parameter Value Unit

Constant Equivalent Failure
Strain

ε̄ f 0.2 -

Modified Mohr-Coulomb c1 0.1 -
c2 330 MPa
cs 1 -
cc 1 -
cη 0 -
η0 0 -

Xue σ f 0 760 MPa
kp 4.2 ·10−4 MPa−1

Figure H.1 gives a visual representation of the used failure models. Note that states
of stress at fracture of the single element deformation cases have been projected on the
fracture locus. Therefore the presented fracture points do not represent actual fracture.
The actual fracture points are only coincident with the represented fracture points in
the case of constant stress path (i.e. constant triaxiality and Lode parameter during
deformation).

(a) Constant Equivalent Failure Strain (b) Test model 1

Since the current objective is to validate the implementation, rather than predicting
actual fracture, the calibration parameters for the MMC models can freely be chosen.
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(c) Test model 2 (d) Test model 3

(e) Modified Mohr-Coulomb (f) Xue model

Figure H.1: Triaxiality & Lode dependent validation fracture loci

The parameter values were obtained from Bai and Wierzbicki [2010], reducing the ma-
terial model to a power law plasticity model. Therefore no user defined material model
is required, thus greatly serving the current objective. The values of the power law pa-
rameters are K = 740 MPa and n = 0.167. The yield point is defined by the intersection
of the power law and the linear elastic relation with a Young’s Modulus E = 207 GPa.

Several different sets of prescribed displacements and boundary conditions were ap-
plied to the nodes of a single shell element. These sets were composed with the intend
to study the behaviour of the implemented failure model for different combinations of
triaxiality. The Lode parameter is dependent on the stress triaxiality due to the shell
element’s inherent plane stress assumption. The nodal displacements in the different
deformation sets are all linearly increasing in time. The relative magnitudes of dis-
placement are presented in Table H.2 and the resulting deformations are depicted in
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Fig. H.2. To each node displacement factors are applied, these are listed in the right-
most three columns of the table. An entry equal to one therefore indicates a motion in
the positive direction of the associated degree of freedom. A negative entry indicates
a nodal displacement in the opposite direction. A factor of zero constrains the node to
its initial position. The absence of a displacement factor means a non-prescribed dis-
placement and therefore results in free motion of the node in the associated degree of
freedom.

The shell element dimensions were arbitrarily chosen as they are of no influence on
the failure models’ behaviour. The square 4-noded shell element lies in the xy-plane
with sides of length 20 and a thickness of 1. Five integration points are located through
thickness at the center of the element. Element deletion occurs if the critical value of
the damage parameter is exceeded in three or more integration points.

From LS-DYNA the time-traces of the equivalent plastic strain, the principal stresses,
and the damage variable were extracted. Evidently, the strains and stresses are indepen-
dent of the failure model. The triaxiality and Lode parameter were determined from
the extracted principal stresses, and used as input in the continuous failure model func-
tion in MATLAB to determine the equivalent fracture strain (EFS). Subsequently the
damage time-trace was computed using the EFS and the EPS. Ultimately, the calculated
damage was compared to the damage output variable from LS-DYNA. This process is
depicted in Fig. H.3.

The maximum error between the two damages has been obtained for all prescribed
deformations and all failure models listed above. The results are presented in Fig. H.4a.

An important remark on the results in Fig. H.4 is that the damage difference always
increases in time, and therefore has a maximum just before element deletion occurs, i.e.
just before the damage variable reaches its critical value of one.

The maximum damage difference of all deformation cases and failure models is
approximately 1%, while the bulk of the results is far lower. The errors for the CEFS-
model are of the smallest magnitude and close to identical. However, for the other
models, which do account for stress path dependent failure strain, no clear relation be-
tween the deformation cases and the associated damage differences exists. Introducing
Lode and/or triaxiality dependency enlarges the error. Further increasing the grid den-
sity is of negligible effect. Therefore it is stated that a slight discrepancy exists between
the damage calculations done in LS-DYNA and those presented in this report. Due to
the small effect on the results of this discrepancy, it is concluded that the failure models
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in the form of ε̄ f (η ,θ) were properly implemented in LS-DYNA using the keyword
*MAT ADD EROSION.
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Table H.2: Single element deformations

Deformation case node Degree of freedom
x y z

Uniaxial tension 1 0 0
2 1 0
3 0 0
4 1 0

Constrained uniaxial tension 1 0 0 0
2 1 0 0
3 0 0 0
4 1 0 0

Constrained shear 1 0 0 0
2 0 -1 0
3 0 0 0
4 0 -1 0

Uniaxial compression 1 0 0
2 0 0
3 1 0
4 1 0

Constrained uniaxial compression 1 0 0 0
2 0 0 0
3 0 1 0
4 0 1 0

Out of plane deformation 1 0 0 0
2 0 0 1
3 0 0 0
4 1 0 -1

Biaxial tension 1 0 0 0
2 1 0 0
3 0 -1 0
4 1 -1 0

Biaxial compression 1 0 0 0
2 -1 0 0
3 0 1 0
4 -1 1 0

Arbitrary deformation 1 1 0 0 0
2 1 1 0
3 0 -1 0
4 0

Arbitrary deformation 2 1 0 0 0
2 0 0 0
3 -1 0 0
4 -1 1 0

154



(a) Initial oriëntation (b) Uniaxial tension
(c) Constrained uniaxial ten-
sion

(d) Constrained shear (e) Uniaxial compression
(f) Constr. uniaxial com-
pression

(g) Out of plane deformation (h) Biaxial tension (i) Biaxial compression

(j) Arbitrary deformation 1 (k) Arbitrary deformation 2

Figure H.2: Single element deformations
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Figure H.3: Damage difference (error) calculation flowchart

(a) Per failure model

(b) Per prescribed deformation

Figure H.4: Maximum difference between calculated damage and damage output vari-
able for triaxiality and Lode dependent models
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Appendix I

Validation of Calibration Procedure

The implementation of the Variable Load Path Calibration procedure as described in
Chapter 5 required validation. The procedure of this validation is herein presented.

First, a fracture locus defined by a set of calibration parameters was assumed (Fig.
I.1a) and data sets of fictitious experiments are generated: These data represent time
traces of equivalent plastic strain, triaxiality and Lode parameter. The EPS trace starts
from zero and increases linearly. Both the triaxiality and Lode parameter traces are
generated by selecting a shape function randomly from a set of four. The starting and
ending values of their traces are randomly generated on a certain domain. For triaxiality
this domain is [1

3 ,
2
3 ]. The full Lode parameter domain has been used. Four different

time traces have been depicted in Fig. I.1b.

Subsequently the time traces have been truncated to the point where fracture is pre-
dicted. This point is determined using damage accumulation and are indicated by red
stars in Fig. I.1c. The next step is to omit the original fracture locus that was used to
truncate the traces (Fig. I.1d). The obtained fictitious data is inserted into the damage
calculation of the VLPC procedure (Eq. 5.7) and the system of equations (Eq. 5.8) is
minimized to find the calibrated fracture locus (Fig. I.1f).

Ideally, the obtained calibration parameters are equal to those associated with the
originally assumed fracture locus. However, uncertainty is introduced by the random-
ized load paths and the discrete nature of the traces causes a slight numerical error.
The latter can be restricted by ensuring sufficient datapoints in the load path histories
obtained from FEA. The calibration parameters associated with the originally assumed
fracture loci are presented in Table I.1 and are used throughout this section.

The least squares approach that is used to obtain the calibrated fracture locus re-
quires an initial guess of the calibration parameters. The influence of the initial guess
on the calibrated parameters is discussed in Section I. The domain where the initial
guess should be chosen to obtain proper results is established in Section I.
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Table I.1: Original calibration parameter values

Failure Model Parameter Value Unit

Xue σ f 0 640 MPa
kp 4.2 ·10−4 MPa−1

Modified Mohr-Coulomb c1 0.1 -
c2 330 MPa

Hosford-Coulomb a 1.4 -
b 650 MPa
c 0.1 -

Accuracy

To study the effect of the VLPC procedure on the obtained calibration parameters, a
comparison is made between the originally assumed locus and the calibrated locus.
To this goal, the height of both the original and the calibrated fracture locus is evalu-
ated at 25 locations across the domain, evenly spaced in a five-by-five grid (Fig. I.2).
Subsequently, the normalized root mean square error of these data points is computed
according to Eq. I.1.

RMSE =

√√√√ 1
Np

Np

∑
i=1

(Y cal
i

Y ini
i
−1
)2

(I.1)

Where Y ini and Y cal are the arrays of datapoints on respectively the original and the
calibrated locus. The constant Np is the length of these arrays and is therefore equal
to 25. The accuracy of the VLPC is characterized by the probability distribution of the
RMSE. This distribution has been depicted for the case where the initial guess is equal
to the original calibration parameters in Fig. I.3a and for an arbitrary initial guess in
Fig. I.3b. The distributions were obtained from the results of one thousand samples per
number of experiments. In other words: The RMSE is computed for thousand sets of
Nexp fictitious experiments. This was repeated for all numbers of experiments and for
all fracture models.

Barely any distinction can be made between the results from using arbitrary initial
values and using the original parameters as initial values. The least squares approach
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converges to the same points, irrespective of the initial values. This suggests the absence
of local minima, but will be studied more extensively in the subsequent section. A worse
initial guess results in an increase in required iterations until a minimum is found and
therefore slightly increases the computational time.

Although the fracture models are inherently different, their fracture loci are similar
to the degree that the RMSE’s are also barely influenced by a properly chosen initial
guess. The results for the remaining fracture models using the original calibration pa-
rameters as initial values are presented in Fig. I.4. Results similar to Figs. I.3a & I.3b
are readily obtained when properly chosen arbitrary initial values are used.

For computational purposes, the iterative step size tolerances for the least squares
approach have been set to a sufficiently small, yet finite value. Setting these tolerances
to zero might further decrease the RMSE, but is not feasible for the current goal of
validation. For the calibration on experiments the tolerances are set to zero.

A clear trend can be observed from the amount of experiments that were used to cal-
ibrate on: Increasing the amount of experiments generally results in a higher accuracy of
the calibrated fracture locus, i.e. the probability of exceeding error x converges to zero
faster. This is attributed to the random nature of the fictitious experiments. Each experi-
ment yields a damage function fi (Eq. 5.8), a theoretical solution of fi = 0 exists in a
N-dimensional shape, where N is the amount of calibration parameters of the associated
failure model. Thus fi = 0 yields a line for models holding two calibration parameters,
or a surface for three calibration parameter models. The least squares approach attempts
to find the minimum distance between these N-dimensional shapes. A slight numeri-
cal error is introduced in these shapes by the discrete nature of the randomly generated
traces. The obtained calibration parameters are affected more by this numerical error if
the generated experiments are similar to each other. Over-determination of the system
of equations fi = 0 reduces the probability of similarity and therefore reduces the effect
of the numerical error on the RMSE.

Robustness

In this section, the effect of the initial guess on the calibrated parameters is studied. A
domain study of the initial guess is performed to obtain a guideline for the selection of
the initial parameters. The robustness of the VLPC procedure is defined by the size of
the domain: The procedure is deemed to be very robust if the initial guess is of little
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influence on the obtained calibration parameters.
In the previous section it has been discussed that a properly chosen initial guess has

barely any effect on the calibrated parameters if the damage functions from the experi-
ments sufficiently differ from each other. Now one set of sufficiently different fictitious
experiments has been created to determine how much the initial guess may deviate from
the original parameters. This set contains four experiments with constant triaxiality and
Lode parameter, arbitrarily chosen across the domain (Fig. I.5). The point of fracture is
therefore coincident with the original fracture locus. These four experiments yield four
sufficiently different damage functions. The least squares approach was used to obtain
the calibrated parameters while varying the initial guess. The RMSE was then computed
analogous to the previous chapter. If the RMSE is smaller than 0.01 the calibration is
deemed successful.

Two calibration parameter models
The Xue and MMC models depend on two calibration parameters. The initial guess

domain for successful calibration is numerically determined and indicated in green in
Fig. I.6 for both models. The initial guess is normalized using the original fracture locus
parameters according to Eq. I.2.

XC = log10

( C
Corig

)
(I.2)

Where C indicates any calibration parameter and the subscript ”orig” indicates the
originally assumed locus parameters. A value of XC = 0 therefore means that the initial
calibration parameter is equal to the value in Table I.1. For the two-parameter models
the initial guess was varied between one thousandth of the original values to thousand
times the original value, i.e. −3 < XC < 3.

For both models, the domain of successful calibration covers most of the tested
initial guess range. In some cases of very poor initial guesses, calibration is unsuccess-
ful. To understand why this is the case, it is important to realize that the least squares
approach makes use of the derivatives of the damage functions to the calibration pa-
rameters in the form of a Jacobian matrix. For the poor initial guesses associated with
unsuccessful calibration, the damage functions Di are close to zero and their derivatives
are smaller than the numerical precision of MATLAB. As a result, the least squares
approach identifies the initial guess as a local minimum.

Towards the opposite side of the initial guess spectrum, the damage functions in-
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crease exponentially. This results in finite non-zero derivatives and therefore a local
minimum can be found by the least squares approach. Very poor initial guesses beyond
the tested domain result in the damage function derivatives above numerical infinity,
which also results in unsuccessful calibration.

Using a resolution of ∆XC = 0.1 for both the Xue and MMC model, no indication
of the presence of local minima on the tested domain exists. Therefore the domain of
successful calibration is deemed to be continuous.

The tested range for the initial guess is exorbitantly large and stretches far beyond
realistic values for the calibrations parameters. The VLPC procedure is successful for
any |XC| ≤ 1. For example, in the case of Xσ̄ f 0 or Xc2 equal to one, the predicted failure
strain would never exceed 0.01, which is highly unrealistic for any ductile material.
Moreover, values of Xc1 > 1 also result in unrealistically low strains at fracture. For
Xkp > 1 the predicted equivalent fracture strains in a biaxial stress state are negative,
which is obviously not physically possible.

Three calibration parameter models
For the Hosford-Coulomb fracture model, which holds three calibration parameters,

a similar approach is used. However, this requires adding a third dimension to the
initial guess domain of successful calibration. Since this requires more computational
resources, the tested ranges for the calibration parameters have been narrowed. The
domain now spans a volume and is depicted in Fig. I.7a. This unclear representation
is however less suitable to yield any decisive information about the initial guess. To
overcome this problem, a cuboid inside of the volume is sought for, which represents the
domain of successful calibration. This is achieved by arbitrarily varying the boundary
planes of the cuboid while two conditions are taken into consideration:

1. All combinations of initial guess parameters inside the cuboid must result in suc-
cessful calibration.

2. The opposite cuboid boundaries must be sufficiently distant to each other.

The obtained cuboid is defined by the boundaries as presented in Table I.2 and its
vertices are indicated by the black lines in Fig. I.7. In each of the two-dimensional
subfigures (Figs. I.7b, I.7c & I.7d) the amount of successful calibrations between the
boundaries in the third direction is depicted. The dark and even color inside the cuboid
indicate the absence of inadequate initial guesses within the domain. Closer numerical
inspection also shows no evidence of unsuccessful calibration within this cuboid.

161



Table I.2: Hosford-Coulomb initial guess domain

Lower limit Upper limit

Xa -1.2 0.1
Xb -2 0.4
Xc -2 0.6

The effect of the initial guess of Xb and Xc on the success of calibration is similar to
two-parameter models: High values cause the damage functions Di and their derivatives
to approach zero, resulting in the dysfunctionality of the least squares approach. On
the other hand, the damage functions show exponential behaviour towards the lower
initial values of the two parameters, resulting in the least squares approach being able
to find the global minimum. Similar behaviour is observed for the parameter a, but the
Hosford-Coulomb shape function is more sensitive and therefore the upper and lower
bounds of Xa are closer to zero: Low values of a result in extremely low predicted
fracture strains, and therefore the damage functions approach numerical infinity faster
than for the other models, therefore the lower bound of Xa is relatively high. Oppositely,
for moderately high values of a the derivative of the damage functions to a becomes
smaller than the numerical precision faster than for the other parameters.

Observations

Generally, the RMSE between the calibrated and original fracture loci is small for prop-
erly chosen initial values. This indicates that the VLPC procedure has been imple-
mented correctly. However, it was assumed that the true fracture locus can be repre-
sented by the shape functions of the failure models. In reality this is obviously not true
since the failure models differ from each other and are mainly approximations based on
observations. Therefore no statement can yet be made on the performance of the VLPC
procedure using real experiments.

The experiments used to calibrate the fracture loci should be properly chosen. Sim-
ilarity between experiments results in similar damage functions, and therefore the least
squares approach may yield poor results in terms of calibration parameters. The VLPC
procedure benefits from over-determination of the system of equations by using more
experiments than calibration parameters.

The domain on which the initial guess of the calibration parameters should be cho-
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sen is large. Especially for two-parameter models, the domain of successful calibration
greatly exceeds any realistic parameter values. Selecting an initial guess for the three-
parameter model requires more carefulness as it is less robust. However, it still holds
that any realistic initial values will most likely result in a successful calibration. Slight
underestimation of the initial guess is generally beneficial since, for all parameters, the
domain of successful calibration reaches further for XC < 0 than for XC > 0. Based on
the results from the previous section and the notion of realistic values, suggested initial
guess boundaries were created and presented in Table I.3. In this table the boundaries
that were determined from the domain study are indicated by a gray asterisk. The re-
maining values are established by a conservative estimate of realistic values: values
beyond these limits result in predicted equivalent plastic strains at fracture either larger
than 10 [-] or smaller than 0.01 [-].

Table I.3: Proposed initial guess domain

Failure Model Parameter Lower limit Upper limit Unit

Xue σ f 0 350 1500 MPa
kp 4.2 ·10−6 * 10−3 MPa−1

Modified Mohr-
Coulomb

c1 10−4 * 0.2 -

c2 150 600 MPa

Hosford-Coulomb a 0.3 1.76 * -
b 100 1500 MPa
c 10−3 * 0.2 -
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(a) Assumed fracture locus (b) Randomly generated traces

(c) Truncated traces (d) Omission of initial locus

(e) VLPC procedure (f) Calibrated locus

Figure I.1: Validation procedure for triaxiality & Lode dependent failure model calibra-
tion
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Figure I.2: Example comparison of initially assumed locus and calibrated locus. The
root mean square is evaluated using the 25 sets of vertically aligned dots.

(a) Original calibration parameters (b) Arbitrary initial guess

Figure I.3: Modified-Mohr Coulomb RMSE probability distributions

(a) Xue (b) Hosford-Coulomb

Figure I.4: RMSE distributions

165



Figure I.5: Fixed arbitrary experiments used to determine the robustness

(a) Xue (b) Modified Mohr-Coulomb

Figure I.6: Two parameter initial guess domain
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(a) Overview (b) Xa-direction

(c) Xb-direction (d) Xc-direction

Figure I.7: Hosford-Coulomb initial guess domain
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Appendix J

Raking Damage Experiment Parts

The CAD drawings of the important parts of raking damage experimental setup are pre-
sented in this part of the appendix for reference. The dimensions presented in these
drawing were used in the creation of the finite element model of the drop tower experi-
ment.

Figure J.1: Plate specimen geometry
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Figure J.2: Indenter geometry
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Figure J.3: Frame geometry
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