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Understanding preferences for mobility-on-demand services 
through a context-aware survey and non-compensatory strategy 

Subodh Dubey *, Oded Cats , Serge Hoogendoorn 
Department of Transport & Planning, Delft University of Technology, the Netherlands   
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A B S T R A C T   

The potential lack of realism in stated-preference surveys is particularly acute in contexts where 
disaggregate real-world data is challenging to obtain. Mobility-on-Demand (MOD) services pre-
sent one such context. The MOD context is unique due to factors such as service reliability 
(difference in stated vs. actual travel and waiting time) and current mode inertia which affect the 
choice of MOD services and are difficult to infer from revealed preference data. Further, travel 
mode choices are repetitive and constitute a relatively easy choice situation. Consequently, in-
dividuals may utilize simple non-compensatory strategies. In this study, we design a survey to 
mimic real-world choice sets using a joint revealed and stated- (RP-SP) preference survey 
approach. We construct the complete journey of individuals taking into account departure time, 
access and egress mode, current primary mode and origin–destination pair. A Choquet Integral 
(CI)-based choice model with endogeneity correction is employed, thereby allowing to approxi-
mate non-compensatory behaviour. Results confirm the presence of non-compensatory behaviour 
across all mode users (car, public transport and bike). Reliability and inertia effects are most 
pronounced for car users including the potential for a combined departure time-mode shift to-
wards MOD. Owing to non-compensatory behaviour and inertia, higher travel costs cannot be 
fully compensated by shorter waiting and travel times and a differential pricing strategy may be 
required to increase MOD market share. Failure to account for common unobserved factors be-
tween the RP and SP choices results in inflated attribute importance.   

1. Introduction and motivation 

Mobility-on-demand (MOD) services such as Uber and DiDi may potentially offer substantial economic and environmental benefits 
(Teubner and Flath, 2015). Using a simulation model, Alonso-Mora et al., (2017) concluded that 3000 four-passenger cars could serve 
98 % of New York taxi demand assuming perfect sharing compatibility. Despite such proclaimed benefits, MOD services market share 
has been comparatively low, especially for regular trips. According to a report by DBS Asian Insights (2019), the penetration of 
ridesharing services is still under 1 % of total passenger vehicle trips of up to 30 miles in the United States. It is, therefore, crucial to 
gain a better understanding of the underlying behavioural determinants which impact travellers’ choices in the presence of MOD 
alternatives. This will enable us to cater service operations as well as design Mobility as a Service (MaaS) platforms, where MOD is 
expected to play an important role, so as to target specific user groups. 

Several studies have attempted to understand the factors affecting the propensity of individuals towards MOD service. In particular, 
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indicative socio-demographic indicators and trip purpose (Dias et al., 2019; Sikder, 2019), the effect of reliability (Bansal et al., 2020; 
Bailey, 2022), and competition/complementarity between MOD and existing modes (Jin et al., 2019; Cats et al., 2022). While such 
studies have enhanced our understanding, we identify two key limitations pertaining to data collection and modelling strategy. 

The vast majority of studies rely on stated-preference (SP) surveys due to the scarcity of publicly available individual-level trip data 
with detailed information such as trip purpose, access/egress mode and household configuration. However, the use of hypothetical 
scenarios reduces the validity and transferability of the results (Beck et al., 2016). To overcome these issues, researchers have turned to 
either a pivot-based SP approach or recently developed SP surveys based on real-world options encountered by an individual through 
API (application programming interface) and GPS (global positioning system) systems. Using the pivot approach is appealing (Krueger 
et al., 2016; Weiss et al., 2019) as it enables the generation of attributes thereby leading to a reduced risk of generating alternatives that 
lack meaning and are not engaging (Fifer et al., 2014; Cherchi and Hensher, 2015). However, it may not enable a true representation of 
real-world decision strategy due to a high discrepancy between stated and true values. Further, such an approach induces endogeneity 
(Train and Wilson, 2008; Guevara and Hess, 2019). The use of API and GPS can help construct fully context-aware surveys with 
engaging choice sets (Frei et al., 2017; Song et al., 2018; Danaf et al., 2019) as evidenced by the high hit rate in personalized menu 
providers (Song et al., 2018). SP studies tend to include all the existing travel options (car, public transport, bike and walk) depending 
on the origin–destination information in the SP choice set in addition to MOD option(s). Such a choice set construction can introduce 
bias in parameter estimates due to the inclusion of irrelevant alternatives (Ng’ombe and Brorsen, 2022) in the absence of an explicit 
choice set construction procedure in such an independent availability logit (IAL) model. A significant share of trips made on weekdays 
involves regular trips such as commutes, grocery shopping and school/college trips. Travel mode decisions for regular/repeated tasks 
tend to be habit and attitude-driven (Ramos et al., 2020). Therefore, an individual may only compare the new MOD service(s) with the 
currently used mode (car, public transport, bike and walk) in the context of regular trips. Such an assumption is not unfounded and 
empirical evidence of such behaviour does exist in transportation (Thøgersen, 2006; Gao et al., 2020) and other contexts such as 
agricultural economics and marketing (Chang et al., 2009; Eliaz and Spiegler, 2011). 

Constructing individual-specific SP choice sets may also help reduce the divergence between true and modelled decision strategies. 
A considerable body of empirical evidence points to the usage of simpler non-compensatory behavior in the context of familiar 
repeated choices (Hoyer, 1984, Aarts et al., 1997; Innocenti et al., 2013). Yet, such mode-specific evidence has been difficult to 
establish in the context of MOD service choices due to the use of generic SP choice sets and data/context-specific non-compensatory 
models in past studies. 

An additional advantage of excluding irrelevant options (especially existing travel mode options) from the SP choice set is allowing 
researchers to expand the scope of the study. For example, one can include options to capture the preference of MOD service for first, 
last or both legs or departure window preference (early or late) with a minimal increase in task complexity (Swait and Adamowicz, 
2001). Expanding the scope also helps obtain unspurious parameter estimates. 

In this study, we model the preferences related to MOD services for regular trips through the use of an API-based SP survey and a 
discrete choice model (DCM) based on a Choquet-Integral aggregation function (Dubey et al., 2022). We utilize Google Map API to 
extract trip features (access and egress modes, main mode, travel time and cost of various legs depending on the mode) and construct 
individual-specific SP choice sets. The SP choice set includes a primary mode (reported by the individual for a particular regular trip 
and purpose) and four MOD options (representing early and late departure windows). We also include service reliability (stated vs. 
actual travel and waiting time) for the MOD options. The novel inclusion of departure window and service reliability in the SP choice 
set enables the quantification of temporal mode-shift, inertia effects (mode-specific and time-specific) and regret concerning future 
choices. We choose to use a CI-based DCM as it requires no a-priori assumptions. The CI can approximate various functional forms such 
as weighted sum (compensatory behaviour), ordered weighted sum, and minimum or maximum of an attribute value. It can also 
approximate conjunctive and disjunctive behaviour through the use of endogenous attribute cut-offs. Other non-compensatory 
behaviour approximation models such as attribute cut-off-based approach (Swait, 2001; Martínez et al., 2009) and utility- 
regulating functions (Elrod et al., 2004) either require pre-knowledge of cut-offs or are computationally cumbersome. 

This study makes several non-trivial substantial and empirical contributions. Our survey design and subsequent model estimations 
are developed to quantify and capture the impacts of heterogeneity and uncertainty in MOD-related travel choice, both key aspects in 
the simulation and optimization of new shared mobility solutions. In particular, our contributions are fivefold. First, the study sets out 
to empirically estimate the extent to which non-compensatory behaviour is exercised and accordingly develops an SP survey with 
greater realism and estimates choice models that are capable of eliciting a non-compensatory behaviour. Second, we add two 
important mode choice aspects: temporal mode shift and reliability in the context of mobility-on-demand (MOD) services. To the best 
of our knowledge, this is the first data collection effort that allows for such an analysis. Third, due to the inclusion of individual-specific 
primary mode in the SP choice set, endogeneity corrections must be applied. In our estimation framework, we control for endogeneity 
through a covariance approach. To the best of our knowledge, this is the first empirical application in the context of MOD choice 
through context-aware surveys to account for endogeneity. Due to the size of the choice set and the longitudinal nature of survey data, 
the endogeneity correction approach needed to be modified using a composite-marginal likelihood approach to render the estimation 
computationally feasible. The modified estimation approach will enable a wider application of endogeneity correction in future 
empirical works. Fourth, we methodologically demonstrate and empirically quantify how inertia and the effect of past choices can be 
included in the preference evaluation. Finally, we also highlight through the analysis of service fee derivation how false assumptions 
about the underlying behavioural mechanism can lead to erroneous planning and design decisions. We show that the impact of MOD 
services on public transport is likely to be limited. Furthermore, we demonstrate the implications of our findings for the design of 
differential pricing strategies and related revenue management techniques. 

The remainder of the paper is organized as follows: Section 2 provides an overview of the literature on the determinants of MOD 
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choice dimensions followed by a description of survey design in Section 3. Section 4 provides the description of the Choquet-Integral 
followed by model formulation and estimation strategy. Section 5 provides the description of survey data, model results and per-
formance measures. Conclusions, limitations, and avenues of future research are discussed in Section 6. 

2. Determinants of MOD choice 

Elicitation of respondents’ preferences as a function of travel time, waiting time, and travel cost is straightforward in the SP survey. 
However, the inclusion of service reliability and departure time preference requires careful consideration as it may affect the size of the 
choice set. In this section, we provide a discussion on the importance of these factors and their measurement in the survey. 

2.1. Service reliability 

Reliability (certainty) plays an important role in travel mode and route choice. Evidence suggests that information on bus arrival 
and any unexpected delay tends to reduce the perceived waiting time, reduce the feeling of uncertainty and even increase ease of use 
(Dziekan and Kottenhoff, 2007; Watkins et al., 2011). In the context of MOD, a user may opt to pay higher costs for a more reliable 
service provider or may budget extra time to cope with the negative implications of an unreliable service. Hence, over a long period, 
modal choice depends largely on an individual’s ability to learn about service reliability, i.e., variability of travel and waiting time, 
ceteris paribus (see Li et al., 2010 for an excellent review). 

In the context of mode choice, the reliability effect is captured in the SP survey design by providing travel time information as 
ranges or an additional possible increment due to uncertainty (Bhat and Sardesai, 2006; Tam et al., 2011) and as an indicator variable 
(late or early departure) due to uncertainty (Wakabayashi et al., 2003). Similar to travel mode literature, route choice literature offers 
several avenues to quantify the effect of reliability (Gao et al., 2010; Ben-Elia et al., 2013a; Ghader et al., 2019). One way to include the 
uncertainty in the design is by considering travel time as either probabilistic, range or a combination of fixed and probabilistic values 
(Razo and Gao, 2013). Alternatively, feedback (generally upon making a choice) or some external information is provided to re-
spondents in an iterative choice-making setting (Avineri and Prashker, 2005; Avineri and Prashker, 2006; Ben-Elia and Shiftan, 2010; 
Cats and Gkioulou, 2017). 

The feedback approach is appealing as it offers a process-oriented approach (difference between expected and actual travel and 
waiting times) to model the regret depending upon the degree of risk aversion exercised by the individual (Ben-Elia et al., 2013b). Over 
time individuals learn about the reliability of a service and may change their behaviour accordingly. Therefore, we convey the reli-
ability of the MOD service through the feedback approach in the survey. 

2.2. Departure time window 

A change in departure time (early or late) is tied to both the cost and reliability of the service. In a systematic review of congestion 
pricing and its impact on car usage and change in departure time window, Li and Hensher (2012) observed that peak-hour pricing led 
to a decrease in car usage and social trips (Saleh and Farrell, 2005, Ubbels and Verhoef, 2006; van Amelsfort et al., 2008). Several other 
studies also indicate some level of trip reduction among car users but not so among public transport users (Jaensirisak et al., 2005; Hu 
and Saleh, 2005). Owing to the temporal flexibility of MOD services, users can choose when to depart depending on the trip’s purpose 
and cost. Since MOD service prices are relatively higher in peak hours as compared to non-peak hours (Garg and Nazerzadeh, 2021), 
there might be a financial incentive on the part of users to adjust the departure time window. Reliability, on the other hand, can lower 
the financial incentive. A traveller would likely plan to depart early when faced with an unreliable service, ceteris paribus (Gaver, 
1968). 

Departure time is usually represented in the SP survey as an additional attribute (Arellana et al., 2012). For modelling purposes, 
they are treated as categorical variables (early, current or late). To represent the departure time preference in the survey, we adopt the 
same approach. However, we represent the departure time as a time window (restricted to 15 min) as compared to the point value used 
in the literature. The time window approach facilitates the estimation of demand on a continuous time scale (discretized on an interval 
of 15 mins). 

The inclusion of departure time preference can lead to an increase in the size of the choice set depending on the availability of other 
modes. To circumvent this problem, we utilize the concept of a two-stage choice process in the survey. 

2.3. Choice set construction 

As postulated by Manski (1977), choice is a two-stage process where the first stage involves the elimination of irrelevant alter-
natives followed by a careful examination of relevant alternatives in the second stage to make a choice. The SP survey design can be 
modified to include highly relevant alternatives in the choice set. In particular, for a given trip purpose and departure time window, the 
choice set (displayed to the respondent) may only include the primary mode (currently used mode for the specific trip purpose) and 
MOD alternatives. This has two advantages. First, it reduces the size of the choice set and therefore is cognitively less demanding (Swait 
and Adamowicz, 2001). Second, it enhances the model performance and parameter sensitivity (Ng’ombe and Brorsen, 2022). 
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3. Mode choice survey 

In this section, we provide details of the survey design. The survey was designed using the Qualtrics platform and is a web-based 
survey. 

3.1. Survey description 

The survey consists of a two-step process devised to elicit user modal preferences based on their choice from a relevant and relatable 
choice set. In the first step (revealed choice/preference: RC/RP), respondents are asked to provide trip details of their most frequent 
daily trip: origin–destination (OD), departure time window (restricted to a 15-minute window), trip purpose (work-related, school/ 
college, family and personal care, and social or recreational), and currently used primary trip mode (car, train/metro, bus, tram/light 
rail, and bicycle). To collect origin and destination locations, we provide users with an embedded Google Map interface where they can 
directly type the addresses of their origin and destination or nearby locations (e.g., in case of limited information or privacy concerns). 
Fig. 1 provides a screenshot of the origin information collection module in the survey. In this illustration, the user chooses School/ 
college trip as their most frequent daily trip purpose. A similar interface is also used for destination information collection with 
appropriate wording. Next, the primary trip mode is defined as the mode which covers the largest distance. Trips with walking as the 
primary mode or bikes with a trip distance of less than 2 km were screened out to ensure reasonable parity between MOD travel and 
pick-up time. Based on trip information, travel time, waiting time (if any), and cost are obtained using Google Map API (Distance 
Matrix Calculation API). In case public transport is the primary mode, respondents are asked to provide information on origin-
–destination stop and access and egress modes. With the help of this additional information, accurate access time, waiting time at the 
stop, in-vehicle time, egress time and trip cost are obtained through Google Map API. Fig. 2 presents a typical public transport trip. In 
this example, the respondent reported a departure window of 7:00 – 7:15. We therefore set the trip start time to 7:07. This information 
along with the option ‘walking’ is fed into Google API to obtain the time (i.e., 10 min) and distance to the nearest bus stop. The waiting 
time at the bus stop is obtained using the respondent’s time of arrival at the stop and the next bus’s arrival at the stop. 

The procedure is followed until reaching the indicated destination for each leg of the trip to obtain the total time, distance and cost 
of the performed trip. The public transport fare (€) is obtained by applying the distance-based fare structure used by the public 
transport authorities in the Netherlands (0.96 + 0.162 * distance [km]). For the car mode, travel cost is determined based on per-km 
car operating cost obtained through information on the user’s car mileage, maintenance cost, parking and toll, registration and in-
surance, kilometre driven per year, age of the car, and ownership (own vs. rented).1 

In the second step (stated preference: SP), we present respondents with a series of choice experiments where each experiment 
consists of a total of five alternatives composed as a combination of mode and departure time window restricted to 15-minute intervals:  

1. Primary mode at reported departure window  
2. MOD option 30 min earlier  
3. MOD option 15 min earlier  
4. MOD option at reported departure window  
5. MOD option 15 min later 

3.2. SP efficient design 

Using a D-efficient design in Ngene, we generated two blocks of 15 choice tasks each. In the D-efficient design, six attributes with 
three levels each (continuous variables) and one attribute with two levels were used as shown in Table 1.1. 

To ensure that the price of a shared MOD is not greater than the one for the non-shared MOD (irrespective of the MOD label defined 
through departure window value), appropriate constraints on price attribute level were defined for each of the four MOD options in 
Ngene. 

3.3. SP survey example 

Fig. 3a provides a screenshot of the choice experiment module in the survey for train users. Relevant mode features (travel time, 
waiting time, travel cost and a dummy variable indicating whether the MOD service is shared or private) are provided. A pop-up 
window is provided to aid respondents in the event of symbol clarification as shown in Fig. 3b (screenshots of the choice experi-
ment and symbol explanation for car users are provided in the supplementary sheet section S.1). Before the start of the choice 
experiment module, an information page is displayed detailing the meaning of every symbol and terminology used in the choice 
experiment. Upon making a choice, respondents receive information about the actual travel and waiting time as shown in Fig. 4. The 
feedback information is only provided if the respondent selected one of the MOD options. We decided to not provide feedback in case 
the primary mode has been chosen as it may interfere with the respondent’s existing experience. 

In the choice experiment, the cost of the primary mode is kept unchanged, i.e., we display the actual cost obtained from the Google 

1 If the user reports ownership as own, then the total amount paid or monthly instalment (whichever is applicable) is appropriately recorded. In 
the event of ownership as leased, the monthly instalment is recorded. 
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API for the reported OD pair. The MOD travel times are based on car travel time obtained through the Google API, i.e., the same base 
travel time is used for all options in the case of car users. In the case of non-car users, public transport and car travel times are used for 
the PT option and other MOD options, respectively. The access and egress times of the public transport (primary mode) for the non- 
motorized modes (walking and biking) are also kept unchanged. All the other values of travel time, waiting time, cost, access and 
egress time values are drawn from their respective ranges (attribute level) with an equal probability (uniform distribution) as shown in 
Table 1.1. In the event of the same price level of a shared and non-shared ride, numbers are drawn until the implied value of the non- 
shared ride is greater than the shared ride. Finally, the actual travel and waiting times displayed on the experience screen are uniformly 

Fig. 1. Origin-Destination module in the survey.  

Fig. 2. Illustration of a public transport trip.  
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drawn from a range as shown in Table 1.2. Since the actual travel and waiting times are always longer than the expected travel and 
waiting times, our estimate of reliability differs in interpretation from those reported in earlier works (Ben-Elia and Shiftan, 2010; Ben- 
Elia et al., 2013b) where the focus was on understanding long-term route/mode convergence. Such a setting is not feasible in the 
current survey due to the relatively larger choice set (5 options). Therefore, to an extent, we measure the trade-off between increased 
travel and waiting time in future choices. 

In the survey, each respondent completes a total of 15 choice tasks with each choice task framed as a ‘Day’ progressing from Day-1 
to Day-15. 

4. Choquet Integral 

It is impossible to cover the entire non-compensatory literature and associated modelling methodology. We encourage the readers 
to refer to Lew and Whitehead (2020) for an excellent review of non-compensatory literature and Dubey et al., (2022) for method-
ological limitations of such frameworks. Below we provide a brief introduction of Choquet-Integral to highlight its mathematical 
properties. 

Let K be the total number of attributes and Z({ϕ}, {1}, {2}, ..., {K}, {1,2}, ..., {1,2, ...,K} ) denote the collection of all subsets (size: 

Table 1.1 
Attribute levels  

Attributes Levels 

1 2 3 

Travel time [tt-3, tt + 2] [tt-1, tt + 2.5] [tt + 1, tt + 3] 
Waiting time for MOD [2, 5) [5, 10) [10, 15] 
Travel cost/km for a private ride [0.3, 0.6) [0.6, 0.9) [0.9, 1.15] 
Travel cost/km for shared ride [0.3, 0.5) [0.5, 0.8) [0.8, 0.9] 
Shared indicator Yes (1) No (0)  
Access time (AT) (applicable for motorized access mode and public transport as primary mode) AT * [1, 1] AT * (1, 1.2] AT * (1.2, 1.4] 
Egress time (ET) (applicable for motorized egress mode and public transport as primary mode) ET * [1, 1] ET * (1, 1.2] ET * (1.2, 1.4]  

Fig. 3a. Choice experiment for the train users.  
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Fig. 3b. Pop-up window of “Symbol Explanation” for train users.  

Fig. 4. Feedback information.  

Table 1.2 
Reliability band  

Car travel time (CTT) Actual travel time Actual waiting time 

CTT <= 20mins [1.25*DTT, 1.30*DTT] [1.25*DWT, 1.30*DWT] 
20 mins < CTT <= 40mins [1.25*DTT, 1.30*DTT] [1.25*DWT, 1.30*DWT] 
CTT > 40mins [1.10*DTT, 1.20*DTT] [1.10*DWT, 1.20*DWT] 

*DTT: displayed travel time, DWT: displayed waiting time. 
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2K) of K including the null set ({ϕ} ). Each element in set Z is called a coalition. The amount of information (contribution towards 
probability) a coalition in Z offers in the absence of other attributes is called as value of coalition. Further, larger the coalition, higher 
the amount of information (μ(1, 2)⩾μ(1) + μ(2) ) known as monotonicity in the number of attributes. The value of all coalitions is 
captured by a characteristic function 

(
μ : 2K→R

)
. Choquet Integral (CI) is one such function that can be used to represent the char-

acteristic function. CI is a fuzzy integral based on fuzzy measures (μ), which can be used to represent the coalition structure of at-
tributes (Choquet, 1954; Grabisch, 1996; Alfonso, 2013). The CI aggregation function for a set of K attributes can be expressed as 
follows: 

CI =
∑K

k=1
h
(
xπk

)
(μ(Ak) − μ(Ak− 1) ) (1) 

where Ak is the set of cardinality k formed using permutation of attributes (x), k ∈ {1,2, ...,K} is the index for attributes, and 

h
(
xπk

)
→h(xπ1 )⩾h(xπ2 )⩾...⩾h(xπK )⩾0; 0⩽h

(
xπk

)
⩽1

AK = {x1, x2, ..., xK}

μ(ϕ) = 0, μ(AK) = 1, μ(C)⩽μ(D);C ⊆ D ⊆ AK ; 0⩽μ()⩽1
(2) 

The function h() represents the numerical value of attributes (x) in a descending order bounded between 0 and 1. μ() represents the 
fuzzy measure also bounded between 0 and 1. The number of fuzzy measures is a function of attributes, i.e., for a K attribute 
configuration, a total of 2K − 1 fuzzy measures will be estimated (excluding the null set as the fuzzy measure value for a null set is 0). 

The transformation x→h(x) is generally achieved through attribute normalization across alternatives. Let ψ(xk) =
{
x1

k , x
2
k , ..., x

I
k
}

be 
the collection of the kth attribute values across all alternatives I(i = 1, 2, ..., I). For attributes with a positive effect on choice outcome 
(higher the value, better the attribute), normalization can be performed as follows: 

h
(
xi

k

)
=

xi
k − min(ψ(xk) )

max(ψ(xk) ) − min(ψ(xk) )
(3) 

Similarly, for attributes with a negative effect on choice outcome (lower the value, better the attribute), normalization can be 
performed as follows: 

h
(
xi

k

)
=

max(ψ(xk) ) − xi
k

max(ψ(xk) ) − min(ψ(xk) )
(4) 

Next, monotonicity constraints in Eq. (2) are represented using fuzzy measures [μ() ]. Since fuzzy measures are constrained between 
0 and 1. The monotonicity constraints are typically represented using an unconstrained transformation called Möbius transformation 
to reduce the problem complexity (see Dubey et al., 2022 for a detailed explanation). The transformation can be written as follows: 

∑

H⊆AK

m(H) = 1 where AK = {x1, x2, ..., xK}

∑

H⊆AK\k

m(H ∪ k)⩾0∀k;

where AK\k represents the collection of all attributes except the kthattribute
∪ represents the union of two sets  

m(.) is the Möbius representation of μ(.) and one − to − one mapping between them is as follows :
m(H) =

∑

F⊆H
( − 1)H\Fμ(F)

μ(F) =
∑

H⊆F
m(H)

Next, one can also obtain explicit attribute importance value based on CI estimates using Eq. (5) known as the Shapley value   

S(k) =
∑

A⊂Z\k

Fact(|K| − |A| − 1 )Fact(|A| )
Fact(|K| )

[μ(A ∪ {k} ) − μ(A) ]; 0⩽S(k)⩽1, (5) 

where Fact() represents the factorial, || indicates the cardinality of the set and K = {1,2, ...,K} is the set of all attributes. The 
Shapley value is interpreted as the average marginal contribution of an attribute k in all coalitions, i.e., attributes can be ranked based 
on their Shapley value to quantify the importance of an attribute in the overall decision-making, a concept equivalent of Shapley 
additive explanation (SHAP) in machine learning (Lundberg and Lee, 2017).2 

2 Readers are highly encouraged to refer Mazzanti (2020) and Tran (2021) for an excellent non-technical explanation of SHAP values. 
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4.1. Choquet integral as a non-compensatory approximation function 

Consider the following configuration of fuzzy measures for a three-attribute scenario. 

μ(1) = 0.00, μ(2) = 0.94, μ(3) = 0.00, μ(12) = 1.00, μ(13) = 0.29, μ(23) = 0.94, μ(123) = 1.00 

Next, consider the following normalized attribute values 
(
xi

k

)
for an alternative 

ψ
(
xi

k

)
=
{

xi
11
, xi

2, x
i
3

}
= {0.2, 0.7, 0.1}

Hence h
(
xi

k

)
→h
(
xi

2
)
> h
(
xi

1
)
> h
(
xi

3
)
. 

With this, the CI can be written as follows: 

CIi = xi
2*μ(2) + xi

1*[μ(12) − μ(2) ] + xi
3*[μ(123) − μ(12) ]

= 0.7*0.94 + 0.2(1.00 − 0.94) + 0.1(1.00 − 1.00)
= 0.66 + 0.01 + 0.00
= 0.67 

Three observations can be made based on the calculation of CI. First, 
(
xi

3
)

does not impact the choice probability as long as it is 
below a normalized value of 0.2. Second, the impact of 

(
xi

1
)

on overall probability calculation is negligible. Third, since the 
normalization of attributes is based on the range across all alternatives in the choice set. It ensures that the normalized values are task 
and context-dependent leading to task-specific approximation of non-compensatory behaviour. 

4.2. Choice model formulation with endogeneity correction 

In studies involving the SP-off-RP approach, pivoting around the chosen RP attributes can lead to endogeneity in the SP experiment 
(Train and Wilson, 2008; Guevara and Hess, 2019). The endogeneity issue arises due to the use of RP-chosen alternative attributes as a 
base value to create the attributes of SP alternatives. Pivoting in such a way can transfer the unobserved effects from the RP stage to the 
SP stage. The endogeneity issue is typically corrected by estimating a joint RP-SP model with a shared un-observed parameter between 
the RP-chosen alternative and the corresponding SP alternative. 

Although the current survey is an SP-off-RP approach, the attribute construction performed in the SP stage differs from the usual RP 
pivot approach. For example, if the user reported train as their primary mode in the RP stage, then the SP stage does not use train mode 
attributes to construct MOD mode attributes. Rather, the MOD mode attributes are created based on car attributes (car-based travel 
time for the reported OD pair and departure time derived using Google API, per-km travel cost and waiting time is pre-determined as 
reported earlier (see supplementary sheet section S.1). The same process is used for all four primary modes in the SP stage. 
Furthermore, all the attributes (MOD and reported primary mode) have three levels (see section 3) and hence attribute values change 
from one choice situation to the other. This ensures that the endogeneity issue is minimized in the SP stage. Nevertheless, from an 
econometric point of view, one should still perform a joint RP-SP estimation with shared unobserved factors between the RP-reported 
mode and the corresponding SP stage mode. This translates into the estimation of an (19 × 19)3 error-covariance matrix. Such a large 
error-covariance matrix can cause numerical instability during model estimation, especially in logit-kernel-based models due to the 
simulation-based estimation approach. Hence, we use a probit-kernel-based framework to build a Choquet-Integral-based choice 
model framework. 

Let t be the index for the choice occasion (t = 1,2,...,T)(15 repeated choice scenarios in the SP stage), i be the index for alternative 
(i = 1,2, ..., I) and k be the index for the number of attributes (k = 1,2,...,K) (travel time, waiting time, and travel cost). Then, we can 
write the utility of alternative i in the time period t as follows: 

Ui,t = CIi,t + εi,t (6) 

where CIi,t is the CI value of the ith alternative at the time t and εi,t is a normally distributed error term. 
Further, the CIi,t can be written as follows: 

CIi,t =
∑K

k=1
h
(
xi,t

Nk

)(
μi
(
Ai,t

k

)
− μi

(
Ai,t

k− 1
) )

(7) 

Therefore, CIi,t can be termed the observed part of utility calculated using a Choquet aggregation function. Eq. (7) indicates that 

fuzzy measures are alternative-specific but invariant across time periods. The xi,t→h
(

xi,t
Nk

)
transformation can be performed using Eq. 

(3) and Eq. (4). 
Normalization requires that attribute values take a real number with a definite direction (effect on choice outcome). Hence, only 

3 A (3 × 3) block for the RP stage and a (4 × 4) SP block for each of the four primary mode users. 
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ordered data types (continuous, count and ordinal) can be used inside CI. The inclusion of unordered data types requires a special 
normalization approach (Wang et al., 2006). To keep the model complexity to a minimum, we revert to a weighted sum (WS)4 

approach to account for the effect of non-continuous/un-ordered attributes.5 Therefore, Eq. (6) can be extended as follows: 

Ui,t = CIi,t + β’
ixi,t + εi,t (8)  

where xi,t is a (k × 1) vector of exogenous variables, βi is the corresponding (k × 1) vector of coefficients, and β’
ixi,t is the observed part 

of utility derived using a weighted-sum (WS) aggregation function. 
Next, we can include the effect of reliability (as induced through a feedback mechanism) as follows: 

Ui,t = CIi,t + β’
ixi,t + Ri,t + εi,t (9)  

where Ri,t = 1 − e

[
ρ
[

ϑ
(

TT(experienced)i,t− 1
− TT(displayed)i,t− 1

)
+τ
(

WT(experienced)i,t− 1
− WT(displayed)i,t− 1

)]]

In Eq. (9), ρ(0,∞) is a regret aversion factor with ρ = 0 indicating no regret. The term ϑ
(

TT(experienced)i,t− 1
− TT(displayed)i,t− 1

)

represents the weighted difference between experienced and displayed travel time. Similarly, the term τ
(

WT(experienced)i,t− 1
−

WT(displayed)i,t− 1

)
represents the weighted difference between experienced and displayed weighting/pick-up time. 

Eq. (9) can be written in a matrix format with the help of additional notations. For brevity, a detailed description of matrices/ 
notations is provided in Appendix Section A.1. 

With the help of notations, Eq. (9) can be written in matrix notations as follows: 

U = [sumc[(β.* X)
’
] + CI + R + ψ ] (10)  

where R = 1T − exp{ϑ*sumc[((X̂TE − X̂TD).*X̂Chosen )
’
] + τ*sumc[((X̂WE − X̂WD).*X̂Chosen )

’
] }, 1T is a column vector of size T filled with a 

value of 1, and the operator sumc[ ] returns the sum of columns of a matrix. Here we assume a time-invariant error-covariance matrix, i. 
e., εi,t = ηi. 

η = (η1, η2, ..., ηI)
’
[(I × 1) vector] and ψ = [ones(T,1) .*. η][(TI × 1) vector]. 

Eq. (10) provides a general framework to write a utility specification including all three components: Choquet-Integral, Weighted 
sum, and regret due to differences in stated vs. actual travel and wait times. In our survey, we essentially have five dependent variables: 
one RP stage choice, and four SP stage choices depending on the reported RP stage mode (car, train/metro, bus/tram/light-rail, and 
bike). Below, we write the utility equation for all five dependent variables. 

URP =
[
sumc[(β .* X)

’
]RP + ψRP

]

Ucar− SP =
[
sumc[(β .* X)

’
]car− SP + CIcar− SP + Rcar− SP + ψcar− SP

]

Utrain/metro− SP =
[
sumc[(β .* X)

’
]train/metro− SP + CItrain/metro− SP + Rtrain/metro− SP + ψ train/metro− SP

]

Ubus/tram/light− rail− SP =
[
sumc[(β .* X)

’
]bus/tram/light− rail− SP + CIbus/tram/light− rail− SP + Rbus/tram/light− rail− SP + ψbus/tram/light− rail− SP

]

Ubike− SP =
[
sumc[(β .* X)

’
]bike− SP + CIbike− SP + Rbike− SP + ψbike− SP

]

(11) 

Now, we can combine the individual RP and SP stage choice models into a single framework using a covariance approach as 
follows: 

U = B + ξ (12) 

where 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sumc[(β.*X)
’
]RP

sumc[(β.*X)’
]car− SP + CIcar− SP + Rcar− SP

sumc[(β.*X)’
]train/metro− SP + CItrain/metro− SP + Rtrain/metro− SP

sumc[(β.*X)
’
]bus/tram/light− rail− SP + CIbus/tram/light− rail− SP + Rbus/tram/light− rail− SP

sumc[(β.*X)
’
]bike− SP + CIbike− SP + Rbike− SP

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[{IRP + 4*ISP*T} × 1 ]vector,

4 The weighted sum (WS) approach is also known as additive utility function in the discrete choice literature. However, we use the term weighted 
sum throughout the paper to distinguish the functional form of CI from the additive utility.  

5 We refrain from using Wang et al. (2006) approach for two reasons. First, a simulation evaluation will be required to assess the performance of 
the approach which is beyond the scope of this work. Second, out of four mode attributes (travel time, waiting time, travel cost, private/shared), 
three are continuous. Hence, we can afford to keep the model complexity to minimal and still achieve the necessary outcome. 
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ξ =

⎡

⎢
⎢
⎢
⎢
⎣

ψRP
ψcar− SP

ψ train/metro− SP
ψbus/tram/light− rail− SP

ψbike− SP

⎤

⎥
⎥
⎥
⎥
⎦
,

IRP = 4(# of options in RP stage), ISP = 5(# of options in SP stage),
and T = 15(# of choice occassions in SP stage)

Let Ω̃ be the covariance matrix of η. 

Therefore, U ∼ MVN[B, Θ̃] (13) 

where 

B =

⎡

⎢
⎢
⎢
⎢
⎣

BRP
BSP1
BSP2
BSP3
BSP4

⎤

⎥
⎥
⎥
⎥
⎦
, and Θ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω̃RP Ω̃
’
RP,SP1 Ω̃

’
RP,SP2 Ω̃

’
RP,SP3 Ω̃

’
RP,SP4

Ω̃RP,SP1 IT .*.Ω̃SP1 0 0 0
Ω̃RP,SP2 0 IT .*.Ω̃SP2 0 0
Ω̃RP,SP3 0 0 IT .*.Ω̃SP3 0
Ω̃RP,SP4 0 0 0 IT .*.Ω̃SP4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where IT is an identity matrix of size (T × T), and the subscript SP1, SP2, SP3 and SP4 correspond to the car, train/metro, bus/tram/ 
light-rail, and bike, respectively. 

In the joint RP-SP covariance matrix, the covariance is only allowed between RP and SP variables and not between SP variables 
(indicated by zero in the matrix Θ̃) as respondents only complete one SP task depending on the RP stage mode. 

Eq. 13 can be solved by taking the utility difference w.r.t the chosen alternative and calculating the cumulative distribution 
function (cdf) of a multivariate normal (MVN) distribution at corresponding differenced utility values. Since, only the difference in 
utility matters, we work with utility differences. It means, only differenced error-covariance matrix is identified. Moreover, the top left 
element of the differenced error-covariance matrix is fixed to 1 to set the scale of utility (Train, 2009). Thus, for I alternative, only 
[I*(I − 1)*0.5 ] − 1 covariance elements are identifiable. Further, since all the differenced error covariance matrices must originate from 
the same undifferenced error covariance matrix, we specify the matrix Θ as follows: 

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΩRP Ω’
RP,SP1 Ω’

RP,SP2 Ω’
RP,SP3 Ω’

RP,SP4

ΩRP,SP1 IT .*.ΩSP1 0 0 0
ΩRP,SP2 0 IT .*.ΩSP2 0 0
ΩRP,SP3 0 0 IT .*.ΩSP3 0
ΩRP,SP4 0 0 0 IT .*.ΩSP4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where 

ΩRP =

[
0 01×(IRP − 1)

0(IRP − 1)×1 Ω̃(IRP − 1)×(IRP − 1)

]

, and ΩSP =

[
0 01×(ISP − 1)

0(ISP − 1)×1 Ω̃(ISP − 1)×(ISP − 1)

]

For a respondent, we only need to calculate the MVN-cdf function using the RP observation and one of the SP observations 
depending on the RP-reported mode. Hence, we construct a set of metrics below to appropriately select elements from the matrix 
B and Θ to perform utility difference. Also, for ease of notation, we re-write the differenced error-covariance matrix Θ̃ as follows: 

Θ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω̃RP
̃Ω’

RP,SP1
̃Ω’

RP,SP2
̃Ω’

RP,SP3
̃Ω’

RP,SP4

Ω̃RP,SP1 Ω̃SP1 0 0 0
Ω̃RP,SP2 0 Ω̃SP2 0 0
Ω̃RP,SP3 0 0 Ω̃SP3 0
Ω̃RP,SP4 0 0 0 Ω̃SP4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Next, define a set of matrices as follows: 
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Herror = zeros(IRP + ISP − 2, IRP + 4ISP − 5),Hmean = zeros(IRP + ISP, IRP + 4ISP),

Herror[1 : (IRP − 1), 1 : (IRP − 1) ] = IIRP − 1,

Herror
[
(IRP − 1) + 1 : IRP + ISP − 2, IRP +

(
im,RP − 1

)
(ISP − 1) : IRP +

(
im,RP

)
(ISP − 1)

]
= ISP− 1,

Hmean[1 : IRP, 1 : IRP] = IIRP ,

Hmean
[
IRP + 1 : IRP + ISP, (IRP + 1) +

(
im,RP − 1

)
(ISPT) : (IRP + 1) +

(
im,RP

)
(ISPT)

]
= ISP*T ,

II− 1 : identity matrix of size (I − 1),

im,RP =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if car is reported as primary mode

2, if train/metro is reported as primary mode

3, if bus/tram/light - rail is reported as primary mode

4, if bike is reported as primary mode

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Now, we can appropriately select elements from the matrix B and Θ̃ as follows: 

B
⌢
= HmeanB, and Θ

⌢
= HerrorΘ̃H’

error 

Next, define a matrix D to convert a differenced error matrix Θ
⌢ 

into an undifferenced matrix as follows: 

D = zeros(IRP + ISP, IRP + ISP − 2),
D[2 : IRP, 1 : IRP − 1] = IRP− 1,

D[IRP + 2 : IRP + ISP, IRP : IRP + ISP − 2] = ISP− 1,

II− 1 : identity matrix of size (I − 1),
Θ
⌢

= DΘ
⌢

D’ 

The utility/disutility (as a direct function of mode attributes) and regret (due to experienced differences between expected and 
actual in-vehicle and/or waiting times) in a given time period may also affect the decision in subsequent time periods. To incorporate 
the effect of past experiences, we use an auto-regressive (AR) structure on overall utility. We consider an AR structure of order 1 (AR- 
1). With an AR-1 structure, one may write the utility specification for an alternative i in the time period t as follows: 

Ui,t = πUi,t− 1 +Ui,t (14)  

where Ui,t = Vi,t + σi,t , and 0⩽π⩽1 regulates the effect of past utility and regret on the current decision. The use of AR-1 structure is 
often found sufficient in empirical studies to incorporate past experiences (Blake et al., 2020). However, one can also use AR-2 or 
higher-order AR structures to explicitly account for the direct and indirect effects of past experiences. For example, in an AR-1 
structure, only the direct impact is identified for the immediate previous day (t − 1) and the effect (indirect effect) of remaining 
lag days (t − 2, t − 3, ...,1) is mediated through the (t − 1)th day. On the other hand, in an AR-2 structure, the direct impact is identified 
for both (t − 1)th and (t − 2)th days and the effect (indirect effect) of remaining lag days (t − 3, t − 4, ...,1) is mediated through both 
(t − 1)th and (t − 2)th days. For an r − order AR structure, Eq. (14) can be re-written as follows: 

Ui,t = π1Ui,t− 1 + π2Ui,t− 2 +…+ πrUi,t− r +Ui,t; 0⩽πj⩽1∀j = 1 : r and t > r (15) 

Further, assume a time-invariant error-covariance matrix, i.e., σi,t = ηi. Therefore, we can re-write Eq. (15) as follows: 

Ui,t =
(
Ui,t + ηi

)
+ π1

(
Ui,t− 1 + ηi

)
+ π2

(
Ui,t− 2 + ηi

)
+…+ πr

(
Ui,t− r + ηi

)
(16) 

While it may be tempting to use an (T − 1)order AR structure (T = # of choice occassions), it is advised to iteratively estimate 
models with 1-order increments to avoid estimation issues, especially for highly non-linear models. 

Using the AR framework, we now introduce correlation between time periods in the SP choices. Let πSP1 = (π1, π2, ..., πr)
′
[(r ×

1) vector],andπSP = (π′
SP1, π′

SP2, ..., π′
SP4)

′
[(4 × r) matrix]. 

Define a matrix FTI of size [TISP × TISP] with all the elements being equal to zero. Now, follow the pseudo-code provided below to fill 
in the cells of the matrix F. 

πcurr = πSP
[
im,RP, :

]′

for i = 1 to r
for j = i + 1 to T

for m = 1 to I
F[(j − 1)*ISP + m, (j − 2)*ISP + m − (i − 1)*ISP] = πcurr[i]

end
end

end  
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Next, re-write the vector B
⌢ 

and matrix Θ
⌢ 

as follows: 

B
⌢
=

⎡

⎣ B
⌢

RP(IRP × 1)
B
⌢

SP(TISP × 1)

⎤

⎦,Θ
⌢
=

[

Θ
⌢

RP(IRP × IRP) Θ
⌢’

RP,SP

Θ
⌢

RP,SP Θ
⌢

SP(ISP × ISP)

]

Now, we can expand the vector B
⌢ 

and matrix Θ
⌢ 

to include correlation across time periods in the SP choices as follows: 

B
⌢

SP = SB
⌢

SP, and Θ
⌢

SP = S
[(

IT .*.Θ
⌢

SP

)]

S’,

where S = [ITISP − FTISP ]
− 1 

Therefore, the expanded vector B
⌢ 

and matrix Θ
⌢ 

can be written as follows: 

B
⌢
=

⎡

⎣ B
⌢

RP(IRP × 1)
B
⌢

SP(TISP × 1)

⎤

⎦,Θ
⌢
=

⎡

⎢
⎢
⎣

Θ
⌢

RP(IRP × IRP)

(

1T .*. Θ
⌢

RP,SP

)’

(

1T .*. Θ
⌢

RP,SP

)

Θ
⌢

SP(TISP × TISP)

⎤

⎥
⎥
⎦

Next, to perform utility difference, we construct a matrix M of size [(IRP − 1)+T(ISP − 1) × (IRP)+T(ISP)] using the pseudo-code 
provided in Appendix Section A.2. Essentially, it is a matrix with elements 1 and − 1 to subtract the utility of the chosen alternative 
with all the non-chosen alternatives. We can write the distribution of utility differences as follows: 

Ū ∼ MVN(IRP − 1)+T(ISP − 1)×(IRP − 1)+T(ISP − 1)(B̄, Θ̄)

where B̄ = MB
⌢
, and Θ̄ = MΘ

⌢
M’ 

Thus, the likelihood of the decision-maker n can be written as: 

Ln(θ) =
∫ B̄

− ∞
f(IRP − 1)+T(ISP − 1)(r|B̄, Θ̄ )dr (17) 

The likelihood (constrained) maximization problem can be written as follows: 

max
θ

∑N

n=1
Log(Ln(θ)) (18) 

Such that for each SP stage choice ∀i 
∑

H⊆AK

m(H) = 1; where AK = {x1, x2, ..., xK}

∑

H⊆AK\k

m(H ∪ k)⩾0∀k; ∀i

where AK\k represents collection of all attributes except the kth attribute
∪ represents the union of two sets

(19) 

Since Möbius parameters are unconstrained and has a one-to-one mapping with fuzzy measures, we convert fuzzy measures μ() into 
their corresponding Möbius parameters m() and solve the above-constrained optimization problem. The decision variables in the 

constrained maximisation problem are θ =
[
Vech(m),Vech(β), ϑ, ρ, τ, π,Vech(Ω̃)

]
, where the Vech(.) operator vectorises the unique 

element of a matrix and the vector m contains all the Möbius parameters. 
The likelihood function involves the computation of a (IRP − 1)+T(ISP − 1) dimensional multi-variate normal cumulative density 

function (MVNCDF) for each decision-maker. One can use Geweke, Hajivassiliou and Keane (GHK) simulator (Geweke, 1991; Haji-
vassiliou et al., 1996; Keane, 1994; Genz, 1992) or analytical approximation methods (Bhat, 2011; Bhat, 2018) to accurately evaluate 
the multivariate normal cumulative distribution function (MVNCDF). However, none of the methods can estimate a high dimensional 
MVNCDF with reasonable accuracy and their performance starts to deteriorate beyond an integral dimension of 10. In our empirical 

S. Dubey et al.                                                                                                                                                                                                          



Transportation Research Part C 160 (2024) 104455

14

analysis, the dimensionality of integration is 63[(4 − 1) + 15(5 − 1) ]. No combinations of starting parameter values can provide a 
value numerically indifferent from zero. Further, estimation-time and memory requirements for such high dimensional integral are 
unreasonably high. To overcome this issue, we use the composite marginal likelihood (CML) approach (Varin, 2008). In the CML 
approach, a low-dimensional surrogate function is approximated to estimate a high-dimensional function. 

The likelihood function (Eq. (17) can be written as follows using the CML approach: 

LCML(θ) =

(
∏T− 1

r=1

∏T

r′=r+1

Pr(ir = im,SP,r, ir′ = im,SP,r′, iRP = im,RP)

)

(20)  

LCML(θ) =

(
∏T− 1

r=1

∏T

r’=r+1

∫ B̄rr’

− ∞
f(IRP − 1)+2(ISP − 1)(r|B̄rr’ , Θ̄rr’ )dr

)

where B̄rr’ = LB̄, Θ̄rr’ = LΘ̄L’ and the matrix L is constructed as follows: 

L = zeros((IRP − 1) + 2(ISP − 1), (IRP − 1) + T(ISP − 1) ),
L[1 : (IRP − 1), 1 : (IRP − 1) ] = IIRP − 1,

L[IRP : (IRP − 1) + (ISP − 1), (IRP − 1) + (r − 1)(ISP − 1) + 1 : (IRP − 1) + r(ISP − 1) ] = IISP − 1,

L[(IRP − 1) + (ISP − 1) + 1 : (IRP − 1) + 2(ISP − 1), (IRP − 1)(r’ − 1)(ISP − 1) + 1 : (IRP − 1) + r’(ISP − 1) ] = IISP − 1,

II− 1 : identity matrix of size (I − 1)

In the above CML expression, the highest dimension of integration is (IRP − 1) + 2(ISP − 1). For the approximate computation of the 
(IRP − 1)+2(ISP − 1) dimensional MVNCDF function, we use a GHK simulator with 600 Halton Draws (Bhat, 2003; Train, 2000). 
Further, since Eq. (17) is a constrained optimization problem, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 
2000) can no longer be used. Therefore, we use the sequential least-square programming (SLSQP) algorithm to solve the constrained 
loglikelihood maximization problem. Readers are referred to (Nocedal and Wright, 2006)) for a detailed discussion of the SLSQP 
algorithm. We use the SLSQP algorithm’s off-the-shelf implementation in Python’s Scipy package. 

In the current empirical analysis, there are three explanatory variables in the CI. Hence, the equality and inequality constraints (for 
each alternative) to ensure 0⩽μ()⩽1 and monotonicity can be written as follows: 

Equality constraint (for each SP stage choice): 

m(TT)+m(WT)+m(TC)+m(TT,WT, TC)+m(TT,TC)+m(WT, TC)+m(TT,WT, TC) = 1 

In-equality constraints (for each SP stage choice): 

m(TT)⩾0 ⇒ μ(TT)⩾0
m(WT)⩾0 ⇒ μ(WT)⩾0
m(TC)⩾0 ⇒ μ(TC)⩾0
m(TT) + m(TT,WT)⩾0 ⇒ μ(TT,WT) − μ(WT)⩾0
m(TT) + m(TT,TC)⩾0 ⇒ μ(TT,TC) − μ(TC)⩾0
m(WT) + m(TT,WT)⩾0 ⇒ μ(TT,WT) − μ(TT)⩾0
m(WT) + m(WT, TC)⩾0 ⇒ μ(WT, TC) − μ(TC)⩾0
m(TC) + m(TT, TC)⩾0 ⇒ μ(TT, TC) − μ(TT)⩾0
m(TC) + m(WT, TC)⩾0 ⇒ μ(WT, TC) − μ(WT)⩾0
m(TT) + m(TT,WT) + m(TT,TC) + m(TT,WT, TC)⩾0 ⇒ μ(TT,WT,TC) − μ(WT,TC)⩾0
m(WT) + m(TT,WT) + m(WT,TC) + m(TT,WT, TC)⩾0 ⇒ μ(TT,WT, TC) − μ(TT,TC)⩾0
m(TC) + m(TT, TC) + m(WT,TC) + m(TT,WT,TC)⩾0 ⇒ μ(TT,WT, TC) − μ(TT,WT)⩾0 

Ensuring differenced error-covariance matrix is positive-definite 
To ensure the non-singularity of the error-covariance matrix, we perform the model estimation in Cholesky space. Let Lchol is the 

lower Cholesky decomposition of the covariance matrix Θ̃. Then, we pass the unique elements of the Lchol matrix to the optimization 
function. Further, we need to ensure that the implied covariance matrix based on optimized Lchol results in a matrix with the top left 
element for each of the RP and SP choice variables is equal to 1. To ensure such condition, follow the pseudocode described below: 
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4.3. Choice set construction and additional RP stage explanatory variables 

As discussed in section 3.1, the first step of the survey includes obtaining information about the most frequent trip of an individual. 
Respondents are asked to provide details of the most frequent trip along with the respective travel mode. We do not elicit the revealed 
preference (RP) choice using conjoint analysis to keep the survey time reasonable. Instead, we construct the RP choice set and mode- 
specific travel time, wait time, and cost post-survey. In particular, we consider four modes: car, train, bus/tram and bike. For each of 
the modes, relevant mode attributes (in-vehicle travel time, access and egress distance and travel cost6) are obtained using Google API 
based on respondent-reported OD-pair and departure time. 

Access to various modes is determined through a combination of additional survey-based information and obtained mode attri-
butes. Access to the car (deterministic: yes or no) is obtained based on the answers to two survey questions which asked respondents to 
indicate household vehicle ownership (binary: yes or no) and possession of driving license by the respondent (binary: yes or no). For 
both train/metro and bus/tram/light-rail, access to mode (deterministic: yes or no) is determined based on in-vehicle travel time 
(IVTT). If the obtained (through Google API) IVTT is greater than zero, the mode is considered available to the respondent. Finally, the 
bike is considered universally available. Table 2 provides the distribution of overall access to various primary modes obtained in the 
survey. 

We further enrich the data by appending four-digit postcode-level socio-economic data as a proxy for individual-level socio-eco-
nomic details available from the Dutch Central Bureau of Statistics (Dutch Central Bureau of Statistics, 2017).7 Finally, the sample is 
split into 80/20 for estimation and validation purposes. 

Table 2 
Revealed choice mode availability  

Mode Available (%) 

Car 93 
Train/metro 95 
Bus/tram/light-rail 97 
Bike 100  

6 Travel cost for car is calculated assuming a 0.5 euros/km cost based on sample average operating cost (see Fig. 6). Public transport travel cost is 
calculated using the equation discussed in section 3.  

7 In the survey, information on household income was not mandatory and about 15% respondents did not report their personal or household level 
income. The distribution of socio-economic variables at zip code level is available in the supplementary sheet section S.2. 
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5. Sample description and estimation results 

In this section, we provide a description of sample statistics and model estimation results. 

5.1. Sample statistics 

Survey dissemination was performed by Qualtrics. Participants were recruited from their survey panel based on age and gender. All 
the respondents reside and work in the Netherlands. Further, no region restriction was imposed in terms of the respondent’s location 
except that the OD pair should be within the Netherlands. 

A total of 2021 responses were collected between September and November 2021. During this period, the COVID-19 restrictions 
were largely lifted in the Netherlands. In particular, there was no restriction on social gatherings and the mask was only obligatory in 
public transport. After data cleaning, a total of 1606 responses remained valid for model estimation.8 Fig. 5a provides the distribution 
of survey completion time. Based on an initial pilot, respondents with survey completion time shorter than 7 min or longer than 30 min 
were excluded, resulting in the exclusion of 43 respondents. The average survey completion time is 12.5 min. Figs. 5b to 5e provide the 
distribution of socio-demographic and reported trip characteristics in the sample. The sample consists of an equal share of males and 
females. There are sufficient observations in various age categories with the highest proportion of respondents in the age category 55 
or older. The sample is fairly balanced in education status with 45 % of respondents with a diploma or less and 55 % with a technical or 
bachelor’s degree or higher. The majority of the respondents in the sample are employed (68 %) with a considerable proportion of 
retired individuals (16 %). In terms of trip purpose, work or work-related trip constitutes the majority of trips (65 %). There is also a 
considerable share of family and social care (11 %) and social/recreational (18 %) trips. The majority of the respondents are car users 
(76.2 %). Public transport (Train/Metro/Bus/Tram/Light-rail) accounts for 14 % of the trips and the active mode (bike) has a sub-
stantial share of 10 %. The temporal distribution of trips reflects a peak period during 7–9 AM. There is also a considerable share of 
trips taking place during the afternoon (12–16) period (23 %). 

Fig. 6 provides the distribution of cost and time for car users. The calculated per km car cost is considerably different from the user’s 
perceived cost (labelled as reported in the figure) indicating a downward bias in self-reported values (Elgar et al., 2005). The average 
car trip time (based on reported OD) is around 25 min and very few trips are over 75 min or longer. Fig. 7 provides the time distribution 
for various legs of a train/metro trip.9 The majority of train/metro trips have an access time of 20 min. On average, bike users spend 
less time compared to other modes in accessing a train/metro station. The same pattern holds for egress time with an average egress 
time of 18 min. The average in-vehicle travel time is about 45 min for train/metro users. Based on the mode split, the majority of train/ 
metro trips involve accessing the station by bike and covering the last leg of the journey on foot. 

Fig. 8 provides the time distribution for various legs of a bus/tram/light-rail trip.10 The access and egress mode distribution 
suggests that the majority of respondents have easy access to stop within a walking distance range. The average in-vehicle trip time 
stands at around 40 min. Finally, bike users have an average biking time of 20 min (Fig. 9). 

Next, Figs. 10a and 10b provide the distribution of the primary mode reported by respondents and the choice share of alternatives 
in the SP choice experiment, respectively. Car is the most commonly used primary mode (75 %) while bus/tram/light-rail is the least 
used primary mode (3 %). The mode split between train/metro and bike is equal with a 10 % share each. Additionally, car and train/ 

Fig. 5a. Survey completion time distribution.  

8 The data cleaning involved checking validity of OD pair, unusual travel times and survey duration.  
9 The PT label included both train/metro and bus/tram/light-rail.  

10 The PT label included both train/metro and bus/tram/light-rail. 
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metro users show the highest affinity towards MOD service followed by bus/tram/light-rail users. It also appears that bike users are 
least likely to shift towards an MOD service. Motorized mode users also exhibit a propensity to change the departure time window. 

5.2. Result and discussion 

In this section, we discuss the estimation results. First, we discuss the effect of various explanatory variables on the primary mode followed 
by a discussion of SP-stage estimation results. The explanatory variables in the utility specification for primary mode are modelled using a 
weighted sum functional form. The SP-stage choices (trade-off between primary mode and MOD option) are modelled as a combination of 
Choquet-Integral and weighted sum functional form. In our discussion of SP stage results, we focus on the following important areas:  

1. Approximation of non-compensatory behaviour in the context of MOD choice and comparison of CI model with traditional WS 
model at a behavioural level  

2. Regret due to the difference in stated vs. actual travel and wait time difference  
3. Inertia effect due to longitudinal choices  
4. Propensity for the departure time change in the presence of MOD service  
5. Endogeneity effect  
6. Price estimate required to achieve critical mass 

Fig. 5b. Age and gender distribution in the sample.  

Fig. 5c. Education and occupation distribution in the sample.  
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Fig. 5d. Trip purpose and primary mode distribution in the sample.  

Fig. 5e. Temporal distribution of trips in the sample.  

Fig. 6. Time and cost distribution for car users.  
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Fig. 7. Access, egress and in-vehicle time distribution for Train/Metro users.  
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Fig. 8. Access, egress and in-vehicle time distribution for Bus/Tram/Light-rail users.  

Fig. 9. Travel time distribution for bike users.  
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5.2.1. Primary mode results (RP-stage) 
Tables 3.1 and 3.2 provide the estimates of explanatory variables for the primary mode. In particular, Table 3.1 shows the effect of 

demographic features (age, gender, occupation, and education status), departure time and trip purpose. The effect of in-vehicle travel 
time, out-of-vehicle distance, travel cost and OD socio-economic indicators are shown in Table 3.2. 

As expected, school/college trips are more likely to be performed by public transport (PT) modes as they help avoid traffic jams and 
require no parking (van Exel and Rietveld, 2009).11 However, people prefer car or train over bus and bike for trips involving household 
tasks possibly due to time and space flexibility. Highly educated individuals also have a high propensity towards train/metro, possibly 
due to reasons such as comfort, greater environmental awareness and a lesser propensity to drive (Fisher et al., 2012; Sivak, 2013). 
Train/metro is mostly preferred in morning rush hours (6–10 am) over other modes as the frequency of trains in the morning is almost 
10 trains/hour in large parts of the Netherlands. Trains, in general, are considered the most viable option for medium to long-distance 
trips (50 km or more) in the Netherlands (van der Waerden and van der Waerden, 2018). Young (18–24) individuals exhibit a high 
propensity towards train/metro. There are also age group-specific effects on the bus/tram and bike modes with individuals belonging 
to age groups (45–54) and (25–34) exhibiting low propensity towards bus/tram and bike, respectively. Next, occupation also has a 
significant impact on the choice of primary mode with non-employed individuals (students, pensioners, and unemployed/looking for 
work) exhibiting a high propensity towards usage of PT and bike as compared to car. This can be attributed to both lower frequency 
and higher flexibility of trips performed by such individuals (Kim and Ulfarsson, 2004) and a decrease in the popularity of cars among 
the younger generation (Hjorthol, 2016). 

All mode attributes (in-vehicle travel time, out-of-vehicle distance, and cost) have intuitive signs and are significant. The implied 
values of time (VOT) for car, train/metro, and bus/tram/light-rail users are 11.50€/h, 7.20€/h, and 6.40€/h, respectively. The VOT 
values obtained for the car and public transport users in this study are close to the values observed by Kouwenhoven et al., (2014) and 
Alonso-González et al., (2020) for the Dutch population. Guevara (2017) provides excellent reasons grounded in the microeconomic 
theory behind higher VOT for private mode as compared to public transport modes which are not dependent on income. Since the car is 
usually more expensive than public transport and hence likely to be used by individuals with high-income levels. This leads to a higher 
VOT for car users coupled with the fact that the travel time by car is generally shorter than public transport. Beyond this income- 
implied VOT effect, Guevara (2017) provides two additional reasons for higher VOT based on mode-valued differences (Wardman, 
2004). The first explanation is related to the marginal consumption of resources. In public transport setting, the user is not the 
operator. Hence any additional consumption of resources such as oil has no direct impact on the user as fare is exogenous. On the other 
hand, the car user is both a user and an operator and hence extra resource consumption has an indirect effect on car users’ utility. 
Hence, the mode-valued VOT for car users is likely to be higher as compared to public transport users due to consumption-related 
effects. The second reason behind higher VOT for car users is related to activity scheduling. Car is faster and can access a large 
number of places. This allows for complex trip chaining as compared to public transport. The ability to perform many tasks in a short 
period by car allows for a higher level of utility achieved by the user leading to a higher VOT (Guevara et al., 2015). 

In addition to the mode and demographic variables, the land-use variables also have a significant effect on mode preference. As the 
density of the (both origin and destination) area decreases, the propensity to use non-car modes decreases. An increase in real-state 
value at the origin reduces the propensity to use train/metro as compared to bus/tram/light-rail. On the other hand, an increase in 

Fig. 10a. Revealed preference (Primary) mode share.  

11 In the Netherlands, high-level bus routes have bus-only lanes. 
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the real-state value at the destination increases the propensity towards train/metro. Car ownership at the destination negatively 
impacts the propensity towards train/metro. At the origin level, an increase in distance to the closest supermarket has a positive effect 
on the likelihood of using the train/metro. However, an increase in distance to the closest primary school has a negative effect on the 
likelihood of using PT modes. At the destination level, an increase in the distance to the closest supermarket has a positive effect on the 
bike. Overall, the high-density areas positively affect the propensity of PT modes as also reported by (Limtanakool et al., 2006) who 

Fig. 10b. Mode share distribution in the stated-preference choice experiment.  
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Table 3.1 
Choquet-Integral based MNP model estimation results (t-statistics in brackets)  

Dependent 
variable 

Alternatives Explanatory variables  
Trip purpose (base: To/from work) Education status (base: high 

school diploma or less) 
Intercept Work- 

related 
Going to 
university 

House 
related 
work 

Social 
trip 

Bachelor’s 
degree 

Master’s or 
PhD degree 

Primary 
mode 

Car        
Train/Metro − 0.753 

(-19.78) 
— 0.775 

(29.17) 
— — 0.188 

(15.38) 
0.202 (13.73) 

Bus/Tram/Light-rail − 0.508 
(-12.31) 

— 1.357 
(23.14) 

− 0.735 
(-7.53) 

— — — 

Bike − 0.309 
(-16.75) 

— — − 0.188 
(-14.57) 

— — — 

Car users Car at the reported 15-minute 
departure window        
MOD 30 mins earlier − 1.170 

(-8.49) 
— — — — — 0.056 (1.04) 

MOD 15 mins earlier − 0.530 
(-5.59) 

— — − 0.085 
(-1.85) 

— — — 

MOD at the reported 15-minute 
departure window 

− 0.382 
(-5.37) 

− 0.062 
(-1.72) 

— − 0.133 
(-2.80) 

− 0.075 
(-1.57) 

— 0.043 (1.48) 

MOD 15 mins later − 0.417 
(-5.58) 

− 0.091 
(-1.90) 

— − 0.133 
(-2.47) 

− 0.073 
(-1.62) 

— 0.056 (1.89) 

Train/ 
metro users 

Train/metro at the reported 
15-minute departure window        
MOD 30 mins earlier 0.45 0 

(1.52) 
— — — — — — 

MOD 15 mins earlier 0.569 
(2.16) 

— — — — — — 

MOD at the reported 15-minute 
departure window 

0.337 
(1.22) 

— — — — — — 

MOD 15 mins later 0.597 
(2.47) 

— — — — — — 

Bus/tram/ light- 
rail users 

Bus/tram/light-rail at the 
reported 15-minute departure 
window        
MOD 30 mins earlier − 0.945 

(-1.00) 
— — — — — — 

MOD 15 mins earlier 0.099 
(0.41) 

— — — — — — 

MOD at the reported 15-minute 
departure window 

− 0.010 
(-0.04) 

— — — — — — 

MOD 15 mins later 0.238 
(0.51) 

— — — — — — 

Bike users Bike at the reported 15-minute 
departure window        
MOD 30 mins earlier − 1.577 

(-1.41) 
— — 0.343 

(1.100) 
— — — 

MOD 15 mins earlier − 0.484 
(-1.05) 

— — — — — — 

MOD at the reported 15-minute 
departure window 

− 0.367 
(-0.83) 

— — — — — — 

MOD 15 mins later − 0.900 
(-1.03) 

— — — — — —  

Dependent 
variable 

Alternatives Explanatory variables 

Departure window (base: 7–8) 

0–6 6–7 8–9 9–10 10–12 12–16 16–17 17–18 18–19 19–24 

Primary 
mode 

Car           
Train/Metro — 0.291 

(16.48) 
0.253 
(13.79) 

— − 0.346 
(-19.96) 

− 0.384 
(-19.10) 

− 0.833 
(-14.92) 

− 0.833 
(-14.92) 

− 0.833 
(-14.92) 

− 0.833 
(-14.92) 

Bus/Tram/Light- 
rail 

— — — — — — — — — — 

Bike — — — — — — − 0.610 
(-16.31) 

− 0.610 
(-16.31) 

− 0.610 
(-16.31) 

− 0.610 
(-16.31) 

Car users Car at the 
reported 15-           

(continued on next page) 
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Table 3.1 (continued ) 

Dependent 
variable 

Alternatives Explanatory variables 

Departure window (base: 7–8) 

0–6 6–7 8–9 9–10 10–12 12–16 16–17 17–18 18–19 19–24 

minute departure 
window 
MOD 30 mins 
earlier 

— — — 0.159 
(2.51) 

— 0.060 
(1.18) 

— — — — 

MOD 15 mins 
earlier 

— — — — — — — — — — 

MOD at the 
reported 15-min-
ute departure 
window 

− 0.064 
(-1.21) 

— 0.043 
(1.48) 

— — — — — — — 

MOD 15 mins 
later 

— — — — 0.079 
(2.21) 

0.047 
(1.70) 

— — — — 

Train/ 
metro 
users 

Train/metro at the 
reported 15-min-
ute departure 
window           
MOD 30 mins 
earlier 

— — 0.136 
(1.83) 

— — — — — — — 

MOD 15 mins 
earlier 

— — — — — — — — — — 

MOD at the 
reported 15-min-
ute departure 
window 

— — — 0.116 
(1.95) 

— — — — — — 

MOD 15 mins 
later 

— — — 0.060 
(1.67) 

— — — — — — 

Bus/tram/ 
light-rail 
users 

Bus/tram/light- 
rail at the reported 
15-minute 
departure window           
MOD 30 mins 
earlier 

— — — — — — — — — — 

MOD 15 mins 
earlier 

— — — — — — — — — — 

MOD at the 
reported 15-min-
ute departure 
window 

— — — — — — — — — — 

MOD 15 mins 
later 

— — — — — — — — — — 

Bike users Bike at the 
reported 15-min-
ute departure 
window           
MOD 30 mins 
earlier 

— — — — — — — — — — 

MOD 15 mins 
earlier 

— — — — — — — — — — 

MOD at the 
reported 15-min-
ute departure 
window 

— — — — — — — — — — 

MOD 15 mins 
later 

— — — — — — — — — —  

Dependent 
variable 

Alternatives Explanatory variables 

Age (base: 55 or above) Gender 
(base: 
female) 

Occupation (base: employed) 

18–24 25–34 35–44 45–54 Male Student Pensioner Unemployed/ 
looking for work 

Primary 
mode 

Car         
Train/Metro 0.380 

(18.13) 
— — — — 0.905 

(31.30) 
— 0.312 (11.33) 

(continued on next page) 
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found that trains are more attractive in high-density areas. Finally, a higher density of financial and recreational establishments 
discourages bike use. However, people prefer to use the train/metro and bike over car in areas with high density of trade and catering, 
and business services. 

5.2.2. Choice between the currently used primary mode and a MOD service (SP-stage) 
In this section, we discuss the presence/absence of non-compensatory behaviour, the effect of reliability, and other explanatory 

variables on the choice between a current mode and a MOD alternative. In particular, we start our discussion with the evidence for non- 
compensatory behaviour in the context of MOD mode choice and highlight how one can compare CI and WS models at a behavioural 
level using feature importance. We also compare two models using aggregate and disaggregate data-fit statistics to statistically validate 
the underlying behavioural findings. Subsequently, we discuss the effect of past choices/experiences, inertia effect, propensity of 
temporal mode shift and effect of other trip characteristics such as purpose, and access and egress mode on an individual’s choice of a 
mode. 

Table 3.1 (continued ) 

Dependent 
variable 

Alternatives Explanatory variables 

Age (base: 55 or above) Gender 
(base: 
female) 

Occupation (base: employed) 

18–24 25–34 35–44 45–54 Male Student Pensioner Unemployed/ 
looking for work 

Bus/Tram/Light-rail — — — − 0.473 
(-5.73) 

— 0.657 
(13.09) 

0.186 
(4.79) 

0.542 (12.60) 

Bike — − 0.343 
(-24.41) 

— — — 1.216 
(59.26) 

— — 

Car users Car at the reported 15- 
minute departure 
window         
MOD 30 mins earlier 0.183 

(2.38) 
0.080 
(1.18) 

0.091 
(1.43) 

— — — — — 

MOD 15 mins earlier 0.114 
(2.15) 

0.074 
(1.67) 

0.065 
(1.47) 

0.076 
(2.16) 

— — — — 

MOD at the reported 15- 
minute departure 
window 

0.091 
(2.00) 

0.083 
(2.17) 

0.081 
(1.98) 

0.051 
(1.31) 

— — — — 

MOD 15 mins later 0.068 
(1.26) 

0.06 
(1.64) 

0.087 
(2.19) 

— — — — — 

Train/ 
metro 
users 

Train/metro at the 
reported 15-minute 
departure window         
MOD 30 mins earlier 0.187 

(1.29) 
0.187 
(1.29) 

— — − 0.175 
(-1.50) 

— — — 

MOD 15 mins earlier 0.311 
(1.57) 

0.311 
(1.57) 

0.174 
(1.15) 

0.174 
(1.15) 

− 0.251 
(-2.08) 

— — — 

MOD at the reported 15- 
minute departure 
window 

0.346 
(1.82) 

0.346 
(1.82) 

0.184 
(1.18) 

0.184 
(1.18) 

− 0.246 
(-1.63) 

— — — 

MOD 15 mins later 0.247 
(1.21) 

0.247 
(1.21) 

0.189 
(1.15) 

0.189 
(1.15) 

− 0.332 
(-2.34) 

— — — 

Bus/tram/ 
light-rail 
users 

Bus/tram/light-rail at 
the reported 15-minute 
departure window         
MOD 30 mins earlier — — — — — — — — 
MOD 15 mins earlier — — — — — — — — 
MOD at the reported 15- 
minute departure 
window 

— — — — — — — — 

MOD 15 mins later — — — — — — — — 
Bike users Bike at the reported 15- 

minute departure 
window         
MOD 30 mins earlier — — — — — — — — 
MOD 15 mins earlier — — — — — — — — 
MOD at the reported 15- 
minute departure 
window 

— — — — — — — — 

MOD 15 mins later — — — — — — — — 

——: highly insignificant, p > 0.35. 
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5.2.2.1. Non-compensatory behaviour 
Table 3.4 reports the CI fuzzy measure estimates.12 Readers will note that fuzzy measures are generic and not alternative-specific, i. 

e., the same set of fuzzy measures are estimated for all alternatives for a given primary mode user. In our analysis, we attempt to 
estimate alternative-specific fuzzy measures (μ()). However, it turned out to be insignificant and, in some cases, led to the singularity of 
the first-order matrix. This suggests that either an alternative-specific preference is not empirically identifiable in the current dataset or 
that users attach the same preference (i.e., same attribute importance) for their primary mode and MOD service, i.e., a concise choice 
set may offer better insights into the decision process. Further, the waiting time variable for public transport options (train/metro and 
bus/tram/light-rail) is the sum of the access time to the station/stop, waiting time at the station/stop, and egress time to the desti-
nation. We created the aggregate waiting time since an alternative-specific CI could not be estimated.13 

In the case of car users, none of the fuzzy measures are zero. Therefore, car users utilize all the information in their decision-making. 
However, travel time is considered the least important as implied by its very small fuzzy measure coefficient. It suggests that travel 
time does not play a significant role in the decision process of car users when comparing the car with MOD options. Similarly, in the 
case of public transport (train and bus), the fuzzy measure value for travel time is zero. Therefore, no attribute trade-off (zero marginal 
contribution) occurs in some regions of attribute ranges (see section 4.1) depending on the distribution of attribute values. Between 
train and bus users, the degree of no-trade-off is stronger among bus users. Finally, bike users exhibit behaviour similar to public 
transport users with low importance attached to waiting time. 

Such a direct inference of non-compensatory behaviour is not possible in models with WS aggregation functions. Therefore, we 
need to examine another avenue to make a comparison between CI and WS models at the behavioural level. One such avenue can be 
feature/attribute importance (Shapley value, see Eq. (5) in section 4). One can expect the feature importance values obtained from 
CI and WS-based models to be significantly different in the event of an underlying non-compensatory behaviour. For example, since 
the fuzzy measure value of travel time and waiting time is relatively small for bus users, we can infer that the implied feature 
importance of these two attributes may be close to zero (non-significant role in the decision process of bus users when comparing 

Table 3.2 
Choquet-Integral based MNP model estimation results (t-statistics in brackets)  

Explanatory variables Dependent variable: Primary mode 

Car Train/Metro Bus/Tram/Light-rail Bike 

Mode characteristics 
In-vehicle travel time (hours) − 0.207 (-5.27) − 0.295 (-5.78) − 0.550 (-7.47) − 1.907 (-8.59) 
Out-of-vehicle distance (km)  − 0.096 (-13.42) − 0.253 (-12.92) — 
Travel cost (€) − 0.018 (-3.46) − 0.041 (-7.93) − 0.086 (-19.36)  
Trip origin area characteristics 
Area type (base: very strong urban (≥2000 addresses per km2))     
Strongly urban (1500–2000 addresses per km2)  — — − 0.168 (-16.03) 
Moderately urban (1000–1500 addresses per km2)  — — — 
Few urban (500–1000 addresses per km2)  — — — 
Non-urban (<500 addresses per km2)  − 0.536 (-12.24) 0.443 (9.36) — 
Average value of real-state (in 1000 euros)  − 0.721 (-6.89) — — 
Number of cars per household  — — — 
Average distance to the closest supermarket (in km)  0.252 (11.76) — — 
Average distance to closest primary school (in km)  − 0.543 (-17.99) − 0.694 (-11.27) — 
Trip destination area characteristics 
Area type (base: very strong urban (≥2000 addresses per km2))     
Urban (1000–2000 addresses per km2)  − 0.249 (-17.07) − 0.31 (-13.58) − 0.209 (-17.41) 
Non-urban (up to 1000 addresses per km2)  − 0.497 (-18.75) − 0.491 (-11.86) − 0.307 (-17.82) 
Average value of real-state (in 1000 euros)  1.038 (13.84) — — 
Number of cars per household  − 0.521 (–23.12) — — 
Average distance to the closest supermarket (in km)  — — 0.136 (18.67) 
Average distance to the closest primary school (in km)  — — — 
Number of establishments per industry (in 100 s)     
Agriculture, forestry and fisheries  — — — 
Industry and energy  — — — 
Trade and catering  0.348 (24.93) — — 
Transport, information and communication  — — — 
Financial services, real estate  — — − 0.729 (-16.62) 
Business services  — — 0.515 (22.31) 
Culture, recreation, other services  − 0.58 (-19.54) — − 0.404 (-11.18) 

——: highly insignificant, p > 0.35. 

12 When the observed utility function is a combination of weighted sum and CI, a multiplicative scale factor may be estimated to account for 
difference in range of value. In the current empirical models, we could not statistically distinguish the factor from 1.  
13 The attribute normalization can only be performed if an attribute is applicable for at least two alternatives. We also attempted to estimate 

attribute-specific membership to overcome the issue of access and egress time non-availability for MOD options in order to estimate separate pa-
rameters for those variables. However, the estimates could not be empirically identified. 
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Table 3.3 
Choquet-Integral based MNP model estimation results (t-statistics in brackets)  

Dependent variable Alternatives Explanatory variables 

Shared Cumulative choice count 
until time t-1 

Regret components 

(Yes = 1, No 
= 0) 

Intercept Curvature 
ln
(ExpectedTT

ActualTT

)

ln
(ExpectedWT

ActualWT

)

Car users Car at the reported 15-minute departure 
window  

0.209 
(7.08) 

1.462 
(29.17)   

MOD 30 mins earlier 0.201 (4.03) 0.512 
(6.42) 

2.768 (6.29) 0.451 (1.87) − 0.356 (-1.49) 

MOD 15 mins earlier 0.172 (4.80) 0.36 (5.99) 5.303 (2.98) 
MOD at the reported 15-minute departure 
window 

0.241 (6.69) 0.300 
(5.77) 

3.295 (4.98) 

MOD 15 mins later 0.033 (1.24) 0.313 
(6.07) 

2.295 (7.30) 

Train/ 
metro users 

Train/metro at the reported 15-minute 
departure window  

0.666 
(2.58) 

1.847 (8.72)   

MOD 30 mins earlier 0.127 (1.44) 0.048 
(1.80) 

1 (fixed) − 0.420 (-1.59) 0.434 (1.61) 

MOD 15 mins earlier — — 1 (fixed) 
MOD at the reported 15-minute departure 
window 

0.11 (1.39) — 1 (fixed) 

MOD 15 mins later — — 1 (fixed) 
Bus/tram/ light-rail 

users 
Bus/tram/light-rail at the reported 15-minute 
departure window  

— 1 (fixed)   

MOD 30 mins earlier — — 1 (fixed) — — 
MOD 15 mins earlier — — 1 (fixed) 
MOD at the reported 15-minute departure 
window 

— — 1 (fixed) 

MOD 15 mins later — — 1 (fixed) 
Bike users Bike at the reported 15-minute departure 

window  
— 1 (fixed)   

MOD 30 mins earlier — 0.987 
(1.82) 

3.042 (1.42) — — 

MOD 15 mins earlier — 0.258 
(1.56) 

1 (fixed) 

MOD at the reported 15-minute departure 
window 

— 0.238 
(1.27) 

1 (fixed) 

MOD 15 mins later — — 1 (fixed)  

Dependent variable Alternatives Explanatory variables 
Access mode Egress mode 
Public 
transport 

Car Walk Bike Public 
transport 

Bike Car Walk 

Car users Car at the reported 15-minute departure 
window         
MOD 30 mins earlier         
MOD 15 mins earlier         
MOD at the reported 15-minute departure 
window         
MOD 15 mins later         

Train/ 
metro users 

Train/metro at the reported 15-minute 
departure window 

0.233 (2.24) — — — — — — — 

MOD 30 mins earlier         
MOD 15 mins earlier         
MOD at the reported 15-minute departure 
window         
MOD 15 mins later         

Bus/tram/ light-rail 
users 

Bus/tram/light-rail at the reported 15-minute 
departure window 

— — — 0.347 
(1.74) 

— — — — 

MOD 30 mins earlier         
MOD 15 mins earlier         
MOD at the reported 15-minute departure 
window         
MOD 15 mins later         

Bike users Bike at the reported 15-minute departure 
window         
MOD 30 mins earlier         
MOD 15 mins earlier         

(continued on next page) 

S. Dubey et al.                                                                                                                                                                                                          



Transportation Research Part C 160 (2024) 104455

28

the currently used mode with MOD options). 

5.2.2.2. Feature importance (Shapley value) 
Fig. 11 shows the feature importance of travel time, travel cost, and waiting time for all primary modes. For the CI-based model, the 

feature importance is obtained using Eq. (5). In contrast, Eq. (5) cannot be directly employed to obtain feature importance in the WS 
model as parameters are not constrained between 0 and 1 and are also not monotonic. Hence, we derive the feature importance using 
marginal effects (change in probability) for the pure WS-based model specification. Such measures are typically used in WS based 
model to derive the importance of an explanatory variable. In particular, we normalize the absolute marginal effect of a primary mode 
as a result of improvement in service aspects (travel time, travel cost, and waiting time) of the MOD service, one at a time. The marginal 
effects resulting from a 20 % reduction in MOD service aspects are provided in the supplementary sheet (section S.4). It is plausible that 
feature importance derived based on this marginal-effect approach may be different from true feature importance.14 Nevertheless, this 
approach would suffice for comparing CI and WS-based models at the behavioural level. Further, we estimate two specifications for WS 
based model: (a) a specification with no interaction between travel time, waiting time, and cost (MNP-WS(NI)), and (b) a specification 
with complete interaction between travel time, waiting time, and cost (MNP-WS(AI)). A complete interaction ensures an equal degree- 
of-freedom in both MNP-CI and MNP-WS(AI) models. Hence, any differences observed between MNP-CI and MNP-WS(AI) models can 
then be attributed to the way variables are processed by the CI function (marginal contribution-based processing). 

An examination of the feature importance values (based on MNP-CI) suggests that travel cost is the most important variable fol-
lowed by waiting time and travel time. Travel time has negligible importance for both car and train/metro users (0.03 and 0.03). This 
follows from the fact that the in-vehicle travel time does not differ substantially between MOD option, car and train/metro in most 
instances. Therefore, it has very low alternative discernability power in distinguishing between alternatives. The importance of the 
cost variables is significantly different between car and non-car users. Cost plays a very important role for public transport and active 
mode users followed by waiting time. Due to the overall high-quality alternative offered by public transport in the Netherlands, healthy 
competition exists between MOD and public transport which leads to the cost being the highly influencing variable. These observations 
are intuitive and hence suggest that CI can unravel the underlying non-compensatory behaviour. 

The behavioural differences between MNP-CI and MNP-WS(NI) are evident in the feature importance ordering. In the case of car 
users, the MNP-WS(NI) model assigns significant importance to travel time and compensates by decreasing the importance of waiting 
time. The travel time does not differ significantly between the car and MOD and thus does not aid in decision-making. Hence, the 

Table 3.3 (continued ) 

Dependent variable Alternatives Explanatory variables 
Access mode Egress mode 
Public 
transport 

Car Walk Bike Public 
transport 

Bike Car Walk 

MOD at the reported 15-minute departure 
window         
MOD 15 mins later         

——: highly insignificant, p > 0.35. 

Table 3.4 
Choquet-Integral based MNP model estimation results (t-statistics in brackets)  

Explanatory variables Dependent variable 

Car users Train/ 
metro users 

Bus/tram/ 
light-rail users 

Bike users 

μ(TT) 0.083 (2.21) 0.000 (0.00) 0.001 (0.00) 0.116 (1.36) 
μ(TC) 1.000 (7.83) 0.820 (2.60) 0.992 (1.76) 0.687 (1.66) 
μ(WT) 0.736 (7.69) 0.266 (1.48) 0.115 (2.15) 0.001 (0.00) 
μ(TT,TC) 1.000 (8.00) 0.927 (2.68) 1.000 (1.71) 0.822 (1.29) 
μ(TT,WT) 0.736 (7.63) 0.266 (1.61) 0.500 (1.57) 0.117 (1.33) 
μ(TC,WT) 1.000 (7.89) 0.967 (2.71) 0.992 (1.71) 0.981 (1.45) 
μ(TT,TC,WT) 1.000 (7.88) 1.000 (2.90) 1.000 (1.77) 1.000 (1.43) 

*TT: Travel time, TC: Travel cost, WT: Pick-up time, —: Not significant, μ(): Fuzzy measure.  

14 The Shapley equivalent feature importance in weighted-sum based models can be derived using the approach suggested by Mishra (2016). The 
approach essentially requires estimation of 2# of attributes models with all possible interactions. The data-fit estimate (R2 value) of the models are then 
used as fuzzy measure values in Eq. (5) to obtain Shapley values. 
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expected importance should be low or zero for the travel time as correctly captured by the MNP-CI model. A similar observation can be 
made for the PT (train/metro or bus/tram/light-rail) users concerning travel and waiting time. 

In comparison to the MNP-WS(NI) model, the feature importance value obtained from the MNP-WS(AI) model is relatively close to 
the MNP-CI based feature estimates for car and bike users. The feature importance values are significantly different for train/metro and 
bus/tram/light-rail cases, especially for travel and waiting times. 

Overall, the feature importance values obtained through CI based model are in line with the observations made earlier (section 
5.2.2.1) related to non-compensatory behaviour. Next, we compare the models (CI vs. WS) using data-fit statistics to ensure that 
behavioural findings are statistically valid. 

5.2.2.3. Aggregate model validation 
Table 4 provides the data-fit statistics for all three models. The lowest Akaike information criterion (AIC) value is highlighted in 

bold. Based on the data-fit statistics, a CI-based model can be considered superior to a pure WS-based model configuration. Overall, 
these results are in line with the observations made earlier based on both fuzzy measures and feature importance values. 

Fig. 11. Feature importance (Shapley value).  

Table 4 
Data-fit statistics for CI and WS models  

Model CML value 
(# of parameters) 

AIC 

MNP-CI − 24807.36 (257) 50,129 
MNP-WS(NI) − 26380.98 (237) 53,236 
MNP-WS(AI) − 25355.02 (253) 51,216 

*AIC: Akaike information criterion, CML: Composite marginal log-likelihood. 
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5.2.2.4. Disaggregate model validation 
The three criteria (fuzzy measure values, feature importance and AIC criterion) used to compare CI and WS-based models are 

aggregate measures. They do not provide however a direct insight into the performance of the models at an individual level. Hence, we 
calculate class-specific accuracy (highest probability alternative equals chosen option) to highlight the differences at an individual 
level. Since the distribution of chosen options is skewed towards non-MOD options for all four primary modes, we derive weighted 
accuracy to ensure overall accuracy is not dominated by alternative(s) with higher shares. 

Weighted Accuracy (WA) =

∑I=5
i=1

iaccuracy

ishare
∑5

i=1
1

ishare

iaccuracy =
#of observations where p(i) > p(j, j ∈ A(1, 2, .., I)/i )and chosen option = = i

#of observations where chosen option = = i

where iaccuracy is the accuracy of option i and ishare is the observed share of option i in the sample

and 0⩽WA⩽1.

Fig. 12 shows the weighted accuracy value for all models. For brevity, we only report the aggregate values here. The weighted 
accuracy is calculated based on the marginalisation of SP options depending on the reported primary mode. A disaggregate description 
is available in the supplementary sheet (see section S.5). The CI-based model consistently has a higher weighted accuracy value across 
all primary modes in both estimation and validation samples.15 This demonstrates that the CI model can reduce the divergence be-
tween modelled and true behaviour and hence able to provide improved individual-level predictions. 

5.2.2.5. Regret due to difference in stated vs. actual information or reliability effect 
Table 3.3 provides the estimates of regret-related components. Readers will note that regret components are only applicable to 

MOD options. During model estimation, we could not empirically identify the regret aversion (ρ) parameter (see section 4.2) and hence 
tried both linear difference and ratio. The ratio approach was found to provide the best results. In particular, we used 

ln
(

Expected Value/Actual value
)

. Readers will note that the reliability band is set in such a way that the ratio is always greater than 1. 

The use of a ratio is also advantageous as it allows us to directly compare the effect of travel and waiting time regrets. 
In the case of car users, increased waiting time leads to a higher disutility as compared to travel time. For train/metro users, 

increased travel time leads to a higher disutility as compared to the waiting time. The behaviour of car users aligns with our expec-
tations. Car users have an option of achieving zero waiting time and hence they are highly sensitive to waiting time fluctuations. On the 
other hand, train/metro users’ greater sensitivity towards travel time than toward wait time requires further investigation. Bus/tram/ 
light-rail and bike users are not sensitive to differences in stated vs. actual information. 

5.2.2.6. Effect of past choices on current decision and inertia effect 
To capture the effect of past choices and regret on the current decision, we begin by applying the auto-regressive structure of order 

1 (AR-1) as discussed in section 4.2. While the AR-1 structure is sufficient to capture the effect of past choices and regret, we also 
include a cumulative count of choices (for each of the alternatives) to assess any alternative-specific inertia. In particular, we use the 
following power form: βCC(# of times chosen until t − 1)

1
α, where α > 0. A positive βCC implies a higher likelihood of choosing an 

alternative, ceteris paribus. The curvature parameter (α) captures the degree of inertia for a mode. A value of α < 1 indicates higher 
inertia towards an alternative. Similarly, a value of α > 1 suggests low inertia and α = 1 implies indifference. A value of α⩾5 indicates 
the absence of any inertia at all. For all the primary mode and MOD combinations, the value of βCC is positive. Table 3.3 provides the 
estimates related to past choices based on the MNP-CI(2) model. 

In the case of car users, the value of α is 1.46 for the car mode and more than 2 for the four MOD options. It implies that for car users 
to shift towards the MOD service requires overcoming a certain amount of inertia. Nevertheless, the inertia associated with the car is 
highest compared to MOD alternatives for car users indicating higher stability of transport behaviour (Thøgersen, 2006). In the case of 
train/metro users, the value of α is 1.85 for the train/metro mode and 1.0 for the remaining four MOD options.16 This suggests that 
train/metro users can shift to MOD options if attractive feature (cost and waiting time) values are provided (Thøgersen, 2006). Similar 
observations can be observed for bus/tram/light-rail and bike users. In this analysis, we did not parametrize the α coefficient and only 
estimated an intercept. One can parametrize the α parameter as a function of task-specific completion time to control for task fatigue 
which may prompt individuals to revert to their primary mode option during the SP choice task. Unfortunately, we only recorded the 
total survey time, thereby prohibiting such an analysis. 

15 We also report the un-weighted accuracy and average implied shares for all the models in the supplementary sheet (see section S.5 & S.6).  
16 All the curvature parameters with value mentioned as 1.0 (fixed) imply that we could not differentiate the value from 1 based on a significance 

level of 0.20 or less. 
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Further, the AR coefficient (π, see Eq.16) turned insignificant (for all the SP stage dependent variables) upon the inclusion of the 
cumulative count choice parameter. An insignificant AR coefficient highlights two points. First, unobserved factors are IID across time 
periods (choice tasks). Second, the regret due to the difference in stated vs. actual travel and waiting time is not accumulated and only 
the latest regret (t − 1) is considered during the next choice (t). One possible reason for such behaviour can be attributed to the 
moderately large choice set (five alternatives). A smaller choice set (primary mode + 2 MOD options) may have allowed respondents to 
focus better on reliability values and subsequently use them for decision-making in multiple periods. In light of an insignificant AR, the 
panel effect is only captured through a deterministic inertia function. 

5.2.2.7. Temporal mode shift 
To capture the temporal mode shift effect, we added the time of day as a dummy variable (see Fig. 5e). The estimates are provided 

in Table 3.1. While it is common to observe extensive usage of MOD services in the evening (7–11 pm) and night times (11–5 pm) 
(Young and Farber, 2019), we find that both car and train/metro users demonstrate some potential for temporal shifts during the 
morning peak (8–10 am) and midday (10–4 pm). The motives behind such temporal shifts by users are difficult to explain in the 
absence of trip flexibility information and household schedules. Further, similar to the regret observation, bus/tram/light-rail and bike 
users exhibit no propensity for temporal mode shift towards MOD service. Such insignificant temporal effect for bus/tram/light-rail 
can be attributed to the small sample size as discussed earlier. 

5.2.2.8. Effect of access and egress mode 
In the case of train/metro users, we observe a positive propensity towards train/metro if accessed through public transport modes 

and negative if accessed using a car (Table 3.3). It suggests that a seamless public transport connection to the station encourages 
individuals towards using the train/metro and the hassle of finding parking near the station discourages the use of the train/metro. On 
the other hand, access to the bus/tram/light-rail stop by bike is preferred possibly due to the ease of bicycle parking in the vicinity of 
the stop. Jonkeren et al. (2021) report similar statistics at the population level in the Netherlands. They report that 83 % of all train 
journeys in the Netherlands are multimodal trips with 43 % and 14 % bike share at the home end and activity end, respectively. 

5.2.2.9. Effect of trip purpose and sharing/private option 
The trip purpose (see Fig. 5d) and whether the MOD ride is private or shared not only affects the propensity to use MOD service but 

also the likelihood of changing the departure time. In the case of car users, non-commute trip purposes decrease the likelihood of using 
MOD service. It suggests that car users may only substitute driving for commute trips (Lavieri and Bhat, 2019). A positive observation 
from the environmental point of view is that car users exhibit propensity towards shared rides as compared to private MOD rides. 
Train/metro users also exhibit propensity towards shared rides as compared to private MOD rides for early departure and mode 
substitution in the usual departure window. The effect of trip purpose and shared/private option is non-significant for users of all other 
modes. 

5.2.2.10. Effect of demographic characteristics 
Young (18–34) and middle (35–54) age car and train/metro users exhibit a higher propensity towards the consideration of a MOD 

service as compared to older individuals (55 or more). This can be attributed to factors such as the digital divide and openness to new 
experiences (Lavieri and Bhat, 2019; Young and Farber, 2019). In addition, female train/metro users are more likely to experiment 
with MOD services than male train/metro users. Highly educated car users also exhibit a higher propensity towards the usage of MOD 
services, possibly due to greater awareness of urban and environmental issues (Sun et al., 2020). 

5.2.2.11. Value of time 
The value of time (VOT) cannot be directly inferred from a CI-based model. Therefore, we report the VOT based on MNP-WS(NI) 

estimates (see Table S.3.1in the supplementary sheet). The implied VOT for car, train/metro, and bus/tram/light-rail users are 10.51€/ 
h, 7.74€/h, and 5.38€/h, respectively. The implied VOT for the bike based on parameter estimates is 1.62€/h. 

5.2.2.12. Error-covariance structure and endogeneity correction 
The use of a probit kernel allows for estimating flexible substitution patterns across alternatives. In our analysis, we obtain a non- 

independent and identically distributed (IID) error structure (see Table 3.5). In a probit-kernel based model, only a differenced error- 
covariance matrix can be identified. Since many un-differenced error matrices can lead to the same differenced error matrix, the 
differenced error-covariance matrix does not have a meaningful interpretation Therefore, we can only conclude on the IID nature of the 
error structure and not on the exact distribution. 
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Based on estimates provided in Table 3.5, two observations can be made. First, for all the RP and SP stage choices, we observe a 
non-IID error-covariance structure. Second, the off-diagonal blocks capturing correlation between RP and SP stage have several sig-
nificant elements suggesting the presence of common unobserved factors.17 This corrects for endogeneity. The effect of neglecting 
endogeneity is substantial. CI model without endogeneity correction provides inflated cost importance (Shapley) values of 0.63, 0.88, 
0.95, and 1.00 for car, train/metro, bus/tram/light-rail and bike users, respectively. 

5.2.2.13. Tipping point analysis or critical MaaS (Mobility-as-a-service) 
From an operator’s point of view, cost is the most important variable among the MOD attributes. An increase/decrease in cost may 

lead to a change in the market share, ceteris paribus. Therefore, we perform a critical mass analysis to derive the optimal pricing range. 
In particular, we calculate the MOD share for a range of per km price by keeping other attributes unchanged.18 Fig. 13 shows the 
aggregate MOD market share for each of the primary travel modes and MOD combinations.19 The results show that the tipping point 
(in terms of cost) varies depending on the primary mode. A per km cost of 0.6€ or less may be required to attract a substantial share of 
car users towards the MOD service (Fig. 13 top graph). Interestingly, the MOD ridership does not change below a price tag of 0.5€ per 
km which is also the average per km car operating cost in the sample. Next, the per km cost is 0.3€ and 0.4€ for train/metro and bus/ 
tram/light-rail, respectively. Similar to the car users, the MOD ridership does not change above 0.3€ and 0.4€ for train/metro and bus/ 
tram/light-rail. This highlights that CI based model can capture the non-compensatory effect of the price attribute. However, the pure 
WS models fail to do so as observed by an increasing slop of the market share line. Both MNP (NI) and MNP-WS(AI) models suggest a 
continuous decrease in market share due to the underlying assumption of attribute trade-offs. Finally, since the bike user does not incur 
any cost for their trip, the CI or WS model is unable to provide tipping point cost value for these users. The model only provides the 
sample average of the MOD option. Future studies may record bike users’ cost cut-offs (possibly the upper limit) to derive a tipping 
point price. The results advocate a differential pricing strategy depending on the primary mode of travel. While such a strategy may not 
be suitable from an equity perspective, it may help attain a critical mass. 

Fig. 12. Weighted accuracy value.  

17 Note that the off-diagonal blocks between various SP choices may have non-zero but relatively small numerical value due to estimation of 
Cholesky matrix during model estimation.  
18 The assumption to keep travel and waiting time unchanged is innocuous due to the use of Google APIs to extract travel times.  
19 We derive the aggregate share of MOD by adding the share of the four MOD options. The disaggregate values are available for all models in the 

supplementary sheet (see section S.7). 
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Table 3.5 
Choquet-Integral based MNP model differenced error-covariance matrix estimates (t-statistics in brackets)   

Primary mode Car users Train or Metro users Tram or Bus or Light-rail users Bike users 

Primary 
mode 

1.000 
(fixed)                   
0.630 
(18.35) 

0.999 
(24.37)                  

0.748 
(49.30) 

0.696 
(1.67) 

0.962 
(28.42)                 

Car users − 0.045 
(-0.30) 

− 0.015 
(-0.04) 

0.197 
(1.38) 

1.000 
(fixed)                

0.005 
(0.06) 

0.040 
(0.22) 

0.038 
(0.27) 

− 0.254 
(-3.00) 

0.345 
(5.60)               

− 0.001 
(-0.02) 

− 0.002 
(-0.01) 

0.146 
(2.29) 

− 0.050 
(-1.46) 

− 0.059 
(-2.49) 

0.295 
(3.57)              

− 0.025 
(-0.37) 

0.123 
(1.35) 

0.189 
(3.15) 

− 0.118 
(-2.27) 

− 0.052 
(-3.19) 

0.088 
(2.16) 

0.329 
(0.54)             

Train or 
Metro users 

0.109 
(0.95) 

0.142 
(0.22) 

− 0.148 
(-0.67) 

− 0.189* − 0.016* − 0.123* − 0.108* 1.000 
(fixed)            

0.150 
(1.50) 

0.236 
(0.65) 

− 0.065 
(-1.27) 

− 0.173* − 0.014* − 0.115* − 0.077* 0.840 
(2.22) 

0.882 
(1.38)           

0.227 
(1.43) 

0.289 
(0.66) 

− 0.123 
(-1.47) 

− 0.260* − 0.021* − 0.170* − 0.136* 0.900 
(3.22) 

0.834 
(0.23) 

1.002 
(0.71)          

0.138 
(1.43) 

0.257 
(1.00) 

− 0.129 
(-1.42) 

− 0.218* − 0.016* − 0.145* − 0.103* 0.888 
(4.11) 

0.848 
(0.46) 

0.917 
(0.31) 

0.952 
(2.04)         

Tram or 
Bus or 
Light-Rail 
users 

− 0.104 
(-0.140) 

0.124 
(0.36) 

0.308 
(0.64) 

0.233* 0.032* 0.146* 0.201* − 0.243* − 0.199* − 0.322* − 0.254* 1.000 
(fixed)        

0.189 
(0.74) 

0.020 
(0.50) 

0.200 
(0.42) 

0.056* 0.001* 0.044* 0.019* − 0.067* − 0.063* − 0.084* − 0.090* − 0.180 
(-0.31) 

0.191 
(0.18)       

− 0.004 
(-0.01) 

0.020 
(0.12) 

0.187 
(0.68) 

0.129* 0.013* 0.084* 0.095* − 0.144* − 0.126* − 0.193* − 0.162* 0.051 
(0.32) 

0.093 
(0.06) 

0.196 
(0.50)      

0.228 
(0.71) 

− 0.011 
(-0.61) 

0.228 
(0.54) 

0.068* − 0.001* 0.054* 0.015* − 0.087* − 0.086* − 0.112* − 0.119* − 0.055 
(-0.17) 

0.096 
(0.48) 

0.061 
(0.29) 

0.219 
(1.23)     

Bike users 0.011 
(0.02) 

− 0.183 
(-0.14) 

0.038 
(0.17) 

0.066* − 0.005* 0.047* 0.005* − 0.103* − 0.116* − 0.153* − 0.146* 0.039* 0.063* 0.051* 0.087* 1.000 
(fixed)    

− 0.080 
(-0.24) 

− 0.126 
(-0.14) 

− 0.035 
(-0.28) 

0.039* − 0.002* 0.025* 0.011* − 0.060* − 0.068* − 0.094* − 0.081* 0.037* 0.013* 0.028* 0.020* − 0.179 
(-0.34) 

0.29 
(1.23)   

− 0.096 
(-0.29) 

− 0.056 
(0.01) 

− 0.046 
(-0.16) 

0.022* 0.001* 0.011* 0.016* − 0.030* − 0.031* − 0.047* − 0.034* 0.036* − 0.012* 0.014* − 0.014* − 0.176 
(-0.46) 

− 0.068 
(-0.70) 

0.235 
(1.05)  

0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* − 0.265 
(-1.3) 

− 0.144 
(-1.27) 

− 0.022 
(-1.28) 

0.602 
(1.31) 

Note: All the elements with a superscript (*) were not estimated. 
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Fig. 13. MOD share as a function of price.  
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6. Conclusion and future work 

We present a framework to capture and understand non-compensatory behaviour in the choice of mobility-on-demand (MOD) 
services for regular trips. We borrow the findings from the literature on repeated choice behaviour to construct individual specific 
stated preference (SP) choice sets to alleviate the effect of irrelevant alternatives. It enables us to include temporally distributed MOD 
options in the choice set without increasing the task complexity due to an increase in the choice set size. Further, we also include 
reliability effects in the SP design for MOD services to understand its impact on various mode users due to perceived differences in 
travel and waiting time by car and public transport (PT) users. To increase the realism and enhance the empirical validity of our 
findings, we designed an SP survey that makes use of Google Map API to obtain true trip attributes (travel, access, egress, and waiting 
time depending on the mode and departure window). In addition, we allow for capturing a non-compensatory behaviour by estimating 
a Choquet-Integral (CI) based choice model. 

The current study makes several substantial contributions. First, we approximated mode-specific (car, train/metro, bus/tram/light- 
rail, and bike users) non-compensatory behaviour in the choice of MOD services. Results indicate varying preferences based on primary 
mode. Car users only consider waiting time and travel cost in their decision of MOD choice. PT (train/metro, bus/tram/light-rail) users 
are found to be highly selective in their evaluation of MOD modes. While both may utilize waiting time information, bus/tram/light- 
rail users are more likely to utilize travel time information in their decision-making as compared to train/metro users. Bike users 
exhibited similar behaviour as that of public transport users. Based on attribute importance (Shapley) value, travel cost is found to be 
the most important feature with an attribute importance value of 0.62, 0.79, 0.81, and 0.80 for car, train/metro, bus/tram/light-rail 
and bike users, respectively. Waiting time is the second most key feature with an attribute importance value of 0.35, 0.18, 0.12, and 
0.11 for car, train/metro, bus/tram/light-rail and bike users, respectively. Travel time is found to be the least important feature 
amongst those included with a relatively negligible impact on the choice outcome. It was also noted that the conventional compen-
satory behaviour framework (additive utility/weighted sum) failed to identify such insightful observations. Our findings can be used 
by travel journey planners, MOD providers and MaaS applications in customizing information and tailored offerings for specific user 
profiles. 

Second, the likelihood of a temporal shift, i.e. departure time choice, in the mode choice is evaluated. Both car and train/metro 
users exhibit potential for temporal shifts in the morning peak (8–10 am) and midday (10–4 pm). However, bus/tram/light-rail and 
bike users exhibit no propensity towards temporal MOD mode shifts. Reliability is also found to play an important role for car and 
train/metro users. Car users associate high regret with the waiting time difference (actual vs. reported) as compared to the travel time 

Fig. 13. (continued). 
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difference. The trend is the opposite for train/metro users. Bus/tram/light-rail and bike users seem insensitive to such differences. 
These findings offer insights for devising time-dependent pricing instruments that are aimed to stimulate behavioural shifts. 

Third, a non-linear inertia effect is captured for various mode users. Car users exhibit high inertia towards their current mode 
compared to MOD options. Conversely, non-car (train/metro, bus/tram/light-rail and bike) users are indifferent towards MOD options, 
i.e. past usage does not affect current usage. Overall, car, train/metro, and bike users (to a certain extent) constitute the primary pool of 
potential MOD riders. Bus/tram/light-rail users can only be brought to the pool of potential riders by substantially reducing the price of 
the MOD trip. 

Fourth, the results of a tipping point analysis indicate a potential for introducing a differential pricing strategy that is based on the 
current travel behaviour. A per km cost of 0.6€ or less may be required to attract a substantial share (65 %) of car users towards the 
MOD service. Similarly, a per km cost of 0.3€ and 0.4€ for train/metro (34 %) and bus/tram/light-rail (35 %), respectively, will be 
needed to attract a significant proportion of their current users towards the MOD service. Hence, the notion of adverse impact on public 
transport due to the introduction of MOD services at least in the Netherlands is likely to be limited. The current per km cost of Uber in 
Amsterdam and New York is 1.10€ and 1.26€, respectively, almost twice as much as the critical mass price value identified in our 
analysis. Since bike users do not incur any cost for their trip, a tipping point cost calculation for this user group is not possible. While 
the general direction of the effects of all parameters is the same irrespective of underlying behavioural assumption (compensatory vs. 
non-compensatory), the MOD market share trajectory (as a function of cost) based on the compensatory model is continuous (strictly 
monotonic in both magnitude and slope) as compared to a relatively discontinuous functional form obtained through the non- 
compensatory model. This further highlights the need for an integrated context-aware survey and flexible modelling approach to 
obtain meaningful policy recommendations. 

Finally, a significant correlation is observed between the RP and SP stage choices suggesting the presence of endogeneity. A failure 
to correct for endogeneity may lead to inflated feature importance. A CI model without endogeneity correction provides the cost 
importance (Shapley) values of 0.63, 0.88, 0.95, and 1.00 for car, train/metro, bus/tram/light-rail and bike users, respectively. These 
feature importance values for non-car users are substantially higher than the values reported earlier based on the endogeneity cor-
rected model. However, endogeneity corrections require high computational efforts Furthermore, one may not be able to empirically 
identify all the elements of a joint RP-SP error-covariance matrix. Even though we adopted the Cholesky parametrization, we 
encountered singularity issues. Overall, depending on the choice set and survey set-up, the computational time required for endo-
geneity correction can become prohibitive. 

The current study is not without limitations. First, reliability is only considered for MOD options in the SP design. Neglecting the 
reliability, especially for PT modes can introduce bias in the preference estimates of public transport users. Next, in the RP mode choice 
model, we included aggregate land-use variables as a proxy for socio-economic variables. The inclusion of such variables introduces 
additional challenges due to the unobserved correlation between land-use variables and the mode choice dimension. Accounting for 
such correlation requires adding fixed effects and joint modelling of land use and the mode choice dimension known as a self-selection 
effect. Including them is beyond the scope of the current study. Finally, we only derive the mean non-compensatory behaviour. It is 
plausible that behaviour (magnitude of fuzzy measures) may change across choice occasions and also across socio-demographic 
groups. To capture in-task variations and group-specific decision strategies, the CI parameters need to be parametrized as a func-
tion of individual characteristics and task-specific mode attributes. However, such a parametrization will increase the number of 
constraints required to ensure monotonicity. Future works may explore ways to incorporate such flexibility while keeping the level of 
complexity to a minimum. In addition, future research may consider the inclusion of non-continuous features in the CI. For instance, 
the approach proposed by Wang et al. (2006) can be exploited. However, this approach is not parsimonious and hence may not scale 
for a large number of features. Future works should look into this issue to increase the practical appeal of CI-based models. 
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Appendix A 

A.1 Model formulation matrix notations 

Ut = (U1t,U2t, ...,UIt)
’
[(I × 1) vector],U = (U’

1,U’
2, ...,U’

T)
’
[(TI × 1) vector],

βi = (βi1, βi2, ..., βiK)
’
[(K × 1) vector], β = (β’

1, β
’
2, ..., β

’
I)

’
[(IK × 1) vector], β = reshape(β)[(I × K) matrix],

β = [ones(T, 1).*. β][(TI × K) matrix], xi,t =
(
xi,t,1, xi,t,2, ..., xi,t,K

)’
[(K × 1) vector],

xt = (x’
1, x’

2, ..., x’
I)

’
[(IK × 1) vector], xt = reshape(xt)[(I × K) matrix],X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

xT

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[(TI × K) matrix],

CIt = (CI1,CI2, ...,CII)
’
[(I × 1) vector],CI = (CI’

1,CI’
2, ...,CI’

T)
’
[(TI × 1) vector],

X̂TE =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

TT(eperienced)1

⋮

TT(eperienced)T− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[(T × 1) vector], X̂TE = [X̂TE.*.ones(1, I)][(T × I) matrix],

X̂TD =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ ⋯ 0

TT(displayed)1,1 TT(displayed)I,1

⋮ ⋮

TT(displayed)1,T− 1 ⋯ ⋯ TT(displayed)I,T− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[(T × I) matrix],

X̂WE =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

WT(eperienced)1

⋮

WT(eperienced)T − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[(T × 1) vector], X̂WE = [X̂WE.*.ones(1, I)][(T × I) matrix],

X̂WD =

⎡

⎢
⎢
⎣

0 ⋯ ⋯ 0
WT(displayed)1,1 WT(displayed)I,1

⋮ ⋮
WT(displayed)1,T− 1 ⋯ ⋯ WT(displayed)I,T − 1

⎤

⎥
⎥
⎦[(T × I) matrix],

X̂Chosen =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ ⋯ 0

d(im == 1)1,1 d(im == I)I,1

⋮ ⋮

d(im == 1)1,T− 1 ⋯ ⋯ d(im == I)I,T− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[(T × I) matrix],

where d () is an indicator function and im denotes the chosen alternative

reshape () function reshape a vector into a matrix

.*. is the kronecker product

.* is element-by-element multiplication  
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A.2 Utility difference matrix pseudocode 

M = zeros((IRP − 1) + T(ISP − 1) × (IRP) + T(ISP) )

Iden mat = 1IRP − 1
O neg = − 1*ones(IRP − 1, 1)
if
(
im,RP == 1

)

temp mat = O neg ∼ Iden mat
elseif

(
im,RP == IRP

)

temp mat = Iden mat ∼ O neg
else

temp mat = Iden mat
[
, 1 : im,RP − 1

]
∼ O neg ∼ Iden mat

[
, im,RP : IRP − 1

]

M[1 : IRP − 1, 1 : IRP] = temp mat
for m = 1toT

Iden mat = 1ISP − 1
O neg = − 1*ones(ISP − 1, 1)
if
(
im,SP,t == 1

)

temp mat = O neg ∼ Iden mat
elseif

(
im,SP,t == I

)

temp mat = Iden mat ∼ O neg
else

temp mat = Iden mat
[
, 1 : im,SP,t − 1

]
∼ O neg ∼ Iden mat

[
, im,SP,t : ISP − 1

]

end
row start = (IRP − 1) + (m − 1)(ISP − 1) + 1
row end = (IRP − 1) + (m)(ISP − 1)
col start = (IRP) + (m − 1)(ISP) + 1
col end = (IRP) + (m)(ISP)

M[row start : row end, col start : col end] = temp mat
where ″ ∼ ″referstohorizontalconcatenationandim,SP,t isthechosenSPalternativeattimet  

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.trc.2023.104455. 
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Ramos, É.M.S., Bergstad, C.J., Nässén, J., 2020. Understanding daily car use: Driving habits, motives, attitudes, and norms across trip purposes. Transport. Res. F: 

Traffic Psychol. Behav. 68, 306–315. 
Razo, M., Gao, S., 2013. A rank-dependent expected utility model for strategic route choice with stated preference data. Transport. Res. Part c: Emerg. Technol. 27, 

117–130. 
Saleh, W., Farrell, S., 2005. Implications of congestion charging for departure time choice: Work and non-work schedule flexibility. Transp. Res. A Policy Pract. 39 

(7–9), 773–791. 
Sikder, S., 2019. Who uses ride-hailing services in the United States? Transp. Res. Rec. 2673 (12), 40–54. 
Sivak, M., 2013. Female drivers in the United States, 1963–2010: From a minority to a majority? Traffic Inj. Prev. 14 (3), 259–260. 
Song, X., Danaf, M., Atasoy, B., Ben-Akiva, M., 2018. Personalized menu optimization with preference updater: a Boston case study. Transp. Res. Rec. 2672 (8), 

599–607. 
Sun, L., Yang, S., Li, S., Zhang, Y., 2020. Does education level affect individuals’ environmentally conscious behavior? Evidence from Mainland China. Social Behav. 

Personal.: An Int. J. 48 (9), 1–12. 
Swait, J., 2001. A non-compensatory choice model incorporating attribute cutoffs. Transp. Res. B Methodol. 35 (10), 903–928. 
Swait, J., Adamowicz, W., 2001. The influence of task complexity on consumer choice: a latent class model of decision strategy switching. J. Consum. Res. 28 (1), 

135–148. 
Tam, M.L., Lam, W.H., Lo, H.P., 2011. The impact of travel time reliability and perceived service quality on airport ground access mode choice. J. Choice Model. 4 (2), 

49–69. 
Teubner, T., Flath, C.M., 2015. The economics of multi-hop ride sharing. Bus. Inf. Syst. Eng. 57 (5), 311–324. 
Thøgersen, J., 2006. Understanding repetitive travel mode choices in a stable context: a panel study approach. Transp. Res. A Policy Pract. 40 (8), 621–638. 
Train, K., 2000. Halton sequences for mixed logit. Department of Economics, UCB.  
Train, K., Wilson, W.W., 2008. Estimation on stated-preference experiments constructed from revealed-preference choices. Transp. Res. B Methodol. 42 (3), 191–203. 
Tran, K. (2021, Sep 24). SHAP: Explain any machine learning model in python. Medium. Retrieved from https://towardsdatascience.com/shap-explain-any-machine- 

learning-model-in-python-24207127cad7. 
Ubbels, B., & Verhoef, E., 2006. Behavioural responses to road pricing. Empirical results from a survey among Dutch car owners. 
van Amelsfort, D., Bovy, P. H., Bliemer, M. C., & Ubbels, B., 2008. Travellers’ responses to road pricing: value of time, schedule delay and unreliability. Pricing in road 

transport: A multi-disciplinary perspective, Edward Elgar, Northampton, 64-85. 
van der Waerden, P., van der Waerden, J., 2018. The relation between train access mode attributes and travelers’ transport mode-choice decisions in the context of 

medium-and long-distance trips in the Netherlands. Transp. Res. Rec. 2672 (8), 719–730. 
Van Exel, N.J.A., Rietveld, P., 2009. Could you also have made this trip by another mode? An investigation of perceived travel possibilities of car and train travellers 

on the main travel corridors to the city of Amsterdam, The Netherlands. Transp. Res. A Policy Pract. 43 (4), 374–385. 
Varin, C., 2008. On composite marginal likelihoods. ASTA Adv. Statist. Anal. 92 (1), 1–28. 
Wakabayashi, H., Asaoka, K., Iida, Y., Kameda, H., 2003. Mode choice model with travel time reliability and commuters’ travel behavior before/after a major public 

transportation service closure. In: The network reliability of transport. Emerald Group Publishing Limited. 
Wang, Z., Yang, R., Heng, P.A., Leung, K.S., 2006. Real-valued Choquet integrals with fuzzy-valued integrand. Fuzzy Set. Syst. 157 (2), 256–269. 
Wardman, M., 2004. Public transport values of time. Transp. Policy 11 (4), 363–377. 
Watkins, K.E., Ferris, B., Borning, A., Rutherford, G.S., Layton, D., 2011. Where Is My Bus? Impact of mobile real-time information on the perceived and actual wait 

time of transit riders. Transp. Res. A Policy Pract. 45 (8), 839–848. 
Weiss, A., Salehin, M. F., Habib, K. N., Eng, P., 2019. A joint RP-off-SP survey to understand the impacts of autonomous vehicle on travel mode choices in the Greater 

Toronto Area. Transportation Research Board 98th Annual Meeting, Washington DC. 
Yan, X., Levine, J., Zhao, X., 2019. Integrating ridesourcing services with public transit: An evaluation of traveler responses combining revealed and stated preference 

data. Transport. Res. Part c: Emerg. Technol. 105, 683–696. 
Young, M., Farber, S., 2019. The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey. Transp. Res. A 

Policy Pract. 119, 383–392. 

S. Dubey et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S0968-090X(23)00445-X/h0360
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0360
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0506
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0375
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0375
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0380
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0380
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0385
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0385
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0390
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0395
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0400
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0400
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0405
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0405
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0410
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0415
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0415
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0420
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0420
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0425
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0430
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0435
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0440
https://towardsdatascience.com/shap-explain-any-machine-learning-model-in-python-24207127cad7
https://towardsdatascience.com/shap-explain-any-machine-learning-model-in-python-24207127cad7
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0460
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0460
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0465
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0465
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0470
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0480
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0485
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0490
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0490
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0500
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0500
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0505
http://refhub.elsevier.com/S0968-090X(23)00445-X/h0505

	Understanding preferences for mobility-on-demand services through a context-aware survey and non-compensatory strategy
	1 Introduction and motivation
	2 Determinants of MOD choice
	2.1 Service reliability
	2.2 Departure time window
	2.3 Choice set construction

	3 Mode choice survey
	3.1 Survey description
	3.2 SP efficient design
	3.3 SP survey example

	4 Choquet Integral
	4.1 Choquet integral as a non-compensatory approximation function
	4.2 Choice model formulation with endogeneity correction
	4.3 Choice set construction and additional RP stage explanatory variables

	5 Sample description and estimation results
	5.1 Sample statistics
	5.2 Result and discussion
	5.2.1 Primary mode results (RP-stage)
	5.2.2 Choice between the currently used primary mode and a MOD service (SP-stage)
	5.2.2.1 Non-compensatory behaviour
	5.2.2.2 Feature importance (Shapley value)
	5.2.2.3 Aggregate model validation
	5.2.2.4 Disaggregate model validation
	5.2.2.5 Regret due to difference in stated vs. actual information or reliability effect
	5.2.2.6 Effect of past choices on current decision and inertia effect
	5.2.2.7 Temporal mode shift
	5.2.2.8 Effect of access and egress mode
	5.2.2.9 Effect of trip purpose and sharing/private option
	5.2.2.10 Effect of demographic characteristics
	5.2.2.11 Value of time
	5.2.2.12 Error-covariance structure and endogeneity correction
	5.2.2.13 Tipping point analysis or critical MaaS (Mobility-as-a-service)



	6 Conclusion and future work
	CRediT authorship contribution statement
	Ethics approval
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A Acknowledgement
	A.1 Model formulation matrix notations
	A.2 Utility difference matrix pseudocode

	Appendix A Supplementary material
	References


