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Abstract

The problem of pure magnetic detumbling of a fast-tumbling picosatellite is considered. A new
weighted B-dot control algorithm is proposed. The algorithm enables power reduction while not sacri-
ficing detumbling performance. Analytical expressions relating the maximal expected rotational rate to
the minimum sampling time required are presented. Simulation results demonstrate the practical benefits
of the proposed approach for picosatellites.
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1. Introduction
The work presented in this paper is motivated by the

development of Delfi-PQ satellite [1]. With Delfi-PQ,
Delft University of Technology has entered the class of pi-
cosatellites and aims at pushing the boundaries of satellite
miniaturisation further. This next level of satellite minia-
turisation generates new research challenges and offers
innovation opportunities. The attitude control and deter-
mination subsystem of the Delfi-PQ is an essential corner-
stone and is, among others, responsible for the mission-
critical detumbling. It is anticipated, that the deployment
of Delfi-PQ satellite to low Earth orbit (LEO) will be ac-
complished by a newly designed, spring-loaded and not
in-flight tested, deployment system. Therefore, high ini-
tial angular rates up to 180 [deg/s] can be expected. Such
high rates will severely impact the communication and
power subsystem’s functionalities.

In the past decades, a fully magnetic attitude con-
trol became a viable and interesting option, especially for
low-cost nanosatellites [2–5]. However, developments of
fully magnetic control for highly miniaturised picosatel-
lites are still in their infancy. Only recently, preliminary
simulation results on successful magnetic detumbling of a
slow-tumbling (≤ 6 [deg/s]) picosatellite (5×5×5 [cm])
have been reported in [6].

Pure magnetic detumbling of a fast spinning picosatel-
lite creates new challenges, especially due to limited on-
board processing and sensing capabilities, magnetorquers
saturation, scarce power resources, and inherent under-
actuation. Driven by these constraints, it is obvious that
the detumbling shall be done in a robust and efficient way.

The widely adopted and simple-to-implement B-dot
algorithm [7] is, in theory, able to detumble a rotating
satellite from any initial angular rate down to approxi-

mately twice the orbital rate. However, if the sensing or
actuation cycle of the detumbling algorithm is not suffi-
ciently small, the satellite might actually spin up instead
of detumbling. Based on Nyquist criterion and rigorous
controllability analysis, we provide analytic expressions
relating the critical rotational rate of the satellite to the
minimum sampling time of the control and sensing loop
necessary for successful detumbling.

The B-dot algorithm was recently modified by
Avanzini and Giulietti [8] and a reasonable static B-dot
gain was derived yielding a quasi-minimum detumbling
time. However, for fast tumbling satellites, this B-dot gain
needs to be parametrised to efficiently utilise the mag-
netorquers duty cycle throughout the entire detumbling
phase. In this work, we propose a new weighted B-dot
control algorithm, where the B-dot gain does not remain
constant, but is parametrised by a so-called tumble pa-
rameter. This parameter is able to estimate the satellite’s
absolute tumbling rate using magnetometer readings only.
Additionally, the vector version of this parameter is able,
in a robust manner, to indicate whether the satellite is
detumbled or not. A simple sensor filtering approach is
introduced to mitigate the impact of sensor noises and bi-
ases caused by on-board electronics. Monte Carlo simula-
tion results are presented to demonstrate the effectiveness
of the proposed detumbling algorithm.

Notations: In this paper, bold italic face denotes vec-
tors and matrices; (·)T stands for transposition; Rn×m de-
notes a set of n ×m real matrices, Rn represents the set
of n dimensional real column vectors; N the set of natural
numbers (including {0}); ‖ ·‖ stands for Euclidean vector
norm; | · | denotes absolute value; andN (µ,Σ) denotes a
density function of a multivariate normal distribution with
a mean vector µ and covariance matrix Σ.
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2. Background
In this section, we will introduce the essential back-

ground that allows to study and design a magnetically
controlled satellite.

2.1 Coordinate Frames
To represent satellite dynamics, we will use two main

reference frames, namely an Earth centred inertial (ECI)
reference frame and a satellite body-fixed (body) refer-
ence frame.

The origin of the ECI frame is located in the centre
of mass (CoM) of the Earth. The z-axis of this reference
frame points to the north pole of the ecliptic, the x-axis
points towards the vernal equinox (first point of Aries),
and the y-axis completes the right-handed orthogonal sys-
tem. This reference frame will be denoted as FI .

The origin of the body frame is located in the CoM
of the satellite. The axes of this frame coincide with the
satellite’s principal axes of inertia. Hereafter, the body
frame will be denoted as FB .

2.2 Rotational Dynamics
The rotational dynamics of a rigid body satellite

around its CoM are given by Euler’s moment equation:

Iω̇BB/I(t) = −ωBB/I(t)× Iω
B
B/I(t) + τBext(t), (1)

where × denotes the cross product, ωBB/I ∈ R3 repre-
sents the angular velocity vector of frame FB relative to
FI decomposed in FB coordinates, I ∈ R3×3 is the in-
ertia matrix, and τBext ∈ R3 is the vector of total external
torque acting on the satellite in FB coordinates. To avoid
extensive notation, the angular velocity vector, ωBB/I , will

be simplified to ωB , [ωBx ωBy ωBz ]T .
The total external torque in (1) can be decomposed as1

τBext = τBc + τBd , (2)

where τBc is the net disturbance torque and τBd is the con-
trol torque. The net disturbance torque is divided into the
following four components:

τBd = τBa + τBs + τBg + τBm , (3)

where

τBa - is the torque due to residual atmospheric drag,

τBs - is the torque due to solar and albedo radiation pres-
sure,

τBg - is the gravity gradient torque due to asymmetric
distribution of the mass moment of inertia,

τBm - is the torque due to residual magnetic dipole and
Lorenz forces.

The explicit physical model of the above disturbance
torques can be found, for instance, in [9, 10].

2.3 Magnetic Actuation
A magnetic dipole vectormB

c ∈ R3 in FB , generated
by 3 orthogonally mounted electromagnetic coils aligned
with the satellite’s principal axes of inertia, can be mod-
elled with reasonable accuracy as [11]

mB
c ,


mB
c;x

mB
c;y

mB
c;z

 =


NxAxix

NyAyiy

NzAziz

 , (4)

where Nj is the number of windings around the j-th coil,
ij is the current provided in the j-th coil, and Aj is the
area of the j-th coil. More accurate magnetic dipole
model can be found in [12].

A non-zero magnetic dipole vector (4), generated by
satellite body-fixed magnetorquers, will interact with the
local magnetic field and generate a control torque vector
τBc according to

τBc = mB
c × bBE , (5)

where bBE ∈ R3 is the local Earth magnetic field vector
expressed in terms of FB coordinates.

The torque τBc can be used, among others, to damp
the angular momentum of the satellite close to zero or to
de-spin reaction wheels.

2.4 Sensor Model
The local Earth magnetic field bBE can be measured

on-board the satellite using a triaxial magnetometer sen-
sor. In this paper, for noise filtering purposes and with-
out loss of generality, we assume availability of multiple
magnetometers on-board. The model of the i-th magne-
tometer reading, z(i)raw ∈ R3, at discrete time instances
tk , kTs, k ∈ N, can be expressed as follows:2

z(i)raw(tk) =
[
T

(i)
B/Sb

B
E(tk) + b

(i)
bias + v(i)(tk)

]
LSB

, (6)

where v(i) ∈ R3 is a random vector satisfying
v(i) ∼ N (0,Σi) and aiming at modelling sensor noise
of the i-th magnetometer, b(i)bias ∈ R3 is the true static bias
of the i-th magnetometer, and T (i)

B/S ∈ R3×3 is a rotation
matrix from FB to the i-th sensor frame. Note that TB/S
can be also used to account for sensor misalignment and
scaling errors. Finally, [ · ]LSb denotes a rounding function
driven by the resolution of the magnetometer with respect
to the least significant bit (LSB).

1To further simplify notation, the time-dependency ”(t)” of variables will be omitted if there is no ambiguity.
2Readings from multiple sensors are assumed to occur simultaneously or with minimum delay. The sampling time Ts will be defined in Section 4.
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It is important to note that the above model excludes
time-varying biases and assumes magnetorquers being
switched off and properly desaturated when taking mea-
surements3. The effect of the magnetorquers on the mea-
surements can be easily incorporated into (6) by adding a
coupling matrix multiplied by the commanded magnetic
dipole momentmB

c as done in [13].

2.5 Problem Formulation
In this paper, we aim at reducing the angular rate

of the satellite from a non-zero initial value ωB(t0) ,
ωB0 6= 0 below a desired absolute angular rate ωdes > 0
for all three axes, i.e.,∣∣ωBi (tdet)

∣∣ ≤ ωdes, ∀i ∈ {x, y, z}, (7)

where tdet ≥ 0 denotes the detumbling time defined as the
time when the condition (7) is satisfied for the first time.

The above aim is to be achieved using a pure magnetic
control and feedback provided from the three-axis magne-
tometers only. The resulting algorithm shall be simple to
implement on a low-performance on-board computer and
shall take into account physical limitations of the actua-
tors and sensors. The algorithm shall also be able to “as-
sess” the rotational speed of the satellite and shall be able
to make efficient use of the magnetorquers (especially at
the beginning of the detumbling phase) while not increas-
ing the detumbling time significantly.

Note that, due to physical limitations of the considered
setup (pure magnetic actuation and sensing), the satel-
lite’s angular rate can be decreased only until it reaches
values of approximately twice the orbital rate [14]. Re-
cent research suggests that a rotational rate of about 1.8
of the orbital rate can be achieved around the axis of max-
imum moment of inertia [15]. To make (7) realistic for all
axes, we suggest ωdes to be selected such that it satisfies
ωdes ≥ 2ωo, where ωo is the orbital rate.

3. Controller Design and Stability
In this section, we introduce a new weighted B-dot

controller and briefly summarise the well-know Lyapunov
stability results applied on a rigid-body satellite dynamics
actuated by the proposed control law.

3.1 Weighted B-dot Control Algorithm
Many variants of the B-dot controller have been pre-

sented in the literature. The simplest one is given by a
static linear feedback of the form [7]

mB
d = −kc

ḃ
ḃBE , (8)

where kc
ḃ
> 0 is the constant controller gain, ḃBE is the

time derivative of bBE (hence the name B-dot), and mB
d

is the desired dipole moment to be generated by the mag-
netorquers. In an ideal case mB

c = mB
d . In practice,

however, the commanded dipole moment might be differ-
ent from the desired one. This is due to magnetorquers’
physical limitations (e.g., saturation) which need to be ad-
dressed. Control efficiency of the B-dot controller im-
proves as the orbit inclination angle increases [16].

Although (8) is simple to implement [17], the choice
of the control gain kc

ḃ
is not straightforward. A high

value may lead to frequent saturation of the magnetor-
quers, whereas a low value might lead to an inefficient use
of the magnetorquers and very long detumbling time tdet.
Additionally, a static gain is not a good practical solution
for both, very high and at the same time low angular rates,
as the desired dipole moment is proportional to the abso-
lute change of the magnetic field, i.e., ‖mB

d ‖ ∝ ‖ḃBE‖,
which directly relates to the angular rate of the satellite.

In this paper, we adopt the structure of the modified
B-dot controller proposed by Avanzini and Giulietti [8],
where the desired dipole moment is computed as

mB
d = −

kḃ(p)

‖bBE‖
˙̂
bBE , (9)

where ˙̂
bBE is the time derivative of the unit vector b̂BE =

bBE/‖bBE‖. This unit vector is parallel to the Earth’s
magnetic field vector bBE , expressed in FB . In practice,

the time derivative of ˙̂
bBE is difficult to measure directly.

However, as will be shown in the next section, ˙̂
bBE can

be estimated by differentiating the magnetic field vector
obtained from the body-mounted magnetometers.

In (9), instead of using a static control gain as in [8],
we parametrised the control gain by p, the so called tum-
ble parameter, as follows

kḃ(p) =
k∗
ḃ

ϕp+ ε
, 0 ≤ p ≤ 1, (10)

where 0 ≤ ϕ < ∞ is the rate factor, 0 < ε ≤ 1 is the
tuning parameter, and k∗

ḃ
is the sub-optimal static gain de-

rived in [8] as

k∗
ḃ

= 2ωo (1 + sin(ξ)) Imin, (11)

where ω0 is the orbital rate (mean motion), ξ is the incli-
nation of the orbit plane relative to the geomagnetic equa-
tor and Imin is the minimum mass moment of inertia of
the satellite. It is obvious that for ϕ = 0 and ε = 1,
(9) becomes equivalent with the modified B-dot law of
Avanzini and Giulietti [8]. A pure static gain kḃ(p) = k∗

ḃ
results in a quasi-minimum detumbling time [8].

3This assumption arises from the fact that we limit the magnetorquers duty cycle and allow extra time for the magnetorquers to desaturate, see
the discussion in Section 4.
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The tumble parameter p represents the satellite’s abso-
lute sensable angular rate and can be related to the satel-
lite angular velocity as (if |ωBi | ≤ |ωmax|, ∀i ∈ {x, y, z})

p ≈ ‖ωB‖√
3|ωmax|

, (12)

where ωmax is the maximal absolute rotational rate of the
satellite that the on-board magnetic sensor suite is able to
sense without aliasing effects, see the discussion on ωmax
in Section 4. The on-board computation of p using mag-
netometer data will be detailed in the next section.

Note that the sign of the desired moment (9), on a
per-axis basis, is opposite to the rate of change of the
magnetic field along the respective axis and its magni-
tude is inversely proportional to the tumbling parameter
p. The motivation behind this design choice is to reduce
the power consumption of the magnetorquers, especially
during the early stages of the detumbling mode (most
critical phase), while not sacrificing the detumbling per-
formance measured by tdet. As will be shown later, by
proper choice of ε, the variable control gain kḃ(p) can be
tuned to approach the sub-optimal gain k∗

ḃ
as the detum-

bling phase approaches its end (t→ tdet).
Remark 1. Similarly as the classical B-dot controller
given in (8), the weighted B-dot controller (9) does not re-
quire any knowledge of the inertia I and is able to detum-
ble the satellite to approximately twice the orbital rate.

3.2 Stability Sketch of the Weighted B-dot Controller
We will neglect the disturbance torques (3) from the

following analysis as their influence during the detum-
bling phase is usually very minor. Hence, for τBd = 0,
the equation of motion (1) simplifies to

Iω̇B = −ωB × IωB + τBc . (13)

From a Lyapunov stability perspective, the aim is to
drive ωB → 0 as t → ∞ for any ωB0 6= 0 (asymptotic
stability). To proceed, we define a positive definite Lya-
punov function candidate as

V (ωB) =
1

2
(ωB)T IωB , (14)

where the right hand side of (14) represents the true ki-
netic energy over the rigid body. Note that the inertia
matrix I is symmetric positive definite and has positive
eigenvalues called principal moments of inertia [9].

To apply the 2-nd theorem of Lyapunov, we take the
time-derivative Bd/dt(·) of the kinetic energy (14) as
(note that I is constant in FB and the right hand side of
the Lyapunov function is frame-independent)

V̇ (ωB) =
1

2

(
(ω̇B)T IωB + (ωB)T Iω̇B

)
= (ωB)T

(
−ωB × IωB + τBc

)
= (ωB)T τBc .

(15)

It is obvious from (15) that, if τBd = 0, the change
of kinetic energy is due to the control torque only and it
decreases only if the dot product of the angular velocity
and control torque is negative, i.e., (ωB)T τBc < 0.

Using the basic theorem of kinematics, we have

˙̂
bBE =

Bd
dt

(
TI/B b̂

I
E

)
= TI/B

˙̂
bIE − ωB × b̂BE , (16)

where TI/B is a transformation matrix from FI to FB .
Since ḃIE varies at most at angular rate of approximately
2ωo, for high angular rates ωB , the rate of change of the
magnetic field in the body frame is mainly due to the ro-
tation of the satellite. Hence, for ‖ωB‖ � 2ωo, the right
hand side of (16) can be approximated as

˙̂
bBE ≈ −ωB × b̂BE . (17)

Substituting the control torque (5) into (15) and using the
fact that aT (b× c) = −bT (a× c), yields

V̇ (ωB) = −(mB
c )T (ωB × bBE). (18)

Substituting (17) in (9) and assuming mB
c = mB

d (ideal
case), the time derivative of Lyapunov function yields

V̇ (ωB) = −
(
ωB × b̂BE

)T
kḃ(p)

(
ωB × b̂BE

)
. (19)

Despite the fact that kḃ(p) > 0 for all p ∈ [0, 1], it is ob-
vious from (19) that V̇ is only negative semi-definite, i.e.,
V̇ ≤ 0. The kinetic energy associated with the compo-
nent of ωB parallel to bBE (or equivalently to b̂BE ) cannot
be reduced. In other words, the control law (9) can effec-
tively remove the satellite’s angular momentum whenever
ωB is not parallel to bBE , while leaving it unchanged when
ωT bBE is zero [18]. This is due to the fact that the mag-
netorquers cannot provide torque along bBE as well as the
magnetometer cannot sense this motion [7].

Thanks to the the orbital motion of the satellite, the
Earth’s magnetic field vector direction, b̂BE , does not re-
main fixed and global asymptotic stability (i.e., kinetic
energy strictly decreasing) of the weighted B-dot con-
troller can be proven by averaging-based analysis [18],
by Lyapunov-like lemma derived from corollary to Bar-
balat’s lemma [8], or by Krasovskii-LaSalle theory of pe-
riodic systems [2, 18].
Remark 2. A natural design choice of τBc in (15) could
be to generate torque according to

τBc = −kωωB , kω > 0. (20)

This choice ensures that (15) is strictly negative, thus
asymptotic stability guaranteed. However, a control law
based on (20) would require angular rate measurements
or its estimate. The latter can be accomplished by a
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computationally simple estimator based on magnetome-
ter data only [19]. Unfortunately, (20) is not applicable
in combination with pure magnetic actuation as the mag-
netorquers are only able to generate torques orthogonal
to the Earth’s magnetic field, see (5).

4. Discretised Algorithm
The weighted B-dot control law (9) needs to be imple-

mented in the satellite’s on-board computer as a discrete-
time algorithm. In this section, the most important aspects
of the on-board implementation are discussed.

4.1 Noise Filtering
One of the most cost-efficient way to filter out noise

from the raw measurements (6) is to take the (weighted)
average as follows

b̃BE(tk) =

ns∑
i=1

wi

(
T̃

(i)
S/Bz

(i)
raw(tk) + b̃

(i)
bias

)
, (21)

where ns is the total number of available sensors, b̃BE(tk)
is the filtered Earth’s magnetic field in FB at discrete
time tk, wi ≥ 0 are non-negative weights satisfying
w1 + . . . + wns

= 1, T̃ (i)
S/B ∈ R3×3 is an estimate of the

rotation matrix from the i-th sensor frame to FB , i.e., of
(T

(i)
B/S)−1, and b̃(i)bias ∈ R3 is an estimate of the i-th sen-

sor bias vector b(i)bias. Both T̃ (i)
S/B and b̃(i)bias need to be esti-

mated by an adequate calibration technique. The weights
wi can be used to reward or penalise measurements based
on the accuracy of the respective sensor or fully disregard
faulty sensors by setting the respective weight to zero.
Ideally, sensors shall be placed apart to allow averaging
out undesired magnetic fields generated by various on-
board electronics.

4.2 Normalised B-dot Computation
If two consecutive measurements at tk−1 and tk

are available and the Nyquist criterion holds (see Sec-
tion 4.5), then the normalised B-dot vector in (9) can be
computed as

˙̂
bBE(tk) =

b̂BE(tk)− b̂BE(tk−1)

Ts
, (22)

where Ts , tk − tk−1 is a constant sampling time be-
tween two consecutive measurements and b̂BE(·) is the
normalised magnetic field computed as

b̂BE(·) = b̃BE(·)/‖b̃BE(·)‖.

Clearly, both ˙̂
bBE and b̂BE are estimates. The tilde symbol

is left out above these vectors to simplify notation.

4.3 Tumble Parameter
To compute the scalar tumble parameter p for (9), we

use the following discrete-time filter

p(tk) =
αTs

2
‖ ˙̂
bBE(tk)‖+ (1− α)p(tk−1), (23)

where α > 0 is the filter time-constant, ˙̂
bBE is computed

as in (22), and the initial value of the filter, p0 , p(t0),
satisfies 0 ≤ p0 ≤ 1.

It is obvious from (22) and (23) that

0 ≤ ‖ ˙̂
bBE‖ ≤ 2/Ts ⇒ p ∈ [0, 1], (24)

thus (23) satisfies the condition on p in (10). Thanks to
the utilisation of the normalised B-dot vector in (23), the
tumble parameter becomes altitude insensitive.

4.4 Discrete-time Controller
In this paper, we will assume constant currents for

each axis. Only the current direction and duration will
be controlled. Therefore, the absolute dipole moment
achievable in any direction and per axis is

m̄ ,


m̄x

m̄y

m̄z

 =


NxAx|ix|
NyAy|iy|
NzAz|iz|

 . (25)

Once the desired magnetic dipole moment vector
mB
d , [mB

d;x mB
d;y mB

d;z]
T is computed using (9), the

amount of time each magnetorquer shall be activated is
determined by

toni = δTs min

(
1,
|mB

d;i|
m̄i

)
, i ∈ {x, y, z}, (26)

where toni ≥ 0 is the “on-time” (duration) of the i-th mag-
netorquer and 0 < δ < 1 is the duty cycle of the magne-
torquers within one control loop. To simplify implemen-
tation, we assume that one control cycle equals exactly to
the duration of the measurement sampling time Ts.

The current direction in which the respective magne-
torquer shall be activated is given by

doni = mpol
i sign

(
mB
d;i

)
, i ∈ {x, y, z}, (27)

where doni ∈ {−1, 0, 1} is the i-th magnetorquer’s cur-
rent direction and mpol

i accounts for the winding polarity
(mpol

i ∈ {−1, 1}) or failure (mpol
i = 0) of the i-th mag-

netorquer.
We assume that all the computations related to (26)

and (27) are done with minimum delay and the magnetor-
quers are commanded immediately after that. The mag-
netorquers are switched off once the time they were sup-
posed to be active has passed. The duty cycle δ shall be
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selected carefully to allow enough time, (1 − δ)Ts, for
the magnetorquers to de-saturate and to account for the
delayed control phenomenon. For the latter, see the dis-
cussion in the next subsection.

4.5 Sampling Time Selection
It is evident from (16) that the satellite’s angular rate

is directly linked with the change of the normalised vector
of the Earth magnetic field inFB . From the Nyquist crite-
rion [10], the maximum frequency of changes in the mag-
netic field that can be sensed without experiencing alias-
ing is 1/(2Ts). Therefore, the maximal rotational rate that
can be measured from two consecutive measurements is
π/Ts [rad/s], which yields to the following sampling time
selection criterion

Ts ≤
π

|ωmax|
, (28)

where ωmax is the maximal expected rotational rate of the
satellite in any axis and any direction.

From a control theory perspective, we need to care-
fully analyse the effect of the sampling time Ts and the
duty cycle δ on the stability of the discretised B-dot con-
trol loop. In the subsequent analysis, we will follow sim-
ilar steps as done in [17]. First, we will assume a rotation
around the z-axis only, i.e., ωB = [0 0 ωBz ]T . In ad-
dition to that, we also assume the measurements being
error-free, i.e., b̃BE(·) = bBE(·), and that (17) is a valid
approximation. Then, we can analytically expressed two
consecutive magnetic field measurements as:

bBE(tk−1) =


bBE;x(tk−1)

bBE;y(tk−1)

bBE;z(tk−1)

 ,

bBE(tk) =


cos(ωBz Ts) sin(ωBz Ts) 0

− sin(ωBz Ts) cos(ωBz Ts) 0

0 0 1

bBE(tk−1).

Subtracting the above two vectors yields

∆bBE(tk) , bBE(tk)− bBE(tk−1)

=


cos(ωBz Ts)− 1 sin(ωBz Ts) 0

− sin(ωBz Ts) cos(ωBz Ts)− 1 0

0 0 0

bBE(tk−1).

It is clear that the above measurement vectors have the
same magnitude, i.e., ‖bBE(tk)‖ = ‖bBE(tk−1)‖. Hence,
the normalised B-dot vector can be expressed as

˙̂
bBE(tk) =

1

Ts

∆bBE(tk)

‖bBE(tk)‖
. (29)

The instantaneous torque at time t = tk, generated by
the desired magnetic dipole momentmB

d (tk), is given by
(32). By examining the last row, it is evident that in or-
der the torque τBc;z being opposite to the angular rate ωBz ,
|ωBz Ts| needs to be smaller than π. This leads again to the
Nyquist criteria (28).

Suppose that the dipole moment mB
d (tk) is applied

for the entire duty cycle of the magnetorquers, i.e., during
the interval t ∈ [tk, tk + δTs). By the end of this inter-
val, the magnetic field in the body frame has changed to
bBE(tk + δTs) as well as the instantaneous torque gener-
ated by the magnetorquers changes to τBc (tk + δTs). In
order to reduce the rotation, the integral of the torque ap-
plied over the entire period t ∈ [tk, tk + δTs) should be
negative. Suppose that kḃ(p) is constant during this in-
terval, then for the z-axis, the negative torque condition
becomes

δTs∫
0

τBc;z(t)dt = κ

δTs∫
0

[sin(ωzt)− sin (ωz(δTs + t))] dt

= 2κ
cos2(ωzδTs)− cos(ωzδTs)

ωz
< 0,

(30)
where

κ = kḃ(p)
(bBx (tk−1))2 + (bBy (tk−1))2

Ts‖bBE(tk)‖2
> 0.

Suppose that the z-axis is rotating at rate ωmax, i.e.,
ωz = ωmax. Then, to satisfy the inequality (30), the sam-
pling time Ts needs to satisfy the following condition

Ts <
π

2δ|ωmax|
. (31)

τBc (t) = mB
d (tk)× bBE(t) = −

kḃ(p)

Ts‖bBE(tk)‖2
∆bBE(tk)× bBE(t)

=
kḃ(p)

Ts‖bBE(tk)‖2


bBz (tk−1)

(
bBy (tk−1)(1− cos(ωBz Ts)) + bBx (tk−1) sin(ωBz Ts)

)
bBz (tk−1)

(
bBx (tk−1)(cos(ωBz Ts)− 1) + bBy (tk−1) sin(ωBz Ts)

)
− sin(ωBz Ts)

(
(bBx (tk−1))2 + (bBy (tk−1))2

)
 . (32)
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Note that the above process can be repeated for rota-
tions around the remaining two axes.

To summarise the above analysis, in order to avoid
aliasing and to be able to apply (on average) a torque in
opposite direction to ωB , the sampling time Ts shall be
selected such that both conditions, (28) and (31), are si-
multaneously satisfied for the maximal expected rotation
rate ωmax. For δ = 0.5, the two conditions become equiv-
alent. The negative torque criterion becomes a driving
factor if δ > 0.5.

4.6 Stopping Criterion and Tuning
To decide when the detumbling mode shall stop, one

can use a simple threshold logic applied on the scalar
tumble parameter p given by (23). However, in order to
make sure that all axes have detumbled below a desired
rate ωdes, we propose a vector version of (23) defined as
follows

pv(tk) =
αTs

2
| ˙̂bBE(tk)|+ (1− α)pv(tk−1), (33)

where pv , [pvx pvy pvz ]
T is the vector-valued tumble

parameter satisfying pv(t0) , pv0 . The rest of the param-
eters are the same as in (23). Note that the absolute value
| · | in (33) is applied element-wise.

The satellite is considered to be detumbled once the
following inequality is satisfied (in all axes)

pvi (t) ≤ p̄, ∀i ∈ {x, y, z}, (34)

for a certain period of time t ∈ [tk−Nw
, tk], where

Nw ∈ N is a confirmation window. Nw is introduced
to enhance robustness. In (34), p̄ > 0 is a threshold pa-
rameter tuned such that the above inequality is met when
the angular rate of the satellite is approximately ωdes in
all axes. Care has to be taken when setting p̄ in order
not to exit the detumbling mode prematurely. Thanks to
the use of the normalised B-dot in (33), the tuning of p̄
becomes altitude independent.

The threshold logic (34) provides some hints for the
variable control gain’s (10) parameters selection. A large
rate factor ϕ � 1 shall be chosen to penalise power
consumption at the initial phase of the detumbling. If
ϕ < 1/

√
3p̄, then the parameter ε can be selected as

ε = 1−
√

3ϕp̄. This choice ensures that the B-dot gain is
close to the sub-optimal value, i.e., kṗ(p) ≈ k∗ṗ , when the
satellite is near to be detumbled.

5. Simulation Results for Delfi-PQ
In this section, we will demonstrated the performance

of the proposed B-dot algorithm to detumble a fast-
tumbling picosatellite. We consider the current picosatel-
lite project of the Delft University of Technology, the
Delfi-PQ project [1], as the baseline for our simulation
study.

5.1 Simulation Parameters

We simulate a LEO and Sun synchronous Keplerian
orbit and use the world geodetic system 1984 (WGS84)
standard. The orbit-related parameters are given in Ta-
ble 1. These orbital parameters imply an orbital period
of approximately 1h and 32 min. The 12-th generation
of the international geomagnetic reference field (IGRF)
model was used to model the Earth’s magnetic field vec-
tor in the body frame as

bBE = TIGRF/Bb
IGRF
E ,

where TIGRF/B is a rotation matrix from the IGRF to the
body frame FB .

Table 1: Orbit-related parameters
Parameter Value Unit

Altitude 350 [km]

Eccentricity 0 [-]

Inclination 96.85 [deg]

RAAN 310 [deg]

Earth magnetic field IGRF 12 [T]

Air density (low solar) 2.01 · 10−12 [kg·m−3]

Table 2 gives an overview of the satellite-related pa-
rameters and their considered uncertainty ranges which
were considered for the Monte Carlo (MC) simulations.
The listed parameters represent realistic sensor and actu-
ator characteristics. We consider two identical-type sen-
sors being available on-board. Both sensors are corrupted
with noises and suffer from unknown biases and quantiza-
tion errors. For the magnetorquers, we model the effect of
fall/rise times on the resulting magnetic dipole moment.
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Table 2: Satellite-related parameters
Parameter Nominal value Unit Uncertainty (1σ)

Mass 600 [g] 16.67%

Inertia principal moments {Ix, Iy, Iz} {1.731, 1.726, 0.264} [g·m2] 21.67%∗

Magnetorquer dipole moment∗∗ 0.002 [A·m2] 15%

Residual dipole moment vector∗ ∗ ∗ magnitude 0.0001 [A·m2] 10%

Centre of pressure offset from CoM [5.4 2.0 −8.2] [mm] 10%

Drag coefficient 2.1 [-] N/A

Cross-sectional area {x, y, z} face {92.1, 122.9, 25.2} [cm2] N/A

Rise/fall times of the magnetorquers 0.01 [s] N/A

Magnetometers’ noise rms∗∗ 500 [nT] N/A

Magnetometers’ resolution∗∗ 300 [nT/LSb] N/A

Magnetometers’ bias vector∗ ∗ ∗ magnitude 400 [nT] N/A
∗ 16.67% due to the mass variations plus 5% individual uncertainty per axis; ∗∗ for all three axes;

∗ ∗ ∗ direction uniformly distributed

The detumbling algorithm-related parameters are
given in Table 3. The selected sampling time complies
with both (28) and (31) criteria for our maximal expected
angular rate of 180 [deg/s]. The threshold parameter p̄
was tuned such that detumbling shall stop when ωdes ≈ 5
[deg/s] in all axes. The confirmation window Nw was
selected to reflect a 30 minutes confirmation time. We as-
sume that the magnetometers are not pre-calibrated, i.e.,
we do not account for the static biases which are present
in the simulations.

Table 3: Detumbling algorithm-related parameters
Parameter Value Parameter Value

Ts 0.25 pv0 [Ts Ts Ts]
T

δ 0.6 p̄ 8.1250 · 10−3

α 1/200 k∗
ḃ

1.2074 · 10−6

ϕ 4/Ts ε 1−
√

3ϕp̄

p0
√

3Ts Nw 1800/Ts

w1 = w2 1/2 b̃
(1)
bias = b̃

(2)
bias [0 0 0]

T

For all simulations, the satellite is assumed to be de-
tumbled (tded) when the condition given in (7) is satisfied
for ωdes = 5 [deg/s] (for all axes simultaneously). Where
applicable, we also present the detumbling time estimated
by the algorithm, see Section 4.6.

5.2 Sample Run Demonstration
Before turning to a statistical MC analysis, we present

results from a sample run example. In this example, the
satellite has nominal parameters and an initial rate of 180
[deg/s] in all three axes. The simulation runs for 16 orbits.

Figure 1 depicts the time behaviour of satellite’s angu-
lar rates. It can be seen that the proposed algorithm is able
to detumble a fast-tumbling picosatellite within less than
a day. The algorithm confirmed detumbling with a delay
of approximately half an hour. During the confirmation
period, the satellite was still in active detumbling mode.
Therefore, the angular rates around the detumbling con-
firmation are actually smaller than the desired rate ωdes.
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Number of orbits (1 orbit = 1.53 hours; 1 day = 15.73 orbits)

-300
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e
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Detumbled after: 12.2 orbits = 18.6 hrs
Algorithm confirmed after: 12.5 orbits = 19.1 hrs

x

B
-4 [deg/s]

Figure 1: Satellite angular rate in body frame and detum-
bling performance from 180 [deg/s] in all three axes.

The weight that multiplies the sub-optimal B-dot gain,
i.e., kṗ(p)/k∗ṗ = (ϕp+ε)−1, and the scalar tumble param-
eter are depicted in Fig. 2. The measured magnetic field
vector and the vector-valued tumble parameter together
with the threshold parameter are shown in Fig. 3.
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Figure 2: Sub-optimal B-dot gain weight (top) and scalar
tumble parameter (bottom).
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Figure 3: Measured magnetic field vector (top) and
vector-valued tumble parameter (bottom, y-axis in log
scale).

It is obvious from (25) and (26) that the magnetor-
quers power consumption is proportional to the amount of
on-times. Hence, summing the magnetorquers on-times,

T ontot;i =

tdet∑
tk=0

toni (tk), i ∈ {x, y, z},

can give us an indication about the power consumption of
the algorithm. Figure 4 shows the commanded on-times
per axis. The total opening time value, T ontot , is also shown
for each axis.
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0 2 4 6 8 10 12 14 16

Number of orbits (1 orbit = 1.53 hours; 1 day = 15.73 orbits)

0

0.5

1

Figure 4: Normalised magnetorquer ON-times and sum
of the opening ON-times until tdet.

5.3 Monte Carlo Analysis

In this subsection, we will present results based on
500 Monte Carlo simulation runs. For each run, we used
different noise seeds and varied some satellite-related pa-
rameters according to the normal distribution and uncer-
tainty characteristics given in Table 2. All simulations
started with an initial angular rate of 180 [deg/s] in all
three axes.

Table 4 shows the worst-case magnitudes estimate for
various disturbance torques. It can be seen that the so-
lar radiation pressure and gravity gradient disturbances
have the lowest magnitude, hence they will not be con-
sidered for the MC analysis. Note that the considered at-
mospheric disturbance corresponds to a low solar activity
scenario (air density: ρlow = 2.01 · 10−12 [kg·m−3]).

Table 4: Worst-case disturbance torque magnitudes
Disturbance Magnitude [N·m]

Aerodynamic drag 1.91 · 10−8

Gravity gradient 2.31 · 10−9

Residual dipole 5.03 · 10−9

Solar radiation 8.82 · 10−10

Figure 5 depicts the histogram and a Gaussian fit of
true detumbling times tdet obtained from the MC simula-
tions. It can be observed, than on average, the proposed
weighted B-dot law is able to detumble the satellites in
less than 15 orbits.

IAC-18-C1.3.11 Page 9 of 11



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright c©2018 by Dr. Robert Fonod. Published by the IAF, with permission and released to the IAF to publish in all forms.

5 10 15 20 25

Number of orbits (1 orbit = 1.53 hours; 1 day = 15.73 orbits)

0

10

20

30

40

50

60

70

80
F

re
q
u

e
n
c
y

Median: 

Mean: 

Std: 

14 orbits / 21.4 hours

14.8 orbits / 22.6 hours

3.2 orbits / 4.8 hours

Detumbling time

Gaussian fit

Figure 5: Histogram of the true detumbling time tdet.

Figure 6 depicts the detumbling time correlations with
the principal moments of inertia and respective maximal
dipole moments of the magnetorquers. As expected, there
is a significant positive correlation with increasing mass
moment of inertia, but relatively small negative correla-
tion with the available dipole moment of the magnetor-
quers.
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Figure 6: Detumbling time correlation with principal mo-
ments of inertia (top subplots) and with maximal dipole
moments of the magnetorquers (bottom subplots).

In order to compare the proposed B-dot controller
with the modified B-dot controller of Avanzini and Giuli-
etti [8], we run additional 500 MC simulations for the
same scenario as described above, but employing (9) with
kṗ(p) = k∗ṗ . The results are compared in Table 5. As can

be seen from this table, there is only a slight increase in
the mean detumbling time, namely 0.45%, while the aver-
age power consumption of the magnetorquers is reduced
noticeably.

Table 5: Detumbling performance comparison for kṗ(p)
and k∗ṗ from 180 [deg/s] (around all three axes). Results
are given in hours.

Method/
Metric

Weighted B-dot B-dot of [8]

µ σ µ σ η

tdet 22.63 4.83 22.52 4.85 0.45 %

T ontot;x 10.98 2.50 11.72 2.51 -6.32 %

T ontot;y 11.36 2.88 12.02 2.87 -5.43 %

T ontot;z 12.48 2.83 12.87 2.86 -3.05 %∑
i T

on
tot;i 34.82 7.17 36.61 7.72 -4.88 %

µ = mean; σ = standard deviation; η = relative mean error

To better appreciate the power consumption reduction,
we have calculated the average sum of ON-times per orbit
basis, denoted as µ(T onorb;i), where

T onorb;i =
∑

k∈{orb}

toni (tk), i ∈ {x, y, z}

The values of µ(T onorb;i) for each axis are compared in Fig-
ure 7 for the two considered B-dot laws. A reduction in
average power consumption can be observed (especially
at the beginning of the detumbling) for the weighted B-
dot controller. It shall be noted that no tuning has been
performed to optimise ϕ and ε for power efficiency or de-
tumbling time.
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Figure 7: Comparison of the average on-times per orbit
basis.
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6. Conclusions
The problem of pure magnetic detumbling of a fast-

tumbling picosatellite was studied. A new weighted B-
dot controller has been proposed. This controller enables
power consumption reduction while not significantly in-
creasing the time it takes to detumble. Monte Carlo sim-
ulation results have revealed that it is possible to save al-
most 5% of power while sacrificing only about 0.5% of
the detumbling performance when compared to the same
control strategy with constant control gain.
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