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Abstract

Since the mid-19th century global temperatures have increased significantly, so does the
intensity of extreme rainfall. Previous studies have suggested that by the end of the century
extreme rainfall intensity would increase by 10.5% and 28.2% for the low and high emission
scenarios, and the centennial extreme rainfall would increase by 13.5% and 38.3%. For this
model-based result, our aim is to verify it with observed historical data and find out the growth
rate of extreme rainfalls. In this study, the MEV method was used to analyze the changes in
the intensity of daily extreme rainfall in the 1-year, 10-year, and 100-year return periods at 29
stations and linearly fit them to determine the trends, and finally found that: the extreme rainfall
showed an increasing trend in 70% of the stations in all data years, and the average growth
rates in the 1-year, 10-year, and 100-year return period are 9.73%, 8.06% and 12.00%, re-
spectively. From 1950 to the present, 56% of the stations have an increasing trend of extreme
rainfall and the growth rate is 6% and 4% for 1-year and 10-year events, 2.4% for the 100-year
events. For the growth rate per decade, the 1-year and 10-year events grow faster after 1950
than data from 1850, and the growth rate of the 100-year events becomes smaller.

i



Contents

Abstract i

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous researches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goal of this work: Analysis of extreme rainfall trends over 100 years . . . . . . 3

2 Methods 4
2.1 Metastatistical extreme value (MEV) . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Creation of the moving window . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Inspection of the parameters . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Significance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Student’s t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.2 Spearman’s rank correlation coefficient . . . . . . . . . . . . . . . . . . 8

3 Results analysis 9
3.1 Extreme rainfall tendency of recording years (since 1850) . . . . . . . . . . . . 9
3.2 Extreme rainfall tendency in modern period (since 1950) . . . . . . . . . . . . . 14
3.3 Comparison and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusion 18

5 Acknowledgement 19

References 20

A Related tables and figures 23

ii



1
Introduction

1.1. Background
Climate has warmed significantly since the Industrial Revolution, CO2 will be the domi-

nant climate change factor in this century. This human-induced climate change has led to
an increase in the frequency and intensity of extreme temperature, as well as an increase in
extreme precipitation and droughts on a large scale (Allen & Ingram, 2002).

The intensity of extreme rainfall will have a significant impact on society as a result of
climate change, and the annual cost to society of extreme rainfall is enormous. Intense rainfall
can produce flash floods with very short response times (Elkhrachy, 2015), which is becoming
a common natural disaster inmany parts of the world. Flooding due to rainfall is one of themost
costly and dangerous natural disasters in the world, and has caused 140 million in economic
losses in New Zealand over the past decade, and is expected to cause over 52 billion in
economic losses worldwide by mid-century (Frame et al., 2020; Hallegatte et al., 2013).

Since 1901, global precipitation has increased at an average rate of 0.04 inches per
decade, which is about 1.016mm per decade, and the extreme precipitation events outpac-
ing this trend (EPA, 2021). And the daily extreme rainfall has shown significant increase in
both observations and global climate models (Donat et al., 2016).

Most of the precipitation comes from moisture already present in the atmosphere at the
start of the storm, so the intensity of the precipitation depends on the available moisture, es-
pecially for extreme rainfall events. Thus the simplest prediction of extreme rainfall is that the
intensity of rainfall is almost proportional to the moisture at the bottom of the atmosphere, with
the water content increasing at a warming rate of Clausius-Clapeyron (CC) value, about 6-7
%K−1 (Trenberth et al., 2003). Other research has shown that extreme rainfall predictions are
not applicable in the tropics because the variability of extreme rainfall depends on the variabil-
ity of the decreasing rate of wet adiabatic temperature, the rate of rise, and the temperature
at which extreme precipitation occurs (O’Gorman & Schneider, 2009).

Changes in extreme rainfall may show opposite trends in space, with greater heterogene-
ity compared to increasing temperature warming (Donat et al., 2013). Baseing on a coupled
model organized by the Fourth Assessment Report (AR4), some researches concluded that
arid regions become drier while wet regions become wetter because the magnitude of atmo-
spheric moisture convergence and divergence is expected to increase with increasing atmo-
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1.2. Previous researches 2

spheric moisture content (Held & Soden, 2006). Despite the different trends of increasing or
decreasing extreme rainfall in different wet and dry regions, an increasing trend was observed
in most of the regions (Donat et al., 2016).

1.2. Previous researches
The trend of rainfall variation is an important phenomenon to be considered, and analyzing

the variation of rainfall in historical data is a great reference value for studying and predicting
the trend of rainfall changes in the future.

Many studies focused on rainfall variability. The analysis of common rainfall trends was
mainly performed using the Mann-Kendall method. Such as Cislaghi et al. used rainfall data
from four stations in Italy to analyze historical changes in annual rainfall, rainfall intensity,
and rainfall events. A negative trend in annual precipitation was found in the first half of the
20th century, followed by a positive trend in northern Italy (Genoa, Milan and Bologna). In
contrast, the dataset from Palermo (southern Italy) shows only negative trends. The analysis
of monthly rainfall trends in Turkey by Partal and Kahya, revealed that a significant decrease in
mean annual precipitation was observed in western and southern Turkey and in the Black Sea
coastal region. Zhai et al. analyzed rainfall data from 740 stations in China and concluded that
there was little overall precipitation variation during 1950-2001, but there were clear regional
and seasonal trends.

For extreme rainfall, Y. Wang and Zhou concluded that summer extreme precipitation
events in the Yangtze River basin increased sharply by 10%-20% per decade from 1961-2001,
consistent with the trend of increasing average summer precipitation in the region. Kunkel et al.
analyzed trends in short-term (1-7 day) extreme precipitation events with repeated intervals of
1 year or longer for U.S. and Canadian stations and found that the national trend for the U.S.
was to increase at a rate of 3% over the decade. The trend for the United States was found to
rise at a rate of 3% over the decade, during the period 1931-96. Although the annual trend for
Canada was upward during 1951-93, it was statistically insignificant. For extreme rainfall in
Europe, Zolina et al. clearly reveal an increased incidence of extreme precipitation in western
European Russia (up to 4% /decade), with a decreasing trend in the partial contribution of very
wet weather found in Central Western Europe during the summer months.

Many studies have been conducted on extreme rainfall using Gumble, Peak Over Thresh-
old (POT), Generalized extreme value (GEV) and Metastatistical Extreme Value framework
(MEV) (H. Wang & Xuan, 2022; Das et al., 2022; Yue et al., 2022; Fofana et al., 2022).

For example, Fofana et al. used the Gumbel extreme value distribution to analyze extreme
rainfall and flood recurrence periods in the city of Bamako, Mali, in West Africa and found
an increase in the intensity and frequency of extreme rainfall. POT method was applied by
McBride et al. to analyze data from 70 stations in South Africa from 1921-2022 and concluded
that there is a general increase in the likelihood of experiencing significant and extreme daily
rainfall events over most of South Africa. Amponsah et al. used the Simplified MEV to model
extreme rainfall quantiles in tropical regions and found an increase in extreme daily rainfall
over the period 1978-2018 in Volta basin.

Compared to the systematic errors of the GEV and Gumble methods, there is excellent
coherence between the MEV estimates and the ’observed’ frequency of extreme events in the
generated synthetic time series (Marani & Ignaccolo, 2015). The MEV method has a great
advantage in analyzing long return periods of extreme rainfall in short-term records. With a
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sufficient number of rainfall events per year, the MEV method can even generate information
on the 100-year return period quantile of the 5-year rainfall data (Marra et al., 2018). The
MEV distribution also shows a large improvement in accuracy compared to previous methods,
Miniussi and Marani found that to improve the accuracy of short-term observations, the MEV
distribution can better resolve fluctuations in the high quantile and allow for long-term trends
above the estimated noise. Hosseini et al. applied the MEV distribution to the analysis of
extreme Atlantic hurricanes, improving the accuracy of its estimates by 50%.

In summary, the MEV distribution has excellent ability to calculate extreme rainfall in short-
term data (even in 5 years), as well as high accuracy with small error, and therefore was applied
to this study to calculate extreme precipitations.

1.3. Goal of this work: Analysis of extreme rainfall trends over 100
years
Anthropogenic greenhouse gas increases lead to an intensification of the observed heavy

precipitation events, which are found in about two-thirds of the data coverage of the Northern
Hemisphere land area (Min et al., 2011).

In order to predict the effect of CO2 emissions on temperature as well as rainfall under
different emission scenarios, CMIP Phase 6 (CMIP6) was applied for future climate predic-
tion (L. Wang et al., 2022). Gründemann et al. analyzed that the annual rainfall extremes
would increase by 10.5% and 28.2% for the low and high emission scenarios by the end of
the century, and the centennial extreme rainfall would increased by 13.5% and 38.3%, re-
spectively. However, this result is only predicted by the model and not verified by historical
data.

To demonstrate this increasing trend of extreme rainfall, the stations with more than 100
years of recorded data will be selected for this study to analyze the trend of extreme rainfall
with available data. If we get a trend of extreme rainfall increase in the historical data, we can
assume that there will be such an increase at the end of this century as well. In addition, CO2
emissions have increased a lot since we entered the modern era, and we are curious about
how this scenario will affect extreme rainfall. Therefore, data after 1950 were also chosen for
the trend analysis.



2
Methods

2.1. Metastatistical extreme value (MEV)
The MEV method was firstly proposed by Marani and Ignaccolo, which is defined in terms

of the distribution of the statistical parameters describing “ordinary” daily rainfall occurrence
and intensity. Using the MEV method, the restrictive assumptions of the classical EVT are
relaxed, by treating the parameters that defining the number of events and the probability
distribution of event sizes as random variables.

Zorzetto et al. has given a more detailed explanation in their study. The MEV method
considers the number of events n, parameters θ⃗, of the parent distribution in each block, as
random variables (N and Θ⃗). The randomness of the parameters of the number of events and
the magnitude of the events explains two things:

1) the stochastic process of rainfall event occurrence, i.e., the generation of a finite and
variable number of rainfall events within the scale of each year.

2) The frequency distribution of possible changes in the magnitudes of rainfall events in
different years.

If the total probability theory is used and all possible distributions of the number of events
N and parameters Θ⃗ are considered, the cumulative distribution function of the MEV would
be as shown in Eq.2.1.

ζ(x) =
∞∑
n=1

∫
Ω

θ⃗

F (x; θ⃗)ng(n, θ⃗)dθ⃗ (2.1)

where g(n, θ⃗) is the joint probability distribution of N and Θ⃗, and Ω
θ⃗
is the population of all

possible values of the parameters.

Daily non-zero rainfall has been shown to be accurately modeled as a Weibull variable,
can be written as

F (x;C,w) = 1− e−(
x
c )

w

(2.2)

where C and w being, respectively, the Weibull scale and shape parameters.
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And thus define the MEV-Weibull cumulative distribution function as

ζ(x) =

∞∑
n=1

∫
C

∫
w
g(n,C,w) ·

[
1− e−(

x
C )

w]n
dC dw (2.3)

where the second part, F (x;Cj , wj), is the Weibull distribution, and j(j = 1, 2, ...,M), is the
observations of each years.

So that the annual maximum daily rainfall depth, i.e., the maximum depth for n wet days
in a typical year, is distributed as

Hnj (x) = F (x;Cj , wj)
nj (2.4)

where nj is the wet days in year j.

And the mathematical expectation in Eq.2.1 is replaced by the approximate mean value,
and the expression is

ζ(x) ∼= ζm(x) =
1

M

∑
j

F (x;Cj , wj)
nj (2.5)

Thus, the discrete expression for MEV is as

ζm(x) =
1

M

M∑
j=1

[
1− e

−
(

x
cj

)wj]nj

(2.6)

The probability weighted moments method (PWM) was used to fit the Weibull distribution
to the observed values for each year to give greater weight to the tails of the distribution, in
order to obtain better simulated values of extreme rainfall.

2.2. Dataset
Stations with more than 100 years of daily rainfall data will be selected for this study. Many

of the recordings can be found in NOAA’s Global Historical Climatology Network (GHCN), while
others are from private contacts. Among them, 19 sites have data based on Zorzetto’s original
data extended to the most recent GHCN data record, and 10 directly use the original private
contact data (Zorzetto et al., 2016).

The stations and starting and ending years of the data are shown in the table in the Ap-
pendix A.1, with an average record length of 174 years. The longest recorded site is Padova,
with 288 years of recorded data. Most of the sites are from Europe, with a small number from
the North America and Australia.

The location of the stations is as figure 2.1.
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Figure 2.1: Location of the stations

2.3. Data Processing
2.3.1. Creation of the moving window

This study uses the MEV framework to determine the intensity of extreme rainfall in the
data. Because of the good performance of the MEV method in calculating extreme rainfall
in short-term data for high return periods, a 30-year block was selected to calculate extreme
rainfall for the available data.

To obtain the trend of extreme rainfall variability, a moving window was made to take 29
years backward for each year of data (for a total data length of 30 years), and the mevpy
package was called for the window. For example, if the years of data recording are from
1897-2017, then the window takes 1897-1926, 1898-1927, 1899-1928, ... , 1988-2017.

Figure 2.2: The 30-years slider of each year

The continuity of extreme rainfall for each window that calculated in this way is stronge
(because only one year of data is changed) and it is easier to see the trends of the extreme
rainfall variation.

2.3.2. Inspection of the parameters
In the use of the MEV package, the determination of some parameters is crucial. For

example, n, the dimension of the sample (also known as wet days in a year), should exceed
1mm/day. The Weibull parameter C, w also needs to be greater than 0. Therefore, when
calling the mevpy function, the number of wet days in a year and the weibull parameter should
be checked first.

Since there are many overlaps in the calculation of extreme rainfall and the parameters n,
C , w need to be used repeatedly, and these three parameters take a long time to calculate, the
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parameters need to be calculated and checked in advance before calling the function.

Another key input value is x0. The parameter x0 is the starting guess for the numerical
solution of the MEV and is an initial guess that needs to be inputted to call the function. How-
ever, rainfall varies greatly from region to region, and x0 that applies to one region may not
apply to another, and the program may not find a suitable numerical solution.

In this case, we need to guess different values of x0 and change x0 in case of warnings.
If none of these guesses satisfy the conditions for an available solution, the calculated result
needs to be replaced by -999.

2.4. Data analysis
In this study, rainfall for the 1-year-return period, 10-year-return period, and 100-year-

return period were chosen as the non-exceedance probability, F . Finally we will obtain con-
tinuous data of these three rainfall periods at each station.

A linear regression with least-squares method is applied to the trend analysis. We are
able to obtain the slope of the linear fit and thus the rate of change of the extreme rainfall over
the calculated time period, the equation is as

y = β0 + β1x (2.7)

If it shows a positive slope, β1 > 0, in a unit of mm/year, then it indicates an increasing
trend of rainfall intensity each year during the analyzed time. The opposite is an indicative of
decrease.

And the growth rate GR (%) can be written as

GR =
P1 − P0

P0
(2.8)

Where P0 and P1 represent the extreme rainfall intensity of the earliest years and latest
years, mm/day.

Calculating the growth rate for each decade allows us to determine the magnitude of the
growth rate for different periods.

Gdecade =
GR × 10

n
(2.9)

Where Gdecade is the growth rate in a decade, %/decade, n is the years length.

2.5. Significance test
2.5.1. Student's t-test

The t-test is used to determine whether the means of two samples are significantly the
same, and can also be used for one sample and a specified mean value.

In the one sample t-test, the stastic is like:
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t =
Z

s
=

X̄ − µ

σ̂/
√
n

(2.10)

Where X̄ is the he sample mean, σ̂ is the estimate of the standard deviation of the popu-
lation, and µ is the population mean.

The α is set to 0.05, also using a one-tailed distribution, which means that there is a 5%
risk of concluding that there is a difference between them when the unknown overall mean is
the same.

2.5.2. Spearman's rank correlation coefficient
The Spearman rank correlation coeffcient is a nonparametric technique for evaluating

the degree of linear association or correlation between two independent variables (Gauthier,
2001). It is a parentless indicator that measures the correlation of two variables. It uses
a monotonic function to evaluate the correlation of two statistical variables. The Spearman
correlation coefficient is +1 or -1 if there are no repeated values in the data and when the two
variables are perfectly monotonically correlated (Wikipedia, 2022).

The Spearman correlation coefficient is defined as the Pearson correlation coefficient
between the rank variables (Myers & Well, 2003).

rs = ρR(X),R(Y ) =
cov(R(X), R(Y ))

σR(X)σR(Y )
(2.11)

Where ρ denotes the usual Pearson correlation coefficient, but applied to the rank vari-
ables,

cov(R(X), R(Y )) is the covariance of the rank variables,

σR(X) and σR(Y ) are the standard deviations of the rank variables.



3
Results analysis

3.1. Extreme rainfall tendency of recording years (since 1850)
Here we plotted the 30-year extreme rainfall values calculated from all available data for

all stations. After fitting it with linear regression to obtain the slope of the optimal fitted line, as
table 3.1. The order of the stations was sorted by rainfall intensity from smallest to largest, it
can be found that the slopes fitted to the data for most of the stations are positive.

Table 3.1: Slopes of linear regression fit for available data, mm/year

Station slopes (mm/year)
1-year return period 10-year return period 100-year return period

Putten 0.002 0.003 0.002
Oxford 0.000 0.000 0.004
Hoofdoorp 0.003 0.004 0.007
Sheffield 0.004 0.002 0.017
Melbourne 0.000 0.003 0.004
Zagreb 0.000 0.001 0.010
Bologna 0.000 -0.005 -0.008
Padova 0.001 0.003 0.008
Milano 0.004 0.012 0.027
Genova 0.006 0.026 0.048
Stykkisholmur Is 0.046 0.074 0.124
Jena Sternwarte Gm 0.011 0.009 -0.008
Vlissingen Nl 0.044 0.024 -0.020
Prague 0.005 0.019 0.046
Armagh -0.011 -0.031 -0.061
Eelde 0.022 0.036 0.048
Den Helder 0.023 0.035 0.057
Helsinki 0.007 0.015 0.039
Radcliffe -0.008 -0.012 -0.019
Robe Comparison As 0.015 0.012 0.009
Deniliquin Wilkinson St As -0.036 -0.066 -0.203
Palermo It -0.027 -0.071 -0.116
Mantova It 0.026 0.013 0.004
Hohenpeissenberg Gm 0.057 0.068 0.082
Toronto Ca -0.007 -0.035 -0.091
Lisbon 0.055 0.115 0.145
Florence 0.003 0.016 0.044
Newcastle Nobbys Signal Statio As -0.063 -0.214 -0.452
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(a)

(b)

(c)

Figure 3.1: The extreme rainfall tendency in all available data, with a. The 1-year-return period, b. The
10-year-return period and c. The 100-year-return period.
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This linear fit can only give a trend simulation, not an accurate numerical increasing. In the
figure 3.1, the extreme rainfall data of the stations were very volatile, and some of them even
showed a clear cyclical trend. But overall, most of the fitted lines showed an increasing trend,
which indicated an increase in the intensity of extreme rainfall over the past 172 years.

One notable exception was NewCastle in east Australia at the top of the figure, which had
the strongest extreme rainfall intensity of all stations, but also showed the strongest decreasing
trend during the recording years.

In the figure 3.2, we give the growth rates of extreme rainfall for all stations over the
data years, from 1850-2022. Although the growth was not large in terms of the slope of the
fitted line, an increase could be seen when the percentage of growth rate was calculated.
For nearly 70% of the stations, the extreme rainfall showed an increasing trend. The growth
rates of extreme rainfall in some areas were very large, such as Stykkisholmur in Iceland,
where extreme rainfall in the 1-year, 10-year, and 100-year return periods have increased by
more than 100%. For Newcastle and Deniliquin in Australia, both regions showed a trend
of decreasing extreme rainfall for the three return-periods, in addition to Palermo in Italy and
Toronto in Canada. There were also some regions where the three growth rates varied a lot,
such as Milan, Padova in Italy, Zagreb in Croatia, and Vlissingen in the Netherlands, which
their growth rates of 100-year return period extreme rainfall could be 5 times larger than that
in 1-year return period.

Figure 3.2: The increasing rate of extreme rainfall in all stations, [%]

As shown in the figure 3.3, for the extreme rainfall in the left, 1-year-return period extreme
rainfall, the growth rate was most concentrated between 0 and 0.1 for 1-year extreme rain, 10-
year and 100-year extreme rainfall. More values fall in the range greater than 0, which showed
a generally increase trend. 10-year and 100-year return period rainfall had a similar trend, but
was less concentrated than 1-year, and a higher range of distribution could be seen on the
left and right side of 0. As the box plot figure 3.3, the 10-year had a longer box section and
indicating that it had more variability. However, more growth data overall. For the 100-year
extreme rainfall growth rate, it had the greatest variation, with the largest range of boxes in
the box plots and a more distant extreme value distribution. From the histogram in figure 3.3,
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most of the data fall in the -0.5 to 1 range (50% decrease to 100% increase).

Overall, the distribution of all three rainfall growth rates showed a tendency to be greater
than 0. The extreme rainfall in the 100-year return period had a maximum growth rate and a
maximum variance, while the rainfall in the 1-year and 10-year return periods was relatively
stable and certain.

Table 3.2: The percentage of stations showing an increasing trend and the average growth rate in all recording
years

1-year rerturn period 10-year rerturn period 100-year rerturn period
The percentage of stations with an increase [%] 71.43 71.43 67.86
Average growth rate in all station since 1850[%] 9.73 8.06 12.00
Average growth rate per decade since 1850[%/decade] 0.56 0.47 0.70

(a)

(b)

Figure 3.3: a.Histogram and b.boxplot of growth rate in all stations for left.1-year-return period,
middle.10-year-return period, right.100-year-rerturn period

From the table 3.2, the rainfall intensity of the 1-year-return period increased by 9.73%
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Table 3.3: T-stastic test values and p-value of three extreme rainfall growth rate of data from 1850

1-year return period 10-year return period 100-year return period
t-statistic 15.61 12.09 12.12
p-value 2.43E-15 1.05E-12 9.81E-13

(a) (b) (c)

Figure 3.4: Spearman rank test of growthrate between three extreme rainfall since 1850, for 1-year and 10-year
events in a, 10-year and 100-year events in b, and 1-year and 100-year events in c

on average during the 172 years, and the 10-year-return period and 100-year-return period
increase by 8.06% and 12.00%, respectively. In addition, a decadal growth rate was calculated
for each decade, for 0.56 and 0.47%/decade and the maximum decadal growth rate is 100
years, 0.70%/decade.

In the significance test, the hypothesis H0 is that the growth rate of the three extreme
rainfall is 0. Otherwise, H1 is the growth rate of the three extreme rainfall is not 0, which means
a significant increase. The α = 0.05 was chosen as type I error, and as shown in the table 3.3
the p-value was less than 0.05, so H0 was rejected and H1 was accepted. The Spearman’s
rank test for the growth rates of the three extreme rainfalls showed a good agreement between
all three extreme rainfalls, with a positive correlation of about 0.8, as figure 3.4.

The increase of rainfall in all three return periods is obvious, which means that the fu-
ture will face more severe rainfall with increased daily rainfall intensity. There is a very large
increase of extreme rainfall in the 100-year-return period.

This result also confirms what many previous studies have predicted. In using CMIP6 to
predict future changes in extreme rainfall, Gründemann et al. concluded that daily land-based
extreme rainfall could increase by 10.5% to 28.2% by the end of the century for the annual
event and by 13.5% to 38.3% for the 100-year event, in both the low-emissions scenario and
the high-emissions scenarios (Gründemann et al., 2022).

Global carbon dioxide emissions increased after the 19th century and climate warming
has become an established fact. As of today, the temperature on Earth has increased by
1.1°C compared to the end of the 19th century, and what climatologists generally believe is
that the temperature increase should be limited to 1.5°C by the end of this century for the sake
of human development.

According to our calculations, the extreme rainfall increases by 9.73% in the 1-year return
period, 8.06% in the 10-year return period and 12.00% in the 100-year return period for a 1.1°C
temperature increase. This result has some reference value for the prediction of extreme
rainfall in the future. For example, even if the temperature increase is controlled at 1.5°C,
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extreme rainfall will still face an increasing trend, and if the high emission scenario continues,
the intensity of extreme rainfall will be more significant at the global scale.

3.2. Extreme rainfall tendency in modern period (since 1950)
The climate warming associated with human forcing fits well with the observed warming,

suggesting that about 104% of the total has come from human activity since the beginning of
the ”modern” period in 1950 (Hausfather, 2017). In order to obtain the tendency of extreme
rainfall changes since the modern era, data from the 1950 to the recent period were chosen
for the analysis.

Table 3.4: The percentage of stations showing an increasing trend and the average growth rate since 1950

1-year return period 10-year return period 100-year return period
The percentage of stations with an increase [%] 59.26 55.56 55.56
Average growth rate in all station since 1950 [%] 6.05 4.39 2.42
Average growth rate per decade since 1950 [%/decade] 0.84 0.61 0.34

There is an overall increasing trend of extreme rainfall since 1950, with nearly 56% of the
stations with extreme rainfall changes greater than zero for the three return periods. Although
only nearly 40 years of data were available, the extreme rainfall in the 1-year and 10-year
return periods still showed a 4-6% growth rate, and the average growth in the 100-year return
period was 2.42%, as shown in table 3.4.

All stations showed obvious changes, except for a few stations that showed little or no
growth and decrease. And we can see that both positive and negative growth rates are evident
in figure 3.5. Palermo, Italy had the largest extreme rainfall reduction rate, for the three return
periods the rainfall intensity was reduced by more than 50%. But Padova, also an Italian city,
had a large positive growth rate.

A t-test of the extreme rainfall intensity growth rate was considered to be a significant
increase within the accepted range of α = 0.05, as shown in table 3.5. Similarly, the growth
rates of the three extreme rainfall events were tested for Spearman’s rank in figure 3.7 and
were found to exhibit the same good agreement between the different frequencies of extreme
rainfall. However, the correlation between 1-year and 100-year extreme rainfall is weaker, at
0.65.

For the figure3.6, with the increase of the return period, the variance becomes larger
and the interval of the distribution becomes wider. From the box plots, the extreme rainfall
variability of the 100-year return period is the strongest because the distribution of the box part
Q1-Q3 is the widest and the extreme values (including the maximum and minimum values) are
more significant.

The calculated growth rate per decade showed that the annual and decadal extreme rain-
fall increase was greater than the previous case, data from 1850, 0.84 and 0.61 %/decade,
respectively. However the centennial extreme rainfall growth rate was smaller, 0.34 %/decade,
a result that is different from what we expected. We would have expected the 100-year return
period to exhibit a much larger growth rate of rainfall with a large uncertainty. One possible
explanation for this is that the 100-year extreme rainfall is large in both growth rate and de-
crease rate, and the display in the boxplot is a larger box range, thus averaging out the growth
rate. The results show that although there is indeed a large uncertainty, the concentration of
the growth rate distribution is small.
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Figure 3.5: The increasing rate of extreme rainfall in all stations since 1950, [%]

(a)

(b)

Figure 3.6: a.Histogram and b.boxplot of growth rate in all stations since 1950 for left.1-year-return period,
middle.10-year-return period, right.100-year-rerturn period
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Table 3.5: T-stastic test values and p-value of three extreme rainfall growth rate of data from 1950

1-year return period 10-year return period 100-year return period
t-statistic 6.46 3.52 1.34
p-value 3.84E-7 7.98E-04 9.63E-02

(a) (b) (c)

Figure 3.7: Spearman rank test of growthrate between three extreme rainfall since 1950, for 1-year and 10-year
events in a, 10-year and 100-year events in b, and 1-year and 100-year events in c

3.3. Comparison and discussion
The global temperature has increased by 0.82 degrees Celsius when compared to the

1950 average (Roston, 2021). This is a very large increase compared to the 1.1 degrees Cel-
sius from 1850-1900 to the present. Our expected result is that the intensity of extreme rainfall
should increase rapidly after entering the modern period, and the longer the return period the
more the rainfall should increase. However, this speculation is inaccurate because rainfall is
influenced by very complex factors, not only temperature-related, but also by monsoons, The
Southern Oscillation and land use, etc (Chang et al., 2012).

One very interesting note in the results is that since 1950, the rate of increase in extreme
rainfall intensity, although also positive, has not increased as significantly as data since 1850.
Looking at the decadal growth rate per decade for both time periods, it can be seen that
the annual and decadal extreme rainfall grows faster after modern times, and the centennial
growth becomes smaller after modern times, but still grows.

As can be seen in figure 3.5, a station that affects the rate of extreme rainfall growth
obviously is Palermo, Italy, a station where the negative trend in the intensity of the three
extreme rainfall types is very pronounced, with a 100-year-rate of rainfall reduction exceeding
100% and greatly pulling down the average growth rate. This trend coincides with Cislaghi
et al.s’ results, as figure 3.8, which showed a decrease in total and average annual rainfall in
Palermo (southern Italy) from the mid 20th century to the beginning of the 21st century.
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Figure 3.8: Rainy event duration in Palermo, (a) mean, (b) standard deviation, (c) mean of annual maximum, (d)
standard deviation of annual maximum, (e) 30-year quantile of annual maximum (Cislaghi et al., 2005)

According to Gründemann et al., the growth rate of the rarest extreme rainfall should be
the greatest. However, our results are contrary to this. One reason could be that rainfall
growth rates were chosen for only 29 ultra-long stations, in which case very large increases
or decreases would have a large impact on the overall results, such as Palermo. The effect of
such extreme values would be reduced if data frommore stations were selected. Another point
is that the stations in this study are mainly in the European region, so it is a good reflection of
the rainfall trend in Europe, while more research is needed for the analysis of rainfall in other
continents.

In addition, the Spearman’s rank test was also used for the detection of growth rates in
two different time periods, as shown in Figure 3.9. It can be seen that the growth rates of the
three types of extreme rainfall in the two time periods are hardly correlated, despite the fact
that each showed an increasing trend, which also illustrates the volatility of extreme rainfall
trends.

(a) (b) (c)

Figure 3.9: Spearman rank test of growthrate of extreme rainfall between data from 1850 and data from 1950,
for 1-year events in a, 10-year events in b, and 100-year events in c
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Conclusion

In this study, 29 stations with record years longer than 100 years and with fewer vacant
records were selected, and the average data length was 174 years. The extreme rainfall for
the 1-year, 10-year, and 100-year return periods were calculated using the MEV distribution
in each 30 years and the following results were found.

1. Using all years of data, extreme rainfall was calculated and it was found that 70%
of the stations showed an increasing trend in extreme rainfall intensity for all three return
periods. The station with the most significant increase is Stykkisholmur, Iceland, where all
three extreme rainfall periods show an increase of more than 100%.

2. For all data conditions, the extreme rainfall intensity increased by 9.73% on average
for the 1-year return period, and 8.06% and 12.00% for the 10-year and 100-year return peri-
ods, respectively. 100-year return period had the most significant increase in extreme rainfall
intensity, but also has the greatest variability.

3. Repeating the above process for years after the modern period in 1950, it is found
that the extreme rainfall intensity at 56% of the stations shows an increasing trend during this
period. At the same time, some sites, such as Palemo, show a very sharp decrease.

4. After 1950, the increasing trend of extreme rainfall is about 6% for the 1-year and 4%
for 10-year return periods, and about 2.4% for the 100-year return period, which is different
from the trend we guessed.

5. Comparing the growth rates per decade, it can be seen that rainfall in the 1-year and
10-year return periods grows faster in modern times, while the 100-year return period grows
at a reduced rate in modern times.
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A
Related tables and figures

Table A.1: Recording years of selected stations

Station name Start year End year Length of recording years
Sydney Observatory Hill, As 1855 2022 167
Toronto,Ca 1840 2017 177
Armagh 1838 2008 170
Stykkisholmur 1856 2014 158
Helsinki 1845 2015 170
Radcliffe 1827 2014 187
Den Helder 1850 2022 172
Robe Comparison,As 1860 2022 162
Uppsala 1827 2022 195
Palermo,It 1797 2008 211
Prague 1804 2014 210
Eelde 1847 2022 175
Lisbon 1863 2013 150
Deniliquin Wilkinson St 1858 2014 156
Florence 1822 1979 157
Jena Sternwarte Gm 1826 2022 196
Mantova It 1840 2008 168
Vlissingen Nl 1854 2022 168
Newcastle Nobbys Signal Statio As 1862 2022 160
Hohenpeissenberg Gm 1781 2022 241
Hoofdoorp 1867 2014 147
Bologna 1813 2007 194
Oxford 1853 2008 155
Milano 1858 2006 148
Zagreb 1862 2004 142
Sheffield 1883 2008 125
Padova 1725 2013 288
Genova 1833 2008 175
Putten 1868 2014 146
Melbourne 1856 2013 157
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Table A.2: Growth rates of extreme rainfall of all available data

Station Growth rate(%)
1-year return period 10-year return period 100-year return period

Putten 12.872 15.712 8.762
Oxford 1.758 -0.471 15.895
Hoofdoorp 24.709 23.866 31.941
Sheffield 34.145 11.060 70.881
Melbourne -1.353 8.420 8.091
Zagreb 2.446 3.323 29.912
Bologna -2.185 -13.786 -14.599
Padova 4.384 8.652 18.615
Milano 16.484 33.378 63.546
Genova 16.279 41.390 53.031
Stykkisholmur Is 49.238 47.318 60.268
Jena Sternwarte Gm 9.323 4.742 -2.669
Vlissingen Nl 42.371 13.173 -7.029
Prague 3.831 9.066 14.890
Armagh -8.532 -15.881 -23.335
Eelde 19.611 20.935 21.084
Den Helder 20.148 19.836 24.035
Helsinki 5.442 7.781 15.518
Radcliffe -6.643 -6.231 -6.961
Robe Comparison As 11.597 5.539 2.904
Deniliquin Wilkinson St As -21.927 -19.862 -34.196
Palermo It -15.065 -19.800 -19.917
Mantova It 13.846 3.931 0.750
Hohenpeissenberg Gm 30.712 22.379 19.217
Toronto Ca -3.620 -10.278 -18.232
Lisbon 28.658 34.834 29.224
Florence 1.201 4.273 7.746
Newcastle Nobbys Signal Statio As -17.190 -27.487 -33.164
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Table A.3: Growth rates of extreme rainfall of data since 1950

Station Growth rate(%)
1-year return period 10-year return period 100-year return period

Putten 24.875 17.571 16.785
Oxford -22.644 -50.467 -58.410
Hoofdoorp 27.278 -10.663 -46.806
Sheffield 3.361 -0.334 -53.124
Melbourne -1.407 -21.374 -33.568
Zagreb 6.389 41.222 137.805
Bologna 40.959 23.141 17.433
Padova 42.513 60.217 74.731
Milano 26.229 40.667 46.491
Genova 41.258 54.416 18.178
Stykkisholmur Is -16.910 -9.707 -3.739
Jena Sternwarte Gm 19.927 15.113 12.400
Vlissingen Nl 16.965 24.978 41.487
Prague -36.692 -31.650 -32.467
Armagh -9.230 -3.080 -0.982
Eelde 22.058 17.837 15.089
Den Helder 19.017 23.718 31.104
Helsinki 34.768 13.121 13.263
Radcliffe -0.585 -8.882 -16.036
Robe Comparison As 0.680 -0.801 -6.607
Deniliquin Wilkinson St As -28.165 -42.285 -48.054
Palermo It -56.406 -96.655 -127.780
Mantova It 31.918 39.420 29.702
Hohenpeissenberg Gm -2.053 4.577 0.461
Toronto Ca -17.650 -4.436 -2.739
Lisbon -5.772 13.969 26.561
Newcastle Nobbys Signal Statio As 2.563 9.005 14.186
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Table A.4: Slopes of extreme rainfall of data since 1950

Station Slope(mm/year)
1-year rerturn period 10-year rerturn period 100-year rerturn period

Putten 0.008 0.008 0.010
Oxford -0.008 -0.028 -0.046
Hoofdoorp 0.009 -0.005 -0.035
Sheffield 0.001 0.000 -0.054
Melbourne -0.001 -0.017 -0.040
Zagreb 0.003 0.026 0.108
Bologna 0.020 0.019 0.020
Padova 0.023 0.050 0.086
Milano 0.016 0.039 0.062
Genova 0.041 0.100 0.055
Stykkisholmur Is -0.049 -0.045 -0.023
Jena Sternwarte Gm 0.056 0.072 0.085
Vlissingen Nl 0.051 0.113 0.251
Prague -0.116 -0.178 -0.283
Armagh -0.027 -0.013 -0.005
Eelde 0.063 0.078 0.089
Den Helder 0.057 0.110 0.194
Helsinki 0.097 0.061 0.088
Radcliffe -0.002 -0.042 -0.104
Robe Comparison As 0.002 -0.004 -0.053
Deniliquin Wilkinson St As -0.102 -0.324 -0.600
Palermo It -0.249 -0.835 -1.780
Mantova It 0.153 0.317 0.350
Hohenpeissenberg Gm -0.011 0.038 0.005
Toronto Ca -0.087 -0.035 -0.030
Lisbon -0.033 0.133 0.361
Newcastle Nobbys Signal Statio As 0.020 0.132 0.329
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