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Summary

The research presented in this thesis regards the study of thermodynamic properties using speed of sound
measurements of the substance Octamethylcyclotetrasiloxane, also referred to as D4. Through speed of sound
measurements carried out in a box type acoustic resonator the ideal gas speed of sound is obtained. The ideal
gas speed of sound is used to determine the ideal gas isobaric heat capacity. This thermodynamic property
does not only provide valuable information for the formation of thermodynamic models, it is also used in this
research to determine validity of these thermodynamic models. The measurements made in this research
are at higher temperatures than the data used for the creation of the thermodynamic models, thus allowing
for the validation of these models at temperatures that are relevant for ongoing research and engineering
applications. The results presented in this thesis show that the thermodynamic models are qualitatively valid at
these elevated temperatures. However, during the analysis of the experimental speed of sound data sensitivity
problems were encountered with the conventional analysis method.

Therefore, this research also provides the development and the required verification and validation of
an alternative analysis method, due to the high sensitivity to insignificant change in the speed of sound of
the conventional analysis method. The conventional analysis method requires curve fitting of the measured
speed of sound data to obtain the ideal gas speed of sound, before the ideal gas isobaric heat capacity can be
obtained. Fitting errors are introduced through curve fitting, which lead to significantly large uncertainties
due to the sensitivity of the method. The aim of the newly developed analysis method is to reduce the
sensitivity to a fluctuation in the speed of sound. In order to achieve this, a numerical integration method
developed by Trusler is modified such that it outputs the ideal gas isobaric heat capacity. This newly developed
method is verified and validated for methane and altered such that it is can be used for the analysis of D4.
The analysis with simulated experimental data for D4 reveals that this newly developed method does not
provide the significant reduction in sensitivity that was aimed for. However, a reduction in discrepancies
with respect to the conventional method are observed. These discrepancies are unrelated to the sensitivity
towards a fluctuation in the speed of sound. Nevertheless, this does inspire confidence with regards to the
application of the alternative method for the analysis of actual experimental data, as both the conventional
method and alternative method show a similar sensitivity towards a speed of sound fluctuation. However, the
alternative method shows better performance towards a realistic experimental data set. Furthermore, analysis
presented in this research shows that this alternative method becomes more accurate at supercritical starting
temperatures, which is a region for D4 that still requires analysis. A reflection on the experimental study is
performed following the conducted sensitivity analysis of the alternative method for D4. This reflection reveals
that the ideal gas isobaric heat capacity for D4 is inherently more sensitive towards a fluctuation in speed of
sound, by comparing D4 to methane. Therefore, it is concluded that for D4 and other cyclosiloxanes highly
accurate measurement devices are required.
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1
Introduction

This thesis regards the study of thermodynamic properties using speed of sound measurements of the sub-
stance Octamethylcyclotetrasiloxane, also referred to as D4. Together with the substances D5 and D6 they form
the family of cyclosiloxanes. These fluids are of interest for engineering applications involving heat recovery,
due to their favourable thermodynamic and toxicological properties [2, 3, 12]. However, these fluids are not as
widely studied as the standard monatomic and diatomic fluids, thus limited thermodynamic data is available
for these fluids. This affects the development of thermodynamic models, which are used in the design of
engineering applications, such as heat recovery. Furthermore, thermodynamic information is required with
regards to the ongoing research on the topic of the formation rarefaction shockwaves at Delft University of
Technology. This research also makes use of the thermodynamic models to determine experimental conditions.

The research of this thesis is initiated to gain a better understanding of these fluids and to determine
the validity of the thermodynamic models. This thesis is not focused on proving the existence of rarefaction
shockwaves, but focuses on the use of experimentally obtained speed of sound data so that the thermodynamic
models can be verified for use in the region where these rarefaction shockwaves are predicted to occur.

This introduction provides a background to the research conducted in this thesis. Firstly, the effects of
climate change, the contribution of aviation and the proposed integration of heat recovery systems is discussed
in Sec. 1.1. Secondly, ongoing research regarding the cycloxiloxanes is discussed in Sec. 1.2. Thirdly, the theory
of the formation of rarefaction shockwaves and motivation for this research is introduced in Sec. 1.3. This is
followed by stating the research goals and questions in Secs. 1.4 and 1.5, respectively. The contributions to
science of this thesis are given in Sec. 1.6. Finally, the structure of this thesis report is given in Sec. 1.7.

1.1. Climate change and the role of aviation
Humanity is facing one of the biggest problems it has encountered since the dawn of mankind in the form of
man-made climate change. This is caused by the release of greenhouse gases into the atmosphere, mainly due
to the combustion of fossil fuels. Change is required in the way transport is conducted, to reduce the emission
of greenhouse gases into the atmosphere. This could result in a limitation to the climate change effects caused
by these greenhouse gases. While the automotive industry is already undergoing a drastic switch to electric
powered vehicles, the aviation industry is continuing with the development of fossil fuel powered aircraft.
Small electric vehicles with distributed propulsion are being developed at this moment in time, and even a
few fully electric aircraft exist today, albeit general aviation aircraft. Therefore, the most polluting sector in
aviation, civilian aviation, remains in essence untouched [11, 42, 46] by this revolution for more sustainable
transport. The jet engine developed through the 1950’s into turbofan in 60’s and 70’s is being improved upon
till this day. The state of the art in turbofan development is the GE9X engine for Boeing’s latest twin-engine
long-haul aircraft the Boeing 777x [27]. The development of this engine shows that still gains can be made with
regards to efficiency of turbofan engines.

However, in order to reduce emissions caused by aviation in a fast-growing market, where more of China,
India and South-East Asia will gain access to flying, more drastic measures need to be taken in order to reduce
the total emissions caused by flying [1, 8]. One of such proposals is the introduction of heat recovery. Even
though turbofans are one of the most efficient fossil fuel based engines, most of the energy released through
combustion is emitted into the environment. By recovering this waste heat after the turbine of the engine,
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the total thermodynamic efficiency of the engine can be drastically improved. This heat recovery is not just a
heat exchanger placed in the harmful environment of the jet exhaust, but requires also an entire system of
piping, pumps, carrier fluid and a turbine itself. The development of the heat exchanger, turbines and system
architecture are outside the scope of this study, which will mainly focus on the carrier fluids intended for these
systems [47]. The proposed systems for waste heat recovery are Organic Rankine Cycle (ORC) systems.

The ORC follows the Rankine cycle, only the working fluid is changed from water to an organic fluid. By
using an organic fluid instead of water allows for the adaptation of the Rankine cycle to a much wider range
of applications and heat sources. This is advantageous, because it allows for better tailoring of the system
to the operating temperatures. For example, an organic fluid with a lower boiling temperature allows for
lower temperature heat sources, such as in solar power or geothermal applications [29]. Therefore, Colonna
[14] mentions that an ORC system can be virtually applied to any external thermal energy source, as the
temperature differences required for the heat exchanger ranges approximately from 30 to 500 ◦C [9].

The application of waste heat recovery in a turbofan engine is a high temperature application, which is one
of the reasons why the mentioned siloxanes are being studied. The siloxanes D4, D5 and D6 have a boiling
temperature higher than that of water and due to their molecular complexity, these fluids also have larger
heat capacity than water, making it an ideal candidate fluid for high temperature ORC systems [4, 12, 20].
Furthermore, these substances are non-toxic and are widely used in cosmetic applications already[12, 20].
With regards to the environment, a study performed by the Dutch government proved that there was no acute
toxicity caused by the siloxane D4 in open water [48].

In Fig. 1.1 the architecture of the standard Rankine cycle system is shown in Fig 1.1a, accompanied by
the T -S diagram shown in Fig. 1.1b. The architecture of the Rankine cycle systems consists for four separate
stations. The outlet of each station is numbered and corresponds to the numbered conditions shown in the
T -S diagram. In Fig 1.1b the standard and super-heated Rankine cycle are indicated.

The Rankine Cycle starts at station 1, where the fluid enters the pump or compressor. This increases the
pressure and temperature of the fluid isentropically before entering the boiler or heat exchanger in case of
heat recovery. Station two indicates the inlet conditions of the boiler or heat exchanger. The addition of heat
within the boiler is an isobaric process and the fluid undergoes a phase transition from liquid to vapour. The
conditions at the outlet of the boiler, at station 3, are such that the fluid is a saturated vapour before entering
the turbine. In the turbine the work is extracted and the fluid is expanded, resulting in a lower pressure fluid.
Moving from station 3 to 4. The expansion in the turbine is also an isentropic process. The remaining heat
within the fluid is then rejected in the condenser[44].

In Fig. 1.1b two different cycles are displayed. The standard Rankine cycle is indicated by the station
numbers 1-2-3’-4’ and the super-heated Rankine cycle indicated by station numbers 1-2-3-4. The standard
Rankine cycle shows that the expansion occurs within the two-phase region, resulting in condensation
throughout the expansion process in the turbine. The super-heated Rankine cycle increases the temperature
of the vapour further, so that the two-phase region is avoided during expansion. This is favourable, because it
reduces wear and tear on the turbine blades [4]. The architecture shown in Fig. 1.1a gives the most basic form
of a Rankine cycle system, which can be expanded to include Internal Heat Exchangers (IHE), or regenerative
heating between two turbines.
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(a)

(b)

Figure 1.1: (a) General architecture of a Rankine cycle system (b) The T -S diagram belonging to the Rankine cycle shown
in Fig. 1.1a. The figure indicates both the standard (3’-4’) and super-heated steam cycle (3-4). The figure is adapted from

Reddy [44].

1.2. Ongoing research on siloxanes
Even though the applicability of the cyclosiloxanes for ORC systems is a driver for this research, the main
reason for conducting this research is to support the efforts undertaken at Delft University of Technology to
prove the existence of Rarefaction shockwaves. These shockwaves, unlike classical shockwaves, show a static
pressure decrease across the shock. Therefore, these shocks are also described as negative or expansion shocks,
in contrast to the widely studied classical compression shock. However, rarefaction shockwaves have not been
proven experimentally for a saturated vapour yet. Therefore, the rarefaction shockwaves remain a theoretical
concept developed by Bethe [6].

The Asymmetric Shock Tube for Experiments in Rarefactions (ASTER) is a Ludwieg-type shock tube de-
signed at the Propulsion & Power group at Delft University of Technology with the specific aim of demonstrating
for the first time, the existence of these shocks in the single-phase vapour region of these so-called Bethe
Zel’dovich Thompson (BZT) fluids. This set up is the successor of the Flexible Asymmetric Shock Tube (Fast),
initially developed for the same purpose as FAST [30].

Bethe also observed that the behaviour of the shockwave formation was governed by the term
(
∂2P
∂ν2

)
s
.

Thompson further developed this with the introduction of the fundamental derivative of gasdynamics [52, 53].
The fundamental derivative of gasdynamics is given by:

Γ≡−ν
2

(
∂2p

∂ν2

)
s

/(
∂p

∂ν

)
s
= 1− ν

c

(
∂c

∂ν

)
, (1.1)

where Γ is the fundamental derivative of gasdynamics, ν is the specific volume, p the pressure and c the
speed of sound. The term studied by Bethe is also recurring in the definition of the fundamental derivative
of gasdynamics. The sign of the fundamental derivative of gasdynamics and therefore the type of shock

is governed by the term
(
∂2p
∂ν2

)
s
, because the term

(
∂p
∂ν

)
s
< 0 for every fluid. When the value for

(
∂2p
∂ν2

)
s
> 0

the fundamental derivative is larger than zero and the pressure change across the shock is larger than zero,

indicating that the shock is a classical shock. For the situation where
(
∂2p
∂ν2

)
s
< 0, the fundamental derivative is

smaller than zero and the observed pressure jump across the shock is also negative, therefore the shock is a
rarefaction shock.

It is shown that the formation of the shockwaves requires the fundamental derivative of gasdynamics to be
less than zero, which is not possible for every fluid. For a saturated vapour the conditions at which Γ< 0, is a
small region close to the critical point on the vapour side of the saturation dome [13]. According to Bethe [6]
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and Thompson [53] the sign of
(
∂2p
∂ν2

)
s
< 0 is influenced by the sign of ε, where ε≡ R

cv
. In order for

(
∂2p
∂ν2

)
s
< 0, ε

should be minimised, which requires maximising cv for the fluid at hand. A factor that affects the heat capacity
of a substance is the molecular complexity, a molecule that is more complex has more degrees of freedom to
store energy, resulting in a higher heat capacity. Thus, achieving the feat of reducing R/cv , becomes a quest of
finding molecules with high complexity. Of the mentioned cyclosiloxanes, D5 and D6 are BZT fluids, meaning
they belong to the group of large and high complex molecules suitable to achieve a region where Γ< 0.

1.3. Motivation of the research conducted
The research carried out in ASTER uses the fluids D5 and D6, because these belong to the BZT fluids. D4 does
not belong to the BZT fluids, because it is not able to achieve a region of Γ< 0. However, it does have a region of
Γ< 1, which also unlikely for the standard monatomic and diatomic gases. As is mentioned earlier this chapter,
the region where Γ< 0 for a single-phase vapour is located close to the critical point [13]. In order to determine
these conditions for experimental runs, thermodynamic models are utilised. Equations of state based on the
Helmholtz energy are the state of the art in the development of thermodynamic models. Equations of state
based on Helmholtz energy exist of two terms; an ideal gas term and a residual term. The Helmholtz equation
of state is given by the following equation [50]:

a(T,ρ)

RT
= a IG (T,ρ)+aR (T,ρ)

RT
=αIG (τ,δ)+αR (τ,δ), (1.2)

where a and α represent the specific and reduced Helmholtz energy respectively, the superscripts IG and
R represent the ideal gas and residual terms. The terms R and T , represent the universal gas constant and
temperature, respectively. Furthermore, the term τ represents the inverse reduced temperature τ= Tc

T and the
term δ represents the reduced density, δ= ρ

ρc
. The ideal gas term of the Helmholtz energy equation of state is

given by:
a IG = h IG −RT −Ts IG , (1.3)

where h and s represent the specific enthalpy and entropy. Reducing and rearranging of the terms on the
right-hand side results in

αIG = hIG
0 τ

RTc
− s IG

0

R
−1+ ln

(
δτ0

δ0τ

)
− τ

R

∫ τ

τ0

c IG
p

τ2 dτ+ 1

R

∫ τ

τ0

c IG
p

τ
, (1.4)

where the subscript 0 indicates the reference state and subscript c indicates the critical value.
The real gas term of the Helmholtz energy equation of state requires a reference equation. The most

commonly used reference equation for this purpose is the Span-Wagner reference equation [50]. This equation
is given by:

αR (τ,δ) = n1δτ
0.250 +n2δτ

1.125 +n3δτ
1.500 +n4δ

2τ1.375 +n5δ
3τ0.250 +n6δ

7τ0.875+
n7δ

2τ0.625e−δ+n8δ
5τ1.750e−δ+n9δτ

3.625e−δ
2 +n10δ

4τ3.625e−δ
2 +n11δ

3τ14.5e−δ
3+

n12δ
4τ12.0e−δ

3
. (1.5)

The terms n1 −n12 are fluid specific and determined by a multi-parameter optimization of thermodynamic
data of the fluid. These data are provided through experimental studies or different models. In the process of
optimization these data are all considered and weighted according to their relative accuracy. The weighing
of data is a critical step in the fitting procedure for technical equations. Usually, highly accurate data tend
to be weighted such that their effect overshadows the less accurate data points. Causing certain regions to
be represented overly accurately by the fitted equation, while the data points with reduced accuracy shows
increased inaccuracy [49].

The conditions where Γ< 0 are outside of the region of data available used to generate the equation of state
for the cyclosiloxanes. Therefore, it is unknown whether the models are valid at these increased temperatures.
The main objective for this research is to identify if the thermodynamic models of D4, D5 and D6 are valid at
increased temperatures, so that the conditions for the experiments in ASTER can be confidently determined
with the use of these models. Furthermore, this research aims to provide new and accurate experimental data,
that could be further used for the development of the equation of state.
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1.4. Research goals of this thesis
In order to identify whether the thermodynamic models are still valid at increased temperatures the main
research goal is to identify the ideal gas isobaric heat capacity through speed of sound measurements. The
ideal gas isobaric heat capacity does not only provide for a direct comparison with the model data, it also
provides thermodynamic data which can be used in the ideal gas term of the Helmholtz energy equation
of state. This is especially applicable to the ideal gas term of the equation of state, given by Eq. 1.4. In this
equation the ideal gas isobaric heat capacity is one of the variables in the equation.

The model used to identify the conditions for the experiments conducted in ASTER is RefProp and is based
on the Helmholtz energy equation of state. Thus, this model is validated with the experiment conducted in
this thesis. Due to the similarities between the three mentioned siloxanes, conclusions of the experiment
conducted with D4 are also qualitatively valid. This saves time and effort by not repeating the same experiment
for a different fluid, for which the results regarding the validation of the model would be of similar nature.

Besides the validation of the thermodynamic models, another goal of this thesis is to develop an alternative
analysis method for analysing the ideal gas isobaric heat capacity from the speed of sound. The most commonly
used analysis method for this type of analysis is sensitive to a change in measured speed of sound, leading
to large uncertainty bounds for the experimental results. The goal of the newly developed method is to be
less sensitive to a change in measured speed of sound. The basis of this alternative method is found in the
numerical analysis approach created by Trusler [54]. Adaptations to this method are made so that the ideal gas
isobaric heat capacity are obtained.

1.5. Research questions of this thesis
As the goals of this thesis are not only to validate the thermodynamic models, but also to develop an alternative
analysis method, there are two sides two this thesis. The first part regards the experimental study and validation
of the models. For this part of the thesis, the research question to be answered is as follows:

"What is the validity of the existing thermodynamic models when utilized outside the region of accurately
available data used for the creation of the model?"

The second part of the thesis regards the development of an alternative analysis method. There are two
research questions to be answered in this part. The first question regards the development of the alternative
method:

"What are the steps required in order to determine the ideal gas heat capacity from speed of sound data using
numerical integration, which can be applied to the analysis of experimental data?".

By answering this question not only a set of equations is provided, but also a methodology of setting up and
analysing an experiment.

The second question regards the sensitivity of the newly developed method, as the goal of this method is to
reduce this sensitivity. Thus, the research question required to be answered is:

"What improvement in sensitivity is achieved with the usage of the numerical method over the conventional
method?"

In order to answer this question a sensitivity analysis of both the conventional and alternative method is
required.

1.6. Thesis contributions to science
The main contributions of this research to science are not only limited by the validation of thermodynamic
models or an alternative way to calculate the ideal gas heat capacity from speed of sound data. The experi-
mental data obtained can be used in the improvement or development of thermodynamic models, if deemed
accurate enough. Furthermore, the conclusions drawn for the validation of the models with the data for D4 are
qualitatively valid for D5 and D6 due to similarity of the fluids. This research also provides new insights on
the behaviour of D4 with regards to a change in the measured speed of sound, by performing of an extensive
sensitivity analysis. This sensitivity analysis reveals that D4 is much more sensitive towards a fluctuation in the
measured sound speed, when compared to methane.

The alternative method is developed so that a coherent approach is given to the reader on how to apply
the method to experimental data. Unlike the conventional method, the several isotherms measured are used
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together to numerically determine the ideal gas isobaric heat capacity. Due to this connection between the
several measured isotherms, it is beneficial to design the experiment with the methodology of this method in
mind.

1.7. Report Structure
The report is structured as follows: Chapter 2 gives a background for speed of sound measurements in
gases. This chapter provides the backbone of information required for performing and analysing the acoustic
speed of sound experiment, as well as information required for the development of the alternative analysis
method. Chapter 3 provides an overview of Organic Vapour Acoustic Resonator (OVAR) and description of the
experimental methodology. In Chap.4 the post processing and analysis of the experimental data is discussed.
This chapter introduces the mentioned formation of the asymptote for D4. Chapter 5 introduces the alternative
analysis method requiring numerical integration adapted from the method by Trusler. In this chapter the steps
required for the method are shown and the method is verified and validated for D4, using the data from Trusler
[54]. This is followed by Chap. 6, where the previously developed method is adapted for D4 and a sensitivity
analysis for both the conventional and newly developed alternative method is discussed. Chapter 7 concludes
this thesis and provides recommendations for future research.



2
Speed of sound measurements in gases

This chapter provides an overview of speed of sound measurement techniques for gases. Firstly, in Sec. 2.1 the
relevance of speed of sound measurements is established, by giving an overview of the thermodynamic data
that can be obtained from the speed of sound measurements. This thermodynamic data can be obtained for
both the ideal and real gas case. Secondly, an overview of various speed of sound measurement techniques is
given in Sec. 2.2. Which is followed by an in-depth discussion on acoustic resonators resonators given in Sec.
2.3.

2.1. Importance of speed of sound data
The discussion presented in this section introduces the relevance for performing speed of sound measurements.
Speed of sound data is a valuable source of thermodynamic data, especially for the ideal gas isobaric heat
capacity. This is relevant to the research conducted in this thesis, because the validation of the models is
done using the ideal gas isobaric heat capacity. Furthermore, the ideal gas isobaric heat capacity provides
useful data for the generation of those models. The focus of the discussion presented in this section is not only
limited to obtaining the ideal gas heat isobaric capacity, but also to other real and ideal gas properties.

2.1.1. Obtaining the ideal gas isobaric heat capacity
In Sec. 1.4 the value of the ideal gas isobaric heat capacity was briefly discussed. It was shown that c IG

p is not
only required for the validation of the models, it also is of use for generating equations of state. The research
conducted by Nannan [40] for D4 and D5 is of interest, due to the fact that the ideal gas isobaric heat capacity
is obtained from speed of sound measurements. This is similar to the experiment conducted in this research.
The methodology and analysis procedure as conducted by Nannan is also adhered to in this research, because
of the similarity between the experiments.

The methodology used by Nannan is not only applicable to D4, it is also used by Trusler [54] for the analysis
of CH4. This forms a conventional method for ideal gas analysis using speed of sound data [17, 26, 40, 54].
This conventional analysis method forms a relation between the measured speed of sound and pressure to
extrapolate to the ideal gas conditions. This is done, because the ideal gas conditions cannot be directly
measured. This relation is obtained through polynomial fitting of the measured speed of sound data and the
pressure. As a result, the acoustic virial equation of state is obtained, which is given by:

c = c IG
[

1+
(
βa(T )

RT

)
p +

(
γa(T )

RT

)
p2 +

(
δa(T )

RT

)
p3 + . . .

]
, (2.1)

where βa , γa and δa represent the second, third and fourth acoustic virial coefficients and p represents the
pressure. The acquired acoustic virial coefficients can be related to the virial coefficients for the virial equation
of state. In the research conducted by Nannan, the speed of sound data is fitted such that the second and third
acoustic virial coefficients are obtained. This means that the experimental data is fitted to a second order
polynomial. A similar approach is taken as the experiment carried out by Nannan, because the experiment
conducted in this thesis and Nannan’s experiment are closely related. The second, third and fourth virial
coefficients are not of value for the ideal gas analysis, but can be used to determine the virial equation of state.
Obtaining the ideal gas conditions requires p −→ 0, which reduces Eq. 2.1 to c = c IG . This shows that through
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fitting of the experimentally obtained speed of sound the ideal gas speed of sound is obtained. The ideal gas
isobaric heat capacity is then determined from the ideal gas speed of sound by applying:

c IG
p = (c IG )2M

T
[

(c IG )2M
RT −1

] , (2.2)

which provides accurate results for the ideal gas heat capacity, if accurately available data has been obtained.

2.1.2. Other thermodynamic properties obtained with speed of sound data
Even though the focus of this thesis is on the analysis of the ideal gas isobaric heat capacity, the use of
speed of sound data is not only limited to ideal gas isobaric heat capacity. The universal gas constant can
also be obtained through acoustic speed of sound experiments as demonstrated by Moldover [36]. The
experimental study conducted by Moldover reduced the uncertainty of the universal gas constant with a factor
of 5, resulting in an uncertainty of 1.7 ppm. Even though the gas constant can be simply obtained through
different experiments as described in [39], Moldover’s results show that highly accurate data can be obtained
through acoustic measurements, not only for the universal gas constant but also different thermodynamic
properties. This is because the ideal gas data originates from the same method. Moldover uses Argon gas to
acoustically obtain the speed of sound to determine the universal gas constant. The universal gas constant is
obtained from the speed of sound using the following relation:

R = (c IG )2M

TγIG
= 1

T

(
f0,n

ν0,n

)2

V 2/3 M

γIG
, (2.3)

where in the utmost right-hand term ν0,n is a known eigenvalue of the substance, f0,n represents the radial
mode, M the molar mass of the substance, γIG the ideal gas ratio of specific heats and V represents the volume.

The ideal gas speed of sound data can further be used to determine temperature scales. Secondary ther-
mometers such as thermocouples and platinum resistance thermometers require calibration using accurate
temperature data. The act of acquiring this accurate temperature data is defined as primary thermometry.
One method of obtaining this data is through the ideal gas speed of sound. Likewise for the analysis of the
universal gas constant, the temperature is obtained by rewriting Eq. 2.3 and knowing the ideal gas speed of

sound and the ratio RγIG

M . The speed of sound is obtained using fitting of experimental data to a polynomial
function. For well-studied mono-atomic gases, such as argon, the values for γIG are well researched, while
for the mentioned siloxanes these values possess larger uncertainty. According to Benedetto [5], acoustic
thermometers can be accounted for the development of the sub 20 K temperature scales suitable for practical
applications and have revealed errors in the internationally used temperature scales IPTS-68 and ITS-90.

Besides obtaining thermodynamic properties of an ideal gas, the speed of sound data can also be used
for obtaining thermodynamic properties of a real gas. Related to the ideal gas isobaric heat capacity is
real gas isobaric heat capacity, which can be obtained using the same speed of sound data as for obtaining
c IG

p . Obtaining cp from the speed of sound requires numerical integration as is described by Benedetto [5],
Trusler[54] and Estrada-Alexanders [17]. The method presented by these studies requires the solving of

cp =

 M

R

(
Z −p

(
∂Z
∂p

)
T

)
(

Z +T
(
∂Z
∂T

)
p

)2 − T Z 2

c2

(
Z +T

(
∂Z
∂T

)
p

)2


−1

, (2.4)

and (
∂2Z

∂T 2

)
p
=− M p

RT 2

(
∂cp

∂p

)
T
− 2

T

(
∂Z

∂T

)
p

, (2.5)

simultaneously. These equations are expressed in terms of the compressibility factor, Z , due to its reduced

fluctuation to temperature changes. Solving of Eq. 2.4 requires the initial conditions of Z and
(
∂Z
∂T

)
p

along the

starting isotherm. These values are determined from thermodynamic models or by interpolation of reference

data. Knowing Z along the starting isotherm allows for the differentiation of Z with pressure, resulting in
(
∂Z
∂p

)
T

required for solving Eq. 2.4. The value obtained for cp is then differentiated with pressure along the isotherm

to obtain
(
∂cp

∂p

)
T

. This differential is then used in Eq. 2.5 to obtain
(
∂2 Z
∂T 2

)
p

, which is required for integration



2.2. Overview of speed of sound experiments 9

to determine the conditions at T +dT . Trusler and Estrada-Alexanders use Euler integration accurate to the
second order to determine the starting conditions for the next isotherm. The integration of Z is performed
with scheme shown below:

Zn+1 = Zn +dT

(
∂Z

∂T

)
p,n

+ 1

2
dT 2

(
∂2Z

∂T 2

)
p,n

. (2.6)

The term
(
∂Z
∂T

)
p

is integrated by using the following scheme:

(
∂Z

∂T

)
p,n+1

=
(
∂Z

∂T

)
p,n

+dT

(
∂2Z

∂T 2

)
p,n

. (2.7)

This method can also be used to determine the density of a fluid from the speed of sound data. This
requires cp to become an initial value instead of Z , because Z is related to the density via

Z = M p

ρRT
. (2.8)

This can also be obtained by using the method introduced in Sec. 2.1.1, using the obtained acoustic virial
coefficients to determine the second and third virial coefficients to acquire the virial equation of state. The
second acoustic virial coefficient by

βa = 2B +2(γIG −1)T
dB

dT
+ (γIG −1)2

γIG
T 2 d2B

dT 2 . (2.9)

The third virial coefficient is related to the third acoustic virial coefficient

γa = 1

RT

[
1+2γIG

γIG
C + (γIG )2 −1

γIG
T

dC

dT
+ (γIG −1)2

2γIG
T 2 d2C

dT 2

]
− 1

RT

[
Bβa − γIG −1

γIG

(
B + (2γIG −1)T

dB

dT
+ (γIG −1)T 2 d2B

dT 2

)2]
. (2.10)

Increasing the fitting order, more acoustic virial coefficients can be obtained, but the equations relating the
acoustic virial coefficient to the virial coefficients become increasingly more complex as seen by these two
relations.

2.2. Overview of speed of sound experiments
This section provides an overview of the various measurement techniques available to obtain the speed of
sound of a fluid. The discussion in this section is not only limited to the state of the art, but also proposed
measurement techniques using light to measure the speed of sound are discussed.

2.2.1. Acoustic resonators
The most commonly used method for obtaining speed of sound data in vapours and gases is through acoustic
resonators, this method can be considered a traditional method in speed of sound research and resonators are
used by many authors [17, 18, 34–37, 40, 54]. Even though resonators differ in geometry and size, the working
principle is the same for all. All acoustic resonators possess a cavity filled by a vapour or gas of interest. The
fluid inside the resonator is excited by the actuation of a membrane at a certain frequency. Depending on the
frequency of the membrane the fluid inside the cavity starts resonating. Resonance of the fluid results in an
increase of the measured pressure signal. By applying a Fourier transform on the measured pressure signal the
resonance frequency is obtained by observation of a resonance peak. For highly accurate resonators a direct
link between the measured frequencies and thermodynamic properties can be made. The speed of sound of
the fluid at the prescribed temperature and pressure conditions is obtained by relating the observed resonance
frequency with the geometry of the resonator.

2.2.2. Pulse-echo method
The pulse-echo method is another traditional speed of sound method. This technique measures the time of
flight of the signal across a known distance. Unlike the acoustic resonators, which require a conversion of
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the frequency data into sound speed data, this method provides the speed of sound directly by dividing the
distance over the measured time. This method is mainly used for obtaining the speed of sound in the liquid
phase, whereas acoustic resonators are used for vapours and gases [33]. The main reason acoustic resonators
are mainly used for vapours, is due to the large difference in acoustic impedance between the wall and vapour.
This allows for an efficient reflection of the sound waves, resulting in more accurate results [22].

2.2.3. Brillouin light scattering and laser-induced thermal acoustics
The acoustic resonator and pulse-echo techniques make use of an electronically driven membrane to emit a
signal through the fluid. However, this is not the only method that is applied for measuring the speed of sound.
The usage of light for speed of sound measurements is a promising development in this field of research.
Brillouin light scattering is a method using light, which has produced promising results. This technique
makes use of the Brillouin components of the scattered light. Brillouin components are two peaks in the
light spectrum that are symmetrical around the Rayleigh peak. The observed shift in frequency between the
Brillouin and Rayleigh peak is used to obtain the speed of sound [58].

2.2.4. Photo-acoustic effect for speed of sound measurements
The photo-acoustic effect was first discovered by Bell in 1880. Bell described the generation of sound waves
on a material through excitation by a pulsated or modulated source of light. The generation of this sound
wave can be applied to speed of sound measurements for solids, as described by Hussein [24]. Besides speed
of sound measurements for solids, the photo-acoustic effect is also applicable to speed of sound research
for vapours and gases. Suchenek [51] designed an experimental set-up which used the photo-acoustic effect,
as a means of signal generation for acoustic resonator measurements. The photo-acoustic effect is used as
a signal generation application instead of using an electro-mechanically driven membrane, producing the
acoustic waves. In the designed experiment the cavity featured two windows placed on the optical axis of
the resonator. By covering one of these windows with carbon black, strong light absorption can be expected.
Through pulsating LED light, this blacked out window is excited to produce a photo-acoustic signal. The signal
is transmitted because of the direct contact between the fluid and the photo-acoustically excited window.
Through this signal, resonance frequencies can be measured, comparable to the acoustic resonators discussed
earlier this section.

2.3. Resonators in detail
Section 2.2 gave an overview of the different speed of sound measurement techniques. It is clear that the use
of acoustic resonators is the traditional and most commonly used method for measuring the speed of sound in
a vapour. Furthermore, due to the presence of a resonator at Delft University of Technology this technique is
also used in the conducted experiment. Therefore, this section elaborates on the acoustic resonators, focusing
on the geometry, location of transducers, thermal control and measurement procedure

2.3.1. Resonator geometry
The three main resonator geometries present in literature [25] are: spherical resonators [18, 19, 35–37, 43, 54],
cylindrical resonators [40] and cuboid resonator [34]. The geometry of an acoustic resonator influences the
measured resonance modes of the experiment. For example, the box type resonator available in the lab at Delft
University of Technology mainly uses the longitudinal modes, due to the large difference in length compared to
width and height [34]. The radial modes are mainly used in spherical resonators and provide several advantages
over longitudinal modes. The radial resonance modes have a high-quality factor, meaning the damping of the
signal is low. This allows for smaller pressure transducers in the shell, resulting in less imperfections to the
geometry [35]. Furthermore, the radial modes are less susceptible to imperfections to the geometry, therefore
requiring smaller correction compared to longitudinal modes [43]. This reduced susceptibility to geometrical
imperfections allows for less strict tolerances during manufacturing [35]. Moreover, Moldover [35] specifies
another advantage of using the radial modes which is caused by the nondegenerate nature of these modes,
allowing the measured resonances to be directly interpreted as thermodynamic properties of the measured
substance. Besides the advantages of spherical resonators, other geometries exist due to ease of manufacturing
[57]. Nannan [40] describes that both radial and longitudinal modes were measured. Furthermore, Nannan
measured redundant modes, in order to distinguish between the modes that have been measured. This is not a
problem for the OVAR used during the experiments conducted in this thesis, because the length is much larger
than the width and height of the resonator. This results in much larger frequencies measured for longitudinal
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modes than for radial modes.

2.3.2. Requirements and location for placing pressure transducers
In order to perform the measurements, transducers are required to emit and receive the signal. The size and
location of these transducer affect the accuracy of the measurements. Goodwin describes five criteria required
for transducers [22]:

1. The transducers should have a high acoustic impedance to the gas. Therefore, the transducer is required
to respond differently to the vibrations compared to the gas, thus reducing the interference of potential
resonance of the transducer on the resonance measurement.

2. The transducers should only be a small fraction of the cavity’s surface area. This reduces the imperfec-
tions to the geometry, which is a source of error.

3. The transducers should have a low power dissipation. Therefore, the thermal equilibrium within the
cavity is preserved, such that no specific areas of large temperature fluctuations are present within the
gas

4. The transducers are able to operate within the harmful temperature and pressure range, while providing
the right frequency range needed for the experiment.

5. The transducers should be chemically inert. Therefore, they should not react with the fluid. Otherwise,
perturbations to the results are introduced, caused by the created impurities.

Besides adhering to these requirements, the placement of the transducers can play a role in reducing interfer-
ence of different modes. This is shown by Mondejar [37] and Perkins [43], the transducers are spaced apart
with an angular separation of 90◦ to reduce the effect of interference on radial and longitudinal resonance
modes. The same angular separation is seen for the resonator used by Moldover [35]. A peculiar location for the
transducers is observed for the resonator used by Nannan [40]. The transducers of this resonator are located
outside of the resonator and connected with acoustic wave guides, shown in Fig. 2.1. The reason for this
choice is related to the heating mechanism of the cavity. The cavity is placed inside of a stirred thermal bath.
The conditions surrounding the cavity were considered harmful towards the transducers. These could not be
placed outside of the cavity, inside the thermal bath. Furthermore, no significant effect to the accuracy of the
results was observed by locating the transducers in this manner. Regarding the resonator present in the lab,
the transducers are located on opposite ends of the length of the transducer, optimizing for the measurement
of the longitudinal modes.

Figure 2.1: Cross section of the resonator used by Nannan [40]. The transducers are located outside of the whole
experimental set up and connected to the cavity with acoustic waveguides.
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2.3.3. Thermal control
Using acoustic resonators for speed of sound measurements requires the substance to be in a vapour state. For
many of the studied substances this requires heating, which is also the case for the experiment with D4. In
the previous subsection the stirred bath for the resonator used by Nannan [40] and Moldover [36] was briefly
mentioned. This method submerges the resonator cavity in a thermal bath, which heats the walls of the cavity
resulting in a gradual heating of the fluid inside the cavity. According to Nannan [40], this method allows for a
good temperature stability and achieves a fast thermal equilibrium. The limited temperature range that can be
measured is the major disadvantage of these types of resonators. The temperature limit for the speed of sound
measurement conducted by Nannan for D4 is 495K.

Mondejar [37] used the resonator described by Perkins [43], which features an electronic heating system
through copper encapsulating the spherical cavity so that the entire surface area receives heating. This is
done to reduce the temperature gradients in the cavity. The Organic Vapor Acoustic Resonator (OVAR), is the
resonator available for the speed of sound measurement for D4 at Delft University of Technology [34]. The
OVAR also uses electronic heating, but differs from the copper capsule described before. Instead, four copper
pads are placed on top of an aluminium cast, which encapsulates the stainless steel cavity. This aluminium
cast has the same function as the copper capsule of Perkins’ resonator and provides a more equal temperature
distribution to the cavity, resulting in lower temperature gradients. Even though the heating methods differ, a
set of requirements is obtained. By applying an equal temperature distribution to the cavity, thermal gradients
are reduced. Furthermore, the system requires fast thermal equilibrium and thermal stability.

2.3.4. Measurement procedure
Even though the fluids analysed the mentioned studies differ, a common measurement procedure is deduced.
A frequency sweep is performed around the resonance centre frequency, f . The interval of the sweep is
denoted by g , which represents the half-width. The half width is determined as the width of the frequency of
the signal at which the amplitude is 2−1/2-times the maximum amplitude of the signal [40]. The measured
frequencies range from f − g to f + g . For a box type resonator, such as the OVAR, the centre frequency is
obtained by

fk,m,n = c

2

√(
k

l0

)2

+
(

m

h0

)2

+
(

n

h0

)2

, (2.11)

where fk,m,n indicates the frequency measured for the specific modes. k, m and n are the longitudinal and
two radial modes, respectively. l0 and h0 are the length and height of the resonator at 273 K, respectively.
Knowledge on the geometry and modes measured result in the measured frequencies. The speed of sound in
Eq. 2.11 can be obtained through thermodynamic models. Because of the significant difference between the
length compared to the width and height of the OVAR, Eq. 2.11 can be reduced to

fk = k
c

2l0
, (2.12)

allowing for a fast estimation of the centre frequencies for the experiment.
A feature of working with fluids under increased temperature is decomposition of the fluids, resulting in

increased impurities within the test fluid, affecting the speed of sound measurements. Mondejar [37] solves
this problem by evacuating the fluid after and purging the resonator for remnants of the decomposed fluid.
Besides, extensive purging of the fluid, corrections for impurities can be applied as mentioned by Nannan [40].

2.3.5. Perturbations
For speed of sound measurements several perturbations can affect the results of the measurements, these
perturbations are:

• Condensation causes the formation of liquid drops sticking to the wall. This results in a non-zero
normal fluid velocity, due to an oscillating temperature and pressure field at the wall. The effects of
condensation are primarily of a concern for the determination of the acoustics virial coefficients, which
is a potential source of error for obtaining the ideal gas heat capacity through the speed of sound.
However, condensation does not affect obtaining the ideal gas speed of sound, according to Goodwin
[22]. The effects of condensation can be avoided by keeping a margin between saturation conditions
and refraining from using low frequency measurements [23].
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• Impurities in the fluid alter the measured speed of sound by either increasing or decreasing its value,
dependent on speed of sound of the fluid being studied and the speed of sound for the impurities.
Impurities have several sources of origin. The three main sources of impurities mentioned in literature
are as follows: the supplier, mixing with left over fluid from a different experiment using the same
equipment and due to decomposition [40, 43, 54].

• Imperfect geometry influences the frequencies that are being measured as well is inducing slight errors
in the determined speed of sound. Equation 2.11 shows that minor changes in dimensions of the OVAR
result in an altered speed of sound. Sources of imperfections to the geometry are caused by production,
the presence of transducers and inlet ports for the fluid. Goodwin [22] states five criteria for placing the
transducers, which were previously mentioned in Subsec. 2.3.2.

• Shell motion is caused by the elastic deformation of the resonator walls due to minor pressure fluctua-
tions. These deformations affect the measured frequencies, by causing a shift of frequencies leading
to errors in the speed of sound values. The effect of shell motion is proportional to ρc2 for frequencies
located far away from the wall. Higher gas pressures increase the effect of the shell wall motion [21, 22].
Mehl [32] states that the correction for the shell is one of the most important corrections to be performed
on speed of sound measurements, with the correction becoming more prominent for higher density
gases.

• Formation of boundary layers is an inevitable effect of the interaction between the fluid and the wall.
Both thermal and viscous boundary layers are formed separately from each other and have a different
thickness. However, both boundary layers have an effect on the measured frequencies, with the boundary
layer effect being proportional to ( f ρ)−1/2. This results in the effect of the boundary layers becoming
stronger at low density and low frequency [22].

• Molecular thermal relaxation is a potential source of systematic error in the acoustic speed of sound
measurements. This occurs when measurements are performed at frequencies that are low compared
to the inverse of the relaxation time. The effect of molecular relaxation is observed as dispersion and
attenuation of the sound. Molecular relaxation affects the frequencies due to absorption of the sound,
causing a shift in measured frequencies. The thermal relaxation time influences the behaviour of the
fluid, which is dominated by the transfer of energy from translational modes to the vibrational modes. A
molecule requiring a large number of collisions to dampen out the vibrations, results in a long molecular
relaxation time compared to the acoustic cycle leading to a significant amount of dispersion on the
signal.

2.4. Summary
The discussion presented in this chapter gives insight into methods of measuring the speed of sound of a fluid
can be measured. Sec. 2.2 showed the various different methods available of measuring the speed of sound
of the fluid. Furthermore, it was shown that the use of acoustic resonators is the standard approach for a
vapour, which is the case for the experiment carried out in this thesis. Section 2.3 elaborated on the working of
acoustic resonator, highlighting the different type of acoustic resonators found in the literature and indicating
the measurement procedure and perturbations. This gives insight on how the speed of sound of a vapour like
D4 can be measured and what approach should be taken in order to obtain useful results, with regard to the
ideal gas analysis.

Besides the experimental section the analysis phase of the speed of sound data was addressed. Section
2.1.1 showed how the ideal gas isobaric heat capacity should be obtained from the measured speed of sound
data by obtaining the ideal gas speed of sound and the use of Eq. 2.2. In addition to the analysis of the ideal
gas isobaric heat capacity, Sec. 2.1.2 discussed the other properties that can be determined from the speed
of sound data. The other thermodynamic properties and data discussed in this section are the universal
gas constant, temperature scales, isobaric heat capacity, the density and the virial coefficients for the virial
equation of state. This shows the value of speed of sound measurements, because other thermodynamic
properties can be obtained through the derivation of the virial equation of state.



3
The Organic Vapour Acoustic Resonator

and methodology

This chapter features the experimental preparation and methodology for the acoustic speed of sound measure-
ment experiment conducted for D4. An overview of the proposed experiment for D4 is given in this chapter
in combination with the accompanying goals of the experiment. Furthermore, a detailed overview of the
resonator used is provided.

This chapter is structured as follows. In Sec. 3.1 the OVAR is elaborately discussed. Focusing on the
measurement conditions that can be attained as well as the determination of the speed of sound from the
obtained frequencies. This is followed by Sec. 3.2, where the design and experimental methodology is discussed.
This chapter is finalized with a summary, given in Sec. 3.3

3.1. The Organic Vapour Acoustic Resonator
The device used for the Experiment is the OVAR. It is a box type resonator, present at the propulsion and
power group at the faculty of aerospace engineering at Delft University of Technology. The OVAR is especially
designed for speed of sound measurements for the cyclosiloxanes D4, D5 and D6. In order to improve the
thermodynamic properties of these gases.

A cross section of the OVAR is shown in Fig. 3.1 the inner casing of the OVAR is made from a machined
block of stainless steel 316L, closed off with a stainless steel lid. The entire casing is then covered by a 10 mm
thick aluminium shell, to provide a sufficiently homogeneous temperature spread along the stainless steel
casing. This is done with aluminium because of its higher thermal conductivity. The aluminium shell is heated
by four electric heating pads delivering 50 W each, the listed accuracy of these pads is ±0.1◦C up to 400◦C,
more specific design features can be found in [34].

Figure 3.1: Cross section of the OVAR, obtained through Mercier [34]

In order to excite the fluid within the cavity, an acoustic signal is transferred into the gas. The signal is
transferred to the gas through a thin membrane on one of the end caps of the resonator, capable of producing
a frequency up to 600 Hz. This membrane is attached to an actuator rod and is located on the left-hand side of
Fig. 3.1. The receiving pressure sensor is mounted on the opposite end cap and is capable of withstanding
temperatures up to 500◦C. On this side the fluid inlet port is also located, which is attached to a hand operated
syringe. With this syringe the amount of fluid within the cavity is controlled. Therefore, the hand pump is able
to alter the density within the cavity, which results in a change of pressure of the vapour. The fluid inlet port

14
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is a small imperfection to the geometry of the resonator, which causes slight perturbations to the measured
frequency and should be accounted for.

Three resonant modes can be observed within the OVAR. One longitudinal and two radial modes, repre-
sented by the letters k, m and n respectively. The measured frequency is related to the sound speed by the
following relation

fk,m,n = c

2
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k

l0

)2

+
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m

h0
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+
(

n

h0

)2

. (3.1)

If the longitudinal length is significantly larger than the width and height of the end caps and longitudinal
modes are being measured which do not overlap with the radial modes, this relation can be simplified to Eq.
3.3. For the OVAR it has been established that this Eq. 3.3 is valid, when modes k ≤ 6 are being measured [34].
This reduced relation is given by Eq. 3.2, which is reordered to determine the centre frequencies for every
pressure point.

It was seen that the geometry of the cavity is of importance for determining the speed of sound from
the measured frequency data. Therefore, the effects of thermal expansion should be considered. Since the
temperatures of the experiment will be up to 330◦C, the change in dimensions due to thermal expansion are
significant enough to alter the measured results. The effects of thermal expansion are included by rewriting of
Eq. 3.3, resulting in

c = 2l0(1+αt T ) fk

k
, (3.2)

where αt ≈ 17 ·10−6K −1 for the stainless steel casing.

3.2. Experimental design and methodology
This section describes the design and methodology of the experiment. Furthermore, an overview of the actual
measured data points is given, for which the discrepancies with the proposed cases are discussed. It should be
noted that due the circumstances regarding the ongoing corona virus, the experiment was not carried out first
hand by the author.

3.2.1. Experimental background
The experiment conducted in this thesis regards the fluid D4. D4 belongs to the family of cyclosiloxanes, to
which D5 and D6 also belong. Due to their thermodynamic and toxicological properties these fluids interesting
for ORC applications. Furthermore, D5 and D6 are candidate BZT fluids, meaning that these fluids possess a
region where Γ becomes negative. This is a condition required for the formation of rarefaction shockwaves
[52, 53], as was mentioned in the Chap. 1.

The experiment carried out in this research is not aimed at proving the existence of RSWs. Rather, this
thesis is aimed at providing an answer to a supporting question to that research, namely whether the existing
models can correctly predict the thermodynamic state at higher temperatures. Furthermore, this thesis aims
at providing new thermodynamic data for D4 as well as discover new insights regarding the sensitivity of D4.
The main question of the experimental section is related to the validity of these thermodynamic models. If
the models deviate significantly from the experimental results, steps should be undertaken in order to create
more accurate models. The validation of these models will be conducted by performing an acoustic speed of
sound experiment, through which the ideal gas isobaric heat capacity can be obtained. This is similar to the
experiment carried out by Nannan [40] for the fluid D4.

3.2.2. Proposed experiment
The proposed experiment acts as a continuation of the experiment performed by Nannan, wherein mea-
surements are made at higher temperatures than the maximum isotherm studied by Nannan. The isotherm
at 495 K has been measured by Nannan and is measured again to serve as a calibration point. This allows
for the removal of the systematic error from the entire data set. It is known that the OVAR is able to sustain
temperatures up to 670K and pressures limited to 10 bar. Thu,s the OVAR allows for the acquisition of the
supercritical data, which provides helpful information on the validity of the models at these higher temperature
regions. Especially regarding the isotherms where the admissibility region for RSWs occurs.

Even though the OVAR allows for the analysis of a pressure range up to 10 bar, Nannan [40] suggests
that the measurements should be conducted for a more limited pressure range. The first suggestion made
by Nannan is to set the lower limit at 0.3 bar, due to the increased noise-to-signal ratio at lower pressures.
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The second suggestion made by Nannan is to set the upper pressure limit at 80% of the saturation pressure
for the subcritical isotherms. For the design of this experiment these suggestions were adhered to, because
the measured temperature range features both sub and supercritical isotherms, as Tc ≈ 585 K,[31, 56]. For
supercritical isotherms, the saturation effects do not exist, which enables the entire pressure range of the OVAR
to be used. However, for the sake of the homogeneity of the entire experiment these pressure ranges will be
limited to 1.6 bar.

More importantly, measurements at higher pressures are not of interest for the analysis of the ideal gas
component of the speed of sound. In order to obtain the ideal gas speed of sound, fitting of the speed of sound
and pressure data is required so that the ideal gas component can be obtained through extrapolation. This
is required, due to the fact that at pressures below 0.3 bar highly accurate measurements are not possible,
due to the increase of noise. Because of the interest in the ideal gas point, p −→ 0, accurate data in the lower
pressure region is more valuable than the data obtained several tens of bars removed from the ideal gas point.
Using data points obtained far away from the ideal gas point can induce extra inaccuracies in the fitted curve,
because the curvature of the isotherms can vary with increasing pressure. This requires the fitting of a more
complex curve, which does not benefit the overall accuracy of determining the ideal gas conditions.

Even though the OVAR is capable of reaching higher temperatures. The temperature range is chosen not
only because it extends on the research by Nannan, but also because a safe margin is held with respect to the
decomposition of D4. There is no specific temperature at which decomposition starts for D4, however it is
known that at a temperature of 670 K, the decomposition rate is 1.1% per 1000 hours [3, 15]. Even though
the experiment lasts around 8 hours, these conditions should be avoided due to the significant influence of
impurities on the accuracy of the results. In order to avoid the region where significant degradation occurs,
the upper temperature bound is set at 600 K. Between the minimum and maximum temperatures, two extra
isotherms are measured at 520 K and 560 K. This results in four isotherms roughly spaced by 40 K along the
entire temperature range.

An overview of the proposed test cases is given in both Tabs. 3.1 and 3.2. Table 3.1 gives the frequency
around which the experiments should be centred. The frequency values are obtained by applying

fk = k
c

2l
, (3.3)

to speed of sound data obtained from RefProp [41], which are given in Tab 3.2. In Eq. 3.3, fk indicates that only
the longitudinal mode is being tested, which for the OVAR is the most predominant resonance mode, c the
speed of sound and l indicates the length of the OVAR.

Table 3.1: The frequencies [Hz] at which the measurements should be centred, data obtained through RefProp [41]

Pres. [Bar]
Temp. [K]

495 520 560 600

0.5 202.9 208.6 217.4 225.6
0.75 200.1 206.3 215.5 224.2
1 197.3 203.9 213.6 222.7
1.25 194.4 201.4 211.7 221.2
1.5 191.4 198.9 209.8 219.7

Table 3.2: Expected values for the speed of sound [m/s] obtained through RefProp

Pres. [Bar]
Temp. [K]

495 520 560 600

0.5 115.8404 119.2080 124.2947 129.3590
0.75 114.3220 117.9329 123.3112 128.5361
1 112.7488 116.6226 122.3100 127.7071
1.25 111.1160 115.2748 121.2902 126.8715
1.5 109.4177 113.8868 120.2512 126.0294

3.2.3. Experimental procedure
A day before the experiment is conducted, the fluid is injected into the syringe, that controls the amount of
fluid within the cavity, is degassed three times. Degassing of a fluid aims to remove all the air that is inside of
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the fluid, which acts as a form of impurity if not removed properly. The fluid is then maintained at a vacuum
overnight. This syringe is degassed for a fourth time before the start of the experiment, to further remove
the amount of air in the fluid. Before the fluid is injected into the resonator, the resonator is heated to the
temperature of the first isotherm to be measured, at 495 K. The first tests of the prepared batch of D4 showed a
slight offset of 1% with the estimated values, without a known cause. This batch of D4 was replaced with a
different batch and was inserted and degassed. It should be noted that with the new batch of D4 a discrepancy
of 1.7% with the expected value was still observed, finding the cause of this discrepancy is outside of the scope
of this study. Even though this discrepancy exists, the entire experiment was conducted with this new batch.

For each of the red points shown in Fig. 3.3, the measurements were conducted by performing a frequency
sweep around the centre frequency. First the centre frequency is found and is based on the estimates given
in Tab 3.1. From the centre frequency measurements are taken by increasing and decreasing the frequency
at the emitting transducer by 0.5 Hz per step, covering a span of 10 Hz per measurement point. This allows
for the observation of the entire resonance span for most of the measurements. For a limited number of
measurements this span was extended to 15 Hz, because not the entire resonance was observed within the 10
Hz range.

In order to alter the pressure of the fluid within the cavity, the hand operated syringe is used. Altering the
pressure is done by removing or adding extra fluid from the cavity of the OVAR, until the right pressure points
have been met. After the experiment is done, the resonator and D4 inside is cooled, and the D4 is extracted
from the resonator. The post processing of the measurements and the results of the experiment are discussed
in Chap. 4.

3.2.4. Measured experimental data
The actual experimental measurements obtained follow from the experimental methodology and the proposed
conditions specified earlier this chapter. Slight deviations occurred during the execution of the experiment,
with respect to the proposed experimental data points. The actual measurements conducted in the experiment
are shown in Fig. 3.2. It should be noted that during the experiment the isotherm at 603 K is measured
instead of the proposed isotherm at 600 K. This figure shows the saturation dome for D4 in the P −ν plane, in
conjunction with the isotherms that have been analysed by Nannan and those analysed in this thesis. This
figure has been created using the thermodynamic model RefProp. From the figure it can be observed that the
analysis is conducted, highlighted by the red box, on the vapour side of the saturation dome at subcritical
pressures, pc = 13.20 bar. Furthermore, the results of the experiment and the data obtained by Nannan are
present in this figure.
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Figure 3.2: Saturation dome in the p −ν plane. The highlighted red box indicates the region where the acoustic
experiments are performed.
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In Fig. 3.3 the area indicated by the dashed red box is enlarged to gain a clearer picture of the location of the
test cases. In the figure, the black circles indicate the experimental data points that were obtained by Nannan,
while the red squares indicate the measurements of the carried out experiment. Differences with between
the experimental cases and Nannan’s cases are visible, the test results by Nannan do not show nearly isobaric
measurements, since the results are scattered across the various isotherms. For the carried out experiment,
this nearly isobaric alignment stems from the proposed test cases given in Tabs. 3.2 and 3.1. Furthermore, it
can be observed in the figure that for the isotherm at 495 K, three measurement points overlap exactly with
Nannan’s data. Those are the points at 1.608, 1.438 and 0.4727 bar.
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Figure 3.3: The highlighted red box area of Fig. 3.2, the proposed test cases and experimental cases by Nannan are clearly
visible.

3.3. Summary
An overview of the methodology and design of the experiment was given in this chapter. The experiment
conducted for thesis is designed for D4 for the temperature and pressure range of 495 K - 603 K and 0.4-1.6
bar respectively. The actual results differed slightly from these design values, due to considerations made
regarding overlapping certain results with the results of Nannan. Furthermore, the resonator used for the
experiment is described in detail. This is a box type resonator, for which the analysis is straight forward using
Eq. 3.3, because of the geometry of the OVAR.

The experimental procedure requires degassing of the fluid multiple times before being injected by a hand
operated syringe. This also controls the pressure of the fluid during the experiment, as fluid can be injected or
extracted using this hand pump. The measurements are conducted by performing a frequency sweep with a
span of 10 Hz around a centre frequency determined by the data given in Tab 3.1. The step size of the sweep is
0.5 Hz providing enough resolution to determine the resonance peak per point measured.



4
Results and analysis of the speed of sound

experiment

This chapter features the analysis of the experimental data and a discussion of the results. The goal of this
chapter is to clearly illustrate the steps taken to process the raw data and transform it into a form that can
be used to answer the research question of the experimental study. Furthermore, a sensitivity analysis is
conducted with regards to a change of the measured speed of sound data.

The chapter is organized as follows: In Sec. 4.1, the post processing of the experimental data is performed.
This is followed by Sec. 4.2, where the initial analysis of the quadratic fitted speed of sound data is presented.
An alternative fitting method is introduced in Sec. 4.3. In Sec. 4.4, the analysis of the ideal gas isobaric heat
capacity is addressed, with comparisons made to thermodynamic models and literature data. A sensitivity
analysis is performed on the method used to obtain the ideal gas isobaric heat capacity in Sec. 4.5. This chapter
is concluded in Sec. 4.6.

4.1. Post-processing of raw data
In this section, the post-processing of the raw experimental data is addressed. The OVAR is an acoustic
resonator available at the Propulsion & Power group at Delft University of Technology, used specifically
for performing speed of sound measurements in the dense vapours of organic fluids. The thermodynamic
properties measured using the OVAR are the static pressure and temperature of the fluid within the cavity and
a static pressure measuring the resonance induced pressure increase.

The frequencies of the resonance peaks are obtained by applying a Fourier transform on the resonance
induced static pressure measurement. From the acquired frequency data, the speed of sound is obtained. The
resulting speed of sound data in combination with the measured temperature and pressure are then used
to determine the ideal gas heat capacity. Before in-depth analysis on the speed of sound and ideal gas heat
capacity data can be performed, the experimental data requires a degree post processing.

4.1.1. Preliminary data selection
The OVAR experiment was conducted over 57 separate runs at different temperatures and pressures. Based on
observations during the experiment, several of these runs were neglected either due to incomplete measure-
ments or because of the use of an incorrect centring frequency during the experiment.

4.1.2. Selection based on the quality of the resonance peak
Following this initial pre-selection of runs based on the experimental observations, the next step undertaken
during the post processing phase is the selection based on the quality of the peaks. For the measured signal the
quality of the resonance peak determines whether the intended resonance frequency is accurately measured
or not, and can be affected by phenomena such as the overlapping of resonance modes. Poor quality in the
resonance peak can be observed in the form of an increased width of measured frequencies, or by multiple
measured peaks spaced apart. This is clearly seen in Fig. 4.1a and Fig. 4.1b, which show the measured
resonance pressure as a function of the frequency. In Fig. 4.1a, a more pronounced resonance peak with
smaller widths and larger heights can be observed, compared to the resonance peak of Fig. 4.1b. Based on this,

19
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it can be concluded that the resonance peak of Fig. 4.1a is better than that of Fig. 4.1b. In order to numerically
quantify the quality of the peaks, a numerical expression is introduced for the Peak Quality, given by:

PQ = µ( fmax)

σ( fmax)
. (4.1)

where µ( fmax) is the mean of the maximum of the measured frequency peaks and σ( fmax) is the corresponding
standard deviation. This is the inverse of the coefficient of variation often used in statistics to determine the
precision or quality of a measurement [28]. In this case a higher value of PQ corresponds to a higher the
quality of the resonance peak. Using Eq. 4.1 yields a PQ of 208.45 for the run shown in Fig. 4.1a , while for the
run shown in Fig. 4.1b PQ is 49.67. Even though this is four times lower, the latter run is still considered for
further analysis, since the limiting value for PQ has been set at 10. This can be justified as the resonance peak
is still visible as a single peak in Fig. 4.1b. It should also be noted that the case shown in Fig. 4.1b resulted in
the lowest value for PQ for all the experimental data points considered for the analysis. Since all other runs
exceeded the lower indicated limit for PQ, no additional runs were excluded from further post processing.
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(a) Measurement of a resonance peak at T = 495K, p = 1.604 bar and
PQ = 208.45
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(b) Measurement of a resonance peak at T = 495K, p = 1.43 bar, PQ =
49.67

Figure 4.1: Resonance peaks for two sample measurements taken from the speed of sound measurement experiment for
the substance D4

4.1.3. Acquiring the speed of sound from the frequency data
The frequency data is converted to speed of sound data using the following relationship for a cuboid shape,

fk,m,n = c

2

√(
k

l0

)2

+
(

m

h0

)2

+
(

n

h0

)2

, (4.2)

where k,m,n represent the longitudinal and two radial modes respectively. Recalling from Chap. 3, l0 À h0 for
the OVAR, Eq. 4.2 reduces to

c = 2 fk l0

k
. (4.3)

This equation therefore relates only the longitudinal resonance modes to the speed of sound of the substance
at the prescribed temperature and pressure conditions.

4.1.4. Detecting outlier data
The next step in the process procedure involves the identification of outlier data points within the data set.
The raw data set is shown in Fig. 4.2, which displays the spread of the data points at each of the measurement
conditions. In order to accurately determine the ideal gas speed of sound outliers are numerically identified and
removed from the data set. For the data set at hand, it is required to determine the outliers for measurements
of the same temperature and pressure combination. However, for several of these measurement points only
one or two data points are available. This is problematic as a minimum of three data points are required to
determine an outlier in the data set. In order to provide the minimal amount of data points to determine the
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outliers for all measurement points, the thermodynamic models RefProp and StanMix are consulted. Data
from both models at the same temperature and pressure conditions as the experimental results were included
in the outlier detection procedure, in order to meet the minimal limit of data points required. These additional
data points from the thermodynamic models were only included for this step of the post processing.

The outliers in the data were detected using a built in Matlab function. This function deems a value an
outlier if the value is more than three times the scaled value of the Median Absolute Deviation (MAD) away
from the median value of the data set. The MAD is defined as

M AD = median(Ai −median(A)), (4.4)

where median(A) is the median of the dataset. The scaling factor is given as

s f = 1p
2 ·erfcinv

( 3
2

) , (4.5)

where erfcinv is the Inverse Complementary Error Function. The bounds to determine whether a data point is
an outlier or not is given by

Ai < median(A)−3 · s f ·M AD

, Ai > median(A)+3 · s f ·M AD.
(4.6)
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Figure 4.2: Speed of sound vs pressure for all individual experimental data points before the removal of outliers

4.1.5. The uncertainty of the raw data
In order to obtain a clearer overview of the experimental data points, the average of the data points for each
of the measurement conditions is shown in Fig. 4.2. Furthermore, the experimental uncertainty, which was
neglected thus far, is also included. The known uncertainty of OVAR was used as a basis for uncertainty, since
not enough data points were measured to determine the random error at each of the measurement conditions.
The measurement uncertainty of the OVAR is ≈ 0.3%, which is applied to the speed of sound data [34].

Prior to detection of outliers, the systematic error was removed by application of the calibration constant,
cc = 1.0139. The calibration constant is determined from the average error obtained from the overlapping
measurements with Nannan’s data points at T = 495 K.
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Figure 4.3: The refined data set after completing the post processing phase, with a standard error of σ= 0.3%

4.2. Analysis of linear and quadratic fit of the experimental data
In the previous section, the post processing of the data set was discussed. This resulted in a refined data set,
shown in Fig. 4.3, to be used for the ideal gas analysis. This section features the initial analysis of the linear
and quadratic fit of the experimental data set. The analysis is followed by a discussion on the observed errors
found for the fitted curves.

4.2.1. Methodology of fitting
Speed of sound measurements are a valuable source of thermodynamic data for a substance. The isobaric
and isochoric heat capacities, as well as the compressibility factor are obtained using speed of sound data
[5, 17, 54]. Furthermore, the ideal gas analysis for speed of sound data is not only limited to the ideal gas
heat capacity, but are also used to determine the universal gas constant [36], and has been used to define
temperature scales [5]. However, for this research the experimental analysis is limited to the ideal gas heat
capacity. This is done, so that the research question regarding the validity of the thermodynamic models can
be answered.

In order to answer this research question, the ideal gas isobaric heat capacity, c IG
p , is required. This requires

an approximation of the ideal gas conditions, where p −→ 0, as it is physically impossible to measure at these
conditions. The most commonly used method found in literature requires the extrapolation of experimentally
determined speed of sound data to p −→ 0, such that the ideal gas speed of sound is obtained. From the ideal
gas speed of sound, the ideal gas isobaric heat capacity is calculated, using Eq. 2.4.

The ideal gas speed of sound is obtained from the experimental data through a second order curve fitting,
as was done by Nannan. This is done in order to provide the best comparison with the data in literature. Thus,
a quadratic relation between the pressure and the experimentally determined speed of sound is established.
This relation is used to extrapolate to the ideal gas point.

The fitted results of the conducted experiment are shown in Fig. 4.4. For every isotherm, a linear and
quadratic fit are performed. For the isotherm at T = 495 K, shown in Fig. 4.4a, the experimentally determined
data by Nannan are also included (in green). The error bounds were established at every experimental point, as
described in Sec. 4.1. The error bound at the ideal gas condition is obtained as an output of the fitting function
used to obtain the curves. The bounds are only present for the quadratic curves, because the results of the
linear fits are only used to contrast with the quadratic lines. This simplifies the identification of errors in the
curvature of the quadratic lines. Furthermore, at the temperature and pressure conditions of the conducted
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experiment, real gas effects affect the measured speed of sound. This results in a concave curvature for the
relation between pressure and speed of sound. This is in contrast with the ideal gas assumption, for which the
pressure and speed of sound follow a linear relation. Because of the real gas effects, the measured speed of
sound data should result in a slight concave curvature as demonstrated by the line obtained from Nannan,
shown in green in Fig. 4.4a. The real gas effects have a larger influence at lower temperatures compared
to higher temperatures, because the saturation pressure is lower at lower temperatures. This results in an
increased curvature for the lower temperature isotherms.
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(a) T = 495 K, green line refers to Nannan’s data at T = 495K [40]
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Figure 4.4: Linear and quadratic fit of the speed of sound data at the four measured isotherms

4.2.2. Discussion on observed errors in curvature
In the previous subsection, the expected curvature of the isotherms is discussed. It is expected that the
curvature of these isotherms is concave, as was shown by the example taken from Nannan’s data [40]. For Figs.
4.4a and 4.4b, this concave curvature is shown by the leftward diverging quadratic line away from the linear
solution at lower pressures. Furthermore, Tab. 4.1 provides values for the second partial derivative of the speed
of sound with pressure along each isotherm, based on a quadratic fit of data by Nannan. The second partial
derivative of these fitted curves indicates the curvature of the isotherms, thus providing numerical information
on the validity of the isotherms. For all four measured isotherms by Nannan the second derivative is negative,
indicative of the concave curvature of the relation between speed of sound and pressure. Another previously
mentioned criterion concerns the decrease of the curvature coefficient with increasing temperature. For the
data by Nannan this criterion is also met, as the absolute value of the curvature coefficients decreases with
increasing temperature.
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Table 4.1: The second derivative based on a quadratic fit using the experimental data obtained by Nannan [40]

Temperature [K ]
(
∂2c
∂p2

)
T

[
m

sPa2

]
450 -1.946
465 -1.916
480 -1.669
495 -1.301

Contrary to Figs. 4.4a and 4.4b, where a clear concave curvature can be observed for the quadratic fits, Figs.
4.4c and 4.4d show a deviation from the expected curvature. In these two figures and most notably for Fig. 4.4c,
it is observed that the quadratic fitted curve diverges to the right of the linear solution. Therefore, it can be
concluded that the curvature of these two lines is of convex nature. This point is further supported by Tab.
4.2, where the second partial derivative of the speed of sound with pressure is given for the quadratic fitted
lines of the experimental results. For the cases T = 560 K and T = 603 K the second partial derivative is positive,
diverging from Nannan’s results and thus confirming the convex curvature of these two quadratic fitted curves
observed in Figs. 4.4c and 4.4d. Moreover, an increase in the absolute value of the second derivative with
increasing temperature is observed between the two concave cases, T = 495 K and T = 520 K. This is in contrast
with the earlier explanation regarding the reduction at higher temperatures due to a reduced influence of real
gas effects.

Table 4.2: The second derivative based on a quadratic fit using the data from the conducted speed of sound measurement
experiment

Temperature [K ]
(
∂2c
∂p2

)
T

[
m

sPa2

]
495 -0.465
520 -0.632
560 0.571
603 0.190

The observed errors in curvature and the unexpected increase of the curvature with increasing temperature
leads to the following conclusion: by quadratic fitting of the experimentally determined speed of sound data,
no consistent and physically coherent result can be obtained. Therefore, the explained fitting method does not
provide enough confidence to proceed with the analysis of the experimental data following this approach. In
order to confidently analyse the ideal gas data, a different approach is therefore required to obtain the ideal
gas speed of sound via extrapolation of the experimental data.

4.3. Alternate approach for fitting of experimental data
In order to acquire a more physically accurate and consistent solution for the fitting, an alternative fitting
function is developed to fit the experimental data. In Sec. 4.2, the main problem with the fitting was caused
by the curvature coefficient of the quadratic relation. The methodology of the alternative fitting method is
addressed in this section, followed by a discussion of the results obtained using this alternative fitting method.

4.3.1. Methodology for the alternative fit
The alternative fitting function is still a quadratic polynomial, but with a fixed curvature coefficient. The
curvature coefficient is obtained from the thermodynamic model RefProp, by applying a quadratic fit to data
obtained from the model for the same temperature and pressure range as in the experiment. A second order
polynomial is expressed as

y = ax2 +bx + c,

where a represents the curvature coefficient. In a normal fitting procedure, all three coefficients are determined,
but for the alternative fitting procedure the term a is determined from the model data. The remaining terms, b
and c , are then obtained by fitting the experimental data. Similar to Sec. 4.2, this provides a quadratic function
used to obtain the ideal gas speed of sound for each of the experimentally studied isotherms. These ideal gas
speed of sound values are then used Sec. 4.4 to determine the ideal gas isobaric heat capacity.



4.3. Alternate approach for fitting of experimental data 25

4.3.2. Analysis of the alternative fitted results
Similar to Fig. 4.4 shown in Sec. 4.2, Fig. 4.5 shows the experimental data in combination with the quadratic
lines determined using the alternative fitting method. The linear fitted line of the experimental data is included
as a form of contrast with the quadratic solution, used to identify the correctness of the curvature. The error
bounds for the experimental data points shown in Fig. 4.5, are obtained using the known standard deviation of
the OVAR, as previously discussed in Sec. 4.1. The error bounds for the ideal gas conditions are determined
as a combination of several deviations that can influence on the extrapolation of the ideal gas point. These
deviations are:

• The average deviation between the experimental results and the fitted curve, called the fitting error efit

• The upper bound deviation provided by the fitting function, eup,bnd

• The lower bound deviation provided by the fitting function, elow,bnd

• The average of the known standard deviation per data point of the experimental results, estd,ave

The total error for the ideal gas point was determined by:

etot =
√

e2
fit +e2

up,bnd +e2
low,bnd +e2

std,ave. (4.7)
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Figure 4.5: Alternative fitted curves based on the speed of sound data at the four measured isotherms

For the curvature coefficients obtained via RefProp, it can be assumed that these adhere to the two criteria
established earlier. Again, these two criteria are as follows: the relation between the speed of sound and
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pressure should have a concave curvature and the curvature should decrease with increasing temperature.
Numerically, this concave curvature is represented by a negative partial second derivative of the speed of
sound with pressure. Furthermore, the absolute values of this partial second derivative should decrease with
increasing temperature. In Fig. 4.5, it can be observed that both of these requirements are satisfied. The
concave requirement is met by the observed leftward divergence of the red line from the linear dashed line
in all four figures. The requirement regarding the decrease in curvature with increasing temperature is also
observed in Fig. 4.5, by comparing the reduction in magnitude of the divergence of the red line at the different
temperatures analysed.

Numerically, this is also supported by Tab. 4.3, where the second partial derivative of the speed of sound
with respect to pressure is tabulated. This table shows that the criterion for concave curvature is met, because
all values are negative. The second criterion is also met, because the decrease of the absolute value of the
curvature coefficient with increasing temperatures is shown in Tab. 4.3.

Table 4.3: The second derivative based on a quadratic fit using the data from the conducted speed of sound measurement
experiment

Temperature [K ] RefProp
(
∂2c
∂p2

)
T

[
m

sPa2

]
495 -1.0639
520 -0.6684
560 -0.3349
603 -0.1639

The results of the alternative fitting method satisfy both criteria for the expected results of the analysis,
providing an improved solution over the results obtained in sec. 4.2. This results in greater confidence in the
accuracy of the results produced by the alternative method over the conventional method. However, it would
have been more beneficial if the experimental data could have been correctly analysed using the conventional
method.

4.4. Ideal gas heat capacity analysis
The final phase in the analysis of the experimental data focuses on the analysis of the ideal gas heat capacity.
The ideal gas heat capacity is obtained from the ideal gas speed of sound, determined through fitting of
experimentally determined speed of sound data. This section details the methodology used to obtain the ideal
gas heat capacity from the ideal gas speed of sound, followed by the analysis of both extrapolated literature
data and the model data.

4.4.1. Obtaining the ideal gas heat capacity
The ideal gas isobaric heat capacity is determined from the obtained ideal gas speed of sound using the method
described in the previous section. The ideal gas heat capacity is computed using the following equation:

C IG
p,m = (c IG )2M

T
[

(c IG )2M
RT −1

] . (4.8)

This relation was also implemented by Nannan [40] to determine the ideal gas heat capacity for D4, and is also
found in other studies for determining c IG

p,m for other substances [17, 54]. Through this process of fitting, the
acoustic virial equation is obtained. The acoustic virial equation of state is given by:

c = c IG
[

1+
(
βa(T )

RT

)
p +

(
γa(T )

RT

)
p2 +

(
δa(T )

RT

)
p3 + . . .

]
, (4.9)

where βa , γa and δa are the second, third and fourth acoustic virial coefficients respectively. The polynomial
series can be expanded to higher orders to obtain more acoustic virial coefficients, but this is beyond the scope
of the conducted research. Thus, the focus remains on the analysis of a second order polynomial. Through the
quadratic fitting of the experimental data, the second and third acoustic virial coefficients can be determined.
Eq. 4.8 is derived from an alternative but similar method implemented by Trusler [54]. The entire derivation of
Eq. 4.8 is given in Appendix C. Trusler relates the speed of sound to pressure with the following relation:(

c

a0

)2

= A0 + A1p + A2p2 + . . .

a2
0

, (4.10)
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where An are the coefficients to be fitted and a0 is the mean linear expansivity coefficient. In the ideal gas limit
of p −→ 0, this results in (

c IG )2 = A0, (4.11)

where A0 is given by:

A0 = RTγIG

M
, (4.12)

and γIG is defined as

γIG =
c IG

p

c IG
v

. (4.13)

Furthermore, it is known that
c IG

v = c IG
p −R. (4.14)

Combining the right-hand sides of Eqs. 4.12, 4.13 and 4.14, and reordering the terms results in

(
c IG )2 = RT

M

c IG
p

c IG
p −R

. (4.15)

This equation needs to be rewritten, using the following steps in order to obtain Eq. 4.8
Finally, this results in the corresponding relation given by Eq. 4.8

c IG
p =

(
c IG

)2
M

T

[
(c IG )2M

RT −1

] . (4.16)

Therefore, demonstrating that the ideal gas isobaric heat capacity can be obtained from a polynomial fit of the
speed of sound data.

The ideal gas speeds of sound for the four experimentally measured isotherms are tabulated in Tab. 4.4.
The lower and upper bounds of the absolute speed of sound values corresponding to the error bounds in Fig.
4.5 are also included.

Table 4.4: The experimentally determined ideal gas speed of sound using the alternative fitting method with the curvature
coefficient based on data from RefProp

Temperature [K] c IG = [m/s] lower bound [m/s] upper bound [m/s]
495 118.7487 118.5174 118.9800
520 121.5468 121.3479 121.7457
560 126.2147 125.9279 126.5014
603 131.1257 130.9001 131.3514

The values for the ideal gas isobaric heat capacity are tabulated in Tab. 4.5. These values are determined
from the ideal gas speed of sound data using Tab. 4.4 and Eq. 4.8. It should be noted that the upper bound
values in Tab. 4.5 are determined from the lower bound values for the speed of sound in Tab. 4.4 and vice versa.

Table 4.5: The experimentally determined ideal gas isobaric heat capacity using the alternative fitting method with the
curvature coefficient based on data from RefProp

Temperature [K] c IG
p = [J/molK] upper bound [J/molK] lower bound [J/molK]

495 519.5177 683.7919 419.3581
520 622.7240 821.9972 501.6957
560 569.6510 822.9550 436.2776
603 491.3030 614.4603 409.6241

Besides the values obtained using the alternative fitting method, the conventional quadratic fitted results
are also included in the figures presented in the analysis. This is done to further indicate the improvements
made using the alternative method. The values of both the ideal gas speed of sound and ideal gas isobaric heat
capacity are tabulated in Tabs. 4.6 and 4.7 respectively.
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Table 4.6: The experimentally determined ideal gas speed of sound using the conventional fitting method.

Temperature [K] c IG = [m/s] lower bound [m/s] upper bound [m/s]
495 119.0259 118.6593 119.3925
520 121.5074 120.8452 122.1695
560 126.8122 125.8039 127.8205
603 131.3048 130.8994 131.7102

Table 4.7: The experimentally determined ideal gas isobaric heat capacity using the conventional fitting method.

Temperature [K] c IG
p [J/molK] upper bound [J/molK] lower bound [J/molK]

495 403.9838 572.6305 312.7285
520 654.0865 4464.2226 355.5508
560 348.4588 1020.0821 212.1022
603 424.1381 614.9323 324.4114

4.4.2. Comparison of experimental results with literature data
The research performed by Nannan[40] on D4 provides a direct point of comparison for both the ideal gas
speed of sound as well as the ideal gas isobaric heat capacity. The former was already discussed in Sec. 4.2,
while the latter is presented in this subsection. It should be noted that the values from the article of Nannan
were obtained at lower temperatures than the experiment conducted in this thesis. Therefore, the data by
Nannan is extrapolated to the experimental conditions in order to gain an insight on the accuracy of the
experimental data. The ideal gas speed of sound and ideal gas isobaric heat capacity obtained by Nannan are
shown in Tab. 4.8. The actual speed of sound and pressure values measured by Nannan [40] used to obtain the
results in Tab. 4.8, are given in Appendix A.

Table 4.8: The experimentally determined ideal gas speed of sound and ideal gas isobaric heat capacity obtained by
Nannan [40]

Temperature [K] c IG [m/s] c IG
p [J/molK]

450 113.320 469.466
465 115.169 480.646
480 116.988 491.826
495 118.780 503.005

The previously presented ideal gas heat capacity data is plotted in a c IG
p vs T graph in Fig. 4.6. The blue

dotted line indicates the c IG
p values in the study by Nannan. The orange line originating from the data from

Nannan is the result of the linear extrapolation. This linear extrapolation was performed on the data obtained
from Nannan, because in the article the assumption was made that the ideal gas isobaric heat capacity varied
linearly with the temperature. According to Nannan, this assumption is valid due to the small temperature
range covered in the experiment [40]. This small temperature range assumption might no longer be valid when
extrapolating the data to the elevated temperatures at which the experiment is conducted. However, the data
by Nannan already follows a linear trend, thus higher order extrapolation methods do not add a significant
difference to the extrapolation. Therefore, the linear extrapolation is shown in Fig. 4.6.

The results of the quadratic and the alternative fitting procedures are plotted in black and red, respectively.
The results are superimposed on each other to show the improvement made using the alternative fit over the
conventional quadratic fit. Particularly, for the cases at 520 K and 560 K, this improvement can be observed
as a significant reduction of the error bounds. This is because the upper error bounds determined by the
conventional fitting method are significantly larger than those determined by the alternative method. The
values for the error bounds are shown in Tabs. 4.5 and 4.7, for the alternative and conventional case respectively.
Comparing these tables, it can be seen that the error bounds reduce in size through usage of the alternative
fitting method. A striking example is found at T = 520 K, for the conventional method this results in an upper
bound of c IG

p = 4464.2226 J/molK, while for the alternative case the upper bound is c IG
p = 821.9972 J/molK.
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Figure 4.6: Comparison of the ideal gas isobaric heat capacity varied with temperature. A comparison between the
experimentally obtained data and the data experimentally determined by Nannan[40] is shown. The error bounds indicate

one standard deviation interval bound.

Besides comparing the different methods for obtaining the ideal gas heat capacity with each other, it is
of interest to make a comparison between the different data sets. This is required because it will assure the
validity of the experimental data before being compared to the model data. In Fig. 4.6, it is observed that the
experimentally determined points follow the same trend as outlined by the linear extrapolation of the data
from Nannan. This is especially true for the points measured at T = 495 K, T = 520 K and T = 560 K. This shows
there are no large and unexpected deviations are present in the experimental results, supporting the model’s
validity. This inspires confidence for the further analysis, because Nannan’s data is used in the determination
of the thermodynamic models for D4. In Sec. 4.4.3 the analysis continues with a comparison between the
experimental data and the thermodynamic model data.

4.4.3. Comparison of experimental results with model data
The comparison between the experimental and model data is given in Fig. 4.7. The model data is obtained
from the thermodynamic models RefProp and StanMix. The ideal gas isobaric heat capacity values for these
models are obtained using the same method as used for the experimentally determined ideal gas heat capacity,
since the models have no output for c IG

p .
From Fig. 4.7, it is observed that both the thermodynamic models and the experimental results don’t show

significant deviations at elevated temperatures. This is especially true for the measurements at T = 495 K,
T = 520 K and T = 560 K. Though the measurement at T = 603 K does deviate slightly from the trend set by
the other three experimental data points, both models intersect at the one sigma uncertainty bound of this
measurement point.
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Figure 4.7: Comparison of the experimental results with the thermodynamic models RefProp and StanMix

In Fig. 4.8, it is clearly observed that there is no deviation in the trend between the experimental data
and model data. In this figure, a linear trend is shown for the experimental data based on the first three
experimental points at T = 495 K, T = 520 K and T = 560 K. The figure shows a nearly identical slope to the
comparative model data. In Tab. 4.9 the values for the slope of each of the lines are given, showing that the
difference in slope between RefProp and StanMix is only 2.8%. The point T = 603 K was left out, because
the point made regards the slope of the subcritical data points. This point is the only supercritical isotherm
measured. Furthermore, it is the only experimentally determined point to deviate from the trend of the
subcritical points. However, the model data is still within the error bounds displayed for this point, hence the
difference could be attributed to the uncertainty of the data point. For future research, it would be interesting
to perform the same experiment exclusively for supercritical temperatures to determine whether the deviation
of T = 603 K could be attributed to measurement error or not.

The research question to be answered in this chapter regards the validity of the thermodynamic models
at elevated temperatures. The results presented in this section show that the models are able to qualitatively
predict the thermodynamic properties of D4 at these elevated temperatures. However, the experimental results
cannot be used to draw conclusions about the accuracy of the results predicted with the thermodynamic
models, since the accuracy of the experimental results is not high enough for this. The data obtained from the
experiment can therefore not be used to improve the thermodynamic models.
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Figure 4.8: Comparison between the linear trend obtained from the experimental values measured at T = 495 K, T = 520 K
and T = 560 K and the results obtained through the two thermodynamic models, RefProp and StanMix.

Table 4.9: The slope of the lines shown in Fig. 4.8

Case

(
∂c IG

p

∂T

)
p

[J/molK2]

StanMix 0.5082
RefProp 0.5602

Experimental data 0.5761

4.5. Sensitivity analysis of the method
The uncertainty bounds for the experimentally determined ideal gas isobaric heat capacity shown in Figs. 4.6
and 4.7, and in Tabs. 4.5 and 4.7 are significant, especially considering the size for the error bounds specified
for the speed of sound in Tabs. 4.4 and 4.6. From this data it can be observed that the method utilized to
determine the ideal gas isobaric heat capacity is quite sensitive to fluctuations in ideal gas speed of sound.
This section provides a sensitivity analysis to investigate the extent to which this phenomenon could affect the
method and its results.

4.5.1. Asymptotic behaviour of the method
The values shown in Tabs. 4.4 - 4.7 indicate that a minor change in ideal gas speed of sound results in a
significant change in ideal gas isobaric heat capacity. This shows that the sensitivity in the method originates
from Eq. 4.8. In Tab. 4.10 an example calculation is shown, indicating the sensitivity to a change in speed of
sound. In the example the temperature is taken to be 495 K, while all other parameters besides the speed of
sound are kept constant. For the first case, c is determined to be 119 m/s and this results in c IG

p = 412.52 J
molK .

In the second case, c is lowered by 0.5 m/s, so c = 118.5 m/s, resulting in c IG
p = 700.51 J

molK . The difference in
speed of sound between case 1 and case 2 is −0.42%, but the change in the ideal gas isobaric heat capacity
between the two cases is 69.81%. For the example, the magnitude of the error is increased by 166 times the
original error, due to Eq. 4.8.
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Table 4.10: Example calculation showing the degree of sensitivity of Eq. 4.8 for T = 495 K

Case 1 Case 2 ∆[%]
c IG [m/s] 119 118.50 -0.42

c IG
p

[
J

molK

]
412.52 700.51 69.81

Further investigations were conducted by varying the speed of sound along a set range, for the four
temperatures analysed during the speed of sound measurement experiment. The results of this analysis are
shown in Fig. 4.9. Because an asymptote is observed for each of the isotherms investigated, the origin of the
sensitivity is identified. This asymptotic behaviour explains the significant size of the uncertainty bounds.
Furthermore, it also explains why the downward extending bounds in Figs. 4.6 and 4.7 differ in magnitude. It
should be noted that these bounds for c IG

p are obtained using the bound data for c IG , given in Tabs. 4.4 and

Tab. 4.6, in Eq. 4.8. The difference from the centre value for the upper and lower bound, expressed in c IG , is
equal in magnitude. However, due to the steepening of the asymptote shown in Fig. 4.9, these bounds differ in
magnitude when expressed for c IG

p .
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4.5.2. Differences found between the experiment and literature
In the introduction of Sec. 4.4, it was mentioned that the method used was the most commonly used method to
accurately obtain the ideal gas isobaric heat capacity from experimental data [17, 40, 54]. The results presented
in these articles are of higher accuracy, which is mainly attributed to the measurement equipment used. It
is known that a spherical resonator, used by Trusler [54] for the speed of sound analysis in methane, is more
accurate than the box type resonator used to perform the measurements of this thesis. A similar statement is
made for the accuracy of the resonator used by Nannan for the research on D4. However, the disadvantage of
the resonator used by Nannan is the operating temperature which was limited compared to the temperature
limit of the OVAR, as explained by Mercier [34]. The results of this thesis show that the OVAR provides results
which are accurate enough to provide a qualitative assessment of the ideal gas isobaric heat capacity data at
these elevated temperatures.

Because the conventional method is highly sensitive towards a change in the measured speed of sound, it
is recommended to investigate an alternative analysis method for obtaining the ideal gas isobaric heat capacity
from the speed of sound. This is the topic of discussion in Chaps. 5 and 6.

4.6. Summary
The focus of this chapter was to answer the answer the question whether the models are still valid when used
at higher temperatures than the data used to formulate those models. From the analysis presented in this
chapter it can be concluded that the three research goals have been met. The data and analysis presented in
Sec. 4.1 and Sec. 4.2, show that the speed of sound of D4 is measured at higher temperatures than available in
literature as well as for a supercritical isotherm, T = 603K. Furthermore, the analysis presented in Secs. 4.2, 4.3
and 4.4 show how the ideal gas analysis was performed. The ideal gas isobaric heat capacity is determined
from the experimental data using Eq. 4.8. The research goal regarding the validity of the models was met in
Sec. 4.4, through the comparison between experimental data with literature or model data. From this analysis,
it was shown that the thermodynamic models RefProp and StanMix do not deviate from the experimental data
at the measured conditions. Furthermore, the comparison between the trends of the experimental and model
data showed that both were similar.

The work has thus led to the conclusion that the models are able to qualitatively predict the thermodynamic
properties of D4 at these elevated temperatures. However, the high sensitivity of the method used to obtain the
ideal gas isobaric heat capacity results in large uncertainties. This reduces the accuracy of the experimental
measurements results. The method as explained in this chapter is suitable for analysis of data obtained using
highly accurate resonators, but results in large uncertainties when data is obtained through less accurate
devices. Therefore, the second part of this thesis focuses on the development of an alternative analysis method
for obtaining the ideal gas isobaric heat capacity. The goal is to attain a method less sensitive to fluctuations in
the speed of sound, providing accurate results without requiring highly accurate and expensive equipment to
measure the speed of sound.



5
Determining an alternative analysis

method

The analysis conducted in Chap. 4 discussed the commonly used methodology for obtaining the ideal gas
isobaric heat capacity for a fluid using experimentally determined speed of sound data. The sensitivity analysis
discussed in Sec. 4.5, revealed the formation of an asymptote in the c IG

p vs c IG plane. This asymptote forms
close to the obtained values for the ideal gas speed of sound for D4. This results in a significant deviation for
the ideal gas isobaric heat capacity due to an insignificant fluctuation in the obtained ideal gas speed of sound,
demonstrated by the example given in Tab. 4.10. Furthermore, this means that for measurements with an
uncertainty similar to OVAR, the results possess large error bounds.

Because of the asymptotic behaviour of Eq. 4.8, a new method is created with the goal of reducing the
sensitivity between the speed of sound data and ideal gas heat capacity. The overview of acoustic measurement
techniques provided in Chap. 2, mainly focused on the conventional analysis method, which is used for the
analysis of the experimental data in Chap 4. However, in Sec. 2.1.2 a numerical method is introduced, which is
used to obtain the real gas isobaric heat capacity from speed of sound measurements. This method is created
by Trusler [54, 55] and was used to determine cp for methane in Trusler’s research. This method is investigated
as an alternative analysis method to obtain the ideal gas isobaric speed of sound in this chapter, because the
results of this method allow for the establishment of a relation between the isobaric heat capacity and the
pressure. This part of the thesis investigates how this established relation can be used to determine the ideal
gas isobaric heat capacity. Therefore, a test on the accuracy of the newly developed method is also provided.

This chapter starts with the derivation of the equations required to solve the numerical method, given in Sec
5.1. This is followed by Sec. 5.2, where the additional step required to obtain the ideal gas isobaric heat capacity
is introduced and verification of this additional step is performed. Section 5.3 focuses on the development of
the program required for numerical integration and addresses several numerical differentiation and integration
techniques. Section 5.4 discusses the validation of the newly developed method for obtaining c IG

p . This chapter
is finalized by a chapter summary given in Sec. 5.5

5.1. Derivation of the equations used to solve for the heat capacity
The method originated from a study by Trusler, in which a speed of sound experiment similar to the one
discussed in Chap. 4 is conducted using a resonator for the substance methane [54]. Besides performing the
same ideal gas analysis for the ideal gas isobaric heat capacity, the actual isobaric heat capacity is also obtained
using a numerical integration method. The essence of the method revolves around two equations, which must
be solved simultaneously. The first equation relates the heat capacity to the speed of sound, given by

c−2 = M

RT Z 2

[(
Z −p

(
∂Z

∂p

)
T

)
− R

cp M

(
Z +T

(
∂Z

∂T

)
p

)2]
, (5.1)

where Z is the compressibility factor and cp is the isobaric heat capacity. The second equation in the system of
equations is given by (

∂cp

∂p

)
T
=− R

M p

[
2T

(
∂Z

∂T

)
p
+T 2

(
∂2Z

∂T 2

)
p

]
. (5.2)
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This equation relates the second partial derivative of the compressibility factor with temperature to the first
partial derivative of the isobaric heat capacity with temperature. The solving of this system of equations,

requires appropriate initial values. For the initial values a choice must be made between cp , Z and
(
∂Z
∂T

)
p

.

Since the objective of using this method is to obtain c IG
p through cp , Z and

(
∂Z
∂T

)
p

must be selected as initial

values. Numerical integration is required to determine the initial values for the next temperature to be analysed
and makes use of the results obtained by Eq. 5.2.

5.1.1. Derivation of the equations
The most important steps of the derivation of Eqs. 5.1 and 5.2 are provided in this subsection. The complete
derivation can be found in Appendix D. The derivation starts with the definition of the speed of sound given by
[45, 55]:

c2 ≡
(
∂p

∂ρ

)
s

. (5.3)

Using algebraic and thermodynamic manipulations it follows that the speed of sound can be expressed as:

c2 =
[(
∂ρ

∂p

)
T
− T

ρ2cp

(
∂p

∂ρ

)2

T

(
∂ρ

∂T

)2

p

]−1

. (5.4)

It is convenient to eliminate the ρ in Eq. 5.4, by introducing the compressibility factor, Z , as this factor
varies less than the density. The compressibility factor is given by

Z = M p

ρRT
. (5.5)

Completion of this manipulation results in the following relation corresponding to Eq. 5.1.

c−2 = M

RT Z 2

[(
Z −p

(
∂Z

∂p

)
T

)
− R

cp M

(
Z +T

(
∂Z

∂T

)
p

)2]
. (5.6)

The derivation of Eq. 5.2 originates from the need of an expression for the heat capacities, in order to relate
the speed of sound to an equation of state [7, 55]. For the isobaric heat capacity, the following relation is used:

cp = cp,0 +
∫ p

p,0

(
∂cp

∂p

)
T

dp, (5.7)

where the partial differential
(
∂cp

∂p

)
T

dp is expressed as:(
∂cp

∂p

)
T
=−T

(
∂2ρ−1

∂T 2

)
p

. (5.8)

Further introducing the compressibility factor, results into(
∂cp

∂p

)
T
=− R

M p

[
2T

(
∂Z

∂T

)
p
+T 2

(
∂2Z

∂T 2

)
p

]
. (5.9)

Relations 5.6 and 5.9 need to be rewritten in order to be of use in the integration process. Equation5.6 is
used in this process to determine the isobaric heat capacity. Rewriting Eq. 5.6 requires cp to be isolated on the
left-hand side, this is given by:

cp =

 M

R

(
Z −p

(
∂Z
∂p

)
T

)
(

Z +T
(
∂Z
∂T

)
p

)2 − T Z 2

c2

(
Z +T

(
∂Z
∂T

)
p

)2


−1

. (5.10)

Similarly, Eq. 5.9 requires isolation of
(
∂2 Z
∂T 2

)
p

on the left-hand side, in order to provide data for the integration

steps, required for the determining the initial conditions at the next temperature step. This rewritten relation
is given by: (

∂2Z

∂T 2

)
p
=− M p

RT 2

(
∂cp

∂p

)
T
− 2

T

(
∂Z

∂T

)
p

. (5.11)
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The relations given by Equations 5.10 and 5.11 are used in the integration process to not only determine the

values for cp and
(
∂2 Z
∂T 2

)
p

, but also for Z and
(
∂Z
∂T

)
p

for the next temperature step.

5.1.2. The process of solving the equations
Solving the system of equations given by Eqs. 5.10 and 5.11 requires not only the initial values, but also the
experimentally obtained speed of sound data, and the temperature and pressure data. The study conducted by

Trusler [54] for methane used data from literature to determine the initial conditions for Z and
(
∂Z
∂T

)
p

along the

starting isotherm. It should be noted that the integration process is required to start at the lowest measured
isotherm to the highest isotherm. Knowing the term Z along an isotherm, allows for differentiation with

respect to pressure, resulting in
(
∂Z
∂p

)
T

. The measured speed of sound, the initial conditions and the derived

term
(
∂Z
∂p

)
T

, provides enough information to determine cp using Eq. 5.10.

The resulting values for cp along the calculated isotherm are then differentiated with pressure, obtaining(
∂cp

∂p

)
T

. Equation 5.11 can then be solved with the known information of the specific isotherm at hand,

resulting in
(
∂2 Z
∂T 2

)
p

. In Trusler’s article it is mentioned that the Euler method is suitable for integration, but

other higher order methods can also be used. For the sake of simplicity, the Euler integration scheme is used to

demonstrate the integration process. Integration for Z requires the use of both
(
∂Z
∂T

)
p

and
(
∂2 Z
∂T 2

)
p

. Therefore,

Zn+1 is determined via a second order Taylor expansion, while
(
∂Z
∂T

)
p

is only determined with a first order

Taylor expansion, following a standard forward Euler integration scheme. The integration procedure for Z is
shown by:

Zn+1 = Zn +dT

(
∂Z

∂T

)
p,n

+ 1

2
dT 2

(
∂2Z

∂T 2

)
p,n

. (5.12)

(
∂Z
∂T

)
p

is integrated by: (
∂Z

∂T

)
p,n+1

=
(
∂Z

∂T

)
p,n

+dT

(
∂2Z

∂T 2

)
p,n

. (5.13)

These integration schemes are introduced by Trusler [54] and Estrada-Alexanders [17]. A more elaborate dis-
cussion on the integration schemes can be found in Sec. 5.3, where the implementation of several integration
schemes is discussed.

5.2. Additional step to determine the ideal gas isobaric heat capacity
In Sec. 5.1, the two equations that need to be solved for the alternative analysis for the speed of sound data
were introduced, together with the derivation of these relations. The equations and process introduced thus
far have followed the method created by Trusler for the analysis of methane. However, the step required to
determine c IG

p has not been introduced yet. Therefore, this section addresses the additional step required to
determine the ideal gas isobaric heat capacity from the relations specified previously.

This additional step is derived from the method to obtain the ideal gas speed of sound as shown in Chap. 4.
In Chap. 4, the experimentally measured speed of sound data was fitted to a quadratic function, in order to
extrapolate to the ideal gas region, p −→ 0. The output obtained from Eq. 5.10 allows a similar relation to be
established along the specific isotherm, namely between pressure and the isobaric heat capacity. Following a
polynomial fit the following relation can be obtained:

cp = a +b ·p + c ·p2 +d ·p3 + . . . . (5.14)

In this equation the coefficients a, b, c , d , etc. are obtained through the fitting procedure. In the ideal gas limit
(where p −→ 0) this relation reduces to:

c IG
p = a. (5.15)

Such that the coefficient obtained for a directly equals the ideal gas isobaric heat capacity for the specific
isotherm measured.
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5.3. Building the program
In Subsec. 5.1.2, a brief overview of the steps required to solve the equations was given. In this section
the entire process from the experimental data to the ideal gas isobaric heat capacity is described, further
elaborating on the steps described in Subsec. 5.1.2. The steps described in this section, show the steps the
Matlab program follows for solving of Eqs. 5.10 and 5.11. Several differentiation and integration methods
are addressed, indicating the influence these have on solving the equations. This section concludes with a
discussion on the stability conditions of the program when used for methane.

5.3.1. Algorithm of the computational model
The method devised earlier in this chapter is intended for the analysis of experimentally obtained speed of
sound data for a given substance. The method requires a homogeneous data set in order to work as intended.
The same pressure range should be analysed for all isotherms, spaced by a constant pressure step size. The
isotherms should also be separated with a constant step size. This results in a "square" domain for which the
integration will be performed. It should be noted that this can only be done for a saturated vapour and no
mixed phase data points should be used.

In Fig. 5.1 the "square" domain for methane is shown. In the figure the vertical lines represent the isotherms
of the experimentally determined speed of sound data by Trusler [54]. From the experimentally obtained data,
the homogeneous data set is created by a third order fitting of the speed of sound and pressure data.

This polynomial was then used to determine the speed of sound along a homogeneous spaced pressure
range, ranging from 10 bar up to 100 bar with a pressure step of 2 bar. This results in the square domain shown
in Fig. 5.1.

The homogeneity of the fitted isotherms is used to determine the isobars indicated by the horizontal lines.
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Figure 5.1: Speed of Sound vs. pressure for methane, obtained via data from Trusler [54]. The "square" domain is shown
used for the integration process. The vertical lines represent the isotherms at T = 275 K to T = 375 K, respectively. The data

for these isotherms are taken from Trusler and fitted to a third order polynomial

For the integration process a relatively small temperature step size is required dT ≤ 1K . These isobars are
used to determine the speed of sound values for the isotherms that fall in between the measured isotherms.
Trusler’s method makes use of Lagrangian interpolation for this procedure, but a similar result can be achieved
with polynomial fitting. Trusler made use of a fourth order interpolation method, therefore a fourth order
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polynomial is fitted for the results. This results in a fourth order relation between speed of sound and
temperature for each isobar. This is shown in Fig. 5.2, where the red lines indicate the original isotherms
analysed, determined from Trusler’s data via fitting. The vertical black lines indicate the isotherms required to
accurately integrate the data set. The temperature step shown in the figure is dT = 1K .

Figure 5.2: Speed of Sound vs. pressure obtained for methane via data from Trusler [54]. The red lines indicate the
isotherms shown in Fig. 5.1, obtained using a quadratic fit on Trusler’s data, the remaining vertical black lines show the

isotherms obtained from quadratically fitting of the isobars.

The process described is performed before the integration of the data occurs, because the temperature and
pressure ranges are known prior to integration. The speed of sound data for each isotherm can be determined
a priori as well. The next step in the process is to determine the first set of initial values. In order to determine

cp , the terms Z and
(
∂Z
∂T

)
p

are the initial values. The initial values for Z also provide the initial values for the

partial derivatives of Z with respect to temperature and pressure. Therefore, Z is the only value obtained from
the thermodynamic model RefProp. However, this model does not directly output the compressibility factor.
Thus, the density of the fluid is obtained from the model for a certain temperature and pressure combination.
The combination of density, temperature and pressure allows for the determination of Z , applying Eq. 5.5.

From Z ,
(
∂Z
∂T

)
p

is obtained through differentiation between two isotherms. For the second isotherm,

spaced by dT as required for this differentiation, RefProp is also used to determine Z . The values obtained for

Z from RefProp are only used to obtain the initial values for
(
∂Z
∂T

)
p

. Knowing Z for the initial isotherm, the

term
(
∂Z
∂p

)
T

is obtained by differentiation with respect to pressure along the starting isotherm.

With the known initial values and the speed of sound data for all isotherms, the integration loop is entered.
The first step in this loop is to solve Eq. 5.10 in order to obtain cp . Numerical differentiation of cp results

in
(
∂cp

∂p

)
T

, which provides enough information to determine
(
∂2 Z
∂p2

)
T

, using Eq. 5.11. This is used for the

integration for the next isotherm given by the temperature, Tn+1 = Tn +dT . The integration results in new



5.3. Building the program 40

values for Z and
(
∂Z
∂T

)
p

and Z is required to be differentiated with pressure to obtain
(
∂Z
∂p

)
T

. This provides

enough information to use Eqs. 5.10 and 5.11. In the same integration loop the ideal gas heat capacity is also
determined, using the step introduced in Sec. 5.2. The determined data for cp along each specific isotherm is
then fitted accordingly, resulting in c IG

p per isotherm.

5.3.2. Differentiation methods used and influence on the process
The method described earlier in this chapter requires numerical differentiation to obtain

(
∂Z
∂T

)
p

,
(
∂Z
∂p

)
T

and(
∂cp

∂p

)
T

. Numerical differentiation techniques can introduce errors that can grow with each iteration, which

causes the integration process to explode to unrealistic values after a certain number of iterations. This is
problematic for the differentials determined using numerical differentiation in the integration loop.

The values for
(
∂Z
∂p

)
T

and
(
∂cp

∂p

)
T

are most affected by this, because these values are determined by nu-

merical differentiation in each iteration. The term
(
∂Z
∂T

)
p

is only determined once during the initiation of

the integration process via numerical differentiation. Therefore, the analysis presented in this subsection is

relevant for the derivatives
(
∂Z
∂p

)
T

and
(
∂cp

∂p

)
T

.

The simplest form of numerical differentiation, is determining the slope between two discrete points. The
problem with this method is that differentiation of n number of points results in n −1 amount differentiated
points. Inevitably, this reduction of data points per differentiation steps results to a point that no data is left.
Therefore, different differentiation schemes are tried to remove this effect of the deprivation of data. One of
such methods tried is the built-in numerical differentiation function of Matlab, called the gradient function.
Even though this solves the problem regarding the reduction of data points, it was observed that the derivatives
for n = 1 and n = n differ from the rest of the derivatives. The difference was observed by a sudden change
of curvature shown for the derivatives of n = 2 and n = n −1. Figure 4.8 shows the partial derivative of the
molar heat capacity with respect to pressure for the initial isotherm at T = 275 K. The derivative is determined
using the gradient function embedded in Matlab (Version R2020a). The red circles in the figure indicate the
region where the gradient function is insufficient in computing the correct derivative, observed as a sudden
change in slope at both ends of the isotherm. For the initial few steps this effect causes insignificant errors
in the calculations. However, in order to cover the entire temperature range with dT ≤ 1K at least 100 steps
are required. Resulting in an increasingly larger error per step, causing unstable results for the integration
sequence. For this reason, the built-in gradient function was discarded as the differentiation method.
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Figure 5.3:
(
∂Cp,m

∂p

)
T

vs p, indicating the error caused by the gradient function embedded in Matlab at the tips of the

isotherms.

The final method considered for numerical differentiation is that of Finite differences. Finite differences
provide highly accurate results and the variation between forward, central and backward schemes allow n
outputs. The method of determining the slope between two points is in essence the first order forward finite
difference. However, in this thesis the term finite differences refers to the use of central, forward and backward
finite differences, using the higher order accuracy coefficients. Initially it was decided that only the forward
and backward finite differences would be used. The forward finite difference method would determine the
derivatives for points n = 1...n/2, while the backward finite difference scheme was used to determine the
derivatives for the second half, n = n/2+1...n.

Implementing the finite difference in this way causes an unstable response, which originates from a minute
discontinuity between the solutions of the forward and backward schemes at the midway point. This difference

between the two schemes only becomes visible when the

(
∂2cp

∂p2

)
T

is determined for the initial conditions. In

Fig. 5.4

(
∂2cp

∂p2

)
T

is shown for the initial isotherm determined by using of the method described above, using

forward and backward finite difference to determine the derivative. From the figure it is clear the oscillations
are centred around the midpoint of the isotherm, corresponding to the cross-over point where the switch
between forward to backward finite difference is located. Even though the oscillations are only visible for(
∂2cp

∂p2

)
T

at the initial isotherm, after several integration steps these oscillations will have gained in magnitude.

This results in an unstable response for the integration process.
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Figure 5.4:
(
∂2cp

∂p2

)
T

for the initial isotherm of methane at T = 275 K. Oscillations are observed centred around the midpoint

of the isotherm, corresponding to the cross-over point between the forward and backward finite difference scheme.

The method using only forward and backward method results in an unstable response. As such a switch
was made to a second order central finite difference scheme, applied for all points except the first and last
point of each isotherm. The end points of the isotherm are determined using forward and backward finite
differences. The forward finite difference is used to determine the lowest pressure point, uses the standard
coefficients for second order accuracy, given by:

dy

dx
= − 3

2 fn +2 fn+1 − 1
2 fn+2

dx
+O (dx2). (5.16)

The second order accurate central order finite difference is given by:

dy

dx
= − 1

2 fn−1 + 1
2 fn+1

dx
+O (dx2). (5.17)

The subscripts n −1 and n +1 refer to the points that come before and after the point that is being determined.
A modified version of the second order backward finite difference scheme is used to determine the final
pressure point per isotherm. This modified version was obtained from Estrada-Alexanders [17] and is still
of second order, but uses different coefficients compared to the standard coefficients. The formula used to
determine the backward finite difference of the highest pressure point is given by:

dy

dx
= 2 fn − 7

2 fn−1 +2 fn−2 − 1
2 fn−3

dx
+O (dx2). (5.18)

In all three formula’s the term O (dx2) represents the truncation error. These are neglected in the analysis
process. The three equations shown produce a numerically stable solution for methane. It should be noted
that the pressure step size for each isotherm also governs the stability of the solution. The stability conditions
of the model are the topic of discussion in Subsec. 5.3.4.

5.3.3. Integration schemes used and influence on the process
In Subsec. 5.1.2 the integration scheme defined by Trusler was briefly discussed, showing the simple Euler
scheme used for integration. This integration method can be improved by the introduction of a predictor-
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corrector algorithm [54]. This predictor-corrector algorithm makes use of an intermediate calculation for a
temperature located between Tn and Tn+1, resulting in an improvement of the truncation error, from O (dT3)
to O (dT4).

The known sensitivity of D4 (shown in Chap 4) requires a robust integration scheme and the use of a
predictor-corrector algorithm as recommended by Trusler. Therefore, the standard Runge-Kutta integration
scheme is implemented in the program. The standard Runge-Kutta integration scheme is given by [10]

yn+1 = yn +
(

Kn,1 +2Kn,2 +2Kn,3 +Kn,4

6

)
dT, (5.19)

where

Kn,1 = f (Tn , yn), (5.20)

Kn,2 = f (Tn + 1

2
dT, yn + 1

2
dT Kn,1), (5.21)

Kn,3 = f (Tn + 1

2
dT, yn + 1

2
dT Kn,2), (5.22)

Kn,4 = f (Tn +dT, yn +dT Kn,3). (5.23)

The Runge-Kutta integration scheme requires the computation of Eqs. 5.10 and 5.11 and their accompany-

ing terms four times per step. The values for Kn,1 are determined using the initial values. For Kn,2,
(
∂Z
∂T

)
p

is

determined yn + 1
2 dT Kn,1 and using

(
∂2 Z
∂T 2

)
p

determined at Kn,1. The value just obtained for
(
∂Z
∂T

)
p

is used to

determine Z for Kn,2, again using yn + 1
2 dT Kn,1. This acquires the intermediate values of the initial conditions

required to solve Eqs. 5.10 and 5.11 , following the described process. This process is repeated for Kn,3 and
Kn,4, using their respective equations for approximating the intermediate values.

After determining the values for Kn,1-Kn,4, the integration is performed using Eq. 5.19. For the initial values

Z and
(
∂Z
∂T

)
p

Eq. 5.19 changes into

Zn+1 = Zn +
(

Zn,1 +2Zn,2 +2Zn,3 +Zn,4

6

)
dT, (5.24)

and (
∂Z

∂T

)
p,n+1

=
(
∂Z

∂T

)
p,n

+


(
∂Z
∂T

)
p,n,1

+2
(
∂Z
∂T

)
p,n,2

+2
(
∂Z
∂T

)
p,n,3

+
(
∂Z
∂T

)
p,n,4

6

dT, (5.25)

respectively.

5.3.4. Defining the stability conditions for the alternative method
The stability of the integration method is influenced by various factors. The differentiation and integration
methods, discussed previously, are two of these influencing factors. Another factor influencing the stability
of the introduced method is the step size. For the described method, there are two step sizes that influence
the stability and results of the integration process. The first one is the temperature step size along which the

integration occurs. The second one is the pressure step used in the differentiation process to obtain
(
∂Z
∂p

)
T

and(
∂cp

∂p

)
T

. In this subsection the effects of changing both is addressed.

The temperature step governs the integration process, described by Equations 5.24 and 5.25, as well as

the initial derivative of
(
∂Z
∂T

)
p

. Trusler analysed the difference between a temperature increment of 0.1 K and

0.05 K. This resulted in identical results for the integration process described in this chapter [54]. This analysis
is extended and ranges from dT = 10 K to dT = 1 ·10−3 K, separated by a factor of 10. The pressure step size
was kept constant at 5 bar. During this test the temperature increment of 0.1 K is used as a baseline value.
Decreasing the temperature step size resulted in the same conclusion as drawn by Trusler, as no significant
change in the results is observed. The results of the integration procedure using a temperature increment
in the range dT = 0.1 K to dT = 1 ·10−3 K are identical to each other. The only difference was found in the
computation time, which increased from 20 seconds for dT = 0.1 K to 7 hours, for dT = 1 ·10−3 K. By increasing
the step size from 0.1 K to 1 K and to 10 K gave mixed results. For dT = 1 K, slight deviations are observed,
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while the temperature increment of dT = 10 K resulted in an unstable solution. The figures for c IG
p for the

temperature increments of dT = 10 K, dT = 0.1 K, dT = 1 ·10−3 K are shown in Fig. 5.5. In this figure it can be
observed that the results for c IG

p are similar when, dT = 0.1 K and dT = 1 ·10−3 K are used. The data required
to draw the black lines are obtained from Trusler and are given in Appendix B, in Tab. B.6. Furthermore, the
unstable solution obtained using a step size of 10 K, is shown in Fig. 5.5a. Due to the similarity in results several
runs were left out of Fig. 5.5
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(b) dT = 0.1 K

260 280 300 320 340 360 380
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
C

p

IG
 Numerical integration

C
p

IG
 Trusler

(c) dT = 0.001 K

Figure 5.5: c IG
p,m for varying temperature increments and comparing to Trusler’s data [54]

From this analysis it was concluded that the recommended temperature increment of dT = 0.1 K should be
used when solving the integration process. This is because a further reduction in step size does not significantly
improve the results. Furthermore, the computational time remains acceptable, while using a larger step size
quickly leads to an unstable solution.

The pressure step size also influences the stability of the integration method, due to the influence it has

on the derivatives
(
∂Z
∂p

)
T

and
(
∂cp

∂p

)
T

. These are calculated four times per isotherm using the Runge-Kutta

integration scheme. For methane, Trusler separated the isobars based on pc /10, resulting in a pressure
increment of dp = 4 bar [54]. In order to reduce the accuracy lost if an overly large step size is used, the upper
limit for dp is set at 10 bar. During this analysis the temperature step size is kept constant at dT = 0.1 K.

The results of this analysis are shown in Fig. 5.6. From the figure it can be observed that using dp < 1
bar, results in an unstable solution of the integration process. In Fig. 5.6 it is shown that a pressure step size
between 1-10 bar results in an identical and stable solution. The smallest possible step size in this range, dp =
1 bar, is used in order to best preserve the resolution of each of the isotherms.
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Figure 5.6: Altering the pressure step size, results in a stable and identical solution for dp 1-10 bar, while dp < 1 bar results
in an unstable solution. Comparing the results of the alternative method with data obtained by Trusler [54]

5.3.5. Effects of the fitting order
Additionally, the introduced step requires the fitting of the isobaric heat capacity data as a function of the
pressure. The heat capacity data is fitted to a polynomial, given by Eq. 5.14. Varying the order of the polynomial
also changes the result for the ideal gas point, given by a in Eq. 5.14. Figure 5.7a shows the lines obtained by
fitting the heat capacity data for a second, third, fourth and fifth order polynomial. Fitting of a sixth or higher
order polynomial resulted in similar results as the fifth order polynomial. The fitted results for these order fits
are shown isolated in Fig. 5.7b, in order to make these more visible. The figure shows that the results of these
higher order fits overlap. In order to prevent over-fitting of the data, the fifth order fit is chosen as the limit.

In Fig. 5.7a, it is seen that the order of the fit affects the results more on the lower temperature end than
at the higher temperature end. This is related to the explanation given in Chap. 4 regarding the increasing
curvature of the isotherms at lower temperatures. This increase in curvature at lower temperatures means
that the errors of the fitted polynomials for those isotherms increase as well. The reduction for higher order
isotherms is caused by the increased number of terms to be fitted, which results in a better approximation of
the curvature of the isotherm. This decrease in magnitude of the curvature is also shown in Fig. 5.8, where the
second derivative of the second order fit is plotted for all the analysed isotherms.

Furthermore, a slight oscillation is present in the results fitted to a second, third or fourth order polynomial,
shown in Fig. 5.7a. This is in contrast with the non-oscillating curve shown for the fifth or higher order
polynomials in Fig. 5.8. This oscillating phenomenon for the lower order fits is numerically induced, as
the results obtained from Trusler do not show these oscillations. The fifth order fitting method is used in
the program for obtaining the ideal gas isobaric heat capacity, because it does not show these oscillations.
Furthermore, the fifth order fitting method provides a more accurate solution compared to the lower order
polynomials and limits the degree of overfitting.
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p /R, showing the different results obtained for using a

different order polynomial function during the fitting process vs
Trusler’s results [54]
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Figure 5.7: Effects of varying the fitting order of cp
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Figure 5.8: The second derivative of cp with respect to pressure. Taken from the quadratic fitted curves for cp . Indicating
the decreasing magnitude of the curvature with increasing temperatures

5.4. Validation of the alternative method using methane
In Subsec. 5.1.2 the parameters of the integration affecting the stability were discussed. This showed that the
integration procedure follows the Runge-Kutta scheme, with temperature and pressure step sizes of dT = 0.1 K
and dp = 1 bar, respectively. This section features the validation of the method, using methane as the fluid to
be analysed.

The validation process requires that not only the figure for c IG
p is valid, but also for the figures Z and

cp . During the synthesis of the method, it was namely observed that even though there were significant
discrepancies found for Z and cp the values obtained for c IG

p did not reflect those discrepancies. Thus, there
are in essence three criteria that need to be met before the method is validated. The first criterion is the
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coherence of c IG
p with respect to data from literature, as large deviation encountered result into an invalid

result of the method. The second criterion is the coherence of Z with respect to data from literature, due to the
importance of Z during the integration. The third and final criterion considered during the validation is the
coherence of cp with respect to data from literature, because of the fact that c IG

p is directly determined from cp

by fitting. Thus, errors in cp result in errors for c IG
p . For all three variables the data used to for the comparisons

is obtained from the article written by Trusler [54], investigating the speed of sound of methane. This data is
found in Appendix B, in Tabs. B.1-B.5.

5.4.1. Ideal gas isobaric heat capacity vs Temperature
The developed approach adapted from a method specified by Trusler [54], was used to determine the ideal gas
isobaric heat capacity differently than the method presented in Chap. 4. Following the steps explained in this
chapter, the results of this alternative method are presented in Fig. 5.9. In the figure it is seen that the ideal gas
isobaric heat capacity obtained using the alternative method closely follows the results presented by Trusler
for methane [54]. Thus, it is shown that the alternative method can be used to determine the ideal gas isobaric
heat capacity for methane.

260 280 300 320 340 360 380
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

C
p
IG Numerical integration fifth order fit

C
p
IG Trusler

Figure 5.9: c IG
p vs T , comparing the fifth order fit of the alternative method vs the results obtained by Trusler [54], using

the conventional method explained in Chap. 4

5.4.2. Compressibility factor vs pressure
The compressibility factor is a direct result from the integration process and will show whether the integration
is performed correctly or not. The results for Z obtained from the numerical integration are shown in Fig. 5.10.
In this figure the data for Z is compared to the data obtained from Trusler. In the figure it can be seen that the
numerically obtained results are identical to the results by Trusler. Therefore, no errors expressed in Z have
affected the results for the ideal gas isobaric heat capacity.
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Figure 5.10: Z vs T , comparing the results obtained by numerical integration with the results obtained by [54], also via
numerical integration

5.4.3. Isobaric heat capacity vs pressure
The newly developed method can only correctly determine the ideal gas isobaric heat capacity if the isobaric
heat capacity is correctly obtained. The results for the numerically obtained cp are shown in Fig. 5.11 and
compared to Trusler’s results [54]. From the figure it is observed that the lines match Trusler’s results, with
slight deviations. These deviations are caused by a different approach for determining the speed of sound
for each of the isotherms and the different differentiation method used. The deviations from Trusler’s lines
increase with increasing pressure, as well as higher temperatures analysed. However, in the lower pressure
section of the graph the numerically obtained values closely match those obtained from Trusler. This inspires
confidence that the extrapolation to the ideal gas scenario is not greatly affected by the deviations seen at
higher pressures.
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Figure 5.11: Cp,m vs T , comparing the results obtained by numerical integration with the results obtained by [54], also via
numerical integration

A similar figure to that presented by Fig. 5.11 was analysed by Estrada-Alexanders. In the article it is
mentioned that oscillations occur at increasing temperatures [16]. These oscillations were also observed when
the Lagrangian interpolation was used to estimate the speed of sound for the intermediate isotherms. However,
changing this procedure to a polynomial fitted basis resulted in a reduction of the oscillation observed for the
cp data.

5.5. Summary
This chapter showed the development of the alternative analysis method of the ideal gas isobaric heat capacity
using the speed of sound. The method was adapted from a method used by Trusler for the analysis of methane,
with a new step added to determine the c IG

p . The method by Trusler has as output the cp , which can be fitted

with respect to pressure in order to find c IG
p . Following the steps described by Trusler and introducing a step to

fit cp gives the entire methodology required to find the c IG
p from experimentally obtained speed of sound data.

This requires a minimal of five isotherms are measured with 10+ homogeneously separated pressure points
per isotherm.

Validation of this method has been performed by comparing data obtained by Trusler to the data obtained
for the alternative method. This showed that the alternative fitting method works as intended for not only de-
termining Z and cp , but also for c IG

p . c IG
p was compared to the data obtained by Trusler using the conventional

method.



6
Analysis of D4 using an alternative method

In Chap. 5, an alternative method for obtaining the ideal gas heat capacity from speed of sound data was
introduced. The method is an adaptation of the method developed by Trusler [54]. Trusler used the method
to determine the isobaric heat capacity of methane, from experimentally obtained speed of sound data. An
additional step was added to this method to obtain the ideal gas isobaric heat capacity, as was shown in Chap.
5. The program that is written for this method was also verified and validated to work for methane in the
previous chapter. However, this thesis regards the study of the fluid D4, so the validated program for methane
is adapted to D4. This will provide an answer to the research question whether the alternative method is less
sensitive to a fluctuation in speed of sound. The main focus of this chapter is on the adaptations of tailoring
the program for D4 and the subsequent sensitivity analysis.

This chapter is structured as follows: Sec. 6.1 gives an overview of the changes made to the program in
order to work for D4 and the identification of the stability region. This is followed by Sec. 6.2 with an analysis
for the ideal gas isobaric heat capacity for D4, obtained by using the conventional and alternative method. The
sensitivity analysis required to answer the research question is presented in Sec. 6.3.

6.1. Adapting the code to D4
In Sec. 5.3 the development of the alternative method is discussed. Even though the discussion on the
development of the method presented in Sec. 5.3 is performed using methane, the topics addressed are also
applicable to D4. Because D4 is a difference substance, the temperature and pressure ranges used are altered,
thus new stability criteria are required to be found. This section touches upon the integration region used for
D4, the integration and differentiation methods and the stability of the program.

6.1.1. Data input used for the analysis
In Sec. 5.3 the "square" region of integration was shown for methane. The conditions analysed for methane
by Trusler [54], ran from 10 - 100 bar, for temperatures ranging from 275 K to 375K. For methane, these
temperatures and pressure range are supercritical, as Tc = 190.6 K and pc = 46.1 bar1. The analysis presented
in Chap. 5 therefore did not have to consider conditions approaching the dew line. This differs from the
conditions that are analysed for D4 using the alternative method. These conditions are closely related to
the conditions of the conducted experiment of Chap. 4. For D4 the temperature range that is analysed is
between 500 and 600 K. The critical temperature for D4 is ≈585 K, therefore most of the isotherms are sub
critical. This limits the pressure range that can be used, because dual phase conditions must be avoided. The
pressure range for the analysis of D4 is therefore between 0.5-1.5 bar; similar to the pressure range of the
conducted experiment. The lower pressure limit is determined on the basis that for a realistic experiment the
noise-to-signal ration increases significantly at lower pressures, therefore 0.5 bar is taken as this limit.

6.1.2. Differentiation and Integration schemes for D4
The several differentiation and integration schemes which were tried, are elaborately discussed in Sec. 5.3.
These schemes are not changed during the adaptation of the program for D4. The numerical differentiation

1NIST page for methane https://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Mask=4, accessed on 7-12-2021
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scheme used is the second order finite difference scheme, including the adaptation mentioned by Estrada-
Alexanders [17]. The integration scheme for D4 remained the standard Runge-Kutta scheme. In Chap. 5, it
was seen that the differentiation caused an unstable response due to the increasing error found in the second
derivative of the cp with pressure. This was resolved by the adaptation mentioned by Estrada-Alexanders.
However, for D4 the results remained unstable, due to the error induced by the differentiation. This error is
related to the pressure step size used for D4, dp = 0.01 bar, which is much smaller than 1/10 pc recommended
by Trusler [54]. The critical pressure of D4 is 13.20 bar2, following Trusler’s recommendation this results in a
pressure step of 1.32 bar. This is an impractical step size considering the pressure range of 1 bar, due to the
pressure limit imposed for the analysis of subcritical isotherms. In Chap. 5 it was shown that this unstable
behaviour originates from the numerical differentiation method, thus showing that the results were altered by
a non-physical effect. Because the underlying cause is non-physical, the instability was removed by performing

a polynomial fit of the term
(
∂cp

∂p

)
T

.

This term is fitted, because the oscillations originate from the determination of this term.

Besides introducing this intermediate fit of
(
∂cp

∂p

)
T

, the program remained the same as the program verified

and validated for methane. To use the method for any fluid, it is recommended to determine the speed of
sound for five or more homogeneously separated experimentally obtained isotherms, for a homogeneously
spaced pressure range. The experimental speed of sound data should then be used to determine the speed of
sound for all the intermediate isotherms used for integration of the squared domain. Using the alternative
method, the isobaric heat capacity for each point of the domain can be obtained. This can then be used to
determine the ideal gas isobaric heat capacity, using a polynomial fit of the pressure and isobaric heat capacity
data.

6.1.3. Determining the stability region of the program for D4
In the previous chapter, the effect of the step sizes for pressure and temperature are elaborately discussed.
Due to the inclusion of the additional fitting procedure used to remove the unstable results, the effect of
altering the pressure step size on the stability is reduced. The pressure step size is taken at 0.01 bar, so that
the plotted figures in the pressure range of 0.5-1.5 bar have a clear resolution, resulting in smooth curves.
The temperature step size remains of importance to the integration process. As discussed in Chap. 5, an
increase of the temperature step-size could lead to an unstable result, due to the errors caused by an overly
large step size for the differentials with respect to temperature. It is described in Chap. 5 that decreasing the
temperature step-size slightly improves the accuracy of the results, but this comes at the price of an increased
computational time. The temperature step size is therefore kept at 0.1 K, which provides accurate results while
limiting the computational time.

6.1.4. Effects of starting conditions
The results for methane, shown in Chap. 5, indicate that the alternative analysis method is able to accurately
determine the ideal gas isobaric heat capacity for the given temperature range. The temperature range used
for methane in Chap. 5 ranges from 275 K to 375 K, which is entirely supercritical. For D4 the temperature
range used for the analysis in this chapter ranges from 500 K to 600 K. However, the critical temperature
Tc ≈ 585K , meaning that most of the isotherms are subcritical. The effects of changing the starting conditions
are analysed, because of this difference with methane. This analysis aims to reveal the difference between
the subcritical and supercritical starting conditions. In order to perform this comparison a sufficiently large
temperature range is required. Therefore, the temperature range starting at subcritical starting conditions
ranges from 500 K to 670 K, while the supercritical temperature range used ranges from 590 K to 670 K.

Figure 6.1 shows the cp vs p plane. It is observed that the results in Fig. 6.1a show relatively large deviations
between the model data, compared to Fig. 6.1b. The cause of this difference is irrespective of the amount
of integration steps, because no constantly increasing deviations are visible in Fig. 6.1. The actual cause of

the increasing error with decreasing starting temperature is found in
[
∂cp

∂p

]
T

for the initial conditions. This is

shown in Figs. 6.2a and 6.2b for the starting temperatures of 500 K and 590 K respectively. From both figures
a periodic response is seen, signifying that the slope of Figs. 6.1a and 6.1b are oscillating. However, these

oscillations are difficult to observe in Fig. 6.1, due the low values for
[
∂cp

∂p

]
T

. Even though both Figs. 6.1a and

6.1b show oscillations, the amplitude of the oscillations shown in Fig. 6.1a is roughly 2 to 3 times larger than
those shown in Fig. 6.1b. Furthermore, the period of the oscillation in Fig. 6.1a is shorter than that of Fig. 6.1b.

2NIST page for D4 https://webbook.nist.gov/cgi/inchi?ID=C556672&Mask=4, accessed on 25-1-2022

https://webbook.nist.gov/cgi/inchi?ID=C556672&Mask=4


6.1. Adapting the code to D4 52

These are valuable observations due to the influence of term
[
∂cp

∂p

]
T

has on the integration, because of the

presence in Eq. 5.11.
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Figure 6.1: Comparing Cp,m vs p for different temperature ranges, in order to identify the effect of changing the starting
temperature
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Figure 6.2: Comparing
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for 500 K and 590 K, indicating the origin for the deviations shown in Fig. 6.1a

The origin of the oscillations in the cp vs p plane is related to the interpolation of the experimental speed of
sound data for the intermediate isotherms required for integration. This is mentioned by Estrada-Alexanders
[16] and the effect can be reduced by applying a filter, or as observed during this research by altering the
interpolation method. It should be noted that the oscillations are a non-physical effect and the origin of the
oscillations has not been identified. Furthermore, an alternative numerical method using boundary conditions
instead of the initial values used in this research is brought up by Estrada-Alexanders [16].

The difference in strength of the oscillations shown in Figs. 6.2a and 6.2b is related to the explanation given
in Chap. 4 regarding the curvature of the isotherms. It was observed that the curvature of isotherms in the c vs
p plane, decreases with increasing temperatures. The stronger curvature at lower temperatures is translated to
stronger oscillations shown in Fig. 6.2, because the oscillations are related to the speed of sound data.

The integration procedure is required to start at the lowest measured isotherm. This results in the induced
oscillation at the initial isotherm being propagated through the integration steps taken. If this initial oscillation
is stronger due to starting at a lower temperature, the error caused by this oscillation is propagated with the
integration. This is observed in Fig. 6.1a, where the deviations are larger than the deviations observed in
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Fig. 6.1b. Furthermore, Fig. 6.3 shows the effect of the propagation of the starting oscillation at the final

temperature of the pressure range, at T = 670 K. In this figure the values for
[
∂cp

∂p

]
T

are shown, determined

from the two different starting temperatures. For each of the starting conditions two lines are present, one
line represents the differentiation using second order finite differences. The other line represents the fitting of[
∂cp

∂p

]
T

, which is used in the program to remove the unstable response. It is seen that the integration procedure

starting at 500 K shows highly oscillating results of the finite difference of the values of cp , compared to the
fitted curve running through the its centre. For the results determined using the starting temperature of 590 K,
both lines overlap. The purple line indicating the unfitted result still shows oscillations, but they are marginal
compared to the results of the 500 k starting temperature.

The difference in oscillations, as shown in Fig. 6.3, shows the effect of changing the starting temperature
of the method, where an oscillating slope of cp is an unrealistic result. Furthermore, it is observed that the
absolute values differ as well, indicating that the starting temperature affects the slope of the cp curve. Because
the results of the higher starting temperature show fewer oscillations, it can be concluded that the developed
method is more accurate when used for analysing higher temperatures.
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Figure 6.3:
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at 670 K. This figure indicates the difference in slope of Cp,m vs p for the same temperature, but using a

different starting temperature. These large oscillations originating from the temperature range of 500 K - 670 K, indicate
the reduced accuracy of the alternative method when starting at low subcritical temperatures.

6.2. Analysis of the ideal gas heat capacity for D4 obtained using the nu-
merical method

In the previous section the adaptations to the integration program for D4 were discussed, together with
observations made when altering the starting temperature. In this section, the results of the comparison
between the ideal gas heat capacity obtained using the alternative method and conventional method are
shown. The data used for this analysis is obtained using RefProp for the temperature range of 500 to 600 K. For
the alternative method a pressure range of 0.5 to 1.5 bar. For the conventional method a pressure range of
1 ·10−5 to 1.5 bar is used, in order to get a good solution for the conventional method. The rationale behind this
is further elaborated in Subsec. 6.3.3. Similar to Sec. 5.4 the results for c IG

p will be discussed in combination
with the results for Z and cp , in order to show the validity of the results.
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6.2.1. Numerical method vs conventional method
In this subsection the alternative method and the conventional method are compared. From Fig. 6.4 it is
seen that the values for the c IG

p closely match the results obtained using the conventional method. It can be
observed that the conventional method is a straight line, while the results of numerical integration follow
a more curved line, especially at lower temperatures. This is connected to the explanation regarding the
increased curvature at of the isotherms at lower temperatures in the c vs p plane. This increased curvature
results in slight deviations, due to increased fitting errors.
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Figure 6.4: Comparison between the conventional method and alternative method for D4 for the temperature range of
500-600 K

In Fig. 6.5 the values for Z and cp are shown, obtained by the alternative method. Similar to methane, the
values for the compressibility factor and the model data are similar and perfectly overlap each other, indicating
no large deviations caused by the integration, shown in Fig. 6.5a. However, slight deviations are found for the
values of cp , between the model and numerically integrated results, shown in Fig. 6.5b. This is related to the
starting temperature of 500 K, as was discussed in Subsec. 6.1.4.
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Figure 6.5: Comparison between the model data and the values obtained by numerical integration. Similar to Figs. 5.10
and 5.11
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6.3. Sensitivity analysis of the numerical method and the conventional
method

The development of the alternative method originated from the large sensitivity towards a fluctuation in
ideal gas speed of sound of the conventional method, as explained in Chap. 4. The alternative method was
developed with the aim of finding a method less sensitive to fluctuations in speed of sound. The main research
question for this section of the thesis asks whether the alternatively developed method is less sensitive towards
changes in speed of sound. Especially with regards to the determination of the ideal gas isobaric heat capacity.
In order to answer this research question a sensitivity analysis is performed on both the conventional and
alternative approaches. This section addresses the methodology and results of the sensitivity analysis carried
out on the alternative method for D4.

6.3.1. Methodology of the sensitivity analysis
The sensitivity analysis is carried out in a such a manner that the inputs are equal for both methods analysed.
The input values required for both methods originate from the same conditions and are sufficient to solve
for c IG

p . For the conventional method only the speed of sound data is required, while for the alternative
method values for Z are also required to initialize the integration procedure. All of these data points are
obtained from the thermodynamic model RefProp. In order for the alternative method to work as designed,
five homogeneously spaced isotherms ranging from 500 K to 600 K are used. The error introduced is based on
a thousand normally distributed points with an error of 0.3%, similar to the measurement uncertainty of the
OVAR. This random error was applied to the speed of sound data obtained from the model RefProp. The ideal
gas isobaric heat capacity was then determined for each method, described in Chaps. 4 and 5 accordingly.

The analysis for the conventional method follows the process outlined in Chap. 4. The randomised ideal
gas speed of sound data is fitted to a second order polynomial, per isotherm. This results in a thousand
different values for the ideal gas speed of sound per isotherm. These randomised ideal gas sound speeds are
then applied in Eq. 4.8, to obtain a thousand randomised values for the ideal gas isobaric heat capacity per
isotherm.

In Chap. 4, it was seen that for D4 an asymptote arises for the conditions close to the conditions of the

experiment. This asymptote is governed by the term
(
c IG )2

M
RT . When this term is equal to one, the denominator

of Eq. 4.8 is equal to zero. For the sensitivity analysis, the ideal gas speed of sound is the only variable for each
of the isotherms analysed. Certain points are affected by this asymptote for the used random distribution. This
produced unrealistic and highly negative values for the ideal gas isobaric heat capacity. The removal of these
outliers is required before the mean and standard deviation can be determined for the ideal gas isobaric heat
capacity.

As explained in Chap. 5 the alternative method requires a set of five isotherms to accurately determine the
speed of sound data for all of the intermediate isotherms used during the integration process. The randomised
speed of sound data is therefore bundled together in sets of five to solve the integration process. For the
sensitivity analysis of the alternative method, a temperature step size of 0.1 K and a pressure step size of 0.01
bar are used. A thousand different values for c IG

p are obtained for each isotherm following this process. An
unstable response is observed for eleven of the randomised runs. These outlying results are removed for
further analysis, so that the mean and standard deviation of the c IG

p data can be determined.

6.3.2. Results of the sensitivity analysis
Figure 6.6 shows the results of the sensitivity analysis before the removal of the outlier data points. In the
figure, C IG

p,m is plotted versus c IG . Even though the ideal gas speed of sound is not used for determining C IG
p,m

using the alternative method, it is used in the figure to provide a direct comparison with the results of the
conventional method. The coloured dots indicate the individual results obtained using the alternative method.
The black dots indicate the results obtained using the conventional method. It should be noted that the Y-axis
of the figure ranges from −8 ·105 to 4 ·105 compared to 200-1400, in Fig. 6.7, caused by the removal of the
outliers. From both figures it can be observed that the results from the alternative method follow the same
curvature as the results obtained using the conventional method. Furthermore, it is seen that the alternative
method follows the same asymptotic behaviour that appeared for the conventional method.
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Figure 6.6: C IG
p,m vs c IG for the conventional and alternative method for the full set of data points, including outliers.

Expressing the results of the alternative method as if they are directly related to the ideal gas speed of sound, in order to
determine whether the asymptotic behaviour is also present in the alternative method.

Figures 6.7 and 6.8 are obtained after removal of the outliers. Fig. 6.8 shows

(
∂C IG

p,m

∂c IG

)
T

, this shows the

sensitivity of both methods is dependent on the ideal gas speed of sound. From both figures it is concluded
that the sensitivity towards a change in speed of sound for both methods is similar. This is due to the fact that
the spread of the data points for both methods is similar. This indicates that the response of both methods
towards the randomised speed of sound input, results into a similar output. This is especially true for the
higher temperature results of the alternative method, for which results of both methods overlap each other
entirely. This is less the case for the isotherm at T = 500 K, where the spread of the results of the conventional
method is only slightly larger than the alternative method. This is could be caused by the fact that for the
alternative method no integration has been performed yet at this isotherm. Therefore, no induced errors
caused by the integration of the randomized data set are yet visible, which are introduced to these randomized
points at higher temperatures.
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Figure 6.7: C IG
p,m vs c IG for the conventional and alternative method after having removed the outliers. Expressing the

results of the alternative method as a function of the ideal gas speed of sound, reveals that the methods have a similar
sensitivity to altering the speed of sound, due to the similar range of datapoints.
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vs c IG , indicating the sensitivity of both methods with respect to a change in ideal gas speed of

sound.

The effects of this discussion are also observed in Fig. 6.9. The figure shows the mean and the upper and
lower bounds for both methods. It can be observed that the bounds for the alternative method are smaller
at lower temperatures compared to the conventional method, but these bounds increase with increasing
temperature. At 600 K, the lines of the alternative and conventional method showing the mean and upper
bound have converged, while for the lower bound this happens at around 530K. This shows that the alternative
method is slightly less sensitive to a change in speed of sound at lower pressures, but due to the convergence
this is valid only for a limited region. This indicates that the alternative method is not significantly less sensitive
to a fluctuation in the speed of sound.
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Figure 6.9: C IG
p,m vs T , for the sensitivity analysis of the conventional and alternative method. Including the upper and

lower bound determined as one standard deviation from the mean.

Earlier this section, it was speculated that the number of integration steps could be the reason for the
convergence of the alternative and conventional method at higher temperatures. Therefore, two additional
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runs are analysed in order to investigate the effect of the number of integration steps has on the sensitivity.
The first extra run used an increased temperature step size, dT = 1 K, compared to dT = 0.1 K used thus far.
The second extra run featured the same step size of dT = 0.1 K, but starting at 550 K. From the figure it can
be deduced that the same trend is followed for the results of the extra runs, indicating that the convergence
at higher temperatures towards the results of the conventional method is not caused by the error induced
per iteration. The real cause of this convergence could be linked to the oscillating behaviour shown in Sec.
6.1, because of the link between the oscillations and the speed of sound data. Therefore, certain random data
points can amplify the effect of these oscillations.
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Figure 6.10: C IG
p,m vs T , for the conventional and alternative method with two additional results obtained using the

alternative method, to determine the effects of changing the starting temperature and the step size on the sensitivity
analysis.

Because of the similar sensitivity and the converging of the bounds, it is concluded that the alternative
method does not provide a significant improvement over the conventional method. Furthermore, the alterna-
tive method provides a more complex method with higher computational cost compared to the conventional
method, which does not result in a significant reduction in sensitivity to a fluctuation in the speed of sound.

6.3.3. Altered pressure range for the conventional method
The pressure and temperature conditions used in the sensitivity analysis were chosen to represent an actual ex-
periment as accurately as possible. Besides the convergence shown in Figs. 6.9 and 6.10 at upper temperatures,
divergence between the results of the two methods is shown at the lower temperature end. This divergence is
caused by a change in the slope of the results obtained using the conventional method. The difference in slope
at lower temperatures is caused by the lower pressure limit of the used pressure range, 0.5 bar. Lowering this
lower pressure limit to 1 ·10−5 bar results in the removal of this sudden change in the slope, shown in fig. 6.11.

For the pressure range of 0.5-1.5 bar this sudden change in slope is caused by the fitting of the data. When
fitting the speed of sound and pressure data, the resulting curve tries to emulate the provided data set for the
specified pressure range. However, fitting errors are always introduced. The fitted result used to extrapolate
data can therefore induce errors or unrealistic behaviour. This procedure is required for obtaining c IG

p at the
ideal gas limit, p −→ 0. The fitting error increases when the curvature of the line increases. From the analysis
in Chap 4 it follows that the curvature of the isotherms increases at lower temperatures, which is also shown
in Fig. 6.12. The combination of the larger fitting error and the known sensitivity of the alternative method
results in errors for c IG

p , leading to the observed change in curvature.

As mentioned, this effect is removed by changing the lower pressure limit to 1 ·10−5 bar. This leads to
a more accurate fit of the lower pressure part, resulting in a more accurate extrapolation to the ideal gas
limit. This causes the ideal gas speed of sound to be more accurately obtained, because the errors induced
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during extrapolation are significantly limited. However, in reality it is not possible to measure at pressures
of 1 ·10−5 bar, because at very low pressures resonance measurements are not possible due to the increasing
noise-to-pressure ratio that comes with decreasing pressure. In Fig. 6.4 this lower pressure limit of 1 ·10−5 bar
is also used for the solution of RefProp.
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Figure 6.11: C IG
p,m vs T , obtained using the conventional method for different pressure ranges, indicating the error for the

0.5-1.5 bar pressure range due to extrapolation
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Figure 6.12:
[
∂2c
∂p2
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T

vs T , showing how the curvature of speed of sound vs pressure isotherms decrease with increasing

temperature.

6.3.4. Asymptotic behaviour for the alternative method
Looking at Fig. 6.6, the asymptotic behaviour is also observed for the solution obtained for the alternative
method. It should be noted that in Fig. 6.6 the results of c IG

p using the alternative method are plotted against

c IG , only for comparative reasons. The results of the alternative method for c IG
p are not directly related to c IG ,

as is the case for the conventional method. For the conventional method it was observed that this asymptote
is inherent to the method, due to the presence of the ideal gas speed of sound in the denominator of Eq.
4.8. Because the alternative method is based on numerical integration it is prima facie less clear why the
asymptotic behaviour occurs. Furthermore, it is seen in the figure that only the initial isotherm, at T = 500K,
shows a clear asymptote, while the rest of the results at higher temperatures are affected by the truncation
error due to integration.

The points in Fig. 6.6 showing the unstable behaviour stem from the runs shown in Fig. 6.13. From Fig. 6.13
it is observed that these runs are highly unstable. The errors introduced due to this highly unstable behaviour
are propagated with the steps taken during integration, leading to the randomly placed outliers at the higher
temperatures in Fig. 6.6.
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Figure 6.13: C IG
p,m vs T , obtained using the alternative method for all randomised speed of sound inputs. This figure

highlights the non-physical result obtained by the outlier cases leading to the asymptote shown in Fig. 6.14

The asymptotic behaviour is only clearly shown for the initial isotherm at T = 500 K, thus the analysis on the
origin of the asymptote for the alternative method is focused on this isotherm. In Fig. 6.14, the first isotherm
of Fig. 6.6 is emphasised. In the figure all data points are observed, the results of the unstable isotherms of Fig.
6.13 are given in red. These unstable isotherms stem from the randomised speed of sound data and are shown
in Fig. 6.15.
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Figure 6.14: C IG
p,m vs c IG at T = 500K obtained using the alternative method. The red dots indicate the results obtained

from the unstable runs, shown in Fig. 6.13

From Fig. 6.15, it can be observed that the speed of sound data is separated from the mean by more than
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two times the standard deviation, meaning that these points in experimental measurements with the OVAR
are highly unlikely to occur. Besides this, no unstable or unexpected trends are displayed, as the isotherms
shown follow a similar trend to the mean.
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Figure 6.15: c vs p, showing the outlier isotherms, indicated by the solid coloured lines, versus the mean and the standard
deviations. 2 σ is only included on the left-hand side of the mean, due to all of the outliers being present at that side of the

mean.

These outliers result in unrealistic behaviour in the Cp,m vs p plane, compared to the expected result, shown
in Fig. 6.16. From the figure two observations can be made. The first observation is rightwards displacement
of the unstable outliers compared to the mean value of Cp,m at 500K. The second observation is the difference
in trend and the magnitude for the outlier data. The increasingly diverging trend from the mean solution with
decreasing pressure towards the right-hand side of the figure, indicates why the abnormally large values for
the ideal gas heat capacity are obtained for the data shown in Fig. 6.14, when the data is extrapolated to p = 0
bar. This unrealistic behaviour shown in Fig. 6.14 and the fact that these results are obtained from outlier data,
shown in Fig. 6.15, indicates that these results should be omitted from further analysis.
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Figure 6.16: Cp,m vs p, for the outliers. The vertical solid black line indicates how the mean value for Cp,m should behave.
The outlier data show large deviation from the mean, increasing with decreasing pressure.
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6.4. Further reflection on the experiment
During the sensitivity analysis it was observed that the results for both methods are equally sensitive to a
fluctuation in the speed of sound data. It was shown in Fig. 6.6, that both methods follow the same asymptotic
behaviour, when the ideal gas isobaric heat capacity is plotted versus the ideal gas speed of sound.

For the alternative method, it was shown that the asymptotic behaviour originates from highly unstable
results caused by outliers in the data set. For the conventional method this asymptotic behaviour stems from
the denominator of Eq. 4.8 and is purely a numerical effect. This indicates that Eq. 4.8 has a validity boundary.
If this boundary is exceeded, calculations using this method produce non-physical results. This is problematic
with regard to the experiment analysed in Chap. 4, because with the uncertainty of the OVAR this limit is
exceeded.

However, it should be noted that this is dependent on the fluid that is being analysed. Figure. 6.17 shows the
asymptote for methane. The red boxes in the figure indicate the spread of the ideal gas speed of sound obtained
with a 0.3% uncertainty, for T = 275 K. From the figure it follows that the margin between the asymptote and
the spread of the results is significantly large, so that it doesn’t cause any interference on the results. This shows
that with moderately accurate equipment the ideal gas isobaric heat capacity can be determined, without
suffering from non-physical effects induced by Eq. 4.8.
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Figure 6.17: C IG
p,m vs c IG , the asymptote for methane obtained using the conventional method. The red squares show the

data range as if similar sensitivity analysis was conducted for methane as for D4. These points were determined using an
experimental uncertainty of 0.3% for speed of sound values obtained using RefProp at 275 K and a pressure range of 1-10

MPa.

Figure 6.17, only indicates the margin at 275 K, however it is relevant to identify how this margin behaves
with respect to increasing temperatures. This is shown in Fig. 6.18, where the asymptotic and average measured
ideal gas speeds of sound are plotted for D4 and CH4 in 6.18a and 6.18b, respectively. The ideal gas speed of
sound values for the asymptote are determined by

uasy =
√

RT

M
. (6.1)

Comparing Figs. 6.18a and 6.18b, it can be seen that the margin between the average ideal gas speed of sound
and the asymptotic speed of sound is much smaller for D4 than for CH4. For the temperature range shown
for D4 this difference is 0.9251 m/s on average, compared to a 56.2638 m/s difference for CH4. Therefore, the
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results of D4 are affected by this asymptotic behaviour more significantly than the results for methane. This
means that highly accurate equipment is required in order to accurately determine the ideal gas isobaric heat
capacity.
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Figure 6.18: c IG vs T , showing the margin between the average obtained ideal gas speed of sound and the asymptotic
speed of sound.

Reflecting this analysis on the earlier provided analysis of the experimental results in Chap. 4, explains why
the quadratic fitting of the experimental data did not provide correct results. The combination of the accuracy
of the OVAR and the limited margin between the asymptote and the average measured ideal gas speed of
sound for D4, causes the experimental results to fall within this region where the asymptote is formed. This
results in a highly sensitive response to c IG

p , indicated by the large uncertainty bounds in the figures of Chap. 4.
Furthermore, as was shown in Subsec. 6.3.3, the pressure range used introduces an additional error for the
extrapolation to the ideal gas pressure. This is the reason why the curvature of the experimental results was
predicted erroneously in Chap. 4, which was corrected by the alternative fitting method. Even though it was
seen that the error due to fitting is insignificant when expressed in ideal gas speed of sound, this error becomes
significant due to the asymptotic behaviour of Eq. 4.8 . It should be noted that this is only valid for D4, as it was
seen in Fig. 6.18b, that the boundary between the averaged measured ideal gas speed of sound and asymptotic
speed of sound is much larger for methane than for D4. This means that the problems observed with D4 are
not a problem for methane, so the OVAR is accurate enough to be used for speed of sound measurements of
CH4, but not for D4.

6.5. Summary
This chapter showed the adaptations made to the program developed in Chap 5 to accommodate for D4. This

required changing the pressure step size, the temperature range and introduced fitting for
(
∂cp

∂p

)
T

to remove

the numerically induced error caused by differentiation. Furthermore, it is shown that altering the starting
temperature alters the results obtained for cp . Discrepancies are observed in Fig. 6.1 between the numerically
obtained values and the model values for the results obtained at the starting temperature of 500 K. These
discrepancies do not exist for the run starting at 590 K. This reveals that the developed method performs better
for higher temperatures. The discrepancies are caused by oscillations induced through Eq. 5.10, which reduce
with starting temperature as shown in Fig. 6.2. These oscillations are connected to the interpolation method of
the speed of sound data, required to construct a square integration domain.

A comparison between the conventional and alternative method based on input data obtained from
RefProp revealed that both methods produce similar results for c IG

p . The sensitivity analysis had a similar
outcome for both methods. Therefore, it was concluded that the newly developed alternative method does not
reduce the sensitivity towards a change in speed of sound. This answers the second research question for this
part of the thesis, regarding the sensitivity of the newly developed method. Even though no improvement was
made regarding the sensitivity of the method compared to the conventional method, the conventional method
is unable to accurately determine the ideal gas heat capacity at lower temperatures for the temperature and
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pressure conditions used, as is shown in Fig. 6.11. This shows that the alternative method is more capable of
analysing the ideal gas heat capacity at low temperatures based on model data simulating experimental data.

The formation of the asymptote for the alternative method, shown in Fig. 6.6, was investigated. The
origin of the asymptote for the conventional method is a numerical effect of varying the ideal gas speed of
sound such that the denominator of Eq. 4.8 equals zero. Since the ideal gas speed of sound is not used in the
alternative method, the origin for the formation of the asymptote was caused by strong outliers in the speed of
sound input. These strong outliers were removed in the analysis of the results, therefore removing this strong
asymptotic behaviour from the alternative method.

Even though the sensitivity analysis was conducted only using data obtained through RefProp, a reflection
was made with regard to the experiment. The data of the sensitivity analysis revealed that D4 is inherently
more sensitive towards a fluctuation in the sound speed. This is caused by the small margin between the
average ideal gas speed of sound and the ideal gas speed of sound of the asymptote. This margin for D4 is on
average around 1 m/s, which is significantly smaller compared to the average margin for CH4 of 55 m/s. The
margin between the ideal gas speed of sound and the asymptotic speed of sound is shown in Fig. 6.18.



7
Conclusion and recommendations

This chapter concludes the research preformed in this thesis and brings up recommendations for future
research. The conclusion is structured as follows. Section 7.1 concludes the experimental analysis and Sec.
7.2 concerns the development and analysis of the alternative method. This conclusion is finished by the
recommendations for future work, provided in Sec. 7.3.

7.1. Conclusion on experimental analysis of D4
The discussion about the results of the experiment answered the research question regarding the validity of
the thermodynamic models when these are used outside of the region of accurately available data used for
the creation of those models. The presented analysis reveals that the models can qualitatively predict the
thermodynamic conditions for the temperature range of 495 to 603 K, because no large deviations between the
model and experimental data are observed. However, due to the large uncertainties of the ideal gas isobaric
heat capacity data and the required use of the alternative fitting method, no claims can be made regarding the
accuracy of the models. Furthermore, the alternative fitting method was required because the experimentally
obtained speed of sound data could not be fitted correctly using a second order polynomial. This was observed
by errors in the curvature of the fitted isotherms, which does not correspond to the correct curvature shown by
Nannan and the thermodynamic models.

Though, the analysis regarding the validity of the models was performed straightforwardly, observations
made regarding the sensitivity of the method during the analysis revealed an asymptote on the C IG

p,m vs c IG

plane, close to obtained ideal gas speed of sound from the experiment. This asymptotic behaviour is caused

by the (c IG )2M
RT term. The presented analysis studied the effects of the variation of c IG on c IG

p . Even though

the formation of this asymptote is a non-physical effect, it does affect the results of C IG
p,m for D4 significantly,

because the margin between the asymptotic ideal gas speed of sound and measured speed of sound is less
than 1 m/s. This is significantly smaller compared to the same margin for methane, which is 50 m/s.

7.2. Conclusion regarding the alternative method
The limited margin between the asymptote and the measured ideal gas speed of sound and the uncertainty
introduced due to fitting of the speed of sound data, led to the adaptation of an alternative method for the
analysis of the speed of sound data. This new method was developed with the aim of reducing the sensitivity
towards a fluctuation in the speed of sound. The method was developed from research performed by Trusler
and adapted to determine the ideal gas isobaric heat capacity. The development of the alternative method
showed the steps required for the method to function for methane. The additional step added to the method
by Trusler regards the fitting of the cp data, in order to obtain the ideal gas isobaric heat capacity. Adapting the

method for D4, however, requires fitting of the term
(
∂cp

∂p

)
T

, due to the unstable behaviour caused by numerical

differentiation. The discussion addressing the development of the alternative method and the adaptations to
accommodate for D4 answer the research question regarding the steps required to obtain c IG

p using numerical
integration.

A sensitivity analysis was performed to answer the question whether the newly developed method is less
sensitive to a fluctuation to the speed of sound. From the presented analysis it is concluded that the newly

66
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developed method is equally sensitive towards the same fluctuations in the speed of sound as the conventional
method. This conclusion is made through observing the same behaviour and the similarity of spread of the
data points for C IG

p,m vs c IG , indicating that no major improvement is made with regard to the sensitivity to a
fluctuation in the speed of sound data. However, the results for the conventional method revealed that for a
realistic experimental pressure range significant deviations were observed for the lower temperature regions.
This discrepancy between the results of the conventional method using two different pressure ranges means
that the newly developed alternative method provides a better result for a realistically measurable pressure
range.

The performance of the alternative method increases with a higher starting temperature, mainly at super-
critical temperatures. This is observed in the comparison between the subcritical and supercritical starting
conditions of the numerical integration. It was observed that discrepancies between the numerical and model
data exist on the cp vs p plane, for the temperature range of 500 K - 670 K, while for the results obtained using
a supercritical, temperature range of 590 K - 670 K, these discrepancies are reduced. These discrepancies are
caused by oscillations induced through the alternative method, and are shown by the partial derivative of cp

with respect to pressure. It is observed that the oscillations subcritical starting conditions are significantly
larger in amplitude and have a shorter period compared to the supercritical starting conditions. Furthermore,
it is seen that these oscillations originating from the subcritical starting conditions are more persistent than the
oscillations from the supercritical starting conditions. Thus, showing why the supercritical starting conditions
result in less discrepancies with data from literature compared to the subcritical starting conditions.

It was shown that the sensitivity of the alternative method with respect to a fluctuation in the speed of
sound did not improve significantly over the conventional method. This analysis was based on simulated
experimental data obtained from the thermodynamic model RefProp. However, comparing the performance
of the conventional method to the alternative method on a simulated experimental data set showed that
the alternative method was better able to predict the ideal gas isobaric heat capacity. This is because the
conventional method shows discrepancies for the lower temperature region, originating from the fitting of the
speed of sound data. It follows from this that there is potential for the alternative method to be used in future
research.

7.3. Recommendations
The research conducted showed that analysing the ideal gas isobaric heat capacity for D4 is highly sensitive to
a change in the measured speed of sound for both of the methods utilised. Consequently, the uncertainty of
the measured speed of sound is amplified when c IG

p is determined. A general improvement for a repetition
of this experiment is to use a highly accurate resonator, because of the highly sensitive behaviour inherent
to D4. An estimated figure for the recommended measurement uncertainty is based on the amplification of
the uncertainty of the OVAR. The uncertainty of the OVAR is 0.3% for the measured speed of sound, which
is roughly multiplied by 100, when the ideal gas isobaric heat capacity is obtained. Therefore, in order to
obtain an insignificant error for c IG

p , <5%, it is recommended to use a resonator with a known measurement
uncertainty of <0.005%. This could required the development of a new resonator, with a preference for an
cylindrical resonator due to the fact that these are inherently more accurate than the box type resonator used
in the experiment conducted in this research.

Because the data presented in this study is not without its flaws, it is recommended for future work to
analyse the same temperature range again so that more accurate data can be obtained. This more accurate
data can then be further used for the development and improvement of the thermodynamic models. This
requires more measurement points per isotherm, as well as a minimum of five isotherms homogeneously
spread. This provides a data set that can be used by both the conventional method and the alternative method,
developed in this research. Furthermore, enough data points per measurement point should be provided,
such that an accurate outlier detection can be performed. This also provides enough data to determine the
uncertainty of the experiments carried out, instead of relying on known data from previous tests with the same
equipment.

For the experimental results it was observed that the point measured at 603K showed a slight deviation from
the trend that was followed by the subcritical points. Furthermore, the range where Γ< 0 is supercritical, thus
it is recommended for future research to investigate the supercritical area in more detail. This also allows for
the measurement of a larger pressure range, since saturation effects are eliminated for supercritical isotherms.
The supercritical region is also the region where the alternative method performs best.

This allows for extension of the pressure range that is analysed as well, which could solve the stability
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problems observed during the adaptation of the alternative method to D4 regarding the pressure step size.
An increased pressure range allows for a larger pressure step size, such that the dp = 0.1pc recommendation
by Trusler can be achieved. For methane it was shown that dp < 1 bar resulted in an unstable response,
where the recommended value for dp according to dp = 10%pc , was ≈ 4 bar. It follows from this that the
recommendation made by Trusler is close to the stability limit of dp. Following dp = 10%pc results in dp ≈ 1.3
bar, while 0.01 bar is currently used due to the limited pressure range. Increasing the pressure range allows
for a larger pressure step to be used, which could eliminate the unstable response and therefore the need for

fitting of
(
∂cp

∂p

)
T

.

Observations made during tests of the alternative method for methane revealed oscillations on the cp vs
p curve, which increased in magnitude at higher temperatures. These oscillations are reduced by changing
the method of interpolating the speed of sound data and are removed by applying a higher order fit on the
experimental speed of sound data. This is in accordance with research conducted by Estrada-Alexanders, who
reported the formation of ripples at higher temperatures originating from the interpolation of the speed of
sound data. Estrada-Alexanders mentions that these ripples can also be removed by introducing a filter to
the program. However, it should be noted that the introduction of this filter or changing the interpolation
procedure did not remove the cause of the ripples. Thus, a boundary condition method is introduced to
determine the thermodynamic properties from speed of sound data. The research by Estrada-Alexanders
focuses on obtaining the same thermodynamic properties as the alternative method, Z and cp . The conclusion
drawn by Estrada-Alexanders is that the boundary condition method proved to be an accurate alternative to
determine thermodynamic properties in a single-phase region. Therefore, a similar procedure as developed
with the introduction of the alternative method for obtaining the ideal gas heat capacity in this research
could be applied to the boundary condition method developed by Estrada-Alexanders. Because the same
thermodynamic properties are being used and determined in this boundary condition method, a similar fit to
the cp data could be done in order to obtain the ideal gas isobaric heat capacity. Researching this boundary
condition method in a similar fashion as the initial value method in this research, could provide a method
which is more accurate in determining cp . This boundary condition method could remove the cause of the
oscillations on the cp vs p plane, which are induced by the fitting or interpolation of the speed of sound data.
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Appendix A: Nannan Data

This Appendix feautures the data obtained by Nannan for D4 [40].
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Table A.1: Experimental speed of sound data as obtained by Nannan [40]

T [K] p [kPa] c [m/s] σ

450 38.90 110.351 252.0
46.70 109.656 89.8
57.41 108.801 72.2
62.89 108.299 17.0
69.33 107.727 16.4

465 31.29 113.043 638.9
40.99 112.320 123.0
49.18 11.723 69.2
58.99 110.976 20.2
70.69 110.062 16.5
77.48 107.535 14.3
92.89 108.286 9.9

101.01 107.535 14.3
111.40 106.695 5.3
121.67 105.761 7.4

465 36.51 112.753 138.6
47.85 111.913 37.2
57.21 111.202 25.3
68.51 110.332 14.4
74.87 109.829 10.7
81.72 109.278 26.5
97.68 107.963 270.8

106.95 107.179 89.7
116.93 106.300 335.1

465 32.63 112.986 242.5
46.84 111.935 53.3
61.46 110.824 18.8
73.59 109.872 15.3
87.87 108.720 9.0

105.11 107.277 15.0
123.48 105.664 17.4

480 42.70 114.022 56.2
54.67 113.202 18.1
65.08 112.478 36.
71.30 112.038 24.6
85.50 111.071 24.9
92.46 110.502 12.1

109.21 109.241 4.5
118.88 108.493 3.1
129.21 107.675 6.8
140.39 106.769 11.2
152.36 105.769 8.6
165.42 104.642 6.3

495 27.45 117.135 200.8
36.20 116.658 71.6
47.54 115.985 15.6

143.41 109.744 283.3
159.70 108.434 20.5
160.40 108.391 105.0
174.53 107.346 44.6
186.64 106.439 78.7
198.61 105.492 1287.4
224.52 103.408 31.8



B
Appendix: Trusler data

This appendix features the data by Trusler used for methane [54, 55].

Table B.1: Experimental speed of sound data as obtained at T = 275 K by Trusler [54, 55]

T [K] P [kPa] c [m/s]
275 10.03660 416.4693

9.28123 416.5507
8.48529 414.4408
7.55257 413.1386
6.79170 412.9209
5.99172 413.4119
5.17575 414.5824
4.38058 416.2865
3.59523 418.4386
2.78223 421.0833
2.39056 422.4883
1.99285 423.9925
1.59567 425.5683
1.20231 427.1919
0.81522 430.7198
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Table B.2: Experimental speed of sound data as obtained at T = 300 K by Trusler [54, 55]

T [K] P [kPa] c [m/s]
300 9.96690 444.5084

9.23575 442.3876
8.38280 440.5471
7.61667 439.4563
6.80724 438.8416
6.00990 438.7382
5.20812 439.0979
4.40630 439.8821
3.59759 441.0621
2.79741 442.5757
2.40724 443.4274
2.00355 444.3816
1.60162 445.4003
1.20625 446.4657
0.80836 447.5973
0.40237 448.8030

Table B.3: Experimental speed of sound data as obtained at T = 325 K by Trusler [54, 55]

T [K] P [kPa] c [m/s]
325 10.00958 467.1599

9.19295 465.0207
8.42680 463.4061
7.64200 462.1393
6.79616 461.1911
5.98937 460.6722
5.19704 460.5084
4.39606 460.6707
3.62073 461.1382
2.80071 461.8932
2.39559 462.3782
1.99953 462.9154
1.60087 463.5166
1.18571 464.2038
0.79938 464.9891
0.39338 465.6774
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Table B.4: Experimental speed of sound data as obtained at T = 350 K by Trusler [54, 55]

T [K] P [kPa] c [m/s]
350 9.99178 487.2842

9.22309 485.3390
8.38278 483.5357
7.59459 482.1499
6.78365 481.0220
6.00128 480.2127
5.18819 479.6527
4.39378 479.3682
3.62073 479.3302
2.75485 479.5542

2.237593 479.7369
1.99204 479.9721
1.57626 480.2834
1.20488 480.6084
0.80234 481.0094
0.40123 481.4545

Table B.5: Experimental speed of sound data as obtained at T = 375 K by Trusler [54, 55]

T [K] P [kPa] c [m/s]
375 10.13942 506.0105

9.17623 503.5756
8.40282 501.8701
7.24325 499.7280
6.80446 499.0455
6.00088 497.9725
5.20716 497.1360
4.34932 496.4693
3.62002 496.0944
2.84282 495.8799
2.43474 495.8413
1.97507 495.8591
1.60248 495.9161
1.22021 496.0175
0.79453 496.1778
0.40305 496.3696

Table B.6: The ideal gas isobaric heat capacity data obtained by Trusler [54]

T [K] C IG
p,m [-]

275 4.2021
300 4.3037
325 4.4258
350 4.5653
375 4.7182
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Appendix Derivation of conventional

method

This appendix shows the entire derivation of the of Eq 4.8 used for the conventional method(
c

a0

)2

= A0 + A1p + A2p2 + . . .

a2
0

, (C.1)

where An are the coefficients to be fitted and a0 is the mean linear expansivity coefficient. In the ideal gas limit
of p −→ 0, this results in (

c IG )2 = A0, (C.2)

where A0 is given by:

A0 = RTγIG

M
, (C.3)

and γIG is defined as

γIG =
c IG

p

c IG
v

. (C.4)

Furthermore, it is known that
c IG

v = c IG
p −R. (C.5)

Substituting Eq. C.5 into Eq. C.4 results in

γIG =
c IG

p

c IG
p −R

. (C.6)

Substituting this into Eq. C.3 together with Eq. C.2 gives

(
c IG )2 = RT

M

c IG
p

c IG
p −R

. (C.7)

This equation needs to be rewritten, using the following steps in order to obtain Eq. 4.8(
c IG

)2
M

RT
=

c IG
p

c IG
p −R

. (C.8)

Moving the denominator to the left-hand side gives(
c IG

)2
M

RT
(c IG

p −R) = c IG
p . (C.9)

and eliminating the brackets on the left hand-side results in(
c IG

)2
M

RT
c IG

p −
(
c IG

)2
M

T
= c IG

p (C.10)
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Rearranging the terms gives ((
c IG

)2
M

RT
−1

)
c IG

p =
(
c IG

)2
M

T
. (C.11)

Finally, this results in the corresponding relation given by Eq. 4.8

c IG
p =

(
c IG

)2
M

T

[
(c IG )2M

RT −1

] . (C.12)

Therefore, demonstrating that the ideal gas isobaric heat capacity can be obtained from a polynomial fit of the
speed of sound data.



D
Appendix Derivation of alternative method

In order to gain better understanding of Equations 5.1 and 5.2, the derivation of these formulas is required.
Starting with the Eq. 5.1, for which the derivation starts from the definition of the speed of sound given
by[45, 55]:

c2 ≡
(
∂p

∂ρ

)
s

. (D.1)

It is known that [7] (
∂p

∂ρ

)
s
= cp

cv

(
∂p

∂ρ

)
T

. (D.2)

Combining the previous two equations results in:

c2 = cp

cv

(
∂p

∂ρ

)
T

. (D.3)

The isobaric and isochoric heat capacities are related to each other by[38]:

cp − cv =−T

(
∂ν

∂T

)2

p

(
∂p

∂.ν

)
T

. (D.4)

Rewriting this equation in terms of density instead of specific volume results in the following relation

cp − cv = T

ρ2

(
∂ρ

∂T

)2

p

(
∂p

∂ρ

)
T

. (D.5)

Reordering the terms of this equation gives:

cv = cp − T

ρ2

(
∂ρ

∂T

)2

p

(
∂p

∂ρ

)
T

. (D.6)

insert Eq. D.6 into Eq. D.3

c2 =
cp

(
∂p
∂ρ

)
T

cp − T
ρ2

(
∂p
∂ρ

)
T

T
ρ2

(
∂ρ
∂T

)2

p

. (D.7)

Rewriting the right-hand side of this equation results in:

c2 =

cp − T
ρ2

(
∂p
∂ρ

)
T

(
∂ρ
∂T

)2

p

cp

(
∂p
∂ρ

)
T


−1

. (D.8)

Further eliminating the fraction on the right-hand side results in the relation given by:

c2 =
[(
∂ρ

∂p

)
T
− T

ρ2cp

(
∂p

∂ρ

)2

T

(
∂ρ

∂T

)2

p

]−1

. (D.9)
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Following the chain rule, the following identity may be used(
∂p

∂ρ

)
T

(
∂ρ

∂T

)
T

(
∂T

∂p

)
ρ

=−1. (D.10)

Isolating
(
∂ρ
∂T

)
T

results in: (
∂ρ

∂T

)
T
=−

(
∂ρ

∂p

)
T

(
∂p

∂T

)
ρ

. (D.11)

Squaring the identity following the chain rule given by Eq. D.11 results in:(
∂ρ

∂T

)2

T
=

(
∂ρ

∂p

)2

T

(
∂p

∂T

)2

ρ

. (D.12)

Equation D.12 is then substituted into Eq. D.9, resulting in:

c2 =
[(
∂ρ

∂p

)
T
− T

ρ2cp

(
∂ρ

∂T

)2

T

]−1

. (D.13)

It is favourable to replace the density in Eq. D.13 with the compressibility factor given by:

Z = M p

ρRT
. (D.14)

The compressibility factor is used over the density, because it varies less to the state inputs compared to the

density [55]. Rewriting Eq. D.14, such that ρ becomes a function of Z . This is done to express
(
∂ρ
∂p

)
T

and
(
∂ρ
∂T

)
p

in terms of Z .

ρ = M p

Z RT
. (D.15)

Deriving
(
∂ρ
∂p

)
T

is simply done using the quotient rule, yielding the following relation(
∂ρ

∂p

)
T
= M

RT Z 2

(
Z −p

(
∂Z

∂p

)
T

)
. (D.16)

Deriving
(
∂ρ
∂T

)
p

is a more complex procedure and requires the following identity to be used:

d

d x

(
1

x y(x)

)
=− 1

x2 y(x)
−

∂y(x)
∂x

x y(x)2 . (D.17)

Applying the identity for
(
∂ρ
∂T

)
p

, results in the following:

(
∂ρ

∂T

)
p
= M p

R

(
− 1

T 2Z
− 1

T Z 2

(
∂Z

∂T

)
p

)
. (D.18)

Eliminating the fractions inside of the brackets gives:(
∂ρ

∂T

)
p
=− M p

RT 2Z 2

(
Z +T

(
∂Z

∂T

)
p

)
. (D.19)

After deriving
(
∂ρ
∂p

)
T

and
(
∂ρ
∂T

)
p

in terms of Z , in Equations D.16 and D.19 respectively. These relations are then

substituted into Eq. D.13 yielding:

c−2 = M

RT Z 2

(
Z −p

(
∂Z

∂p

)
T

)
− T

ρ2cp

M 2p2

R2T 4Z 4

(
Z +T

(
∂Z

∂T

)
p

)2

. (D.20)
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Inserting Eq. D.15 for ρ2 results in

c−2 = M

RT Z 2

(
Z −p

(
∂Z

∂p

)
T

)
− 1

cp T Z 2

(
Z +T

(
∂Z

∂T

)
p

)2

. (D.21)

Clearing up the right-hand side of the equations gives the following relation corresponding to Eq. 5.1.

c−2 = M

RT Z 2

[(
Z −p

(
∂Z

∂p

)
T

)
− R

cp M

(
Z +T

(
∂Z

∂T

)
p

)2]
. (D.22)

The derivation of Eq. 5.2 originates from the need of an expression for the heat capacities, required for
relating the speed of sound to an equation of state [7, 55]. For the isobaric heat capacity, the following relation
is used:

cp = cp,0 +
∫ p

p,0

(
∂cp

∂p

)
T

dp, (D.23)

where the differential
(
∂cp

∂p

)
T

dp is expressed as:

(
∂cp

∂p

)
T
=−T

(
∂2ρ−1

∂T 2

)
p

. (D.24)

Expressing this relation in terms of compressibility coefficient requires the second derivative,
(
∂2ρ−1

∂T 2

)
p

, given

by: (
∂2ρ−1

∂T 2

)
p
= R

M p

[
2

(
∂Z

∂T

)
p
+T

(
∂2Z

∂T 2

)
p

]
. (D.25)

Inserting this back into Eq. D.24 yields:(
∂cp

∂p

)
T
=− R

M p

[
2T

(
∂Z

∂T

)
p
+T 2

(
∂2Z

∂T 2

)
p

]
, (D.26)

which is Eq. 5.2.
Relations D.22 and D.26 need to be rewritten in order to be of use in the integration process. Equation D.22

is used in this process to determine the isobaric heat capacity. Rewriting Eq. D.22 requires cp to be isolated on
the left-hand side, this is given by:

cp =

 M

R

(
Z −p

(
∂Z
∂p

)
T

)
(

Z +T
(
∂Z
∂T

)
p

)2 − T Z 2

c2

(
Z +T

(
∂Z
∂T

)
p

)2


−1

. (D.27)

Similarly, Eq. D.26 requires isolation of
(
∂2 Z
∂T 2

)
p

on the left-hand side, in order to provide data for the integration

steps, required for the determining the initial conditions at the next temperature step. This rewritten relation
is given by: (

∂2Z

∂T 2

)
p
=− M p

RT 2

(
∂cp

∂p

)
T
− 2

T

(
∂Z

∂T

)
p

. (D.28)

The relations given by Equations D.27 and D.28 are used in the integration process to not only determine the

values for cp and
(
∂2 Z
∂T 2

)
p

, but also for Z and
(
∂Z
∂T

)
p

for the next temperature step.
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