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A B S T R A C T

The water motion computed using 3D and 2DH models in tidally dominated shallow waters can, in some
cases, differ significantly. In 2DH models, bed friction is typically parametrised in terms of the depth-averaged
velocity, whereas in 3D models, typically the near-bed velocity is used. This difference causes the bed shear
stress in 2DH models to point towards the depth-averaged velocity, whereas in 3D models, it points towards the
near-bed velocity, which are not necessarily the same. Focussing on linearised barotropic models, we derive an
exact friction parametrisation for 2DH models such that the same depth-averaged dynamics are described as in
the corresponding 3D model. The result is a convolutional friction formulation where the instantaneous friction
depends on the present and past velocities, thus modifying the traditional 2DH friction formulation that only
depends on the present depth-averaged velocity. In the case of harmonic (tidal) waves, this parametrisation
has a clear physical interpretation and shows that the near-bed velocity should be parametrised as a rotated,
deformed and phase shifted variant of the depth-averaged velocity. We demonstrate that in certain regions
of the parameter space, it may be impossible to calibrate a 2DH model that uses a traditional friction law
to reproduce the water levels from a 3D model, showing that the 3D friction formulation can be crucial to
capture the 3D dynamics within a depth-averaged model. This phenomenon is explored in detail in a narrow
well-mixed estuary.
1. Introduction

Estuaries and shelf seas are important coastal features that can be
found all over the world. The water motion in these shallow regions
is not only important to understand for safety reasons, but is also
crucial for the transport of constituents, such as salt, sediments and
nutrients (Wong, 1994; Li and O’Donnell, 1997; Stacey et al., 2001).
The vertical structure of the water motion plays an essential role
in mixing and redistributing these substances throughout the water
column (Fischer, 1972; Dyer, 1974). As a consequence, the water
motion is inherently three dimensional, even in these shallow regions.
Since tides are an important driver of the water motion, their three-
dimensional structure is important to be understood. However, much
of our understanding is based on two-dimensional horizontal (2DH)
models, with a specific focus on linearised 2DH barotropic models (Tay-
lor, 1921; Friedrichs, 2010; Roos et al., 2011). These models have, for
example, been used to explain quarter wavelength resonance (Defant,
1961), cross-channel half-wave resonance (Huthnance, 1980), radiation
damping (Garrett, 1975) and amphidromic points (Taylor, 1921). In
these approaches, it is implicitly assumed that a depth-averaged model
is able to capture the three-dimensional water motion sufficiently well

∗ Corresponding author.
E-mail address: M.P.Rozendaal@tudelft.nl (M.P. Rozendaal).

in order to describe, for example, the water levels, transport of water
and derived properties, such as resonance lengths and characteristics.

The key difference between 3D and 2DH models is that a 3D model
resolves the vertical structure of the velocity profile whereas a 2DH
model only describes the behaviour of the depth-averaged velocity. By
only resolving the depth-averaged velocity, it follows that processes
that depend on a local velocity, e.g., at the free surface or bed, must
be parametrised in terms of the depth-averaged velocity. The bed shear
stress 𝝉𝑏 is often a dominant dissipation mechanism in shallow waters,
so an accurate description of this stress is crucial. In 3D models, the bed
shear stress is typically parametrised in terms of the near-bed velocity
𝒖𝑏 (which is usually taken as the flow velocity at the bottom of the
water column). Friction formulations are generally derived from the
law of the wall, assuming a balance between turbulent production and
dissipation, leading to quadratic expressions in the near-bed velocity
𝒖𝑏 with the bed roughness often parametrised using a roughness scale
𝑧0 (see, e.g., Vreugdenhil, 1994; Pope, 2000). To simplify the analysis,
this formulation is often linearised to obtain the associated linearised
vailable online 24 January 2024
463-5003/© 2024 Published by Elsevier Ltd.
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friction law (see, e.g., Hulscher, 1996):
𝝉𝑏
𝜌

= 𝑠𝑓𝒖𝑏. (1)

Here, 𝜌 is the density of water and 𝑠𝑓 (𝑥, 𝑦) (in m/s) a partial slip param-
eter, which parametrises the bed roughness and the local velocity scale.
In depth-averaged models, the bed shear stress must be parametrised in
terms of the depth-averaged velocity 𝒖. When considering a linearised
ed shear stress in 2DH models, this traditionally results in a relation
f the form (see, e.g., Schramkowski et al., 2002):
𝝉𝑏
𝜌

= 𝑟𝒖, (2)

with bottom friction coefficient 𝑟(𝑥, 𝑦) (in m/s), which parametrises
the bed roughness and the local near-bed velocity scale. The partial
slip parameter 𝑠𝑓 and the bottom roughness coefficient 𝑟 are some-
times reformulated in terms of other friction coefficients (e.g., Chézy,
Manning) or in terms of a velocity scale using, for example, Lorentz
linearisation (see, e.g., Vreugdenhil, 1994; Dingemans, 1997).

There is ample evidence in the literature that there are differences
between the water motion computed using 3D and 2DH models (see,
e.g., Marinone, 2000; Glock et al., 2019). Three different aspects have
been identified that cause the 3D and 2DH bed shear stresses to differ.
Firstly, a theoretical analysis was performed by Vreugdenhil (1994)
to verify the validity of the parametrisation of the velocity near the
bed in terms of the depth-averaged velocity in a highly simplified
two-dimensional vertical (2DV) model for which simple analytic so-
lutions exist. He found that there is a phase difference between the
velocity near the bed and the depth-averaged velocity for harmonic
signals. This phase difference was also observed earlier by, e.g., Mofjeld
(1980), Prandle (1982), Soulsby (1983). Secondly, Mofjeld (1980) has
compared 3D and 2DH Kelvin wave solutions on the continental shelf
and found subtle differences. One of the reasons he mentions for this
discrepancy is that the parametrisation of the bed shear stress in terms
of the depth-averaged velocity assumes that it acts in the same direction
as the depth-averaged velocity. However, the rotation of earth causes
veering in the bottom boundary layer such that the bed shear stress
may not point in the same direction as the depth-averaged velocity. An
example of this veering was provided by Soulsby (1981), showing ob-
servations where the bottom current was directed 48◦ clockwise of the
surface current. Thirdly, Zielke (1966) considered the friction formula-
tion for transient pipe flow. He derived a frequency-dependent friction
formulation to exactly parametrise the wall shear stress in a cross-
sectionally-averaged model and showed that this formulation better
matched the observed resonance behaviour than a friction formulation
that does not depend on the frequency.

In summary, 3D and 2DH friction may differ because the near-bed
and depth-averaged velocity may differ in direction and magnitude due
to 1) phase differences, 2) Coriolis deflection and 3) frequency depen-
dency. However, it remains unclear how to consistently parametrise the
effect of the depth, including these three aspects, in a 2DH model such
that the same depth-averaged dynamics are described as in the cor-
responding 3D model. Restricting ourselves to barotropic models, the
main aim of this contribution is to derive a consistent parametrisation
of 2DH bed shear stress such that the same depth-averaged dynamics
are obtained as in the corresponding 3D model.

The structure of this paper is as follows. In Section 2, the linearised
3D and corresponding 2DH model are presented. In Section 3, the
3D friction formulation is derived for a single harmonic component,
a physical interpretation is provided and the result is extend to general
time signals. In Section 4, we present a parameter sensitivity analysis
of the 3D friction formulation, show the importance of the 3D friction
formulation in a narrow well-mixed estuary and use the amplification
plane to explain the observed resonance behaviour. The discussion in
Section 5 illustrates that 3D friction is inherently different than 2DH
friction and Section 6 provides a summary of the main findings.
2

𝐴

2. Model formulation

2.1. The 3D hydrodynamic equations

The linearised incompressible three-dimensional Reynolds-averaged
shallow water equations are often used to describe the water motion
in shelf seas and estuaries (Mofjeld, 1980; Winant, 2007). In these
equations, the hydrostatic balance, the Boussinesq approximation, the
eddy viscosity formulation and the 𝑓 -plane approximation are used
and the non-linearities have been linearised or neglected using scaling
arguments. Neglecting density gradients, these equations read

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜁𝑡 +

(

∫

𝑅

−𝐻
𝑢𝑑𝑧

)

𝑥

+

(

∫

𝑅

−𝐻
𝑣𝑑𝑧

)

𝑦

= 0,

𝑢𝑡 − 𝑓𝑣 = −𝑔𝜁𝑥 +
(

𝐴𝜈𝑢𝑧
)

𝑧,
𝑣𝑡 + 𝑓𝑢 = −𝑔𝜁𝑦 +

(

𝐴𝜈𝑣𝑧
)

𝑧,

(3)

where, 𝜁 (𝑥, 𝑦, 𝑡) is the free surface, 𝒖(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢, 𝑣)𝑇 represents the
horizontal velocity vector with 𝑇 denoting the transpose, 𝑥, 𝑦 and 𝑧
are the three Cartesian coordinates in a right-handed coordinate system
with 𝑧 pointing upwards, 𝑡 is time, 𝑓 the Coriolis parameter, 𝑔 the
acceleration of gravity, 𝑅(𝑥, 𝑦) a subtidal surface level (Dijkstra, 2019),
−𝐻(𝑥, 𝑦) is the bed level and 𝐴𝜈 (𝑥, 𝑦) is the vertical eddy viscosity.
It is assumed that the eddy viscosity parameter 𝐴𝜈 is uniform in the
vertical dimension1. The subscripts 𝑥, 𝑦, 𝑧 and 𝑡 denote taking the
artial derivative with respect to these variables. The first equation is
he depth-integrated continuity equation and the last two equations de-
cribe the conservation of momentum in the two horizontal dimensions.
he vertical flow velocity 𝑤(𝑥, 𝑦, 𝑧, 𝑡) has been eliminated from the
odel by integrating the 3D continuity equation over depth and using

he kinematic boundary conditions imposed at the free surface and bed.
herefore, only dynamic boundary conditions need to be imposed at
hese boundaries.

At the free surface, which in the linearised formulation is found at
he subtidal reference level 𝑧 = 𝑅, a no-stress boundary condition is
mposed:

𝜈𝒖𝑧 = 𝟎, at 𝑧 = 𝑅, (4)

hereas at the bottom, the bed shear stress is imposed through the
artial-slip condition (see, e.g, Eq. (1) or Schramkowski and De Swart,
002):
𝝉𝑏
𝜌

≡ 𝐴𝜈𝒖𝑧 = 𝑠𝑓𝒖𝑏, at 𝑧 = −𝐻. (5)

Here, 𝑠𝑓 (𝑥, 𝑦) is the partial-slip coefficient and the near-bed velocity is
defined as 𝒖𝑏 = 𝒖 at 𝑧 = −𝐻 . For these boundary conditions to remain
valid, it is assumed that the changes in the subtidal surface level and
bed are gradual throughout the domain, i.e., the magnitude of their
gradients is assumed to remain small.

At the open boundaries, the free surface level is imposed:

𝜁 = 𝐴(𝑥, 𝑦, 𝑡), at 𝜕𝛺open, (6)

and at the closed boundaries, a no-transport condition is prescribed:
(

∫

𝑅

−𝐻
𝒖𝑑𝑧

)

⋅ 𝒏 = 0, at 𝜕𝛺closed. (7)

Here, 𝒏 is the outward pointing unit normal.

1 The methods described in this paper can be extended to vertically varying
.
𝜈
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2.2. The 2DH hydrodynamic equations

To obtain the 2DH hydrodynamic equations, the 3D momentum
Eqs. (3) are integrated over the depth and the no-stress and partial-slip
boundary conditions (4), (5) are used, whereas the depth-integrated
continuity Eq. (3) can be expressed directly in terms of the depth-
averaged velocity components 𝑢, 𝑣. Here, the bar [⋅] denotes the depth-
averaging operator defined as

[⋅] = 1
𝐷 ∫

𝑅

−𝐻
[⋅]𝑑𝑧, (8)

ith 𝐷(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) + 𝑅(𝑥, 𝑦) denoting the local water depth. The
epth-averaged shallow water equations solving for the free surface
(𝑥, 𝑦, 𝑡) and the depth-averaged velocity components 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)
ead
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜁𝑡 +
(

𝐷𝑢
)

𝑥 +
(

𝐷𝑣
)

𝑦 = 0,

𝑢𝑡 − 𝑓𝑣 = −𝑔𝜁𝑥 −
1
𝐷
𝑠𝑓 𝑢𝑏,

𝑣𝑡 + 𝑓𝑢 = −𝑔𝜁𝑦 −
1
𝐷
𝑠𝑓 𝑣𝑏.

(9)

t the open boundaries, Eq. (6) still holds and at the closed boundaries,
q. (7) is expressed in terms of the depth-averaged velocity, yielding a
o-transport boundary condition for the depth-averaged velocity:

𝒖 ⋅ 𝒏 = 0, at 𝜕𝛺closed, (10)

ith 𝒏 is the outward pointing unit normal vector.

.2.1. 2DH closure problem
To obtain a closed system of equations, the unresolved near-bed

elocity components 𝑢𝑏, 𝑣𝑏 still need to be parametrised in terms of
he resolved depth-averaged velocity components 𝑢, 𝑣. To this end, we

assume there exists a linear operator  such that the bed shear stress
of the 3D model is exactly reproduced in the 2DH model:
𝝉𝑏
𝜌

= 𝑠𝑓𝒖𝑏 = 
{

𝒖
}

. (11)

Another interpretation of the linear operator  is that it shows, up to a
factor 𝑠𝑓 , how to parametrise the near-bed velocity 𝒖𝑏 in terms of the
depth-averaged velocity 𝒖.

. The relationship between linearised 3D and 2DH models

In this section, a systematic derivation of the operator  is presented
such that 3D and 2DH models describe the same depth-averaged dy-
namics. In Section 3.1, the derivation for harmonic signals is shown and
in Section 3.2 the result for general time signals is given. The operator
 is fully analytical in both cases and the harmonic case provides an
intuitive way to interpret the results. This case is discussed in detail.

3.1. The equivalent 2DH equations for harmonic signals

We solve for the water motion that is in dynamic equilibrium with
the forcing, thereby neglecting any transients. For the harmonic case,
we assume that the forcing consists of a single tidal constituent with
angular frequency 𝜔. Since the 2DH hydrodynamic equations are linear,
it follows that the solution has the same time dependency as the forcing.
Thus we may expand the free surface, depth-averaged and near-bed
velocity components as follows

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜁
𝑢
𝑣
𝑢𝑏
𝑣𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(𝑥, 𝑦, 𝑡) = Re

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑍
𝑈
𝑉
𝑈𝑏
𝑉𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(𝑥, 𝑦;𝜔) exp(𝑖𝜔𝑡)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (12)

ere, 𝑖 is the imaginary unit, 𝑍 the complex free surface elevation,
𝑈 , 𝑉 are the complex depth-averaged velocity components, 𝑈 , 𝑉
3

𝑏 𝑏
the complex near-bed velocity components and ‘;𝜔’ denotes that 𝜔 is
treated as a parameter rather than a variable.

Substituting these expansions into the 2DH Eqs. (9) results in

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝜔𝑍 +
(

𝐷𝑈
)

𝑥 +
(

𝐷𝑉
)

𝑦 = 0,

𝑖𝜔𝑈 − 𝑓𝑉 = −𝑔𝑍𝑥 −
1
𝐷
𝑠𝑓𝑈𝑏,

𝑖𝜔𝑉 + 𝑓𝑈 = −𝑔𝑍𝑦 −
1
𝐷
𝑠𝑓𝑉𝑏.

(13)

A depth-averaged model cannot explicitly resolve the bed shear
tress 𝑠𝑓𝑼 𝑏, as it only resolves the depth-averaged velocity 𝑼 . To

determine the relationship between 𝑼 𝑏 and 𝑼 , the associated 3D model
(3) with harmonic forcing is used. Winant (2007) and Kumar et al.
(2016) provide analytical solutions for the vertical structure of these
3D hydrodynamic equations. This allows for an exact parametrisation
of the near-bed velocity in terms of the depth-averaged velocity. The re-
sulting exact bed shear stress parametrisation in the frequency domain
reads

𝑠𝑓𝑼 𝑏(𝑥, 𝑦;𝜔) = 𝐑3D(𝑥, 𝑦;𝜔)𝑼 (𝑥, 𝑦;𝜔). (14)

his equation is the complex counterpart of Eq. (11). The entries of the
omplex-valued 3D friction matrix can be expressed as

3D(𝑥, 𝑦;𝜔) = 𝑠𝑓

[

𝑟1𝑒𝑖𝜑1 −𝑟2𝑒𝑖𝜑2

𝑟2𝑒𝑖𝜑2 𝑟1𝑒𝑖𝜑1

]

. (15)

Explicit analytical expressions of amplitudes 𝑟1,2 and phases 𝜑1,2 are
erived in Appendix A. The 3D friction matrix can also be expressed in
erms of parameters that have a geometric interpretation. The geomet-
ic form reads
3D(𝑥, 𝑦;𝜔) = 𝑠𝑓 𝑟𝑎𝑒

𝑖𝜑𝑎
(

𝐐(𝜑𝑑 ) + 𝑖𝑟𝑟𝐐(𝜑𝑑 − 𝜋∕2)
)

. (16)

ere, 𝑟𝑎 is the average amplitude, 𝑟𝑟 the amplitude ratio, 𝜑𝑎 the average
hase, 𝜑𝑑 the phase deviation and 𝐐(𝜑𝑑 ) is the 2 by 2 anticlockwise
otation matrix through the angle 𝜑𝑑 :

(𝜑𝑑 ) =
[

cos𝜑𝑑 − sin𝜑𝑑
sin𝜑𝑑 cos𝜑𝑑

]

.

Analytical expressions for the amplitudes 𝑟𝑎, 𝑟𝑟 and phases 𝜑𝑎, 𝜑𝑑 are
given in Supplementary Material S1 and a geometrical interpretation
is provided in Fig. 1. In case the Coriolis parameter vanishes, the
amplitude ratio 𝑟𝑟 and phase deviation 𝜑𝑑 vanish, reducing the 3D
friction formulation to

𝐑3D(𝑥, 𝑦;𝜔) = 𝑠𝑓 𝑟𝑎𝑒
𝑖𝜑𝑎 𝐈2, (17)

with 𝐈2 the 2 by 2 identity matrix.
The amplitudes and phases depend on five nondimensional num-

bers:

(𝑥, 𝑦) =
𝐴𝜈
𝑠𝑓𝐷

, Stk±(𝑥, 𝑦;𝜔) =
1
𝐷

√

𝐴𝜈
|𝜔 ± 𝑓 |

, ± = sign(𝜔 ± 𝑓 ). (18)

The non-dimensional parameter  is the ratio between the vertical
eddy viscosity 𝐴𝜈 and the product of the partial-slip parameter 𝑠𝑓 and
the depth 𝐷. This non-dimensional parameter may be derived from the
partial-slip boundary condition. The non-dimensional parameters Stk±
are modifications of the classical Stokes number Stk with 𝜔 replaced by
𝜔 ± 𝑓 and omitting a factor

√

2 yielding the Stokes plus Stk+ and the
Stokes min Stk− numbers (Souza, 2013). The nondimensional numbers
± only depend on the sign of the frequency scale 𝜔 ± 𝑓 and are
discretely valued, taking only the values −1, 0 and 1.

To interpret the 3D friction formulation, we transform the 2DH
equations back to the time domain. This yields the equivalent 2DH
equations for harmonic signals:

⎧

⎪

⎪

⎨

⎪

⎪

𝜁𝑡 +
(

𝐷𝑢
)

𝑥 +
(

𝐷𝑣
)

𝑦 = 0,

𝑢𝑡 − 𝑓𝑣 = −𝑔𝜁𝑥 −
1
𝐷
𝑠𝑓

[

𝑟1𝑢(𝑡 + 𝑡1) − 𝑟2𝑣(𝑡 + 𝑡2)
]

,

𝑣 + 𝑓𝑢 = −𝑔𝜁 − 1 𝑠
[

𝑟 𝑣(𝑡 + 𝑡 ) + 𝑟 𝑢(𝑡 + 𝑡 )
]

,

(19)
⎩

𝑡 𝑦 𝐷 𝑓 1 1 2 2
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Fig. 1. Graphical representation of the relationship between the depth-averaged velocity 𝒖 and the near-bed velocity 𝒖𝑏 for the traditional, 3D friction no Coriolis and 3D friction
formulation.
f

with the boundary conditions given by Eqs. (6) and (10) and the time
shift 𝑡𝑗 for 𝑗 = 1, 2 given by

𝑡𝑗 =
𝜑𝑗
𝜔
. (20)

Thus for harmonic signals, the linear operator  is given by


{

𝒖
}

= 𝑠𝑓

[

𝑟1𝑢(𝑡 + 𝑡1) − 𝑟2𝑣(𝑡 + 𝑡2)
𝑟1𝑣(𝑡 + 𝑡1) + 𝑟2𝑢(𝑡 + 𝑡2)

]

. (21)

No additional assumptions have been made during the deriva-
tion of the linear operator  for harmonic signals. This means that
this parametrisation of the bed shear stress for 2DH models is exact,
provided the made assumptions hold. Thus, the depth-averaged and
depth-resolving model describe the exact same water levels and depth-
averaged velocities. This is further elaborated upon in Section 4.3,
where an idealised well-mixed estuary is considered.

3.1.1. Interpretation of the 3D friction formulation using the tidal ellipse
To illustrate the differences between the traditional and the 3D

friction formulation for 2DH models, we introduce the linear operator
traditional that corresponds to the traditional friction formulation, see
Eq. (2):

traditional
{

𝒖
}

= 𝑠𝑓 𝑟𝑎

[

𝑢(𝑡)
𝑣(𝑡)

]

. (22)

Here, we have factored the 2DH bottom friction coefficient as 𝑟 =
𝑠𝑓 𝑟𝑎 with 𝑟𝑎 a non-dimensional scaling parameter, to facilitate the
comparison with the 3D friction formulation given by Eq. (21) and the
complex geometric form given by Eq. (17).

Comparing  with traditional shows that each component of the
3D friction formulation depends, in general, on both depth-averaged
velocity components that are both scaled and time (or phase) shifted
with respect to the instantaneous depth-averaged velocity. This Carte-
sian form of the 3D friction formulation may be understood using Jones
calculus, which is typically used to describe the elliptical polarisation
of light (see, e.g., Chekhova and Banzer, 2021).

To give a more geometrical explanation, we use the fact that the
velocity vectors trace an ellipse over the tidal cycle (which may collapse
into a one-dimensional line segment if the minor axis vanishes) (see,
e.g., Souza and Simpson, 1996). Thus both the depth-averaged and
near-bed velocity trace out an ellipse. Using the 3D friction formulation,
we are able to relate the near-bed tidal ellipse parameters to the
depth-averaged tidal ellipse parameters. Given the depth-averaged tidal
ellipse parameters, this describes how the near-bed tidal ellipse changes
as a consequence of the 3D friction formulation.

We describe a tidal ellipse using five parameters: the magnitude of
the semi-major axis 𝑀 , the signed magnitude of the semi-minor axis
𝑚, the orientation of the ellipse 𝜃, the phase of the ellipse 𝜓 and the
signed ellipticity 𝜀 (see, e.g., Souza and Simpson, 1996). The depth-
averaged tidal ellipse parameters are denoted with [⋅] and the near-bed
tidal ellipse parameters with [⋅] . The near-bed tidal ellipse parameters
4

𝑏

Table 1
Definition of the near-bed tidal ellipse parameters 𝑀𝑏, 𝑚𝑏, 𝜃𝑏, 𝜓𝑏 and 𝜀𝑏 under the
traditional and 3D friction formulation. The parameters 𝑀 , 𝑚, 𝜃, 𝜓 and 𝜀 are the tidal
ellipse parameters of the depth-averaged velocity and the parameters 𝑟𝑎, 𝑟𝑟, 𝜑𝑎 and 𝜑𝑑
ollow from the (3D) friction formulation.

𝑀𝑏 𝑚𝑏 𝜃𝑏 𝜓𝑏 𝜀𝑏

Traditional 𝑀𝑟𝑎 𝑚𝑟𝑎 𝜃 𝜓 𝜀
3D No Coriolis 𝑀𝑟𝑎 𝑚𝑟𝑎 𝜃 𝜓 − 𝜑𝑎 𝜀
3D Coriolis 𝑀𝑟𝑎(1 + 𝜀𝑟𝑟) 𝑀𝑟𝑎(𝜀 + 𝑟𝑟) 𝜃 + 𝜑𝑑 𝜓 − 𝜑𝑎

𝜀+𝑟𝑟
1+𝜀𝑟𝑟

can be expressed in terms of the depth-averaged tidal ellipse parameters
and four dimensionless variables that follow from the 3D friction for-
mulation: the average amplitude 𝑟𝑎, amplitude ratio 𝑟𝑟, average phase
𝜑𝑎 and phase deviation 𝜑𝑑 , see Table 1 and Supplementary Material S1
for details.

In Fig. 1, the relationship between the depth-averaged velocity and
the near-bed velocity is depicted for the traditional friction formulation
(left panel), 3D no Coriolis formulation (middle panel) and the full 3D
friction formulation (right panel). Below, these cases are discussed:

• The traditional formulation implicitly assumes that the near-
bed velocity points in the same direction as the depth-averaged
velocity. Using the scaling factor 𝑟𝑎, only the magnitude of the
near-bed velocity can be altered. The result is that the near-bed
tidal ellipse is a scaled version of the depth-averaged tidal ellipse.

• The 3D friction formulation in absence of the Coriolis force
shows that the near-bed velocity still follows a scaled version of
the depth-averaged ellipse, but the near-bed velocity does not
necessarily point in the same direction as the depth-averaged
velocity due to the possible existence of the phase shift 𝜑𝑎,
which is generally positive. This phase shift causes the near-bed
velocity to lead the depth-averaged velocity. This phase lead can
be explained as follows. The near-bed velocity is smaller than the
velocity higher in the water column due to bottom friction. The
water level gradient generates a depth-uniform pressure gradient.
The pressure gradient acts on all fluid layers equally and produces
a velocity pointing in the same direction as this gradient, more
rapidly in the slower-moving layers near the bed than in the
layers higher in the water column (Van Rijn, 2010; Batchelor,
1967, p. 355). This causes the near-bed velocity to lead the
depth-averaged velocity.

• For the full 3D friction formulation, the near-bed velocity does
not point in the depth-averaged direction due to a 𝜑𝑑 rotation
of the semi-major axis of the near-bed ellipse, a 𝜑𝑎 phase shift
of the near-bed ellipse and an alteration of the ellipticity of
the near-bed tidal ellipse 𝜀𝑏 due to non-zero amplitude ratio 𝑟𝑟
(see the right panel of Fig. 1). These effects are caused by the
interaction between the Coriolis force and the vertical dimension.

The Coriolis force acts perpendicular to the current velocity (with
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the sign dependent on the hemisphere) and it causes the velocity
to rotate over the vertical. A classical example for steady currents
is the Ekman spiral (see, e.g., Cushman-Roisin and Beckers, 2009).
To conclude, under the 3D friction formulation, the near-bed
tidal ellipse is generally rotated, deformed and phase shifted with
respect to the depth-averaged tidal ellipse.

The 3D friction formulation depends on the five nondimensional
arameters given by Eq. (18), which in turn depend on the tidal
ngular frequency 𝜔. While the above derivation assumed one har-
onic constituent, the derivation follows analogously when resolving
ultiple harmonic components. For each harmonic, the same formu-

ation is found but with 𝜔 replaced by the considered frequency, see
Supplementary Material S6 for details.

A direct consequence of the 𝜔 dependence is that within a har-
monic 2DH model, each resolved frequency component experiences
a different effective friction parameter, whereas using the traditional
friction formulation a single friction parameter is used for all resolved
frequency components, see Supplementary Material S6 for details. The
need for multiple effective friction parameters is explained by the fact
that for each frequency component 𝜔, a different vertical profile is
established in the 3D model, thereby changing the relationship be-
tween the depth-averaged and near-bed velocity and requiring different
friction parameters.

3.2. The 3D friction formulation for general time signals

The friction formulation can be generalised to arbitrary (i.e, non-
harmonic) time signals using the Fourier transform. The derivation is
presented in Supplementary Material S4. The resulting convolutional
3D friction formulation is given by


{

𝒖
}

= 𝑠𝑓
(

𝒖(𝑡) − 𝜎
(

𝑔(𝜎𝑡)𝐐𝑇(𝑓𝑡) ∗ 𝒖
)

(𝑡)
)

. (23)

Here, 𝜎 = 𝐴𝜈∕𝐷2 is a vertical frequency scale, 𝐐𝑇(𝑓𝑡) is the 2 × 2
lockwise rotation matrix over an angle 𝑓𝑡 with 𝑓 the Coriolis parameter
nd 𝑔(𝑡) is a kernel that describes the depth-dependent behaviour and
s given by Eq. (S5.22). The symbol ∗ denotes the convolution operator
nd is defined for functions 𝑝(𝑡) and 𝑞(𝑡) as

(

𝑝 ∗ 𝑞
)

(𝑡) = ∫

∞

−∞
𝑝(𝜏)𝑞(𝑡 − 𝜏)𝑑𝜏. (24)

This definition of the convolution operator remains valid even when the
convolution between a matrix and vector is considered. Using linearity,
it follows that this is the same as applying the convolution operator to
each element of the matrix vector product individually.

The convolutional 3D friction formulation may be expanded to find
the following form:


{

𝒖
}

= 𝑠𝑓

[

𝑢(𝑡) − 𝜎
(

ℎ1 ∗ 𝑢
)

(𝑡) − 𝜎
(

ℎ2 ∗ 𝑣
)

(𝑡)
𝑣(𝑡) + 𝜎

(

ℎ2 ∗ 𝑢
)

(𝑡) − 𝜎
(

ℎ1 ∗ 𝑣
)

(𝑡)

]

. (25)

Here, ℎ1(𝑡), ℎ2(𝑡) are known frictional convolution kernels and are
defined in Eq. (S5.21). All friction kernels ℎ1(𝑡), ℎ2(𝑡) and 𝑔(𝜎𝑡)𝐐𝑇(𝑓𝑡)
are causal, meaning that they do not depend on the future of the signal.
Mathematically, this condition requires that the friction kernels vanish
for negative time values (i.e., they must equal 0 for 𝑡 < 0).

The convolutional 3D friction formulation (23) prescribes an in-
stantaneous friction value based on the instantaneous depth-averaged
velocity and its history (weighted according to the convolution kernel
𝑔(𝜎𝑡)𝐐𝑇(𝑓𝑡)), thereby generalising the result for a single harmonic
component where 3D friction depends on the time shifted velocity.
The expanded form (25) illustrates the dependency of the velocity
components on the history kernels ℎ1 and ℎ2.

Comparing the convolutional friction formulation with the tradi-
tional friction formulation shows that the first term is the same as
the traditional friction formulation with 𝑟𝑎 = 1, however, the second
term cannot be captured using the traditional friction formulation as it
introduces history dependent behaviour. This term is required to fully
5

capture the 3D effects within a 2DH model.
4. Results

In this section, an interpretation of the 3D friction formulation is
presented and the implications of this friction formulation are investi-
gated.

4.1. Sensitivity of the tidal ellipse parameters of the 3D friction formulation
— no coriolis

We first concentrate on the harmonic case with no Coriolis force:
𝑓 = 0. In this case the parameters describing the tidal ellipse for
the 3D friction formulation (21) simplify (see Appendix A for analytic
expressions). Since 𝜔 > 0, it follows that ± = 1. Furthermore, since
𝑓 = 0, the Stokes numbers Stk+, Stk− reduce to the classical Stokes
number Stk . As a result, the average amplitude 𝑟𝑎 and average phase
𝜑𝑎 only depend on the nondimensional parameters  and Stk , and the
amplitude ratio 𝑟𝑟 and phase deviation 𝜑𝑑 vanish. The parameters 𝑟𝑎
and 𝜑𝑎 may be interpreted as the scaling and phase shift between the
near-bed velocity 𝒖𝑏 and the depth-averaged velocity 𝒖, respectively, as
illustrated the middle panel of Fig. 1.

In Fig. 2, contour plots of the average amplitude 𝑟𝑎 and average
phase 𝜑𝑎 are shown as functions of the nondimensional parameters 
and Stk . The nondimensional amplitude 𝑟𝑎 (left panel) ranges from
0 to 1. At approximately Stk = 1, where the frictional depth is
comparable in magnitude to the local depth, the contour lines saturate
and larger values of Stk do not significantly influence the value of the
amplitude any more. On the other hand in the region Stk < 1, both
parameters influence the amplitude. The amplitude is approximately
constant along the diagonal line segments where Stk is proportional to
. The phase shift 𝜑𝑎 (right panel) ranges from 0 to 45° (i.e., no phase
shift for 𝜑𝑎 = 0 to a time advancement of 1/8 of the wave period for
𝜑𝑎 = 45°). For large Stokes numbers Stk > 1, the phase shift is very
small. For smaller Stokes numbers, Stk < 1, a region appears where
the phase shift becomes significant for small . For larger values of
, the phase shift decreases to zero again. The sloped contour lines
approximately occur when Stk is proportional to .

To understand these results physically, we consider two (limit)
ases for the Stokes number. We consider very large Stokes numbers
Stk ≫ 1), where the frictional depth occupies the whole water column,
nd very small Stokes numbers (Stk ≪ 1), where the frictional depth
ccupies only a small part of the water column near the bed.

• For large Stokes numbers (Stk ≫ 1), the nondimensional parame-
ter  fully determines the behaviour of the average amplitude
𝑟𝑎 (left panel of Fig. 2). For small  ≪ 1, the partial-slip
boundary condition behaves as a no-slip boundary condition,
resulting in a near-zero velocity at the bed. As a consequence,
the average amplitude 𝑟𝑎 is approximately zero as well, as it may
be interpreted as the scaling between the near-bed and depth-
averaged velocity. Conversely, for large  ≫ 1, the partial-slip
boundary condition behaves as a free-slip boundary condition, so
the near-bed velocity is approximately equal to the free stream
velocity. This causes the velocity profile to be approximately
vertically uniform and the average amplitude 𝑟𝑎 to be close to
unity. In between these two limits, a smooth transition is found
where the full partial-slip condition must be taken into account.
Furthermore, since the frictional depth occupies the whole water
column (Stk ≫ 1), the phase difference between the near-bed
velocity and the depth-averaged velocity remains minor (right
panel).

• For small Stokes numbers (Stk ≪ 1), the effect of the bottom
boundary condition is confined to a small region near the bed, a
boundary layer. The thickness of this boundary layer scales with
the Stokes number Stk . Rescaling the partial slip condition by the
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Fig. 2. Contour plots of the nondimensional average amplitude 𝑟𝑎 and average phase 𝜑𝑎 (in degrees) as functions of the nondimensional parameters  and Stk for 𝜔 > 0.
length scale of the boundary layer 𝑧̃ = (𝑧 + 1)∕ Stk yields (see,
Supplementary Material S2)

Stk

𝒖𝑧̃ = 𝒖𝑏. (26)

Rather than comparing the magnitude of  to unity as we did
for large Stk , we instead compare the magnitude of  to the
magnitude of Stk .
Focussing on the average amplitude 𝑟𝑎. This means that for  ≪
Stk , the no-slip balance dominates, resulting in the slanted dark
blue region for 𝑟𝑎 (left panel of Fig. 2). Conversely, for ≫ Stk ,
the free-slip balance dominates, yielding the slanted yellow region
for 𝑟𝑎. For intermediate values  ≈ Stk , a transition region is
found.
Next, we consider the average phase 𝜑𝑎. For  ≫ Stk , the free-
slip balance dominates causing a uniform velocity profile over
the whole depth and the disappearance of the boundary layer.
Hence, there is almost no phase shift in this case, as depicted
with the slanted dark blue region in the right panel of Fig. 2.
For ≪ Stk , a real boundary layer is formed where the velocity
rapidly decreases from the free stream velocity at the top of the
boundary layer to the much smaller velocity near the bed. The
dynamics in the boundary layer are such that the velocity across
the boundary layer attains at most a phase shift of 45° (see, e.g.,
Batchelor, 1967, p. 355). This is shown with the slanted light
region on the right panel of Fig. 2.

Using a boundary layer analysis for small Stokes numbers (Stk ≪ 1),
it can be shown that the average phase shift 𝜑𝑎 is indeed entirely due
to the phase shift attained in the boundary layer, see Supplementary
Material S2, and can be expressed as

𝜑𝑎 = arctan

(

1

1 +
√

2∕ Stk

)

. (27)

4.2. Sensitivity of the tidal ellipse parameters of the 3D friction formulation
— including coriolis

We consider the sensitivity of the tidal ellipse parameters of the 3D
friction formulation under the Coriolis force, i.e, 𝑓 ≠ 0. We assume that
|𝑓 | < 𝜔 such that ± = 1.

In Fig. 3, the average amplitude 𝑟𝑎, amplitude ratio 𝑟𝑟, average
phase 𝜑𝑎 and phase deviation 𝜑𝑑 are shown as functions of the nondi-
mensional parameters Stk+ and Stk− for  = 10−2. The dashed diagonal
lines, where Stk− = Stk+ = Stk , correspond to the no-Coriolis case.
Along these diagonal lines, the average amplitude 𝑟𝑎 and average phase
𝜑𝑎 correspond to the vertical lines of the no-Coriolis case depicted in
Fig. 2 with  = 10−2.

The top left panel of Fig. 3 shows the average amplitude 𝑟𝑎, which
is largest for small Stk±. When increasing either Stk+ or Stk−, the
amplitude seems to eventually plateau to a constant value. However,
if we increase both Stk± the amplitude 𝑟𝑎 goes to zero. The top right
panel of Fig. 3, displays the phase shift 𝜑 . For  = 10−2, it attains
6
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a maximum near Stk± = 10−1. Increasing or decreasing either Stk+ or
Stk− decreases this value until again a plateau reached. Changing both
Stk±, the phase shift 𝜑𝑎 may go to zero again. The lower left panel
of Fig. 3 displays the amplitude ratio 𝑟𝑟. Along the diagonal line 𝑟𝑟
vanishes and in the small Stk+ large Stk− regime (upper left corner), the
parameter attains a maximum, conversely in the large Stk+ small Stk−
regime (lower right corner) it attains a minimum. The lower right panel
of Fig. 3 shows the phase deviation 𝜑𝑑 . Along the diagonal 𝜑𝑑 vanishes
and along the lines of constant Stk± = 10−1, it attains its maximum and
minimum values.

The phase shift 𝜑𝑎 is generally positively valued, whereas 𝜑𝑑 can
be both positive or negative, indicating that the angle the semi-major
axis of the near-bed tidal ellipse makes with the semi-major axis of the
depth-averaged tidal ellipse can be both to the left and to the right
depending on the sign of 𝜑𝑑 .

The ellipticity of the near-bed tidal ellipse can be recovered by con-
sidering the value of 𝑟𝑟 and the ellipticity of the depth-averaged tidal
ellipse 𝜀. For 𝑟𝑟 = 1, the near-bed tidal ellipse becomes an anticlockwise
rotating circle since 𝜀𝑏 = 1, whereas for 𝑟𝑟 = −1, a clockwise rotating
circle is found. If the depth-averaged velocity describes a line, 𝜀 = 0,
then the ellipticity of the near-bed tidal ellipse is equal to 𝜀𝑏 = 𝑟𝑟. The
near-bed tidal ellipse describes a line for 𝜀𝑏 = 0 which implies that
𝑟𝑟 = −𝜀.

4.3. Example: A narrow well-mixed estuary

To illustrate the effect of the new 3D friction formulation on the
barotropic water motion, a narrow and well-mixed rectangular estuary
is considered. The parameters are uniform in the along- and across-
channel direction and the Coriolis force is neglected. The estuary is
forced at the seaward side with a laterally uniform 𝑀2 tidal constituent
and the lateral and landward sides are closed. The parameter values
used can be found in Table 2. The water motion within this estuary
is computed using four different models: a 3D model, a 2DH model
without friction, a 2DH model where the traditional friction parameter
𝑟𝑎 is chosen such that the best possible fit with the 3D model is
achieved and a 2DH model where the 3D friction parameters (𝑟𝑎, 𝜑𝑎)
are computed using the 3D friction formulation, see Table 3. We define
the best fit as the function that minimises the error in the 𝐿2-norm.

In Fig. 4, the amplitude and phase of the water level of the 𝑀2 tidal
constituent are shown along the longitudinal axis of the estuary. The
water motion computed using the 3D model (blue), 2DH best fit (green)
and 2DH 3D friction (red) have a progressive nature near the mouth
and transition into a standing wave near the landward end, whereas
the water motion computed using the 2DH frictionless model (orange)
is a pure standing wave.

This figure shows that the results obtained using the 3D model
and the 2DH model using the 3D friction formulation are identical.
Comparing the 2DH best fit with the 3D model shows a difference in
amplitude of approximately 60 cm at the landward end and a difference
in phase of approximately 1°.
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Fig. 3. Contour plots of the nondimensional amplitudes 𝑟𝑎, 𝑟𝑟 and phases 𝜑𝑎, 𝜑𝑑 (in degrees) as functions of the nondimensional parameters Stk+ and Stk− for the nondimensional
parameters  = 10−2 and ± = 1.
Fig. 4. Amplitude and phase of the water level of the 𝑀2 tidal constituent as function of the distance from the estuarine mouth. The results are computed using four different
models.
Table 2
The parameters used in the narrow well-mixed estuary example.

Parameters

Geometry 𝐿 Length of estuary 85 km
𝐵 Width of estuary 1.0 km
𝐷 Depth of estuary 10m

Earth 𝑔 Acceleration due to gravity 9.81m s−2

𝜔 𝑀2 angular frequency 1.4 × 10−4 s−1

𝑓 Coriolis parameter 0 s−1

Model 𝐴𝜈 Vertical eddy viscosity parameter 1.0 × 10−3 m2 s−1

𝑠𝑓 Partial slip parameter 3.0 × 10−3 ms−1

Forcing 𝐴𝑀2
𝑀2 amplitude at 𝑥 = 0 1.0m

𝜙𝑀2
𝑀2 phase at 𝑥 = 0 0 deg

Table 3
The friction parameters used for the 2DH model in the narrow estuary example. For
the traditional friction formulation, 𝑟𝑎 is determined such that the best fit with the 3D
model is achieved and for the 3D friction formulation, (𝑟𝑎 , 𝜑𝑎) are computed directly
from the 3D parameters given in Table 2.

Traditional 2DH friction (Fitted) 3D friction (Calculated)

𝑟𝑎 0.13 0.13
𝜑𝑎 (deg) 0 28
7

Next, we compare the 2DH frictionless model with the 3D model.
The phase of the frictionless model does not resemble the phase of
the 3D model, but more strikingly, the amplitude is approximately
40 cm lower than in the frictional 3D model. Under the traditional
2DH friction formulation, increasing the friction always lowers the
response of the estuary. However, under the 3D friction formulation,
increasing the friction may lead to larger responses than the frictionless
model. This implies that, there exist certain regions in the parameter
space, where a 2DH model using the traditional friction formulation is
never able to reproduce the water levels computed using a 3D model,
irrespective of how one tries to calibrate the friction parameter. The
mechanism responsible for this counter-intuitive result is explained
using the amplification plane in Section 4.4.1. In the next section, the
amplification plane is introduced.

4.4. Amplification plane

In the absence of the Coriolis force, the only difference between
the 3D friction formulation and the traditional friction formulation is
the phase shift 𝜑𝑎. To study the effect of the phase shift 𝜑𝑎 on the
water levels in the narrow barotropic estuary, the amplification plane
is introduced. To this end, we consider the amplification 𝑎, which is
defined as the ratio of the amplitude at the landward side and the
forcing amplitude at the seaward side, see Supplementary Material S3
for details. For frictionally dominated systems, the amplification 𝑎 tends
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Fig. 5. Left, classical amplification curves as function of the nondimensional length of the estuary for no, low, medium and high friction values. These values are merely used
to indicate the effect of increasing friction on the amplification. Right, the amplification plane as function of the nondimensional estuarine length with respect to the quarter
wavelength and the quarter decay length scale. The classical amplification curves are also plotted in the amplification plane.
to zero, whereas for systems close to resonance, the amplification 𝑎
tends to infinity.

As a first step, the amplification under the traditional friction formu-
lation is considered. In the left panel of Fig. 5, classical amplification
curves are shown as function of the nondimensional estuarine length
𝐿∕𝜆𝑞 , where 𝐿 is the estuarine length and 𝜆𝑞 is the quarter wavelength
of the frictionless tidal wave. For frictionless estuaries, pure resonance
occurs when the estuarine length 𝐿 is an odd multiple of the quarter
tidal wavelength 𝜆𝑞 (see, e.g., Friedrichs, 2010; Roos et al., 2011).
For frictional systems, the amplification close to the odd multiples
attains a maximum and this maximum decreases as the nondimensional
estuarine length increases.

The right panel of Fig. 5 shows the amplification plane where the
𝑥-axis represents the nondimensional estuarine length 𝐿∕𝜆𝑞 and the 𝑦-
axis represents the nondimensional estuarine length 𝐿∕𝜇𝑞 , where 𝜇𝑞
is the quarter amplification length of the frictional tidal wave, which
is defined as the length where the amplitude of the tidal free wave
has increased by a factor exp(𝜋∕2) ≈ 4.81. Negative values indicate
that the free tidal wave amplitude has decreased by the same factor.
This 𝑥-𝑦 plane is related to the complex 𝜅𝐿 plane, where 𝜅 is the
complex wavenumber, in particular, we have the relationship 𝜅𝐿 =
𝜋∕2 (𝐿∕𝜆𝑞 + 𝑖𝐿∕𝜇𝑞).

Given the model parameters, the pair (𝜆𝑞 , 𝜇𝑞) can be computed.
Importantly, these parameters do not depend on the length of the
estuary 𝐿. The position in the amplification plane can be determined
by computing (𝐿∕𝜆𝑞 , 𝐿∕𝜇𝑞). Thus by varying the length of the estuary
and keeping the other model parameters fixed, straight lines in the
amplification plane are described. In the narrow rectangular estuary,
the amplification 𝑎 is fully determined by the nondimensional pair
(𝐿∕𝜆𝑞 , 𝐿∕𝜇𝑞), see Supplementary Material S3 for details. Using this
procedure, the no, low, medium and high friction curves are obtained
that are shown on the right panel of Fig. 5.

4.4.1. The effect of the phase shift: in front of a resonance peak
In Section 4.3, we have shown an example where the water levels

calculated with a 3D model cannot be replicated by a 2DH model using
a traditional friction formulation. Here, we provide a general explana-
tion of when this phenomenon may (or may not) occur, depending on
the position in the amplification plane.

In this section, the model parameters are chosen such that the fric-
tionless model is located in front of the first resonance peak, whereas
in the next section, the parameters are chosen such that the frictionless
model is located after the first resonance peak.

We consider three friction formulations: the frictionless formulation,
the traditional 2DH friction formulation and the 3D friction formula-
tion. Given the model parameters and friction formulation, the corre-
sponding tidal wave length and decay length scale of the tidal wave
can be computed (𝜆 , 𝜇 ). Using these two numbers, a location in the
8

𝑞 𝑞
amplification plane can be identified that fully characterises the ampli-
fication within the estuary. This allows for the direct comparison of the
effect of different friction formulations on the estuarine amplification.

To isolate the effect of the phase shift 𝜑𝑎 of the 3D friction formu-
lation, it is assumed that 𝜑𝑎 is a free parameter that can be varied be-
tween −180° and 180° without affecting the other parameters, whereas
in reality 𝜑𝑎 is bounded between 0° and 45° and depends on the 3D
parameters, see Supplementary Material S3.

In the left panel of Fig. 6, the first resonant peak in the am-
plification plane is shown together with the amplification computed
using a frictionless, 2DH friction and 3D friction formulation, denoted
by respectively the green, orange and blue dot. The purple curve is
obtained by freely varying the phase shift parameter between −180° and
180°. By setting the phase shift to 𝜑𝑎 = 0°, the original 2DH formulation
is recovered. For the 3D friction formulation the phase shift is chosen
to be 45°, the maximal allowable phase shift under the 3D friction
formulation. Alternatively, when the 3D parameters are known, 𝜑𝑎 can
be computed directly using Eq. (S1.14).

In the right panel of Fig. 6, the amplification along the purple
curve in the amplification plane is shown as function of the phase shift
parameter 𝜑𝑎. The green line shows the amplification of the frictionless
case, the orange dot signifies the amplification with the traditional
2DH friction formulation and the blue dot the amplification under the
maximal allowable phase shift under the 3D friction formulation. Under
the 3D friction formulation, the phase shift is between 0° and 45°. If we
increase the phase shift 𝜑𝑎 within this range the amplification increases.
Even moderate values of the phase shift 𝜑𝑎 result in larger amplification
than the frictionless case.

Thus, if the parameters of the frictionless model are chosen such
that 𝐿∕𝜆𝑞 is smaller than and close enough to an odd number (i.e., in
front of a resonance peak), then the model with 3D friction formulation
with non-zero 𝜑𝑎 may be closer to resonance than the models without
friction or with 2DH friction. To determine in which regions of the
parameter space the phase shift and therefore 3D friction can be
important, the right panel of Fig. 2 can be used (when neglecting the
Coriolis force).

Now we are in a position to explain why the amplification under
the 3D friction formulation can be larger than the amplification without
friction, as observed in Section 4.3. We first compute the position of the
frictionless model in the amplification plane (𝐿∕𝜆𝑞 , 𝐿∕𝜇𝑞) = (0.77, 0).
Thus we are in front of the first resonance peak located at (1, 0).
Roughly speaking, adding 2DH friction (i.e, increasing 𝑟𝑎 from 0 to
0.13, see Table 3) causes the position in the amplification plane to move
towards the right (looking from the origin towards the first resonance
peak). This is similar to the left panel of Fig. 6, starting from the green
dot and moving towards the orange dot. The 3D friction formulation
then tells us that we should approximately rotate this point 𝜑𝑎 = 28°
counter-clockwise (since the average amplitude 𝑟 under the 3D friction
𝑎
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Fig. 6. Left, zoom in before the first resonance peak in the amplification plane with a frictionless, 2DH friction and 3D friction formulation denoted by the green, orange and
blue dots. The purple curve shows the effect of varying 𝜑𝑎 assuming it is a free parameter. Right, the amplification is plotted as a function of the phase shift 𝜑𝑎, assuming it is a
free parameter. The green line represents the frictionless amplification. The orange and blue dot indicate the amplification using the 2DH traditional and 3D friction formulation,
respectively.
Fig. 7. Same as in Fig. 6 but the view has rotated 180 degrees such that we are looking just beyond the first resonance peak.
formulation remains the same, see Table 3). This causes the position in
the amplification plane to move closer towards the first resonance peak.
Hence, 3D friction can bring the system closer towards resonance than
the frictionless model and, therefore, can exhibit larger amplification
than the frictionless model. Referring to the left panel of Fig. 6, this
is similar to moving from the orange dot along the purple line and
stopping halfway between the orange and blue dot. In the right panel
of Fig. 6, the same amplification curve is plotted as function of 𝜑𝑎,
allowing us to better compare the amplification under the different
friction formulations.

4.4.2. The effect of the phase shift: beyond a resonance peak
In the left panel of Fig. 7, the amplification plane is shown just

beyond the first resonance peak with again the green, orange and
blue dot denoting the response under the frictionless, 2DH traditional
and the 45° phase shifted 3D friction formulation. In this case we are
looking from the first resonance peak towards to origin, i.e., the view
has rotated by 180 degrees compared to Fig. 6. Increasing 𝜑𝑎 from
the traditional 2DH friction formulation leads again to larger 𝐿∕𝜆𝑞 .
However, in this case, increasing the phase shift 𝜑𝑎 leads to lower
responses since increasing 𝐿∕𝜆𝑞 means moving away from the first
resonance peak.

In the right panel of Fig. 7, the amplification as function of the
phase shift 𝜑𝑎 is shown. This is the same amplification as experienced
when traversing the purple curve in the left panel of Fig. 7. The
frictionless response is shown by the green line, the orange dot indicates
the traditional 2DH friction formulation response and the blue dot
the amplification under a phase shift of 45°. This figure shows that
increasing the phase shift 𝜑𝑎 leads to lower responses (within the
physical range). This is in contrast to Section 4.3, where increasing the
phase shift 𝜑 led to larger responses.
9

𝑎

5. Discussion

Our results show that friction in a 3D model can lead to inherently
different dynamics than friction in a 2DH model. In certain regions
of the parameter space, 2DH models cannot even be calibrated to
approximate the 3D results properly, as is illustrated in Section 4.3. This
mismatch is primarily caused by the formation of a Stokes boundary
layer near the bed. Such a layer is formed when both the Stokes number
and the nondimensional parameter  are small.

The difference between linearised depth-averaged and depth-resol-
ving models arises from the difference between the near-bed and
depth-averaged velocity, leading to differing bed shear stresses and
therefore dynamics. The literature mentions three aspects related to
this discrepancy. 3D and 2DH friction may differ because the near-
bed and depth-averaged velocity may differ in direction and magnitude
due to 1) phase differences (Vreugdenhil, 1994), 2) Coriolis deflec-
tion (Mofjeld, 1980) and 3) frequency dependency (Zielke, 1966). We,
for the first time, show how to consistently parametrise the effect of
the depth in a 2DH model, including these three aspects, such that
the same depth-averaged dynamics as in the depth-resolving model are
described. This new parametrisation can be used in various geophysical
systems where the effects of density are negligible such as well-mixed
coastal seas and estuaries. Perhaps, this parametrisation can even be
used in 2DH atmospheric models where the effects of Coriolis are often
dominant.

This work focusses on the linear dynamics of the barotropic tide
in shallow waters. The exact reduction from a linearised 3D model to a
2DH model is possible by exactly solving the 2DH closure problem: how
to parametrise the near-bed velocity in terms of the depth-averaged
velocity such that the depth-averaged dynamics are preserved? This
exact reduction is possible under certain assumptions, which may not
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always be satisfied. For example, the linearising the quadratic friction
law and neglecting the advective terms is possible if the velocities are
sufficiently small and the length scale sufficiently large. However, in
various applications these conditions are not satisfied and care should
be taken when these nonlinearities are important since the 3D friction
formulation does not directly extend to these cases. Still, in the cases
where we find that 2D and 3D friction are not too different, it is
expected that this conclusion extends to a nonlinear model as well.
In other cases, it is unclear if a parametrisation can be derived and
this requires further research. Another simplifying assumption is the
use of a vertically uniform eddy viscosity parameter. Ianniello (1977)
has found that the solutions are not overly sensitive to the vertical eddy
viscosity profile, except near the bed. This opens the door for further
research to investigate how different near-bed eddy viscosity profiles
affect the parametrisation of the near-bed velocity. It is expected that
the methods and techniques described in this paper can still be used to
analyse these cases.

6. Conclusion

In this paper, we have identified the differences in friction between
a 3D and 2DH model and derived an exact friction formulation needed
to reproduce the results of a linearised 3D model in a 2DH model.
This required us to change the traditional friction parameter into a
formulation that takes into account the past of the velocity signal. For
harmonic signals, we have analysed in detail when these adaptations
are important and this showed that it is especially important when the
Stokes number is small. Furthermore, using the 3D friction formulation,
a perfect match between the depth-averaged dynamics of two models
is found, which was not possible under the traditional 2DH friction
formulation. This indicates that the additional phase shift and cross-
dependence of the friction terms can be important to correctly resolve
the three-dimensional dynamics of the water motion.
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Appendix A. The bed shear stress relation

In this section, the bed shear stress relation based on the 3D model
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is derived. Winant (2007) and Kumar et al. (2016) have shown how f
to solve the vertical structure of the velocity profile analytically for a
single tidal constituent with angular frequency 𝜔. Since this parameter
plays a crucial role in our derivation, we make this parametric de-
pendence explicit using the notation ‘;𝜔’. Furthermore, we have found
that a matrix notation is preferable for clarity and brevity. The matrix–
vector form of the horizontal velocity vector with analytical vertical
structure reads

𝑼 (𝑥, 𝑦, 𝑧;𝜔) = 𝐏 𝐜(𝑥, 𝑦, 𝑧;𝜔)𝐏∗ ∇𝑍(𝑥, 𝑦;𝜔), (A.1)

with the horizontal gradient operator given by ∇ = (𝜕𝑥, 𝜕𝑦)𝑇 , the
constant unitary matrices read

𝐏 = 1
√

2

[

1 1
−𝑖 𝑖

]

, 𝐏∗ = 1
√

2

[

1 𝑖
1 −𝑖

]

, (A.2)

and the vertical structure diagonal matrices for 𝓁 = 1, 2 given by

𝑐𝓁𝓁(𝑥, 𝑦, 𝑧;𝜔) =
𝑔

𝐴𝜈𝛼2𝓁𝓁

{

𝑠𝑓 𝛽𝓁𝓁 cosh
(

𝛼𝓁𝓁(𝑧 − 𝑅)
)

− 1
}

, (A.3)

ith the diagonal matrices

𝓁𝓁(𝑥, 𝑦;𝜔) =

√

𝑖
(

𝜔 + (−1)𝓁+1𝑓
)

𝐴𝜈
, (A.4)

𝛽𝓁𝓁(𝑥, 𝑦;𝜔) =
1

𝐴𝜈𝛼𝓁𝓁 sinh
(

𝛼𝓁𝓁𝐷
)

+ 𝑠𝑓 cosh
(

𝛼𝓁𝓁𝐷
) . (A.5)

ere, the subscript 𝓁𝓁 denotes taking the 𝓁th diagonal element of the
× 2 matrices.

To derive an exact parametrisation for the bed shear stress, exact
xpressions for the near-bed and depth-averaged velocity are required.
hese can be obtained exactly since the vertical structure of the velocity
rofile is known analytically. The near-bed velocity is obtained by
valuating the vertical analytical velocity near the bed 𝑧 = −𝐻 and

is given by

𝑼 𝑏(𝑥, 𝑦;𝜔) = 𝐏 𝐜𝑏(𝑥, 𝑦;𝜔)𝐏∗ ∇𝑍(𝑥, 𝑦;𝜔), (A.6)

with the vertical structure diagonal matrix evaluated near the bed
𝑧 = −𝐻 given by

𝑐𝑏,𝓁𝓁(𝑥, 𝑦;𝜔) =
𝑔

𝐴𝜈𝛼2𝓁𝓁

{

𝑠𝑓 𝛽𝓁𝓁 cosh
(

𝛼𝓁𝓁𝐷
)

− 1
}

. (A.7)

he depth-averaged velocity is obtained by depth-averaging the vertical
nalytical velocity and reads

𝑼 (𝑥, 𝑦;𝜔) = 𝐏 𝐜(𝑥, 𝑦;𝜔)𝐏∗ ∇𝑍(𝑥, 𝑦;𝜔), (A.8)

ith the depth-averaged diagonal matrix given by

𝑐𝓁𝓁(𝑥, 𝑦;𝜔) =
𝑔

𝐴𝜈𝛼2𝓁𝓁

{

𝑠𝑓 𝛽𝓁𝓁
𝛼𝓁𝓁𝐷

sinh
(

𝛼𝓁𝓁𝐷
)

− 1

}

. (A.9)

The next step is using the exact expressions for the near-bed and
depth-averaged velocity to obtain an exact parametrisation for the bed
shear stress in the Fourier domain. We assume that there exists a
complex-valued matrix 𝐑3D such that we may express the bed shear
stress in the Fourier domain in terms of the depth-averaged velocity as

𝑠𝑓 (𝑥, 𝑦)𝑼 𝑏(𝑥, 𝑦;𝜔) = 𝐑3D(𝑥, 𝑦;𝜔)𝑼 (𝑥, 𝑦;𝜔). (A.10)

ubstituting the exact expressions for the near-bed and depth-averaged
elocities results in the following expression for the complex-valued
riction matrix
3D(𝑥, 𝑦;𝜔) = 𝑠𝑓 (𝑥, 𝑦)𝐏 𝜣(𝑥, 𝑦;𝜔)𝐏∗, (A.11)

here we have defined the non-dimensional diagonal matrix

𝓁𝓁(𝑥, 𝑦;𝜔) =
𝑐𝑏,𝓁𝓁(𝑥, 𝑦;𝜔)
𝑐𝓁𝓁(𝑥, 𝑦;𝜔)

. (A.12)

he entries of this non-dimensional matrix play a key role in the 3D
riction formulation.
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Using Eqs. (A.4), (A.5) and some algebra, it is found that the
elements of this non-dimensional matrix may be expressed as

𝛩𝓁𝓁(𝑥, 𝑦;𝜔) =
−2

𝓁

1 −2
𝓁 −

𝓁

tanh𝓁

, (A.13)

where we have identified two non-dimensional parameters

(𝑥, 𝑦) =
𝐴𝜈
𝑠𝑓𝐷

, 𝓁(𝑥, 𝑦;𝜔) = 𝛼𝓁𝓁𝐷. (A.14)

The first non-dimensional parameter  is the ratio between the vertical
eddy viscosity 𝐴𝜈 and the product of the partial-slip parameter 𝑠𝑓
and the depth 𝐷. This non-dimensional parameter may be derived
from the partial-slip boundary condition. The second non-dimensional
parameter is the product of the vertical decay length scale 𝛼𝓁𝓁 and the
epth 𝐷. This non-dimensional parameter is complex-valued and its
odules is inversely proportional to the Stokes number. Importantly,

he second non-dimensional number depends on the frequency 𝜔 due
o the frequency dependence of 𝛼𝓁𝓁 .

For the computations, the complex nondimensional number 𝓁 is
sed. However, for interpretation purposes we may write this complex
umber in polar form using two real-valued nondimensional parame-
ers

1,2 =
1

Stk±
exp

(

𝑖𝜋∕4±
)

, (A.15)

with the real-valued nondimensional parameters given by

Stk±(𝑥, 𝑦;𝜔) =
1
𝐷

√

𝐴𝜈
|𝜔 ± 𝑓 |

, ± = sign(𝜔 ± 𝑓 ). (A.16)

The index 𝓁 = 1 corresponds to the + sign and the index 𝓁 = 2
corresponds to the − sign.

The elements of the 3D friction matrix are found by expanding the
matrices in Eq. (A.11) and this yields

𝐑3D(𝑥, 𝑦;𝜔) = 𝑠𝑓
1
2

[

𝛩11 + 𝛩22 𝑖(𝛩11 − 𝛩22)

−𝑖(𝛩11 − 𝛩22) 𝛩11 + 𝛩22

]

. (A.17)

The elements of this matrix can be expressed in polar form as

3D(𝑥, 𝑦;𝜔) = 𝑠𝑓

[

𝑟1𝑒𝑖𝜑1 −𝑟2𝑒𝑖𝜑2

𝑟2𝑒𝑖𝜑2 𝑟1𝑒𝑖𝜑1

]

, (A.18)

where we have defined the amplitudes and phases

𝑟1 =
1
2
|

|

|

𝛩11 + 𝛩22
|

|

|

, 𝑟2 =
1
2
|

|

|

𝛩11 − 𝛩22
|

|

|

, (A.19)

1 = arg(𝛩11 + 𝛩22), 𝜑2 = −𝜋
2
+ arg(𝛩11 − 𝛩22). (A.20)

No coriolis
The 3D friction matrix simplifies if there is no Coriolis force (𝑓 = 0).

n this case, the coefficient 𝛼𝓁𝓁 becomes independent of the index 𝓁,
hus 𝛼11 = 𝛼22. Since all the other coefficients only depend on the
ndex 𝓁 through the 𝛼𝓁𝓁 ’s, it follows that all coefficients become 𝓁
ndependent. As a consequence, we have 𝛩11 = 𝛩22 and, therefore,

3D(𝑥, 𝑦;𝜔) = 𝑠𝑓

[

𝛩11 0

0 𝛩11

]

= 𝑠𝑓𝛩11𝐈2. (A.21)

The polar form of the elements simplifies to

1 = |𝛩11|, 𝑟2 = 0, 𝜑1 = arg(𝛩11), 𝜑2 = −𝜋
2
. (A.22)

The relevant parameters in this case are 𝑟1 and 𝜑1. The parameter 𝜑2
is not relevant in the no Coriolis case since 𝑟2 = 0.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ocemod.2024.102330.
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