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A B S T R A C T

The objective of this paper is to investigate which approach would lead to more reliable CubeSats: full
subsystem redundancy or improved testing. Based on data from surveys, the reliability of satellites and
subsystems is estimated using a Kaplan–Meier estimator. Subsequently, a variety of reliability models is defined
and their maximum likelihood estimates are compared. A product of a Lognormal distribution addressing
immaturity failure and a Gompertz distribution addressing wear-out is found to best represent CubeSat
reliability. Bayesian inference is used to find realistic wear-out parameters by using failure data of small
satellites. Subsystem reliability estimates are subsequently found using a similar approach. A reliability model
for CubeSats with redundant subsystems is established, verified and applied in a Monte Carlo simulation.
The results are compared with a model for reduced immaturity failure. Allocating resources to reduction of
immaturity failures through improved testing is considered to be superior to allocating these resources to the
implementation of subsystem redundancy.
1. Introduction

This paper investigates the reliability of CubeSats and a key choice
for improving this. The CubeSat concept was introduced in 1999 by
Puig-Suari and Twiggs [1] of the California Polytechnic State Univer-
sity. A CubeSat is a satellite with standardized mechanical interfaces
for a launch interface adaptor and comprises one or more units of
10 × 10 × 10 cm (1U). First a literature study will be provided on
satellite reliability statistics, redundancy in CubeSats and development
approaches to increase reliability. From this, the research question will
be provided and motivated.

1.1. Satellite reliability data and statistics

According to a study of 156 satellite failures of all mass classes [2],
41% occurred in the first year of operations. Another study, focusing on
small satellite reliability which analyses the satellite failure and anoma-
lies of subsystems of 222 satellites up to 500 kg, provides reliability
over operational lifetime [3]. One of the conclusions is that satellites
below 10 kg show a relatively high infant mortality rate and short
lifetime compared with satellites between 10 kg and 500 kg. Telemetry,
tracking and command (TT&C), the Thermal Control System (TCS),
and the mechanisms and structures (M&S) contribute most to infant
mortality, while the EPS contributes to the largest number of failures
overall [3]. In a statistical study on the first 100 launched CubeSats
performed in 2013 [4], mission failures of CubeSats are analysed on
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a high level. One major conclusion is that for a third of all failed
missions radio signals have never been received after launch. In a
study of Swartwout in 2017, focusing on university class satellites [5],
it is found that a quarter of these missions are dead-on-arrival. The
universities that produce multiple spacecraft show significant improve-
ment in success. Swartwout states, based on personal experience, that
‘‘student-led projects often fail because of lack of time/resources given
to systems-level testing’’ [5]. A NASA report presents statistical analysis
on CubeSat reliability [6] based on the database from Swartwout [7].
Out of the 390 CubeSats analysed, only the data of 21 CubeSats was
deemed appropriate and complete for use in statistical regression. A
Weibull fit is provided, but it is also concluded that the lack of useful
data makes practical reliability estimation difficult [6]. According to a
recent extensive study in 2019 on 855 CubeSats by Villela et al. [8],
mission success rates have risen from 30% in 2005 and levelled off
to approximately 75% in 2018. Infant mortality is found to be dom-
inant overall. The associated public database [9], however, does not
provide dates of failure or dates related to the listed operational status.
It is therefore not suitable for reliability modelling. Langer estab-
lished a CubeSat failure database and performed statistical analysis
in 2016 [10]. This database partially originates from a cooperative
survey with the first author of this paper. It was first used in a
study on CubeSat electrical interfaces [11] and is further extended by
Langer through literature search and individual correspondence. Public
available databases from Swartwout [7] and Kulu [12] have been used
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to address CubeSat teams and to validate some data. The study presents
a maximum likelihood estimate of CubeSats and their subsystems using
a Weibull mixture and a ‘percentage-non-zero’ component to address
dead-on-arrival specifically [10]. The associated (non-public) database
provides the most comprehensive failure data on CubeSats available for
further study, comprising data on 178 satellites after sanitation of all
input.

1.2. Redundancy to improve reliability

A common approach to reliability in larger spacecraft is to apply
redundancy to critical subsystems. When redundancy is applied to
the full subsystem unit(s) and its components (e.g. sun sensors), it is
possible to use cross-strapping between them using redundant electrical
interfaces. This is for example applied on the Flying Laptop Platform
(FLP) satellite [13] and the Mars Reconnaissance Orbiter [14]. This
is a small satellite of 117 kg and a medium sized satellite of 2180 kg
respectively. Both have sufficient volume to implement such a strategy.
The limited volume of CubeSats typically prohibits such an advanced
redundancy concept. Delfi-C3, a 3U CubeSat of Delft University of

echnology, offered redundancy in the form of a non-identical backup
ystem for the acquisition and transmission of data of one its demon-
tration payloads [15]. This system was however not fully worked
ut during launch due to lack of time. On its successor Delfi-n3Xt,
single-point-of-failure free design philosophy was initially applied

o the critical subsystems for the key mission objectives [16]. This
ields redundancy of the on-board computer, the radio transceivers
nd parts of the electrical power subsystem. Other subsystems had
artial redundancy, such as a simplified backup system for attitude
etermination and control to secure de-tumbling. Especially the non-
dentical redundancy was complex and time-consuming to implement.
lso, full single-point-of-failure free design was not achieved, while the

ime to test out all the arbitration systems was limited. The experi-
nces with these satellites on the implementation of redundancy is a
ey motivation to investigate if this is the right strategy to improve
eliability.

.3. Development strategies to improve reliability

Many papers on CubeSat reliability focus on lessons learnt from
evelopment and flight experience. Menchinelli et al. provides an
pproach to improve CubeSat reliability with the aid of Failure Mode,
ffects and Criticality Analysis (FMECA) using a detailed step-wise
pproach [17]. Pantoji et al. compared several failure identification
ools for their CubeSat: Fault Tree Analysis (FTA), Failure Mode Effect
nalysis (FMEA), FMECA, Probability Risk Assessment (PRA) and Risk
esponse Matrix (RRM) [18]. They considered RRM most useful for

heir project because of its simplicity which was a main criterion for
student-driven project. Nieto-Peroy & Emami used the experience

f several university class CubeSats to address lessons learnt in terms
f team, procurement, procedures, testing and cooperation to be able
o reduce associated failure probability [19]. Venturini et al. [20]
nvestigated CubeSat reliability using interviews of CubeSat developers
n the United States. Out of the 27 anomalies discussed during the in-
erviews, it was expected that 19 of them could have been avoided with
ore ground testing. Based on the shared experiences, development

uidelines are formulated with a strong emphasis on (more extensive)
esting [20]. Furthermore, a warning is provided that commercial-off-
he-shelf subsystems and components are not always compliant to the
pecifications. Doyle et al. present findings of a survey with eight
esponses from different CubeSat developers, indicating that mission
evel testing is done by a majority of the teams but limited to hours or
eeks [21]. It is concluded that guidelines for comprehensive system

evel testing, including worst case and failure scenarios, is desired.
erthoud et al. analysed the project management of university class
ubeSats through a few CubeSat case studies [22]. It provides lessons

earnt on a proper organization with a leading staff and motivated stu-
ents to increase mission success and emphasizes the need for extensive
2

esting.
1.4. Motivation and research question

According to literature, reliability of CubeSats is a concern and
failures often occur early in life; in the first months while the mission
design life time is a year or more. Applying redundancy is a commonly
applied measure to improve system reliability in larger spacecraft.
Experience with CubeSats is limited and indicates extensive resources
are needed to implement redundancy properly. CubeSats have limited
volume and financial budgets. Earlier studies on CubeSat innovations
propose lean electrical interfaces [23,24] and integration of main satel-
lite bus subsystems into one physical unit for additional payload vol-
ume [25]. Such an architectural strategy would conflict with subsystem
redundancy. Financial, technical and human resources, which would be
needed for implementing redundancy, can alternatively be allocated to
improving the reliability of the individual subsystems and interfaces
through more extensive testing. The suggestions in literature are to im-
prove development practices, with an emphasis on system level testing.
These qualitative studies however do not investigate the quantitative
impact of improved testing. Hard conclusions of which approach is
better, considering limited resources, can therefore not yet be made.
This leads to the following research question for this study:

What leads to higher CubeSat reliability over its mission life time: full
subsystem redundancy or improved testing?

Additionally, a combination of these measures and potential fur-
ther improvement through iterative satellite development will also be
investigated.

2. Scope and data

In this section, the scope of the study, failure classification and the
available data is explained.

2.1. Scope

The scope of this reliability study is limited to critical failures of
CubeSats caused by failing subsystems including their physical inter-
faces. This means that the failure within a subsystem causes loss of
the satellite or its mission [26]. CubeSats are considered to have a
limited mission scope for which typically all subsystems are essential
to function properly. If a critical subsystem is not able to recover from
its failure, only redundancy can help to mitigate satellite failure. In
order to model the reliability of a satellite within the defined scope and
investigate the effect of subsystem redundancy and improved testing, a
model for irrecoverable subsystem failures is needed.

2.2. Failure classification

For this study, a classification is desired which divides failures into
a limited set of groups which have specific behaviour in terms of
failure rate over time and can be linked to the two satellite failure
reduction strategies, subsystem redundancy and improved testing (see
Section 1.4). The bathtub curve is a widely used theoretical reliability
model for the failure rate of a group of devices. Its origin is unknown,
but it is described many times for hundreds of years [27]. An example
of the bathtub curve is shown in Fig. 1.

The bathtub curve starts at the roll-out of operations of a system
with a declining failure rate. Failures due to poor design, production
errors of components, too limited testing and/or wrong analysis of
the operational environment may lead to early failure in life. For this
reason, these failures are often called ‘infant mortality’. Subsequently
follows a period of random failures, represented by a constant failure
rate. At a later lifetime of the system, wear-out failures are shown
with increasing failure rate. Eventually every satellite subsystem will
wear-out due to accumulation of environmental effects and/or internal
ageing throughout its active operation. Wear-out is thus inevitable on

the long term irrespective of the maturity of the development.
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Fig. 1. Schematic bathtub failure rate curve.

Although the bathtub curve in Fig. 1 provides a continuous model
over time, it has a few issues. When using adjacent time windows, each
class of failures is cut-off in time. This is not realistic for any of the
failure classes. Moreover, the required boundary conditions, to avoid
discontinuities in failure rate, will complicate the estimation of model
parameters. A compound of continuous models over time, instead of
adjacent, is therefore preferred. In this case, however, the tails of
the decreasing and increasing failure rate models may be difficult to
distinguish from a constant failure rate model. Furthermore, according
to Klutke et al. there is a lack of empirical evidence for the theoretical
bathtub curve [27] and according to Wong ‘there is no such thing
as random failure’ [28]. If a specific random event occurs frequently,
e.g. many times per day, the majority of satellites are developed such
that they are able to survive this. However, some may fail. If a specific
random event occurs early in life, the term ‘infant mortality’ applies. If
the average time between such random events increases, the potential
failure rate will decrease and the period in which a failure can be
expected increases. This makes the term ‘infant mortality’ less suitable.
There are many different events which may cause failure and the
time between these events varies. The events may be environmental
(e.g. particle radiation), deterministic (e.g. a software state) or user-
imposed (e.g. change of operation by telecommand). They have in
common that they can in principle be mitigated by extensive analysis,
on-ground and in-orbit testing followed by necessary improvements. A
widely accepted term for a long-term decreasing failure rate does not
exist and new terms will be subject to debate. It is however helpful
for this paper to continue with a brief term. For this paper, the term
‘immaturity failure’ is introduced which comprises infant mortality as
well as long-term failures which exhibit a decreasing failure rate. For
this study, immaturity failures and wear-out failures together constitute
all possible satellite failures.

2.3. Selected failure data

For reliability modelling in this study, CubeSat failure and survival
data is needed at specified times in orbit. As described in Section 1.1,
the ‘CubeSat failure database’ from Langer [10] fulfils this objective
and is most comprehensive after sanitation compared to other can-
didates [7,12]. The database contains 71 observed failures from 178
CubeSats for an observation window from the 20th of May 2003 to
the 31st of December 2014. It contains censor times and failure times
at satellite and subsystem level. A failure indicates the loss of satellite
operability or loss of a main mission objective. A censor time indicates
that the satellite was turned off intentionally after achieving mission
success, de-orbited after successful operations or was still operational
at the time of inquiry. A histogram of the data is shown in Fig. 2.
While a satellite failure is relatively easy to identify by the operators
and provides robust data, allocation to a specific subsystem is less
trivial. The full CubeSat Failure Database cannot be disclosed due
3

Fig. 2. Histogram of data from CubeSat failure database.

to agreements with some interviewed persons, but a significant part
is provided in a public database [29]. A few examples, with their
subsystem allocation between brackets, are:

• The determined mission failure cause is a polarity of magnetic sensor
became inverted. [attitude determination and control]

• The determined satellite failure cause is degradation of solar cells,
which finally lead to negative energy budget. [electrical power sub-
system]

• For the satellite failure, we have one or more hypotheses: on-board
boot code was overwritten during a hardware reset or software crash
or both [command and data handling]

• The determined failure cause is unknown [unspecified]
Key hypotheses are used for allocation of failures to subsystems,

which introduces some sensitivity to the subjective interpretation of
these observations. This is considered acceptable, provided that the
subsystem model estimation does not depend very strongly on this
limited set of subsystem failure observation. The sampling method
provided in Section 5.3 accounts for this.

The initial survey database [29] also contains some information on
mission design life times. They range from one month to five years
for launched CubeSats. Langer et al. already provided reliability model
estimates for CubeSats and their main subsystems [10]. While these
models are good fits and are useful for high level analysis, they were
unfit for the purpose of this study as will become clear in Section 3.3.

A second database containing small satellite failures data, already
used in another study at TU Delft by Guo and Monas [3], is also
available for this study. It contains data on 152 satellites launched
between 1990 and 2010 with a mass lower than 500 kg and reports
83 failures and 69 censored items.

The small satellite database will be used to check whether the model
selection for CubeSat failures can be generalized to other classes of
satellites. Furthermore, the fact that in this database there are rela-
tively more failures beyond one year compared to the CubeSat failure
database, as can be seen in Fig. 3, will be used as input for Bayesian
inference as explained in Section 4.2.

3. Method

Based on the defined failure classification, several steps are required
to answer the research question. These steps are provided in Fig. 4. This
method results in a simulation based on empirical CubeSat reliability
data.

3.1. Non-parametric reliability model

The first step of the reliability analysis is to censor the data and
apply the Kaplan–Meier Estimator (KME) [30]. This is a non-parametric
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Fig. 3. Histogram of data from small satellite failure database.

Fig. 4. Flow diagram of reliability analysis.

survival function (𝑆) which can be directly established from failure and
censor times of satellite and subsystem data [31,32].

𝑆 (𝑡) =
∏

𝑖∶𝑡𝑖<𝑡

(

1 −
𝑑𝑖
𝑛𝑖

)

(1)

KME provides the estimated survival function over time 𝑡 and is
updated at each time 𝑡𝑖 that a number of failures 𝑑𝑖 occur, having 𝑛𝑖
operational units at risk. The variance of the estimator can be calcu-
lated by Greenwood’s formula [33]. The confidence interval (CI) can
subsequently be determined by applying the 𝛼-quantile of the normal
distribution 𝑧𝛼∕2. For a 95% confidence interval, 𝑧𝛼∕2 = 𝑧0.025 = 1.96.

𝑣𝑎𝑟
(

𝑆(𝑡)
)

= 𝑆 (𝑡)
2 ∑

𝑖∶𝑡𝑖<𝑡

(

𝑑𝑖
𝑛𝑖
(

𝑛𝑖 − 𝑑𝑖
)

)

(2)

𝐶𝐼 = 𝑆(𝑡) ± 𝑧𝛼∕2

√

var
(

𝑆 (𝑡)
)

(3)

KME is useful as first step as it can act as input for a least squares
estimator and as a reference to assess the goodness-of-fit of a parametric
model.

3.2. Parametric reliability models

In contrast to non-parametric models, parametric models provide
a smooth distribution over time to ‘fit’ the empirical data. The basic
metric is the reliability as function of time 𝑅(𝑡), similar to 𝑆(𝑡) of KME,
representing the expected fraction of survivors over time. From this,
other measures of reliability can be derived such as the probability
density 𝑓 (𝑡) and the failure rate 𝜆(𝑡) [34].

𝑓 (𝑡) = −
𝑑𝑅(𝑡)
𝑑𝑡

(4)

𝜆(𝑡) =
𝑓 (𝑡) (5)
4

𝑅(𝑡)
Table 1
Overview of basic reliability models.

Weibull: gamma:

𝑅(𝑡) = exp
[

−
(

𝑡
𝜃

)𝛽
]

𝑅(𝑡) = 1 − ∫
𝑡
𝜃

0 𝑡𝛽−1𝑒−𝑡𝑑𝑡
∫ ∞
0 𝑡𝛽−1𝑒−𝑡𝑑𝑡

Gompertz: log–logistic:

𝑅(𝑡) = exp
[

−𝜂
(

𝑒
(

𝑡
𝜃

)

− 1
)]

𝑅(𝑡) = 1 − 1
1+(𝑡∕𝜃)−𝛽

log-normal:

𝑅(𝑡) = 1 − 1
𝜎
√

2𝜋 ∫

𝑡

0

2
𝑥
exp

[

− 1
2
(ln(𝑥) − 𝜇)2

2𝜎2

]

𝑑𝑥

Previous research on satellite lifetime reliability has focused primar-
ily on the Weibull distribution [3,10,35]. As indicated in Section 2,
there is an interest in models capable of representing both immatu-
rity failure and wear-out. This investigation is complemented with
the gamma, Gompertz, log–logistic and log-normal distributions (see
Table 1) which are often applied in survival analysis in general [36,37]
to identify if they would yield better distributions than the Weibull. The
gamma, log-normal and log–logistic distributions have a long right tail
and are therefore considered less suitable for wear-out. The Weibull
distribution [38] can be used for ‘immaturity failures’ when 𝛽 < 1.
When 𝛽 > 2 the probability density starts concave upward, which is
considered a suitable boundary condition for wear-out phenomena. For
the gamma distribution, the failure rate is monotonically decreasing
with 𝛽 ≤ 1. The Gompertz distribution [39] can only be used to address
wear-out failures. When 𝜂 ≥ 0.1, the probability density at 𝑡 = 0 is
already significant which would interfere with immaturity failure so a
boundary condition of 𝜂 ≤ 0.1 is deemed appropriate. The log–logistic
distribution can be used for immaturity failures with a monotonically
decreasing failure rate 𝜆(𝑡) with shape factor 𝛽 < 1. For the log-normal
distribution, the mode can be skewed towards 𝑡 = 0 when 𝜎2 ≫ 𝜇. This
can be used to model immaturity failure.

To model immaturity failure and wear-out, a compound of the basic
reliability models is needed. A mixture of 𝑛 Weibull distributions is a
common method applied in previous satellite reliability studies [10,35]
using 𝛼𝑖 as the normalized weight factor for each component 𝑖:

𝑅(𝑡) =
𝑛
∑

𝑖=1
𝛼𝑖𝑅𝑖(𝑡) (6)

A mixture model divides all devices in populations, where the
weight factor 𝛼 can be regarded as the probability of failing according
to a basic model, for example immaturity failure or wear-out. Castet
& Saleh have applied the Weibull–Weibull mixture in their study [35].
They use the maximum error and average error over time between the
Weibull distribution and the non-parametric data as the benchmark
and proved a good quality of the fit. However, the estimate also
yields a reliability of still 0.86 after 100 years which is considered
unrealistic. For this study, long term behaviour is considered important.
A potential problem with mixtures is that wear-out is not effective
on the population allocated to immaturity failure, which may create
a problem if the latter is not diminished in time. Therefore, next
to mixtures of different basic models, also an alternative compound
is investigated. Such alternative to a mixture, is a product of the
basic reliability models. The basic reliability models would then act
as reliability components put in series and means that all devices are
subject to the risk of both immaturity failure and wear-out:

𝑅(𝑡) =
𝑛
∏

𝑖=1
𝑅𝑖(𝑡) (7)

A reliability product requires that the immaturity failure component
leaves sufficient survivors before the peak of the probability density of
the wear-out component to avoid that the latter is superfluous. This is
a key difference with respect to reliability mixtures, which requires the
opposite.
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Reliability mixtures and reliability products are both considered
candidates for modelling satellite reliability assuming both immaturity
failure and wear-out. With four basic models for immaturity failure,
two for wear-out and two types of compounds (mixtures and products),
a total of 16 combinations are under investigation.

3.3. Satellite model estimation

There are various ways to estimate the parameters of a probabil-
ity function based on a set of empirical data, such as least squares,
maximum likelihood and Bayesian inference.

For varying parameters vector 𝜽 failure times 𝑡𝑖, the least squares
stimate 𝜽𝐿𝑆𝐸 can be calculated by minimizing the sum of the residuals
𝑆𝑟𝑒𝑠:

S𝑟𝑒𝑠 =
𝑛
∑

𝑖=1

(

𝑆(𝑡𝑖) − 𝑅(𝑡𝑖|𝜽)
)2

(8)

𝐿𝑆𝐸 = arg min𝑆𝑆𝑟𝑒𝑠(𝜽|𝒕). (9)

When also using also the censor times 𝑡𝑗 , the maximum likelihood
stimate 𝜽𝐿𝑆𝐸 can be calculated by maximizing the likelihood 𝐿:

(𝜽|𝒕) =
𝑛
∏

𝑖=1
𝑓 (𝑡𝑖|𝜽) ⋅

𝑚
∏

𝑗=1
𝑅(𝑡𝑗 |𝜽) (10)

𝜽𝑀𝐿𝐸 = arg max𝐿(𝜽|𝒕) (11)

For some reliability models, the probability density at 𝑡 = 0 is zero.
When failures are present at exactly 𝑡 = 0, so will the likelihood and as
a consequence the MLE will fail. The CubeSat and small satellite failure
databases have a few of those entries. These satellites were either dead-
on-arrival or have worked up to a few hours but failed before the
first possible ground station contact. To mitigate the MLE issue and to
account for limited potential operational lifetime, a bias of +0.1 day is
applied for reported events at 𝑡 = 0. Although this value is arbitrary, it is
sufficiently high to avoid computational issues while it is insignificantly
small compared to the data set observation window of many years.

Bayesian inference is based on the Bayes theorem [40], where a
prior belief in the form of a probability distribution of the model
parameters 𝑃 (𝜽) is introduced to calculate the posterior distribution of
those parameters:

𝑃 (𝜽|𝒕) = 𝐿(𝒕|𝜽) ⋅ 𝑃 (𝜽)
∫ 𝐿(𝒕|𝜽) ⋅ 𝑃 (𝜽) 𝑑𝜽

∝ 𝐿(𝒕|𝜽) ⋅ 𝑃 (𝜽). (12)

The integral in the denominator, which ensures integration of all
values to one, is constant and can be ignored if an improper posterior
is allowed. Similar to the MLE, the Maximum-a-Posteriori (MAP) can
be calculated.

𝜽𝑀𝐴𝑃 = arg max𝑃 (𝜽|𝒕) (13)

For censored satellite reliability data, MLE is found to be a suitable
method for parametric estimation [10,32,41]. Bayesian inference can
even lead to improved estimation [3]. However, it requires prior in-
formation on the model as a uniform prior will otherwise lead to the
same result as the MLE. First an appropriate model needs to be found,
for which MLE is chosen as estimator. If it is possible to establish an
informed prior, Bayesian will subsequently be applied.

3.4. Comparing model quality

The compare the quality of the different models, several criteria are
used.
5

Criterion 1: Goodness-of-fit
The goodness-of-fit can be determined by the coefficient of determi-

nation 𝑅2 based on the sum of the squares of the residuals 𝑆𝑆𝑟𝑒𝑠 divided
by the sum of squares w.r.t. the mean 𝑆𝑆𝑡𝑜𝑡. An 𝑅2 of 1 indicates a
perfect fit and a value of 0 indicates an uncorrelated fit [42]. The
adjusted 𝑅2 is used [43] which includes a penalty for the number of
parameters 𝑘 in relation to the number of observations 𝑛.

𝑅2 = 1 −
SSres
SStot

= 1 −

∑𝑛
𝑖=1

(

𝑆 (𝑡) − 𝑅(𝑡𝑖|𝜽)
)2

∑𝑛
𝑖=1

(

𝑆 (𝑡) − 𝑆 (𝑡)
)2

(14)

2
𝑎𝑑𝑗 = 1 −

[

(1 − 𝑅2)(𝑛 − 1)
𝑛 − 𝑘 − 1

]

(15)

The vast majority of the maximum likelihood estimates of the single
asic models as provided in Section 4.1 yield 𝑅2

𝑎𝑑𝑗 ≥ 0.95. A compound
model should in principle have a similar or better goodness of fit, so
𝑅2
𝑎𝑑𝑗 ≥ 0.95 is used as acceptance criterion for selecting an appropriate

compound model.

Criterion 2: Mode of wear-out component
For the wear-out the mode 𝑀𝑜𝑑𝑒2 should not occur too early or

unrealistically late. For this study a range between 1 and 25 years is
chosen as acceptance criterion.

Criterion 3: Long-term reliability
A good compound model assures that the vast majority of the

satellites have worn out in a reasonable time. The acceptance criterion
used in this study is that the reliability 𝑅𝑡=50𝑦 ≤ 0.1%.

Criterion 4: Wear-out shape parameter boundary
For both the CubeSat and small satellite failure databases there

are many failures in the first year, which causes the MLE to naturally
converge towards immaturity failure values for both components. To
ensure that the second component of the compound model addresses
wear-out, a boundary condition 𝐵.𝐶. is used in the MLE for Weibull
(𝛽2 ≥ 2) and Gompertz (𝜂2 ≤ 0.1). Ideally the MLE does not converge
to this boundary condition but finds a true (local) maximum.

Criterion 5: Akaike information criterion
The best ranking criterion for models using MLE is the likelihood

𝐿. However, likelihood can be improved by adding parameters with
the risk that they provide little extra information. To deal with this
issue, the Akaike Information Criterion (AIC) [44] can be used where
the number of parameters 𝑘 is included as a penalty. The AIC value has
no meaning in absolute sense, but the AIC of different models can be
compared in relative sense where a lower value is better:

AIC = 2𝑘 − 2 ⋅ ln(𝐿). (16)

Taking the best model as reference, all models which have an AIC
value of +6 or higher are rejected as this yields a likelihood ratio of
< 5% compared to the best model in terms of AIC based on an equal
number of parameters.

The model with the lowest AIC, which meets the previously de-
scribed acceptance criteria, is chosen as the preferred model. The
focus of this study is the CubeSat failure database. However, the small
satellite failure database is also analysed.

4. Satellite reliability model estimates and selection

The next step is to perform model estimation and selection to
provide a realistic CubeSat reliability failure distribution.
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Table 2
Results of the MLE estimates.

CubeSat failure database

Model AIC R2
adj Mode2 Rt=50y B.C.

Lognormal single −95.4 0.959 34.4%
Logn.-Gomp. mix. −93.7 0.904 14 1.36% Yes
Logn.-Weib. mix. −92.3 0.914 56 34.2% No
Logn.-Gomp. prod. −91.4 0.958 287 34.4% No
Logn.-Weib. prod. −91.4 0.958 50 14.4% No
Loglogistic single −89.1 0.962 33.1%
Logl.-Gomp. mix. −87.6 0.901 14 2.45% Yes
Logl.-Weib. mix. −86.1 0.919 21 6.19% No
Weibull single −86.1 0.953 27.2%
Logl.-Weib. prod. −85.1 0.961 20 0.00% No
Logl.-Gomp. prod. −85.1 0.961 39 0.00% No
Weib.-Gomp. mix. −83.9 0.944 18 0.12% Yes
Weib.-Weib. mix. −83.3 0.949 90 44.3% No
Gamma single −82.3 0.913 17.4%
Weib.-Weib. prod. −82.1 0.952 115 27.2% No
Weib.-Gomp. prod. −82.1 0.952 37 0.00% No
Gam.-Weib. prod. −78.3 0.911 30 0.00% No
Gam.-Gomp. prod. −78.3 0.911 300 17.4% No
Gam.-Gomp. mix. −78.1 0.955 60 43.6% No
Gam.-Weib. mix. −78.1 0.955 52 24.2% No

Small satellite failure database

Model AIC R2
adj Mo2 Rt=50y B.C.

Logn.-Gomp. mix. 171.5 0.985 17 3.97% Yes
Logn.-Weib. prod. 171.6 0.984 18 0.25% No
Logn.-Gomp. prod. 172.1 0.982 21 0.00% No
Lognormal single 172.6 0.949 26.7%
Logl.-Weib. mix. 174.1 0.987 12 4.32% Yes
Logl.-Weib. prod. 176.1 0.981 19 0.11% No
Logn.-Weib. mix. 176.1 0.970 5.3 24.3% No
Loglogistic single 176.3 0.951 25.9%
Weib.-Gomp. mix. 176.4 0.982 17 0.03% Yes
Logl.-Gomp. prod. 176.5 0.979 21 0.00% No
Weibull single 177.4 0.959 19.9%
Weib.-Gomp. prod. 179.8 0.972 22 0.00% No
Gamma single 180.3 0.954 12.5%
Logl.-Gomp. mix. 180.6 0.967 6.1 23.7% No
Weib.-Weib. prod. 181.4 0.958 332 19.9% No
Gam.-Weib. mix. 181.7 0.972 12 0.01% Yes
Gam.-Gomp. mix. 182.6 0.963 16 0.00% Yes
Weib.-Weib. mix. 182.8 0.963 5.4 19.3% No
Gam.-Weib. prod. 183.8 0.955 24 0.00% No
Gam.-Gomp. prod. 184.0 0.955 24 0.00% No

4.1. Results & comparison of model estimates using MLE

The results of the chosen set of compound models (Section 3.2) for
both databases, using the maximum-likelihood-estimator, are provided
in Table 2. The list is ordered on AIC value, with the lowest (i.e. best)
at the top. If the acceptance criteria for the values are violated, the
specific value is coloured red.

The best 𝐴𝐼𝐶 values for both databases are provided by the Log-
normal distribution for immaturity failure. Figs. 5 and 6 provides the
reliability curves for those. Another conclusion which can be made
is that MLE results for mixtures have a tendency to converge to the
boundary condition for the wear-out shape factor and they yield unreal-
istically high reliability on the long term (𝑅𝑡=50𝑦 > 1%). In this respect,
reliability products are performing significantly better. For the CubeSat
failure database, which is the main focus of this study, unfortunately
all models violate at least one of the acceptance criteria. The single
Lognormal model even has the best 𝐴𝐼𝐶 and also one of the highest
𝑅2
𝑎𝑑𝑗 . This indicates that the CubeSat failure database does not contain

sufficient information (relatively low number of failures beyond the
first year) to provide convincing results of the wear-out parameter
values. For the small satellite failure database however, the Lognormal-
Gompertz product meets all acceptance criteria and comes very close to
the highest AIC. It combines a good fit for immaturity failure with the
6
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Table 3
Results of the MAP estimates for Cubesat failure database.

Estimate AIC R2
adj Mode2 Rt=50y

CubeSat MLE −91.4 0.958 287.1 34.35%
75% of w −91.2 0.950 21.1 0.00%
w = 20/152 −91.1 0.951 21.3 0.00%
125% of w −91.1 0.946 21.3 0.00%
Small sat. MAP −85.0 0.889 21.2 0.00%

property of a relatively short survivor tail for the wear-out compared
to other models.

4.2. Results for model estimates using Bayesian inference

As there is insufficient data on CubeSat failures to provide appropri-
ate estimates using the MLE method, another approach is investigated.
Using Bayesian inference, the small satellite failure database could be
used to provide a prior distribution for CubeSats based on the fact
that CubeSats are a subset of the class of small satellites. The model
parameters for CubeSats should lie within a range of values which have
a reasonable likelihood ratio compared to the maximum likelihood
estimate of the small satellites. First, the posterior distribution of the
small satellite database is calculated using a uniform prior. With this
uninformed prior, the maximum-a-posteriori (MAP) parameters should
match the maximum likelihood estimate (MLE). It also provides a
four-dimensional posterior (because of having four parameters) which
can be converted to a prior for the CubeSat failure database. The
normalized marginal posterior distribution, which is the sum for one
parameter over the other parameter values normalized to its maximum,
are provided in Fig. 7. It should be noted that the MAP is found
in a four-dimensional posterior, and may therefore differ from the
maximum of the marginal distribution.

It can be seen that the MAP values in Fig. 7 closely match the MLE
values in Fig. 6 as expected, with very minor differences which are fully
explained by the grid step size for the Bayesian inference.

Using the posterior distribution of the small satellite failure database
directly as prior for the CubeSat failure database would effectively
yield the same result as combining both databases into one. There
are only 20 CubeSats in the small satellite database of 152 satellites,
significantly less than the 178 in the CubeSat database. The posterior
should therefore first be weakened to be able to act as prior. There is
no common method or clear rules as Bayesian inference relies on the
additional knowledge and/or logical reasoning to define the prior. The
posterior is proportional to the likelihood times the prior as explained
in Eq. (12) and the likelihood is the product of probabilities of failure
or survival. Given this product relationship, a weakening of each value
of the posterior using an weight exponent 𝑤 between 0 and 1 would be
a natural choice to achieve a new prior:

𝑝𝑝𝑟𝑖𝑜𝑟(𝜽) = 𝑝𝑝𝑜𝑠𝑡(𝜽)𝑤. (17)

Table 3 and Fig. 9 provide the results in comparison with the MLE
or the CubeSat and the MAP of the small satellites. The estimate using

= 20∕152 meets all acceptance criteria. Its lognormal parameters
ome very close to the MLE, which is expected due the relative high
umber of early failures. The wear-out parameters are now realistic
.r.t. the MLE, while the 𝐴𝐼𝐶 comes very close. The overall distribu-

ion does not show a high sensitivity to the chosen translation weight
hen changed by ±25%. Fig. 10 shows the marginal distributions of

he CubeSat posterior, the used prior and the posterior of the small
atellites which the prior is based upon (see Fig. 8) .

In conclusion, the best posterior distribution for the CubeSat failures
s found through Bayesian inference on the CubeSat failure database
sing the small satellite failure database posterior as input which is
ranslated to a prior using Eq. (17) with 𝑤 = 20∕152. The resulting
aximum-a-posteriori estimate is a Lognormal-Gompertz product with

arameters 𝜇1 = 1.35, 𝜎1 = 6.30, 𝜃2 = 4.7 and 𝜂2 = 0.0107.
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Fig. 5. MLE estimates of the CubeSat failure database.
Fig. 6. MLE estimates of the small satellite failure database.
m
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. Subsystem reliability estimates

Having determined satellite reliability, the next step is to determine
ubsystem reliability.

.1. From satellite to subsystem model

Eq. (18) provides the general relation between the system reliability
𝑠𝑦𝑠 and its subsystems reliability 𝑅𝑠𝑠,𝑖 for all 𝑛 subsystems:

𝑠𝑦𝑠(𝑡) =
𝑛
∏

𝑖=1
𝑅𝑠𝑠,𝑖(𝑡). (18)

A first subsystem reliability estimate can be made by assuming all
𝑠𝑠,𝑖 are identical. This estimate can be used as prior for Bayesian infer-
nces on specific subsystem failure data. The CubeSat failure database
ontains information on the determined or suspected subsystem that
ed to a satellite failure: Attitude Determination and Control (ADCS),
ommand and Data Handling Subsystems (CDHS), Communication
ubsystem (COMMS), Structure & Deployment Mechanisms (STS &
epS), Electrical Power Subsystem (EPS) and Payload (P/L). The Ther-
al Control Subsystem (TCS) is missing in the database because this

ubsystem is typically passive in CubeSats or embedded in other sub-
ystems. For example, a battery heater would be considered part of the
PS. The electrical interfaces between subsystems are also allocated to
he major subsystems (e.g. data interfaces to CDHS, power distribution
o EPS). For a study on the effect of redundancy of subsystems, the
llocation of failures to these subsystems is not ideal as redundancy is
ypically applied to physical units and their interfaces. It is expected
7

hat more advanced CubeSats may have more physical units and/or
ore sophisticated units. For example, an advanced ADCS may com-
rise an additional board with reaction wheels. If 𝑛 would represent

physical units, its value would differ per satellite. On the other hand,
there is a correlation between the sophistication of CubeSats and the
experience of its developers as functionality is often added in follow-
up satellite projects. Because of the lack of insight of failures related to
all these aspects, the potential analysis is limited to the breakdown in
aforementioned subsystems. For the research goal of this paper, inves-
tigating the impact of subsystem redundancy for CubeSats in general,
the limited breakdown is considered to be acceptable. When assessing
the reliability of a specific CubeSat, the estimates in this study should
be complemented with insights in the complexity of the design, team
experience and intensity and results in testing. An example of CubeSat
specific reliability estimation and growth is provided by Langer [45].

Besides the breakdown in six subsystems, the database also contains
a category ‘unknown’ for satellite failures in which the fatal subsystem
is unknown. With 23 out of 71 failures classified as unknown, this is
the largest group. Censoring the items would lead to a considerable
overestimation of the reliability, so removal of these entries from the
database for subsystem analysis is therefore considered to be the best
solution. A final check is required if the product of subsystem reliability
estimates approximates the general CubeSat reliability estimate.

Eq. (18) can only be used for non-redundant subsystems or the
aggregated reliability of redundant subsystems. The database does not
contain any information on subsystem redundancy. According to the
CubeSat survey on data busses, approximately 10% of the implemented
data busses are redundant [11]. While this does not allow to draw any
conclusion about redundancy in other subsystems, it may be used as an

indication that full redundancy is not widely implemented yet. For none
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Fig. 7. Marginalized posterior distribution of Lognormal-Gompertz product for small satellite failure database.
Fig. 8. Posterior-to-prior translation, normalized to MAP.
b

of the reported satellite failures, a dual failure of a redundant subsystem
was mentioned as cause. Furthermore, the impact of redundancy of
subsystems on satellite lifetime extension is expected to be highest for
the population subject to wear-out, for which the database provides
little information as discussed in Section 2.3. For immaturity failures,
it is assumed that the vast majority of CubeSat failures are due to single
subsystem failures or common mode failures. Eq. (18) is therefore
used to estimate the reliability model parameters of non-redundant
subsystems.

The posterior for satellites is converted to a prior for subsystems and
Bayesian inference is subsequently applied using the specific subsystem
8

r

failure data. The posterior for the satellite reliability parameters is
translated into an equivalent posterior for subsystems based on iden-
tical distributions. In this case Eq. (18) translates into Eq. (19) and,
using Eq. (4), into Eq. (20).

𝑅𝑠𝑎𝑡(𝑡) = 𝑅𝑠𝑠(𝑡)𝑛 (19)

𝑓𝑠𝑎𝑡(𝑡) = 𝑛 ⋅ 𝑓𝑠𝑠(𝑡) ⋅ 𝑅𝑠𝑠(𝑡)𝑛−1 (20)

For immaturity failure 𝑖𝑚𝑚. and the wear-out 𝑤.𝑜., subsystem relia-
ility can be split by Eq. (21). This means that the posterior from the

esults in Section 4.2 can be used as-is by calculating the subsystem
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Fig. 9. CubeSat MAP distributions for various priors.

Fig. 10. Marginalized prior and posterior distributions, normalized to MAP.
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parameters associated with the satellite parameters for immaturity and
wear-out separately.

𝑅𝑠𝑎𝑡(𝑡) = 𝑅𝑠𝑠,𝑖𝑚𝑚.(𝑡)𝑛 ⋅ 𝑅𝑠𝑠,𝑤.𝑜.(𝑡)𝑛 (21)

For wear-out, Eq. (22) holds when 𝜃𝑠𝑎𝑡 = 𝜃𝑠𝑠 and 𝜂𝑠𝑎𝑡 = 𝑛 ⋅ 𝜂𝑠𝑠.

exp
[

−𝜂𝑠𝑎𝑡

(

𝑒
(

𝑡
𝜃𝑠𝑎𝑡

)

− 1
)]

= exp
[

−𝜂𝑠𝑠

(

𝑒
(

𝑡
𝜃𝑠𝑠

)

− 1
)]𝑛

(22)

For immaturity failure, the integral of the Lognormal reliability
function cannot be solved in closed form. Instead, the subsystem pa-
rameters can be calculated numerically by a discrete representation
of the curve for 𝑅𝑠𝑎𝑡 for each set of (𝜇𝑠𝑎𝑡, 𝜎𝑠𝑎𝑡) in the parameter grid
of the satellite posterior. Subsequently, the least squares estimator is
used to find the parameters (𝜇𝑠𝑠, 𝜎𝑠𝑠) for 𝑛 subsystems for each grid
location. This method has been performed using 1000 data points on
a logarithmic scale between 0.001 and 100 years. The resulting grid
values for 𝜇𝑠𝑠 and 𝜎𝑠𝑠 values are dependent on both 𝜇𝑠𝑎𝑡 and 𝜎𝑠𝑎𝑡, so
subsequent Bayesian inference with subsystem data should be based
on the original satellite parameter grid which is then converted to
subsystem estimates point-by-point. With this approach, the posterior
can be calculated and subsystem MAPs can be found for each point,
but the new posterior distribution cannot be marginalized for 𝜇𝑠𝑠 and
𝜎𝑠𝑠. The 𝑅2

𝑎𝑑𝑗 values for each new distribution based on the reliability
product of 𝑛 = 6 subsystems with respect to the original reliability
of satellites ranges from 0.9991 to 0.9996. This is considered to be a
near perfect fit. Fig. 12 shows that the difference between the satellite
reliability MAP and the product of the approximated subsystem relia-
bility parameters is indeed small. Using this approach the satellite MAP
corresponds to subsystem parameters of 𝜇1 = 13.2, 𝜎1 = 9.59, 𝜃2 = 4.7
and 𝜂2 = 0.0018. The converted satellite-to-subsystem posterior will act
as prior for Bayesian inference of the specific subsystem data.

5.2. Results of subsystem model estimates

The satellite posterior should be weakened to act as prior, as ex-
plained in Section 4.2. In this case a weight of 𝑤 = 1∕𝑛 = 1∕6 is applied
for Eq. (17). Using this approach, the failure data will dominate over
the prior when there are relative more failures allocated to a subsystem
than one-sixth of the satellite failures. If there are less failures for a
subsystem, the prior will dominate. Again, the results with ±25% of
this weight are also calculated to determine the sensitivity of the results
with respect to the weight.

The limited number of failures for each subsystem limits the confi-
dence of the Kaplan–Meier Estimate. Secondly, the large proportion of
failures allocated to an unknown subsystem (32%) means that the KME
is too optimistic for some subsystems and the lower confidence bound is
too high for all. Worst case, if all unknown failures would be allocated
to a specific subsystem, the reliability could be 0.32 lower at the end
of the observation window. For these reasons, the subsystem KME is
not a good reference and the goodness-of-fit loses its meaning and is
therefore not provided. The remaining results are presented in Table 4,
which provides the Bayesian MAP estimate using 𝑤 = 1∕6 ± 25% as well
as the MAP of the prior (the parameters for all subsystem distributions
identical) and the MLE of the subsystem failure data.

From Table 4 it can be seen that MLE provides unrealistically high
values for the wear-out mode 𝑀𝑜𝑑𝑒2 and the reliability after 50 years
𝑅𝑡=50𝑦. For the Bayesian estimates using 𝑤 = 1∕6 this is all near zero
which is more plausible. The results are not significantly sensitive to
varying of 𝑤 while the 𝐴𝐼𝐶 value is closer to the MLE than to the
prior MAP for subsystems with more failure data. Fig. 11 provides
the MAP estimates using 𝑤 = 1∕6. Using these new estimates, the
subsystem product reliability can be calculated and compared to the
satellite reliability estimate. This is shown in Fig. 12.

The goodness-of-fit of the product of identical subsystem reliability
compared to its original satellite estimate is 𝑅2 = 0.997 for the first
10 years and 𝑅 = 0.998 for the first 30 years. The goodness-of-fit of
10

2

Table 4
Results of the MAP estimates for Cubesat subsystem failures.

S/S Estimate AIC Mode2 Rt=50y

S/S MLE 8.2 563.4 97.56%
75% of w 15.7 23.7 0.00%

ADCS w = 1/6 15.9 24.2 0.00%
125% of w 15.9 24.8 0.00%
Prior MAP 20.6 29.7 0.00%

S/S MLE 72.3 26.7 0.05%
75% of w 73.8 31.5 0.00%

CDHS w = 1/6 74.0 33.2 0.03%
125% of w 74.2 34.4 0.14%
Prior MAP 76.0 29.7 0.00%

S/S MLE 28.9 187.5 85.40%
75% of w 29.0 24.2 0.00%

COMMS w = 1/6 29.0 24.4 0.00%
125% of w 29.0 24.6 0.00%
Prior MAP 29.2 29.7 0.00%

S/S MLE 27.3 2766.6 91.58%
STS 75% of w 34.3 23.9 0.00%
& w = 1/6 34.8 24.6 0.00%
DepS 125% of w 35.1 25.1 0.00%

Prior MAP 40.7 29.7 0.00%

S/S MLE 63.0 187.0 63.77%
75% of w 64.1 25.6 0.00%

EPS w = 1/6 64.6 26.4 0.00%
125% of w 65.0 27.1 0.00%
Prior MAP 69.5 29.7 0.00%

S/S MLE 27.3 2766.6 91.58%
75% of w 34.3 23.9 0.00%

P/L w = 1/6 34.8 24.6 0.00%
125% of w 35.1 25.1 0.00%
Prior MAP 40.7 29.7 0.00%

the product of the individual subsystem reliability estimates compared
to the satellite estimate is 𝑅2 = 0.958 for 10 years and 𝑅2 = 0.984
for 30 years. While the difference in the curves can clearly be seen in
Fig. 12, this difference is considered acceptable given the limitations in
the subsystem failure data. The LSE of the individual subsystem product
is 𝜇1 = 1.51, 𝜎1 = 5.50, 𝜃2 = 3.03 and 𝜂2 = 0.0014 which is a perfect fit
(𝑅2 = 1.00).

5.3. Generating sample data from subsystem model

For the subsequent steps in modelling, the subsystem MAP estimates
from Table 4 with 𝑤 = 1∕6 can be used as best estimate. Samples from
the posteriors can be used to also include the parameter uncertainty
in the simulation. These samples can be obtained by applying the
following procedure for each subsystem:

1. Draw a random parameter set (𝜇, 𝜎, 𝛽, 𝜂) from the parameter grid.
2. Calculate the likelihood ratio 𝜆 for the sample with respect the

MAP.
3. Draw a random number 𝑝 from a uniform distribution [0,1].
4. Select the parameter set if 𝜆 > 𝑝.
5. Repeat steps 1–4 until a defined number of parameter sets have

been selected.

6. Modelling subsystem redundancy and failure mitigation

The reliability models for subsystems have been established in
Section 5. To be able to create a reliability simulation for the satellite
with redundant subsystem and/or improved testing, additional models
are needed. The failure dependency between units of a redundant
subsystem is investigated first. Subsequently, a model is established for
the mitigation of immaturity failures through improved testing.
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Fig. 11. Reliability MAP estimates using 𝑤 = 1∕6.
Fig. 12. Comparison of calculated CubeSat reliability.
Table 5
Definitions of dependent failures as adopted from Borcsok [46].

Dependent failure The likelihood of a set of events, the probability of
which cannot be expressed as simple product of
unconditional failure probabilities of the individual
events.

Common cause failure This is a specific type of dependent failure that arises
in redundant components where simultaneous (or near
simultaneous) multiple failures result in the same way
or in different ways from a single shared cause.

Common mode failure This term is reserved for common-cause failures in
which multiple items fail in the same way.

Cascade failure These are all those dependent failures that have no
common cause, i.e. they do not affect redundant
components.

6.1. Unit dependence of redundant subsystems

Definitions for dependent failures can be confusing. In Table 5 an
overview of definitions is provided, where the vertical bars on the left
indicates that the underlying failure type(s) are a subset of the above.

Cascade failures are ignored in this study as only fatal failures are
considered and all subsystems are assumed to be critical. For the other
dependent failures, several methods are available to model the failure
dependency between redundant units. Examples are the basic parame-
ter model, the alpha factor model and beta factor model [47]. However,
they can be applied only if the dependency is time-independent. An ap-
proach is required to address dependent failures for redundant systems
over time. Two dependencies of the secondary unit on the primary unit
11
are considered: the start of the lifetime at risk and the time-to-failure
dependency.

The start of the lifetime at risk of the secondary unit depends on
whether the underlying failure causes apply only when the unit is oper-
ational or also when the unit is switched off. It also depends on whether
the secondary unit is hot- or cold-redundant. For CubeSats however,
power consumption is a major issue and therefore it is assumed that
only cold redundancy can be considered at subsystem level. Failure
causes can be differentiated between environmental effects and oper-
ational effects, relating to an external and internal cause respectively.
For a cold redundant subsystem, which is assumed for this study, the
cumulative environmental effects (such as thermal cycling, ionization,
externally induced vibration, UV, etc.) affect both units from the time
the satellite is deployed into orbit, regardless of its operational state.
The redundant unit may in principle already have failed before it is
commanded to be turned on. Most single environmental effects (such
as latch-up or bit upsets) only applies when the unit is active. The same
holds for all operational effects. The parameter 𝜖 is introduced as the
probability of a failure dependent on orbital lifetime, independent of
its operational state. This yields that 1 − 𝜖 is the probability of failure
dependent on operational lifetime. The lifetime of the secondary unit
in this case starts after the primary has failed based on the assumption
of cold redundancy.

The second dependency relates to the time-to-failure for a redun-
dant subsystem. If the redundant subsystem comprises identical units,
a subset of common cause and common mode failures related to design
flaws (causing immaturity failure) yields a time-to-failure dependency
of secondary unit to the primary. If, for example, an electrical power
subsystem fails after one orbit because the battery could not handle
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the peak temperature as it was never designed for that temperature
or the thermal analysis was flawed, it becomes very likely that an
identical redundant unit also fails in approximately the same time span.
The same is true if it survives for years. Some immaturity failure root
causes are however independent between the units of a redundant
subsystem. Failures in component production or assembly of random
nature are considered in the scope of immaturity failures but do not
yield dependencies between identically designed units. The beta fac-
tor model [47] can be adopted to account for the ratio of lifetime
dependent failures 𝛽 for immaturity failures, with 𝛽 = 0 for fully
ifetime independent and 𝛽 = 1 for fully dependent failures. While the
nitial 𝑓 (𝑡) used for the primary subsystem has a decreasing probability
ensity over time, the updated 𝑓 (𝑡) is expected to have a narrow log-
ormal distribution with its mode (peak density) around the failure
ime of the primary subsystem. The exact parameters of this distri-
ution are however unknown. Assuming a narrow distribution which
s approximately symmetric around the mode, the failure time of the
econdary unit can be approximated by that of the primary.

When the primary unit fails due to wear-out, this is due to accumu-
ative effects for which failures typically have a high variance. While
he distribution of a specific type of wear-out can differ from the overall
ear-out distribution, the time-to-failure dependency for a secondary
nit is limited and unknown. Therefore, the original probability density
sed for the primary unit can best be applied to the secondary as well
nd a potential time-to-failure dependency is ignored.

.2. Modelling of failure dependencies

The database from the CubeSat survey [11], which is used as input
or the CubeSat failure database [10], comprises confirmed or expected
oot causes of satellite and/or mission failure for 30 of 60 launched
ubeSats. Using this input, the cause has been classified in terms of
ime-to-failure-dependence (𝛽) and its lifetime-at-risk dependence (𝜖) in
ase a hypothetical identical redundant unit would have been applied.
egarding time-to-failure, this yields 12 dependent, 6 independent
nd 12 unknown failures. Regarding lifetime-at-risk dependence this
ields 13 failures related to orbital lifetime, 10 related to operational
ifetime and 7 unknown failures. The problem can be approached as
wo Bernoulli experiments for (𝛽) and (𝜖), where a ‘success’ relates
o cases which confirm time-to-failure and orbital lifetime dependence
espectively and a ‘failure’ relates to cases which are time-to-failure
ndependent and dependent on operational lifetime, respectively. When
pplying Bayesian inference on each parameter, the beta distribution
an be used as conjugate prior with hyper-parameters 𝑎 and 𝑏 [48].

This means that the prior and posterior are both a beta probability
density distribution 𝑓𝑏𝑒𝑡𝑎, with 𝑎 for the number of successes and 𝑏 for
the number of failures.

𝑓𝑏𝑒𝑡𝑎 =
1

∫ 1
0 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥

⋅ 𝑥𝑎−1(1 − 𝑥)𝑏−1 (23)

Using 𝑎𝑝𝑟𝑖𝑜𝑟 = 1 and 𝑏𝑝𝑟𝑖𝑜𝑟 = 1 yields a uniform prior over the
range [0,1], The number of ‘successes’ and ’failures can be added
respectively to obtain the posterior. The classification according to the
survey, however, yields numbers of unknown dependencies. Ignoring
them would yield a too strong posterior. Therefore the ratio of classified
to total failures 𝑛𝑡𝑜𝑡 is applied as weight factor on the classified failures
as provided in Eqs. (24) and (25). This yields 𝑎𝛽 = 8.2, 𝑏𝛽 = 4.6,
𝑎𝜖 = 11.0 and 𝑏𝜖 = 8.7 for which the results are shown in Fig. 13. For
the simulation, samples from these posteriors will be drawn.

𝑎𝑝𝑜𝑠𝑡 = 𝑎𝑝𝑟𝑖𝑜𝑟 +
𝑛𝑠 + 𝑛𝑓
𝑛𝑡𝑜𝑡

𝑛𝑠 (24)

𝑝𝑜𝑠𝑡 = 𝑏𝑝𝑟𝑖𝑜𝑟 +
𝑛𝑠 + 𝑛𝑓
𝑛𝑡𝑜𝑡

𝑛𝑓 (25)
12
6.3. Modelling of immaturity failure mitigation

The reduction of the immaturity failures for a satellite without
subsystem redundancy is investigated for the case that project re-
sources, otherwise required for implementing subsystem redundancy,
are allocated to measures which reduce immaturity failures instead,
e.g. increased testing. In a statistical study of CubeSats, Swartwout
states that early failures of CubeSats developed at universities can
mainly be attributed to insufficient or even complete lack of functional
system level testing [4]. From the CubeSat survey it follows that the
average duration of testing at fully integrated system level of CubeSats
is approximately two months [45].

When applying an extensive test campaign to the system for a period
of six months, including fixes and improvements where necessary, it is
expected that immaturity failures can be reduced significantly. These
test should include duration testing of several months, all possible
environmental tests and state-based testing following Failure Mode
Effect and Criticality Analysis. The reliability can be further improved
if a satellite platform is launched, tested in-orbit and subsequently
iterated based on the operational lessons learnt. To model these cases
of ‘improved testing’ and ‘iterative development’, the failures described
in Section 6.2 are analysed for this purpose. All of these failures can
be classified as immaturity failures. For each failure the likelihood
that improved testing and iterative development respectively would
mitigate the failure is approximated. This is done in coarse steps of
0.25, with 1 for almost certainly mitigated and 0 for almost certainly
not mitigated. The sum of the likelihoods for the 30 analysed satellites
yields an expected mitigation of 16 and 26.5 satellite failures for
the improved testing and launched iteration cases respectively. Beta
distributions for the likelihood parameter of subsystem immaturity
failure mitigation 𝑃𝑖𝑚𝑝. for the improved testing case and 𝑃𝑖𝑡𝑒𝑟. for the
iterative development case can be constructed in similar fashion to the
dependency parameters as explained in Section 6.2. Using a uniform
prior, the distribution inputs become 𝑎𝑖𝑚𝑝. = 17, 𝑏𝑖𝑚𝑝. = 15, 𝑎𝑖𝑡𝑒𝑟. = 27.5
and 𝑏𝑖𝑡𝑒𝑟. = 4.5. The results are shown in Fig. 14.

7. Satellite reliability simulation model

A simulation model is required which uses the estimated subsystem
failure probability distributions as input and simulate the results of the
satellite reliability with redundant subsystems using the dependency
probability distributions and the satellite reliability with improved
testing using the mitigation probability distributions. To set up this
simulation, several tools have been considered: fault trees, event trees,
Petri-nets, Markov Chains and activity flows. The fault tree is a limited
representation for a time-dependent model as it does not include the
distribution over time and the impact of the dependencies on this
distribution. In fault trees, reliability values are typically limited to
mutually independent failure probabilities at a given time. The use
of dynamic fault trees [49] or Petri-nets [50] could be considered
for this purpose as these modelling tools provide options to introduce
the impact of these dependencies. However, these tools are focused
on multi-level failures which is not in the scope of this study. For
the intended model, their diagrams are not as easy to interpret, so a
more simple representation is desired. Event trees, although typically
used to analyse cascading effects of initial (failure) events, provides a
decision-tree structure [51] which can introduce the redundant subsys-
tem failure dependencies and failure mitigation. This would however
lead to a high number of branches for the intended simulation and
would still require adaptation to introduce the time-dependent models.
Markov Chains have been used for CubeSat reliability modelling by
Engelen et al. [52]. For simulations of limited complexity they can
be used by replacing the typical fixed value probabilities with time
dependent models. Like event trees, they will however become very
large. Moreover, these tools cannot be used to show all steps required
to perform a Monte Carlo simulation to be able to run the different



Reliability Engineering and System Safety 220 (2022) 108288J. Bouwmeester et al.

c
o
U
m
a

F
s

f
r
v
u

Fig. 13. Posterior distribution of dependence parameters 𝛽 and 𝜖.
Fig. 14. Posterior distribution of mitigation parameter 𝑃𝑖𝑚𝑝. and 𝑃𝑖𝑡𝑒𝑟..
t
t
d
m
P
s
e
p
d
i
m
b

8

i

ases. A ‘reliability modelling flow’ is therefore used as a new type
f representation for dependent binary-state failures. It is based on an
niversal Modelling Language (UML) activity flow. The full simulation
odel is provided in Fig. 15, where the two high level blocks in bold

re worked out at lower level in Figs. 16 and 17.
Fig. 15 provides the modelling flow for the reliability of satellites.

or all 𝑛𝑆∕𝑆 subsystems, samples are generated. The lifetime of the
atellite with redundancy 𝑡𝑟𝑒𝑑.(𝑠𝑎𝑡) and without redundancy 𝑡𝑠𝑖𝑛𝑔𝑙𝑒(𝑠𝑎𝑡)

is modelled as the minimum lifetime of all of its subsystems. A number
of 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 satellite samples are generated for each simulation. When
enough of such output samples are randomly generated, the distri-
bution of the output is representative for satellites with and without
redundant subsystems. Given a sufficiently high number of samples, a
Kaplan–Meier Estimator (KME) can be used. Parametric estimates of the
output are not needed as they will result to the same figure. A number
of 𝑛𝑠𝑖𝑚 simulation runs are performed using the parameter samples from
the posterior (see Section 5) and samples of the dependency parameters
(see Section 6.2) to perform a full Monte Carlo simulation which
includes the uncertainties on the input parameters. Each simulation
results in a different estimated reliability curve.

The model for a subsystem failure is provided in Fig. 16. This
flow uses sampled input parameters for the subsystem Lognormal-
Gompertz product PDF (𝜇, 𝜎, 𝜃, 𝜂) and the dependencies (𝛽, 𝜖). It
irst creates intermediary failure time values 𝑡1 to 𝑡4 for the PDF and
eference probabilities 𝑝𝛽 and 𝑝𝜖 for the dependencies. The failure time
alues 𝑡1 to 𝑡4 can be generated by using a random generator for a
niform distribution over [0, 1] to create samples for 𝐹 (𝑡) which are

subsequently put into the inverse transform of 𝐹 (𝑡). An example for the
Gompertz distribution is provided by Eq. (26). To generate a sample
13

t

for the Lognormal-Gompertz product, the minimum of the samples of
the Lognormal distribution and Gompertz distribution for both units
is taken as remaining sample. Using these values and following the
dependence decisions in the flow, a sample for the primary unit 𝑡𝑝𝑟𝑖𝑚.
and the secondary unit 𝑡𝑠𝑒𝑐. is calculated and the subsystem failure time
𝑡𝑟𝑒𝑑. for a redundant subsystem is generated as output. The primary unit
sample 𝑡𝑝𝑟𝑖𝑚. is the output for a subsystem without redundancy.

𝑡 = 𝜃 ⋅ ln
[

1 −
ln (1 − 𝐹 (𝑡))

𝜂

]

(26)

When the simulation provides estimates based on all samples of
he original subsystem failure distributions (Section 5.2), this is called
he ‘reference case’. For the cases of ‘improved testing’ and ‘iterative
evelopment’, some of the subsystem failures due to immaturity are
itigated. The activity flow for failure mitigation is provided in Fig. 17.
robability values 𝑝1 and 𝑝2 are generated and compared against the
amples mitigation parameters 𝑃𝑖𝑚𝑝. and 𝑃𝑖𝑡𝑒𝑟.. The mitigation param-
ters change for each simulation of 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and are taken from their
osterior beta distributions explained in Section 6.3. In case of redun-
ant subsystems, mitigation can only apply to secondaries which fail
ndependently due to immaturity. If the root-cause subsystem failure is
itigated, this failure time is flagged as censor time instead which can

e used as input for the KME.

. Results of the satellite reliability simulation

The reliability of a satellite with redundant subsystems is simulated
n 100 runs, each producing 10,000 samples for satellite failure using
he model explained in Section 7. The results for the reliability over
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Fig. 15. Reliability modelling flow for satellite simulation.
Table 6
Satellite simulation reliability at specified time in-orbit.

Subsystems Case Reliability mean of simulations

1 y 3 y 5 y 10 y

Non-redundant Reference 0.60 0.52 0.49 0.42
Redundant Reference 0.73 0.67 0.64 0.59
Non-redundant imp. testing 0.79 0.74 0.71 0.65
Redundant imp. testing 0.85 0.81 0.79 0.76
Non-redundant Iterative dev. 0.93 0.91 0.89 0.85
Redundant Iterative dev. 0.93 0.91 0.90 0.89

time is provided in Fig. 18 in the form of a Kaplan–Meier Estimate. The
thick lines represent the reliability over time using the subsystem MAP
estimates as input, while the smaller lines are the results from simula-
tion runs using other samples of the subsystem posterior distributions
as explained in Section 5. In Table 6 the reliability after a specified time
in orbit is provided for the MAP inputs and the mean of all simulation
runs.

Fig. 18 already clearly shows a ranked order based on the subsystem
MAP inputs for the first 15 years in orbit. A similar ranking can be seen
in Table 6 which provides the mean reliability of all simulation runs af-
ter 1, 3, 5 and 10 years. A reserved conclusion would be that improved
testing and iterative development yields a major improvement for these
failures. The lines for the different simulations in Fig. 18, however,
partially overlap and could therefore in specific simulation runs yield a
different outcome. For this purpose, the reliability for each simulation
run after 1, 3, 5 and 10 years are compared. Most CubeSat design
lifetimes will be in the range of one and five years (see Section 2.3). The
14
reliability at 10 years is therefore of limited interest, but added for some
unique future missions. In Fig. 19 a scatter plot is provided, with on the
horizontal axis the reliability for a satellite with redundant subsystems
and on the vertical axis the reliability for a satellite without subsystems
but improved testing instead. The diagonal line indicates the theoretical
boundary where the reliability of the two options would be equal. This
figure confirms that allocating resources to improved testing in general
has a better impact on reliability than subsystem redundancy. Only for
very long missions of 10 years, there is a small chance that subsystem
redundancy is superior to improved testing.

It is also interesting to see the effect of combining subsystem redun-
dancy with improved testing, compared to a non-redundant satellite
with the same level of testing. Fig. 20 shows a significant improvement
can be expected with redundant subsystems. This does however re-
quire substantial project resources, especially for unique single satellite
missions.

Finally, it is interesting to compare satellites with and without
redundant subsystems in the case of iterative development. This is
especially interesting for CubeSat networks or a standardized CubeSat
platform for multiple missions. In this case there is not so much of a
trade to make based on project resources, as iterations may already
been foreseen by programmatic choice. The results are provided in
Fig. 21. For missions up to 3 years, the results are scattered around the
equality line. Only for missions of 5 years or more, redundancy does
pay off.

9. Conclusions

The answer to the question ‘‘What leads to higher CubeSat reliability
over its mission life time: full subsystem redundancy or improved
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Fig. 16. Reliability modelling flow for a (cold redundant) subsystem.

Fig. 17. Reliability modelling flow for failure mitigation.
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Fig. 18. Kaplan–Meier Estimate simulation results.

Fig. 19. Satellite reliability scatter for redundant subsystems vs. non-redundant
subsystems with improved testing.

Fig. 20. Satellite reliability scatter for redundant vs. non-redundant subsystems, both
with improved testing.
16
Fig. 21. Satellite reliability scatter for redundant vs. non-redundant subsystems, both
with iterative development.

testing?’’ is that improved testing yields the best results for most
missions, based on the simulation results presented in Fig. 19. It has
the additional benefit to increase potential payload volume and has a
lower platform cost compare to a satellite with redundant subsystems.
Furthermore, iterative development is the best strategy for series and
networks of CubeSats and/or bus platforms. A satellite with redundant
subsystems remains more reliable than a satellite without redundancy
above 10–15 years as shown in Fig. 18. This is however beyond the typ-
ical useful lifetime of CubeSats and therefore considered to be of limited
importance. It can also be seen, by the spread of the simulated curves,
the uncertainty of the model increases over time which is mainly due
to limited observations causing relatively large uncertainties of the
wear-out parameters.

A Lognormal-Gompertz product provides the best parametric relia-
bility model for a CubeSat and small satellites in general. The Kaplan–
Meier estimator is a necessary step to show the pure satellite obser-
vation data and provide a reference for parametric models. Maximum
likelihood estimators are good for model comparison, but lack the
ability to introduce prior knowledge. Furthermore, they do not provide
a full posterior which limits the ability to properly model uncertainties
in subsequent modelling. Bayesian inference is the best approach to
overcome these limitations. This paper provides an example of the use
of these tools, which can be of interest to satellite reliability modelling
or even reliability modelling in general. The satellite simulation model
as introduced in Section 7 is an innovative method which can be
applied to other satellite size categories as well as other complex
systems.

The research question implies a choice between allocating addi-
tional resources to either implement redundant subsystems or to im-
prove testing on a satellite without redundancy. Such a choice may not
be applicable if resources allow for both improvements. In this case,
the reliability of a satellite with redundancy has a significantly higher
reliability over time compared to a satellite without. However, applying
redundancy does not only consume additional organizational resources.
It also consumes a considerable amount of volume of the satellite
which leaves less room for the payload. Moreover, this study assumes
a flawless failure detection, isolation and recovery mechanism which
arbitrates between the redundant units of a subsystem which may be
too optimistic in reality. For a single satellite in a project with limited
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resources, it is therefore considered to be a better strategy to aim for
reduction of immaturity failures through extensive testing. For satellite
networks, ‘swarm robustness’ could be achieved [52] and individual
satellite losses may be acceptable. Only for single satellite missions
longer than 10 years or operating in harsher environments beyond
LEO, redundant subsystems may be required to improve reliability to
acceptable values.

Immaturity failures can be reduced by iterating on the satellite
bus platform with subsequent launches and high reliability can be
achieved, as shown in Fig. 21. This would extend improved on-ground
testing to in-orbit testing. A condition for this approach is that improve-
ments in performance of each subsequent design remain limited and
improvements are primarily focused on the reliability of the design.
A modular philosophy of CubeSats where subsystems from different
manufacturers are procured and integrated is not compatible with this
strategy as the lack of direct involvement may prohibit the required
improvement or the selection of a different model can introduce new
immaturity failure risks at subsystem or satellite level. The entire
iterative platform development must therefore be under control of one
party or consortium. While this may have its limitations, it opens the
possibility to introduce advanced architectural concepts which deviate
from the modular approach [25]. An example of such architecture
is the integration of satellite core functionality into a single physical
unit to reduce its effective volume and reduce the component count
(potentially increasing reliability further). Another example is the use
of advanced outer panels which reduce wiring harness and integration
complexity.
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