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A B S T R A C T

Hybrid Eulerian–Lagrangian solvers have gained increasing attention in the field of external aerodynamics,
particularly when dealing with strong body–vortex interactions. This approach effectively combines the
strengths of the Eulerian component, which accurately resolves boundary layer phenomena, and the Lagrangian
component, which efficiently evolves the wake downstream. This study builds on our team’s previous work
by enhancing the capabilities of a two-dimensional hybrid Eulerian–Lagrangian solver. We aim to upgrade our
solver which was initially designed for static cases, to now also simulate cases involving moving objects. To
ensure the reliability and applicability of a new solver, it is essential to validate its performance in complex
cases. Here, the solver is validated across the case of a traveling cylinder and the case of a rotating cylinder in
two different rotational speeds at low Reynolds numbers. In the realm of Eulerian solvers, such as OpenFOAM
(utilized for the Eulerian component of this hybrid approach), traditional techniques include the use of
morphing meshes, overset meshes, and Arbitrary Mesh Interfaces (AMI) to model body motion. The proposed
methodology involves extending the Eulerian mesh up to a short distance from the solid boundary and moving
it entirely as a solid entity. Then the Lagrangian solver is responsible for calculating the updated boundary
conditions, thereby completing the hybrid solver’s functionality. This approach is very similar to the overset
mesh technique. However, unlike the traditional method where an Eulerian mesh moves on top of a static
one, our method involves the motion of an Eulerian mesh over a Lagrangian grid. We compared the results
from our hybrid solver with those from a purely Eulerian solver, specifically OpenFOAM. The comparison
demonstrates that our solver can replicate OpenFOAM’s results with high accuracy. Another interesting point
highlighted in this study is the presence of high-frequency oscillations in the body forces in hybrid solvers
that incorporate the redistribution of Lagrangian particles and do not utilize surface elements such as vortex
panels, specifically when dealing with dynamic mesh simulations. When the Eulerian mesh travels on top of
the Lagrangian grid of particles, the positions of the particles with respect to the Eulerian mesh continuously
change. This results in a constant shift of particles near the solid body, where the highest vorticity is observed.
Particles that are close to the solid boundary at one time step may find themselves inside the boundary at
the next time step, leading to their removal. This pattern continuously changes during the simulation, causing
fluctuations in the boundary conditions of the Eulerian solver and manifesting as oscillations in the forces
acting on the body. It is shown that this issue can be alleviated either by increasing the spatial resolution
of the Lagrangian solver or by synchronizing the movement of the Lagrangian grid with the motion of the
Eulerian mesh. The results of the study make the solver trustworthy and pave the way for more demanding
external aerodynamic simulations.
1. Introduction

Hybrid Eulerian–Lagrangian solvers have gained significant atten-
tion in the field of external aerodynamics. These solvers offer a com-
bination of advantages from both Eulerian and Lagrangian solvers
while mitigating many of their inherent limitations. In particular, hy-
brid solvers employ a Eulerian solver to accurately capture near-wall
phenomena such as boundary layers, separation, and aerodynamic
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forces. Meanwhile, the Lagrangian solver takes charge of the wake
evolution downstream. This approach ensures that the region close to
the body is adequately resolved while minimizing numerical diffusion
and significantly reducing computational cost.

Several hybrid solvers have been introduced to date. In our pre-
vious work [1], OpenFOAM [2] was coupled with a Vortex Particle
Method (VPM), using the Domain Decomposition Technique in the
vailable online 8 June 2024
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form presented by Daeninck [3]. Similarly, Palha et al. [4] com-
bined FEniCS with the same VPM. Another approach was presented
by Stock and Gharakhani [5], who coupled a high-order spectral finite
difference method with an open-source VPM. Furthermore, Billuart
et al. [6] developed a weak coupling approach between a body-fitted
velocity–pressure solver and a Vortex Particle-Mesh method in two
dimensions. Finally, Papadakis and Voutsinas [7] integrated a com-
pressible Eulerian solver (MaPFlow) with a Lagrangian solver using a
Vortex Particle-Mesh technique.

Dealing with moving, rigid objects poses one of the most chal-
lenging and crucial aspects of Computational Fluid Dynamics (CFD).
In CFD simulations, aerodynamic objects can undergo forced motion
(prescribed motion) or move freely, like the case of Vortex Induced
Vibrations (VIV). The primary focus here is on forced motions and,
more specifically, translation and rotation. Simulations involving mov-
ing objects require high-fidelity methods to accurately capture all
the phenomena involved. In the case of Eulerian solvers like Open-
FOAM, morphing or overset meshes are commonly employed to address
translation and oscillation, while AMI is used for rotating objects. A
comparison of morphing and overset techniques in OpenFOAM was
conducted by Alletto [8] for the case of forced and VIV inline oscil-
lations of a cylinder. An application of the AMI technique can be found
in [9], where a Savonius rotor is simulated. However, Eulerian solvers
face significant challenges: they demand extensive computational re-
sources, particularly for simulations involving moving objects, and they
introduce artificial diffusion into the flow in areas where the mesh lacks
high resolution.

Lagrangian methods have also been employed for moving body
simulations. Alvarez and Ning [10] used VPM for modeling multirotor
aerodynamic interactions, while the propeller was modeled as a rotary
lifting surface. Karimi-Zindashti and Kurç [11] used a deterministic
vortex method along with vortex panels to simulate the flow around
rotating cylinders. However, Lagrangian solvers struggle to accurately
resolve regions near solid boundaries, often requiring additional solvers
for support.

The methods mentioned previously fall short in delivering both
cost-effective and accurate results for moving body simulations simul-
taneously. Hybrid solvers, which merge the strengths of both Eulerian
and Lagrangian approaches, are introduced as a promising alternative.
In dynamic mesh simulations, hybrid solvers offer the advantage of
enabling the entire Eulerian mesh to move as a solid body while
the Lagrangian particles handle the computation of updated boundary
conditions, as Papadakis et al. [12] achieved for their compressible
hybrid solver. This feature becomes particularly valuable when dealing
with multiple bodies, as each case’s mesh can move independently,
with the linkage between cases achieved solely through the Lagrangian
particles. For example, in the case of a wind turbine, each blade can be
represented as an independent Eulerian case with its own mesh, which
can move independently as a solid body.

This paper extends our previous work presented in [1] by in-
cluding the dynamic mesh capabilities of the solver. For every new
solver developed, it is necessary to validate it thoroughly on differ-
ent well-examined scenarios before applying it to demanding real-life
problems. This study aims to establish the accuracy of the hybrid
Eulerian–Lagrangian solver in simulations including non-stationary Eu-
lerian domains. Furthermore, this paper addresses a challenge encoun-
tered in the development of solvers that utilize the Vortex Redistribu-
tion Method (VRM), similar to the solver described here, specifically
those that do not use surface elements such as vortex panels. During
dynamic mesh simulations, the Eulerian mesh moves while the particles
remain redistributed at fixed points on an underlying grid. Conse-
quently, the relative position of the Eulerian mesh with respect to the
vortex particles is in constant flux, leading to shifts in the distribution
of particles near the solid boundary. These particles are crucial as they
carry the highest vorticity of the flow, and their shifting can induce
2

artificial high-frequency oscillations in the boundary conditions, which
may in turn cause oscillations in the body forces. It is demonstrated
that these oscillations can be mitigated by either increasing the reso-
lution of the vortex particles or by synchronizing the movement of the
Lagrangian grid with that of the Eulerian mesh.

The paper is organized as follows: Section 2 provides a brief
overview of the main components of the hybrid solver, along with
the coupling strategy employed. Section 3 starts the discussion of
the validation of the solver. Section 3.1 provides the results for the
traveling cylinder case, which serves as a first validation of the hybrid
code before proceeding to the more demanding motions. Section 3.2
discusses the results of the rotational case, which is very interesting to
examine since interest phenomena appear. Pure Eulerian simulations
in OpenFOAM are also presented here and used to validate the hybrid
code. Moreover, the obtained results will be compared with the corre-
sponding results from the bibliography. Finally, Section 4 provides the
paper’s conclusions and a discussion on the potential capabilities of the
solver.

2. Hybrid solver

In this paper, the hybrid solver is a coupling of a Lagrangian Vortex
Particle Method solver, and an Eulerian Finite Volume Method imple-
mented in the OpenFOAM software. Here, a brief reference to the solver
is done. The reader can find more information about the specific solver
in [1,13] and about other similar hybrid solvers in [4,6,12,14,15].

The hybrid solver is based on the Domain Decomposition Technique
introduced by Cottet [16] and later improved by Daeninck [3]. The way
that the computational domain is decomposed can be seen in Fig. 1.
This figure shows that the Eulerian mesh extends up to the numerical
boundary, covering the region close to the solid walls. This ensures
that the boundary layer effects are resolved sufficiently. The Lagrangian
solver covers the entire computational domain, with its primary goal
being the wake’s evolution downstream. The nature of the solver poses
a barrier to resolving the boundary layer effects, so the Lagrangian
solution is corrected in a region close to the solid body, bounded by
the interpolation boundary, using the Eulerian solution.

2.1. Lagrangian solver

The Lagrangian solvers have shown great potential in the field of
external aerodynamics, especially in cases where strong body–vortex
interactions are present. In the present paper, the Lagrangian solver
chosen is the Vortex Particle Method (VPM). A complete analysis of
the method can be found in [17], while Mimeau and Mortazavi [18]
presents a detailed review, including all the advances that have been
made in the field.

In VPM, the Navier–Stokes (N–S) equations are written in terms of
velocity (𝒖) and vorticity (𝜔). In the two-dimensional space, and for the
case of an incompressible flow, the set of equations that are solved can
be summarized as:

𝐷𝜔
𝐷𝑡

= 𝜈∇2𝜔 N-S equations in 2D (1a)

∇ ⋅ 𝒖 = 0 incompressibility constraint (1b)

∇ × 𝒖 = 𝜔 velocity-vorticity relation (1c)

𝜔(𝒙, 𝑡) = 𝜔0(𝒙) initial vorticity (1d)

while their boundary conditions are:

lim
|𝒙|→∞

𝒖(𝒙, 𝑡) = 𝑼𝒊𝒏𝒇 velocity at infinity (2a)

lim
|𝒙|→∞

𝜔(𝒙, 𝑡) = 0 vorticity at infinity (2b)

The original formulation of the vortex particles gives a singularity
point at its center since the induced velocity is infinite. To avoid
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Fig. 1. Decomposition of the computational domain. The Lagrangian solver covers the entire computational domain (denoted as 𝛺𝑙𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛), whereas the Eulerian mesh extends
up to a short distance (numerical boundary) away from the solid boundary. The under-resolved solution of the Lagrangian is corrected using the Eulerian solution in a region
bounded by the interpolation boundary.
this singularity, mollified particles with finite cores are used instead.
The velocity and the vorticity fields can be written as summations of
the contributions of all the particles (in the velocity field, the free-
stream velocity 𝑼 𝑖𝑛𝑓 is added) because both are linear solutions of a
Poisson equation. Hence, the induced velocity and vorticity fields can
be written as:

𝒖𝑝(𝒙) = − 1
2𝜋

∑

𝑝

𝑔𝜎 (
|

|

|

𝒙 − 𝒙𝒑
|

|

|

)

|

|

|

𝒙 − 𝒙𝒑
|

|

|

2
(𝒙 − 𝒙𝒑) × 𝒆𝒛𝛤𝑝 + 𝑼 inf (3a)
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where the smoothing functions are:

𝑔𝜎 (𝑟) =
1

2𝜋𝜎2

⎛

⎜
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⎜

⎝

1 − 𝑒
−

𝑟2

2𝜎2
⎞

⎟

⎟

⎟

⎠

and 𝜁𝜎 (𝑟) =
1

2𝜋𝜎2
𝑒
−

𝑟2

2𝜎2 (4)

The vortex particles are evolved in two distinct steps, as proposed
by Chorin [19]. First, the particles are advected using a 4th order
Runge–Kutta integration scheme and then are diffused using the Vortex
Redistribution Method (VRM) [20]. The VRM involves redistributing
particles across a predefined grid, which is beneficial for two main
reasons. Firstly, it addresses the issue of particle deformation due to
flow strains, which can lead to regions either devoid of particles or
with high concentrations, causing inaccuracies in the flow. Secondly,
the Vortex Particle Method (VPM) provides a mechanism to model the
diffusion process effectively.

2.2. Coupling strategy

The two solvers are coupled in two steps. The first step of the
coupling is the evaluation of the boundary conditions for the Eulerian
solver at the numerical boundary (see Fig. 1). In OpenFOAM, we
need to specify velocity and pressure boundary conditions, and so the
Lagrangian particles are used here to calculate the velocity and the
pressure gradient on the boundary faces. The velocity components are
calculated using the expression of the induced velocity (Eq. (3)), while
the pressure gradient is retrieved using the unsteady Bernoulli equation
(Eq. (5)).

∇𝑝̄ = −( 𝜕𝒖 + (𝒖 ⋅ ∇)𝒖 + 𝜈∇2𝒖), 𝑝̄ = 𝑝∕𝜌 (5)
3

𝜕𝑡
Fig. 2. A vortex that inserts in the Eulerian subdomain when the Eulerian mesh moves
towards it. This is just a graphical representation for clarifying purposes since the body
cannot cover this distance in one time step.

The second step of the coupling involves correcting the Lagrangian
solution within the interpolation region (blue region in Fig. 1), using
the more accurate Eulerian solution. For this correction, the technique
proposed by Billuart et al. [6] is employed. Specifically, instead of
interpolating the vorticity field from the Eulerian solver to the La-
grangian, the velocity field is interpolated at the edges of a square
around each Lagrangian particle. Subsequently, the strength of each
particle is determined by integrating the velocity around these edges.
As Billuart et al. [6] explain, this method significantly enhances the
accuracy of circulation conservation. It also accommodates the motion
of solid bodies, as velocity values can be assigned to edges that are
within the body.

In OpenFOAM, two main techniques are utilized for conducting
simulations involving moving bodies, namely morphing mesh and over-
set mesh, while AMI is very often used for rotating cases. In the
case of morphing mesh, the mesh’s topology undergoes alterations by
displacing the patch associated with the moving object while preserving
the connectivity of the internal cells. Conversely, in the overset mesh
approach, a stationary background mesh is employed, and for each
moving object, an additional mobile mesh is superimposed on top of
the former. This additional mesh moves about the background mesh,
and their interaction is achieved through the interpolation of variables
between them. The approach that we employ here is quite similar to
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Fig. 3. The flowchart of the hybrid solver, including the mesh update, assumes that both solvers are at time 𝑡𝑛, and their solutions are correct. The first step is to evolve the
Lagrangian solver to 𝑡𝑛+1. Then, if the body is moving, the mesh is moved; otherwise, the calculation of the Eulerian boundary conditions takes place directly. Subsequently, the
Eulerian solution is evolved to 𝑡𝑛+1, and finally, the Lagrangian solver is corrected inside the interpolation region.
the overset mesh approach, but instead of a static Eulerian mesh, we
employ a background Lagrangian grid.

In this scenario, a question arises regarding how the Eulerian solver
recognizes fluid structures, such as vortices, outside its boundary. For
example, consider a scenario where a vortex exists beyond the Eulerian
domain’s boundaries, and the mesh is moving towards it, as depicted
in Fig. 2.

The Lagrangian solver effectively addresses this issue by updating
the boundary conditions at the new coordinates after the movement.
Consequently, updating the position of the Eulerian mesh before calcu-
lating the boundary conditions is essential. As a result, the evolution
of the Eulerian solver can be divided into two distinct steps. Initially,
the mesh undergoes motion and updates the coordinates of cells, faces,
and vertices. Subsequently, in a separate step, all operations related to
correcting the fields due to the movement and the solution’s evolution
are performed. Compared to the flowchart presented in [1] where static
cases were examined, the updated flowchart is illustrated in Fig. 3.

In this project, OpenFOAM v9 [21] is employed as the Eulerian
component of the hybrid solver. Specifically, the solver in this context
is pimpleFOAM, an incompressible, transient solver capable of accom-
modating dynamic mesh simulations. pimpleFOAM uses the PIMPLE
algorithm [22] for correcting the velocity and pressure fields to enforce
the continuity equation. Modifications have been done to the original
pimpleFOAM solver in order to achieve the coupling between the two
solver. A detailed discussion on these changes can be found in [13].

3. Validation

The solver is validated through the traveling cylinder case at 𝑅𝑒 =
100 and the rotating cylinder at two different rotating speeds at 𝑅𝑒 =
200. A combination of these two motions can describe every motion a
rigid body can undergo, so it is vital to validate both to have a complete
analysis of the two-dimensional dynamic case.

The exact configuration is employed for the different cases, as
depicted in Fig. 4. The simulated cylinder has a radius 𝑅𝑐 , and the
Eulerian domain extends up to a distance of 𝑅𝐸 from the center of
the cylinder (the red circle represents the numerical boundary). The
4

Table 1
Global simulation parameters for the validation cases.

Parameter Symbol Value Dimension

Cylinder’s radius 𝑅𝐶 0.5 m
Eulerian’s domain radius 𝑅𝐸 1.0 m
Simulation time 𝑡𝑠𝑖𝑚 100 s
Gaussian kernel width spreading 𝑘 2 –
Overlap ratio 𝜆 1 –
Interpolation domain offset from Eulerian boundary 𝑑𝑏𝑑𝑟𝑦 0.09 m

Lagrangian solver covers the entire computational domain and is cor-
rected within the interpolation region 𝛺𝑖𝑛𝑡 (illustrated in blue). Notably,
a small layer of cells is excluded from the correction process, denoted
as 𝑑𝐵𝑑𝑟𝑦. The Eulerian mesh is exclusively comprised of hexahedra,
as detailed in the snippet. Mesh density increases near the cylinder’s
surface to capture near-wall phenomena effectively, with the stretching
ratio being 1.05 and the height of the first cell 2.7 mm (for the base
mesh presented below).

Many parameters between the different cases are similar, and they
can be summarized in Table 1. The parameters that differentiate among
the cases are mentioned in the corresponding subsections.

3.1. Traveling cylinder at Re = 100

The first case to validate the solver is the traveling cylinder. The
solver has already been validated into the case of a stationary cylinder
with a free-stream velocity in [1], but in that case, for 𝑅𝑒 = 550. Here,
the validation case presents the opposite situation. The free-stream
velocity is set to zero while the cylinder travels with a constant velocity
𝑈𝑚𝑒𝑠ℎ as shown in Fig. 5 operating at 𝑅𝑒 = 100. In order to have a fair
comparison between the static and the dynamic case, the static case at
𝑅𝑒 = 100 is also simulated here. The initial simulations are executed
using a base Eulerian mesh, which consists of 11.040 hexahedra, and
is depicted in Fig. 5.

A preliminary comparison of the aerodynamic coefficients from the
two simulations (static and dynamic) is illustrated in Fig. 6. While the
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Fig. 4. The cylinder configuration used for the validation cases, with a snippet depicting the cells close to the numerical boundary.
Fig. 5. The traveling cylinder case configuration. The cylinders moves in the −𝑥
direction with a constant velocity 𝑈𝑚𝑒𝑠ℎ.

mean values of the drag and lift coefficients appear similar, the dy-
namic simulation exhibits noticeable high-frequency oscillations, par-
ticularly in the drag coefficient time history, with significant amplitude.
Upon detailed analysis, it was determined that these oscillations are
caused by the movement of the Eulerian mesh over the Lagrangian
particles, which are consistently redistributed at the same grid points
in global coordinates. This interaction results in a continuous shift of
particles near the solid body, where the highest vorticity is recorded,
relative to the Eulerian mesh, as shown in Fig. 7. Consequently, parti-
cles close to the solid body at one time step may end up inside the body
at the next, necessitating their removal. This alteration in the distribu-
tion of the particles carrying the highest vorticity affects the boundary
conditions of the Eulerian solver, thereby inducing oscillations in the
forces acting on the body.

However, this study demonstrates that these oscillations can be miti-
gated in two ways. First, by increasing the resolution of the Lagrangian
solver, we achieve a denser distribution of particles around the solid
body and reduce the relative distances as the mesh moves. Second, by
moving the redistribution points of the Lagrangian particles in such
a way that this movement is synchronized with the Eulerian mesh
5

Table 2
Test cases of the traveling cylinder at 𝑅𝑒 = 100, to demonstrate the alleviation of the
high-frequency oscillations on the body forces.

Case state Particle spacing (h) Eulerian mesh Synchronization

Static 0.030 m Base –
Static 0.015 m Base –
Dynamic 0.030 m Base False
Dynamic 0.030 m Base True
Dynamic 0.015 m Base False
Dynamic 0.015 m Base True

motion. To validate these approaches, we conducted the simulations
summarized in Table 2.

Fig. 8 displays the first 30 s of the drag coefficient for the six differ-
ent cases outlined in Table 2. On the left, the cases with a spacing of
ℎ = 0.03m are shown, and on the right, those for ℎ = 0.015m. Initially,
the left subfigure demonstrates that synchronizing the particles with the
mesh movement significantly reduces the amplitude of the oscillations.
Further reductions are observed when the particle spacing is decreased,
as evidenced by the comparison between the left blue line and the
right one. Moreover, if we also synchronize the particles with the mesh
movement in addition to reducing the spacing, the oscillations become
very minimal, closely aligning with the static case’s results.

It should be noted that residual oscillations remain due to the con-
tinuous interpolation of the particles at different grid points during the
synchronization. This is evidenced by running a simulation where the
mesh movement per time step matches the particle spacing, ensuring
that the particle distribution relative to the solid body remains constant.
For this test case, we increased the timestep to 0.02 s for both static and
dynamic scenarios to ensure a fair comparison. The outcomes of this
analysis are depicted in Fig. 9.

Now that the issue has been addressed, we can proceed to the
validation of the results for the hybrid dynamic solver. It is important
to note that the remaining simulations for the traveling cylinder case
involve the synchronization of the Lagrangian grid with the Eulerian
mesh. The results are initially compared with those obtained from the
static case, where the cylinder is stationary and a free-stream velocity
is applied. Subsequently, the dynamic case results are compared with
those from a simulation performed purely in OpenFOAM (static simula-
tion), and finally with bibliographical numerical results from Pingjian
and Wenping [23].

Additionally, to perform a convergence test for the Eulerian mesh

used in the hybrid simulations, two different meshes, named base



Computers and Fluids 279 (2024) 106327R. Pasolari et al.
Fig. 6. Lift and drag coefficients over time for the case of the static and traveling cylinder at 𝑅𝑒 = 100, with the base Eulerian mesh and particle spacing ℎ = 0.03 m.
Fig. 7. Configuration of the Lagrangian particles close to the solid boundary over a time step. In the static case, the configuration remains the same; for the dynamic case, the
distribution of the particles around the solid boundary changes, leading to high-frequency oscillations in the calculation of the Eulerian boundary conditions and, subsequently, on
the body forces.
and refined mesh, are employed. These are summarized in Table 3,
alongside the particle spacing parameter and the time step used in the
simulations. Table 4 presents the results for the drag coefficient 𝐶𝑑 , the
lift coefficient 𝐶𝑙, and the Strouhal number. Fig. 10 shows the drag and
lift coefficients over time for the present method, the static hybrid case,
and the OpenFOAM case.

Finally, Fig. 11 shows the vorticity field in two different instances
as the cylinder travels in time. The left image is at the time 𝑡 = 20 s
and the right at 𝑡 = 100 s where the center of the cylinder is at
6

Table 3
Simulation parameters for the case of the traveling cylinder at 𝑅𝑒 = 100.

Case Eulerian mesh Particle spacing (h) Time step

Hybrid static Base (11040) 0.03 m 0.005 s
Hybrid static Refined (27600) 0.015 m 0.0025 s
Hybrid dynamic Base (11040) 0.03 m 0.005 s
Hybrid dynamic Refined (27600) 0.015 m 0.0025 s
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Fig. 8. Drag coefficient over time for different test cases of the traveling cylinder at 𝑅𝑒 = 100, that demonstrate the alleviation of the high-frequency oscillations on the body
forces.
Fig. 9. Comparison of the drag coefficient between a static and a dynamic case where
the mesh displacement is equal to the particles’ spacing.

Table 4
Results for the case of the traveling cylinder at 𝑅𝑒 = 100.

Method 𝐶𝑑 𝐶𝑙 Strouhal

Pingjian and Wenping [23] 1.340 ± 0.008 ±0.3130 0.165
OpenFOAM 1.339 ± 0.008 ±0.3090 0.164
Hybrid static (base) 1.337 ± 0.009 ±0.3225 0.165
Hybrid static (refined) 1.337 ± 0.009 ±0.3223 0.165
Hybrid dynamic (base) 1.337 ± 0.017 ±0.3264 0.165
Hybrid dynamic (refined) 1.337 ± 0.009 ±0.3223 0.165

𝑥𝑐 = −20 m and 𝑥𝑐 = −100 m, respectively. The numerical boundary
is represented as a black dashed circle. The vorticity field is smooth,
without any inaccuracies to be observed when the vortices generated
on the cylinder’s surface exit the Eulerian domain.

The above results demonstrate a strong agreement between the
hybrid dynamic solver, the static one, and OpenFOAM. Specifically, the
hybrid dynamic solver converges to the same values as the hybrid static
solver for the lift and drag coefficients, as well as the Strouhal number.
When compared with the pure OpenFOAM results, the errors on the
lift and drag coefficients are less than 4.0% and 0.2% respectively.
Meanwhile, when compared with the Ref. [23], the corresponding
errors are 2.8% and 0.22%, respectively. Finally, the hybrid solver
predicts the same Strouhal number as the reference, equal to 0.165,
while the pure OpenFOAM value is slightly lower, at 0.164.
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3.2. Rotating cylinder at Re = 200

The second validation case is the flow around a rotating cylinder
at 𝑅𝑒 = 200. In this case, while the cylinder is spinning through the
moving air, it experiences a lift force, known as the Magnus effect.
There is a dimensionless parameter that characterizes the flow and
relates the tangential velocity on the surface of the cylinder with the
free-stream velocity, and it is expressed as:

𝛼 =
𝛺𝑟𝑜𝑡𝑅
𝑈𝑖𝑛𝑓

(6)

where 𝛺𝑟𝑜𝑡 is the rotating speed, 𝑅𝑐 is the radius of the cylinder
and 𝑈𝑖𝑛𝑓 is the free-stream velocity. This parameter is crucial for the
rotating cylinder case since it characterizes the flow. Mittal and Kumar
[24] presented the results for the case of 𝑅𝑒 = 200 for value of 𝛼 from
0.0 to 5.0. It is essential that they showed that a von Kármán vortex
street is developed in the flow up to 𝛼 = 1.91. Up to that point, there is
a deflection of the wake, but the periodic vortex street is present. The
vortex street is not present for values larger than 1.91, and a steady
solution is reached. A second region of instability is observed again at
𝛼 = 4.4, while for 𝛼 ≥ 4.8, multiple solutions emerge, and the flow
becomes more complicated. Karimi-Zindashti and Kurç [11] examined
the case of rotating circular cylinders at 0.0 ≤ 𝛼 ≤ 5.5 and rotating
square cylinders at 0.0 ≤ 𝛼 ≤ 5.0 using a deterministic vortex method.
Here, the hybrid solver will be tested in two different cases, specifically
𝛼 = 0.5 and 𝛼 = 2.5, to have a case before and after the steady solution
is reached. The results are compared with those in [24], as well as
with pure OpenFOAM simulations. For the OpenFOAM simulations,
AMI is used. The case configuration can be seen in Fig. 12. This figure
illustrates the rotational speed as 𝛺𝑚𝑒𝑠ℎ.

3.2.1. Case 𝛼 = 0.5
For the case of 𝛼 = 0.5, a von Kármán vortex street is expected, as

Mittal and Kumar [24] state. Table 5 shows the results for the minimum
and maximum lift coefficient, and for the mean drag coefficient, for the
present method, as well as the results obtained in [24], and the results
obtained by OpenFOAM simulations. For the case of 𝛼 = 0.5, the base
mesh of Table 3 is used.

Fig. 13 shows the drag and lift coefficients for the hybrid case
and the OpenFOAM simulations. Moreover, Fig. 14 shows the vorticity
field obtained by the hybrid solver simulations for two different time
instances: one at the beginning of the simulation (𝑡 = 10 s) and one
when a periodicity in the wake is reached (𝑡 = 60 s). As was expected,
for this case, a von Kármán vortex street is present in the wake of the
flow and deflected compared to the case of a non-rotating cylinder.
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Fig. 10. Lift and drag coefficient over time for the case of the traveling cylinder at 𝑅𝑒 = 100.
Fig. 11. Vorticity field for the case of the traveling cylinder at 𝑅𝑒 = 100. The numerical boundary is represented with a black dashed circle line.
Fig. 12. The rotating cylinder case configuration. The cylinder rotates counterclockwise with a rotational speed 𝛺𝑚𝑒𝑠ℎ, while a free-stream velocity 𝑈𝑖𝑛𝑓 acts in the +𝑥 direction.
Table 5
Results for the case of the rotating cylinder at 𝑅𝑒 = 200 and 𝛼 = 0.5.

Case 𝐶𝑙,𝑚𝑖𝑛 𝐶𝑙,𝑚𝑎𝑥 𝐶𝑑,𝑚𝑒𝑎𝑛

Mittal and Kumar [24] −1.910 −0.487 1.255
OpenFOAM −1.805 −0.577 1.283
Hybrid −1.853 −0.520 1.276
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3.2.2. Case 𝛼 = 2.5

For the case of 𝛼 = 2.5, the von Kármán vortex street is not expected
in the flow, as Mittal and Kumar [24] state. The wake should be steady
and deflected. In this simulation, the refined mesh of Table 3 is used,
while a time step convergence test is conducted, with the time step to
vary from 0.004 s to 0.00025 s. Table 6 shows the results for the steady
lift coefficient developed on the rotating body for the present method,
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Fig. 13. Lift and drag coefficients over time for the case of the rotating cylinder at 𝑅𝑒 = 200 and 𝛼 = 0.5.
Fig. 14. Vorticity field for the case of the rotating cylinder at 𝑅𝑒 = 200 and 𝛼 = 0.5. The numerical boundary is represented with a black dashed circle line.
as well as the results obtained in [11,24], and the results obtained by
OpenFOAM simulations.

Fig. 15 shows the lift coefficient and a time step convergence test
for the lift coefficient. It can be seen that the hybrid solver has good
agreement with the reference results from Mittal and Kumar [24], with
the converged value deviating from the reference value by only 1.2%.
Finally, Fig. 16 shows the vorticity field in two different time instances:
one at the beginning of the simulation and one when the steady wake
has been reached.

It should be noted that in this case, the solver does not experience
the issue of high-frequency oscillations in the body forces. This is
because the motion of the Eulerian mesh is purely rotational around its
center, ensuring that the distribution of the Lagrangian particles around
the solid boundary remains constant throughout the simulation.

4. Discussion & future aim

In this study, the 2D incompressible hybrid Eulerian–Lagrangian
solver introduced in [1] has been extended to dynamic mesh applica-
tions. In the hybrid configuration, the Eulerian solver is responsible
for providing a high-fidelity solution in the proximity of the solid
object, while the Lagrangian solver is responsible for evolving the wake
downstream, being much less diffusive than conventional CFD [17].
Instead of the most common methods used in OpenFOAM for simulating
dynamic meshes, such as morphing meshes, overset meshes, and AMI,
a different strategy is employed. The entire Eulerian mesh moves as a
solid region in respect to the prescribed motion, with the Lagrangian
particles being responsible for providing boundary conditions to the
Eulerian solver.
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Table 6
Results for the case of the rotating cylinder at
𝑅𝑒 = 200 and 𝛼 = 2.5.

Case 𝐶𝑙

Mittal and Kumar [24] −7.680
Karimi-Zindashti and Kurç [11] −7.016
OpenFOAM −7.410
Hybrid (𝛥𝑡 = 0.004 s) −6.915
Hybrid (𝛥𝑡 = 0.001 s) −7.532
Hybrid (𝛥𝑡 = 0.00025 s) −7.583

The solver has been validated through cases involving a traveling
and a rotating cylinder. While the hybrid code had already been vali-
dated in cases of flow around a cylinder at low Reynolds numbers [1],
this time, no free-stream velocity was applied; instead, the cylinder
is traveling through the air. This seemingly simple scenario provided
valuable insights into a numerical phenomenon that arises in hybrid
solvers using a redistribution method when simulating moving bodies.
Specifically, in hybrid solvers that do not use any surface elements
to capture the wall vorticity in the Lagrangian solver, such as in the
present study and the work by Billuart et al. [6], a constant shift
in the distribution of particles near the solid boundary occurs as the
mesh moves through space (see Fig. 7). The Eulerian mesh, along with
the solid body, moves, while the particles are always redistributed
at specific points on a Lagrangian grid, altering their distribution
continuously. These particles, carrying the highest vorticity of the
flow, significantly impact the boundary conditions. The shift in these
particles changes the way vorticity is transferred from the Eulerian
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Fig. 15. On the left is the lift coefficient over time for the hybrid case, the OpenFOAM case, and the Ref. [24]. The time step convergence test for the lift coefficient is on the
right compared to the Ref. [24].
Fig. 16. Vorticity field for the case of the rotating cylinder at 𝑅𝑒 = 200 and 𝛼 = 2.5. The numerical boundary is represented with a black dashed circle line.
solver to the Lagrangian solver, consequently affecting the Eulerian
boundary conditions. This results in high-frequency oscillations in the
boundary conditions, and thus in the forces acting on the body. Al-
though it was shown that these oscillations do not alter the mean value
of the drag coefficient, they significantly affect the amplitude of the
oscillations. Nevertheless, it was demonstrated that these oscillations
can be significantly reduced either by increasing the resolution of the
particles or by moving the particle grid to synchronize its movement
with that of the Eulerian mesh.

For the traveling cylinder case, the comparison of the dynamic
capabilities of the solver with the static solver, OpenFOAM, and a
reference simulation demonstrated that the hybrid dynamic solver is
capable of reproducing the exact results as the static solver. When
compared to OpenFOAM and the reference, all discrepancies in the
results are less than 4.0%.

For the rotating cylinder case, the solver has been validated in two
different scenarios, with 𝛼 = 0.5 and 𝛼 = 2.5. In the first case a deflected
von Kármán vortex street is present, exactly as stated by Mittal and
Kumar [24]. The aerodynamic coefficients show good agreement with
both the OpenFOAM results and the reference results [24]. In the case
where 𝛼 = 2.5, the von Kármán vortex street is not present, as stated
again by Mittal and Kumar [24] and Karimi-Zindashti and Kurç [11].
The wake is steady and deflected by the symmetry axis. Due to the
Magnus effect, the cylinder experiences a lift force (negative in the
presented results), which aligns well with the results presented by the
references and OpenFOAM. This case was much more sensitive to the
time step selection, necessitating the use of a convergence test. It should
be noted that in this case, no high-frequency oscillations were present,
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since the Eulerian mesh rotates around its center point, which coincides
with the center of the cylinder. Consequently, the distribution of the
particles around it remains constant throughout the simulation.

It can be concluded that the solver is capable of simulating moving
bodies without difficulty and reproducing results from Eulerian solvers.
This capability paves the way for hybrid solvers in the simulation of
external aerodynamics. The hybrid solver offers an elegant approach
to conducting multi-body simulations, as each body can be repre-
sented and solved as an independent case, while particles interconnect
them [12]. The solver also needs to be tested in Fluid–Structure Inter-
action (FSI) problems, where the cylinders can move freely due to the
fluid forces acting on them. Later, soft bodies can be incorporated to
provide a more comprehensive study of FSI.
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