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Abstract

In financial and egineering problems, we are often faced with solving Partial-Integro Differential Equa-
tions (PIDEs). Rarely we can find an analytic solution in a closed form expression for these PIDEs, hence
we turn to numerical schemes to accurately approximate the solution instead. Classically these methods
are based on finite difference methods, however, we can turn certain kinds of PIDEs into a probabilis-
tic representation, called Forward Backward Stochastic Differential Equations with Jumps (FBSDEJs).
Solving the PIDE can now be done alternatively by solving a FBSDEJ.

In this thesis we will first investigate the stochastic framework behind FBSDEJs and we will look into
the uniqueness and existence of their solutions. Furthermore we propose a new numerical method which
can efficiently solve FBSDEJs. The semi-discretisation is based on the classical Backward Differentiation
Formula (BDF) methods, for the computation of the conditional expectations we use the COS method
which makes use of Fourier cosine expansions, exploiting the knowledge we have about characteristic
functions. Finally we implement the new method and we investigate it extensively both numerically and
theoretically.

We show that the BDFn schemes are highly stable and efficient for computing FBSDEJs, the initial
steps still have to be investigated in greater detail so that we can make use of the high-order BDFn
schemes.

Sander Blok



CHAPTER 1

Introduction and Outline of this Thesis

Over the past decades, mathematical finance has become a new scientific discipline on its own. The
theory of finance attempts to describe the mechanisms behind the financial markets, to make them more
efficient, but also to regulate them. It tries to explain and enhance the important role the financial
markets play in efficient capital allocation and risk reduction to facilitate economic activity. While still
retaining its application to practical problems in finance, mathematical finance has grown out to be
quite mathematically sophisticated, driven by the urge to model the financial markets more and more
realistically.

One of the important topics in mathematical finance, is the valuation of so-called options. They
are financial instruments which are based on the value of an underlying asset, such as a stock. An
option contract offers the holder the opportunity to buy or sell, depending on the type of contract, the
underlying asset. It should be stressed that the holder is under no obligation to exercise the contract,
while the writer or seller of the contract has to oblige with the choice of the holder. The most common
example of an option is the European call option. Given a maturity time T and a strike price K, the
holder of the option has the option to buy the underlying asset at time T for the price K. Since the
holder always has the most favourable outcome in terms of payoff, the writer asks a certain price for
buying the option. The question which has been studied extensively, is how to compute a fair price for
these kinds of options as the value of the underlying asset is of a stochastic nature and can sometimes
vary wildly in between the purchase moment of the option and the maturity time. Nowadays there exists
a big variety of options which have become increasingly difficult to price, necessitating a detailed study.

Traditionally, options have been priced under the Black-Scholes model, which won the 1997 Nobel
Prize of Economics. Under this model, options like European call options can be computed analytically,
and the model gives a very satisfying mathematical theory. However, the assumptions have been widely
criticised as they tend to heavily underestimate the probability of extreme events on the market and
insufficiently account for correlations on past events. The Black-Scholes model assumes among other
things that the asset price moves continuously through time. One of the solutions which have been
proposed, is adding jumps to the asset price dynamics. These kinds of models are mostly split into
two classes, the jump-diffusion models and the infinite activity models. The jump-diffusion models
assume that normally the price moves relatively tamely through time, but at rare occasions extreme
events can happen in the form of jumps. The infinite activity models are different in that both the
normal events as the extreme events are modelled with jumps. Consequently, infinite activity models
pose additional mathematical challenges. In this thesis we will only develop numerical algorithms for
jump-diffusion processes, infinite activity models still pose difficulties which are yet somewhat unresolved
for the problems we will research.

Connection PIDEs and FBSDEJs
Commonly in engineering problems, but also economic and financial problems, we are faced with solving
a so-called Partial-Integro Differential Equation, PIDE in short, of the following form

Lv(t, x) = −f
(
t, x, v, σ

∂v

∂x
,Mu

)
, ∀(t, x) ∈ [0, T )× R,

v(T, x) = g(x) ∀x ∈ R.

Here L is the second-order partial-integro differential operator defined as

Lv(t, x) =
∂v

∂t
(t, x) + µ(t, x)

∂v

∂x
(t, x) +

1

2
σ2(t, x)

∂2v

∂x2
(t, x)

+

∫
R0

(
v(t, x+ β(t, x, J))− v(t, x)− ∂v

∂x
(t, x)β(t, x, J)

)
dν(J),

and M is the integral operator defined as

Mv(t, x) =

∫
R0

(v(t, x+ β(t, x, J))− v(t, x))η(J) dν(J).
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3

The functions µ, σ, β, ρ and f and the σ-finite measure ν are all assumed to be known. The task is to
solve the equation for v. Rarely we can find a solution analytically in a closed form expression. Hence we
have to rely on numerical algorithms to approximate the solution. Even then, such a task is non-trivial.

Under certain regularity conditions on the known coefficients, as we will discuss later in the thesis,
a probabilistic representation exists of this PIDE. The following set of equations is called a Forward
Backward Stochastic Differential Equation with Jumps, FBSDEJ, in short. Formally it is given by

Xt = x+

∫ t

0

µs(Xs) ds+

∫ t

0

σs(Xs) dWs +

∫ t

0

∫
R0

βs(Xs−, J) Ñ(ds, dJ), (FSDEJ)

Yt = g(XT ) +

∫ T

t

fs(Xs, Ys, Zs,Γs) ds−
∫ T

t

Zs dWs −
∫ T

t

∫
R0

Us(J) Ñ(ds, dJ), (BSDEJ)

which has the solution (X,Y, Z,Γ) and Γt =
∫
R0
Ut(J)η(J) dν(J). We furthermore assume that the

system is Markovian, that is to say that all the randomness in (Yt, Zt,Γt) is due to Xt. The relation
with the PIDE is that v(t, x) = Yt(x) for every x ∈ R, where we write the dependency of Yt on x as the
effect of changing x in the FSDEJ. Furthermore we have σ ∂v∂x (t, x) = Zt(x) and Mv(t, x) = Γt(x). The
exact meaning of the integrals will have to wait for later chapters in the thesis, we can, however, give a
heuristic explanation in terms of option valuation.

The FSDEJ is also sometimes called the state process, as it determines the entire randomness of the
system due to the Markovian structure. For option pricing we can see X as the log-asset price, where we
call µ the drift term, σ the diffusion term and β the jump term. The drift term models the price changes,
the diffusion term models the volatility of the asset price, how wildly the price changes, and finally the
jump term models the size of the jump. There is a fourth parameter hidden inside the third integral
which is, what we call, the Lévy measure ν. The total mass λ = ν(R0) models the intensity of the jumps
and λ−1ν models the probability distribution of the jumps sizes. The BSDEJ is a bit more difficult
to understand, the Y -process is the option price and the Z-process is equal to the Delta multiplied
with the volatility and the underlying asset price. The Delta is the derivative of the option price with
respect to the underlying asset price. Now the U -process is equal to the jumps in the option price, while
the Γ-process is the expectation over all the possible jumps in the option price multiplied with η and
multiplied with the intensity λ. Alternatively we could see the Z and U processes as control processes.
They represent the randomness which needs to be built into the Y -process such that it is steered towards
the terminal condition g(XT ) ensuring that we only use current knowledge of the underlying asset. The
driver f on itself is insufficient for these purposes, unless the diffusion term and the jump term are zero
in the FSDEJ.

A major difficulty in solving Forward Backward Stochastic Differential Equations (FBSDEs) is that
the process moves backwards in time, while our knowledge of the value of the state process grows
incrementally forward in time. In classical PDE theory, we could do a change of variables in the time
variable, to ‘reverse’ time. This is however not possible in this probabilistic framework, as we have a
restriction on the available information of the underlying state process, which we call adaptedness to the
filtration. Therefore analysing and solving these kinds of equations is a theory of its own, and turns out
to be rather difficult.

Outline of the thesis
The thesis is divided into two parts. Part I deals with the tools in stochastic analysis which we will need
to properly define the FBSDEJs and prove their existence and uniqueness, so that in Part II we can give
a detailed treatment on the numerical aspect of solving FBSDEJs.

We begin the thesis with the basic theory of stochastic processes which will be the backbone of
the thesis in Chapter 2. A very special kind of stochastic processes, will be the class of martingales,
which roughly means that they stay constant on average through time. They will be a suitable class of
integrators on which we can define stochastic integrals. The important properties of martingales which
we will use in this thesis are discussed in Chapter 3.

In Chapter 4 we will go a long way in setting up the stochastic calculus we will need to define and
analyse our FBSDEJs. Integration with respect to continuous semimartingales has become standard in
the field of stochastic calculus, and so is the theory of càdlàg semimartingales. We will, however, not
need the full generality càdlàg semimartingales provides, as is treated in for example Protter [33], but
we will need something more than continuous semimartingales as we want to introduce jump processes.
The theory of what is called Lévy-Itô processes in Tankov [42] is not always documented in great detail.
So we will fill in some gaps and combine the existing literature to get a satisfactory theory for our needs.

Sander Blok



4 Chapter 1. Introduction and Outline of this Thesis

Finally in Chapter 5 we will define the stochastic differential equations. The structure of this chapter
will be simple, we will analyse the existence and uniqueness of the solutions of FSDEJs and BSDEJs
seperately.

In the second part we start off with defining and analysing the COS method as defined in Fang [16].
We will prove some new connections with Lévy-Itô processes and we will try to give a bit more detailed
reasoning behind the numerical behaviour of the method. In Ruijter [35] the COS formulas necessary
for the numerical computation of FBSDEs (so without jumps) were introduced, we will extend them to
the case of jump processes.

In Chapter 7 we propose a new numerical method for computing FBSDEJs, the semi-discretisation
is based on the Backward Differentiation Formula (BDF) methods for computing ODEs, while the full-
discretisation is similar to the BCOS method as defined in Ruijter [35]. In the second part of the chapter
we will discuss some convergence results for the new method and difficulties we still face in the BSDE
literature to prove optimal convergence rates for the general case of FBSDEJs.

In the last chapter we thoroughly test our method and compare it to the scheme proposed in Rui-
jter [36]. The method as given by Ruijter only covered the FBSDEs, and only one example of an FBSDEJ.
In Chapter 7 we will discuss how to extend this method to general FBSDEJs in an efficient and accurate
manner.

Finally we present conclusions of the conducted research on this new numerical method and provide
some topics for future research.

A numerical Fourier cosine method for forward backward stochastic differential equations with jumps
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CHAPTER 2

Stochastic Processes

Stochastic processes can be thought of as an evolution of stochastic random variables. As an example
assume that a stock price on the financial market follows a stochastic model, then we can view it also
as a stochastic process, evolving through time. In the last decades, stochastic processes on the financial
market have been studied extensively and the required stochastic calculus we will introduce later in
this thesis, is fundamental for the modern language of finance. Everything we will discuss in this thesis
we do by keeping the application to finance in mind, but we will treat the theory in generality as its
applicability reaches further than just the world of finance.

We can either model stochastic processes as discrete-time processes, which can only change in value
at a countable set of times, or we can model stochastic processes as continuous-time processes where the
stochastic processes can now change in value at an uncountable set of times. For a thorough treatment of
discrete-time stochastic processes we refer to Shreve [39], which is accessible for anyone having followed
only some basic courses in mathematics. In this thesis we will however focus entirely on continuous-time
processes as they form a more realistic framework for modelling in finance.

Contrary to discrete-time processes, continuous-time processes require a solid mathematical back-
ground to work with. An introduction is given in Shreve [38]. In this thesis we will however need a more
elaborate theory of stochastic calculus, and for this we also need a precise theory of stochastic processes.
This chapter is roughly based on the works Billingsley [4], Cohn [10], Le Gall [26] and Shreve [38].

2.1 Probability Spaces and Random Variables

A probability space is denoted as the triple (Ω,F ,P) consisting of the sample space Ω which contains all
possible outcomes of a random event, we typically denote an element of Ω as ω. Furthermore, F is called
the event space containing all random events which can occur on this probability space, and finally P is
called the probability measure which assigns a probability to each event in the event space.

To get a convenient structure on the probability space, the event space F and probability measure P
have to satisfy a set of properties. We require the event space F to be a σ-algebra on Ω, which consists
of subsets of Ω and satisfies the following three properties

• The empty set ∅ is an element of F ;

• For any A ∈ F , its complement Ac := Ω \A is also in F ;

• For any countable sequence (An)n∈N ⊂ F , its union
⋃∞
n=1An ∈ F .

For the probability space P we have the requirement that it has to be a measure on F and that P(Ω) = 1.
For P : F → [0, 1] to be a measure, we need that

• P(∅) = 0;

• If a countable sequence (An)n∈N ⊂ F is disjoint, then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

We call an event with probability zero, a null event, and in this framework it corresponds to the
following. Suppose A ∈ F is such that P(A) = 0, then A is a null set. Consequently P(Ac) = 1 and we
say that Ac ∈ F occurs P-almost surely or abbreviated as P-a.s. When P is clear from the context we
just write a.s. or almost surely.

Given a probability space (Ω,F ,P), write

N(F ,P) := {A ⊂ Ω : there exists A ⊂ Ã ∈ F such that P(Ã) = 0}.

6



2.1. Probability Spaces and Random Variables 7

We say that (Ω,F ,P) is a complete probability space if N(F ,P) ⊂ F . We can complete any probability
space by enlarging the event space slightly with respect to the probability measure

FP := F ∨N(F ,P) := σ (F ∪N(F ,P)) .

Here we denote σ(G) as the smallest σ-algebra containing the family G, or equivalently as the intersection
of all the σ-algebras containing G, as an arbitrary intersection of a family of σ-algebras is again a σ-
algebra. Unfortunately a union of two σ-algebras does not necessarily have to be again a σ-algebra,
hence we define F ∨ G = σ(F ∪ G).

The strength of this framework is that we can now use Lebesgue measure theory to do our analysis.
Given a probability space (Ω,F ,P), note that now (Ω,F) is a measurable space. We call an F-measurable
mapping X : Ω→ R a random variable, in this case we always equip R with the Euclidean topology and
its corresponding Borel σ-algebra B(R). We write L0(F) for the space of all random variables, in the
notation we emphasize the dependency on F for a function X : Ω→ R to be a random variable.

Suppose we have a probability space (Ω,F ,P), given a random variable X ∈ L0(F), then we define
σ(X) := {X−1(A) : A ∈ B(R)}, to be the σ-algebra generated by X. It is the smallest σ-algebra, which
makes X into a random variable on the probability space (Ω, σ(X),P) where P is now restricted to σ(X).
Again given a random variable X ∈ L0(F) we define the pushforward measure

µX(A) := (P ◦X−1)(A) = P(X ∈ A), A ∈ B(R),

which makes (R,B(R), µX) a probability space. We call µX the distribution of X. When
∫
R |x| dµ(x) <

∞, we say that X is integrable and we define its expectation by

E(X) :=

∫
R
x dµX(x) =

∫
Ω

X(ω) dP(ω).

Now we can use what we know about Lebesgue integrals to define for every p ≥ 1 the Banach
spaces (Lp(F ,P), ‖·‖p), where Lp(F ,P) ⊆ L0(F) consists of all random variables such that ‖·‖p :=

E(|X|p)1/p < ∞. Furthermore we define L∞(F ,P) ⊆ L0(F) to be the space of all bounded random
variables X, meaning that there exists an M > 0 satisfying P(|X| > M) = 0.

For random variables X,Y ∈ L2(F ,P) we also define the variance and covariance by

Var(X) := E
(
(X − E(X))2

)
= E(X2)− E(X)2,

Cov(X,Y ) := E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ).

We will look at the relation between random variables all the time, so let d ∈ N, then a d-dimensional
random vector is a mapping X = (X1, . . . , Xd) : Ω → Rd such that Xi ∈ L0(F) for all i = 1, . . . , d. We
define L0(F ;Rd) as the vector space of d-dimensional random vectors. Instead of random vectors we will
always call the elements of L0(F ,Rd) random variables. We define the cumulative distribution function
(cdf) FX : Rd → [0, 1] as FX(x) := P(X ≤ x), where we will always consider the partial ordering ≤ on
Rd as the standard component-wise extension from R.

Suppose we have random variables X1, . . . , Xn, each of arbitrary dimension, then we say they are
independent if

FX1,...,Xn(x1, . . . , xn) = FX1
(x1) · · ·FXn(xn).

Just as with general measure theory, we define the product probability space as follows. Let (Ωi,Fi,Pi)
for i = 1, . . . , n be probability spaces, then (Ω,F ,P) is the product probability space where

• Ω = Ω1 × · · · × Ωn := {(ω1, . . . , ωn) : ωi ∈ Ωi};

• F = F1 × · · · × Fn := ω ({A1 × · · · ×An : Ai ∈ Fi});

• P = P1 × · · · × Pn is the unique probability measure such that for Ai ∈ Fi we have

P(A1 × · · · ×An) =

n∏
i=1

Pi(Ai).

We can generalize independence to σ-algebras. Suppose (Ω,F ,P) is a probability space, and let G1,G2

be two sub-σ-algebras of F , then G1 and G2 are called independent when for all A ∈ G1, B ∈ G2 we
have P(A ∩ B) = P(A)P(B). Now let X ∈ L0(F) and G a sub-σ-algebra of F , then X and G are called
independent if σ(X) and G are.

Sander Blok



8 Chapter 2. Stochastic Processes

2.2 Conditional Expectation

We will need a way to model information, that is, at every time t we want some mathematical structure
to tell us whether we can already know if the true ω ∈ Ω is contained in a certain event or not. In the
analogue of option valuation, we want to create a coupling between the option price and the price of
the underlying asset, based on the current knowledge of the asset price. For this purpose we can use a
filtration.

Definition 2.2.1. Let F be a σ-algebra and (T ,≤) a totally ordered index set. Suppose F = (Ft)t∈T is
a family of sub-σ-algebras of F such that for every s, t ∈ T with s ≤ t we have Fi ⊆ Fj. Then we call F
a filtration for F .

Mostly we will work with only three index sets, being N,R+ and [0, T ] for some terminal time T > 0.
We call the quadruple (Ω,F ,F,P) a filtered probability space. Denote

Ft+ :=
⋂

s>t,s∈T
Fs, F+ := (Ft+)t∈T .

Then we say that F is right-continuous if F+ = F and we say given a probability measure P on F that F
is complete if every Ft for t ∈ T is complete. If T is bounded from below (which is usually the case for
our purposes) by for example 0 ∈ T , then if F0 is complete, the filtration F is complete by induction.

For the rest of the thesis we will assume that every filtration is both right-continuous and complete,
in the literature these two assumptions are called the usual hypothesis on the filtration. In the context of
this thesis, the usual hypothesis is only a small assumption. The use of the usual hypothesis will however
still be mentioned, wherever it is used.

Suppose we already have some information about the state of a random variable, then we would like
to have an expectation given our currently attained information. This can be done with what we call
conditional expectations, and they will be the key link between filtrations and stochastic processes.

Definition 2.2.2. Let (Ω,F ,P) be a probability space, let G be a sub-σ-algebra of F and let X ∈ L1(F ,P)
or let X be nonnegative P-almost surely. The conditional expectation of X given G, denoted E(X|G), is
a random variable that satisfies

1. (Measurability) The random variable E(X|G) is G-measurable;

2. (Partial averaging) For all A ∈ G we have∫
A

E(X|G)(ω) dP(ω) =

∫
A

X(ω) dP(ω).

If G is the σ-algebra generated by some other random variable Y , we generally write E(X|Y ) instead of
E(X|σ(Y )).

Before we prove some important properties of the conditional expectation, we first have to show that
it actually exists and is unique almost surely. Let (Ω,F) be a measurable space, and let µ and ν be
positive measures (for example probability measures) on (Ω,F). Then ν is absolutely continuous with
respect to µ if for each set A ∈ F with µ(A) = 0 we also have ν(A) = 0. We write ν � µ when ν is
aboslutely continuous with respect to µ. Furthermore we call a measure µ on (Ω,F) a finite measure
if µ(Ω) < ∞ and σ-finite if Ω is the union of a sequence (An)n∈N ⊆ F satisfying µ(An) < ∞ for each
n ∈ N. We call the measure space (Ω,F , µ) finite or σ-finite when µ is finite or σ-finite respectively.
An important theorem connecting absolutely continuous measures is the Radon-Nikodym theorem. The
proof is given in Cohn [10, Theorem 4.2.2].

Theorem 2.2.3 (Radon-Nikodym Theorem). Let (Ω,F) be a measurable space and let µ and ν be σ-
finite positive measures on (Ω,F). If ν is absolutely continuous with respect to µ, then there exists an
F-measurable function g : Ω→ [0,∞) such that for each A ∈ F we have

ν(A) =

∫
A

g dµ.

The function g is unique up to µ-almost everywhere equality.

A numerical Fourier cosine method for forward backward stochastic differential equations with jumps



2.2. Conditional Expectation 9

Now that we have stated the Radon-Nikodym theorem, we can prove the existence and uniqueness
of the conditional expectation, the proof follows Shreve [38, Theorem B.1].

Theorem 2.2.4. Let (Ω,F ,P) be a probability space, let G be a sub-σ-algebra of F , and let X ∈ L1(F ,P)
or let X be nonnegative P-almost surely. Then there exists a unique G-measurable random variable
E(X|G) such that for every A ∈ G we have the equality∫

A

E(X|G) dP =

∫
A

X dP.

Proof.
We will first assume thatX is a nonnegative integrable random variable. In the case thatX ∈ L1(F ,P) we
only have to note that X = X+ −X− where both X+, X− are nonnegatie integrable random variables.
In the case that X is nonnegative P-almost surely, we can take a sequence of nonnegative integrable
random variables increasing to X, so that the theorem follows by the monotone convergence theorem
(we will state the monotone convergence theorem later on).

First we will define the probability measure P̃ on F by

P̃(A) =

∫
A

X + 1

E(X + 1)
dP.

Now note that the integrand X+1
E(X+1) is strictly positive, so if P̃(A) = 0, then P(A) = 0 (and vice versa).

Hence P̃ � P. Now we define two probability measures Q and Q̃ on G by restricting P to G and P̃ to
G respectively. Hence we have the probability spaces (Ω,G,Q) and (Ω,G, Q̃). Note that we still have

Q̃� Q. Theorem 2.2.3 guarantees we have a unique Z ∈ L0(G) up to P-almost sure equality, such that
for all A ∈ G,

P̃(A) =

∫
A

Z dP.

Rewriting this expression gives us for all A ∈ G∫
A

X + 1

E(X + 1)
dP =

∫
A

Z dP∫
A

X dP =

∫
A

(E(X + 1)Z − 1) dP.

Finally let E(X|G) = (E(X+ 1)Z−1) which is G-measurable due to Z and satisfies the partial averaging
property. The uniqueness follows by the uniqueness of Z.

The conditional expectation satisfies a number of useful properties, we will sum a couple of them in
the following proposition, later on we will prove more properties.

Proposition 2.2.5. Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of F .

(i) (Linearity of conditional expectations) If X,Y are integrable random variables and α, β ∈ R, then

E(αX + βY |G) = αE(X|G) + βE(Y |G).

(ii) (Taking out what is known) If X,Y and XY are integrable random variables and X is G-measurable,
then

E(XY |G) = XE(Y |G).

(iii) (Iterated conditioning) If H is a sub-σ-algebra of G and X is an integrable random variable, then

E(E(X|G)|H) = E(X|H).

(iv) (Independence) If X is integrable and independent of G, then

E(X|G) = E(X).

(v) (Conditional Jensen’s inequality) If ϕ : Rd → R is a convex function and ϕ(X) ∈ L1(F ,P;Rd),
then

E(ϕ(X)|G) ≥ ϕ(E(X|G)).

Sander Blok
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Proof.
(i) Linearity follows immediately by the partial averaging property. Note that E(αX + βY |G),E(X|G)
and E(Y |G) all satisfy this property, then for all A ∈ G∫

A

αE(X|G) + βE(Y |G) dP = α

∫
A

E(X|G) dP + β

∫
A

E(Y |G) dP

= α

∫
A

X dP + β

∫
A

Y dP

=

∫
A

αX + βY dP.

So indeed E(αX + βY |G) = αE(X|G) + βE(Y |G).
(ii) It suffices to prove this for X being a G-measurable indicator random variable, as the general case
follows by using the standard machinery (building simple functions and then taking the limit to general
integrable random variables). Let B ∈ G and let X = 1B , now note that E(Y |G) satisfies the partial
averaging property itself, so for every A ∈ G∫

A

XE(Y |G) dP =

∫
A∩B

E(Y |G) dP =

∫
A∩B

Y dP =

∫
A

XY dP

(iii) By definition E(X|G) is F-measurable. Then for all A ∈ H∫
A

E(E(X|G)|H) dP =

∫
A

E(X|G) dP.

Now since H ⊆ G we have for all A ∈ H∫
A

E(X|H) dP =

∫
A

X dP =

∫
A

E(X|G) dP =

∫
A

E(E(X|G)|H) dP.

(iv) Again we only consider the case where X is an indicator random variable 1B where B is independent
of G, the general case follows again by standard machinery. Indeed, for all A ∈ G,∫

A

X dP = P(A ∩B) = P(A)P(B) = P(A)E(X) =

∫
A

E(X) dP.

(v) This last property is less straightforward. We will first prove that ϕ is the maximum of all linear
functions that lie below it. So define L = max{` : Rd → R : ` is linear and ` ≤ ϕ}, then for all x ∈ Rd,
we have ϕ(x) ≥ max`∈L `(x). Conversely, because ϕ is convex, there is always a linear function ` that
lies below ϕ and such that ϕ(x) = `(x), hence ϕ(x) = max`∈L `(x). Then by property (i) we have

E(ϕ(X)|G) ≥ max
`∈L

E(`(X)|G) = max
`∈L

` (E(X|G)) = ϕ(E(X|G)).

2.3 Stochastic Processes

Having discussed the basic probabilistic framework, we can define stochastic processes.

Definition 2.3.1. Let (Ω,F ,P) be a probability space, and let (T ,≤) be a totally ordered index set. A
stochastic process is a collection of random variables X = (Xt)t∈T where Xt ∈ L0(F) for each t ∈ T .

This is just one way to look at a stochastic process. We can also see X as a function T × Ω → R :
(t, ω) 7→ Xt(ω), or we can see X as a family of paths {t 7→ Xt(ω) : ω ∈ Ω)}. We will use these definitions
interchangeably.

We will combine our model of information and stochastic processes as follows. We define an adapted
process to be a stochastic process X on a filtered probability space (Ω,F ,F,P) such that for every t ∈ T ,
the random variable Xt is Ft-measurable. Furthermore we say X is F-progressively measurable, if for

A numerical Fourier cosine method for forward backward stochastic differential equations with jumps



2.3. Stochastic Processes 11

every t ∈ T , the map {s ∈ T : s ≤ t} × Ω → R defined by (s, ω) 7→ Xs(ω) is B({s ∈ T : s ≤ t}) ⊗ Ft-
measurable. We always assume that T ⊆ R, so that we can equip {s ∈ T : s ≤ t} with the Euclidean
topology.

Often we will construct stochastic processes with a certain joint distribution. However, since the
index set T may be uncountable, we can run into measure-theoretic problems, it will often suffice to
look at the joint distribution of all finite combinations of Xt. Let n ∈ N and let t1 ≤ t2 ≤ · · · ≤ tn be
any partition of T , let µXt1,...,tn be the joint distribution of (Xt1 , . . . , Xtn). We call the family of all these

distributions µXt1,...,tn the finite distribution of X. We say that X and Y have the same distribution if
they have the same finite distribution.

We can observe that the finite distribution of X satisfies two important properties. Again take n ∈ N,
and let t1 ≤ · · · ≤ tn be a partition of T , pick any j ≤ n and take Ak ∈ B(R) for k = 1, . . . , n, furthermore
let σ be a permutation on {1, . . . , n}, then

µXt1,...,tn(A1 × · · · ×Aj−1 × R×Aj+1 × · · · ×An)

= µXt1,...,tj−1,tj+1,...,tn(A1 × · · · ×Aj−1 ×Aj+1 × · · · ×An). (K1)

µXtσ(1),...,tσ(n)
(Aσ(1) × · · · ×Aσ(n)) = µXt1,...,tn(A1 × · · · ×Ak) (K2)

We call these properties the Kolmogorov consistency criteria. It turns out that given a finite distribution
adhering to the Kolmogorov consistency criteria, we can construct a stochastic process with the same
finite distribution. We omit the proof of the following theorem, a proof can be found in for example
Billingsley [4, Theorem 36.2].

Theorem 2.3.2 (Kolmogorov’s extension theorem). For all t1 ≤ · · · ≤ tn ∈ T , n ∈ N let µt1,...,tn be
probability measures on Rn such that both (K1) and (K2) hold.

Then there exists a probability space (Ω,F ,P) and a stochastic process X on this probability space
such that µXt1,...,tn = µt1,...,tn for all t1 ≤ · · · ≤ tn ∈ T , n ∈ N.

We do lose some information about a stochastic process if we only look at its finite distribution, but
many properties still carry over. Let X and Y be two stochastic processes with the same index set and
on the same probability space (Ω,F ,P), then we call X a modification of Y if for all t ∈ T we have
P(Xt = Yt) = 1. Furthermore we call X and Y indistinguishable if P(Xt = Yt,∀t ∈ T ) = 1. There
is a subtle measure theoretic difference between modifications and indistinguishability as T might be
uncountable, which we will discuss later on.

Note that when X is a modification of Y , they have the same finite distribution. When we construct
a stochastic process through its finite distribution, we generally want to take a modification such that
it has nice properties. We call a stochastic process X continuous if for almost surely ω ∈ Ω, the paths
t 7→ Xt(ω) are continuous, we call a stochastic process X càdlàg if for almost surely ω ∈ Ω, the paths
t 7→ Xt(ω) are càdlàg (right-continuous, limits exist from the left). Another theorem due to Kolmogorov
gives a sufficient condition for a stochastic process to have a continuous modification. We will again omit
a proof and refer to Le Gall [26, Theorem 2.9].

Theorem 2.3.3 (Kolmogorov’s continuity theorem). Let X = (Xt)t∈T be a stochastic process on a
probability space (Ω,F ,P). Suppose that for every T > 0 there exists α, β, C > 0 such that for all
s, t ∈ T ∩ [−T, T ] we have

E(|Xs −Xt|α) ≤ C|s− t|1+β .

Then there exists a continuous modification of X.

In the following example we will construct a very important stochastic process by using the previous
two theorems.

Example 2.3.4. Let 0 = t0 < t1 < t2 < · · · < tn and set x0 = 0. Then define the joint distribution

µt1,...,tn(A1 × · · · ×An) =

∫
A1

· · ·
∫
An

n∏
i=1

1√
2π(ti − ti−1)

exp

(
− (xi − xi−1)2

2(ti − ti−1)

)
dx1 · · · dxn.

Now K1 follows immediately as the joint distribution is the product of the marginal distributions and
K2 follows by using Fubini-Tonelli to interchange the integrals, and changing the order of the product.
Hence we can define a stochastic process (W̃t)t≥0 on a probability space (Ω,F ,P) with the following
properties.
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12 Chapter 2. Stochastic Processes

• W̃0 = 0 almost surely;

• W̃t − W̃s is independent of W̃u for every u ≤ s and s < t;

• W̃t − W̃s ∼ N (0, t− s) for s < t.

Such a process is called a pre-Brownian motion. Now let s < t, then W̃t − W̃s has the same distribution
as
√
t− sZ where Z ∼ N (0, 1). It follows that

E(|W̃t − W̃s|4) = E(|Z|4)|t− s|2 <∞.

So then by applying Theorem 2.3.3 we can construct a continuous stochastic process W such that W
is a modification of W̃ , hence has the same finite distribution. Such a process W is called a Brownian
motion, and is fundamental to many stochastic models. Remark that every Brownian motion is also a
pre-Brownian motion.

Only in the case that T = R+ or T = [0, T ] for some T > 0, will we concern ourselves with the subtle
differences of adaptedness, progressive-measurability, modifications and indistinguishability.

In the case that T = R+ (the case T = [0, T ] follows analogously) define P as the collection of
subsets A of Ω × R+ such that for every t ≥ 0, A ∩ (Ω × [0, t]) belongs to Ft ⊗ B([0, t]). The family
P is a σ-algebra, and we call it the progressive-σ-algebra of (Ω,F ,F,P). It is not hard to see that a
stochastic process X is F-progressive measurable if and only if X is P-measurable. In similar fashion as
with random variables we define L0(P) as the space of F-progressively measurable stochastic processes.

The following proposition relates adaptedness and progressive-measurability and it relates modifica-
tions and indistinguishability.

Proposition 2.3.5. Let (Ω,F ,F,P) be a probability space and let X and Y be càdlàg processes on this
filtered probability space.

1. If X is a modification of Y , then X and Y are indistinguishable.

2. If the filtration F is complete with index set T = R+, then X is F-adapted if and only if X ∈ L0(P).

Proof.
(i) Since X is a modification of Y we have that P(Xt 6= Yt) = 0 for all t ∈ T . Now define the sets

A′ = {ω : Xt(ω) = Yt(ω),∀t ∈ T ∩Q} =

 ⋃
t∈T ∩Q

{ω : Xt(ω) 6= Yt(ω)}

c

,

and
B = {ω : t 7→ Xt(ω) is càdlàg}, C = {ω : t 7→ Yt(ω) is càdlàg}.

By assumption we have P(A′) = P(B) = P(C) = 1, so then define A := A′ ∩ B ∩ C, which satisfies
P(A) = 1.

The set T ∩Q is dense in T , so for every t ∈ T , there exists a sequence of rationals (qn)n∈N ⊆ Q such
that qn ↓ t. Then by the construction of the set A we have for all ω ∈ A

lim
n→∞

Xqn(ω) = Xt(ω) and lim
n→∞

Yqn(ω) = Yt(ω).

Since Xqn(ω) = Yqn(ω), we must have Xt(ω) = Yt(ω). Hence X and Y are indistinguishable.
(ii) Let N be the null set where the paths of X are not càdlàg, then set Xt(ω) = 0 for all ω ∈ N and
t ≥ 0. Then X is still F-adapted since N ∈ F0, by the completeness of the filtration. So without loss of
generality we can assume that the paths of X are càdlàg on all of Ω.

Fix T > 0, then define for every n ∈ N the stochastic processes

Xn
t (ω) =

bnTc−1∑
k=0

X k+1
n

(ω)1[ kn ,
k+1
n )(t) +XT (ω)1[T,∞)(t).

The right-continuity of the paths of X guarantee that for every t ≤ T and all ω ∈ Ω we have Xt(ω) =
limn→∞Xn

t (ω). On the other hand, let A ∈ B(R), then

{(ω, t) ∈ Ω× [0, T ] : Xn
t (ω) ∈ A} = ({XT ∈ A} × {T}) ∪

[nT ]−1⋃
k=0

(
{X k+1

n
∈ A} ×

[
k

n
,
k + 1

n

)) ,
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2.4. Modes of Convergence 13

which is an element of FT ⊗ B([0, T ]). Hence for every n ∈ N, the mapping (ω, t) 7→ Xn
t (ω) defined on

Ω× [0, t], is Ft⊗B([0, T ])-measurable. Since a pointwise limit of measurable functions is measurable, the
same measurability holds for (ω, t) 7→ Xt(ω) defined on Ω× [0, T ]. Then X is F-progressively measurable.
The converse is obvious.

2.4 Modes of Convergence

Often in probability theory when we have a sequence X1, X2, . . . of random variables, we ask ourselves
what happens to their sum if the number of summands increases, or what happens to the maximum of
those random variables when n→∞. Can we interchange limits and integrals? What can we say about
the limit of a sequence of random variables? All of those questions have to do with certain notions of
convergence.

In this thesis we will often define constructions on a certain class of functions and then we generalise
the them to a bigger class of functions through limits. Therefore it is important to know when these
limits are well-defined and what they imply.

In the next definition we will define a couple of different notions, later on we will see more modes of
convergence.

Definition 2.4.1. Let X1, X2, . . . be a sequence of random variables on the same probability space
(Ω,F ,P).

(i) The sequence Xn converges almost surely to X if

P
({
ω : Xn(ω) −→

n→∞
X(ω)

})
= 1.

We will write Xn
a.s.−→ X as n→∞.

(ii) The sequence Xn converges in probability to X if for every ε > 0

lim
n→∞

P({ω : |Xn(ω)−X(ω)| > ε}) = 0.

We will write Xn
P−→ X as n→∞.

(iii) Let p ∈ [1,∞). The sequence Xn converges in Lp to X if

lim
n→∞

E(|Xn −X|p) = 0.

We will write Xn
Lp−→ X as n→∞.

(iv) The sequence Xn converges to X in distribution if FXn(x) → FX(x) for all x such that FX is

continuous. We will write Xn
d−→ X as n → ∞. (Remark that the Xn do not have to be defined

on the same probability space, as we are only concerned about the distribution)

Remark 2.4.2. Convergence in distribution is often called weak convergence in the literature as it cor-
responds to convergence of the distributions in the σ(M(R), Cb(R))-weak topology, where M(R) is the
space of finite signed measures on R equipped with the total variation norm ‖µ‖TV = |µ|(R) and Cb(R)
the space of bounded continuous functions R→ R equipped with the supremum norm. These details are
unimportant for our purposes.

We will see that almost sure convergence implies convergence in probability which again implies
convergence in distribution. There are also other connections between convergence we will use. Before
we will discuss their implications, we will first state the following very important integral inequalities,
which we will use often.

Theorem 2.4.3. Let (Ω,F ,P) be a probability space, and X and Y random variables on this space.

(i) (Markov’s inequality) Suppose ϕ is non-negative, non-decreasing, such that E(ϕ(X)) < ∞, x > 0,
then

P(|X| > x) ≤ E(ϕ(|X|))
ϕ(x)

.
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14 Chapter 2. Stochastic Processes

(ii) (Hölder’s inequality) Let p, q ∈ [1,∞) such that 1
p + 1

q = 1, and suppose X ∈ Lp(F ,P) and

Y ∈ Lq(F ,P). Then
E(|XY |) ≤ ‖X‖p ‖Y ‖q .

(iii) (Jensen’s inequality) Let ϕ : Rd → R be a convex function, such that X and ϕ(X) are integrable,
then

ϕ(E(X)) ≤ E(ϕ(X)).

Proof.
(ii) is a standard result in analysis, a proof can be found in Cohn [10, Proposition 3.3.2]. Also (iii)
follows from Proposition 2.2.5 by taking the trivial σ-algebra G = {∅,Ω}, in that case E(X|G) = E(X).
Now to prove (i). Let ϕ be a non-decreasing and non-negative function, then

E(ϕ(|X|)) = E(ϕ(|X|)1|X|>x) + E(ϕ(|X|)1|X|≤x)

≥ E(ϕ(|X|)1|X|>x) ≥ E(ϕ(x)1|X|>x) = ϕ(x)P(|X| > x).

When we talk about limits, we often need to have a notion of limits of sets. We define

lim inf
n→∞

An =

∞⋃
n=1

∞⋂
m=n

Am, lim sup
n→∞

An =

∞⋂
n=1

∞⋃
m=n

Am.

If the lim sup and lim inf agree we define limn→∞An = lim infn→∞An = lim supn→∞An. A powerful
tool in determining the probability of limiting events are the Borel-Cantelli lemmas.

Theorem 2.4.4 (Borel-Cantelli lemmas). Let A1, A2, . . . ∈ F for some σ-algebra F .

1. If
∑∞
n=1 P(An) <∞ then P(lim supn→∞An) = 0

2. If
∑∞
n=1 P(An) =∞ and (An)n∈N is a sequence of independent events, then P(lim supn→∞An) = 1.

Proof.
For (i) note that by assumption

∑∞
n=1 P(An) <∞, hence limm→∞

∑∞
n=m P(An) = 0. Let m ∈ N, then

by σ-subadditivity of the probability measure

P(lim sup
n→∞

An) ≤ P

( ∞⋃
n=m

An

)
≤
∞∑
n=m

P(An) −→
m→∞

0.

To prove (ii) first write (lim supn→∞An)c =
⋃∞
n=1

⋂∞
n=mA

c
m. It suffices to prove that for each m, we

have P(
⋂∞
n=mA

c
n) = 0. Now since 1− x ≤ e−x for all x ∈ R, we have

P

( ∞⋂
n=m

Acn

)
= lim
k→∞

P

(
k⋂

n=m

Acn

)
= lim
k→∞

k∏
n=m

(1− P(An))

≤ lim
k→∞

k∏
n=m

e−P(An) = lim
k→∞

e−
∑k
n=m P(An) = 0

The following theorem connects the four different modes of convergence we have defined for now.

Theorem 2.4.5. Let (Ω,F ,P) be a probability space and (Xn)n∈N a sequence of random variables. We
have the following implications.

(i) If Xn
a.s.−→ X as n→∞, then Xn

P−→ X.

(ii) If Xn
Lp−→ X as n→∞, then Xn

P−→ X.

(iii) If Xn
P−→ X as n→∞, then Xn

d−→ X.

(iv) If Xn
P−→ X as n→∞, then there exists a subsequence Xnk such that Xnk

a.s.−→ X as k →∞.
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Proof.
(i) Let ε > 0 and note that

{ω : Xn(ω) −→
n→∞

X(ω)} =

∞⋂
k=1

∞⋃
m=1

∞⋂
i=m

{
ω : |Xi(ω)−X(ω)| ≤ 1

k

}
.

So for almost sure convergence we need for every k ∈ N that

0 = P

(( ∞⋃
m=1

∞⋂
i=m

{
ω : |Xi(ω)−X(ω)| ≤ 1

k

})c)
= P

( ∞⋂
m=1

∞⋃
i=m

{
ω : |Xi(ω)−X(ω)| > 1

k

})

= lim
m→∞

P

( ∞⋃
i=m

{
ω : |Xi(ω)−X(ω)| > 1

k

})
.

But then choose k such that 1
k ≤ ε, we have

lim
m→∞

P(|Xm −X| > ε) ≤ lim
m→∞

P

( ∞⋃
i=m

{
|Xi −X| >

1

k

})
= 0.

(ii) This is an immediate consequence of Markov’s inequality, let ε > 0, then

P(|Xn −X| > ε) ≤ E(|Xn −X|p)
εp

−→
n→∞

0.

(iii) Let ε > 0, then

FXn(x) = P(Xn ≤ x) = P({|Xn −X| ≤ ε} ∩ {Xn ≤ x}) + P({|Xn −X| > ε} ∩ {Xn ≤ x})
≤ P({|Xn −X| ≤ ε} ∩ {X ≤ x+ ε}) + P(|Xn −X| > ε)

≤ P(X ≤ x+ ε) + P(|Xn −X| > ε)

By using the convergence in probability we get

lim sup
n→∞

FXn(x) ≤ FX(x+ ε).

Switch Xn with X, switch x with x − ε on the left hand side and X with Xn and x + ε with x on the
right hand side, it follows analogously that

lim inf
n→∞

FXn(x) ≥ FX(x− ε).

Now we have
FX(x− ε) ≤ lim inf

n→∞
FXn(x) ≤ lim sup

n→∞
FXn(x) ≤ FX(x+ ε).

If FX is continuous at x, the claim follows if we let ε ↓ 0.
(iv) Choose a subsequence Xnk such that for every k ∈ N we have P(|Xnk − X| > 2−k) ≤ 2−k. Then
define the sets Ak = {|Xnk −X| > 2−k}, we have

∞∑
k=1

P(Ak) ≤
∞∑
k=1

2−k = 1 <∞.

The Borel-Cantelli lemmas imply that

P
(

lim sup
k→∞

{|Xnk −X| > 2−k}
)

= P

( ∞⋂
k=1

∞⋃
m=k

{|Xnm −X| > 2−m}

)
= 0.

Hence we get almost sure convergence by the same reasoning as in (i).

Often we will work with expressions containing Lebesgue integrals, the following theorems are quite
useful, the proofs can be found in any analysis book covering Lebesgue integration, for example Cohn
[10].
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16 Chapter 2. Stochastic Processes

Theorem 2.4.6. Let (Ω,F ,P) be a probability space and let X1, X2, . . . be random variables.

(i) (Monotone convergence theorem) Suppose that E(X1) > −∞ and Xn ↑ X almost surely. Then
limn→∞ E(Xn) = E(X).

(ii) (Fatou’s lemma) Suppose (Xn)n∈N are non-negative, then

E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn).

(iii) (Dominated convergence theorem) Suppose that |Xn| ≤ Y , for all n ∈ N where E(|Y |) < ∞ and
Xn → X almost surely as n→∞. Then E(|Xn −X|)→ 0 as n→∞.

We will see that Lp-convergence implies convergence in probability. However, the converse is in
general not true, but if we impose a bit of extra structure on the sequence of random variables, we can
have Lp-convergence. This extra structure is called uniform integrability and will also play a role besides
this equivalence. A family X of random variables is called uniformly integrable if

lim
M→∞

sup
X∈X

E(|X|1|X|≥M ) = 0.

Proposition 2.4.7. Let (Ω,F ,P) be a probability space. Given a sequence of random variables (Xn)n∈N ⊆
Lp(F ,P) and X ∈ Lp(F ,P). The following is equivalent:

(i) Xn converges in probability to X and (Xp
n)n∈N is uniformly integrable

(ii) Xn converges in Lp(F ,P) to X.
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CHAPTER 3

Martingales

A very important class of stochastic processes is the class of martingales, which, as we will see, induces
a lot of structure on the stochastic processes. It turns out that martingales give rise to a wide class
of integrators for stochastic integrals, those stochastic integrals will be the final piece we will need, to
understand FBSDEJs. Most of the theorems we will discuss in this chapter will be proven using the
following structure. First we prove the theorem for discrete-time martingales, and then we will lift the
result using some continuity properties of the stochastic process through density arguments.

We will start with a definition of martingales.

Definition 3.0.1. Let (Ω,F ,F,P) be a filtered probability space and let X = (Xt)t∈T be an adapted
stochastic process such that Xt ∈ L1(F ,P) for every t ∈ T . Then

• X is called a martingale if E(Xt|Fs) = Xs for every s < t;

• X is called a supermartingale if E(Xt|Fs) ≤ Xs for every s < t;

• X is called a submartingale if E(Xt|Fs) ≥ Xs for every s < t.

Example 3.0.2. An important example of a martingale is Brownian motion as introduced in Exam-
ple 2.3.4. Indeed let W = (Wt)t≥0 be Brownian motion. Then for 0 ≤ s < t we have by the properties
of conditional expectations, that

E(Wt|Fs) = E(Wt −Ws|Fs) + E(Ws|Fs) = E(Wt −Ws) +Ws = Ws.

Given a martingale, we can construct submartingales by convex transformations, due to Jensen’s
inequality.

Proposition 3.0.3. Let X = (Xt)t∈T be an adapted process and let ϕ : Rd → R be a convex function
such that ϕ(Xt) ∈ L1(F ,P) for all t ∈ T .

(i) If X is a martingale, then ϕ(X) = (ϕ(Xt))t∈T is a submartingale.

(ii) If X is a submartingale, and if in addition ϕ is nondecreasing, then ϕ(X) is a submartingale.

Proof.
By Jensen’s inequality for conditional expectations, we have for s < t that

E(ϕ(Xt)|Fs) ≥ ϕ(E(Xt|Fs)) ≥ ϕ(Xs).

For the last (in)equality, we need the fact that ϕ is nondecreasing, when X is a submartingale.

3.1 Stopping times

Often we will have to deal with stochastic processes which are not necessarily so nicely behaving. To
amend these problems, we will often use a localisation argument. We want to ‘stop’ the stochastic process
before it is going to misbehave, and then we hope to transfer the proof on the stopped process to the
general process. To stop processes, we first have to define what it means to be a stopping time.

Definition 3.1.1. Let (Ω,F ,F,P) be a filtered probability space, and τ a random variable with values in
T ∪ {∞} (where in the case of index sets bounded from above we mean by ∞ the upper bound). Then τ
is a F-stopping time, if for every t ∈ T , we have {τ ≤ t} ∈ Ft.

17



18 Chapter 3. Martingales

The last measurability condition ensures that stopping times are not allowed to ‘look into the future’,
they can only make decisions based on current knowledge. Given a filtered probability space (Ω,F ,F,P),
we define

F∞ :=
∨
t∈T
Ft,

to be the smallest σ-algebra, containing the union of the entire filtration. Furthermore, we define the
σ-algebra with respect to an F-stopping time τ as Fτ = {A ∈ F∞ : ∀t ∈ T , A∩ {τ ≤ t} ∈ Ft}. It follows
that τ is Fτ -measurable. The following proposition contains some basic properties of stopping times.

Proposition 3.1.2. Let (Ω,F ,F,P) be a filtered probability space.

(i) A random variable τ is an F+-stopping time if and only if {τ < t} ∈ Ft for every t ∈ T . Equiva-
lently, τ ∧ t is Ft-measurable for every t ∈ T .

(ii) Let τ be an F+-stopping time. Then

Fτ = {A ∈ F∞ : ∀t ∈ T , A ∩ {τ < t} ∈ Ft}.

We will write Fτ+ for the above.

(iii) Let τ, ρ be two F-stopping times. The random variables τ ∨ ρ and τ ∧ ρ are F-stopping times.

(iv) If (τn)n∈N is a monotone increasing sequence of F-stopping times, then τ = limn→∞ τn is also an
F-stopping time.

(v) If (τn)n∈N is a monotone decreasing sequence of F-stopping times, then τ = limn→∞ τn is an
F+-stopping time.

Proof.
(i) Suppose that τ is an F+-stopping time. Then, for every t ∈ T , we have

{τ < t} =
⋃

q∈Q+,q<t

{τ ≤ q} ∈ Ft.

Conversely, assume that {τ < t} ∈ Ft for every t ∈ T . Then for every t ∈ T and s > t, we have that

{τ ≤ t} =
⋂

q∈Q+,t<q<s

{τ < q} ∈ Fs.

Therefore by definition we have {τ ≤ t} ∈ Ft+, so τ is an F+-stopping time.
If τ ∧ t is Ft-measurable for every t ∈ T , then equivalently for every t ∈ T and s < t, we have

{τ ≤ s} ∈ Ft. Now taking a sequence in T increasing to t, gives that {τ < t} ∈ Ft, and so τ is an F+-
stopping time. Conversely, we have {τ ≤ s} ∈ Ft+ ⊆ Ft whenever s < t, and so τ ∧ t is Ft-measurable.
(ii) If A ∈ Fτ , then for every t ∈ T we have A ∩ {τ ≤ t} ∈ Ft+. Hence, for t ∈ T ,

A ∩ {τ < t} =
⋃

q∈Q+,q<t

(A ∩ {τ ≤ q}) ∈ Ft,

Conversely, assume that A ∩ {τ < t} ∈ Ft for every t ∈ T . Then, for every t ∈ T and s > t,

A ∩ {τ ≤ t} =
⋂

q∈Q+,t<q<s

(A ∩ {τ < q}) ∈ Fs.

So then A ∩ {τ ≤ t} ∈ Ft+ and so A ∈ Fτ+.
(iii) We have for all t ∈ T , that

{τ ∧ ρ ≤ t} = {τ ≤ t} ∪ {ρ ≤ t} ∈ Ft,
{τ ∨ ρ ≤ t} = {τ ≤ t} ∩ {ρ ≤ t} ∈ Ft,

hence τ ∧ ρ and τ ∨ ρ are F-stopping times.
(iv) For every t ∈ T we have

{τ ≤ t} =

∞⋂
n=1

{τn ≤ t} ∈ Ft.
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3.2. Martingale theorems 19

(v) Similarly,

{τ < t} =

∞⋃
n=1

{τn < t} ∈ Ft,

and now we use (i) to conclude.

We can already see some subtleties pop up when the filtration is not right-continuous, this will
however not bother us as we wil assume every filtration to be right-continuous.

Often we will use stopping times in the following forms, which we call hitting times. The following
proposition is much more general than we actually need, as we defined our stochastic processes to take
values in R, this can however be generalized to more general spaces.

Proposition 3.1.3. Let (Ω,F ,F,P) be a filtered probability space, and let X be an adapted process taking
values in a metric space (S, d).

(i) Assume that X is càdlàg, and let G be an open subset of S. Then

τ = inf{t ≥ 0 : Xt ∈ G},

is an F+-stopping time.

(ii) Assume that X is continuous, and let F be a closed subset of S. Then

τ = inf{t ≥ 0 : Xt ∈ F},

is an F-stopping time.

Proof.
(i) For every t ∈ T , we have

{τ < t} =
⋃

s∈T ∩Q,s<t
{Xs ∈ G} ∈ Ft

Then the result follows by Proposition 3.1.2(i).
(ii) For every t ∈ T , by the continuity of X and the metric d we have through density

{τ ≤ t} =

{
inf

s∈T ,s≤t
d(Xs, F ) = 0

}
=

⋂
s∈T ∩Q,s≤t

{d(Xs, F ) = 0} ∈ Ft.

3.2 Martingale theorems

A very important inequality for martingales, is the following theorem due to Doob. As mentioned in
the introduction of this chapter, the idea is to prove a similar inequality for discrete-time martingales,
then we require that the stochastic process is càdlàg, such that we can lift the result to continuous-time
martingales.

Theorem 3.2.1 (Doob’s martingale inequality). Suppose X = (Xt)t∈T is a càdlàg martingale. Then
for every T ∈ T and λ > 0 we have that

P
(

sup
t≤T
|Xt| > λ

)
≤ E(|XT |)

λ
.

If also for p > 1 we have E(|XT |p) <∞, then

E
(

sup
t≤T
|Xt|p

)
≤
(

p

p− 1

)p
E(|XT |p).

Proof.
Step 1: Let T = N0 and X = (Xn)n∈N0

be a discrete-time martingale, then for all λ > 0 we have for
each n ∈ N that,

P
(

max
0≤k≤n

|Xk| > λ

)
≤ E(|Xn|)

λ
.
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20 Chapter 3. Martingales

Let τ be a stopping time such that for some N ∈ N we have τ ≤ N . Note that {|Xτ | > λ}∩{τ = n} ∈ Fn,
and that |X| is a submartingale, so by the submartingale property of |X| we have,

E(|XN |1{|Xτ |>λ}) =

N∑
n=0

E(|XN |1{|Xτ |>λ}∩{τ=n}) ≥
N∑
n=0

E(|Xn|1{|Xτ |>λ}∩{τ=n})

=

N∑
n=0

E(|Xτ |1{|Xτ |>λ}∩{τ=n}) = E(|Xτ |1{|Xτ |>λ})

Now define τ = min{k ≥ 0 : |Xk| > λ} ∧ n for some fixed n ∈ N. Then τ is a stopping time and also{
max

0≤k≤n
|Xk| > λ

}
= {|Xτ | > λ}.

Therefore we get the result

P
(

max
0≤k≤n

|Xk| > λ

)
= P(|Xτ | > λ) =

∫
{|Xτ |>λ}

dP ≤ 1

λ

∫
{|Xτ |>λ}

|Xτ | dP

=
1

λ

∫
Ω

|Xτ |1{|Xτ |>λ} dP =
E(|Xτ |1{|Xτ |>λ})

λ
≤

E(|Xn|1{|Xτ |>λ})
λ

≤ E(|Xn|)
λ

.

Step 2: Suppose X = (Xt)t∈T is a càdlàg martingale. Then for every T ∈ T and λ > 0 we have that

P
(

sup
t≤T
|Xt| > λ

)
≤ E(|XT |)

λ
.

Consider any sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnpn = T} with mesh tending to zero
(max0≤j≤pn−1 |tnj+1−tnj | −→n→∞ 0) and such that the partitions are nested, meaning that for n1 ≤ n2 all the

points in Pn1
are also contained in Pn2

. Now for every t ∈ T define Xn
t = Xtnj

where j = max{i : ti < t}.
Now as continuous-time process, (Xn

t )t∈T ∩[0,T ] is a martingale as for all s < t we have

E(Xn
t |Fs) = E(Xtnj

|Fs) = Xs.

But also for all n ∈ N as discrete-time process, (Xtnj
)0≤j≤pn is again a martingale as

E(Xtnj+1
|Ftnj ) = Xtnj

.

Fix ε > 0 arbitrary, then find t0 = t0(ω) such that |Xt0 | > supt≤T |Xt| − ε/2, which exists by the
definition of the supremum. For every n ∈ N we can find j = j(n) such that tnj(n)−1 ≤ t0 ≤ tnj(n). Then

tj(n) → t0. As the mesh of the sequence of partitions goes to zero, we have Xtj(n)

a.s.−→ Xt0 , since X is
càdlàg. So for sufficiently large n, we have

sup
t≤T
|Xn

t | > |Xt0 | − ε/2 > sup
t≤T
|Xt| − ε.

Since ε > 0 was arbitrary, define An =
{

supt≤T |Xn
t | > λ

}
, then

∞⋃
n=1

An =

{
sup
t≤T
|Xt| > λ

}
.

Hence we have by using Step 1,

P
(

sup
t≤T
|Xt| > λ

)
= lim
n→∞

P
(

sup
t≤T
|Xn

t | > λ

)
≤ lim
n→∞

E(|Xn
pn |)
λ

=
E(|XT |)

λ
.

Step 3: Suppose X = (Xt)t∈T is a càdlàg martingale. Then for every T ∈ T and λ > 0 such that
XT ∈ Lp(F ,P), we have that

E
(

sup
t≤T
|Xt|p

)
≤
(

p

p− 1

)p
E(|XT |p).
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3.2. Martingale theorems 21

This follows by a standard rewriting of the Lp-norm in terms of level sets. We know that

E
(

sup
t≤T
|Xt|p

)
=

∫ ∞
0

pλp−1P
(

sup
t≤T
|Xt| > λ

)
dλ

=

∫ ∞
0

pλp−1P
(

sup
t≤T

(
|Xt|1{supt≤T |Xt|>λ}

)
> λ

)
dλ

≤
∫ ∞

0

pλp−2E
(
|XT |1{supt≤T |Xt|>λ}

)
dλ

=

∫ ∞
0

∫
{supt≤T |Xt|>λ}

pλp−2|XT | dP dλ

=

∫
Ω

∫ supt≤T |Xt|

0

pλp−2|XT | dP dλ

=
p

p− 1

∫
Ω

|XT | sup
t≤T
|Xt|p−1 dP

By Hölder’s inequality we have that

E
(

sup
t≤T
|Xt|p

)
≤ p

p− 1
E(|XT |p)

1
pE
(

sup
t≤T
|Xt|p

) p−1
p

,

from which the result follows.

When we have an unbounded index set, say T = [0,∞), we sometimes want to know what happens
to a martingale when t→∞. If we impose uniform integrability on the collection (Xt)t≥0, then we get
the following results

Theorem 3.2.2 (Doob’s convergence theorem). Let T = [0,∞) and (Ω,F ,F,P) be a filtered probability
space and X a càdlàg martingale. The following properties are equivalent, if any holds then there exists
a random variable X∞ ∈ L1(F ,P) such that

(i) For every t ≥ 0 we have Xt = E(X∞|Ft);

(ii) The collection (Xt)t≥0 is uniformly integrable;

(iii) We have Xt
a.s−→ X∞ and Xt

L1

−→ X∞ as t→∞.

Proof.
(i) =⇒ (ii): We have to show that the family (E(X∞|Ft))t≥0 is uniformly integrable. Since X∞ ∈
L1(F ,P) we can just as in Proposition 2.4.7 choose a δ > 0 given ε > 0 such that for all P(A) < δ, we
have E(|X∞|1A) < ε. Choose M > 0 large enough such that by Markov’s inequality E(|X∞|)/M < δ.
Pick any t ≥ 0, we have

P(|E(X∞|Ft)| ≥M) ≤ E(|E(X∞|FT )|)/M ≤ E(E(|X∞||Ft))/M = E(|X∞|)/M < δ.

The set {|E(X∞|Ft)| ≥M} is contained in Ft, so it follows that

E(|E(X∞|Ft)|1{|E(X∞|Ft)|≥M}) ≤ E(E(|X∞||Ft)1{|E(X∞|Ft)|≥M}) = E(|X∞|1{|E(X∞|Ft)|≥M}) < ε.

The bound was independent of t and of ε, so the uniform integrability follows.
(ii) =⇒ (iii): This proof requires a bit more work, see Le Gall [26, Theorem 3.21].
(iii) =⇒ (i): By dominated convergence, we can pass to the limit s→∞ for every t ≥ 0 to get

Xt = lim
s→∞

E(Xs|Ft) = E(X∞|Ft).

When we stop a martingale with a stopping time, we would hope that process stays a martingale,
this turns out to be the case. For the general case we need to impose uniform integrability on the entire
stochastic process. We will not prove the theorem right now, instead see Le Gall [26, Theorem 3.22].
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22 Chapter 3. Martingales

Theorem 3.2.3 (Optional stopping theorem). Let (Ω,F ,F,P) be a filtered probability space and X be
a uniformly integrable càdlàg martingale. Let ρ ≤ τ be two F-stopping times, then Xρ and Xτ are in
L1(F ,P) and

Xρ = E(Xτ |Fρ).

Often we will use this theorem in more particular forms. If we impose boundedness on the stopping
times we do not have to require uniform integrability.

Corollary 3.2.4. Let (Ω,F ,F,P) be a filtered probability space and X a càdlàg martingale. Let ρ ≤ τ
be two bounded F-stopping times. Then Xρ and Xτ are in L1(F ,P) and

Xρ = E(Xτ |Fρ).

Proof.
Let M > 0 such that ρ ≤ τ ≤ M . Now we apply Theorem 3.2.3 to the martingale (Xt∧M )t≥0, which is
uniformly integrable because for s < t we have Xs∧M = E(Xt∧M |Fs), when we consider the cases t ≤M
and t > M seperately. Now the uniform integrability follows by Theorem 3.2.2.

The following corollary is what we use most of the times. This indeed tells us that a stopped
martingale still is a martingale.

Corollary 3.2.5. Let (Ω,F ,F,P) be a filtered probability space and X a càdlàg martingale. Let τ be an
F-stopping time, then

(i) The process (Xt∧τ )t≥0 is still a martingale;

(ii) Suppose in addition that the martingale (Xt)t≥0 is uniformly integrable. Then the process (Xt∧τ )t≥0

is also a uniformly integrable martingale.

Proof.
First we prove (ii). We know that t∧τ is a stopping time. So then Xt∧τ is in L1(F ,P) by Theorem 3.2.3.
Since Ft∧τ ⊆ Ft we know that Xt∧τ is Ft-measurable. If we show it is uniformly integrable, we are done.

By the partial averaging property of conditional expectations, we only have to show that for every
A ∈ Ft

E(1AXτ ) = E(1AXt∧τ ).

We trivially have E(1A∩{τ≤t}Xτ ) = E(1A∩{τ≤t}Xt∧τ ). Furthermore we know that we have Xt∧τ =
E(Xτ |Ft∧τ ) by Theorem 3.2.3. Additionally both A ∩ {τ > t} ∈ Ft and A ∩ {τ > t} ∈ Fτ , so then
A ∩ {τ > t} ∈ Ft∧τ . Then we have

E(X1A∩{τ>t}Xτ ) = E(1A∩{τ>t}Xt∧τ ).

Adding up the last two displays we indeed get

Xt∧τ = E(Xτ |Ft),

proving uniform integrability necessary for Theorem 3.2.3.
To prove (i) we apply (ii) to the uniformly integrable martingale (Xt∧M )t≥0 for every M > 0.

3.3 Local martingales

Martingales have a lot of structure, and behave rather nicely. So much that, for stochastic integration,
we can even weaken the structure a bit to still get a satisfactory integration theory, we only have to
require a process to be a martingale ‘locally’. Given a stochastic process X = (Xt)t≥0 and a stopping
time τ , we define a stopped process Xτ = Xt∧τ . In the case where X is a càdlàg martingale, we know
that Xτ behaves well by Corollary 3.2.5, which motivates the following definition of local martingales.

Definition 3.3.1. Let (Ω,F ,F,P) be a filtered probability space and M an adapted process such that
M0 = 0 almost surely. M is called a local martingale if there exists a nondecreasing sequence (τn)n∈N of
F-stopping times such that τn ↑ ∞ and, for every n, the stopped process Mτn is a uniformly integrable
martingale.

More generally, when we do not assume that M0 = 0 almost surely, we say that M is a local martingale
if the process Nt = Mt −M0 is a continuous local martingale.

In all cases, we say that the sequence of stopping times (τn)n∈N reduces M if τn ↑ ∞ and, for every
n, the stopped process Mτn is a uniformly integrable martingale.
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3.3. Local martingales 23

Remark that every càdlàg martingale X is a càdlàg local martingale, as the sequence of stopping times
τn = n makes the stopped process Xτn a uniformly integrable martingale. Indeed, we have Xτn

∞ = Xn,
so then by Theorem 3.2.2 we have that Xτn is a uniformly integrable martingale. The converse is in
general false.

To test whether a càdlàg local martingale is in fact a càdlàg martingale, we can use the following
proposition. It also gives a way to define reducing sequences for càdlàg local martingales, which will be
very useful in abstract definitions of càdlàg local martingales.

Proposition 3.3.2. Let (Ω,F ,F,P) be a filtered probability space.

(i) A càdlàg local martingale M is such that there exists a random variable Z ∈ L1(F ,P), satisfying
|Mt| ≤ Z for every t ≥ 0, which is a uniformly integrable martingale.

(ii) If M is a càdlàg local martingale, Nt = Mt −M0 and M0 ∈ L1(F ,P), the sequence of stopping
times

τn = inf{t ≥ 0 : |Nt| > n},

reduces M , if the filtration is right-continuous.

Proof.
(i) Write Mt = M0 +N . By definition there exists a reducing sequence (τn)n∈N for N . By Corollary 3.2.5
we have that Nτn is a uniformly integrable martingale, so if s ≤ t, we have for every n,

Ns∧τn = E(Nt∧τn |Fs).

Now since by definition M0 ∈ L1(F ,P), we can add it to both sides to get

Ms∧τn = E(Mt∧τn |Fs).

Furthermore since Z dominates (Mt∧τn)n∈N for every t ≥ 0, we can use dominated convergence to obtain
the convergence of Mt∧τn to Mt in L1(F ,P). We can therefore pass to the limit n → ∞, to obtain the
martingale property

Ms = E(Mt|Fs).

(ii) By Proposition 3.1.3 and the right-continuity of F, we have that (τn)n∈N is a sequence of F-stopping
times. Now |Nτn | ≤ n, and Nτn is a càdlàg local martingale, so by (i) we have that Nτn is a uniformly
integrable martingale, completing the proof.
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CHAPTER 4

Stochastic Calculus

The theory of stochastic integration with respect to continuous semimartingales has become classical by
now in the literature. To avoid making this chapter unnecessarily long, we omit most of the proofs in
the first two sections of this chapter, in favor of a more detailed approach to modelling the jump part in
our stochastic differential equations. A thorough treatment of continuous semimartingales can be found
in for example Le Gall [26].

4.1 Finite variation processes

To start with stochastic calculus, we will first define integration with ‘finite variation processes’ as
integrators. A suitable integral will be the pathwise Lebesgue-Stieltjes integral, that is to say we integrate
pathwise with the Lebesgue-Stieltjes integral. We will not give a complete treatment of Lebesgue-Stieltjes
integration here. For a more thorough treatment of finite variation we refer to [10] and [26].

Lebesgue-Stieltjes integration is in fact just Lebesgue integration as we will see, therefore theorems
like the dominated convergence theorem carry over immediately. Let (Ω,F) be a measurable space, and
let µ : F → [−∞,∞] be a set function such that

1. µ(∅) = 0;

2. µ attains at most one of the values ∞ or −∞;

3. If (An)n∈N ⊆ F is pairwise disjoint, then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An),

where the series converges absolutely when the left hand side is finite.

If µ satisfies these properties, then we call µ a signed measure, furthermore we call it finite when
µ(F) ⊂ R. Suppose µ is a signed measure, then there exists a unique decomposition µ = µ+−µ− where
µ+, µ− : F → [0,∞] are positive measures, where atleast one of them is finite. This decomposition is
called the Jordan decomposition. We call the positive measure |µ| = µ+ +µ− the total variation measure.
Now finite variation functions are defined as follows.

Definition 4.1.1. Let T ≥ 0. A continuous function a : [0, T ] → R such that a(0) = 0 is said to have
finite variation if there exists a finite signed Borel measure µ : B([0, T ]) → R such that a(t) = µ([0, t])
for every t ∈ [0, T ]. Furthermore a function a : R+ → R is a finite variation function on R+, if the
restriction of a to [0, T ] has finite variation on [0, T ] for every T ≥ 0.

It turns out that this signed measure is unique and using the Jordan decomposition we can define the
Lebesgue-Stieltjes integrals through Lebesgue integrals as follows. Let a be a finite variation function
with corresponding signed Borel measure µ. Let f : [0, T ] → R be a measurable function such that∫

[0,T ]
|f(s)| d|µ|(s) <∞. Then we define

∫ T

0

f(s) da(s) :=

∫ T

0

f(s) dµ(s) =

∫ T

0

f(s) dµ+(s)−
∫ T

0

f(s) dµ−(s),∫ T

0

f(s) |da(s)| =
∫

[0,T ]

f(s) d|µ|(s).

We have two important approximation results for Lebesgue-Stieltjes integrals
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4.1. Finite variation processes 25

Proposition 4.1.2. Let a : [0, T ] → R be a function having finite variation. For every t ∈ (0, T ] and
every nested sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnpn = t} with mesh tending to zero, we
have ∫ t

0

|da(s)| = lim
n→∞

pn−1∑
i=0

|a(tni+1)− a(tni )|.

Furthermore if f : [0, T ] → R is a continuous function and we again let Pn be a sequence of partitions
with mesh tending to zero (they do no longer have to be nested), then∫ T

0

f(s) da(s) = lim
n→∞

pn−1∑
i=0

f(tni )(a(tni+1)− a(tni )).

An important property of Lesbesgue-Stieltjes which all other integrals we will define in this chapter
will also satisfy, is the ‘associativity’ property.

Proposition 4.1.3. Let a be of finite variation and f an a-integrable function. Then define

g(t) =

∫ t

0

f(s) da(s).

We know that g is of finite variation and that for any g-integrable function h we have for all t ≥ 0,∫ t

0

h(s) dg(s) =

∫ t

0

h(s)f(s) da(s).

Going back to our stochastic setting, we can define finite variation processes to be as follows.

Definition 4.1.4. An adapted continuous process X is called a finite variation process if X0 = 0 and
the paths are of finite variation almost surely.

By the following proposition we can define pathwise Lebesgue-Stieltjes integration, as is proven in Le
Gall [26, Proposition 4.5].

Proposition 4.1.5. Let (Ω,F ,F,P) be a complete filtered probability space and let A be a finite variation
process. Let X be a progressive process and N a null set such that

ω ∈ N c,∀t ≥ 0,

∫ t

0

|Xs(ω)||dAs(ω)| <∞.

Then the process X ·A = ((X ·A)t)t≥0 defined by

(X ·A)t(ω) =


∫ t

0

Xs(ω) dAs(ω), ω ∈
∞⋂
n=1

{∫ n

0

|Xs(ω)| |dAs(ω)| <∞
}
,

0, otherwise.

is also a finite variation process.

Remark 4.1.6. We have assumed the filtered probability space to be complete, we could have circum-
vented this by allowing the integrals to be infinite. So we would define

(X ·A)t(ω) =

∫ t

0

Xs dAs(ω),

for all ω ∈ Ω. However, we can not guarantee anymore that (X ·A) is still a finite variation process, see
Protter [33] for a counterexample.

To prove some identities with finite variation processes, it is often useful to have a way to approximate
the finite variation integrals. We can do this for càdlàg progressive processes as follows.

Proposition 4.1.7. Let X be a càdlàg progressive process and A a finite variation process, such that
X · A is defined almost surely. Let t ≥ 0 and Pn = {0 = tn0 < tn1 < · · · < tnpn = t} with mesh tending to
zero. Then

pn−1∑
i=0

Xtni
(Atni+1

−Atni )
P−→
∫ t

0

Xs− dAs.
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Proof.
Fix t ≥ 0. Define the progressive process

Xn
s =

pn−1∑
i=0

Xtni
1(tni ,t

n
i+1](s),

then ∫ t

0

Xn
s dAs =

pn−1∑
i=0

Xtni
(Atni+1

−Atni ).

So if we can prove that ∫ t

0

(Xn
s −Xs−) dAs

P−→ 0,

we are done. By the càdlàg property of X, we know that for every t ≥ 0, we have Xn
t → Xt− as n→∞

almost surely. Now define Kt = sups≤t |Xs|, then |Xn
t −Xt−| ≤ 2Kt for all t ≥ 0 and n ∈ N.

Define for every m ∈ N the stopping time

τm = inf

{
r ∈ [0, t] :

∫ r

0

|Ks| |dAs| ≥ m
}
∧ t,

we know that τm → t as m→∞ almost surely. Then for every m ∈ N we have that E(
∫ τm

0
|Ks| |dAs|) ≤

m, so then by the Dominated Convergence Theorem

E
(∫ τm

0

|Xn
s −Xs−| |dAs|

)
→ 0,

as n→∞.
Given δ > 0 and ε > 0, fix m ∈ N such that P(τm < t) < ε/2. Now pick n large enough such that

E
(∫ τm

0

|Xn
s −Xs−| |dAs|

)
<
δε

4
.

Then we have that

P
(∣∣∣∣∫ t

0

(Xn
s −Xs−) dAs

∣∣∣∣ > δ

)
≤ P

(∫ τm

0

|Xn
s −Xs−| |dAs| >

δ

2

)
+ P

(∫ t

τm

|Xn
s −Xs−| |dAs|1τm<t >

δ

2

)
≤ 2

δ
E
(∫ τm

0

|Xn
s −Xs−| |dAs|

)
+ P(τm < t) < ε.

Hence the result follows.

Using finite variation processes as integrators for our stochastic integrals is a good start, but we also
want to be able to integrate with respect to martingales. It turns out that the concept of pathwise
Lebesgue-Stieltjes integration is insufficient for this purpose and we have to consider a different type of
stochastic integrals.

Theorem 4.1.8. A continuous local martingale M with M0 = 0 almost surely is a process of finite
variation if and only if M is indistuinguishable from zero.

4.2 Quadratic variation and covariation

In this section we will solely focus on continuous processes and we will introduce the concepts of quadratic
variation and covariation which are important for stochastic integration with respect to continuous
martingales. Later on we want to integrate with respect to a class of càdlàg martingales, however
we will divide the integration in a continuous part and a jump part, instead of a fully general càdlàg
semimartingale integration as done in Protter [33].

First we will look at a relation between a continuous local martingale and its squared process. A
more general statement is known as the Doob-Meyer decomposition.
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Theorem 4.2.1. Let (Ω,F ,F,P) be a complete filtered probability space. Let M be a continuous local
martingale. There exists a unique (up to indistinguishability) finite variation process (〈M〉t)t≥0, which
we call the quadratic variation of M , such that (M2

t − 〈M〉t)t≥0 is a continuous local martingale.
Furthermore, for any t > 0 and any sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnpn = t} with

mesh tending to zero, we have
m−1∑
j=0

(Mtnj+1
−Mtnj

)2 P−→ 〈M〉t.

Example 4.2.2. Let W be a Brownian motion, then 〈W 〉t = t. Indeed we know that Wtnj+1
−Wtnj

∼

N (0, tnj+1− tnj ). So then E
(∑pn−1

j=0 (Wtnj+1
−Wtnj

)2
)

= t. Now the increments are independent and recall

that for X ∼ N (0, σ2) we have Var(X2) = E(X4) = 2σ4, so

E


pn−1∑

j=0

(Wtnj+1
−Wtnj

)2 − t

2
 = Var

pn−1∑
j=0

(Wtnj+1
−Wtnj

)2


=

pn−1∑
j=0

Var((Wtnj+1
−Wtnj

)2)

= 2

pn−1∑
j=0

(tnj+1 − tnj )2 ≤ 2 max
0≤j≤pn−1

|tnj+1 − tnj |t→ 0.

Hence we have convergence in L2, in particular we have convergence in probability and we indeed have
〈W 〉t = t.

We will extend the definition of quadratic variation to general stochastic processes through the
approximation property.

Definition 4.2.3. Let X be a stochastic process. The quadratic variation of X up to time t is defined
as the stochastic process 〈X〉 such that

pn−1∑
j=0

(Xtj+1 −Xtj )
2 P−→ 〈X〉t,

when the limit exists, where Pn = {0 = tn0 < tn1 < · · · < tnpn = t} is a sequence of partitions with mesh
tending to zero.

We could see quadratic variation as a variant of variance for stochastic processes, similarly we can
define covariation as a variant of covariance.

Definition 4.2.4. If M and N are two continuous local martingales, the covariation 〈M,N〉 is the finite
variation process defined by setting for every t ≥ 0,

〈M,N〉t =
1

2
(〈M +N,M +N〉t − 〈M,M〉t − 〈N,N〉t) .

Again we can get similar results as in Theorem 4.2.1 through this polarization identity.

Proposition 4.2.5. (i) 〈M,N〉 is the unique (up to indistinguishability) finite variation process such
that MtNt − 〈M,N〉t is a continuous local martingale.

(ii) The mapping (M,N) 7→ 〈M,N〉 is bilinear and symmetric.

(iii) If Pn = {0 = tn0 < tn1 < · · · < tnpn = t} is a sequence of partitions, we have

lim
n→∞

pn−1∑
i=0

(Mtni+1
−Mtni

)(Ntni+1
−Ntni )

P−→ 〈M,N〉t.

(iv) For every stopping time τ , we have 〈Mτ , Nτ 〉t = 〈Mτ , N〉t = 〈M,N〉t∧τ .
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(v) If M and N are two continuous local martingales bounded in L2, MtNt − 〈M,N〉t is a uniformly
integrable martingale. Consequently, 〈M,N〉∞ is well defined as the almost sure limit of 〈M,N〉t
as t→∞, is integrable, and satisfies

E(M∞N∞) = E(M0N0) + E(〈M,N〉∞).

There exists a generalisation of the Cauchy-Schwarz inequality, but then for stochastic processes,
which is called in the context of stochastic processes, the Kunita-Watanabe inequality. The proof is in
essence the same as for the generalized Cauchy-Schwarz inequality.

Proposition 4.2.6 (Kunita-Watanabe Inequality). Let M and N be two continuous local martingales
and let X and Y be two progressive processes. Then, almost surely∫ ∞

0

|Xs||Ys||d〈M,N〉s| ≤
(∫ ∞

0

X2
s d〈M〉s

) 1
2
(∫ ∞

0

Y 2
s d〈N〉s

) 1
2

The following class of stochastic processes will be nearly the biggest class of integrators which can be
used for stochastic integration, in fact the biggest class of integrators, is the class of càdlàg semimartin-
gales, Protter [33].

Definition 4.2.7. A process V = (Vt)t≥0 is a continuous semimartingale if it can be written in the form

Vt = Mt +At,

where M is a continuous local martingale and A a finite variation process.

The decomposition V = M + A is unique up to indistinguishability by Proposition 4.1.8, we say
that this is the canonical decomposition of V . To rewrite stochastic integrals with semimartingales as
integrators, we will often use the following proposition.

Proposition 4.2.8. Let V and W be two continuous semimartingales and let Pn = {0 = tn0 < tn1 <
. . . < tnpn = t} be an increasing sequence of partitions whose mesh tends to 0. Then,

pn−1∑
i=0

(Vtni+1
− Vtni )(Wtni+1

−Wtni
)

P−→ 〈V,W 〉t.

Proof.
Let V = M +A and W = M ′ +A′ be the canonical decompositions. Then

pn−1∑
i=0

(Vtni+1
− Vtni )(Wtni+1

−Wtni
)

=

pn−1∑
i=0

((Mtni+1
−Mtni

) + (Atni+1
−Atni ))((M ′tni+1

−M ′tni ) + (A′tni+1
−A′tni ))

=

pn−1∑
i=0

(Mtni+1
−Mtni

)(M ′tni+1
−M ′tni ) +

pn−1∑
i=0

(Atni+1
−Atni )(A′tni+1

−A′tni )

+

pn−1∑
i=0

(Mtni+1
−Mtni

)(A′tni+1
−A′tni ) +

pn−1∑
i=0

(Atni+1
−Atni )(M ′tni+1

−M ′tni )

We already know that
pn−1∑
i=0

(Mtni+1
−Mtni

)(M ′tni+1
−M ′tni )

P−→ 〈X,Y 〉t,

so it remains to show all the other terms vanish. Indeed,∣∣∣∣∣
pn−1∑
i=0

(Mtni+1
−Mtni

)(A′tni+1
−A′tni )

∣∣∣∣∣ ≤ sup
0≤i≤pn−1

|Mtni+1
−Mtni

|
pn−1∑
i=0

|A′tni+1
−A′tni |

≤
(∫ t

0

|dA′s|
)

sup
0≤i≤pn−1

|Mtni+1
−Mtni

| a.s.−→ 0,

by the continuity of M on the compact interval [0, t]. The other two terms go in a similar manner and
the result follows.
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4.3 Stochastic integration

Having discussed quadratic variation and covariation, we are now ready to define the stochastic integrals
which we will use in the rest of the thesis extensively. First we will look at stochastic integrals with
respect to continuous integrators, it turns out that the sum of a continuous local martingale and a finite
variation process gives a satisfactory theory of integration.

Then we will define integrals for Poisson measures, these integrals will model the discontinuous part
of our processes. Together we have a very general theory of integration which will be sufficient for our
purposes.

4.3.1 Continuous semimartingale stochastic integrals
We write H2 as the space of all continuous martingales which are bounded in L2 and such that M0 = 0
almost surely, with the convention that two indistinguishable processes are identified. Proposition 4.2.5
shows that for M,N ∈ H2, the random variable 〈M,N〉∞ is well defined, and we have E(|〈M,N〉∞|) <∞.
So we can define the symmetric bilinear form on H2 by the formula

(M,N)H2 = E(〈M,N〉∞) = E(M∞N∞).

It follows that (M,N)H2 is an inner product on H2. Clearly (M,M)H2 = 0 if and only if M = 0, the
other properties follow from Proposition 4.2.5. The inner product induces the norm on H2 given by

‖M‖H2 = (M,M)
1/2
H2 = E(〈M,M〉∞)1/2 = E((M∞)2)1/2.

Proposition 4.3.1. The space H2 equipped with the inner product (M,N)H2 is a Hilbert space.

We define the space L2
M for each M ∈ H2 by the set of all progressive proccesses X such that

E

(∫ T

0

X2
s d〈M〉s

)
<∞,

with the convention that two progressive processes X and Y satisfying this integrability condition are
identified if X = Y , 〈M〉s-almost everywhere, almost surely.

We can view L2
M as an ordinary L2 space, namely the space

L2
M = L2 (Ω× [0, T ],P, µM 〉) ,

where µM is the measure (called the Doléans measure) defined for all A ∈P by µM (A) = E
(∫
A
d〈M〉s

)
.

Therefore it inherits its structure, and we know that L2
M is a Hilbert space with the inner product

(X,Y )L2
M

= E

(∫ T

0

XsYs d〈M〉s

)
,

and the induced norm

‖X‖L2
M

=

(
E

(∫ T

0

X2
s d〈M〉s

))1/2

.

We will first define the stochastic integral with respect to simple processes which space we denote by
S, then we show it is dense in L2

M as vector subspace so that we can extend the integral through an
isometry.

Definition 4.3.2. A simple process is a progressive process of the form

Xs(ω) =

n−1∑
i=0

X(i)1(ti,ti+1](s),

where 0 = t0 < t1 < t2 < · · · < tp and for every i = 0, 1, . . . , n − 1, X(i) is a bounded Fti-measurable
random variable. Let S be the set of simple processes, it forms a linear subspace of L2

M under the
identification of processes inherited from L2

M for every M ∈ H2.

As we already forshadowed, the space S is dense in L2
M .
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Proposition 4.3.3. For every M ∈ H2, the linear subspace S is dense in L2
M .

Given a simple process, we define the Itô integral with respect to a continuous martingale as follows.

Definition 4.3.4. Let M ∈ H2, and X ∈ S be a simple process. Then define the Itô integral of X with
respect to M for any t ≥ 0 by

X ·M =

∫ t

0

Xs dMs =

n−1∑
i=0

X(i)(Mti+1∧t −Mti∧t).

We use both notations interchangeably.

Remark 4.3.5. The fact that we use a similar notation X · A and X ·M for the integrals with respect
to a finite variation process A and with respect to a continuous martingale M creates no ambiguity, as
by Proposition 4.1.8 only the zero process is both a finite variation process and a continuous martingale.
From the context it should be clear which of the two stochastic integrals we use. We will also use X ·M
for stochastic integration where M is a martingale-valued measure, but again from the context it should
be clear what class M lies in and which stochastic integral we use.

The following theorem proves the extension of the stochastic integral to general stochastic processes
in L2

M and its characterizing properties.

Theorem 4.3.6. Let M ∈ H2 and X ∈ S a simple process. Then the mapping X 7→ X ·M extends to
a linear isometry from L2

M to H2. Furthermore, X ·M is the unique martingale of H2 that satisfies the
property

〈X ·M,N〉 = X · 〈M,N〉, ∀N ∈ H2.

If τ is a stopping time, we have

(1[0,τ ]X) ·M = (X ·M)τ = X ·Mτ .

A useful consequence of the characterizing property of the Itô integral with a continuous martingale
as integrator is the Itô isometry.

Proposition 4.3.7 (Itô Isometry). Let M,N ∈ H2, X ∈ L2
M and Y ∈ L2

N . Since X ·M and Y ·N are
martingales in H2, we have

E

((∫ T

0

Xs dMs

)(∫ T

0

Ys dNs

))
= E

(∫ T

0

XsYs d〈M,N〉s

)
.

In particular, we have that

E

(∫ T

0

Xs dMs

)2
 = E

(∫ T

0

X2
s d〈M〉s

)
.

Similarly as with the stochastic integral for finite variation processes and the Lebesgue-Stieltjes
integral, we again have an associativity property for the Itô integral.

Proposition 4.3.8. Let X ∈ L2
M . If Y is a progressive process, we have XY ∈ L2

M if and only if
Y ∈ L2

X·M . If the latter properties hold,

(XY ) ·M = Y · (X ·M)

We can extend the definition of X ·M to an arbitrary continuous local martingale. If M is a continuous
local martingale, we write L2

M,loc and L2
M for the set of progressive processes X such that respectively

P

(∫ T

0

X2
s d〈M〉s <∞

)
= 1 and E

(∫ ∞
0

X2
s d〈M〉s

)
<∞.

Now L2
M can be seen as a Hilbert space as before.The following theorem, shows that we can indeed

extend the definition of the Itô integral to continuous local martingales.
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Theorem 4.3.9. Let M be a continuous local martingale. For every X ∈ L2
M,loc there exists a unique

continuous local martingale with initial value 0, which is denoted by X ·M , such that, for every continuous
local martingale N ,

〈X ·M,N〉 = X · 〈M,N〉.

If τ is a stopping time, we have

(1[0,τ ]X) ·M = (X ·M)τ = X ·Mτ .

If X ∈ L2
M,loc and Y is a progressive process, we have Y ∈ L2

X·M,loc if and only if XY ∈ L2
M,loc, and

then

X · (Y ·M) = XY ·M.

Finally, if M ∈ H2, and X ∈ L2
M , the definition of X ·M is consistent with our earlier definition of

stochastic integration with respect to continuous martingales.

Having defined a stochastic integral for finite variation processes and for continuous local martingales,
we can now look at stochastic integrals for continuous semimartingales. First we will look at the suitable
class of integrands. They turn out to be the class of locally bounded progressive processes.

Definition 4.3.10. Let X be a progressive process, we called it locally bounded if for all t ≥ 0, we have
almost surely

sup
s≤t
|Xs| <∞.

In particular, any adapted process with continuous paths is a locally bounded progressive process. If
X is progressive and locally bounded, then for every finite variation process A, we have for all t ≥ 0,∫ t

0

|Xs| |dAs| <∞, a.s.

and similarly X ∈ L2
M,loc for every continuous local martingale M . Now the stochastic integral of a

locally bounded progressive process with respect to a continuous semimartingale is as follows.

Definition 4.3.11. Let V be a continuous semimartingale and let V = M + A be its canonical decom-
position. If X is a locally bounded progressive process, the stochastic integral X · V is the continuous
semimartingale with canonical decomposition

X · V = X ·M +X ·A,

and we write

(X · V )t =

∫ t

0

Xs dVs.

The following proposition follows immediately from considering the canonical decomposition of the
stochastic integral, and summarises most of the important properties of Itô integrals with respect to
continuous local martingales

Proposition 4.3.12. Let V be a continuous local martingale and X a locally bounded progressive process,
then X · V satisfies the following properties

(i) The mapping (X,V ) 7→ X · V is bilinear.

(ii) X · (Y · V ) = (XY ) · V , if X and Y are progressive and locally bounded.

(iii) For every stopping time τ , (X · V )τ = X1[0,τ ] · V = X · V τ .

(iv) If V is a continuous local martingale, respectively if V is a finite variation process, then the same
holds for X · V

A very strong property from Lebesgue integrals is the dominated convergence theorem. It turns out
that for stochastic integrals with respect to continuous local semimartingales we have a similar version
called the stochastic dominated convergence theorem.
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Theorem 4.3.13 (Stochastic Dominated Convergence Theorem). Let V = M + A be the canonical
decomposition of a continuous semimartingale V , and let t > 0. Let (Xn)n∈N and X be locally bounded
progressive processes, and let Y be a nonnegative progressive process. Assume that the following properties
hold almost surely:

1. Xn
s → Xs as n→∞, for every s ∈ [0, t]

2. |Xn
s | ≤ Y , for every n ∈ N and s ∈ [0, t]

3.
∫ t

0
Y 2
s d〈M〉s <∞ and

∫ t
0
Ys|dAs| <∞

Then, ∫ t

0

Xn
s dVs

P−→
∫ t

0

Xs dVs.

Using the stochastic dominated convergence theorem, we can prove some approximation results for
the Itô integral in preparation for the most important theorem in this chapter, Itô’s formula.

Proposition 4.3.14. Let V,W be continuous semimartingales and X an adapted càdlàg process. Let
t ≥ 0 and assume that Pn = {0 = tn0 < · · · < tnpn = t} is a sequence of partitions of [0, t] with mesh
tending to zero. Then

pn−1∑
i=0

Xtni
(Vtni+1

− Vtni )
P−→
∫ t

0

Xs− dVs,

and also
pn−1∑
i=0

Xtni
(Vtni+1

− Vtni )(Wtni+1
−Wtni

)
P−→
∫ t

0

Xs− d〈V,W 〉s.

Proof.
Define the progressive processes

Xn
s =

pn−1∑
i=0

Xtni
1(tni ,t

n
i+1](s).

We will first show that ∫ t

0

Xn
s dVs =

pn−1∑
i=0

Xtni
(Vtni+1

− Vtni ). (4.1)

Let V = M +A be the canonical decomposition. In the case M = 0, we have already shown this, so we
can assume that V = M and that M0 = 0, by stopping M we can also assume that M ∈ H2. Now fix
n ∈ N and define the stopping times τm = inf{tni : |Xtni

| ≥ m} and we have τm ↑ ∞ as m → ∞. For
every m, we have that

pn−1∑
i=0

Xtni
1{tni ≤τm}1(tni ,t

n
i+1],

is a simple process, then (4.1) follows by letting m → ∞ as by the definition of the stochastic integral
with respect to a martingale of H2, we have

(Xn ·M)t∧τm = (Xn1[0,τm] ·M)t =

pn−1∑
i=0

Xtni
1{tni ≤τm}(Mtni+1∧t −Mtni ∧t).

For the first assertion we have to show that Xn ·M P−→ X·− ·M . By the càdlàg property of X, we
know that almost surely Xn

t → Xt− as n → ∞ for all t ≥ 0. Now define Yt = sups≤t |Xs|, then
|Xn

t −Xt−| ≤ 2Yt for all t ≥ 0 and n ∈ N. Since Y is again a locally bounded process, the first assertion
follows by Theorem 4.3.13.

Let W = M ′ + A′ be the canonical decomposition, then by similar arguments as in Theorem 4.2.8
we only have to show that

pn−1∑
i=0

Xtni
(Mtni+1

−Mtni
)(M ′tni+1

−M ′tni )
P−→
∫ t

0

Xs− d〈V,W 〉s.
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Note that by Proposition 4.2.5 and the previous assertion, we have for every t ≥ 0 and every sequence
of partition of [0, t], 0 = tn0 < tn1 < · · · < tnpn = t with mesh tending to zero, that in probability

〈V,W 〉t = lim
n→∞

pn−1∑
i=0

(Mtni+1
−Mtni

)(M ′tni+1
−M ′tni )

= lim
n→∞

pn−1∑
i=0

(Mtni+1
M ′tni+1

−Mtni
M ′tni )−

pn−1∑
i=0

Mtni
(M ′tni+1

−M ′tni )−
pn−1∑
i=0

Mtni
(M ′tni+1

−M ′tNi )

= MtM
′
t −

∫ t

0

Ms dM
′
s −

∫ t

0

M ′s dMs

Then by Proposition 4.1.7 we have that

pn−1∑
i=0

Xtni

(
Mtni+1

M ′tni+1
−Mtni

M ′tni −
∫ tni+1

tni

Ms dM
′
s −

∫ tni+1

tni

M ′s dMs

)
P−→
∫ t

0

Xs− d〈V,W 〉s.

Now in probability

lim
n→∞

pn−1∑
i=0

Xtni
(Mtni+1

−Mtni
)(M ′tni+1

−M ′tni )

= lim
n→∞

pn−1∑
i=0

Xtni
(MtNi+1

M ′tni+1
−Mtni

M ′tni )−
pn−1∑
i=0

Xtni
Mtni

(M ′tni+1
−M ′tni )

−
pn−1∑
i=0

Xtni
M ′tni (Mtni+1

−Mtni
)

If we can show that

pn−1∑
i=0

Xtni
Mtni

(M ′tni+1
−M ′tni )

P−→
pn−1∑
i=0

Xtni

(∫ tni+1

tni

Ms dM
′
s

)
,

and
pn−1∑
i=0

Xtni
M ′tni (Mtni+1

−Mtni
)

P−→
pn−1∑
i=0

Xtni

(∫ tni+1

tni

M ′s dMs

)
,

we are done, by symmetry it suffices to prove only the first identity. This follows by the first assertion
of the theorem and Proposition 4.3.9 In probability we have

lim
n→∞

pn−1∑
i=0

Xtni
Mtni

(M ′tni+1
−M ′tni ) =

∫ t

0

XsMs dM
′
s =

∫ t

0

Xs d(M ·M ′)s

= lim
n→∞

pn−1∑
i=0

Xtni

(∫ tni+1

tni

M ′s dMs

)
.

Therefore the second assertion of the theorem follows as well.

4.3.2 Poisson stochastic integrals
To define stochastic integrals with integrators which are not necessarily continuous, we will use the
method of integration against random measures. This theory has become standard for the jump parts
of Lévy processes.

Less standard is the treatment of stochastic integrals against Brownian motion through random
measures as done in Applebaum [1], which is a mere consequence of the theory in this section. Extending
this theory to general continuous semimartingales is however non-trivial, hence why the continuous
stochastic integration has been done seperately, through convential theory.

For this setting, progressive measurability will fail as we will have some subtle measurability prob-
lems. Instead we have to look at a more restricted type of measurability, called predictability. A
stochastic process is predictable, when it is measurable to the predictable σ-algebra Σp where Σp =
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σ ({T × Ω→ R : left-continuous and adapted}). We will not prove here that Σp ⊂P, instead we refer
to Chung and Williams [9].

When T = N, this means that a process (Xn)n∈N is predictable if and only if Xn is Fn−1-measurable.
Intuitively this means that the value of Xn is only based on the information at the earlier time step
n− 1, hence the name predictability.

Let (S,A) be a measurable space and (Ω,F ,P) be a probability space. A random measure M on
(S,A) is a collection of random variables (M(B), B ∈ A) such that

(i) M(∅) = 0.

(ii) Given any sequence (An)n∈N of mutually disjoint sets in A,

M

( ∞⋃
n=1

An

)
=

∞∑
n=1

M(An).

(iii) (independently scattered) For each disjoint family (B1, . . . , Bn) in A the random variables
M(B1), . . . ,M(Bn) are independent.

A special class of random measures is the class of martingae-valued measures.

Definition 4.3.15. Let E be a topological space equipped with its Borel σ-algebra B(E). Let M be a
random measure on R+×E. For each A ∈ B(E), define a process MA = (MA

t )t≥0 by MA
t = M([0, t], A).

We say that M is a martingale-valued measure if there exists a set V ∈ B(E) such that for all A ∈ B(E)
with A ∩ V = ∅ we have that MA is a martingale. We call the set V the associated forbidden set.

We will only work in this thesis with sets E ⊂ R equipped with the standard Euclidean topology.
Given a filtered probability space (Ω,F ,F,P), we further specify martingale-valued measure to have
(2, ρ)-type if the following three conditions hold

(M1): For all A ∈ B(E) we have M({0}, A) = 0 almost surely;

(M2): for all 0 ≤ s < t <∞ and A ∈ B(E) we have that M((s, t], A) is independent of Fs;

(M3): There exists a σ-finite measure ρ on B(R+)⊗ B(E) for which

E(M(t, A)2) = ρ(t, A) := ρ((0, t], A).

Let M be a (2, ρ)-type martingale-valued measure and fix T > 0, then we define L2
M to be the vector

space of all equivalence classes of predictable mappings U : [0, T ]×E × Ω→ R which coincide ρ-almost
everywhere, almost surely and satisfy

E

(∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx)

)
<∞.

We define the inner product (U, V )L2
M

on L2
M by

(U, V )L2
M

= E

(∫ T

0

∫
E

Ut(x)Vt(x) ρ(dt, dx)

)
,

which induces a norm ‖·‖L2
M

.

Lemma 4.3.16. L2
M equipped with the inner product (·, ·)L2

M
is a Hilbert space.

Proof.
Clearly L2

M is a subspace of L2([0, T ] × E × Ω,Σp ⊗ B(E), ρ ⊗ P). We only need to show it is closed.

Let (Un)n∈N be a sequence in L2
M converging to U ∈ L2. By Markov’s inequality we have Un

P−→ U , so
there exists a subsequence converging to U almost surely. Since the subsequence consists of predictable
mappings, the almost sure limit is predictable as well. Hence U ∈ L2

M .
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We will only work with (2, ρ)-type martingale-valued measures such that the corresponding ρ is of
the form ρ(t, A) = tν(A) where ν is a σ-finite measure on B(E), so from now on we will assume this to
be the case.

Let S(E) be the space of simple processes U : [0, T ] × E × Ω → R of the following form. For some
m,n ∈ N there exists 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm+1 = T and disjoint Borel subsets A1, . . . , An of E with
µ(Ai) <∞, such that

U =

m,n∑
j,k=1

Uktj1(tj ,tj+1]1Ak ,

where for j = 1, . . . ,m and k = 1, . . . , n we have Uktj = ckUtj with ck ∈ R and Utj a bounded Ftj -
measurable random variable. Note that U is left-continuous and B(E)⊗Ft-measurable, hence predictable.
We will not prove the following lemma, as the proof digresses too far from the topic of this thesis, instead
we refer to Applebaum [1, Lemma 4.1.4].

Lemma 4.3.17. The space S(E) endowed with the L2
M -norm is dense in L2

M .

We define the stochastic integral

U ·M =

m,n∑
j,k=1

UktjM((tj , tj+1], Ak).

It is not hard to see that this definition is linear in U , and we furthermore have an isometry on S(E).

Lemma 4.3.18. Let U ∈ S(E). Then

E(U ·M) = 0, E((U ·M)2) = ‖U‖L2
M
.

Proof.
By the martingale property of M for each j = 1, . . . ,m and k = 1, . . . , n we have E(M((tj , tj+1], Ak)) = 0.
Hence by linearity and the fact that M((tj , tj+1], Ak) is independent of Ftj we have that

E(U ·M) =

m,n∑
j,k=1

E(Uktj )E(M((tj , tj+1], Ak)) = 0.

For the second moment, note that by linearity we again have

E((U ·M)2) =

m,n∑
j,k=1

m,n∑
l,p=1

E(UktjM((tj , tj+1]Ak)UptlM((tl, tl+1], Ap)

Now by the martingale property of M and iterated conditioning, most terms vanish and we get

=

m,n∑
j,k=1

n∑
p=1

E(UktjU
p
tjM((tj , tj+1], Ak)M((tj , tj+1], Ap)

=

m,n∑
j,k=1

n∑
p=1

E(UktjU
p
tj )E(M((tj , tj+1], Ak)M((tj , tj+1], Ap)

Since the Borel sets A1, . . . , An are disjoint, we get by the scattering property of random measures and
the martingale property of M that

=

m,n∑
j,k=1

E((Uktj )
2)E(M((tj , tj+1], Ak)2)

=

m,n∑
j,k=1

E((Uktj )
2)E(M((0, tj+1], Ak)2 +M((0, tj ], Ak)2 − 2M((0, tj ], Ak)M((0, tj+1], Ak))
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Again by the martingale property of M and the fact that M((0, tj+1], Ak) is independent of Ftj .

=

m,n∑
j,k=1

E((Uktj )
2)E(M((0, tj+1], Ak)2 +M((0, tj ], Ak)2)

=

m,n∑
j,k=1

E((Uktj )
2)ρ((tj , tj+1], Ak)

= E

(∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx)

)
.

We can conclude that this stochastic integral is a linear isometry from S(E) into L2(Ω,F ,P) and by
the density of S(E) in L2

M , it extends to a linear isometry from L2
M into L2(Ω,F ,P). We will write for

U ∈ L2
M , the stochastic integral

U ·M =

∫ T

0

∫
E

Ut(x)M(dt, dx),

defined through the extension. Just as with continuous integrators, it turns out these stochastic integrals
are again square-integrable martingales.

We will need a local version of this type of stochastic integration. Define L2
M,loc as the set of all

equivalence classes of indistinguishable predictable mappings U : [0, T ]× E × Ω→ R such that

P

(∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx) <∞

)
= 1.

Now we consider the topology on L2
M,loc generated by the sets{

U ∈ L2
M,loc : P

(∫ T

0

∫
E

|Ut(x)− Vt(x)|2 ρ(dt, dx) < a

)
= 1

}
,

for a > 0 and V ∈ L2
M,loc. It turns out this topology yields the convergence for sequences in L2

M,loc given
by

P

(
lim
n→∞

∫ T

0

∫
E

|Unt (x)− Ut(x)|2 ρ(dt, dx) = 0

)
= 1.

Again S(E) is dense in L2
M,loc endowed with this topology on both spaces and we have the following

estimate

Lemma 4.3.19. If U ∈ S(E), then for all C,K ≥ 0

P

(∣∣∣∣∣
∫ T

0

∫
E

Ut(x)M(dt, dx)

∣∣∣∣∣ > C

)
≤ K

C2
+ P

(∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx) > K

)
.

Proof.
Fix K > 0 and define Ũ (K) by

Ũ
p,(K)
tj =


Uptj if

j,p∑
i,l=1

(U lti)
2ρ((ti, ti+1], Al) ≤ K,

0 otherwise.

Then again Ũ (K) ∈ S(E) and∫ T

0

∫
E

|Ũ (K)
t (x)|2 ρ(dt, dx) =

mK∑
i=1

nK∑
l=1

(U lti)
2ρ((ti, ti+1], Al),
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where mK and nK are the largest indices for which

mK∑
i=1

nK∑
l=1

(U lti)
2ρ((ti, ti+1], Al) ≤ K.

By construction, we have that U = Ũ (K) if and only if∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx) ≤ K;

then by Markov’s inequality, we have

P

(∣∣∣∣∣
∫ T

0

∫
E

Ut(x)M(dt, dx)

∣∣∣∣∣ > C

)
= P

(∣∣∣∣∣
∫ T

0

∫
E

Ũ
(K)
t (x)M(dt, dx)

∣∣∣∣∣ > C

)
+ P(U 6= Ũ (K))

≤ E((F ·M)2)

C2
+ P

(∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx) > K

)

≤ K

C2
+ P

(∫ T

0

∫
E

|Ut(x)|2 ρ(dt, dx) > K

)
,

as required.

Now let U ∈ L2
M,loc, then we can find a sequence Un ∈ S(E) such that almost surely we have

lim
n→∞

∫ T

0

∫
E

|Unt (x)− Ut(x)|2 ρ(dt, dx) = 0.

Hence we also have this convergence in probability, and therefore it is Cauchy in probability. By
Lemma 4.3.19 for any m,n ∈ N and M,β > 0 we have,

P

(∣∣∣∣∣
∫ T

0

∫
E

(Unt (x)− Umt (x))M(dt, dx)

∣∣∣∣∣ > β

)
≤ M

β2
+ P

(∫ T

0

∫
E

|Unt (x)− Umt (x)|2 ρ(dt, dx) > M

)
.

Given ε > 0, we can find for any γ > 0 an N ∈ N such that for n,m ≥ N we have

P

(∫ T

0

∫
E

|Unt (x)− Umt (x)|2 ρ(dt, dx) > γβ2

)
< ε.

Now pick M = γβ2, and we can see that (Un ·M)n∈N is Cauchy in probability and thus has a unique
limit in probability almost surely. This limit will be the stochastic integral and we define

U ·M =

∫ T

0

∫
E

Ut(x)M(dt, dx),

such that ∫ T

0

∫
E

Unt (x)M(dt, dx)
P−→
∫ T

0

∫
E

Ut(x)M(dt, dx).

Theorem 4.3.20. Let U ∈ L2
M,loc and M a (2, ρ)-type martingale-valued measure, then

1. (U ·M)t≥0 is a local martingale.

2. If the filtration satisfies the usual hypothesis, (U ·M)t≥0 has a càdlàg modification.

Proof.
Define a sequence of stopping times (τn)n∈N by

τn = inf

{
t ≥ 0 :

∫ t

0

∫
E

|Ut(x)|2 ρ(dt, dx) > n

}
.
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Then τn
a.s.−→∞. Now for all x ∈ E, t ≥ 0, n ∈ N, we have∫ t

0

∫
E

|Uτnt (x)|2 ρ(dt, dx) ≤ n,

hence Un ∈ L2
M , so we know that Un ·M is a L2-martingale, but also (Un ·M)t = (U ·M)t∧τn .

Now by the Itô isometry we have that Un ·M is a L2-martingale, but (Un ·M)t = (U ·M)t∧τn , such
that U ·M is a local martingale.

For the càdlàg modification, note that every (U · M)τn is a martingale. It is a well-known fact
that, for filtrations satisfying the usual hypothesis, every supermartingale X, such that t 7→ E(Xt) is
right-continuous, has a càdlàg modification, Dellacherie and Meyer [13, page 69]. For martingales this is
trivially true as the mapping t 7→ E(Xt) is constant. So for every n ∈ N we have that (U ·M)τn has a
càdlàg modification. Now since (τn)n∈N is increasing, for each ω ∈ Ω, and t0 ≥ 0, we can find n0(ω) ∈ N
such that τn0

(ω) > t0, so then (U ·M)τnt0 = (U ·M)t0 . Then it follows that the càdlàg property carries
over.

The most important example of a martingale-valued measure in this thesis is the compensated Poisson
random measure. Let (S,A) be some measurable space with a σ-finite measure ν. We define a Poisson
random measure with intensity measure ν to be a random measure such that for all A ∈ A with A lying
outside the forbidden set, we have that (N(t, A))t≥0 is a Lévy process (see Definition 4.4.6 in the next
section) which is Poisson(tν(A)) distributed for each t ≥ 0. The existence of a Poisson random measure
is shown in Sato [37, Proposition 19.4]. Now let (S,A) = (R0,B(R0)), with forbidden set {0}, then we

define the compensated Poisson random measure to be Ñ(t, A) = N(t, A) − tν(A) for each t ≥ 0 and

A ∈ B(R0), with 0 6∈ A. Since (Ñ(t, A))t≥0 is a martingale, Ñ extends to a martingale-valued measure

with forbidden set {0}. Furthermore Ñ is of (2, ρ)-type with ρ(t, A) = tν(A). We call a set A ∈ B(R0)
such that 0 6∈ A to be bounded from below.

We have already done most of the hard work in defininig a stochastic integral with respect to
martingale-valued measures. An important approximation theorem which is called the ‘interlacing con-
struction’ in Applebaum [1, Theorem 4.3.4], is the following.

Theorem 4.3.21. Let Ñ be a compensated Poisson random measure, with intensity measure ν.

(i) Let U ∈ L2
Ñ,loc

. For every sequence (An)n∈N in B(E) with An ↑ E, we have

∫ T

0

∫
An

Ut(x) Ñ(dt, dx)
P−→
∫ T

0

∫
E

Ut(x) Ñ(dt, dx).

(ii) Let U ∈ L2
Ñ

, then there exists a sequence (An)n∈N in B(E) with each ν(An) < ∞ and An ↑ E as
n→∞ for which ∫ T

0

∫
An

Ut(x) Ñ(dt, dx)→
∫ T

0

∫
E

Ut(x) Ñ(dt, dx),

with uniform convergence almost surely.

Proof.
It is possible to extend Lemma 4.3.19 to the entire L2

M,loc by density of S(E). Then we have for any
δ, ε > 0, n ∈ N, that

P

(∣∣∣∣∣
∫ T

0

∫
E

Ut(x) Ñ(dt, dx)−
∫ T

0

∫
An

Ut(x) Ñ(dt, dx)

∣∣∣∣∣ > ε

)

≤ δ

ε2
+ P

(∫ T

0

∫
E\An

|Ut(x)|2 dν(x) dt > δ

)
,

so that (1) follows.
Now for (2) define a sequence (εn)n∈N that decreases monotonically to zero, with ε1 = 1 and, for

n ≥ 2,

εn = sup

{
y ≥ 0 : E

(∫ T

0

∫
0<|x|<y

|Ut(x)|2 dν(x) dt

)
≤ 8−n

}
.
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Now define An = {x ∈ E : |x| > εn} for each n ∈ N. By Doob’s martingale inequality, for each n ∈ N,
we have

E

sup
s≤t

∣∣∣∣∣
∫ s

0

∫
An+1

Uu(x)Ñ(du, dx)−
∫ s

0

∫
An

Uu(x)Ñ(du, dx)

∣∣∣∣∣
2


≤ E

∣∣∣∣∣
∫ t

0

∫
An+1\An

Uu(x)Ñ(du, dx)

∣∣∣∣∣
2


=

∫ t

0

∫
An+1\An

E(|Uu(x)|2) dν(x) du ≤ 8−n

Now by Markov’s inequality

P

(
sup
t≤T

∣∣∣∣∣
∫ s

0

∫
An+1

Uu(x)Ñ(du, dx)−
∫ s

0

∫
An

Uu(x)Ñ(du, dx)

∣∣∣∣∣ ≥ 1

2n

)
≤ 1

2n
.

Hence by the Borel-Cantelli lemmas we have that

P

(
lim sup
n→∞

sup
t≤T

∣∣∣∣∣
∫ s

0

∫
An+1

Uu(x)Ñ(du, dx)−
∫ s

0

∫
An

Uu(x)Ñ(du, dx)

∣∣∣∣∣ < 1

2n

)
= 1.

Therefore given δ > 0, there exists N ∈ N, such that for m,n > N we have

sup
t≤T

∣∣∣∣∫ s

0

∫
An

Uu(x)Ñ(du, dx)−
∫ s

0

∫
Am

Uu(x)Ñ(du, dx)

∣∣∣∣
≤

n−1∑
k=m

sup
t≤T

∣∣∣∣∣
∫ s

0

∫
Ak+1

Uu(x)Ñ(du, dx)−
∫ s

0

∫
Ak

Uu(x)Ñ(du, dx)

∣∣∣∣∣
<

n−1∑
k=m

1

2k
< δ,

almost surely. Hence the convergence is almost surely uniformly Cauchy on compact intervals and
therefore almost surely uniformly convergent on compact intervals.

To conclude this section we give an example why predictability is necessary instead of just progressive
measurability.

Example 4.3.22. Let N be a Poisson process with intensity 1 and let Ñt = Nt − t. Then we know that
Ñ is a martingale. Assuming that the filtration is complete, we know that N is progressive since it is
adapted by Proposition 2.3.5. But it is not predictable, this is however rather difficult to prove, see
for example Davis [12, A3.7]. The process (Nt−)t≥0 is left-continuous and adapted and therefore by
definition predictable.

Define ∆Nt = Nt −Nt−. It turns out that we have∫ t

0

∫
R0

∆Ns Ñ(ds, dJ) =
∑

0≤s≤t

∆N2
s = Nt,

see Applebaum [1, page 207], hence we have∫ t

0

∫
R0

Ns Ñ(ds, dJ) =

∫ t

0

∫
R0

Ns− Ñ(ds, dJ) +

∫ t

0

∫
R0

∆Ns Ñ(ds, dJ)

=

∫ t

0

∫
R0

Ns− Ñ(ds, dJ) +Nt.

But N is not even a local martingale, so the stochastic integral N · Ñ is not a local martingale either.
Therefore we see that predictability is necessary to make sure the stochastic integral is still a local
martingale.
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4.4 Itô’s formula

Having built a theory of integration with respect to continuous semimartinagles and compensated Poisson
measures, we lack only one very important ingredient of stochastic calculus. We have defined a notion of
integration for stochastic processes, however we also want to look at the evolution or flow of a stochastic
process through time to build differential equations.

For deterministic processes, we have a very satisfying theory of differentiation, it would be convenient
if we could extend this notion to stochastic processes. However if we look at the paths of for example
Brownian motion, then we know they are almost surely continuous, but wildly irregular, in fact they are
nowhere differentiable almost surely, Billingsley [4, page 504-505]. This means that there is no hope of
extending the classical theory of differentiation. Despite this setback, we can define a kind of stochastic
differentiation through the stochastic integrals we have just defined. A stochastic analogue of the chain
rule is known as Itô’s formula, and is one of the most important theorems in stochastic calculus, giving
a very satisfying theory of ‘differentiation’.

Before we go into the details of the Itô formula, we introduce the class of Lévy processes, which
will reappear briefly later in this thesis. The classes of Lévy processes and more generally of additive
processes have been extensively studied in for example Sato [37], and Applebaum [1], and they satisfy
a couple of nice properties. They have also been heavily researched in finance for modelling market
incompleteness and heavy-tailed distributions, in for example Cont and Tankov [11].

Let M+(R) denote the set of all finite positive Borel measures on R. We define the convolution of
two measures in µ1, µ2 ∈M+(R) as follows

(µ1 ∗ µ2)(A) =

∫
R
µ1(A− x) dµ(x), A ∈ B(R).

It follows immediately that (µ1∗µ2)(R) ≤ µ1(R)µ2(R) <∞, so the convolution operation defines a binary
operation on M+(R). Furthermore we have the following properties which follow almost immediately
from the definition.

Proposition 4.4.1. If f ∈ BM(R) (the space of bounded (B(R),B(R))-measurable functions), then for
all µi ∈M+(R), i = 1, 2, 3,

(i)
∫
R
f(y) d(µ1 ∗ µ2)(y) =

∫
R

∫
R
f(x+ y) dµ1(y) dµ2(x)

(ii) µ1 ∗ µ2 = µ2 ∗ µ1

(iii) (µ1 ∗ µ2) ∗ µ3 = µ1 ∗ (µ2 ∗ µ3)

The importance of convolutions in probability theory is in the following corollary, where we charac-
terise the sum of two random variables through the convolution of their distributions.

Corollary 4.4.2. For each f ∈ BM(R), we have

E(f(X1 +X2)) =

∫
R
f(z) d(µX1 ∗ µX2)(z).

Let X be a random variable taking values in R with law µX . We say that X is infinitely divisible if,

for all n ∈ N, there exists independent and identically distributed random variables Y
(n)
1 , . . . , Y

(n)
n such

that
X

d
= Y

(n)
1 + . . .+ Y (n)

n .

Furthermore, let φµ(s) denote the characteristic function of the probability measure µ, where u ∈ R.
Then we define

φµ(ξ) =

∫
R
eiξx dµ(x).

We define φX(ξ) = φµX (ξ), where µX is the distribution of X. If X is infinitely divisible, then for each
n ∈ N, we have by independence

E(exp(iξX)) = E

(
n∏
i=1

exp(iξY
(n)
i )

)
=

n∏
i=1

E
(

exp(iξY
(n)
i

)
.
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Since the Y
(n)
i are identically distributed, we can define the characteristic function of the n-th root of X

as φ
1/n
X (ξ) = E(exp(iξY

(n)
1 )) such that

(
φ

1/n
X (ξ)

)n
= φX(ξ). Furthermore let µ

1/n
X be the distribution of

Y
(n)
1 , and define for a measure ν ∈M+(R) the n-th convolution with itself νn = ν ∗ ν ∗ · · · ∗ ν, then also(
µ

1/n
X

)n
= µX .

Example 4.4.3 (Poisson random variables). Consider a random variable X ∼ Poisson(λ). Then

P(X = n) =
λn

n!
e−λ.

It is not hard to show that
φX(s) = exp

(
λ(eis − 1)

)
,

from which we can deduce that X is infinitely divisible with each Y
(n)
j ∼ Poisson

(
λ
n

)
.

Example 4.4.4. Suppose that (Zn)n∈N is a sequence of independent and identically distributed random
variables taking values in R with common law µZ , further let N ∼ Poisson(λ) be a Poisson random
variable. The compound Poisson random variable X is defined as

X =

N∑
n=1

Zn.

We say that X ∼ CPoisson(λ, µZ), with intensity λ and child distribution µZ . Now let ξ ∈ R, we have

φX(ξ) =

∞∑
n=0

E

(
exp

(
iξ

n∑
i=1

Zi

)∣∣∣∣∣N = n

)
P(N = n)

= e−λ
∞∑
n=0

(λφZ(ξ))n

n!
= exp

(
λ

∫
R

(
eiξz − 1

)
dµZ(z)

)
.

It follows again that X is infinitely divisible with each Y
(n)
j ∼ CPoisson

(
λ
n , µZ

)
.

The class of compound Poisson distributions constitute almost the entire class of infinitely divisible
distributions.

Theorem 4.4.5. The set of all infinitely divisible probability measures on R coincides with the weak
closure of the set of all compound Poisson distributions on R (closure under convergence in distribution).

Proof.
Let φ be the characteristic function of an arbitrary infinitely divisible probability measure µ, so that
φ1/n is the characteristic function of µ1/n; then for each n ∈ N, ξ ∈ R, we may define

φn(ξ) = exp
(
n
(
φ1/n(ξ)− 1

))
= exp

(
n

∫
R
(eiξx − 1) dµ1/n(x)

)
,

so that φn is the characteristic function of a compound Poisson distribution. We then have

φn(ξ) = exp
(
n(e(1/n)Log(φ(ξ)) − 1)

)
= exp

(
Log(φ(ξ)) +O

(
1

n

))
n→∞−→ φ(ξ),

with Log the principal value of the logarithm. It is well known that the pointwise convergence of
the characteristic functions is equivalent to convergence in distribution. Since all compound Poisson
distributed random variables are infinitely divisible, the result follows.

Definition 4.4.6. Let X be an adapted stochastic process defined on a probability space (Ω,F , ,F,P).
We say that X is a Lévy process if

(L1): X0 = 0 almost surely.

(L2): X has independent increments, for every n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the random
variables Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , · · · , Xtn −Xtn−1

are independent.
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(L3): X has stationary incremements, for every s, t ≥ 0 we have that Xs+t −Xs
d
= Xt.

(L4): X is stochastically continuous, for every ε we have for all t ≥ 0, that lims↓t P(|Xt − Xs| >
ε) = 0.

When X only satisfies (L1), (L2) and (L4), then we call X an additive process. It turns out that
properties (L2) and (L3) imply that every Lévy process has a càdlàg modification, Protter [33, page 21].
Therefore we will always assume that Lévy processes are càdlàg from now on.

The following proposition is also true for additive processes, the proof is however less straightforward,
Sato [37, page 47].

Proposition 4.4.7. If X is a Lévy process, then Xt is infinitely divisible for each t ≥ 0.

Proof.
Let n ∈ N and t ≥ 0 and define the random variables

Y
(n)
k,t = X kt

n
−X (k−1)t

n
.

Then we have that Xt = Y
(n)
1,t +. . .+Y

(n)
n,t where the Y

(n)
k,t are independent and identically distributed.

The properties of Lévy processes and also additive processes allow us to say a great deal about their
characteristic functions, these families can actually be parameterised entirely by only three parameters,
the characteristic triplet (µ, σ, ν) for Lévy processes and the characteristic triplet (µt, σt, νt) for additive
processes.

Lemma 4.4.8. If X = (Xt)t≥0 is a stochastically continuous process, then the map t 7→ φXt(x) is
continuous for each x ∈ R.

Proof.
Fix ξ ∈ R. Since the map x 7→ exp(iξx) is continuous at the origin, given any ε > 0 we can find δ1 > 0
such that

sup
0≤|x|<δ1

| exp(iξx)− 1| < ε

2
,

and by stochastic continuity, we can find δ2 > 0 such that whenever 0 < |t−s| < δ2, we have P(|Xs−Xt| >
δ1) < ε/4. Hence for all 0 < |t− s| < δ2 we have

|φXt(ξ)− φXs(ξ)| =
∣∣∣∣∫

Ω

eiξXs(ω)
(
eiξ(Xs(ω)−Xt(ω)) − 1

)
dP(ω)

∣∣∣∣
≤
∫
R
|eiξx − 1| dµXs−Xt(x)

=

∫
Bδ1 (0)

|eiξx − 1| dµXs−Xt(x) +

∫
Bδ1 (0)c

|eiξx − 1| dµXs−Xt(x)

≤ sup
0≤|x|<δ1

|eiξx − 1|+ 2P(|Xs −Xt| > δ1)

< ε

and so the result follows.

Theorem 4.4.9. If X is a Lévy process, then

φXt(x) = etη(x), (4.2)

for each x ∈ R, t ≥ 0, for some function η : R→ C.

Proof.
Suppose that X is a Lévy process, now define for each x ∈ R and t ≥ 0 the function φx(t) = φXt(x).
Then by the definition of Lévy processes we have for all s ≥ 0

φx(t+ s) = E
(
ei(x,Xt+s)

)
= E

(
ei(x,Xt+s−Xs)ei(x,Xs)

)
= E

(
ei(x,Xt+s−Xs)

)
E
(
ei(x,Xs)

)
= φx(t)φx(s).
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Furthermore, we know that φx(0) = 1, to prove the theorem we have to solve this functional equation.

Firt suppose that α ≥ 0 is such that φx(α) = 0, then for all t ≥ 0 we have that φx(t) = φx(α+(t−α)) =
φx(α)φx(t − α) = 0, but then φx ≡ 0, which contradicts the result φx(0) = 1. Hence, we know that
φx(t) 6= 0 for all t ≥ 0.

Now let n ∈ N, we know that φx(n) = φx (
∑n
i=1 1) = φx(1)n, next take p, q ∈ N, then we have that

φx(1)p = φx(p) = φx

(
q∑
i=1

p

q

)
= φx

(
p

q

)q
.

So then for all r ∈ Q+ we have that φx(r) = φx(1)r. By Lemma 4.4.8 we know that φx(t) = φx(1)t for
all t ≥ 0, since Q+ is dense R+.

Let Log be the principal branch of the logarithm and define η(x) = Log(φx(1)). Now for all t ≥ 0 we
get the result

φx(t) = φx(1)t =
(
eη(x)

)t
= etη(x).

The function η as defined in (4.2) is called the Lévy symbol of X. It turns out we can actually say a
great deal about η.

Let ν be a Borel measure defined on R0. We say that it is a Lévy measure if∫
R0

(|y|2 ∧ 1) dν(y) <∞.

Intuitively the Lévy measure measures the amount Equivalently we can define ν on R with ν({0}) = 0 as

is sometimes done in the literature. Now let Ñ be a compensated Poisson random measure with intensity
measure ν, being a Lévy measure. Then

E

(∫ t

0

∫
|x|≤1

x Ñ(dt, dx)

)2
 = E

(
t

∫
|x|≤1

x2 dν(x)

)
<∞.

Theorem 4.4.10 (Lévy-Khintchine representation). Let X be a Lévy process, then there exists µ ∈
R, σ > 0 and a Lévy measure ν such that

φXt(ξ) = exp

(
ξµt− 1

2
ξ2σ2t+ t

∫
R0

(
eiξx − 1− iξx1|x|≤1

)
dν(x)

)
.

We call the triplet (µ, σ, ν) the characterising triplet of the Lévy process. When X is an additive process,
the same holds, but the parameters µ, σ and ν may still depend on time under some restrictions and we
say that (µt, σt, νt) is the characterising triplet of the additive process.

Remark 4.4.11. It follows from the Lévy-Khintchine representation that every Lévy process is the sum
of four independent stochastic processes, a deterministic linear drift term, a Brownian motion term, a
compound Poisson process term with intensity ν((−1, 1)c) and child distribution ν((−1, 1)c)−1ν|(−1,1)c

modelling the big jumps larger than 1 and a L2-martingale which models the jumps smaller than 1.

For ‘stochastic differentiation’ we will look at a class of stochastic processes not unlike additive
processes, which we call Lévy-Itô processes as in Tankov [42, page 20]. Let µ be locally bounded,
σ ∈ L2

W,loc and γ ∈ L2
Ñ,loc

such that

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dWs +

∫ t

0

∫
R0

γs(J) Ñ(ds, dJ). (4.3)

Note that every Lévy-Itô process has a càdlàg modification by Theorem 4.3.20, so we will always assume
it to be càdlàg. The proof of Itô’s formula is roughly based on Le Gall [26, Theorem 5.10], Applebaum
[1, Lemma 4.4.6] and Cont and Tankov [11, page 263].
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Theorem 4.4.12 (Itô-formula). Let X be a Lévy-Itô processes and let f ∈ C1,2. Then for every
t0 ≤ t ≤ T , we have

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

Lf(s,Xs−) ds+

∫ t

t0

∂f

∂x
(s,Xs−)σs dWs

+

∫ t

t0

∫
R0

(f(s,Xs− + γs(J))− f(s,Xs−)) Ñ(ds, dJ),

where L is the second-order partial-integro differential operator

Lf(s, x) =
∂f

∂t
(s, x) +

∂f

∂x
(s, x)µs +

1

2

∂2f

∂x2
(s, x)σ2

s

+

∫
R0

(
f(s, x+ γs(J))− f(s, x)− ∂f

∂x
(s, x)γs(J)

)
dν(J).

Furthermore (f(t,Xt))t≥0 is again a Lévy-Itô process.

Proof.
First let X and γ be bounded for each 0 ≤ s ≤ t and J ∈ R0, then f ′ and f ′′ are bounded on the range
of Xs− + γs(J) and Xs− by constants K1 and K2 respectively. Since x 7→ f(t, x) is in C2, we have by
Taylor’s theorem that

|f(s, x+ γs(J))− f(s, x)− ∂f

∂x
(s, x)γs(J)| = 1

2
|f ′′(s, ξ(s))||γs(J)|2 ≤ K2

2
|γs(J)|2,

where ξ(s) is between x and x+ γs(J). Furthermore by the mean-value theorem we have

|f(s,Xs− + γs(J))− f(s,Xs−| = |γs(J)|
∣∣∣∣∂f∂x (s, ξ(s))

∣∣∣∣ ≤ K2
1 |γs(J)|,

where ξ(s) is between Xs− and Xs− + γs(J). Hence all the integrals are well-defined. Now define
An = {x ∈ R0 : |x| > εn} where

εn = sup

{
y ≥ 0 : E

(∫ t

0

∫
0<|x|<y

|γs(x)|2 dν(x) ds

)
≤ 8−n

}
,

and define the processes

Xn
t =

∫ t

0

µs ds+

∫ t

0

σs dWs +

∫ t

0

∫
An

γs(x) Ñ(ds, dx).

Each An is bounded from below then fix n ∈ N and write for convenience A = An, X = Xn and let τAm
be the arrival times of the jumps. Futher drop for now the dependence of f on t, we have

f(Xt)− f(X0) =

∞∑
m=0

(
f(Xt∧τAm+1

)− f(Xt∧τAm)
)

=

∞∑
m=0

(
f(Xt∧τAm+1−)− f(Xt∧τAm)

)
+

∞∑
m=0

(
f(Xt∧τAm+1

)− f(Xt∧τAm+1−)
)
.

For the second sum we have that

∞∑
m=0

(
f(Xt∧τAm+1

)− f(Xt∧τAm+1−)
)

=

∞∑
m=0

(
f(Xt∧τAm+1− + γt∧τAm+1

(∆Xt∧τAm+1
))− f(Xt∧τAm+1−)

)
=

∫ t

0

∫
A

(f(s,Xs− + γs(J))− f(s,Xs−))N(ds, dJ)

=

∫ t

0

∫
A

(f(s,Xs− + γs(J))− f(s,Xs−)) Ñ(ds, dJ)

+

∫ t

0

∫
A

(f(s,Xs− + γs(J))− f(s,Xs−)) dν(J) ds
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So we only have to show that

∞∑
m=0

(
f(t ∧ τAm+1, Xt∧τAm+1−)− f(t ∧ τAm, Xt∧τAm)

)
=

∫ t

0

∂f

∂t
(s,Xs−) ds+

∫ t

0

∂f

∂x
(s,Xs−) dXc

s +
1

2

∫ t

0

∂2f

∂x2
(s,Xs−) d〈Xc〉s

−
∫ t

0

∫
A

γs(x)
∂f

∂x
(s,Xs−) dν(J) ds

Since A was bounded from below, the sum actually contains only finitely many elements, and hence by
the linearity of the integrals, we can treat each element of the sum seperately. Fix m ∈ N, we know that
Xs− is continuous for s ∈ (τAm, τ

A
m+1].

Let 0 < δ < τAm+1 − τAm arbitrary, consider a sequence of partitions τAm + δ = tn0 < · · · < tnpn = τAm+1

and assume for convenience that τAm+1 ≤ t, then we have

f(τAm+1, XτAm+1−)− f(τAm + δ,XτAm+δ) =

pn−1∑
k=0

(f(tnk+1, Xtnk+1−)− f(tnk , Xtnk−))

Now observe that (t)t≥0 is a finite variation process, so write Y = (X1, X2) = (t,X). For every
k = 0, . . . , pn − 1, apply Taylor’s theorem to the function

[0, 1] 3 θ 7→ f(Ytnk + θ(Ytnk+1
− Ytnk )).

Then there exists some ξ ∈ [0, 1] such that for

Ri,jn,k =
∂2f

∂xi∂xj
(Ytnk + ξ(Ytnk+1

− Ytnk ),

where i, j ∈ {1, 2}, we have that

f(Ytnk+1
)− f(Ytnk ) =

∂f

∂t
(tnk , Xtnk

)(tnk+1 − tnk ) +
∂f

∂x
(tnk , Xtnk

)(Xtnk+1− −Xtnk−)

+
1

2

2∑
i,j=1

Ri,jn,k(Xi
tnk+1
−Xi

tnk
)(Xj

tnk+1
−Xj

tnk
).

Note that Xtnk+1− −Xtnk− = Xc
tnk+1
−Xc

tnk
. Now by Proposition 4.3.14 we have that

∂f

∂t
(tnk , Xtnk

)(tnk+1 − tnk ) +
∂f

∂x
(tnk , Xtnk

)(Xtnk+1− −Xtnk−)
P−→
∫ τAm+1

τAm+δ

∂f

∂t
(Xs−) ds+

∫ τAm+1

τAm+δ

∂f

∂x
(Xs−) dXc

s .

It remains to check that for every i, j = 1, . . . d we have that

Ri,jn,k(Xi
tnk+1
−Xi

tnk
)(Xj

tnk+1
−Xj

tnk
)

P−→
∫ τAm+1

τAm+δ

∂2f

∂xi∂xj
(Xs) d〈Xi, Xj〉s.

First of all we have that

sup
0≤k≤pn−1

∣∣∣∣Ri,jn,k − ∂2f

∂xi∂xj
(Xtnk

)

∣∣∣∣ ≤ sup
0≤k≤pn−1

sup
x∈[Xtn

k
∧Xtn

k+1
,Xtn

k
∨Xtn

k+1
]

∣∣∣∣ ∂2f

∂xi∂xj
(x)− ∂2f

∂xi∂xj
(Xtnk

)

∣∣∣∣ ,
where the later converges almost surely to zero as n → ∞. This is due to the uniform continuity of
∂2f

∂xi∂xj and the continuity of the paths of X over the compact interval [τAm + δ, τAm+1]. We also know that

pn−1∑
k=0

(Xi
tnk+1
−Xi

tnk
)(Xj

tnk+1
−Xj

tnk
)

P−→ 〈Xi, Xj〉τAm+1
− 〈Xi, Xj〉τAm+δ,

by Proposition 4.2.8. Therefore we have that

pn−1∑
k=0

(
Ri,jn,k −

∂2f

∂xi∂xj
(Xtnk

)

)
(Xi

tnk+1
−Xi

tnk
)(Xj

tnk+1
−Xj

tnk
)

P−→ 0.
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It follows by Propostion 4.3.14 that,

pn−1∑
k=0

∂2f

∂xi∂xj
(Xtnk

)(Xi
tnk+1
−Xi

tnk
)(Xj

tnk+1
−Xj

tnk
)

P−→
∫ τAm+1

τAm+δ

∂2f

∂xi∂xj
(Xs) d〈Xi, Xj〉s.

Since X1 is a finite variation process, note that 〈X1, X2〉 = 〈X2, X1〉 = 〈X1, X1〉 = 0. Furthermore the
integrals are càdlàg, so then by letting δ ↓ 0 we have

f(t,Xn
τAm+1−

)− f(τAm, XτAm
)

=

∫ τAm+1

τAm

∂f

∂t
(s,Xs−) ds+

∫ τAm+1

τAm

∂f

∂x
(s,Xs−) dXc

s +
1

2

∫ τAm+1

τAm

∂2f

∂x2
(s,Xs−) d〈Xc〉s

−
∫ τAm+1

τAm

∫
A

γs(x)
∂f

∂x
(s,Xs−) dν(J) ds.

Now adding all up gives for each n ∈ N

f(Xn
t )− f(Xn

0 ) =

∫ t

0

∂f

∂t
(s,Xn

s−) +
∂f

∂x
(s,Xn

s−)µs +
1

2

∂2f

∂x2
(s,Xn

s−)σ2
s ds+

∫ t

0

∂f

∂x
(s,Xn

s−)σs dWs

+

∫ t

0

∫
An

(
f(s,Xn

s− + γs(J))− f(s,Xn
s−)− γs(x)

∂f

∂x
(s,Xn

s−)

)
dν(J) ds

+

∫ t

0

∫
An

(
f(s,Xn

s− + γs(J))− f(s,Xn
s−)
)
Ñ(ds, dJ).

The final result follows by passing to the limit n → ∞ due to Lemma 4.3.21, the stochastic dominated
convergence theorem and regular dominated convergence on the respective integrals. For extending to
arbitrary X and γ which are not neccessarily bounded, we can use a localisation argument.
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CHAPTER 5

Stochastic Differential Equations

Before Itô’s theory of stochastic integration for Brownian motion and later more general semimartin-
gales, diffusions were studied through semigroup theory. Let C0(R) denote the space of all real-valued
continuous functions on R vanishing at infinity. Equipping C0(R) with the supremum norm gives a
Banach space. A transition semigroup or also known as a Feller semigroup, is a collection (Tt)t≥0 of
positive operators on C0(X) such that ‖Ttf‖∞ ≤ ‖f‖∞ for all t ≥ 0 and f ∈ C0(X), moreover for all
s, t ≥ 0, the semigroup property is satisfied Tt+s = Tt ◦ Ts and finally for every f ∈ C0(X), we have
limt→0 ‖Ttf − f‖∞ = 0.

Now let X be a Markov process, that is for all f ∈ BM(R) and s, t ∈ T with s < t we have

E(f(Xt)|Fs) = E(f(Xt)|Xs).

Then we can define the transition probabilities ps,t(x,A) = P(Xt ∈ A|Xs = x), so that each ps,t(x, ·) is
a probability measure on B(R). Furthermore we can define the operators

(Ts,tf)(x) =

∫
R
f(y)ps,t(x, dy),

for each f ∈ BM(R) and x ∈ R. If the Markov process X is homogeneous, that is to say that for all
s, t ∈ T such that s < t we have ps,t = p0,t−s, then we have Ts,t = T0,t−s and we can write T0,t as Tt. It
turns out that (Tt)t≥0 satisfies the semigroup property when Tt(BM(R)) ⊆ BM(R) for all t ≥ 0. If it also
satisfies the other two properties for being a Feller semigroup, then we call X a Feller process. It turns
out that all solutions to forward stochastic differential equations with Lipschitz continuous coefficients
can be seen as Feller processes, Applebaum [1, Theorem 6.7.4].

We will not make use of any explicit semigroup theory, but in the numerical treatment of the stochastic
differential equations we will make extensive use of the underlying semigroup structure. Furthermore a
Feller process can be defined through its infinitesimal generator which is

Af = lim
t↓0

Ttf − f
t

,

whenever the limit is well-defined, then A is a partial-integro differential operator in the case that X is a
solution of a stochastic differential equation. So investigating diffusions could be done with investigating
partial-integro differential equations, however such an approach did not allow for an analysis for the
paths of a diffusion process and its properties. The theory of Itô does, however, allow for the analysis of
the paths of solutions, and this theory is what we will use in the rest of the thesis.

The following two sections will be structured rather simple, we will introduce two different types
of stochastic differential equations, Forward Stochastic Differential Equations with Jumps (FSDEJs)
and Backward Stochastic Differential Equations with Jumps (BSDEJs), and we will prove under certain
regularity conditions the existence and uniqueness of their solutions. Contrary to deterministc differential
equations, BSDEJs are a theory of its own, as we can no longer reverse time through a change of variables,
due to the restriction of adaptedness to a filtration.

5.1 Forward Stochastic Differential Equations

This section will be devoted to the uniqueness and existence of solutions of FSDEJs. Just as with
ordinary differential equations, the proof rests on the following lemma known as Grönwall’s lemma.

Lemma 5.1.1 (Grönwall’s lemma). Let T > 0 and let f be a nonnegative bounded measurable function
on [0, T ]. Assume that there exist two constants α ≥ 0 and β ≥ 0 such that, for every t ∈ [0, T ] we have
that

f(t) ≤ α+ β

∫ t

0

f(s) ds.
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Then, have for every t ∈ [0, T ] that
f(t) ≤ α exp(βt).

Proof.
Iterating the condition on f , we get,

f(t) ≤ α+ α(βt) + β2

∫ t

0

∫ s

0

f(r) dr ds.

So by induction, for every n ≥ 1 we have,

f(t) ≤
n∑
k=0

α(βt)k

k!
+ βn+1

∫ t

0

∫ s1

0

· · ·
∫ sn

0

f(sn+1) dsn+1.

We have that f is bounded, so let M > 0 such that |f | ≤M , then

βn+1

∫ t

0

∫ s1

0

· · ·
∫ sn

0

f(sn+1) dsn+1 ≤Mβn+1

∫ t

0

∫ s1

0

· · ·
∫ sn

0

dsn+1.

Now, ∫ t

0

∫ s1

0

· · ·
∫ sn

0

dsn+1 =

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

sn dsn = · · · = tn+1

(n+ 1)!

Then the result follows,

f(t) ≤ lim
n→∞

n∑
k=0

α(βt)k

k!
+

(βt)n+1

(n+ 1)!
= α

∞∑
i=0

(βt)k

k!
= α exp(βt).

Let (Ω,F ,F,P) be a filtered probability space which satisfies the usual hypothesis. Now let W be a
Brownian motion and N a Poisson random measure on R+ ×R0 with compensator ρ(dt, dJ) = dν(J) dt
such that ν is a Lévy measure. Define the mappings b : [0, T ] × R → R, σ : [0, T ] × R → R and
γ : [0, T ] × R × R → R such that there exists a K > 0 which satisfies for every t > 0 the following
Lipschitz and growth conditions

|bt(x)− bt(x′)|2 + |σt(x)− σt(x′)|2 +

∫
R0

|γt(x, J)− γt(x′, J)|2 dν(J) ≤ K|x− x′|2,

|bt(x)|2 + |σt(x)|2 +

∫
R0

|γt(x, J)|2 dν(J) ≤ K(1 + |x|2).

Given X0 ∈ L2, an adapted càdlàg stochastic process X solves the (FSDEJ) if

Xt = X0 +

∫ t

0

bs(Xs−) ds+

∫ t

0

σs(Xs−) dWs +

∫ t

0

∫
R0

γs(Xs−, J) Ñ(ds, dJ).

The following proof is based on Le Gall [26, Theorem 8.3] and Applebaum [1, Theorem 6.2.3].

Theorem 5.1.2. There exists a unique adapted and càdlàg solution X which solves the FSDEJ.

Proof.
We will start with uniqueness. We consider two solutions X and X ′ such that X0 = X ′0 almost surely.
Fix M > 0 and set

τ = inf{t ≥ 0 : |Xt| > M or |X ′t| > M}.

Then, for every t ≤ T ,

Xt∧τ = X0 +

∫ t∧τ

0

bs(Xs−) ds+

∫ t∧τ

0

σs(Xs−) dWs +

∫ t∧τ

0

∫
E

γs(Xs−, J) Ñ(ds, dJ).

‖Xt∧τ −X ′t∧τ‖L2 ≤ 3E

(∣∣∣∣∫ t∧τ

0

(bs(Xs−)− bs(X ′s−)) ds

∣∣∣∣2
)

+ 3E

(∣∣∣∣∫ t∧τ

0

(σs(Xs−)− σs(X ′s−)) dWs

∣∣∣∣2
)
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+ 3E

(∣∣∣∣∫ t∧τ

0

∫
E

(γs(Xs−, J)− γs(X ′s−, J)) Ñ(ds, dJ)

∣∣∣∣2
)

Now use Jensen’s inequality on the first integral and the Itô isometry on the second and third integral

≤ 3TE
(∫ t∧τ

0

|bs(Xs−)− bs(X ′s−)|2 ds
)

+ 3E
(∫ t∧τ

0

|σs(Xs−)− σs(X ′s−)|2 ds
)

+ 3E
(∫ t∧τ

0

∫
E

|γs(Xs−, J)− γs(X ′s−, J)|2 dν(J) ds

)
≤ K(3T + 6)E

(∫ t∧τ

0

|Xs− −X ′s−|2 ds
)

= K(3T + 6)

∫ t

0

‖Xs∧τ −X ′s∧τ‖L2 ds

Since we have that ‖Xs∧τ −X ′t∧τ‖L2 ≤ 2 ‖Xs∧τ‖L2 + 2 ‖X ′s∧τ‖L2 ≤ 4M2 for all s ≤ T , we have by
Lemma 5.1.1

‖Xt∧τ −X ′t∧τ‖L2 ≤ 0 exp(K(2T + 4)t) = 0.

Now for t ≤ T we have Xt∧τ = X ′t∧τ almost surely, letting M → ∞ we get Xt = X ′t almost surely for
all t ≤ T .

Since both X and X ′ are càdlàg, we have by Proposition 2.3.5 that X and X ′ are indistinguishable.
To show the existence of a solution, we use Picard’s approximation method. Define by induction the

scheme 

X0
t = X0,

X1
t = X0 +

∫ t

0

bs(X
0
s−) ds+

∫ t

0

σs(X
0
s−) dWs +

∫ t

0

∫
E

γs(X
0
s−, J) Ñ(ds, dJ),

Xn
t = X0 +

∫ t

0

bs(X
n−1
s− ) ds+

∫ t

0

σs(X
n−1
s− ) dWs +

∫ t

0

∫
E

γs(X
n−1
s− , J) Ñ(ds, dJ).

By induction we have that the processes Xn are adapted and càdlàg. For every n ∈ N and every
t ≤ T , define

gn(t) = E
(

sup
s≤t
|Xn

s −Xn−1
s |2

)
.

For g1 we have, using the growth condition,

g1(t) = E

(
sup
s≤t

∣∣∣∣∫ s

0

br(X
0
s−) dr +

∫ s

0

σr(X
0
s−) dWr +

∫ s

0

γs(X
0
s−, J) Ñ(dr, dJ)

∣∣∣∣2
)

≤ 3tE
(∫ t

0

|bs(X0
s−)|2 ds

)
+ 3E

(∫ t

0

|σs(X0
s−)|2 ds

)
+ 3E

(∫ t

0

∫
E

|γs(X0
s−, J)|2 dν(J) ds

)
≤ K(3T + 6)(1 + E(|X0|2))t.

Further we have that

gn+1(t) ≤ 3tE
(∫ t

0

|bs(Xn
s−)− bs(Xn−1

s− )|2 ds
)

+ 3E
(∫ t

0

|σs(Xn
s−)− σs(Xn−1

s− )|2 ds
)

+ 3E
(∫ t

0

∫
E

|γs(Xn
s−, J)− γs(Xn−1

s− , J)|2 dν(J) ds

)
≤ K(3t+ 6)E

(∫ t

0

|Xn
s− −Xn−1

s− |2 ds
)

≤ K(3T + 6)

∫ t

0

gn(s) ds

≤ Kn(3T + 6)n
∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

g1(sn) dsn

≤ Kn+1(3T + 6)n+1(1 + E(|X0|2))

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

sn dsn
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=
Kn(3T + 6)n+1tn+1(1 + E(|X0|2))

(n+ 1)!
.

Hence we have

E

( ∞∑
n=0

sup
t≤T
|Xn+1

t −Xn
t |

)2
1/2

≤
∞∑
n=0

E
(

sup
t≤T
|Xn+1

t −Xn
t |2
)1/2

=

∞∑
n=1

gn(T )1/2

≤
∞∑
n=1

Kn/2(3T + 6)n/2Tn/2
√

1 + E(|X0|2)√
n!

<∞.

Therefore,
∞∑
n=0

sup
t≤T
|Xn+1

t −Xn
t | <∞,

almost surely. Hence the sequence of processes (Xn)n∈N converges uniformly on [0, T ] almost surely, to
a limiting process X, which is càdlàg. By induction, Xn is adapted and so the same holds for X. It
remains to check that X indeed solves the FSDEJ, if we define

X̃t = X0 +

∫ t

0

bs(Xs−) ds+

∫ t

0

σs(Xs−) dWs +

∫ t

0

∫
R0

γs(Xs−, J) Ñ(ds, dJ),

then similarly since Xn
s converges to Xs in L2 for every s ≥ 0,∥∥∥X̃t −Xn

t

∥∥∥
L2
≤ K(3T + 6)E

(∫ t

0

|Xt −Xn
t |2 ds

)
≤ K(3T + 6)t sup

s≤t
‖Xs −Xn

s ‖
2
L2

≤ K(3T + 6)t sup
s≤t

∞∑
k=n+1

∥∥Xk
s −Xk−1

s

∥∥2

L2

≤ K(3T + 6)t

∞∑
k=n+1

gn(t)1/2 −→
n→∞

0,

So by the uniqueness of the L2-limit, X = X̃ solves the FSDEJ.

5.2 Backward Stochastic Differential Equations

The theory of Backward Stochastic Differential Equations has its roots in optimal stochastic control.
The linear BSDE was already proposed in Bismut [5] but the well-posedness of nonlinear BSDEs was
estabilished only fairly recently in the pivotal paper of Peng and Pardoux [30]. Later Peng and Pardoux
developed the theory and applications of BSDEs in a series of papers under global Lipschitz conditions.
Tang and Li [40] extended the idea of BSDEs to existence of adapted solutions to BSDEs with Poisson
jumps with a fixed terminal time, as we will call BSDEJs in this thesis. A thorough survey on the recent
developments and applications has been given in Peng [31] and Zhang [45].

Besides optimal stochastic control, BSDEs have also been linked to various problems in mathematical
finance, a detailed exposition of the basic theory and applications of BSDEs in mathematical finance has
been given in El Karoui, Peng and Quenez [14]. Nowadays the theory BSDE has grown a lot since the
intial paper of Peng and Pardoux, it has been extended to infinite horizon problems by Peng and Shi [32],
random terminal times by Jeanblanc, Mastrolia, Possamai et al. [23] and infinite dimensional BSDEJs by
Hassani and Ouknine [20] among other extensions. However, we will focus solely on decoupled FBSDEJs
in this thesis, which is a combination of a FSDEJ and a BSDEJ, which have been studied thoroughly by
Barsela, Buckdahn and Pardoux [2].

In addition to the stochastic interpretation of FBSDEJs, we will also see a deterministic interpretation
later in this thesis. It turns out that FBSDEJs correspond to viscosity solutions of partial-integro
differential equations. Hence studying partial-integro differential equations can be done with FBSDEJs
and vice versa.
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5.2. Backward Stochastic Differential Equations 51

To prove the existence of solutions to BSDEs, one often uses the following Martingale Representation
Theorem, which states that if the filtration is generated by a Brownian motion and a Poisson random
measure, then we can represent every càdlàg martingale in terms of stochastic integrals with respect to
Brownian motion and stochastic integrals with respect to compensated Poisson random measures. A
proof can be found in Kunita [25].

Theorem 5.2.1 (Martingale Representation Theorem). Let (Ω,F ,F,P) be a filtered probability space
where the filtration is generated by a Brownian motion W and a Poisson random measure N , let M be
a càdlàg L2-martingale, then there exists Z ∈ L2

W and U ∈ L2
Ñ

such that

Mt = M0 +

∫ t

0

Zs dWs +

∫ t

0

∫
R0

Us(x) Ñ(ds, dx).

Where Z is P⊗ λ-a.s. unique and U is P⊗ Ñ -a.s. unique.

Let (Ω,F ,F,P) be a filtered probability space which satisfies the usual hypothesis. Now let W be a
Brownian motion and N a Poisson random measure on R+ ×R0 with compensator ρ(dt, dJ) = dν(J) dt
such that ν is a Lévy measure and assume the filtration is generated by W and N . Consider the Backward
Stochastic Differential Equation (BSDEJ)

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us) ds−
∫ T

t

ZsdWs −
∫ T

t

∫
R0

Us(x) Ñ(ds, dx), (5.1)

where the terminal value is an FT -measurable random variable, ξ : Ω→ R, and the driver f is a mapping
Ω× [0, T ]× R× R× L2(ν)→ R which is progressively measurable.

A solution is a pair (Y,Z, U) ∈ S2 × L2
W × L2

Ñ
which satisfies (5.1), where S2 denotes the space of

all progressively measurable and càdlàg processes X : Ω× [0, T ]→ R such that

‖X‖2S2 := E
(

sup
t≤T
|Xt|2

)
<∞.

Suppose ξ ∈ L2, f(·, 0, 0, 0) ∈ L2
W , and f is Lipschitz; i.e., there exists Lf > 0 such that P⊗ λ-a.s.

|f(ω, t, y, z, u)− f(ω, t, y′, z′, u′)| ≤ Lf (|y − y′|+ |z − z′|+ ‖u− u′‖L2(ν)), ∀(y, z, u),∀(y′, z′, u′),

Then (f, ξ) are said to be standard parameters for the BSDEJ.
For β > 0 we define the normed space (L2

W , ‖·‖β) where

‖X‖2β = E

(∫ T

0

eβt|Xt|2 dt

)
,

this is well-defined since ‖·‖β and ‖·‖L2
W

are equivalent, therefore L2
W is also a Banach space endowed

with the norm ‖·‖β . Similarly define the normed space (L2
Ñ
, ‖·‖β) where

‖X‖2β = E

(∫ T

0

eβt ‖Ut‖2L2(ν) dt

)
.

Since the driver f depends on the solution (Y, Z, U) we can not immediately apply the Martingale
Representation Theorem, instead we will use a fixed point iteration proof, using the Banach fixed point
theorem. The result is well-known so we omit a proof.

Theorem 5.2.2 (Banach Fixed Point Theorem). Let (X, d) be a non-empty complete metric space with
a mapping (contraction) T : X → X and λ ∈ [0, 1) such that

d(T (x), T (y)) ≤ λd(x, y),

for all x, y ∈ X. Then T admits a unique fixed point x∗ in X.

Finally we also need the famous Burkholder-Davis-Gundy inequality, in the case where the martingale
is not necessarily continuous, the proof is highly non-trivial, we refer to Dellacherie and Meyer [13, page
287].
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Theorem 5.2.3 (Burkholder-Davis-Gundy inequality). Let X be a local martingale with X0 = 0 and
p ∈ [1,∞), then for every stopping time τ we have the inequality

E
(

sup
t≥t
|Mt∧τ |p

)
≤ CpE

(
〈M〉p/2t∧τ

)
,

where
〈X〉t = 〈Xc〉t +

∑
0≤s≤t

(∆Xs)
2,

and Xc is the continuous part of X.

The rough idea of the proof is due to Wu [43] and is essentially an adaptation of the same proof for
continuous BSDEs by El Karoui, Peng and Quenez [14].

Theorem 5.2.4. Given standard parameters (f, ξ), there exists a unique pair (Y,Z, U) ∈ S2×L2
W ×L2

Ñ
which solves the BSDEJ.

Proof.
For the rest of the proof we will fix the standard parameters (f, ξ). The entire proof rests on the
application of the Banach fixed point theorem for the mapping

Φ : (L2
W , ‖·‖β)× (L2

W , ‖·‖β)× (L2
Ñ
, ‖·‖β)→ ((L2

W , ‖·‖β)× (L2
W , ‖·‖β))× (L2

Ñ
, ‖·‖β),

(y, z, u) 7→ (Y,Z, U),

where (Y,Z, U) solves the BSDEJ with driver ft(yt, zt, ut) and for some specific β > 0. First we will
have to show that this mapping is in fact well defined, and then we will show that it is a contraction,
concluding the proof.

The assumption that (f, ξ) are standard parameters implies that f(·, y, z, u) ∈ L2
W (R), indeed

E

(∫ T

0

|fs(ys, zs, us)|2 ds

)
≤ 2E

(∫ T

0

|fs(ys, zs, us)− fs(0, 0, 0)|2 ds

)
+ 2E

(∫ T

0

|fs(0, 0, 0)|2 ds

)

≤ 4L2
fE

(∫ T

0

|ys|2 + |zs|2 + ‖Us‖2L2(ν) ds

)
+ 2E

(∫ T

0

|fs(0, 0, 0)|2 ds

)
<∞.

Furthermore for all t ≤ T we have by using Jensen’s Inequality,

E

∣∣∣∣∣
∫ T

t

fs(ys, zs, us) ds

∣∣∣∣∣
2
 ≤ (T − t)E

(∫ T

t

|fs(ys, zs, us)|2 ds

)

≤ TE

(∫ T

0

|fs(ys, zs, us)|2 ds

)
<∞

Hence for all t ≤ T we have that
∫ T
t
fs(ys, zs, us) ds ∈ L2. Therefore

Mt = E

(∫ T

0

fs(ys, zs, us) ds+ ξ

∣∣∣∣∣Ft
)
,

is a continuous martingale bounded in L2. By Theorem 5.2.1 we know that there exists a unique
representation (up to almost sure equivalence)

Mt = M0 +

∫ t

0

Zs dWs +

∫ t

0

∫
R0

Us(x) Ñ(ds, dx),

with unique stochastic processes Z ∈ L2
W and U ∈ L2

Ñ
. Define the adapted process Y by

Yt = Mt −
∫ t

0

fs(ys, zs, us) ds.
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We will show that (Y, Z, U) is the solution we are searching for. First we check that Y ∈ L2
W , indeed,

E

(∫ T

0

|Yt|2 dt

)
= E

∫ T

0

∣∣∣∣∣E
(∫ T

0

fs(ys, zs, us) + ξ

∣∣∣∣∣Ft
)
−
∫ t

0

fs(ys, zs, us) ds

∣∣∣∣∣
2

dt


≤
∫ T

0

E

E

∣∣∣∣∣
∫ T

t

fs(ys, zs, us) + ξ

∣∣∣∣∣
2
∣∣∣∣∣∣Ft
 dt

=

∫ T

0

E

∣∣∣∣∣
∫ T

t

fs(ys, zs, us) + ξ

∣∣∣∣∣
2
 dt

≤ 2

∫ T

0

E

∣∣∣∣∣
∫ T

t

fs(ys, zs, us) ds

∣∣∣∣∣
2

+ |ξ|2
 dt

≤ 2T 2E

(∫ T

0

|fs(ys, zs, us)|2 ds

)
+ 2TE(|ξ|2)

<∞

Now we only have to show that (Y,Z, U) actually solves the BSDE, the uniqueness is due to the martingale
representation. We know

ξ = YT = MT −
∫ T

0

fs(ys, zs, us) ds = M0 +

∫ t

0

Zs dWs +

∫ t

0

∫
R0

Us(x) Ñ(ds, dx)

−
∫ T

0

fs(ys, zs, us) ds,

So then

Yt = Mt −
∫ t

0

fs(ys, zs, us) ds

= M0 +

∫ t

0

Zs dWs +

∫ t

0

∫
R0

Us(x) Ñ(ds, dx)−
∫ t

0

fs(ys, zs, us) ds

=

(
M0 +

∫ T

0

Zs dWs +

∫ T

0

∫
R0

Us(x) Ñ(ds, dx)−
∫ T

0

fs(ys, zs, us)

)

−
∫ T

t

Zs dWs −
∫ T

t

∫
R0

Us(x) Ñ(ds, dx) +

∫ T

t

fs(ys, zs, us) ds

= ξ +

∫ T

t

fs(ys, zs, us) ds−
∫ T

t

Zs dWs −
∫ T

t

∫
R0

Us(x) Ñ(ds, dx)

and hence we get that Φ is well defined. Furthermore we have by Theorem 3.2.1 that

E

(
sup
t≤T

∣∣∣∣∫ t

0

Zs dWs

∣∣∣∣2 +

∣∣∣∣∫ t

0

∫
R0

Us(x) Ñ(ds, dx)

∣∣∣∣2
)

≤ 4E

∣∣∣∣∣
∫ T

0

Zs dWs

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ T

0

∫
R0

Us(x) Ñ(ds, dx)

∣∣∣∣∣
2
 ≤ 4E

(∫ T

0

|Zs|2 + ‖Us‖2L2(ν) ds

)
.

Hence it follows after some calculations that Y ∈ S2.

Let (y1, z1, u1) and (y2, z2, u2) be two elements of (L2
W , ‖·‖β)× (L2

W , ‖·‖β)× (L2
Ñ
, ‖·‖β) and consider

their images Φ(y1, z1, u1) = (Y 1, Z1, U1) and Φ(y2, z2, u2) = (Y 2, Z2, U2), respectively. Define δXt =
X1
t −X2

t to be the difference of two processes. Now note that δYT = ξ−ξ = 0. We can use Theorem 4.4.12

Sander Blok



54 Chapter 5. Stochastic Differential Equations

on f(t, x) = eβtx2 since δYt is a Lévy-Itô process. Then,

0 = eβT |δYT |2 = eβt|δYt|2 + β

∫ T

t

eβs|δYs|2 ds− 2

∫ T

t

eβsδYs−
(
fs(y

1
s , z

1
s , u

1
s)− fs(y2

s , z
2
s , u

2
s)
)
ds

+ 2

∫ T

t

eβsδYs−δZs dWs − 2

∫ T

t

∫
R0

δUs(x)δYs− dν(x) ds+

∫ T

t

eβs|δZs|2 ds

+

∫ T

t

∫
R0

eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
N(ds, dx)

Now (δYs− + δUs(x))2 − δY 2
s− = δU2

s (x) + 2δUs(x)δYs−. So then

∫ T

t

∫
R0

eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
N(ds, dx)

=

∫ T

t

∫
R0

eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
Ñ(ds, dx)∫ T

t

∫
R0

eβs
(
δU2

s (x) + 2δUs(x)δYs−
)
dν(x) ds

=

∫ T

t

∫
R0

eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
Ñ(ds, dx)∫ T

t

eβs ‖Us‖2L2(ν) ds+ 2

∫ T

t

∫
R0

eβsδUs(x)δYs− dν(x) ds

Hence we get

eβT |δYT |2 = eβt|δYt|2 +

∫ T

t

eβs
(
β|δYs|2 + |Zs|2 + ‖Us‖2L2(ν)

)
ds

− 2

∫ T

t

eβsδYs−
(
fs(y

1
s , z

1
s , u

1
s)− fs(y2

s , z
2
s , u

2
s)
)
ds+ 2

∫ T

t

eβsδYs−δZs dWs

+

∫ T

t

∫
R0

eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
Ñ(ds, dx)

Now the last two integrals are both martingales. Indeed we have by Theorem 5.2.3 and the Cauchy-
Schwarz inequality that

E
(

sup
t≤T

∣∣∣∣∫ t

0

eβsδYs−δZs dWs

∣∣∣∣) ≤ CE
(∫ T

0

|δYs−|2|δZs|2 ds

)1/2


≤ CE

sup
t≤T
|δYt|

(∫ T

0

|δZs|2 ds

)1/2


≤ C ‖δY ‖S2 ‖δZ‖L2
W
<∞.

Then by Proposition 3.3.2 we have that
(∫ T
· e

βsδYs−δZs dWs

)
t≤T

is a uniformly integrable martingale

with expectation zero and similarly note that by the mean value theorem
∣∣(δYs− + δUs(x))2 − δY 2

s−
∣∣ ≤
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2|δUs(x)| supr≤T |δYr|. Hence we have by Theorem 5.2.3

E
(

sup
t≤T

∣∣∣∣∫ t

0

∫
R0

eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
Ñ(ds, dx)

∣∣∣∣)

≤ CE

(∫ T

0

∫
R0

|(δYs− + δUs(x))2 − δY 2
s−|2N(ds, dx)

)1/2


≤ CE

2 sup
t≤T
|δYt|

(∫ T

0

∫
R0

|δUs(x)|2N(ds, dx)

)1/2


≤ 2C ‖δY ‖S2 E

(∫ T

0

∫
R0

|δUs(x)|2N(ds, dx)

)
<∞.

Hence also
(∫ T
·
∫
R0
eβs
(
(δYs− + δUs(x))2 − δY 2

s−
)
Ñ(ds, dx)

)
t≤T

is a uniformly integrable martingale

with zero expectation. Therefore if we take expectations on both sides, rewrite a bit and substitute t = 0
we get

E
(
|δY0|2

)
+ E

(∫ T

0

eβs|β|δYs|2 + |δZs|2 + ‖Us‖2 ds

)

= 2E

(∫ T

0

eβsδYs−
(
fs(y

1
s , z

1
s , u

1
s)− fs(y2

s , z
2
s , u

2
s)
)
ds

)

Now note that for any γ > 0 and x, y ∈ R we have
(√

γx− 1√
γy

)2

≥ 0, so then 2xy ≤ γx2 + 1
γ y

2,

furthermore (|x|+ |y|+ |z|)2 ≤ 3(|x|2 + |y|2 + |z|2) hence we have

2δYs−(fs(y
1
s , z

1
s , u

1
s)− fs(y2

s , z
2
s , u

2
s)) ≤ 2Lf |δYs−|(|δys|+ |δzs|+ ‖δus‖)

≤
L2
f |δYs−|2

γ
+ 3γ

(
|δys|2 + |δzs|2 + ‖δus‖2

)
Now choose γ = 1/6 and set β = 6L2

f + 1, then

E

(∫ T

0

eβs|β|δYs|2 + |δZs|2 + ‖Us‖2 ds

)

≤ 2E

(∫ T

0

eβsδYs−
(
fs(y

1
s , z

1
s , u

1
s)− fs(y2

s , z
2
s , u

2
s)
)
ds

)

≤ (β − 1)E

(∫ T

0

eβs|δYs−|2 ds

)
+

1

2
E

(∫ T

0

eβs
(
|δys|2 + |δzs|+ ‖δzs‖2

)
ds

)

So

‖δY ‖2β + ‖δZ‖2β + ‖δU‖2β ≤
1

2

(
‖δy‖2β + ‖δz‖2β + ‖δu‖2β

)
So for this choice of β we have a contraction, hence (Y,Z, U) is the unique solution of the BSDEJ. Since
we had shown that Φ maps into the smaller space (S2, ‖·‖S2)× (L2

W , ‖·‖β)× (L2
Ñ
, ‖·‖β), the unique fixed

point (Y,Z, U) must also lie in this space.
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CHAPTER 6

COS Method

One of the main difficulties of solving FBSDEJs is that it is near inevitable we have to solve a series of
conditional expectations, where the conditional densities are often unknown or numerically inefficient to
use. Furthermore, they tend to have unbounded support.

The COS method is a highly efficient algorithm for solving conditional expectations where we have
prior knowledge of the characteristic function of the conditional density, as it is based on a Fourier cosine
expansion of the conditional density.

6.1 Smoothness transitional density

The conditional densities we will see in this thesis are closely related to the density of the FSDEJ. For the
COS method to work effectively we need our density to be as smooth as possible, since the smoother the
density, the faster the Fourier cosine series will converge. Hence the first problem we will investigate is to
find out given the components of a FSDEJ, how smooth the density is. Since we have a lot of knowledge
about the characteristic function of a FSDEJ, it is natural to investigate the smoothness through the
characteristic function.

The characteristic function of a probability measure µ on R is in essence, just the inverse Fourier
transform, as

φµ(ξ) =

∫
R
eixξ dµ(x).

Therefore the theory of Fourier analysis can immediately be applied to characteristic functions. It
turns out that there is a connection between the integrability of the distribution and the smoothness
of the characteristic function, but also the integrability of the characteristic function and the existence
of a continuous density. We will not prove the following proposition, for a proof, see for example [34,
Proposition 11.0.1]. We will denote P(R) as the space of all Borel probability measures on R, which
should not be confused with the power set of R.

Proposition 6.1.1. Let µ ∈ P(R).

(i) Let n ∈ N0, if we have ∫
R
|x|n dµ(x) <∞,

then φµ ∈ Cn and, for any nonnegative integer k ≤ n we have∫
R
xk dµ(x) = (−i)k ∂

kφµ
∂ξk

(0).

(ii) If
∫
R |φµ(ξ)| dξ < ∞, then µ is absolutely continuous with respect to the Lebesgue measure, has a

density f ∈ Cb(R) and

f(x) =
1

2π

∫
R
e−ixξφµ(ξ) dξ.

A Borel measure µ is said to be discrete if there exists a countable set N such that µ(N c) = 0. The
measure µ is said to be continuous if µ({x}) = 0 for every x ∈ R, furthermore we say that µ is said to
be singular if there is a set A ∈ B(R) such that µ(Ac) = 0 and |A| = 0 (set of Lebesgue measure zero).
Finally, we say that µ is absolutely continuous if µ(A) = 0 for every A ∈ B(R) satisfying |A| = 0. We
have the celebrated Lebesgue decomposition (see [6, Theorem 3.2.3] for a proof) of every finite measure
µ giving µ = µas + µd + µcs where µas is absolutely continuous, µd is discrete and µcs is continuous
singular, we call µas + µcs the continuous part.

Since FSDEJs consist of multiple components, it is useful to look at how the convolution operator
preserves the discreteness, continuity and absolute continuity proprety of the measures.
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58 Chapter 6. COS Method

Lemma 6.1.2. Let µ1, µ2 ∈M+(R) be non-zero finite measures on R. Let µ = µ1 ∗ µ2, then

(i) µ is continuous if and only if µ1 or µ2 is continuous

(ii) µ is discrete if and only if µ1 and µ2 are discrete

(iii) µ is absolutely continuous if µ1 or µ2 is absolutely continuous

(iv) µ1 or µ2 is continuous singular if µ is continuous singular

Proof.
(i), (ii). If µ1 is continuous, then µ is continuous, because

µ({x}) =

∫
R
µ1({x− y}) dµ2(y) = 0.

If µ1 and µ2 are discrete, then µ is discrete, since µ1(N c
1 ) = µ2(N c

2 ) = 0 with some countable sets N1

and N2 and for N = N1 + N2 we have µ(N c) = 0. The ’only if’ part for (i) follows from the ’if’ part
of (ii), if both µ1 and µ2 are not continuous, then they have discrete parts, but then µ would have a
discrete part as well, hence µ is not continuous either. Similarly if µ1 and µ2 are not discrete, then they
must be continuous, hence µ is continuous and not discrete either.

(iii) Suppose that µ1 is absolutely continuous. If A ∈ B(R) satisfies |A| = 0, then |A − y| = 0 for
every y ∈ R and µ(A) =

∫
R µ1(A− y) dµ2(y) = 0.

(iv) Suppose that neither µ1 nor µ2 is continuous singular. Then (µ1)d + (µ1)ac 6= 0 and (µ2)d +
(µ2)ac 6= 0. It follows from (ii) and (iii) that ((µ1)d+(µ1)ac)∗((µ2)d+(µ2)ac) has a discrete or absolutely
continuous part, hence µ is not continuous singular.

Before we look at the smoothness of the density, it is good to note which distributions do not even
admit a density. A necessary condition for the existence of a density is the continuity of the distribution.
It should not be surprising that pure jump processes with finite Lévy measure are not continuous, however
the continuity of jump processes with non-finite Lévy measure is perhaps less intuitive. The following
proof is taken from [37, Theorem 27.4].

Theorem 6.1.3. For a Lévy process X on R with characteristic triplet (µ, σ2, ν), the following three
statements are equivalent.

(i) µXt is continuous for every t > 0.

(ii) µXt is continuous for some t > 0.

(iii) Either σ 6= 0 or ν(R) =∞ or both

Proof.
(ii) =⇒ (iii) Suppose that µ = 0 (not to be confused with the measure µXt) and ν(R) <∞, then Xt−µt
is a compound Poisson process, and P(Xt − µt = 0) > 0, hence the distribution has a discrete part and
is therefore not continuous.

(iii) =⇒ (i) If σ 6= 0, then Xt consists of a non-trivial Gaussian distribution for every t > 0, which
has a continuous distribution, hence by Lemma 6.1.2 we have that µXt is continuous. Now suppose that
ν(R) =∞. We will prove this statement, in the case where ν is discrete, the case where ν is continuous
and the case where ν is neither discrete nor continuous.

First assume that ν is discrete, then let x1, x2, . . . be the points with non-zero ν-measure and define
pk = ν({xk}) and p′k = pk ∧ 1. We know that

∑∞
k=1 pk = ∞ and hence

∑∞
k=1 p

′
k = ∞. Now let Y nt be

the compound Poisson process with Lévy measure νn =
∑n
j=1 p

′
kδxk . Define in general for a probability

measure µ ∈ P(R),

S(µ) = sup
x∈R

µ({x}).

When µ is the distribution of a random variable X, we write S(X) = S(µ). If µ = µ1 ∗ µ2, then
S(µ) ≤ S(µ1), since

µ({x}) =

∫
R
µ1({x− y}) dµ2(y) ≤ S(µ1).
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So it follows that S(Xt) ≤ S(Y nt ). Let cn = νn(R) and σn = c−1
n νn, then the σn are probability measures.

Recall the notation µk = µ ∗ · · · ∗ µ, k-times, then we have S(σkn) ≤ S(σn) ≤ c−1
n , then note that

P(Y nt = x) = e−tcn
∞∑
k=0

tk

k!
cknσ

k
n({x}) ≤ e−tcn + c−1

n .

Hence S(Y nt ) ≤ e−tcn + c−1
n . As we let n→∞ we have cn →∞ and hence, we get S(Xt) = 0, therefore

Xt has a continuous distribution.
Assume that ν is continuous, then let Y n be the compound Poisson process with Lévy measure

νn = ν|{|x|>1/n}, then we again have S(Xt) ≤ S(Y nt ). For any k ∈ N we have that νkn is continuous by
Lemma 6.1.2. Hence, we have that Y nt can only have a non-zero probability at 0, indeed taking again
cn = νn(R) and σn = c−1

n νn we get

P(Y nt = x) = e−tcn
∞∑
k=0

tk

k!
cknσ

k
n({x}) = e−tcnδ0({x})

It follows that S(Y nt ) = e−tcn and since cn →∞, we have S(Xt) = 0.
In the last case where ν is neither discrete nor continuous, let νd and νc be the discrete and continuous

parts of ν, respectively. Then either νd or νc has infinite measure. If νd(R) =∞, then letting Y be the
Lévy process with characteristic triplet (0, 0, νd), we see that Yt has a continuous distribution for any
t > 0 by our above arguments. Then by Lemma 6.1.2 it follows that Xt has a continuous distribution
as well. If νc(R) =∞, then let Y be the Lévy process with characteristic triplet (0, 0, νc), then again Yt
has a continuous distribution and so does Xt.

We still have two big classes of Lévy processes left which might be able to admit a density. We
have the class of jump-diffusion processes, which are Lévy processes which have a non-trivial Brownian
motion part and finite Lévy measure, and the class of infinite activity processes, which are processes with
a non-finite Lévy measure.

The following theorem is classical in Fourier analysis for limiting arguments.

Theorem 6.1.4 (Riemann-Lebesgue Lemma). Let f ∈ L1(R). Then

lim
|ξ|→∞

∫
R
f(x)eiξx dx = 0.

Proof.
First assume f(x) = 1(a,b)(x) for some a < b. Then∫

R
f(x)eiξx dx =

∫ b

a

eiξx dx =
eiξb − eiξa

iξ
−→
|ξ|→∞

0.

The result follows for simple functions by linearity of the integral, so pick f ∈ L1(R) arbitrary, since the
space of simple functions is dense in L1(R), the result follows.

We can formulate the following criterion for smoothness in terms of integrability of the characteristic
function.

Proposition 6.1.5. If µ ∈ P(R) satisfies∫
R
|φµ(ξ)||ξ|n dξ <∞,

for some n ∈ N0, then µ has a density f of class Cn and the derivates vanish at infinity

Proof.
By Proposition 6.1.1 we have that

f(x) =
1

2π

∫
R
e−ixξφµ(ξ) dξ,

is the density of µ. Now the right-hand side is n-times differentiable by the Leibniz integral rule by our
integrability assumption on φµ. Then f ∈ Cn and for k ≤ n, we have

f (k)(x) =
1

2π

∫
R
(−iξ)ke−ixξφµ(ξ) dξ.
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Then for all k ≤ n we have that |(iξ)kφµ(ξ)| = |ξ|k|φµ(ξ)| ∈ L1(R), so by Theorem 6.1.4, we have that
f (k)(x) −→

|x|→∞
0.

There also exist conditions for absolute continuity of the distribution and conditions for the smooth-
ness of the density in Sato [37, pages 177-193] and Orey [29], but they are generally quite difficult to
prove in practice and we therefore omit them in this thesis.

Before we state the main theorem of this section, we look at two important examples of Lévy processes,
first we have the Merton jump-diffusion model, which is a jump-diffusion process.

Example 6.1.6 (Merton jump-diffusion). The Merton jump-diffusion model is a Lévy process

Xt =

∫ t

0

µdt+

∫ t

0

σ dWt +

∫ t

0

∫
R0

x Ñ(dt, dx).

with µ, µ ∈ R, σ, σ, λ > 0 and

ν(A) =

∫
A

λ√
2πδ

exp

(
− (x− µ)2

2σ2

)
dx.

Here λ is the jump intensity, µ is the mean jump size and σ is the corresponding jump volatility. So we
assume that jump size is normally distributed with intensity λ. The characteristic function is given as
follows

φXt(ξ) = exp

(
iµtξ − 1

2
σ2tξ2 + t

∫
R
(eixξ − 1) dν(x)

)
= exp

(
iµtξ − 1

2
σ2tξ2

)
exp

(
λt

(
exp

(
iµξ − 1

2
σ2ξ2

)
− 1

))
Hence we have

|φXt(ξ)| = exp

(
−1

2
σ2tξ2

)
exp

(
λt

(
cos(µξ) exp

(
−1

2
σ2ξ2

)
− 1

))
≤ exp

(
−1

2
σ2tξ2

)
.

It follows by Proposition 6.1.5 that the Merton jump-diffusion model has a density of class C∞ when
σ > 0.

Next to the Merton jump-diffusion, there is a famous example of an infinite activity process, the
variance gamma process.

Example 6.1.7 (Variance Gamma). A gamma process is a random process with independent gamma
distributed increments, written as Γ(t; γ, λ), which is a pure-jump increasing Lévy process with Lévy
measure ν(x) = γx−1 exp(−λx)1(0,∞)(x). Now the Variance Gamma (VG) process is a sum of a gamma
process and a time-changed Brownian motion,

Xt = θγt + σWγt ,

where γt ∼ Γ(t; 1, κ) and σ, κ > 0, θ ∈ R. It turns out that X is again a Lévy process with characteristic
function Fang [16, Table 1.1]

φXt(ξ) = exp(iµtξ)

(
1− iθκξ +

1

2
σ2κξ2

)− t
κ

.

Then we have

|φXt(ξ)| =

((
1 +

1

2
σ2κξ2

)2

+ θ2κ2ξ2

)− t
2κ

∼ O
(
|ξ|− 2t

κ

)
,

as |ξ| → ∞. It follows that the Variance Gamma model has a Cn density for n < 2t
κ −1. So for big κ, we

get a smoother density when t is taken to be big as well. A sufficient condition for having a continuous
density which tends to zero in the tails, is t > κ

2 . Which means that for any κ, the density of Xt for very
small t might be a serious problem.

The following theorem solves the problem of smoothness for a very large class of Lévy-Itô processes
and also gives a generalized version of the Lévy-Khintchine representation (Theorem 4.4.10) as byproduct.
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Theorem 6.1.8. Let X be a Lévy-Itô process where the coefficients µ, σ and γ are deterministic and
bounded. Suppose furthermore that ν(R0) < ∞ and σt 6= 0 for all t ≥ 0, then Xt has a C∞ density for
all t ≥ 0 with all derivatives vanishing at infinity.

Proof.
We will apply Itô’s formula on f(Xt) = eiξXt for each ξ ∈ R, we have only proven Itô’s formula for
real-valued functions, however, we can just as well do the real part and imaginary part separately and
add them up later to get the same formula. It follows that

eiξXt = eiξX0 +

∫ t

0

eiξXs
(
iξµs −

1

2
σ2
sξ

2 +

∫
R0

eiξγs(J) − 1− iξγs(J) dν(J)

)
ds

+

∫ t

0

iξeiξXsσs dWs +

∫ t

0

∫
R0

eiξXs(eiξγs(J) − 1) Ñ(ds, dJ).

Let M1,M2 > 0 be such that σt ≤ M1 and γt(J) ≤ M2 for all t ≥ 0 and J ∈ R0. By Theorem 5.2.3 we
have

E
(

sup
t≤T

∣∣∣∣∫ t

0

iξeiξXsσs dWs

∣∣∣∣) ≤ CE
(∫ T

0

ξ2σ2
s ds

)1/2
 ≤ CTM1|ξ| <∞.

Furthermore by the Mean-Value Theorem we have∣∣∣eiξXs(eiξγs(J) − 1)
∣∣∣ ≤ sup

r≥0,J∈R0

∣∣∣eiξXsiξγr(J)eiξγr(J)γs(J)
∣∣∣ ≤M2|ξ||γs(J)|.

Hence also

E
(

sup
t≤T

∣∣∣∣∫ t

0

∫
R0

eiξXs(eiξγs(J) − 1) Ñ(ds, dJ)

∣∣∣∣) ≤ CM2|ξ|E

(∫ T

0

N(ds, dJ)

)1/2
 <∞.

Therefore taking expectations on both sides and noting that the coefficients of the Lévy-Itô process are
deterministic, it follows that

φXt(ξ) = φX0(ξ) +

∫ t

0

φXs(ξ)

(
iξµs −

1

2
σ2
sξ

2 +

∫
R0

eiξγs(J) − 1− iξγs(J) dν(J)

)
ds.

By the Lebesgue Differentiation Theorem we have for almost everywhere t ≥ 0,

d

dt
φXt(ξ) = φXt(ξ)

(
iξµt −

1

2
σ2
t ξ

2 +

∫
R0

eiξγt(J) − 1− iξγt(J) dν(J)

)
.

Therefore we get the generalized version of the Lévy-Khintchine formula

φXt(ξ) = exp

(
iξµtt−

1

2
σ2
t ξ

2t+ t

∫
R0

eiξγt(J) − 1− iξγt(J) dν(J)

)
. (6.1)

First of all we have ∣∣∣∣∫
R0

eiξγt(J) − 1 dν(J)

∣∣∣∣ ≤ 2ν(R0) <∞.

Hence we get the estimate

|φXt(ξ)| ≤ exp

(
−1

2
σ2
t ξ

2t+ 2ν(R0)t

)
.

Since we have for every n ∈ N0 that∫
R
|ξ|n exp

(
−1

2
σ2
t ξ

2t+ 2ν(R0)t

)
dξ <∞,

the result follows by Proposition 6.1.5.
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6.2 Fourier cosine series

Another important part of the COS method is the theory of Fourier series representations, which has
become quite classical theory by now. The exponential Fourier series representation of a continuous
function f on a finite interval [a, b], defines a periodic extension of that function on all of R, since the
complex exponentials are periodic. However, if the function is non-periodic, the periodic extension will
not be continuous, giving rise to numerical convergence problems known as the Gibb’s phenomenom.
This will severely slow down the convergence of the series, not only on the endpoints, but also further
away from the endpoints.

One solution to this problem is to extend the interval [a, b] to [2a − b, b] and extend the function
evenly. We will see that the sine part will vanish, giving a Fourier cosine series, which will be continuous
at the end points due to its inherent periodicity.

Following the work of Oosterlee and Grzelak [28], extend f ∈ L2([0, π]) to the even function f̃ ∈
L2([−π, π]) where f̃(x) = f(|x|). Then we have the complex Fourier series of f̃

f̃(x) =
∑
n∈Z

̂̃
f(n) exp(inx),

with coefficients

̂̃
f(n) =

1

2π

∫ π

−π
f̃(y) exp(−iny) dy =

1

2π

∫ π

−π
f̃(y) cos(ny) dy =

1

π

∫ π

0

f(y) cos(ny) dy,

since f̃ is an even function.
Let f ∈ L2([a, b]) and f̃ ∈ L2([2a− b, b]) its even extension. Then we can do the change of variables

θ =
y − a
b− a

π, y =
b− a
π

θ + a,

to get

f̃(y) =
∑
n∈Z

̂̃
f(n) exp

(
inπ

y − a
b− a

)
,

with coefficients

̂̃
f(n) =

1

2(b− a)

∫ b

2a−b
f̃(y) exp

(
−inπ y − a

b− a

)
dy =

1

b− a

∫ b

a

f(y) cos

(
nπ

y − a
b− a

)
dy.

By the even symmetry of the cos function,
̂̃
f(−n) =

̂̃
f(n) and hence we have

f̃(y) =
∑
n∈Z

̂̃
f(n) exp

(
inπ

y − a
b− a

)

=
̂̃
f(0) +

∞∑
n=1

̂̃
f(n) exp

(
inπ

y − a
b− a

)
+

∞∑
n=1

̂̃
f(−n) exp

(
−inπ y − a

b− a

)

=
̂̃
f(0) +

∞∑
n=1

̂̃
f(n)

(
exp

(
inπ

y − a
b− a

)
+ exp

(
−inπ y − a

b− a

))

=
̂̃
f(0) +

∞∑
n=1

2
̂̃
f(n) cos

(
nπ

y − a
b− a

)
Therefore we have for f ,

f(y) = f̃(y) =
̂̃
f(0) +

∞∑
n=1

2
̂̃
f(n) cos

(
nπ

y − a
b− a

)
.

Define for n ∈ N0 the coefficients

Fn =
2

b− a

∫ b

a

f(y) cos

(
nπ

y − a
b− a

)
dy,
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such that

f(y) =

∞∑
n=0

′
Fn cos

(
nπ

y − a
b− a

)
.

where the prime in
∑ ′

indicates that the first term of the summation is halved. Let f, g ∈ L2([a, b]),
then by Parseval’s relation (see Grafakos [19, Proposition 3.2.7]), we have that∫ b

a

f(x)g(x) dx =
b− a

2

∞∑
n=0

′
FnGn, (6.2)

where

Fn =
2

b− a

∫ b

a

f(y) cos

(
inπ

y − a
b− a

)
dy,

Gn =
2

b− a

∫ b

a

g(y) cos

(
inπ

y − a
b− a

)
dy.

The summation on the right-hand side of (6.2) has rarely an elementary analytic closed form, hence we
truncate the series for numerical methods. One can wonder how many terms we need to get an accurate
approximation and how fast the partial sums converges. For the latter question we have a very satisfying
relation between the convergence speed and the smoothness of the function.

Theorem 6.2.1. Let k ∈ N and suppose that f ∈ Ck([a, b]). Then for the Fourier cosine coefficients we
have the asymptotic relation Fn = O(n−k) as k →∞.

Proof.
Recall that the Fourier cosine expansion of f on [a, b] is equal to the exponential Fourier expansion of

the even extension f̃ to [2a − b, b]. Hence we will first show this result for f̃ . Write for convenience

f = f̃ and let [a, b] = [0, π], using integration by parts and noting that f(−π) = f(π), due to the even
extension, we have for n ∈ Z \ {0},

f̂(n) =
1

2π

∫ π

−π
f(x)e−inx dx =

1

2π

[
1

−in
f(x)e−inx

]π
x=−π

+
1

in

1

2π

∫ π

−π
f ′(x)e−inx dx

=
1

in

1

2π

∫ π

−π
f ′(x)e−inx dx =

1

in
f̂ ′(n).

Since f is 2π-periodic, every derivative of f is 2π-periodic as well. Indeed,

f ′(x+ 2π) = lim
h→0

f(x+ 2π + h)− f(x+ 2π)

h
= lim
h→0

f(x+ h)− f(x)

h
= f ′(x).

Then by induction the result follows for f̃ ,

f̂(n) =
1

(in)k
f̂ (k)(n), |f̂(n)| ≤ 1

|n|k
1

2π

∥∥∥f (k)
∥∥∥
L1
.

Therefore we also have the result for the Fourier cosine coefficients,

|Fn| = |2
̂̃
f(n)| ≤ 1

|nk|
2

π

∥∥∥f (k)
∥∥∥
L1
.

6.3 COS approximation formulae

Let b, σ : [0, T ] × R → R and β : [0, T ] × R × R → R be deterministic and bounded functions and let ν
be a finite Lévy measure. Furthermore assume σt 6= 0 for all t ≥ 0. We will apply the COS method to
conditional expectations with respect to stochastic processes of the form

Xt = x+ µs(x)(t− s) + σs(x)(Wt −Ws)

+

Nt∑
τ=Ns+1

βs(x, Jτ )− (t− s)
∫
R0

βs(x, J) dν(J), (6.3)

Sander Blok



64 Chapter 6. COS Method

for t ≥ s and some deterministic x ∈ R. Define the shorthand notations

∆tm,k = tm+k − tm, ∆tr,s = ts − tr,
∆Wm,k = Wtm+k

−Wtm , ∆Wr,s = Ws −Wr,

∆Ñ∗m,k =

∫ tm+k

tm

∫
R0

η(J) Ñ(dt, dJ), ∆Ñ∗r,s =

∫ s

r

∫
R0

η(J) Ñ(dt, dJ),

(6.4)

where η is some deterministic and bounded function. Then we can rewrite (6.3) into

Xt = x+ µs(x)∆ts,t + σs(x)∆Ws,t

+

Nt∑
τ=Ns+1

βs(x, Jτ )−∆ts,t

∫
R0

βs(x, J) dν(J) (6.5)

For the procedure of numerically evaluating conditional expectations of the form E(v(t,Xt)|Xs = x) we
will follow Ruijter and Oosterlee [36]. Write Exs (v(t,Xt)) := E(v(t,Xt)|Xs = x), and define pt(y|x) as
the conditional distribution of Xt|Xs = x. We know that pt(y|x) ∈ C∞ for all t ≥ s by Theorem 6.1.8,
then

I := Exs (v(t,Xt)) =

∫
R
v(t, y)pt(y|x) dy,

is well-defined for v deterministic and not too irregular. So assume that v(t, y)pt(y|x) decays to zero
rapidly as |y| → ∞ for all x. Now fix x, then let ε > 0 and define a < b such that∣∣∣∣∣

∫
R\[a,b]

v(t, y)pt(y|x) dy

∣∣∣∣∣ < ε.

We will look later into choosing a suitable a, b such that this holds. Since v(t, y)pt(y|x) vanishes in
infinity rapidly, we can truncate to a not too big finite interval [a, b] without losing a significant amount
of accuracy.

Let Ii be a further approximation of I, to keep track of all the numerical errors we will make in each
step. So we get

I1 =

∫ b

a

v(t, y)pt(y|x) dy.

Then given x and t ≥ s, we could see y 7→ pt(y|x) as a function on the finite interval [a, b].

Going back to our integral I1, if we assume that y 7→ v(t, y) and y 7→ pt(y|x) are both in L2([a, b]),
then from the discussion in the previous section we have that

I1 =
b− a

2

∞∑
k=0

′
Vk(t)Pk(x),

where

Vk(t) =
2

b− a

∫ b

a

v(t, y) cos

(
kπ
y − a
b− a

)
dy,

Pk(x) =
2

b− a

∫ b

a

pt(y|x) cos

(
kπ
y − a
b− a

)
dy.

Since the coefficients Pk(x) vanish at a faster rate than polynomially due to Theorem 6.2.1 we can
truncate the series, to get the approximation

I2 =
b− a

2

N−1∑
k=0

′
Vk(tm+1)Pk(x).

The reason why we rewrite the conditional expectation in a Fourier cosine expansion, is that we can now
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approximate Pk(x) with the characteristic function, which we will assume to be given. Indeed,

Pk(x) ≈ 2

b− a

∫
R
pt(y|x) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a
Re

(∫
R

exp

(
ikπ

y − a
b− a

)
pt(y|x) dy

)
=

2

b− a
Re

(
exp

(
ikπ

−a
b− a

)∫
R

exp

(
i
kπ

b− a
y

)
pt(y|x) dy

)
=

2

b− a
Re

(
exp

(
ikπ

−a
b− a

)
ϕ

(
kπ

b− a

∣∣∣∣x)) ,
where ϕ(·|x) is the conditional characteristic function of Xt, given Xs = x. By the generalized Lévy-
Khintchine formula in the proof of Theorem 6.1.8 we have

ϕ(ξ|x) = exp

(
iξx+ ∆ts,t

(
iξµs(x)− 1

2
σ2
s(x)ξ2 +

∫
R0

eiξβs(x,J) − 1− iξβs(x, J) dν(J)

))
Define φ(ξ) = ϕ(ξ|0), then ϕ(ξ|x) = φ(ξ)eiξx and hence we get

Pk(x) ≈ 2

b− a
Re

(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
,

and so we get the following approximation

I3 =

N−1∑
k=0

′
Vk(t)Re

(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
=:

N−1∑
k=0

′
Vk(t)ΦYk (x). (6.6)

Besides Exs (v(t,Xt)), we also want to approximate the conditional expectations Exs (v(t,Xt)∆Ws,t) and

Exs (v(t,Xt)∆Ñ
∗
s,t). For Exs (v(t,Xt)∆Ws,t) we have the following.

Exm (v(t,Xt)∆Ws,t) ≈
N−1∑
k=0

′
Vk(t)Exm

(
cos

(
kπ
Xt − a
b− a

)
∆Ws,t

)

Now for Exm
(

cos
(
kπXt−ab−a

)
∆Ws,t

)
, we have by integration by parts

Exm (cos(ξ(Xt − a))∆Ws,t)

= Re

(
Exm

(
exp

(
iξ

(
(x− a) + µs(x)∆ts,t + σs(x)∆Ws,t +

∫ t

s

βs(x, J) Ñ(ds, dJ)

))))
= Re

(
1√

2π∆ts,t

∫
R

exp

(
iξ

(
(x− a) + µs(x)∆ts,t + σs(x)ζ +

∫ t

s

βs(x, J) Ñ(ds, dJ)

))
ζe
− ζ2

2∆ts,t dζ

)
= Re

(
iξσs(x)∆ts,t√

2π∆ts,t

∫
R

exp

(
iξ

(
(x− a) + µs(x)∆ts,t + σs(x)ζ +

∫ t

s

βs(x, J) Ñ(ds, dJ)

))
e
− ζ2

2∆ts,t dζ

)
= σs(x)∆ts,tRe

(
iξφ(ξ)eiξ(x−a)

)
.

Then we get the COS approximation formula

Exm(v(t,Xt)∆Ws,t)

≈
N−1∑
k=0

′
Vk(t)σs(x)∆ts,tRe

(
i
kπ

b− a
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
=:

N−1∑
k=0

′
Vk(t)ΦZk (x). (6.7)
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Finally, we also want to calculate Exs (v(t,Xt)∆Ñ
∗
s,t), for which we again have to calculate Exm

(
cos
(
kπXt−ab−a

)
∆N∗s,t

)
,

where

∆N∗s,t =

∫ t

s

∫
R0

η(J)N(dr, dJ).

Then we have

Re
(
Exm

(
∆N∗s,t exp (iξ(Xt − a))

))
= Re

(
Exm

(
exp

(
iξ

(
(x− a) + µs(x)∆ts,t + σs(x)∆Ws,t −∆ts,t

∫
R0

βs(x, J) dν(J)

)))

Exm

(
∆N∗s,t exp

(
iξ

Nt∑
τ=Ns+1

βs(x, Jτ )

)))

= Re

(
exp

(
iξ

(
(x− a) + µs(x)∆ts,t −∆ts,t

∫
R0

βs(x, J) dν(J)

)
− 1

2
ξ2σs(x)2∆ts,t

)
Exm

(
Nt∑

τ=Ns+1

η(Jτ ) exp

(
iξ

Nt∑
τ=Ns+1

βs(x, Jτ )

)))
.

Now the final conditional expectation can be solved by iterated conditioning on the Poisson process, and
we will assume ϕJ(ξ) = E(exp(iξβs(x, J))) and λ = ν(R0) are known a priori in this thesis, then

Exm

(
Nt∑

τ=Ns+1

η(Jτ ) exp

(
iξ

Nt∑
τ=Ns+1

βs(x, Jτ )

))

=

∞∑
q=0

e−λ∆ts,t
(λ∆ts,t)

q

q!
E

(
q∑

τ=1

η(Jτ ) exp

(
iξ

q∑
τ=1

βs(x, Jτ )

))

=

∞∑
q=0

e−λ∆ts,t
(λ∆ts,t)

q

q!

q∑
τ=1

E (η(Jτ ) exp (iξβs(x, Jτ )))E

exp

iξ q∑
ρ=1,ρ6=τ

βs(x, Jρ)


=

∞∑
q=0

e−λ∆ts,t
(λ∆ts,t)

q

q!
qE (η(J) exp (iξβs(x, J)))ϕJ(ξ)q−1

= e−λ∆ts,t(ϕJ (ξ)−1)λ∆ts,tE(η(J) exp(iξβs(x, J))).

Then we have

Exm
(

∆Ñ∗s,t exp

(
ikπ

Xt − a
b− a

))
= Re

(
φ

(
kπ

b− a

)
e−ikπ

x−a
b−a λ∆ts,tE

(
η(J) exp

(
i
kπ

b− a
βs(x, J)

)))
.

Therefore we have the last COS approximation formula

Exm(v(t,Xt)∆Ñ
∗
s,t)

≈
N−1∑
k=0

′
Vk(t)Re

(
φ

(
kπ

b− a

)
e−ikπ

x−a
b−a λ∆ts,tE

(
η(J)

(
exp

(
i
kπ

b− a
βs(x, J)

)
− 1

)))
(6.8)

=:

N−1∑
k=0

′
Vk(t)ΦΓ

k (x).

The expectation E
(
η(J)

(
exp

(
i kπb−aβs(x, J)

)
− 1
))

still has to be approximated for general η and β.

This can again be done by the COS method, where instead of the conditional density, we now have
the Lévy density. Since this expectation will be used extensively, it should be computed with high
accuracy, such that the numerical error in the scheme does not amplify later on. Again recall that
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ϕJ(ξ) = E(exp(iξβs(x, J))),

E
(
η(J)

(
exp

(
i
kπ

b− a
βs(x, J)

)
− 1

))
≈

N−1∑
k=0

′

(∫ b

a

η(y)

(
exp

(
i
kπ

b− a
βs(x, y)

)
− 1

)
cos

(
kπ
y − a
b− a

)
dy

)
(

2

b− a

∫ b

a

cos

(
kπ
y − a
b− a

)
dν(y)

λ

)

≈
N−1∑
k=0

′
NkJk, (6.9)

where

Nk =

∫ b

a

η(y)

(
exp

(
i
kπ

b− a
βs(x, y)

)
− 1

)
cos

(
kπ
y − a
b− a

)
dy,

Jk =
2

b− a
Re

(
ϕJ

(
kπ

b− a

)
eikπ

−a
b−a

)
.

The Nk can be efficiently computed with a Discrete Cosine Transform (DCT). We will come back to this
later. Note that the a and b should not necessarily be chosen to be the same as with the other COS
approximation formulae, as we have a different density here, so we also have a different mass distribution.
Furthermore the convergence speed relies on the smoothness of the Lévy density ν.
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CHAPTER 7

BCOS Method

7.1 Numerical discretisation FBSDEJs

In the filtered probability space (Ω,F ,F,P) with index set T = [0, T ] for some T > 0 we will look at the
following forward backward stochastic differential equations with jumps (FBSDEJs) which are decoupled

Xt = X0 +

∫ t

0

µs(Xs) ds+

∫ t

0

σs(Xs) dWs +

∫ t

0

∫
R0

βs(Xs−, J) Ñ(ds, dJ), (FSDEJ)

Yt = ξ +

∫ T

t

fs(Θs) ds−
∫ T

t

Zs dWs −
∫ T

t

∫
R0

Us(J) Ñ(ds, dJ), (BSDEJ)

where Θt := (Xt, Yt, Zt,Γt) such that for a given bounded function η : R0 → R we have

Γs =

∫
R0

Us(J)η(J) dν(J).

Under global Lipschitz and growth conditions, we have already shown the FBSDEJ has a unique solution.
Recall from Theorem 4.4.12 that for a given g(t, x) ∈ C1,2 we have that

g(t,Xt) = g(t0, Xt0) +

∫ t

t0

Lg(s,Xs) ds+

∫ t

t0

∂g

∂x
σs(Xs) dWs

+

∫ t

t0

∫
R0

(g(s,Xs− + βs(Xs−, J))− g(s,Xs−)) Ñ(ds, dJ),

where L is the second-order partial-integro differential operator

Lg(s, x) =
∂g

∂t
(s, x) +

∂g

∂x
(s, x)µs(x) +

1

2

∂2g

∂x2
(s, x)σ2

s(x)

+

∫
R0

(
g(s, x+ βs(x, J))− g(s, x)− ∂g

∂x
(s, x)βs(x, J)

)
dν(J)

Now consider the following partial-integro differential equation (PIDE):{
Lu+ ft(x, u, σ∇u,Mu) = 0, (t, x) ∈ [0, T ]× R,
u(T, x) = g(x), x ∈ R,

(7.1)

where M is the integral operator

Mu(t, x) =

∫
R0

(u(t, x+ βt(x, J))− u(t, x))η(J) dν(J),

and ∇ is the partial derivative with respect to x. We define a viscosity solution of (7.1) to be the
following

Definition 7.1.1. We say that u ∈ C([0, T ]× R;R) is

(i) a viscosity subsolution of (7.1) if

u(T, x) ≤ g(x), x ∈ R,

and if, for any ϕ ∈ C2([0, T ]× R;R), whenever (t, x) ∈ [0, T ]× R is a global maxima of u− ϕ,

Lϕ(t, x) + ft(x, u(t, x), σ∇ϕ(t, x),Mϕ(t, x)) ≤ 0.
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(ii) a viscosity supersolution of (7.1) if

u(T, x) ≥ g(x), x ∈ R,

and if, for any ϕ ∈ C2([0, T ]× R;R), whenever (t, x) ∈ [0, T ]× R is a global minima of u− ϕ,

Lϕ(t, x) + ft(x, u(t, x), σ∇ϕ(t, x),Mϕ(t, x)) ≥ 0.

(iii) a viscosity solution of (7.1) if it is both a viscosity subsolution and a viscosity supersolution of
(7.1).

If u ∈ C1,2, is a classical solution of (7.1) we can immediately see that, u(t,Xt) = Yt solves the
FBSDEJ, by the Itô formula, where furthermore we have

Zt = σt(Xt)∇u(t,Xt),

Ut = u(t,Xt− + βt(Xt−, J))− u(t,Xt−),

Γt =Mu(t,Xt),

and where the quadruple (Xt, Yt, Zt,Γt) is the solution of the FBSDEJs with terminal condition ξ =
g(XT ). However, given a solution Y , we in general do not have that u is in C1,2, but under some weak
regularity conditions we do know that u ∈ C([0, T ]× R;R) as shown in Barles, Buckdahn and Pardoux
[2, Proposition 2.5]. Hence it is more natural to look at a viscosity solution of 7.1 instead of a classical
solution. To prove that u is indeed a viscosity solution, we need a comparison result for the FBSDEJs.

Proposition 7.1.2. Suppose f and γ satisfy the regularity conditions in [2, Propositon 2.6] and suppose
that ξ, ξ′ ∈ L2 are two terminal conditions. Then denote (Y,Z, U) ∈ S2 × L2

W × L2
N and (Y ′, Z ′, U ′) ∈

S2 ×L2
W ×L2

Ñ
as the unique solutions of the FBSDEJ with terminal conditions ξ and ξ′ respectively. If

ξ ≥ ξ′, it follows that
Yt ≥ Y ′t , 0 ≤ t ≤ T.

Then under these regularity conditions we can prove that indeed u is the unique viscosity solution of
(7.1) and hence we have a connection between the FBSDEJs and the PIDEs. This connection is often
known in the literature as the Feynman-Kac representation and is not limited to just FBSDEJs, but
exists for nearly any type of stochastic differential equations.

Remark 7.1.3. We made the seemingly odd assumption that f can only depend on U through Γ, however
we have a simple counterexample for which the comparison result in Proposition 7.1.2 fails to hold when
this is not the case. Let ν = δ1 and ft(ω, x, y, z, u) = −2u(1). Then

Nt =

∫ t

0

∫
R0

N(ds, dJ),

is a standard Poisson process and if we choose ξ = NT and ξ′ = 0, then we have the solutions

(Yt, Zt, Ut) = (Nt − (T − t), 0,1J=1),

(Y ′t , Z
′
t, U
′
t) = (0, 0, 0).

Clearly we have ξ ≥ ξ′, but P(Yt < Y ′t ) = P(Nt < T − t) ≥ P(Nt = 0) = e−1 > 0 for all 0 ≤ t < T .
Hence the assumption on f is necessary.

7.1.1 Semi-discretisation
It turns out that the numerical analysis of FSDEJs is highly complex, due to its complex solution
structure. One of the perhaps more surprising finds is that we can discretise the FSDEJ with an implicit
Euler scheme without theoretically losing any accuracy over using the exact solution. We will explain
and prove this through an application of semigroup theory.

Definition 7.1.4. Let X be a Lévy-Itô process with finite Lévy measure ν, for a given measurable
function g : [0, T ]× R→ R, the generator Axt of X on g is defined by

Axt g(·, X·) = lim
s↓t

Ext (g(s,Xs))− g(t, x)

s− t
.
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Given g(t, x) ∈ C1,2 and σ ∈ L2
W , γ ∈ L2

Ñ
, we have by the Itô formula that

Ext (g(s,Xs)) = g(t, x) +

∫ s

t

Ext (Lg(r,Xr)) dr.

Hence we obtain
Axt g(·, X·) = Lg(t, x).

We could say that Axt is a local operator, as its value only depends on the value of Lg in (t, x).

Motivated by this locality, we can search for simpler to solve Lévy-Itô processes X̃ such that Axt g(·, X̃·) =

Axt g(·, X·). This is the case when we have µ̃t(x) = µt(x), σ̃t(x) = σt(x) and β̃t(x, J) = βt(x, J) for all
J ∈ R0.

Consider the two processes

Xs = x+

∫ s

t

µr(Xr) dr +

∫ s

t

σr(Xr) dWr +

∫ s

t

∫
R0

βr(Xr−, J) Ñ(dr, dJ),

X̃s = x+

∫ s

t

µ̃r(X̃r) dr +

∫ s

t

σ̃r(X̃r) dWr +

∫ s

t

∫
R0

β̃r(X̃r−, J) Ñ(dr, dJ).

We could for example choose an Euler implicit discretisation µ̃r(X̃r) = µt(x), σ̃r(X̃r) = σt(x) and

β̃r(X̃r, J) = βt(x, J) for all r ∈ [t, s]. Then the FSDEJ for X̃s becomes

X̃s = x+ µt(x)(s− t) + σt(x)(Ws −Wt) +

Ns∑
τ=Nt+1

βt(x, Jτ )−
∫
R0

βt(x, J) dν(J)(s− t).

It follows that indeed Axt g(·, X̃·) = Axt g(·, X·), we will see in a moment why this is important.
Let 0 = t0 < t1 < t2 < · · · < tM = T, be a partition. Then recalling the shorthand notations in (6.4).

Given m, we have for t ≥ tm that

Exm(Ym) = Exm(Yt) +

∫ t

tm

Exm(fs(Θs)) ds, (7.2)

then we have what we call a reference ODE by the Lebesgue differentiation theorem,

d

dt
Exm(Yt)

∣∣∣∣
t=tm

= −ftm(x, y(tm, x), z(tm, x), γ(tm, x)).

Similarly we want to have reference ODEs for the Z-process and the Γ-process. To free up Z and Γ from
their stochastic integrals, we will multiply with ∆Wtm,t and Ñ∗tm,t respectively. Then it follows by the
Itô isometry that

0 = Exm(Ym∆Wtm,t) = Exm(Yt∆Wtm,t) +

∫ t

tm

Exm(fs(Θs)∆Wtm,s) ds−
∫ t

tm

Exm(Zs) ds, (7.3)

such that we have the reference ODE

z(tm, x) =
d

dt
Exm(y(t,Xt)∆Wtm,t)

∣∣∣∣
t=tm

.

And also

0 = Exm(Ym∆Ñ∗tm,t) = Exm(Yt∆Ñ
∗
tm,t) +

∫ t

tm

Exm(fs(Θs)∆Ñ
∗
tm,t) ds−

∫ t

tm

Exm(Γs) ds, (7.4)

so that we have the final reference ODE

γ(tm, x) =
d

dt
Exm(y(t,Xt)∆Ñ

∗
tm,t)

∣∣∣∣
t=tm

.

Motivated by the arguments with the generator Axt g(·, X·), define the Lévy-Itô process X̃m on [tm, tm+1)
by

X̃m
t = x+ µt(x)∆ttm,t + σt(x)∆Wtm,t +

Nt∑
τ=Ntm+1

βt(x, Jτ )−
∫
R0

βt(x, J) dν(J)∆ttm,t.
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Assuming sufficient smoothness of the function y(t, x), we know that

d

dt
Exm(y(t,Xm

t ))

∣∣∣∣
t=tm

= Axtmy(·, X·) = Axtmy(·, X̃·) =
d

dt
Exm(y(t, X̃m

t ))

∣∣∣∣
t=tm

.

Through similar arguments, we can argue that the same holds for the other two reference ODEs, hence
we get

d

dt
Exm(y(t, X̃m

t ))

∣∣∣∣
t=tm

= −ftm(x, y(tm, x), z(tm, x), γ(tm, x)),

z(tm, x) =
d

dt
Exm(y(t, X̃m

t )∆Wtm,t)

∣∣∣∣
t=tm

,

γ(tm, x) =
d

dt
Exm(y(t, X̃m

t )∆Ñ∗tm,t)

∣∣∣∣
t=tm

.

Therefore the solution of the FBSDEJ rests on the solution of the above system of first order ODEs.
Ruijter and Oosterlee [36] proposed a theta discretisation scheme to solve the integral equations (7.2),
(7.3) and (7.4). It is well known that theta discretisation schemes only have a first order convergence
when applied to ODEs, with the exception of the Crank-Nicolson scheme which corresponds to θ = 1/2
and has second order convergence. Let (Y ∆

m , Z
∆
m,Γ

∆
m) be the numerical approximation of (Y, Z,Γ) at

time-step tm. Then we get for the theta-discretisation the following scheme.

Scheme 1 Semi-discrete theta scheme

for m = M − 1, . . . , 0 do
Z∆
m = −θ−1

2 (1 − θ2)Em(Z∆
m+1) + (∆tm,1θ2)−1Em(Y ∆

m+1∆Wm,1) + θ−1
2 (1 −

θ2)Em(ftm+1
(Θ∆

m+1)∆Wm,1)

Γ∆
m = −θ−1

3 (1 − θ3)Em(Γ∆
m+1) + (∆tm,1θ3)−1Em(Y ∆

m+1∆Ñ∗m,1) + θ−1
3 (1 −

θ3)Em(ftm+1
(Θ∆

m+1)∆Ñ∗m,1)

Y ∆
m = Em(Y ∆

m+1) + ∆tm,1θ1ftm(Θ∆
m) + ∆tm,1(1− θ1)Em(ftm+1

(Θ∆
m+1)

end for

To test the numerical properties of schemes for ODEs, we often look at the test equation y′ = λy
subject to the initial condition y(0) = 1 for λ ∈ C. Then for Re(λ) < 0 we have that y(t)→ 0 as t→∞.
A numerical method is called A-stable if it has the same behaviour, when the step size is fixed. Applying
the theta scheme on this test equation with discretisation points t0, t1, . . . with equal distance ∆t, yields
yn = yn−1 + ∆tλ(θyn−1 + (1− θ)yn), rewriting gives us the numerical solution

yn =
1 + ∆tλθ

1−∆tλ(1− θ)
yn−1 =

(
1 + ∆tλθ

1−∆tλ(1− θ)

)n
.

Hence for A-stability we need whenever Re(λ) < 0, that∣∣∣∣ 1 + ∆tλθ

1−∆tλ(1− θ)

∣∣∣∣ < 1.

It is not hard to show that this is satisfied when θ ≤ 1/2. Another property which is called L-stability
is especially important for solving stiff equations, it ascertains that the numerical solution of the test
equation should go to zero in one step as the step size goes to infinity. This means that the amplification
factor R(∆tλ) = yn/yn−1 should satisfy limz→∞ |R(z)| = 0. For the theta schemes this is only true when
θ = 0, and this is likely the reason why we will see instabilities in the solution of the FBSDEJ when
using the Crank-Nicolson scheme. We could instead choose θ = 0, the backward Euler method, but then
we lose an order of convergence. Alternatively we can look at linear multistep methods which generalise
the backward Euler method to higher order methods while still maintaining high stability. Specifically
we will look at the Backward Differentiation Formula methods of order n (BDFn methods).

The BDFn methods can be found by approximating the derivative with the derivative of the n-th or-
der Lagrange interpolation polynomial through the points (tm−n, ym−n), (tm−n+1, ym−n+1), . . . , (tm, ym).
We get the n-th order Lagrange interpolation polynomial

L(t) =

n∑
i=0

ym−i`m−i(t) =

n∑
i=0

ym−i
∏

0≤k≤n
k 6=m−i

t− tm−n+k

tm−n+i − tm−n+k
,
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which has the derivative in time-step tm,

L′(tm) =

n∑
j=0

αmn,jym−j ,

for some real numbers αmn,j . Suppose we have the ODE y′ = f(t, y(t)), then we have at time step tm the
approximation

ym = − 1

αmn,0

n∑
j=1

αmn,jym−j +
1

αmn,0
f(tm, ym).

Since the method is implicit, we need to use another method to solve the nonlinear equation in each
step, for that we will use Picard iteration. When the distances between the nodes is equal, we write αn,i,
since they are independent of j. The coefficients αn,i are given in Table 7.1.

n α0,n∆t α1,n∆t α2,n∆t α3,n∆t α4,n∆t α5,n α6,n∆t
1 -1 1
2 −3/2 2 -1/2
3 -11/6 3 -3/2 1/3
4 -25/12 4 -3 4/3 -1/4
5 -137/60 5 -5 10/3 -5/4 1/5
6 -49/20 6 -15/2 20/3 -15/4 6/5 -1/6

Table 7.1: Coefficients Backward Differentiation Formula of order n

We have not included the coefficients for n > 6 as those methods fail to be convergent. The difficulty
with the BDFn methods, is that we already need to have an approximation of the first n−1 steps before
we can even start using it. Two advantages however, are that the BDFn methods are of n-th order
convergence and are very stable. Yet, the higher n, the less stable the method. For a more detailed
treatment of linear multistep methods and difference equations, see Butcher [7] and Henrici [21].

To apply the BDFn methods to our FBSDEJ, note that we are now going backwards in time, so we
also have to ’reverse time’ in the method itself. This gives the following scheme.

Scheme 2 Semi-discrete BDFn scheme

for m = M − n, . . . , 0 do
Z∆
m =

∑n
j=1 α

m
n,jEm(Y ∆

m+j∆Wm,j),

Γ∆
m =

∑n
j=1 α

m
n,jEm(Y ∆

m+j∆Ñ
∗
m,j)

Y ∆
m = − 1

αmn,0

∑n
j=1 α

m
n,jEm(Y ∆

m+j)− 1
αmn,0

ftm(Θ∆
m)

end for

7.1.2 Full-discretisation

We saw in Scheme 1 amd Scheme 2 that we still have to approximate conditional expectations in each
time step. For these conditional expectations we will use the COS approximation formulae we have found
in the previous chapter. Just as before define

ΦYk,j(tm, x) = Re

(
φX̃mm+j |X̃mm=x

(
kπ

b− a

)
eikπ

x−a
b−a

)
,

ΦZk,j(tm, x) = Re

(
φX̃mm+j |X̃mm=x

(
kπ

b− a

)
eikπ

x−a
b−a i

kπ

b− a
σ∆tm,j

)
,

ΦΓ
k,j(tm, x) = Re

(
φX̃mm+j |X̃mm=x

(
kπ

b− a

)
e−ikπ

x−a
b−a λ∆tm,jE

(
η(J)

(
exp

(
i
kπ

b− a
βtm(x, J)

)
− 1

)))
,
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where φX̃mm+j |X̃mm=x is the conditional characteristic function of X̃m
m+j , given X̃m

m = x. Then we have for

some sufficiently smooth function v(t, x) that

Exm(v(tm+j , X̃
m
m+j)) ≈

N−1∑
k=0

′
Vk(tm+j)Φ

Y
k,j(tm, x),

Exm(v(tm+j , X̃
m
m+j)∆Wm,j) ≈

N−1∑
k=0

′
Vk(tm+j)Φ

Z
k,j(tm, x),

Exm(v(tm+j , X̃
m
m+j)∆Ñ

∗
m,j) ≈

N−1∑
k=0

′
Vk(tm+j)Φ

Γ
k,j(tm, x)

where

Vk(tm+j) =
2

b− a

∫ b

a

v(tm+j , y) cos

(
kπ
y − a
b− a

)
dy.

Since we know that Y,Z and Γ are deterministic functions of the state process X and time t, we write
y(t,Xt) = Yt, z(t,Xt) = Zt, γ(t,Xt) = Γt and θ(t,Xt) = Θt = (Yt, Zt,Γt) and write ŷ, ẑ, γ̂, θ̂ for their
numerical approximations. To fully calculate the conditional expectations, we still need a method to
approximate the Fourier coefficients with respect to v.

Write Y,Z,G and F for the Fourier cosine coefficients of y, z, γ and f respectively. To approximate
these Fourier coefficients accurately, we need to be able to evaluate the integrand at a large set of points.
Let v(t, x) again be a sufficiently smooth function, we will discretise [a, b] as follows. Let ∆x = b−a

N ,

then we define the grid points xn = a + (n + 1
2 )∆x such that we can use a composite midpoint rule on

the integrals,

Vk(tm+j) =
2

b− a

∫ b

a

v(tm+j , y) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

N−1∑
n=0

v(tm+j , x
n) cos

(
kπ
xn − a
b− a

)
∆x

=
2

N

N−1∑
n=0

v(tm+j , x
n) cos

(
kπ

2n+ 1

N

)
.

Now the final sum corresponds to a DCT-II of the data v(tm+j , x
n), and can hence be computed efficiently

through Fast Cosine Transform (FCT) algorithms with O(N log(N)) time complexity instead of the
normal O(N2) time complexity.

Finally in the case where θ1 < 1, θ2 < 1 or θ3 < 1 in Algorithm 3 we have for the theta scheme an
implicit part in the Y, Z and Γ processes, we solve these through a Picard iteration method. Hence for
the theta scheme we have the complete algorithm, where we start from m = M − 1. So we assume that
we can solve the first step. We will come back on how to do this later on in this thesis.
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Algorithm 3 Theta algorithm

Given Yk(tM),Zk(tM),Gk(tM) and Fk(tM).
Compute ΦYk,1(tM−1, x),ΦZk,1(tM−1, x),ΦΓ

k,1(tM−1, x).
for m = M − 1, . . . , 0 do

ẑ(tm, x) = −θ−1
2 (1− θ2)

∑N−1
k=0

′Zk(tm+1)ΦYk,1(tm, x) + (∆tm,1θ2)−1
∑N−1
k=0

′Yk(tm+1)ΦZk,1(tm, x)

+θ−1
2 (1− θ2)

∑N−1
k=0

′Fk(tm+1)ΦZk,1(tm, x)

γ̂(tm, x) = −θ−1
3 (1− θ3)

∑N−1
k=0

′Gk(tm+1)ΦYk,1(tm, x) + (∆tm,1θ3)−1
∑N−1
k=0

′Yk(tm+1)ΦΓ
k,1(tm, x)

+θ−1
3 (1− θ3)

∑N−1
k=0

′Fk(tm+1)ΦΓ
k,1(tm, x)

ĥ(tm, x) =
∑N−1
k=0

′Yk(tm+1)ΦYk,1(tm, x) + ∆tm,1(1− θ1)
∑N−1
k=0

′Fk(tm+1)ΦYk,1
ŷ0(tm, x) =

∑N−1
k=0

′Yk(tm+1)ΦYk,1(tm, x)
for q = 1, . . . , P do
ŷq(tm, x) = ∆tθ1ftm(x, ŷq−1(tm, x), ẑ(tm, x), γ̂(tm, x)) + ĥ(tm, x)

end for
Compute Yk(tm),Zk(tm),Gk(tm) and Fk(tm).
Compute ΦYk,1(tm−1, x),ΦZk,1(tm−1, x),ΦΓ

k,1(tm−1, x).
end for

Similarly as with the theta-discretisation scheme, we will assume for the BDFn discretisation scheme
that we can solve the first n steps. Again we will come back later on how to compute these first steps.

Algorithm 4 BDFn algorithm

Given Yk(tM−j), for j = 0, . . . , n− 1.
Compute ΦYk,j(tM−n, x),ΦZk,j(tM−n, x),ΦΓ

k,j(tM−n, x) for j = 1, . . . , n.
for m = M − j, . . . , 0 do

ẑ(tm, x) =
∑n
j=1

∑N−1
k=0

′
αmn,jYk(tm+j)Φ

Z
k,j(tm, x)

γ̂(tm, x) =
∑n
j=1

∑N−1
k=0

′
αmn,jYk(tm+j)Φ

Γ
k,j(tm, x)

ĥ(tm, x) = − 1
αmn,0

∑n
j=1

∑N−1
k=0

′
αmn,jYk(tm+j)Φ

Y
k,j(tm, x)

ŷ0(tm, x) =
∑N−1
k=0

′Yk(tm+1)ΦYk,1(tm, x)
for q = 1, . . . , P do
ŷq(tm, x) = ∆tθ1ftm(x, ŷq−1(tm, x), ẑ(tm, x), γ̂(tm, x)) + ĥ(tm, x)

end for
Compute Yk(tm+j) for j = 1, . . . , n.
Compute ΦYk,j(tm−1, x),ΦZk,j(tm−1, x),ΦΓ

k,j(tm−1, x) for j = 1, . . . , n.
end for

7.2 Convergence rate

Before we will look at some numerical examples, we will focus in this section on some error analysis of the
schemes we presented. We will split the analysis into two parts, first we look at the semi-discretisation
scheme for the BDFn methods as in Scheme 2. Afterwards we will give an error analysis of the COS
method.

The theta-discretisation scheme for continuous BSDEs has been studied in Zhao, Wang and Peng
[46] where the driver is assumed to be independent of Z. Second-order convergence rate has been proven
for both the Y -process as the Z-process in the case where θ = 1/2, for θ 6= 1/2, the scheme has only
first-order convergence. For general f and BSDEJs, proving optimal convergence rates is still an open
problem.

7.2.1 Semi-discretisation
Proving convergence rates of BDFn discretisation methods for general FSDEJs is highly non-trivial and
is still an open problem. There are three main difficulties for solving this problem. The first problem is
that the driver f depends on Z and Γ, while the solutions of Z and Γ again depend on Y . Since the driver
f is in general non-linear, the equations are coupled in a non-linear manner. The second problem is that
the processes have to be computed using the solution of multiple previous steps at the same time, hence
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the error bound depends in a difficult manner on the error bounds of the previous steps. Finally the
coefficients αn,j generally lie outside the unit circle, which makes iteration procedures difficult, as (αn,j)

k

is unbounded in k. In the case where the coefficients αj for the linear multistep method are positive, we
know that they all lie in the unit circle, and using this the problem has been solved by Chassagneux [8].
Therefore the following theorems are more a justification rather than a formal convergence proof as we
will make a strong assumption on the driver f .

We will only look at a simpler FBSDEJ, given by
Xt = X0 +

∫ t

0

µs(Xs) ds+

∫ t

0

σs(Xs) dWs +

∫ t

0

∫
R0

βs(Xs−, J) Ñ(ds, dJ), (FSDEJ)

Yt = ξ +

∫ T

t

fs(Xs, Ys) ds−
∫ T

t

Zs dWs −
∫ T

t

∫
R0

Us(J) Ñ(ds, dJ), (BSDEJ)

Here the driver f does not depend on Z and Γ anymore, such that the numerical scheme for Y is
independent of Z and Γ.

We write (Y ∆
m , Z

∆
m,Γ

∆
m) for the numerical solution of Scheme 2 at time t = tm and let (Xtm , Ytm , Ztm ,Γtm)

be the exact solution at time t = tm. We will furthermore assume that we can solve all the conditional
expectations exact. Then we define the global errors

εmy = Ytm − Y ∆
m , εmz = Ztm − Z∆

m,

εmγ = Γtm − Γ∆
m, εmf = ftm(Xtm ,Θ

∆
m)− ftm(Xtm ,Θ

n).

Furthermore define the truncation errors

Rny,m =
dExm(Yt)

dt

∣∣∣∣
t=tm

−
n∑
j=0

αn,jExm(Ytm+j
),

Rnz,m =
dExm(Yt∆Wtm,t)

dt

∣∣∣∣
t=tm

−
n∑
j=0

αn,jExm(Ytm+j∆Wtm,t),

Rnγ,m =
dExm(Yt∆Ñ

∗
tm,t)

dt

∣∣∣∣∣
t=tm

−
n∑
j=0

αn,jExm(Ytm+j
∆Ñ∗tm,t).

For the truncation errors we have the following convergence rate, the proofs are based on the proofs of
Yang and Zhao [44] in the case of continuous BSDEs.

Lemma 7.2.1. Suppose that the given data µ, σ, γ, f and ξ are sufficiently smooth, such that Ln+1u(t, x),Lnσ∇u(t, x)
and LnMu(t, x) exist and are bounded for all (t, x) ∈ [0, T ]× R. Then we have the local estimates

Rny,m = O(∆tn), Rnz,m = O(∆tn), Rnγ,m = O(∆tn)

Proof.
Suppose 0 ≤ t0 < t1 < · · · < tn ≤ T , by Lagrange interpolation theory, we know that for f ∈ Cn+1

b and
every i = 0, 1, . . . , n, that

|f ′(ti)− L′(ti)| ≤ sup
t≤T

n∏
j=0
j 6=i

|ti − tj |
|f (n+1)(t)|
(n+ 1)!

= O

 n∏
j=0
j 6=i

|ti − tj |

 .

Now it remains to prove that the conditional expectations are in Cn+1. We will write the derivatives
with respect to the conditional expectations as right-derivatives, due to technicalities with the filtration.
However, we will see that the right-derivatives are continuous by the smoothness conditions, and hence
equal to the derivatives. It is well-known that X is a Markov process see for example Applebaum [1,
Theorem 6.4.6]. Hence define F t,xs = σ(Xr, t ≤ r ≤ s,Xt = x), and let t0 < t be a fixed time, and x0 ∈ R
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a fixed point in space. If g ∈ C1,2 it follows by the Leibniz integral rule that

d

dt
Ex0
t0 (g(t,Xt)) = lim

s↓t
Ex0
t0

(
g(s,Xs)− g(t,Xt)

s− t

)
= lim

s↓t
E
(
g(s,Xs)− g(t,Xt)

s− t

∣∣∣∣F t0,x0
s

)
= lim

s↓t
E
(
EXtt

(
g(s,Xs)− g(t,Xt)

s− t

)∣∣∣∣F t0,x0
s

)
= lim

s↓t
E

(
EXtt (g(s,Xs))− g(t,Xt)

s− t

∣∣∣∣∣F t0,x0
s

)
= E

(
AXtt g(·, X·)

∣∣∣F t0,x0
s

)
= E

(
Lg(t,Xt)| F t0,x0

s

)
= Ex0

t0 (Lg(t,Xt)) .

Now s 7→ Ex0
t0 (Lg(s,Xs)) is continuous at t, hence by our discussion above, we have by induction

dk+1

dtk+1
Ex0
t0 (u(t,Xt)) = Ex0

t0

(
Lk+1u(t,Xt)

)
,

where we now use the regular derivative, by our assumptions the derivative exists and is bounded. With
similar arguments we have

d

dt
Ex0
t0 (g(t,Xt)) = Ex0

t0 (σt(Xt)∇g(t,Xt)) ,

d

dt
Ex0
t0 (g(t,Xt)) = Ex0

t0 (Mg(t,Xt)) ,

hence the result follows.

Fix n and define αj = ∆tαn,j . Then define the characteristic polynomial ρ(ζ) =
∑n
j=0 αjζ

n−j . To
prove actual convergence of the scheme, we also need to have so-called zero-stability, which means that
the difference equation

∑n
j=0 αjym−j = 0 must have bounded solutions as m → ∞. It turns out that

the solutions are all polynomials and that the following root condition is necessary and sufficient for
zero-stability. If all the roots of ρ(ζ) satisfy |ζ| ≤ 1 and any root with |ζ| = 1 has multiplicity one, then
the method satisfies the root condition, Henrici [21, Theorem 5.5]. For 1 ≤ n ≤ 6 this is satisfied in the
case of the BDFn methods, for n > 6 this fails. Numerical examples confirm that the method fails to
converge, and FBSDEJs are no exception, as can be seen in Fu, Zhao and Zhou [18]. Therefore we will
only consider 1 ≤ n ≤ 6.

Assuming the root condition holds, it turns out that there exists a sequence (δ`)
∞
`=0 such that

1

α0 + . . .+ αn−1ζn−1 + αnζn
= δ0 + δ1ζ + δ2ζ

2 + . . . , (7.5)

and such that κ := sup`≥0 |δ`| <∞, Henrici [21, Lemma 5.5].
Furthermore, for the Z-process and the Γ-process we have the following non-optimal bound for the

global error, as we lose a half-order of the convergence rate. In Yang and Zhao [44] an optimal convergence
rate has been proven for the Z-process using variational and Malliavin derivative arguments. A similar
proof should also be possible for the Γ-process, however, the necessary theory for either proof is outside
the scope of this thesis. Furthermore we will see in the next chapter that we can empirically confirm the
n-th order convergence which we should expect.

Lemma 7.2.2. There exists a constant C > 0, such that for every 0 ≤ m ≤ N −n we have the estimate

‖εmz ‖∞ +
∥∥εmγ ∥∥∞ ≤ C√

∆t

n∑
j=1

∥∥εm+j
y

∥∥
∞ + 2(

∥∥Rnz,m∥∥∞ +
∥∥Rnγ,m∥∥∞).

Proof.
Note that

εmz =

k∑
j=1

αn,jEtm
(
εm+j
y ∆Wm,j

)
+Rnz,m.
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Squaring both sides and applying Hölder’s inequality yields

|εmz |2 =

 n∑
j=1

αn,jEtm
(
εm+j
y ∆Wm,j

)
+Rnz,m

2

≤ 2

n n∑
j=1

α2
n,j

(
Etm

(
|εm+j
y ∆Wm,j |

))2
+ |Rnz,m|2


≤ 2

n n∑
j=1

α2
n,j∆tm,jEtm(|εm+j

y |2) + |Rnz,m|2
 .

Define αm,j∆tm,j = αm, then sup0≤m≤n |αm| ≤ C for some C > 0. Hence there exists some C > 0 such
that

|εmz |2∆t ≤ C
n∑
j=1

Etm(|εm+j
y |2) + 2∆t

∥∥Rnz,m∥∥2

∞ .

Hence dividing by ∆tm,j , taking the square root and taking the L∞-norm gives for some other C > 0,
the estimate

‖εmz ‖∞ ≤
C√
∆t

n∑
j=1

∥∥εm+j
y

∥∥
∞ + 2

∥∥Rnz,m∥∥∞ .

We have a similar estimate for εmγ .

|εmγ |2 =

 n∑
j=1

αn,jEtm
(
εm+j
y ∆Ñ∗m,j

)
+Rnγ,m

2

≤ 2

n n∑
j=1

α2
n,j

(
Etm

(
|εm+j
y ∆Ñ∗m,j |

))2

+ |Rnγ,m|2


≤ 2

n n∑
j=1

α2
n,jEtm(|εm+j

y |2)Etm(|∆Ñ∗m,j |2) + |Rnγ,m|2
 .

To compute E(|∆Ñ∗m,j |2) we can use the Itô isommetry to get

Etm(|∆Ñ∗m,j |2) = Etm
(∫ tm+j

tm

η2(J)dν(J) dt

)
≤ ∆tm,j ‖η‖2∞ ν(R0).

Then it indeed follows that for some constant C > 0 we have

|εmγ |2∆t ≤ C
n∑
j=1

Etm(|εm+j
y |2) + 2∆t|Rnγ,m|2,

and the result follows.

For the Y -process we can now prove the following bound.

Theorem 7.2.3. Suppose f(t, x, y) is Lipschitz continuous with respect to y with Lipschitz constant Lf .

Then for 0 < ∆t ≤ |αn,0|∆t2Lf
, there exists constants C1, C2 > 0 depending on T, Lf and n such that

max
0≤m≤N−n

∥∥εmy ∥∥∞ ≤ C1

N∑
i=N−n+1

∥∥εiy∥∥∞ + C2∆t

N−n∑
i=0

∥∥Rny,i∥∥∞ .

Proof.
First note that we can write εmy as

αn,0ε
m
y = −

n∑
j=1

αn,jEtm(εm+j
y )− εmf +Rny,m.
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Define βm = −εmf /εmy , then by the Lipschitz continuity of f we know |βm| ≤ Lf , furthermore define
α̃j = αn,j∆t, then note that sup0≤j≤n |α̃j | ≤ C for some constant C depending on n. Taking the
conditional expectation Etm(·) on both sides gives

n∑
j=0

α̃jEtm(εm+j
y ) = βmε

m
y ∆t+ Etm(Rny,m)∆t. (7.6)

Because the α̃j are not bounded by 1, we cannot keep expanding Etm(εm+j
y ) until time N , as α̃kj → ∞

as k →∞. Instead multiply both sides with n := n+ ` by δ` for ` = 0, 1, . . . , N −m− n and sum over `
(as defined in (7.5)), which yields the following expression for Sl, the left-hand side,

Sl =

N−m−n∑
`=0

δ`

n∑
j=0

α̃jEtm(εm+j+`
y )

= α̃0δ0Etm(εmy ) + (α̃0δ1 + α̃1δ0)Etm(εm+1
y ) + . . .

+ (α̃0δN−m−n + α̃1δN−m−n−1 + . . .+ α̃nδN−m−2n+1)Etm(εN−ny )

+ (α̃1δN−m−n + α̃2δN−m−n−1 + . . .+ α̃nδN−m−2n+1)Etm(εN−n+1
y )

+ . . .+ (α̃n−1δN−m−n + α̃nδN−m−n−1)Etm(εN−1
y ) + α̃nδN−m−nEtm(εNy ).

For the right-hand side Sr we have the expression

Sr =

N−n−m∑
`=0

δ`
(
Etm(βmε

m+`
y )− Etm(Rny,m+`)

)
∆t.

Note that we have by definition for all λ that

(α̃0 + . . .+ α̃k−1λ
k−1 + α̃kλ

k)(δ0 + δ1λ+ δ2λ
2 + . . . ) = 1.

Now let δ` = 0 for ` < 0 and α̃i = 0 for i > k, then we have the Cauchy product

∞∑
`=0

∑̀
i=0

α̃iδ`−iλ
i = 1.

Matching the coefficients of the polynomials on the left-hand side and on the right-hand side, we find
the relation ∑̀

i=0

α̃iδ`−i = 1`=0,

hence the expression Sl simplifies significantly to

Sl = εmy +

n∑
i=1

n+1−i∑
j=1

α̃jδN−n−m+i−j

Etm(εN−n+i
y ) := εmy +A.

From the equality Sl = Sr we derive

(1− δ0∆tβm)εmy = −A+Bm +

N−n∑
i=m+1

δi−mEtm(βiε
i
y)∆t,

where

Bm =

N−n∑
i=m

δi−mEtm(Rny,i)∆t.

Recall that |βm| ≤ Lf , so we have

(1−∆tLf |δ0|)|εmy | ≤ |A|+ |Bm|+
N−n∑
i=m+1

|δi−m|∆tLfEtm(|εiy|).
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Note that κ := sup`≥0 |γ`| <∞ and 1
1−∆tLf |δ0| ≤ 2, so then

|εmy | ≤ 2(|A|+ |Bm|) + 2κ∆tLf

N−n∑
i=m+1

Etm(|εiy|).

Taking the L∞-norm on both sides yields

∥∥εmy ∥∥∞ ≤ 2(‖A‖∞ + ‖Bm‖∞) + 2κ∆tLf

N−n∑
i=m+1

∥∥εiy∥∥∞ .

Estimating ‖A‖∞ and ‖Bm‖∞ gives the inequalities

‖A‖∞ ≤ Cκ
N∑

i=N−n+1

∥∥εiy∥∥∞ ,

‖Bm‖∞ ≤ κ
N−n∑
i=m

∥∥Rny,i∥∥∞∆t.

Define α = 2(‖A‖∞+ ‖Bm‖∞) and β = 2κLf , furthermore define ηm =
∥∥εmy ∥∥∞, then we have a discrete

version of the Grönwall inequality,

ηm ≤ α+ β∆t

N∑
i=m+1

ηi

= α+ β∆t

N∑
i=m+2

ηi + β∆tηn+1

≤ (1 + β∆t)

(
α+ β∆t

N∑
i=m+2

ηi

)

≤ (1 + β∆t)N−m−n+1

(
α+ β∆t

N∑
i=N−n+1

ηi

)

≤ eβN∆t

(
α+ β∆t

N∑
i=N−n+1

ηi

)
.

Hence the result follows

∥∥εmy ∥∥∞ ≤ eβT
(

2Cκ

N∑
i=N−n+1

∥∥εiy∥∥∞ + 2κ

N−n∑
i=m

∥∥Rny,i∥∥∞∆t+ 2κLf∆t

N∑
i=N−n+1

∥∥εiy∥∥∞
)

= C1

N∑
i=N−n+1

∥∥εiy∥∥∞ + C2∆t

N−n∑
i=m

∥∥Rny,i∥∥∞ .

We can summarise the previous results in the following corollary.

Corollary 7.2.4. If the conditions in Lemma 7.2.1 and Theorem 7.2.3 hold, and we have that

max
N−n<m≤N

∥∥εmy ∥∥∞ = O(∆tn),

then for 0 < ∆t ≤ |αn,0|∆t2Lf
there exists a constant C > 0 such that

max
0≤m≤N−n

∥∥εmy ∥∥∞ ≤ C∆tn, max
0≤m≤N−n

‖εmz ‖∞ ≤ C∆tn−
1
2 , max

0≤m≤N−n

∥∥εmγ ∥∥∞ ≤ C∆tn−
1
2
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7.2.2 COS method
Most of the hard work has already been done in Chapter 6, however some problems we have not touched
upon yet. Recall that we have made a couple of errors in the COS method for solving conditional
expectations of the form ∫

R
v(t, y)pt(y|x) dy.

(i) We truncated the integration range to the finite interval [a, b]:

ε1 :=

∫
R\[a,b]

v(t, y)pt(y|x) dy.

(ii) Additionally we truncated the Fourier cosine series on [a, b]:

ε2 :=
b− a

2

∞∑
k=N

′
Vk(t)Pk(x).

(iii) Finally we approximated the Fourier cosine coefficients Pk(x):

ε3 :=
b− a

2

N−1∑
k=0

′
Vk(t)

∫
R\[a,b]

pt(y|x) cos

(
kπ
y − a
b− a

)
dy

Since we in general do not know much about the function v, we prefer to bound these errors in terms of
the density. For ε2 we can reason as follows. We know that

|Vk(t)| ≤ 2

b− a

∫ b

a

|v(t, y)| dy ≤ 2C

b− a

Hence we have

|ε2| ≤ C
∞∑
k=N

|Pk(x)|.

Therefore the error ε2, depends on the convergence speed of the above partial sums. Following Theo-
rem 6.1.8 it is reasonable to assume that pt(·|x) ∈ C∞ for all t ≤ T and x ∈ R. Now we know that
Pk(x) = O(k−m) for every m ∈ N, hence

∞∑
n=N

1

nm
≤
∞∑
n=N

∫ n

n−1

1

xm
dx =

∫ ∞
N−1

1

xm
dx =

1

(m− 1)(N − 1)m−1
,

So ε2 = O(N1−m) for each m ∈ N. Hence ε decreases faster than polynomially to zero. For ε3 we have

|ε3| ≤ CN

∫
R\[a,b]

pt(y|x) dy.

The last bound can be improved when y 7→ v(t, y) is in Cα for some α ∈ N, then

ε3 =

∫
R\[a,b]

(
b− a

2

N−1∑
k=0

′
Vk(t) cos

(
kπ
y − a
b− a

))
pt(y|x) dy

=

∫
R\[a,b]

(
v(t, y)− b− a

2

∞∑
k=N

′
Vk(t) cos

(
kπ
y − a
b− a

))
pt(y|x) dy

= ε1 −
b− a

2

∫
R\[a,b]

( ∞∑
k=N

′
Vk(t) cos

(
kπ
y − a
b− a

))
pt(y|x) dy

By Theorem 6.2.1 we have that∣∣∣∣∣
∞∑
k=N

′
Vk(t) cos

(
kπ
y − a
b− a

)∣∣∣∣∣ ≤
∞∑
k=N

′
|Vk(t)| = O(N1−α).
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Hence,

|ε3| ≤ |ε1|+O(N1−α)

∫
R\[a,b]

pt(y|x) dy.

If we choose N large enough, we only have to worry about choosing a suitable truncation range [a, b].
Given a random variable X, the cumulants of X are defined by

κn(X) =
1

in
∂n(log(φX(ξ)))

∂ξn

∣∣∣∣
ξ=0

,

whenever the derivative exists. Fang and Oosterlee [17] and Ruijter and Oosterlee [36] proposed for
some stochastic process Xt and some L > 0 the following truncation range. Take the cumulants κn from
XT −X0, then

[a, b] =

[
X0 + κ1 − L

√
κ2 +

√
κ4, X0 + κ1 + L

√
κ2 +

√
κ4

]
.

If we choose N sufficiently large, L can be determined such that the error nears machine precision for
a sufficiently wide class of distributions. L = 10 is sufficiently big for must standard models and we
will use this for our numerical examples. Furthermore we take N = 210, such that the COS errors are
approximately of order 10−12. The values for N and L can be fine-tuned beforehand by investigating
the error in the truncated cosine expansion of the density. For some stochastic processes like geometric
Brownian motion, L = 6 is enough, which allows us to take a lower N for the same accuracy, and thus
increase the speed of the algorithm
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CHAPTER 8

Numerical Examples

We will do five numerical experiments using MATLAB 9.8.0 with an Intel(R) Core(TM) i5-6600K CPU
@4.20 GHz and 15.8 GB RAM. As mentoined in the previous chapter, we will take N = 210 with 5 Picard
iterations. The general setup is to gradually increase the complexity of the examples and pinpoint the
difficulties we face with numerically computing FBSDEJs.

First we will look at continuous BSDEs with constant drift and diffusion terms, so that we can see
what errors and instabilities are due to the extra jump terms.

Example 1
The first example is taken from Ruijter [35], with the underlying process a standard Brownian motion.
The BSDE is given by

Xt = Wt,

Yt = sin(XT + T ) +

∫ T

t

(
YsZs − Zs +

5

2
Ys − sin(s+Xs) cos(s+Xs)− 2 sin(s+Xs)

)
ds

−
∫ T

t

Zs dWs.

The exact solution is given by

(Yt, Zt) = (sin(Xt + t), cos(Xt + t)).

We will take T = 1, and note that (Y0, Z0) = (0, 1). Note that the driver could have been simplified to
ft(Xt, Yt, Zt) = 0.5Yt − Zt, however with this driver we can test how well the method behaves when it
also explicitly depends on t and Xt.

Before we will study complete methods, we first want to look at the convergence rate of the BDF
methods, given that the first initial steps are taken to be exact. Furthermore we take 10 Picard iterations
instead of 5, so that the convergence rate of BDF6 will not be hampered by the errors due to the Picard
iterations.

In Figure 8.1 the results are visualised, we can note that we indeed have a n-th order convergence rate
as we expected. The oscillatory behaviour at errors of around 10−12 are due to the errors we made in the
COS approximation formulae. This ‘error plateau’ can be lowered if we take N to be higher, alternatively
we can also lower L to 6 without increasing the computation time. As we mentioned before, L = 6 is
sufficiently large for Brownian motion.

We have not discussed how to compute the initial steps necessary for the BDF methods yet. In this
thesis we will only consider simple solutions to this problem. Given what we have already discussed, it
is natural to use a combination of Theta schemes and BDF schemes to compute the initial values. For
example, if we want to use BDF3, we can use a first step of BDF1, then a step of BDF2, so that we
can finally use BDF3 for the rest of the steps. Alternatively, if we know the derivative of the terminal
condition, we can also do a Crank-Nicolson step first and then progress in the same manner with BDF2,
BDF3, and so on.

We will abbreviate the Crank-Nicolson to CN and we define the ‘+’ to be a concatenation of one
method for the first step on the left-hand side and a method for the rest on the right-hand side. In
Figure 8.2 we can see first of all that starting with a Crank-Nicolson step is more accurate than starting
with a BDF1 step, which is to be expected as Crank-Nicolson is second order while BDF1 is only first
order. Furthermore BDF1 is O(∆t) while the CN, ‘BDF1 + BDF2’, ‘CN + BDF2’ and ’CN + BDF2
+ BDF3’ schemes are all of O(∆t2). Which is more or less expected. In Corollary 7.2.4 we have only
shown the n-th order convergence rate in the case the initial steps are also computed with another n-th
order method. In the cases of ‘BDF1 + BDF2’, ‘CN + BDF2 + BDF3’ and ’CN + BDF2 + BDF3 +
BDF4’, this is not satisfied. It turns out that for this example we only need n− 1-th order accuracy in
the initial steps for the the rest of the scheme to convergence with n-th order. This will fail, however, if
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Figure 8.1: Results BDFn methods example 1, with exact initial steps for N = 210, left: error ŷ(t0, x0), right:
error ẑ(t0, x0).

the initial steps are only of n− 2-th or lower order of accuracy. In those cases the method will only run
at min(k + 1, n)-th order convergence where k is the order of the lowest step.

For the BDFn schemes to work for n ≥ 4, we need to have a method of at least order n−1 or preferably
of order n. We will not go further into such methods, however, this should not be too hard to solve in
future research. In Fu, Zhao and Zhou [18] and Tang, Zhao and Zhou [41], deferred correction methods
have been used to guarantee n-th order convergence, this should also be the case for our schemes.

For the following examples, we will only look at the schemes ‘CN’, ‘BDF1 + BDF2’, ‘CN + BDF2’
and ‘CN + BDF2 + BDF3’.
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Figure 8.2: Results example 1 for N = 210, left: error ŷ(t0, x0), right: error ẑ(t0, x0).

Example 2: Black-Scholes call option

In this example we will price a European call option with terminal time T and strike price K under the
so-called Black-Scholes model. The underlying asset is assumed to follow a geometric Brownian motion,

St =

∫ t

0

µSs ds+

∫ t

0

σSs dWs,
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with payoff function given by g(St) = (St −K)+. By the change of variables Xt = log(St), we have the
following FBSDE for the option price Yt = v(t, log(St)).

Xt = X0 +

∫ t

0

µds+

∫ t

0

σ dWs

Yt = (exp(XT )−K)+ +

∫ T

t

(
r − µ
σ

Zt − rYs
)
ds−

∫ T

t

Zs dWs,

The corresponding semilinear PDE is given by the famous Black-Scholes equation
∂v

∂t
+ r

∂v

∂x
+

1

2
σ2 ∂

2v

∂x2
− rv = 0,

v(T, x) = (exp(x)−K)+.

The exact solution of this PDE is given by the Black-Scholes formula

v(t, St) = N(d1)St −N(d2)Ke−r(T−t),

N(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz

d1 =
1

σ
√
T − t

(
log

(
St
K

)
+

(
r +

σ2

2

)
(T − t)

)
d2 = d1 − σ

√
T − t.

We will take the parameters

µ = 0.2, σ = 0.25,K = 100, S0 = 100, r = 0.1.

In Figure 8.3, the results can be found for the Black-Scholes option valuation of an European call.
Again as in Figure 8.2 we can see mild oscillatory behaviour in the error of the Z-process for the Crank-
Nicolson scheme. Furthermore, ‘CN’, ‘BDF1 + BDF2’ and ‘CN + BDF2’ again have second order
convergence while ‘CN + BDF2 + BDF3’ has third order convergence.
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Figure 8.3: Results example 2 for N = 210, left: error ŷ(t0, x0), right: error ẑ(t0, x0).

Table 8.1 shows the running time of the Crank-Nicolson scheme and the BDF2 scheme starting with
one step of Crank-Nicolson, in seconds. Here, we observe that the Crank-Nicolson is twice as fast as the
BDF2 scheme. This is due to the fact that the most time is spent calculating the characteristic function
and the ΦY and ΦZ , because the BDF2 scheme has to do twice the amount of those calculations as the
Crank-Nicolson scheme does. Furthermore we can see that the running time of both schemes increase
linearly in M and is of order O(N log(N)) in N , as expected.
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M(N = 210) 8 16 32 64 128 256 512

CN 0.0584 0.0727 0.1077 0.1599 0.2633 0.4984 0.9548

CN + BDF2 0.0861 0.1193 0.1700 0.2634 0.4884 0.8933 1.7147

N(M = 512) 26 27 28 29 210

CN 0.0400 0.0514 0.0639 0.1259 0.9548

CN + BDF2 0.0657 0.0880 0.1176 0.4381 1.7147

Table 8.1: Running time example 4 in seconds. Upper table with N = 210, lower table with M = 512.

Example 3: Black-Scholes bid-ask spread for interest rates

We now look at another option valuation problem introduced in Bender and Steiner [3]. Suppose that a
trader can invest into a riskfree bond with rate r ≥ 0 for investing and a rate R ≥ 0 for borrowing from the
bond. We want to value a European call spread option with payoff function g(s) = (s−K1)+−2(s−K2)+

for two strike prices K1,K2 > 0. We take the constants as in Lemor, Gobet and Warin [27]

x0 = 100, µ = 0.05, σ = 0.2, T = 0.25, r = 0.01,K1 = 95,K2 = 105.

Now we check for two borrowing rates R = 0.06 and R = 3.01 as in Bender and Steiner [3]. The
borrowing rate R = 3.01 is not economically plausible, however the driver will have a much bigger
Lipschitz constant, hence we can test the dependence of stability and convergence of the FBSDE on the
Lipschitz constant of the driver. Under the Black-Scholes model, we have the following FBSDE for the
option price Yt = v(t, log(St)),



Xt = X0 +

∫ t

0

µds+

∫ t

0

σ dWs

Yt = (exp(XT )−K1)+ − 2(exp(XT )−K2)+ +

∫ T

t

(
r − µ
σ

Zt − rYs + (R− r)(Zt/σ − Yt)+

)
ds

−
∫ T

t

Zs dWs,

Note that term (R−r)(Zt/σ−Yt)+ will now make the driver non-differentiable in Zt = σYt. Or in terms
of the option price, ∂v∂x = v. Furthermore there is no known closed form solution to this BSDE, hence we
make use of numerically computed reference values. This we do by taking the ‘CN + BDF2’ scheme with
N = 212 and M = 105. For R = 0.06 we find Z0 = 0.553258567906919 and Y0 = 2.958453653597437, for
R = 3.01 we find Z0 = −4.689739171048050 and Y0 = 6.375127533471622.

In Figure 8.4, the results for the case R = 0.06 are plotted. The oscillatory behaviour in the error of
the Z-process for the Crank-Nicolson scheme is now much more pronounced. The error in the Y -process
is of second-order for all the second-order schemes, as well for the ’CN + BDF2 + BDF3’ scheme, despite
the previous results. The error in the Z-process is however much more worrisome. The convergence rate
is hard to read off for any of the schemes. Assuming monotonicity of the error for the ’CN + BDF2’
scheme, our reference value is only reasonably accurate for the first 6 digits of the Z0 value, after that
it is possibly inaccurate. Hence, the schemes do not convergence well or much slower than expected.
This is possibly due to discontinuities in the driver, as we did assume high smoothness conditions of f
in Lemma 7.2.1, which are violated for this problem.
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Figure 8.4: Results example 3 for R = 0.06 and N = 210, left: error ŷ(t0, x0), right: error ẑ(t0, x0).

Figure 8.5 shows the results for the case R = 3.01. It is interesting to note that only the ‘BDF1 +
BDF2’ scheme has second order convergence for the Y -process. It turns out that a first step of Crank-
Nicolson gives bad results for the entire scheme even in the case ‘CN + BDF2’. For the Z-process we again
have odd behaviour, but it does seem to have convergent behaviour for M = 10 and higher. The order
of convergence is hard to read off, and we again see some oscillatory behaviour for the Crank-Nicolson
scheme.

10
0

10
1

10
2

10
3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

CN

BDF1 + BDF2

CN + BDF2

CN + BDF2 + BDF3

Figure 8.5: Results example 3 for R = 3.01 and N = 210, left: error ŷ(t0, x0), right: error ẑ(t0, x0).

The following two examples are variants of Example 1, but then with an extra jump term, a drift
term, and a more complicated driver.

Example 4

The first example has a Merton jump-diffusion process as FSDEJ, Example 6.1.6. So we have µ, µ ∈ R
and σ, σ, λ > 0, with Lévy measure

ν(J) =
λ√

2πσ2
e−

(J−µ)2

2σ2 .
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Furthermore we let η(J) = 1 and we have the following FBSDEJ,

Xt = X0 +

∫ t

0

µds+

∫ t

0

σ dWs +

∫ t

0

∫
R0

J Ñ(ds, dJ),

Yt = sin(XT + T ) +

∫ T

t

(
1

2
σ2Ys −

1 + µ− λµ
σ

Zs − Γs

)
ds−

∫ T

t

Zs dWs

−
∫ T

t

∫
R0

Us(J) Ñ(ds, dJ),

We will take the parameters

x0 = log(10), µ = 0.2, σ = 0.25, µ = 0.5, σ = 0.05, λ = 1.

The exact solution is given by
Yt = sin(Xt + t),

Zt = σ cos(Xt + t),

Γt = λ

(
sin(Xt + t+ µ) exp

(
−1

2
σ2

)
− sin(Xt + t)

)
.

In Figure 8.6 we have plotted the results. Again observe the oscillatory behaviour of the Crank-Nicolson
scheme in both the Z-process and the Γ-process, furthermore we have stable second order convergence
in all the three processes for the ’BDF1 + BDF2’ and the ’CN + BDF2’ schemes. We also have roughly
third order convergence for the ’CN + BDF2 + BDF3’ scheme. In Table 8.2 the running time of the
schemes are shown. The running time of the Crank-Nicolson scheme is comparable with the running
time for continuous BSDEs, the BDF scheme seems to be, however, a bit slower than for continuous
BSDEs.

10
0

10
1

10
2

10
3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

CN

BDF1 + BDF2

CN + BDF2

CN + BDF2 + BDF3

Figure 8.6: Results example 4 for N = 210, from left to right: error ŷ(t0, x0), error ẑ(t0, x0) and error γ̂(t0, x0).

M(N = 210) 8 16 32 64 128 256 512

CN 0.0528 0.0651 0.1009 0.1582 0.2690 0.4873 0.9485

CN + BDF2 0.1111 0.1459 0.2053 0.3412 0.6297 1.1873 2.2206

N(M = 512) 26 27 28 29 210

CN 0.0534 0.0719 0.0941 0.2339 0.9548

CN + BDF2 0.0588 0.0704 0.1344 0.6420 2.2206

Table 8.2: Running time example 5 in seconds. Upper table with N = 210, lower table with M = 512.
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Example 5

The final example is a generalized version of the Merton jump-diffusion model. Here we consider a
drift term and diffusion term which are time-dependent. Furthermore the diffusion term is not always
non-zero, so we could potentially run into problems, as at those time points we do not necessarily have
a continuous density. Furthermore we have a driver which is nonlinear in both Y and Z.



Xt = X0 +

∫ t

0

sin(s) ds+

∫ t

0

cos(s) dWs +

∫ t

0

∫
R0

J Ñ(ds, dJ),

Yt = sin(XT + T ) +

∫ T

t

(
1

2
cos2(t)Ys +

1

1 + Y 2
s + Z2

s

− 1

1 + sin2(Xt + t) + cos2(t) cos2(Xt + t)

− cos(t+ x)(1 + sin(t)− λµ)− Γs

)
ds−

∫ T

t

Zs dWs −
∫ T

t

∫
R0

Us(J) Ñ(ds, dJ).

The exact solution is given by


Yt = sin(Xt + t),

Zt = cos(t) cos(Xt + t),

Γt = λ

(
sin(Xt + t+ µ) exp

(
−1

2
σ2

)
− sin(Xt + t)

)
.

In Figure 8.7 we can see that the Crank-Nicolson scheme has become a first order scheme for all three
processes, while the BDF2 schemes are still of second order convergence. A possible reason for the
Crank-Nicolson scheme to now be first order is that we use a forwawrd Euler discretisation in the X-
process which is of only first order convergence. In the case of our BDF schemes we found that such a
discretisation gives no extra error due to arguments with the generator. However, these arguments do
not apply to the discretisation of the Theta method, as the discretisation was done with respect to the
integral equations (7.2), (7.3) and (7.4) instead of the reference ODEs.

In contrary to the previous example, the ‘CN + BDF2 + BDF3’ is now also of second order conver-
gence for all three processes. Finally in Table 8.3 we can observe that the running time is considerably
higher than for our previous example, this is due to the fact that we now have to compute the charac-
teristic functions and the ΦY ,ΦZ ,ΦΓ for every time-step.
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Figure 8.7: Results example 5 for N = 210, from left to right: error ŷ(t0, x0), error ẑ(t0, x0) and error γ̂(t0, x0).
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M(N = 210) 8 16 32 64 128 256 512

CN 0.2197 0.3133 0.5933 1.1188 2.1864 4.3507 8.0924

CN + BDF2 0.4542 0.6190 1.0871 1.9728 3.6929 7.6845 14.7482

N(M = 512) 26 27 28 29 210

CN 0.1197 0.2174 0.4465 2.2394 8.0924

CN + BDF2 0.1669 0.3194 0.8073 4.5145 14.7482

Table 8.3: Running time example 2 in seconds. Upper table with N = 210, lower table with M = 512.
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CHAPTER 9

Conclusions and Further Research

Conclusions
In this thesis we have presented new probabilistic numerical methods for solving Forward Backward
Stochastic Differential Equations with Jumps (FBSDEJs). For the semi-discretisation we rewrote the
FBSDEJ into a system of ODEs containing conditional expectations. For solving the ODEs, we used the
Backward Differentiation Formula (BDF) methods. The computation of the conditional expectations was
based on the COS method, which was developed in Fang and Oosterlee [17]. This method approximates
conditional expectations based on Fourier cosine series expansions and the characteristic function of the
underlying stochastic process.

For Lévy-Itô processes with bounded deterministic coefficients, non-zero diffusion term and finite
Lévy measure, we found that the Fourier cosine series expansions converge faster than polynomially in
the amount of cosine terms. From this we could conclude that under these conditions, the COS method
is very efficient in the computation of the conditional expectations. Furthermore we have proven n-th
order convergence of the BDFn methods under strict assumptions in the Y -process where the coefficients
are sufficiently smooth. For the Z and Γ-process we lose a half-order convergence rate, however these
results are most likely non-optimal, as we also see n-th order convergence in the numerical results.

In the numerical examples we have seen the necessity of smoothness for the driver function, as
otherwise n-th order convergence is not at all guaranteed. The BDF methods give very satisfying
results, they are very stable and reliable. We pay for this robustness in terms of computational speed in
a doubling of the running time for the BDF2 method with respect to a Crank-Nicolson scheme. When
a suitable method has been found to approximate the initial steps sufficiently accurate for the BDFn
methods, we have shown the promising high order convergence for large n. Since they scale much better
with the time step size, they could solve the FBSDEJs much more efficiently.

To compare the BDFn methods with the Crank-Nicolson method, the scheme as presented in Ruijter
and Oosterlee [36] had to be extended for the case of FBSDEJs rather than just FBSDEs. We found that
doing a first step of Crank-Nicolson decreases the error in the first step significantly, instead of a fully
implicit scheme like a BDFn method, at no extra cost in the running time. When creating a method to
compute the initial steps of the BDFn methods, it might be worthwhile to propose an at least partially
explicit scheme, so that we can make use of the terminal conditions of the Y, Z and Γ-processes, due to
the Feynman-Kac representation, rather than just the terminal condition on the Y -process.

Further Research
There still remains a great deal to investigate for solving FBSDEJs in greater generality. Further,
the method could be extended to different kinds of stochastic differential equations, which also have
a backward component and an underlying forward stochastic process. We summarise the subjects for
further research in the following:

• As we have discussed, the computation of the initial steps for the BDFn methods is unsatisfactory,
we could only get BDF2 and sometimes BDF3 to work properly. A lot could be won, without having
to do much more work, by choosing a more appropriate method to compute these intial values.
In Fu, Zhao and Zhou [18] but also Tang, Zhao and Zhou [41], deferred correction methods have
been proposed and shown to be working to compute these initial values. Alternatively we could
see the problem as solving stiff differential equations. Most methods designed for stiff ODEs can
be converted readily to our framework, without much work, as the necessary COS approximation
formulae are already given in this thesis.

• For more general FBSDEJs where β(J) 6= J and η(J) 6= 1, the expectations in (6.8) have to be
approximated. We can do this again by a COS method, where we now work with a different density
as before. The error propagation, suitable N and truncation range still have to be investigated, to
ensure proper convergence of the method.
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• The case of fully coupled FBSDEJs would be interesting to investigate. Here ‘fully-coupled’ means
that the µ, σ and β also depend on the solution Y, Z and Γ. Since we built-in a forward Euler
discretisation in the forward process, we face a nonlinear equation for solving the characteristic
functions, due to the fact we compute the Y,Z and Γ process backwards in time. Alternatively
we could look at a backward Euler discretisation of the forward process, so that we get an explicit
method for solving the characteristic functions. Whether this affects the convergence rates for the
Y, Z and Γ processes for the BDFn methods, should still be investigated. In Huijskens, Ruijter and
Oosterlee [22] the fully-coupled FBSDEs have already been considered where the semi-discretisation
is based on a theta-discretisation scheme and the conditional expectations are solved with the COS
method.

• In this thesis we have only considered jump-diffusion models in the FSDEJ, the case of infinite ac-
tivity models is still somewhat unresolved. The method as presented here, is unsuitable to extend
directly to infinite activity models, as the jump term in the FSDEJ is no longer a compensated
compound Poisson process. Hence the COS approximations are all invalid. We know from The-
orem 4.3.21 that we can approximate the jump term by taking a smaller set A ⊂ R0 which is
bounded below, meaning that we take a lower bound on the jump size. If we have a nonzero dif-
fusion term, we can then approximate the infinite activity model with jump-diffusion models, for
which we know how to solve the FBSDEJs. There still remain a lot of problems with this method.
It is unclear how the new characteristic function and intensity measure relate to the infinite activity
model and it is also unclear how this truncation affects the error in the Y,Z and Γ-processes.

• There are still a lot of gaps in the numerical analysis of the presented methods. Especially in the
convergence rate of the semi-discretisation. It turns out to be difficult to prove these for general
drivers f , however most drivers are in practice of linear or quadratic nature, for these restrictions
the results might be able to be proven in more detail and generality with respect to dependence
on Z and Γ. When we take a discretisation scheme different from forward Euler for the forward
process (for example for solving fully-coupled FBSDEJs), the error in the FSDEJs also have to be
taken into account.

• There exist many variations on the FBSDEJs which are similar in nature to what we have discussed
in this thesis. The most straightforward would be to consider a multidimensional system. This has
already been studied in the continuous case by using the BCOS method in Ruijter [35]. To name a
few different variations. Reflected FBSDEJs (RFBSDEJs) have an additional restriction on Y , there
is an additional obstacle process which restricts Y from going below certain values. They correspond
to obstacle problems for PIDEs, see [15]. 2BSDEJs are the probabilistic representation of certain
fully nonlinear PIDEs, and are suprema of families of BSDEJs, they are discussed thoroughly in
[24]. Finally we refer in the continuous case to the book of Zhang [45] which contains most of the
recent developments of continuous BSDEs and its variants.
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[24] Nabil Kazi-Tani, Dylan Possamäı, and Chao Zhou. “Second-order bsdes with jumps: Formulation
and uniqueness”. In: Annals of Applied Probability 25.5 (2015), pp. 2867–2908. issn: 10505164.

[25] Hiroshi Kunita. Representation of Martingales with Jumps and Applications to Mathematical Fi-
nance. Tech. rep. 2004, pp. 209–232.

[26] Jean-François Le Gall. Brownian Motion, Martingales and Stochastic Calculus. 1st ed. Vol. 274.
Springer International Publishing, 2016, p. 273.

[27] Jean Philippe Lemor, Emmanuel Gobet, and Xavier Warin. “Rate of convergence of an empirical
regression method for solving generalized backward stochastic differential equations”. In: Bernoulli
12.5 (2006), pp. 889–916. issn: 13507265.

[28] Cornelis W Oosterlee and Lech A Grzelak. “Mathematical Modeling and Computation in Finance”.
In: Mathematical Modeling and Computation in Finance (2019).

[29] Steven Orey. On Continuity Properties of Infinitely Divisible Distribution Functions. Tech. rep. 3.
1968, pp. 936–937.

[30] Etienne Pardoux and Shige Peng. “Adapted solution of a backward stochastic differential equation”.
In: Systems & Control Letters 14 (1990), pp. 55–61.

[31] Shige Peng. “Backward stochastic differential equation, nonlinear expectation and their applica-
tions”. In: Proceedings of the International Congress of Mathematicians 2010, ICM 2010 2007
(2010), pp. 393–432.

[32] Shige Peng and Yufeng Shi. “Infinite horizon forward-backward stochastic differential equations”.
In: Stochastic Processes and their Applications 85.1 (2000), pp. 75–92. issn: 03044149.

[33] P Protter. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, 2013. isbn:
9783642055607.

[34] J S Rosenthal. A First Look at Rigorous Probability Theory. World Scientific, 2000. isbn: 978-981-
02-4322-7.

[35] M J Ruijter. “Fourier Methods for Multidimensional Problems and Backward SDEs in Finance
and Economics”. PhD thesis. Delft University of Technology, 2015. isbn: 9789462595262.

[36] M J Ruijter and C W Oosterlee. “A Fourier-cosine method for an efficient computation of solutions
to BSDEs”. en. In: (), p. 30.
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[43] Zhen Wu. “Forward-Backward Stochastic Differential Equations with Brownian Motion and Pois-
son Process”. In: Acta Mathematicae Applicatae Sinica 15.4 (1999).

[44] Jie Yang and Weidong Zhao. “Convergence of recent multistep schemes for a forward- back-
ward stochastic differential equation”. In: East Asian Journal on Applied Mathematics 5.4 (2015),
pp. 387–404. issn: 20797370.

[45] Guannan Zhang et al. “Numerical methods for a class of nonlocal diffusion problems with the use of
backward SDEs”. In: Computers and Mathematics with Applications 71.11 (2016), pp. 2479–2496.
issn: 08981221.

[46] Weidong Zhao, Jinlei Wang, and Shige Peng. “Error estimates of the θ-scheme for backward stochas-
tic differential equations”. In: Discrete and Continuous Dynamical Systems - Series B 12.4 (2009),
pp. 905–924. issn: 15313492.

Sander Blok


	Introduction and Outline of this Thesis
	I Stochastic Analysis
	Stochastic Processes
	Probability Spaces and Random Variables
	Conditional Expectation
	Stochastic Processes
	Modes of Convergence

	Martingales
	Stopping times
	Martingale theorems
	Local martingales

	Stochastic Calculus
	Finite variation processes
	Quadratic variation and covariation
	Stochastic integration
	Continuous semimartingale stochastic integrals
	Poisson stochastic integrals

	Itô's formula

	Stochastic Differential Equations
	Forward Stochastic Differential Equations
	Backward Stochastic Differential Equations


	II Numerical Analysis
	COS Method
	Smoothness transitional density
	Fourier cosine series
	COS approximation formulae

	BCOS Method
	Numerical discretisation FBSDEJs
	Semi-discretisation
	Full-discretisation

	Convergence rate
	Semi-discretisation
	COS method


	Numerical Examples
	Conclusions and Further Research


