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Abstract
While half of all construction tasks can be fully automated the other half relies to a certain degree on human support. This 
paper presents a Computer Vision (CV) and Human–Robot Interaction/Collaboration (HRI/C) supported Design-to-Robotic-
Assembly (D2RA) approach that links computational design with robotic assembly. This multidisciplinary approach has been 
tested on a case study focusing on urban furniture and involving experts from respective disciplines and students.

Keywords Architecture · Computational design · Robotic assembly · Computer vision · Huma-robot interaction

1 Introduction

Industrial robots have been used in a wide range of produc-
tion processes since the 70 s but more recently, researchers 
and engineers started to explore their potential in archi-
tecture and building construction (inter al. Bier 2018) and 
meanwhile more than 100 institutions and start-ups employ 
today industrial robots.1Considering that automation could 
raise productivity growth by 0.8–1.4 percent annually and 
almost half the activities in the global economy have the 
potential to be automated but less than 5 percent of all occu-
pations can be automated entirely,2it is clear that people will 
continue working alongside machines.

While automation has been successfully implemented for 
over 5 decades in other industries, the building construction 
industry has suffered from slow technology adoption, skilled 
labour shortage, and productivity has lagged behind remaining 
one of the most dangerous activities involving more fatalities 

than any other sector in the EU.3 These critical problems 
are addressed in the presented research by developing new 
Design-to-Robotic-Assembly (D2RA) methods that involve 
Computer Vision (CV) and Human–Robot Interaction/ Col-
laboration (HRI/C) approaches.4 Such modes of design to 
construction involve agency of both humans and non-humans. 
Thus, agency is not located in one or another but in the hetero-
geneous associations between them (inter al. Bier 2014, 2018).

1.1  State‑of‑the‑art

Architectural applications of HRI explored at ICD/ITKE 
and ETH are at the very beginning of development (inter 
al. Vasey et al. 2016; Mayer et al. 2017). They qualify as 
human-assisted robotic processes rather than HRI as they do 
not involve adaptive collaboration (inter al. Amor et al. 2014; 
Agravante et al. 2019). For example, in ETH’s project Hang-
ing Gardens5 using multiple standard industrial robotic arms 
to assemble a structure composed of several wooden panels is 
without any direct involvement of human collaboration during 
the construction process. ICD/ITKE’s project Hive6 involves 
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1 The Robotics in Architecture map (accessed from http:// www. robot 
sinar chite cture. org/ map- of- creat ive- robots) shows that more than 100 
creative industry related institutions and start-ups are using robots 
worldwide.
2 Link to McKinsey report: https:// www. mckin sey. com/ ~/ media/ 
mckin sey/ featu red% 20ins ights/ digit al% 20dis rupti on/ harne ssing% 
20aut omati on% 20for% 20a% 20fut ure% 20that% 20wor ks/a- future- that- 
works- execu tive- summa ry- mgi- janua ry- 2017. ashx.

3 Ibid link to McKinsey report and link Eurostat report: https:// ec. 
europa. eu/ euros tat/ stati stics- expla ined/ index. php/ Accid ents_ at_ 
work_-_ stati stics_ by_ econo mic_ activ ity.
4 HRI/ C is a multidisciplinary field focusing on the development of 
safe human–robot interaction by involving AI, robotics, interaction 
design, ergonomics, and psychology.
5 Link ETH project: https:// ethz. ch/ en/ news- and- events/ eth- news/ 
news/ 2021/ 11/ robots- build- new- hangi ng- garde ns. html.
6 Link to ICD project: https:// www. icd. uni- stutt gart. de/ proje cts/ hive-
a- human- and- robot- colla borat ive- build ing- proce ss/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41693-022-00084-1&domain=pdf
http://orcid.org/0000-0003-4652-8751
http://www.robotsinarchitecture.org/map-of-creative-robots
http://www.robotsinarchitecture.org/map-of-creative-robots
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/digital%20disruption/harnessing%20automation%20for%20a%20future%20that%20works/a-future-that-works-executive-summary-mgi-january-2017.ashx
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/digital%20disruption/harnessing%20automation%20for%20a%20future%20that%20works/a-future-that-works-executive-summary-mgi-january-2017.ashx
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/digital%20disruption/harnessing%20automation%20for%20a%20future%20that%20works/a-future-that-works-executive-summary-mgi-january-2017.ashx
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/digital%20disruption/harnessing%20automation%20for%20a%20future%20that%20works/a-future-that-works-executive-summary-mgi-january-2017.ashx
https://ec.europa.eu/eurostat/statistics-explained/index.php/Accidents_at_work_-_statistics_by_economic_activity
https://ec.europa.eu/eurostat/statistics-explained/index.php/Accidents_at_work_-_statistics_by_economic_activity
https://ec.europa.eu/eurostat/statistics-explained/index.php/Accidents_at_work_-_statistics_by_economic_activity
https://ethz.ch/en/news-and-events/eth-news/news/2021/11/robots-build-new-hanging-gardens.html
https://ethz.ch/en/news-and-events/eth-news/news/2021/11/robots-build-new-hanging-gardens.html
https://www.icd.uni-stuttgart.de/projects/hive-a-human-and-robot-collaborative-building-process/
https://www.icd.uni-stuttgart.de/projects/hive-a-human-and-robot-collaborative-building-process/
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humans working alongside the robots during the building of 
a large structure, however, there is no direct physical interac-
tion or coordination between them. These systems involve a 
combination of independent agents, who do not communicate 
or adapt to each other (Bier et al. 2018).

Robotic assembly of timber structures has been explored 
in recent works, as for instance, Stumm et al. (2018) and 
Devadass et al. (2019), who used HRI/C to haptically guide 
the robotic arm during the assembly. However, these meth-
ods involved no vision system so the robot was dependent on 
the human for most of the task. On the other hand, Rogeau 
et al. (2020) and Kunic et al. (2021) proposed a method 
for robotic assembly based on visual feedback, but it lacks 
the high-level HRI/ C part, which is critical when the task 
becomes cognitively too complex for the robot to execute 
by itself. Most recently, Kramberger et al. (2022) employed 
HRI/ C that was only used for humans to teach the robot how 
to then execute the assembly autonomously and no direct 
collaboration is implemented during the actual task execu-
tion. Also, the use of image processing to translate camera 
input to metric (distance) for robotic operation, does not 
focus on the size of the object as a discriminative feature 
to identify the correct piece to pick up. Moreover, it does 
not involve a reference (known size) object to estimate the 
geometry of unknown linear objects as presented in this 
chapter. It involves fiducial markers as employed by Rogeau 
et al. (2020) to keep track of the position and orientation 
of the various timber panels. Although efficient, the use of 
markers brings a clear disadvantage: unique markers have 
to be developed for every panel. Furthermore, in processes 
with differently sized components, geometric information 
about the overall structure must be either encoded in the 
marker or cannot be estimated by the robot at all, therefore, 

disabling the robot to do more complex tasks, which is the 
goal of the research presented in this chapter.

1.2  Contribution

In the CV and HRI/C supported D2RA approach presented 
in this paper (a) the robot is in direct physical collabora-
tion with the human during the task execution, (b) it moni-
tors and reacts to human intentions in real-time in order to 
execute tasks that actually require collaborative effort, and 
(c) it is able to learn from the collaborating human online. In 
the proposed approach, the robot uses CV to autonomously 
execute cognitively less demanding actions, such as moving 
in the vicinity of the detected object and moving in the vicin-
ity of the assembly point, while the human physically guides 
the more complex actions, such as grasping the object and 
then assembling the component. In this context, the use of 
detection (position, size, and orientation) without the need 
for markers within a robotic construction process, as pre-
sented in this chapter, is unique. Furthermore, HRI during 
the task execution is often critical to overcome the limita-
tion of robots’ cognitive capabilities required for complex 
actions, such as grasping Fig. 1.

2  Design‑to‑Robotic‑Assembly

D2RA is part of a larger Design-to-Robotic-Production-
Assembly and -Operation (D2RPA&O) framework that 
improve process- and material-efficiency as well as embed 
intelligence in building processes and buildings by (1) com-
putationally optimising material distribution and roboti-
cally producing building components (D2RP) and (2) by 
robotically assembling and operating those components 

Fig. 1  Node (right) developed by structural optimisation at macro and meso level (left)
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(D2RA&O) using sensor-actuators (inter al. Bier 2018). 
These approaches have been tested in a case study wherein 
the focus has been on D2RA supported by CV and HRI/C 
methods (Peternel et al. 2018).

The case study involved the development of urban fur-
niture. While furniture components vary in size and func-
tionality, they all were designed with structural, functional, 
and assembly considerations in mind. The design relied on 
a Voronoi-based approach displaying degrees of porosity, 
where the degree and distribution of porosity i.e., density 
were informed by functional, structural and assembly require-
ments. The prototyped fragment (Fig. 1) consisted of an opti-
mized node connecting linear elements of various length and 
thickness.

The project explored the notion of hybrid componential-
ity involving 3D printed nodes and cut and/or milled linear 
elements assembled into a larger structure. It involved com-
putational design using Grasshopper scripts for variable Voro-
noi-cells distribution and structural optimisation. While the 
variation in cell size and distribution corresponds to functional 
requirements facilitating activities such as lounging, seating, 
and climbing, the variation in length and size of the linear ele-
ments resulted in the structural optimisation process (Fig. 2) 
presenting thicker members at the bottom of the structure.

3  Computer Vision

Computer Vision (CV) is used to recognise the location from 
which the building components, in this case linear elements 
of various sizes, are to be picked up by the robotic arm. The 
goal is to use only a (small set of) camera(s) at the construc-
tion site and no individual markers. In this project, a digital 
camera is placed above the scene where the design compo-
nents are placed. A top view is chosen to make sure that the 
picking place is effectively represented in 2D plane, there-
fore, the physical distance (measured in terms of meters) is 
directly proportional to the distance in the image (measured in 
terms of pixels). From such an image, image processing and 

manipulation techniques are used to detect the building com-
ponents, estimate their sizes, and compute their center points.

In this project, four main steps are distinguished: pre-
processing, warping, detection and size estimation, and 
computation of the center point. Fundamental techniques 
that are used for pre-processing involve Gaussian blurring to 
de-speckle the image, Canny filter to extract the edges, and a 
sequence of morphological operations (dilation and erosion) 
to enhance the edges. For detecting the rectangular frame, a 
contour finding technique (Suzuki and Abe 1985) is applied, 
from which the bounding box (tightest fitting rectangular 
frame) can be easily extracted. The image is perspectively 
warped, and its modified version is perfectly encompassed 
by the frame. The pixel per metric is computed based on the 
(known) sizes of the frame Fig. 3.

An equivalent contour finding technique is used for 
detecting the linear elements (now as a set of elements 
instead of one element). The set of associated bound-
ing boxes is compared to a query i.e., the particular linear 
element to be ‘picked-and-placed’. The element with the 
bounding box that is the closest—based on the minimization 
of the squared distances—to the query is taken to be the one 
to be picked up. The coordinates of the center point, w.r.t. 
the known corner of the rectangular frame, is computed for 
this element only and sent to the robotic arm.

All consecutive steps are implemented in Python. The 
OpenCV library7 was among several others used for image 
processing. The publicly available Github repository8 shows 
in-depth how the pipeline can be implemented with two 
ready-to-be-used Google Colaboratory guiding notebooks 
and a self-constructed Python library.

Fig. 2  Proposal for structure 
that can be partially dis- and 
reassembled with various func-
tionalities (left) and structural 
performances (right)

7 OpenCV. (2015). Open Source Computer Vision Library. https:// 
opencv. org/.
8 Khademi, S., van Engelenburg, C., Github repository for “1:1 Inter-
active Architecture Prototypes” https:// github. com/ caspe rvane ngele 
nburg/ 1on1- proto typing- IA- CV- sessi ons.

https://opencv.org/
https://opencv.org/
https://github.com/caspervanengelenburg/1on1-prototyping-IA-CV-sessions
https://github.com/caspervanengelenburg/1on1-prototyping-IA-CV-sessions
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4  Human–Robot Interaction/Collaboration

In the automated and HRI-supported assembly phase, the 
CV script links with the robotic process. This allows the 
robot to distinguish, locate, and measure the objects, and 
identify a work frame and its elements. While the picking 
of the linear elements is fully automated, assembling them 
into the node is HRI-supported (Fig. 4). The robot in this 
task supports the human user by bearing most of the load 
during assembly. The role of the human is to use their supe-
rior cognitive capabilities to handle complex aspects of the 
task, such as, supervising the grasping and manipulation 
of pieces, orienting the pieces that are being manipulated 
by the robot and thus ensure completion of the task. Before 
attempting assembly, a calibration step is performed to cor-
rectly identify the object and target extrinsic pose informa-
tion relative to the robot. All programming was implemented 
in Python 3.7 and communication between the robot and the 
host computer was accomplished via the Robotic Operating 
System (ROS).

4.1  Extrinsic calibration

The robot is first put into a free-floating (gravity compensa-
tion) mode of operation, only applying enough torque to the 
robot’s motors to compensate for its own weight. This allows 
the robot to be free and easy to move/manipulate by a human 
user. The robot is then moved by the user such that its end-
effector9 is in contact with the corner of the table that holds 
the components. This location is then saved via a keypress 
by the user such that the robot will always know the loca-
tion of the table’s coordinate system relative to its own base 
frame. While this is a simple step, it allows for the robotic 
and CV systems to operate completely independent of one 
another such that the robot does not require any knowledge 
of the camera or its location to complete the task. Once the 
table location has been stored, the robot is manually moved 
to its goal location (i.e., the final assembly position at which 
the user expects to assist the robot with the assembly). This 
goal location can be anywhere within the feasible workspace 
of the robot and in this case is defined by a mounting point 
where the assembly node was secured. This extrinsic pose 
information of the table and node, along with the object 
detection of the individual components lying upon the table 

Fig. 3  CV to detect the location and center point of a query

Fig. 4  Automated and HRI/C supported assembly

9 SoftHand robotic gripper (qb-robotics: Cascina, Italy).
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(as afforded by the CV system) is all that the robot needs to 
plan trajectories to each of the objects on the table and from 
each object location to the target node position (Fig. 4).

4.2  Robotic control and motion planning

A Cartesian impedance controller (Hogan 1985) is used to 
regulate all robot poses and to track the planned trajecto-
ries during the pick and place tasks. This controller is ideal 
for accommodating safe human–robot collaboration as it 
does not require precise position or force control (which 
can result in fast/powerful movements that might endanger 
a user within the robot's workspace) to accomplish its goals. 
Instead, this control strategy relies on desired reference posi-
tion inputs for the end-effector with settable stiffness and 
damping components. Thus, the end-effector will behave 
as if spring and damper have been fixed between its actual 
position and input reference position. Using relatively low 
stiffness, the robot will attempt to maintain a pose or track a 
trajectory,10 while also accommodating physical collisions 
or outside forces from its environment in a gentle (low con-
tact forces) and human-friendly manner (inter al. Peternel 
and Ajoudani 2017; Peternel et al. 2018, 2019; Lamon et al. 
2019). The stiffness of this virtual spring/damper can be 
set with a trade-off between precise but less safe (high stiff-
ness), and less precise positioning but safer (lower stiffness). 
To enable the pick and place task, trajectories must also be 
planned for the robot to move from its current position to 
each component and from each component’s position to the 
node/goal position. To plan these point-to-point trajectories, 
a 5th order polynomial approach was implemented (Angeles 
and Alivizatos 1987) that both determines a reference pose 
for the end-effector at every timestep along the path and 
ensures that the acceleration and velocity of the end-effector 
will be zero at the beginning and end of each trajectory. This 
is crucial for smooth and safe motion of the end-effector 
and, when combined with the soft (low stiffness) impedance 
controller, it allows for safe human collaboration with the 
robot during the entire assembly task.

4.3  Pick and place task

With this extrinsic calibration step, complete and the robot 
control system established, the robot and CV system can 
now operate together to complete the construction task. Once 
the components have been placed on the table, an image 
is captured showing the objects and tabletop. This image 
is then used to provide a clickable interface for the human 
user. The steps to completing the task are as follows. (i) the 
CV system detects and identifies the components placed on 

the table along with the components’ Cartesian coordinates 
relative to the corner of the tabletop (which corresponds to 
the table’s pose as set during the calibration step). (ii) The 
image and components are displayed on a screen and the 
human user can click any of the components to select them 
for assembly. The spatial location of that component is then 
sent to the robot which will automatically plan a trajectory 
to that position and guide the hand near the selected com-
ponent. (iii) Once the robot has reached the component the 
human can adjust the hand position until it is in the ideal 
grasping position, (iv) the human then commands the robot 
to close the hand and the robot plans a trajectory from that 
point to the calibrated node position. (v) Upon reaching the 
node position, the robot reduces the stiffness of its controller 
allowing the human user to manipulate the component into 
the correct place within the node.

5  Results and discussion

This methodology was tested with three different student 
groups who each tested the complete workflow from design 
to final HRI assembly. Each of the three groups was suc-
cessful in assembling their final design and the approach has 
proven to be effective with respect to establishing a robotic 
construction process, where humans and robots work side 
by side, however, various limitations were identified. An 
example trajectory can be seen in Fig. 5 where the robot 
is shown in both the pickup and assembly positions for a 
single component. The reference trajectory is tracked quite 
closely during the robot’s motion, however, larger deviations 
can be seen when the student moves and modifies the end-
effector pose during pickup/assembly phases of the task and/
or updates the reference position of the robot’s end-effector 
to better meet their needs.

The presented HRI/C implementation aims to simplify 
several key aspects of the perceptual and automation tasks, 
and this presents both limitations and opportunities for 
future work. Rather than attempting to fully automate the 
assembly process, via real-time visual feedback and pre-
cise position control, parts of these roles were left with the 
human user. A precisely controlled robot for example could 
achieve the objective of moving a component and fitting it 
into the desired node itself, but this would require: (i) high 
gain control (dangerous for humans within the vicinity of 
the robot), (ii) exceptional sensory feedback on component 
position, node position, etc., and (iii) careful calibration that 
goes far beyond what is necessary in the required extrinsic 
calibration step, while also needing to account for environ-
mental and sensor noise. Leaving some of these responsibili-
ties with the human user allows for a robust system capa-
ble of safely handling a diverse range of uncertainty while 10 In essence, a trajectory is composed of a series of desired refer-

ence positions for the impedance controller.
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offloading the physically difficult aspects of the task (lifting 
and moving of components) from the human.

While this is a functional division of responsibilities, 
affording additional capabilities to the robot would allow 
for improved performance across a range of different met-
rics. Real-time visual feedback on component and node 
position for example would enable capabilities such as 
faulty part detection or error correction in the event that 
one component or node is moved or misplaced. Likewise, 
component models (complete with geometry and moments 
of inertia) could be taken into account within the trajectory 
planning step to accommodate the weight of each compo-
nent (for improved gravity compensation) as well as the 
physical dimensions of the components to avoid collisions 
with objects, humans or the robot’s joints.

In the presented system, Artificial Intelligence (AI) has 
been used for detecting the scene with known components 
and for planning the robot actions as demonstrated by the 
human. Next steps are envisioned with respect to training 
the system to autonomously detect other/unknown objects 
in the scene and also identify faulty parts. Furthermore, 
the robot could employ reinforcement learning (Kober 
et al. 2013) to optimise trajectories and sequence of assem-
bly beyond what was demonstrated by the human.

Developing industrial applications in the future using 
this approach involves consideration with respect to scal-
ing up. Also, identifying the challenges and opportunities 
of prefab vs. on-site construction need to be investigated. 
This requires the involvement of industrial partners to 
test the approach in relevant environments and develop 
first small-scale industrial production. Another challenge 
in scaling to industrial applications is the payload limi-
tation of existing torque-controlled collaborative robots. 

Currently available systems are quite limited in their pay-
load capacity and thus may be unable to handle heavier 
components. While larger position-controlled industrial 
robots offer significantly greater power and payload capac-
ities, these systems are not collaborative and thus are not 
safe for humans to engage with physically. Finally, limita-
tions may also exist with regard to component grasping. 
Depending on the type, size and weight of components, 
traditional robotic grippers may be unable to safely grasp 
and hold certain components, thus custom grippers or a 
variety of grippers might be required to complete tasks on 
a larger scale.

6  Conclusion

The presented CV and HRI/C supported D2RA methods 
are linking design to assembly processes in which humans 
and robots work safely side by side. They rely on CV and 
HRI/C to pick and move the linear elements and then fit 
them into the node, respectively. They are proof of con-
cept for construction tasks that are thus partially auto-
mated, while also relying to a certain degree on human 
support. They can be employed in all assembly tasks that 
involve components of various sizes and require careful 
calibration.

Future work will focus on the integration of CV and 
HRI/C with D2RPA&O processes and scaling up to build-
ing scale with the goal to automate and HRI/C support all 
tasks in buildings and building processes. It will include 
improving trajectory planning to better accommodate a 
diversity of component geometries and weights and to pro-
vide for additional shared responsibility of the robot in 

Fig. 5  Trajectory tracking and adjustment. Left: the robot is shown 
in the pickup and assembly pose with reference and actual trajec-
tory shown. In both positions, the robot is moved and adjusted by the 
human to better accommodate the picking up and assembly of the 
components. Right: The end-effector position is shown for the full 

30-s trial. a During the pickup phase, the human can move the robot 
as needed and adjust the reference position. b The robot moves along 
the planned trajectory to the assembly pose. c In the assembly phase, 
the human is again able to adjust the robot’s pose as needed
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more cognitive aspects of the tasks (i.e., assembly failures, 
faulty part detection, automated selection of components 
during the build sequence etc.).

CV-specific future work will focus on more robust 
object detection, which is needed when building sites 
are ‘noisy’ due to dust or debris. The CV pipeline as it 
stands now, can be tweaked separately for various pickup 
places. The challenge is to deal with varying weather 
circumstances and pickup places. An option to circum-
vent the need for a very complex CV pipeline is to train 
instead data-driven object detection models, which will be 
addressed in future work.
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