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Abstract

Quantum communication can enable new features that are provably impossible with
classical communication alone. However, the optical fibers used to send the quantum
information are inherently lossy. To overcome the exponential losses over distance so-
called quantum repeaters are needed to amplify the signal. As opposed to memory-based
approaches, the third generation of quantum repeaters, also called one-way quantum
repeaters do not require two-way communication thus enabling very high communication
rates. In particular, the one-way quantum repeater based on photonic tree states proposed
by Borregaard et al. (2019) realizes this task with a very modest amount of resources.
Nevertheless, the method considered is susceptible to operational errors. In this work,
we propose the use of code concatenation of a stabilizer code and the tree code, so that
by measuring stabilizers of the stabilizer code and applying the syndrome corrections we
can achieve a fault-tolerant one-way quantum repeater. In order to do so, we present a
detailed protocol that uses the 5-qubit code. Moreover, we develop the first fully general
simulation framework for studying the performance of tree-code based one-way quantum-
repeater chains, which in this thesis is used to perform an analysis of the proposed
protocol. We find that the code-concatenation protocol under consideration has a similar
tolerance against operational errors to the protocol proposed by Borregaard et al. (2019).
Unfortunately, we are not able to draw a distinction between the tolerance of the two
approaches. We do however suggest modified protocols that may provide fault tolerance.
Studying these is beyond the scope of this thesis.
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CHAPTER

Introduction

Over the last several years, the word quantum has been used increasingly due to advances
in the field of Quantum Information Technology, such as Google’s quantum advantage

experiment [1]. Moreover, the European Union has announced that “the future is Quan-
tum” along with the investment of one billion euro embodied in the Quantum Flagship
programme [?] as part of Horizon 2020 [3]. Omne of the many projects that form the

Quantum Flagship is the Quantum Internet Alliance (QIA) [1], whose goal is “to develop
a Blueprint for a pan-European entanglement-based Quantum Internet, by developing,
integrating and demonstrating all the functional hardware and software subsystems” [5].
The proposed Quantum Internet [0] would make use of properties inherent to quantum
mechanics such as entanglement and superposition in order to bring extra features to
the already known and used classical Internet, which range from Quantum Key Distribu-
tion [7] as a provably secure communication, clock synchronization [¢] or blind quantum
computing [9] to a global 4-dimensional quantum positioning system [10].

Common to all the aforementioned applications is distributing an entangled state or
sending a single-qubit state over long distances. Long distance communication is also
a common feature of the classical Internet, which needs signal amplification at some
midpoints. However, in the quantum realm amplification is not allowed due to the fact
that quantum information can not be copied [!1]. Nevertheless, quantum repeaters [12]
were introduced as a more sophisticated and adequate method. The study of quantum
repeaters has evolved considerably since its first appearance in 1998. Nowadays, they
can be classified in three generations differentiated by the tools that they use to share
entanglement or send information and overcome possible losses and operational errors.
In particular, the third generation [13, 1], uses quantum error correcting codes as the
main mechanism to protect the information being sent.

Under the guidance of Prof. Wehner, a team of theoretical physicists, mathematicians,
and software engineers, the NLBlueprint Team, is working on simulating a Quantum
Internet for the Netherlands. The simulation allows us to investigate the requirements
for a reliable quantum communication and thus enable us to define further design and
research goals with the final goal to develop a realistic blueprint for a large-scale Quan-
tum Internet. This thesis has been realized in the framework of the NLBlueprint Team
contributing to the simulations of the all-photonic one-way quantum repeaters based on
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the tree code, a promising candidate of the third generation of quantum repeaters. In
particular, we highlight the approach taken by Borregaard et al. in [15] which requires a
very modest amount of resources in order to successfully perform quantum communica-
tion. Despite the efficiency in terms of losses, the method considered does not perform
fault tolerantly against operational errors.

In this thesis we direct our efforts towards a fault-tolerant one-way quantum repeater.
The main contributions of this thesis are:

We propose a protocol that uses code concatenation in order to achieve fault-
tolerance in the one-way quantum repeater with minimal resources. The code
concatenation is composed of the tree code and a stabilizer code, which is used to
detect and correct the errors that the previous encoding [15] is unable to.

We develop the first fully general simulation framework for studying the perfor-
mance of tree-code based one-way quantum-repeater chains.

We compare the behaviour of this protocol to the previous non-fault-tolerant
protocol in [15] in order to assess a potential improvement of the error tolerance
using the framework of the developed simulation.

OUTLINE AND CONTRIBUTIONS. The structure of this thesis is the following:

e In Chapter 2 we introduce the concepts and definitions that are used throughout
this thesis. We start by a short introduction on quantum repeaters, channels, and
codes in order to build the intuition for the subsequent chapters. Special attention
is given to the tree code and an application of it in the one-way quantum repeater
as they are the main ingredients of this thesis.

e In Chapter 3 we present the core of our contributions. We start with a discussion
on the choice of the codes to be used in a code concatenated one-way quantum
repeater. Next, we present a preliminary protocol and a general method to measure
the stabilizers in the proposed code concatenation. This leads to an examination of
the required characteristics for a specific outer code. Finally, two protocols for the
code concatenated one-way quantum repeater using the 5-qubit code as outer code
are defined, where the first one is used as a stepping stone for the second one.

e Chapter 4 contains the results of the analysis of the behaviour of the protocol
presented in the previous chapter and its comparison to the one-way quantum
repeater with the tree code, introduced in Section 2.5. First, we motivate the
simulation of the code concatenated one-way quantum repeater. Next, the tools
used to develop it are introduced. Later, a detailed explanation on the choice of the
branching vector and loss probability for the simulation is presented, together with
a verification of the simulation. Finally, the results of a first approach are presented
and lead us to propose a better strategy, from which we give an analytical study
and some preliminary results.
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Background

The goal of this chapter is to introduce a solid theoretical background information needed
to understand the work presented in this thesis. As a first step in 2.1, quantum commu-
nication and its main problems are introduced in order to motivate quantum repeaters,
which are explained with a focus on the one-way quantum repeater. Next, in 2.2 an
explanation to understand how the noise of quantum channels works and how to quan-
tify it is presented. Following, in 2.3 an overview of Quantum Error Correction is given
targeting a more detailed explanation of stabilizer codes. Then in 2.4, graph states, the
tree state and tree code, which belongs to the family of stabilizer codes, are carefully
detailed. Finally, in 2.5 an application of the one-way quantum repeater using the tree
code is introduced.

2.1 Quantum communication and quantum
repeaters

Quantum communication [10] relies on the principles of quantum mechanics to transmit
quantum signals over distances. This communication can be used as means for large-scale
distributed quantum computers [17] or a secure communication using cryptography [15],
by means of the widely known Quantum Key Distribution (QKD) protocol, amongst
many others. One realization of this field is the Quantum Internet [0, 19], which has the
goal to enable quantum communication between any two points on Earth, thus requiring
transmission and distribution of quantum signals over long distances. In order to do so,
the signals need to be sent through a quantum channel such as an optical fiber or free
space [20]. Currently photons are used as means to carry quantum information or as the
so-called “flying qubits” [20]. Moreover, the sent photons through fiber or free space are
subject to losses, which increase with the channel distance.

Unfortunately, the average distances involved in telecommunication networks are typically
of the order of hundreds or thousands of kilometers. This implies a severe constraint when
it comes to channel losses, thus, limiting the transmission of such signals. In classical
communication this issue is also present, and it is overcome by signal amplification at
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intermediate points of the channel. However, in the quantum world this is not possible

due to the no-cloning theorem [!1], which deprives a quantum signal of such operation.
Therefore, quantum repeaters were proposed as an alternative approach. Those were first
described in 1998 by Briegel et al. [12] as intermediate connection points, which are a tool

used in each node of a segmented long link. A few years later, the first quantum repeater
architecture was proposed by Duan-Lukin-Cirac-Zoller (DLCZ) using atomic ensembles
and linear optics [21].

2.1.1 Overview on quantum repeaters

Before going any further, it is important to mention that quantum states have a property
known as entanglement, which is strictly inherent to the quantum world and its quantum
non-locality [22]. It is at the very core of quantum communication protocols to send
or share quantum information. The latter is done by generating an entangled quantum
state and distributing it. This can be achieved in a variety of approaches depending
on the physical implementation of choice. In particular, the probability of success for
generating a single entangled link through a fiber using photons scales exponentially
with the distance of the link L, such that e=%/%0 [23], where L, is the attenuation length,
which is a parameter that characterizes the loss of the fiber. Overall, the idea of using
quantum repeaters is to break one long segment or link into several smaller ones, called
elementary links in order to increase the success probability of entanglement distribution.

A memory-based quantum repeater extends this entanglement between all the elementary
links so that entanglement between the initial and end node is achieved. Therefore, a
quantum repeater relies on:

e Entanglement distribution: a process that allows the generation of entangle-
ment over elementary links. This is typically performed by means of heralded
entanglement, which requires a two-way classical message between the sender and
the receiver to be able to know if the entanglement was successful or not.

e Entanglement purification: a process that create a more highly entangled state
from lower quality entangled states. The original scheme was presented by Bennett
et al. [21] and many more have been proposed ever since.

e Entanglement swapping: a process where by means of a Bell state measurement
a longer entangled link between adjacent repeater nodes is achieved [25, 20].

So far only conventional quantum repeaters have been considered, this is because there
are different families of quantum repeaters that depend on the requirements or tools that
they use to deal with losses, errors and waiting times. The conventionally presented
ones in introductory literature correspond to the first generation of quantum repeaters.
There is a second generation of quantum repeaters, where instead of using entanglement
purification, quantum error correcting codes are used to perform the same task. Finally,
there is a last third generation that uses quantum error correcting codes to both create
and distribute entanglement and to purify it, which avoid communication delays. The
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focus of this thesis is on this last generation, which is explained in more detail in the
following subsection.

In this thesis the other generations will not be explored in further depth, for the interested
reader the following sources are given and are the ones mainly used [23] and [27].

2.1.2 One-way quantum repeater

The first and second generation quantum repeaters use heralded entanglement to perform
entanglement distribution. This procedure requires a classical message to herald the
successful entanglement distribution. Before this message is received at the end node,
the qubits in the nodes where the distribution is being performed are not available or in
other words, they need to “wait”. In order to avoid the need of sending classical messages
when sending a quantum signal between repeater nodes, the signal needs to be encoded
in a loss tolerant manner [23].

Therefore, the goal of the third generation quantum repeaters is to use loss tolerant codes
in order to avoid waiting times. In particular, photonic loss tolerant codes are widely
used, these aim to initially send a matter qubit with encoded information, a message
qubit, by encoding it in a multi-photonic loss-tolerant code and send those photons to
the next repeater node. This first node is called the sending node or station. Then, at
the next repeater node the information is transferred back to matter qubits so that one
can know if the state was lost on the transmission between nodes. Finally, these retrieved
matter qubits act as the new message qubits, which are then again encoded into photons
and sent to the next node. This procedure of receiving photons and retrieving the encoded
information in matter qubits and then use those to encode again the information and send
it is called the re-encoding procedure. This is repeated at each intermediate node of the
repeater chain until the end node is reached, where the information is finally retrieved.
This approach also allows generating entanglement over long distances by sending an
entangled qubit along the chain of repeaters.

Thus, the intermediate nodes are used for “refreshing” the loss-tolerant code so that the
matter qubits in the nodes do not require long-lived quantum memories as in the heralded
entanglement approach. In this generation the system sends information along the links
in one direction, from sender to receiver, making the transmission rate of the chain to be
determined by the slowest component.

The use of quantum error correcting codes requires that the memories are able to reliably
store the state during the process of error correction, making it completely independent
of the communication time between nodes. The use of error correcting codes for both
operational errors and losses requires more advanced operations than in the previous
generations in turn requiring higher gate fidelities.

In short, the third generation quantum repeaters do not need long-lived quantum memo-
ries nor two-way communication between sender and receiver. These quantum repeaters
are also called one-way quantum repeater since they send only information in one direction
without the need of pre-established entangled links. In order to protect the quantum infor-
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mation from losses and errors they use photonic encodings and quantum error-correcting
codes. Consequently, the distribution rate in one-way quantum repeaters is significantly

boosted [23]. Finally, note that the one-way loss tolerant codes can only tolerate losses
up to 50% [2%]. Intuitively one can see that re-encoding when there is a 50% of losses
or more is impossible due to the fact that the no-cloning theorem [11] would be violated

[29]. This restriction leads to shorter distances between nodes, which for a conventional
telecom fiber, which has Ly ~ 22 km, the inter-node distance is approximately 15 km.

Many approaches to the one-way all-photonic quantum repeaters have been proposed as
in [13], [1D], [30], and [31] amongst many more. A general challenge for this family of
quantum repeaters is how to physically implement an effective generation of multi-qubit
error-correcting codes and perform error correction.

2.2 Quantum noise and secret-key rate

Noise in a quantum system can be understood as the interaction of the quantum system
with some other environment system. This quantum system and its interaction form an
open quantum system, in which one wishes to neglect or average over the dynamics of
the environment. To model this interaction the formalism of quantum operations is used
as it describes generic state changes without explicit reference to the passage of time.
Consider some initial state of the quantum system p, and a final state p’ (in the density
matrix representation) are related by a quantum operation &, such that p’ = £(p). This
operation captures the dynamic change to a state which occurs as the result of some
physical process. The behaviour of an open quantum system can be modeled making use
of the operator-sum representation [32]

Ep) = 3 EwpE, (2.1)
k

where E, are the operation elements for £ known as Kraus operators, satisfying >, E;iEk =
I if the quantum operation is trace-preserving, which is the case that will be considered
throughout the text.

From a quantum communication point of view, one must assume that the exchange of
quantum information through a quantum channel is subject to noise, just like in classical
communication. In the classical case, the noise can only flip or erase a bit. Whereas the
noise introduced in a quantum channel can be a continuum of errors on a single qubit.

Definition 2.2.1. A quantum channel is a linear, completely positive, and trace-
preserving (CPTP) map, that maps density matrices to density matrices preserving both
their trace (Tr(p) = 1) and positiveness (p > 0). So that in the operation-sum represen-
tation a noisy quantum channel can be represented by equation 2.1 and >, E,iEk =1.

On a system of qubits, the noise of a quantum channel can be modeled and categorized
into two main groups: independent or correlated noise models. On the one hand, inde-
pendent noise happens for each of the qubits in a system independently in an uncorrelated
fashion. Such models are useful to describe the evolution of non-interacting qubits. On
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the other hand, a correlated system of qubits is more suitably described by an appropriate
correlated noise model given by the underlying interactions.

On this text the main focus will be on independent noise models on qubit systems.
These are a stepping stone that allows a simple single qubit analysis. At the same time
independent noise models fall into two categories, erasure/loss and arbitrary errors.

2.2.1 Independent noise models

Arbitrary errors correspond to probabilistic rotations of the qubit in the Bloch sphere.
As stated previously, the arbitrary errors are continuous. At the same time, the Pauli
matrices form an orthogonal basis for a two-dimensional Hilbert space [32] and therefore
the operators Ej, of a quantum channel can be written as,

Ep,=cil+ep X +eY +el 7, (2.2)

where ¢ belonging to complexes are constants and the identity, 7, and Pauli matrices
are defined as

1:((1) ?)X:([l) é),yzc.] B’) andZ:((l) _01> (2.3)

Throughout the text the eigenstates of X and Z will be denoted as |0), |1), |[+) and |—).
Moreover, this shows that quantum errors despite being continuous can be corrected using
a discrete set of operations. Note that Y oc XZ, so that one only need to apply X and
Z gates to correct an arbitrary error.

In what follows, some examples of arbitrary errors and their quantum operations that
are going to be used throughout the text are presented.

Definition 2.2.2. A single qubit bit flip channel is a quantum channel that flips the
state of a qubit from |0) to |1) and vice versa with probability €. Its operation elements

are
Ey=+vV1—¢l, E; = eX. (2.4)

Definition 2.2.3. A single qubit phase flip channel is a quantum channel that adds
a phase of 7 to the state |1) with probability €. Its operation elements are

EO =V 1-— EI, E1 == \/EZ (25)

Definition 2.2.4. A single qubit depolarizing channel is a quantum channel that
depolarizes a qubit with probability e. This means that with probability €/4 a qubit will
have a X (bit-flip), Z (phase-flip) or Y (bit-flip and phase-flip). Its operation elements

are
3e € € €
EO—Ul—Z], El—\/gX, EQ—\/£K Eg—\/gZ. (2.6)

Previously also erasure or loss were mentioned, which behave analogously to the classic
case. The qubit is lost and a classical flag is generated, indicating that the qubit has been
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erased. Given that there is no way of predicting where a loss has happened, measurements
are used to reveal that information and this is why a classical flag is needed. In general
this can be analyzed by the erasure channel.

Definition 2.2.5. A single qubit erasure channel is a quantum channel that erases a
qubit with a probability u. After such quantum channel an initial state p, a 2 x 2 density
matrix, is

Eerasure (p) = p|L) (L] + (1 — u)p, (2.7)
where (L|p|L) = 0.

This channel is used as a simple model for physical setups in which the quantum infor-
mation can be lost, like optical fibers for single-photon communication [20].

2.2.2 Determine the impact of noisy quantum channels

After a quantum system has undergone errors, one is interested in comparing the initial
and final states in order to quantify the errors. For that purpose, the concept of secret-
key rate is introduced in this text. As previously seen, when information is sent through
a quantum channel it is subjected to both losses and errors. Consider now two parties
that will take place in the exchange of information, Alice and Bob. The secret-key rate is
a parameter that takes into account both the quantity and the quality of the information
that Alice sends to Bob through a noisy channel.

The origin of this parameter is in the realm of quantum cryptography, since it is derived
from the Quantum Key Distribution (QKD) protocol, which allows for secure communi-
cation. This protocol enables two parties, Alice and Bob, to produce a shared random
secret key that only they know, which allows the secure communication, since it is used
by the two parties to encrypt and decrypt the information they want to share. In this
text the focus is on the first quantum cryptography protocol, presented in 1984 by C. H.
Bennett and G. Brassard, hence the name BB84 protocol [7].

The highlight of this protocol is that only requires preparation and measurement of single
qubit quantum states. The BB84 can be described in five steps [33, 31, 35]:

1. Preparation: Alice prepares a quantum state based on the
choices at random of two parameters, 64 = {0,1} and z, =
{0,1}. 64 determines the basis of the state, where 0 corresponds
to the Z and 1 to the X basis and z 4 determines the bit that will
be prepared. Following this, the possible states are determined
by H% |z4), where H denotes the unitary Hadamard gate®, such
that the possible states are |0), |1), |+) and |—), which in this
context are known as the BB84 states.

2. Distribution and measurement: Alice sends N qubits , all
chosen at random from the BB84 states to Bob. Then Bob mea-
sures the N states he receives using a basis chosen uniformly at
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random A = {0,1} for each qubit. The outcomes of the mea-
surements are labeled x5 = {0, 1} for each qubit.

3. Sifting: Alice and Bob share the basis they have used 64 and
Op for each of the N qubits and discard all the rounds where the
basis do not agree.

4. Parameter estimation: Alice chooses n rounds from the re-
maining ones to test and communicates to Bob which ones she
has chosen. For those rounds, they share the bits x4 and xp.
From those values they compute an error rate, which if it exceeds
a threshold the protocol is aborted. If the protocol is not aborted
the m remaining bits constitute the raw key.

5. Information reconciliation and privacy amplification: In
this step, Alice and Bob implement an information reconciliation
protocol such that Bob can correct his xgs from errors that may
have occurred during the communication. Lastly, a privacy am-
plification protocol, is applied to transform the m bits of the raw
key, which are partially secure, to a secure key of [ < m bits.

%The single qubit Hadamard gate is

()

From step 4, Alice and Bob need to estimate the values of the quantum bit error rates
(QBERS) in the X and Z basis, Qx and @)z. The QBER in a particular basis corresponds
to the probability that the outcomes that Alice and Bob get when they both measure their
systems in the corresponding basis are different. To quantify the quality and quantity of
this secret secure key, the secret-key rate is defined as the number of key bits generated
per channel use [35]. For the presented BB84 protocol, the secret-key rate is computed
as follows [33],

Rppss = 1 — h(@x) — h(Qz), (2.8)

where h(z) = —zlogx — (1 —x)log(1 — ) is the binary entropy. Since the secret-key rate
is related to the QBERSs one can see from equation 2.8 that it will decrease with increasing
the error in the channel, and it will become zero for a certain bound, called mazimum
tolerated channel noise. For example, if the depolarizing noise channel is considered, the
BB84 protocol it is agreed that it can tolerate up to a 11% of QBER, so that for higher
QBERs the secret-key rate is zero [33]. The main quantum channel we want to focus on
is the the one-way quantum repeater chain for which we need the insights of Quantum
Error Correction.
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2.3 Quantum Error Correction

In the previous section, the main independent quantum channels have been presented.
As a continuation, in this section the focus will be on understanding Quantum Error-

Correcting Codes (QECC).

Quantum Error Correction (QEC) is strongly inspired by classical error-correcting codes,
however, there are three main problems that the quantum realm adds to the classical
error-correcting perspective. As stated before, quantum channels introduce a continuum
of different errors in a qubit. Moreover, one has to overcome two additional problems,
the no-cloning theorem [I 1], which states that the creation of back-up copies of quantum
states is not possible; and the loss of information due to the destructive measurement
or collapse of the wave function. Notwithstanding these difficulties, QEC is still possible

[32].

In what follows the focus will be on stabilizer codes, which have an analogous classical
version, the classical linear codes.

2.3.1 Classical linear codes

Before understanding QEC, it is instructive to take a look at the classical realm. By
doing this one can see that some of the techniques used in classical error correction can
be useful in the quantum case, specifically, the theory of classical linear codes has been
used to develop many widely used QECC.

Definition 2.3.1. A classical error-correcting code C over a finite alphabet ¥ is a
subset of >". Where X" is the set of all strings of length n generated by combinations of
elements from 3. [30]

The elements of a code are called the codewords. Also, a code has an encoding map asso-
ciated, which is used to map the possible messages to a different codewords. Therefore,
the code must be of the same size as the set of all possible messages. In general the al-
phabet is ¥ = Z,, where Z, is the set of integers modulo g. Throughout this text we will
only consider classical codes over Zy = {0, 1}. Then, the codewords will be composed of
n-strings of zeros and ones. Moreover, to determine and characterize the error-correcting
power of a code one shall talk about the code distance.

Definition 2.3.2. The distance d of a code is the minimum Hamming distance between
any two codewords, i.e.,

d = min d 2.9

Iin dy(z,y) (2.9)
TFy

where the Hamming distance dy(z,y) between two distinct codewords, = and y, is the

number of symbols in which they differ.

Definition 2.3.3. A classical linear code C is a classical error-correcting code that
encodes k bits into a n bit code. This can be specified by an n x k generator matriz G,
with entries from Z,.
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The matrix G maps messages into their encoded equivalent. So that, a k£ bit message x is
encoded as Gz, where the message is treated as a column vector. It is important to note
that throughout this section all the operations are done modulo 2. To characterize and
“name” any classical linear code the following notation is used. A code C'is a [n, k,d]
code, where n is the number of bits used to encode a k bit string and d refers to the
distance of the code.

Another equivalent formulation for these codes can be introduced in terms of the parity
check matriz H. All the n-element vectors z of a [n, k,d] code are such that, Hx = 0,
where H is an (n — k) X n matrix, with entries from Z,. Importantly, the distance d of
a linear code equals the minimum number of columns of H that are linearly dependent.
So a classical linear code can be compactly represented by either its generator matrix or
parity check matrix. If one is interested in reading further and how one can move from
one description to the other can check Chapter 10 Section 4 in [32].

2.3.2 Stabilizer codes

Stabilizer codes, also known as additive quantum codes, are a class of quantum codes
whose construction is analogous to classical linear codes. To understand stabilizer codes,
the stabilizer formalism will be now introduced as a powerful and compact tool with
which to describe an important class of entangled states, the stabilizer states.

Stabilizer Formalism

The stabilizer formalism is a more compact way of describing a quantum state.
Definition 2.3.4. The n-qubit Pauli group P, [37], is defined as

P, = {£1, i} x {I,X,Y, Z}*". (2.10)
An element of the Pauli group is called a Pauli product.

Definition 2.3.5. An n-qubit stabilizer group S [37] can be defined as an Abelian
(commutative) subgroup of the n-qubit Pauli group,

S = {Sl} st.— 1 ¢ S and VS“ Sj € S, [Su S]] = 0. (211)

An element from S is called a stabilizer operator, and the elements in the maximally
independent subset S, of the stabilizer group are called the stabilizer generators. Inde-
pendence in this framework means that any stabilizer generator cannot be expressed as
a product of other generators. Then, any of the elements in & can be generated by the
product of the stabilizer generators. Thus, a stabilizer group S can be expressed on terms
of its stabilizer generators S, and it is denoted by S = (S,).

Definition 2.3.6. The stabilizer state [¢), for a given stabilizer group S, can be defined
as a simultaneous eigenstate with eigenvalue +1 of all the stabilizer operators in S,

VSieS, Sily)=p). (2.12)
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It is sufficient if the state is an eigenstate with eigenvalue +1 of the stabilizer generators,

Vgi €Sy, gilY) = [). (2.13)

In general, when talking about a certain stabilizer state |¢)) one can say that it is stabilized,
or invariant under the action of the operators in §. Then, all the possible states that are
stabilized by the subgroup & form Vs, the vector space stabilized by S, and S is said to be
the stabilizer of the space Vs. Let [ be the number of elements in the stabilizer generator
group S,. If the number of qubits of the system, n, is equal to [ one can uniquely define
a quantum state, meaning that Vs is spanned by a single state. If [ < n, the degrees of
freedom can be addressed by using logical operators, which commute with all stabilizer
generators and are independent from them.

To clearly see how the stabilizer formalism works consider the following two-qubit stabi-
lizer group
Spetl = {1115, X1 X9, 2125, = Y1 Y5} (2.14)

Since all Pauli matrices anti-commute with each other and with the identity matrix it is
easy to see that all elements of Sgo; commute with each other. The stabilizer group is
generated by {X; X5, Z125}, since —Y1Y; can be expressed as a product of those two and
(X1X2)<X1X2) = (Z1Z2)(Z122) = [112. Therefore, SBell = <{X1X2, leg}> In this case
the number of stabilizer generators and qubits of the system is the same, so the stabilizer
state of Sgey can be uniquely defined, and it is

oty = 00 1) (2.15)

V2

At the same time, this state is also an eigenvector with eigenvalue +1 of the other
stabilizer operators like —Y7Y5. Now, consider that X; X, is removed from the stabilizer
generators group, then the states that are stabilized by Sgey are |00) and |11). By choosing
logical operators Lxy = XX, and Lz = Z;1, one can specify the state in the subspace.
For example, if Ly is chosen, then the eigenstate with eigenvalue +1 is |®7T).

To relate this formalism to the previous classical linear codes, the stabilizer generators
can be expressed using the parity check matriz. This is a [ x 2n matrix, H, whose rows
correspond to the stabilizer generators. The matrix is divided into two parts, the left-
hand side, Hx is a [ X n binary matrix, which contains 1s to indicate which generators
contain Xs; and the right-hand side, Hz is a [ X n binary matrix, which contains 1s to
indicate which generators contain Zs. If there are 1s in both side, this indicates a Y
generator. To make this more explicit, consider again Sgey, its parity check matrix is as
follows,

H:(HX|HZ):<(1) o0 (1)) (2.16)

More explicitly, consider the ¢th row of the matrix that corresponds to a stabilizer gen-
erator g;,

e If g; contains I on the jth qubit — jth and n 4 jth column elements are 0.

e If g; contains X on the jth qubit — jth column element is 1 and n + jth is 0.
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e If g; contains Y on the jth qubit — jth and n + jth column elements are 1.

e If g; contains Z on the jth qubit — jth column element is 0 and n + jth is 1.

The matrix H is analogous to the parity check matrix of the classical linear codes, so
that one can also define a generator matrix for the stabilizer codes G = (Gx|Gz). Then
all the properties that are present in the classical linear codes also apply to the stabilizer
codes, a detailed view on this analogy is presented in [35].

Clifford Operations

The stabilizer formalism can also be used to describe the dynamics of the stabilizer states
under a variety of quantum operations. This will be useful to later on describe quantum
error-correcting codes using the stabilizer formalism, and understand the effects of noise
and other dynamical processes on those codes.

The subset of all unitary quantum operations that map stabilizer states to stabilizer states
are the so-called (local) Clifford operations [39]. The Clifford operation can be defined
as an operation that transforms a Pauli product into another Pauli product under its
conjugation [37]. Consider a Clifford operation U on a stabilizer state |1}, defined by the
stabilizer group S = ({g}),

Ul) =Ugi ) = UgU'U [) = iU [¢) (2.17)

where g/ = Ug;UT. This equality indicates that the state U |¢) is stabilized by all g/.
Due to the fact that U is a unitary Clifford operation, the group {g;} is also an Abelian
subgroup of the Pauli group. Therefore, the state U |¢)) is stabilized by the stabilizer group
{g;}. So one can understand the action of U on the stabilizer state as a transformation
of the stabilizer group under the conjugation of U. In plain words, to understand how U
will affect the state one can only compute how it affects the generators of the stabilizer

group.

It can also be the case of an unitary U that takes elements from {g;} to elements of {g;},
then this U is said to be a normalizer of {g;}.

This property can be taken advantage of for certain special unitary operations U. Sup-
pose, for example, that U = H, where H denotes the unitary Hadamard gate that acts

on a single qubit,
1 /1 1
H = E (1 _1> . (2.18)

HXH' =Z, HYH'=-Y; HZH' =X. (2.19)

Note that,

This leads to the fact that after a Hadamard gate is applied to a quantum state stabilized
by Z, |0), the resulting state will be stabilized by X, |+) = H |0). Similarly, consider
a n-qubit state whose stabilizer is (Zy, Zy, ..., Zy,), that is the state |0)*". Applying
a Hadamard gate to each of the n qubits, leads to a final state which is stabilized by
(X1, Xs,,...,X,), which is easy to see that is |[+)®". In the usual description of the
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dynamics of a quantum system (state vector) the final state requires to specify 2" ampli-
tudes, meanwhile in the stabilizer formalism the dynamic transformation can be described
by (X1, X, ..., X,), which is linear in n. Many other unitary transformations or gates
can be studied like this example with the Hadamard gate, and it is precisely the possi-
bility of studying dynamic state transformations by an exponentially smaller amount of
memory is what constitutes the main advantage of the stabilizer formalism.

Errors in stabilizer formalism

So far, the basics of the stabilizer codes have been presented. The next step is to see how
this formalism can detect and correct errors in a quantum state.

Definition 2.3.7. A [[n, k]] stabilizer code, denoted by C(S), is the vector space Vg
stabilized by a subgroup S of P, and S has n — k independent commuting generators,

S = <gl> s 7gn—k>-
Suppose a stabilizer code C'(S) is corrupted by an error E € P,

e If F anti-commutes with an element from S, say that element is g, then {g, F} =0
and if |¢) € Vg, then

gEY) = —Egl|v) = —E ). (2.20)

Thus F |¢) is an eigenvector of g with eigenvalue -1 instead of +1, then the error
can be detected by measuring g.

e In the case that ¥ € S, the error does not corrupt the space.

e Finally, if £ ¢ S but commutes with all the elements of S, Eg = gFE for all
g € S, the error is neither detectable nor correctable. In this case, E is known as a
centralizer of S, and we will restrict to the case where the centralized are the same
as the normalizers; N(S).

Therefore, consider that {E;} is a set of operators in P, such that E]TEk ¢ N(S)—S for
all j and k. Then {E;} is a correctable set of errors for the code C(S).

The detection of the presented errors is performed by measuring the generators, g1, ..., gn_x
of the stabilizer group to obtain the error syndrome. The syndromes are given by the
outcomes of the measurement, my,...m,_x. Suppose the error E; occurred, then the
error syndrome is given by m,, such that EquE; = mgg,. This syndrome can either
correspond to a unique error operator F; or to many different error operators. In the
first case the error is corrected by applying E; However, if two distinct errors, £; and

Ej, have the same syndrome, applying EJ returns the state into the code space but not
necessarily corrects the error [32].

An error F its said to have a weight determined by the number of terms in the tensor
product which are not equal to the identity. For example, the weight of XY, 7 is three.
Similarly to classical codes, the distance d for stabilizer codes can be presented as the
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minimum weight of an element of N(S) —S. Then a [[n, k]| code with distance d, is an
[[n, k, d]] stabilizer code. An important property is that a code is able to detect arbitrary
errors on any t qubits if its distance is at least 2t + 1 [32].

Examples

Here the main stabilizer codes that will be used in the text are presented. In all the
examples an initial general state |¥) = «|0) + B |1), with |a|? + |B]? = 1, is considered,
so that £ = 1. Then this state is encoded in what is called a logical qubit, such that
(W), = a|0); 4+ |1);, where |0), is the logical zero state and |1), is the logical one state.
The logical states are different for each code and they are defined by the stabilizers of
the code.

e The 3-qubit repetition code, or also known as 3-qubit bit flip code which was
introduced by Asher Peres in 1985 [10], has generators g; = Z1Z5 and gy = Z2Z3,
such that the logical state is,

|U), = ]000),55 + 5 [111) 54, (2.21)

and
|0>L - |000>1237 |1>L - |111>123‘ (2-22)

This code only has stabilizers composed by Pauli-Z, therefore, it will be only able to
detect Pauli-X errors, which are commonly known as bit flips, and here the reason
of the code’s name. To understand how the syndromes work, suppose an error X,
then the outcomes of the stabilizer should be m; = —1 and my = +1, because
the error anti-commutes with g; but commutes with go. To prove it, first take the
corrupted state,

X1 W), = [V, = a[100),y; + B1011) 5, (2.23)

which, by applying the generators and following the commutation relations of the
Pauli matrices’,

g1 “I[/>L = 212, “I'/>L
= 72172, X1 V),
=-X121Z,|¥); (2.24)
= —X1|¥) L
== |\P,>L
so that m; = —1 as predicted. Similarly for g, my = +1. Now, all the possible
error syndromes and its corrections are presented in the following table:

Also, the logical operators of the logical qubit are,

X =X\ XoXs, Z=2,. (2.25)

Ya, b] = 2ieqpec, where a, b and ¢ can be any of the Pauli matrices, and €, is the Levi-Civita symbol.
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L14y | Zols Syndrome Correction
+1 +1 No error None
+1 -1 X error on qubit 3 X3
-1 +1 | X error on qubit 1 X4
-1 -1 | X error on qubit 2 X5

Table 2.1: Error syndrome and correction table for the three qubit bit flip code.

e The 3-qubit “rotated” repetition code or 3-qubit phase flip code is analogous
to the one above but in the X basis. Therefore, the generators are g; = X; X, and
go = X5 X3, such that the logical state is,

O‘|+++>123+5|___>123' (2.26)

Now all stabilizers are composed by Pauli-Xs, so only Pauli-Z errors or phase flips
will be detected. The logical operators are also analogous to the bit flip code,

7 =717:75, X =X. (2.27)
X1 X5 | XoX3 Syndrome Correction
+1 +1 No error None
+1 -1 Z error on qubit 3 Zs
-1 +1 | Z error on qubit 1 A
-1 -1 Z error on qubit 2 Lo

Table 2.2: Error syndrome and correction table for the three qubit phase flip code.

e The 9-qubit Shor’s code was introduced by Peter Shor, [11], in 1995. It is a
[9, 1, 3]] code that has distance 3 and therefore, is able to correct an arbitrary sin-
gle qubit error. This code has the following eight generators presented in Table 2.3.

a1
g2

N=SSEERES

AVA

ZoZ3

AVA

Zs5 g

AV

AVAS
X1 X X3X4 X5 X6
Xy X5 X6 X7 X5 X3

L Lo Zis Ly LisLig Zir Zig Zg
X1 Xo X3 Xy X5 X6 X7XsXg

Table 2.3: Generators and non-unique logical Pauli X and Z operators of the 9-qubit

Shor’s code.
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e The 5-qubit code or perfect code introduced by Laflamme et al. in 1996 [12] is
the smallest stabilizer code able to correct an arbitrary single qubit error. It can
be referred to as the [[5,1,3]] code and has the following generators and logical
operators presented in 2.4.

9 X1 2274 X5
g2 X1 XpZ375
g3 1 X9 X372,
94 | 22 X3XyZs
X | X1 X X3X, X5
VAR AV YA YAV

Table 2.4: Generators and logical Pauli X and Z operators of the 5-qubit code. One
can note that these generators have a cyclic property and therefore, is rather easy to
find other subsets that create four independent generators. This is why in the literature
different sets of generators are presented for this stabilizer code. In this text the presented
set will be used.

For the last two examples neither syndrome table nor logical state is presented, this is due
to the fact that the stabilizer formalism already includes that information by construction.

Quantum circuits for correction

In order to detect an error it is necessary that the generators of the stabilizer are measured.
As mentioned at the beginning of this section, one of the main limitations that QEC
presents is the destructiveness of quantum measurements. To overcome this problem and
be able to measure stabilizers, non-destructive measurements circuits were introduced
[32]. For a general single qubit operator M, with eigenvalues £1, this circuit looks as
in Figure 2.1. Moreover, the structure in Figure 2.1 is used X and Z in the stabilizer
measurements.

0) 1 H# H A~

M

Figure 2.1: Quantum circuit for measuring a single qubit operator M with eigenvalues
+1. The top qubit is an ancilla qubit used for the measurement, and the bottom qubit
is the one being measured.

2.3.3 Code concatenation

We have seen how it is crucial that for quantum error correcting codes to be able to encode
several physical qubits into a logical one. Code concatenation, as briefly presented in [13]
and [38], exploits this idea by recursively encoding the qubits. So that, starting with one
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qubit, this is encoded in several more and all them together for a logical qubit. This first
code used is called inner code or encoding. Next, this logical qubit is treated as an initial
physical qubit and is encoded in another code using more qubits, this code is called the
outer code or encoding.

From another perspective, the qubits of the codewords of a code C' are replaced by
encoded qubits of a new code C’. In this case the code C' would correspond to the outer
code, and C’ to the inner code.

Example: 9-qubit Shor’s code

A clear example of this procedure is the previously introduced 9-qubit code Shor’s code
[11], as it concatenates the bit-flip code and the phase-flip code [13].

First, consider an initial physical qubit in state |¥) = «|0) + §|1) encoded in an outer
code C, the phase-flip code, |¥), = a|+ ++) + f|— — —). Next, assume the bit-flip
code as the inner code C’, so that each of the physical qubits in the phase flip are now
encoded in a bit-flip code. Therefore, each |+) becomes \%(]OOO) + |111)), so the state
finally is,

W)eer = al0)cer + B o (2.28)

where,

1
10)oer = m(!OO@ +]111)) ® (|000) + |111)) ® (|000) + [111)) (2.29)
1
1w = —=(]000) — |111)) ® (]000) — |111)) & (|000) — |111)).
Dee 2\/§(|>|>)(|>|>)(|>|>)
Note that now three blocks of bit-flip encoding are present, which have the following sta-
bilizers, (Z1Zy, ZoZ3), (Z425, Z5Zs) and (Z;Zs, ZsZy). At the same time this three block
form a single phase—ﬂi_p block that has stabilizers X1 X5 X3X4 X5 X and Xy X5X6 X7 X5 Xo,
these correspond to XX, and X5 X3 from the phase-flip code, and where X is the logi-
cal operator from the bit-flip code. The non-unique logical operators in Shor’s code are
ZCC’ = 212427 and XCC’ = Z1Z223.

2.4 Graph states, tree state and tree code

In this section a detailed explanation of the tree code is presented. The tree code is a
quantum error correcting code based on a graph-like structure that enjoys many properties
of a set of states a known as the cluster states. The introduction on graph states is rather
superficial and focused on the ingredients needed to understand the concepts of the tree
code. For a more detailed and extensive approach one can look at [11].
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2.4.1 Graph states

A graph is a collection of vertices and a description of which vertices are connected by
an edge. Each graph can be represented by a diagram where a vertex is represented by
a point and the edges by arcs joining two vertices, which do not need to be distinct. In
the context of this text, vertices will denote qubits and the edges or bonds between them
will denote a certain entangling operation between them.

Formally, a graph is a pair

G=(V,E) (2.30)
of a finite set V' = {1,...,n} and a set F C [V]?, whose elements are subsets of V with
two elements each [11]. The elements of V' are called vertices and the elements of F

edges. In the case of simple graphs, which is a graph that contains neither loops (edges
connecting vertices with itself) nor multiple edges, the definition of graph states can be
presented in terms of their stabilizers.

Definition 2.4.1. Let G = (V, E) be a graph [11]. A graph state vector |G) is the
unique common eigenvector to the set of independent commuting observables:

K, =X, ® Zw
weN,

where N, denotes the neighbours of qubit v, which are the qubits directly linked to qubit
v. The stabilizer states correspond to the eigenstates with eigenvalue +1 of all the K, for
all v € V. The stabilizer subgroup S of the graph state is generated by the set S = ({ K,
|veV}).

In general to generate a simple graph state |G) with stabilizers S = ({K, | v € V'}), one
should prepare each of the qubits in V' in the |+) state, by applying a Hadamard gate
to an initial state |0). Then the edges E correspond to an entangling operation between
the pairs of connected qubits, which operation corresponds to a CPHASE gate. The
CPHASE or controlled phase-flip gate is a unitary gate that acts on a 2-qubit system,
and is able to create entanglement when applied to a product state,

100 0
010 0

CPHASE= [ o 1 o |- (2.31)
000 —1

An important property of graph states comes from the definition of their generators.
Consider measuring a graph state vector |G) following the pattern given by K, i.e.
measuring the qubit at vertex v in the X-basis and the vertices w in N, in the Z-basis.
The outcomes of such measurements, mX = 41 and mZ = +1, are constrained by K,
namely,

my [ mé4 =1 (2.32)

weN,

These constraints can be used as a tool to deal with losses in a graph state. To illustrate
this, consider a simple graph of only two qubits. The two qubits in the graph state will
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have labels 0 and 1. First, to generate the graph state the circuit in Figure 2.2 will take
place.

00) — H

Graph state
generation

=

01) —

Figure 2.2: Quantum circuit for the two-qubit simple graph generation.
So that the final state is,

Y1) = %(\Od [+1) + [1o) |=1)) (2.33)
1

V2

Now is easy to identify the stabilizers of this simple example. Those are XyZ; and Z, X},
such that,

(10 [01) + [=0) [11))-

XoZy |Yo1) = |Yor) (2.34)
Zo X1 [Yo1) = [vor) - (2.35)

Take the first one, if the observable X is measured then the outcome of Z; is known with
certainty. Therefore, from now on we can say that X is an indirect measurement of the
observable Z;. Thus, if qubit 1 undergoes a loss error and so it is no longer available, Z;
can still be measured indirectly. Performing indirect measurements is a helpful tool that
will be used recurrently in this text.

Each graph state vector |G) corresponds uniquely to a graph G, meaning that two different
graphs, G = (V, E) and G’ = (V, E’), cannot describe the same graph state’, |G) # |G").
However, two different graphs might have graph states that are equal up to some local
unitary (LU) operation. Two graphs G = (V, E) and G’ = (V, E’) are LU-equivalent, if
there exists a local® unitary U such that,

G =U|G). (2.36)

Now,
Y =USU" = {UsU'|s € S} (2.37)

where S is the stabilizer of |G), then ' |G') = |G’) for every s’ € ¥/. Now, one would
say that ¥’ is a stabilizing subgroup of |G”"). However, in general 3’ is not equal to the
stabilizer of |G"), since in general 3’ is not a subgroup of a Pauli subgroup. For ¥’ to
be the stabilizer group of |G’) one needs to consider U to be in the local Clifford group
of n qubits® [39], as seen in 2.3.2. So, from now on two graph states |G) and |G’) are

2See proof in [14]

3Locality refers to the systems associated with vertices of G and G’

4The local Clifford group on n qubits is C} := {U € U(2)y|UP,U' = P, }, which is the n-fold tensor
product of the one-qubit Clifford group C! := {U € U(2)|[UPUT = P}
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said to be LC-equivalent if and only if they are related by some local Clifford unitary
U, |Gy =U|G). As stated in proposition 4 in [11], any stabilizer state is LC-equivalent
to some graph state, the proof of such statement can be found in [15]. Similarly to this
statement, more generally for all stabilizer codes, any stabilizer code is LC-equivalent to
some graph code, quantum codes where an underlying graph determines them [1(].

The action of local Clifford operations in graph state can be generally described by the
local complementation, which is a rule for graph transformation.

Definition 2.4.2. A local complementation 7, acts on a vertex v of a graph G by
inverting the edges connecting the neighbours of v [11]. After such action, the graph is

G = 1,(G).

Then, by local complementation of a graph GG at some vertex v € V| one obtains an LC-
equivalent graph state |G’) = |7,(G)) = U (G) |G), where U7 (G) = e "5 Xveli®uvenZu is 4
local Clifford unitary, . Therefore, two graph states are LC-equivalent if the corresponding
graphs are related by a sequence of local complementations, i.e. G' =7, 0---07, (G)
for some vy, ...,v, € V. This is usually referred to as the LC-rule and this equivalence
is proofed in. [11].

Local Pauli measurements

The measurement of some Pauli operator X, Y or Z at a single vertex v in a graph state
is a useful trick used throughout the text. In general, it consists on a sequence of local
complementations together with the deletion of vertex v, together with some LC-unitaries
at vertex v.

Generically, a Pauli measurement of the graph state |G) at a vertex v results in a graph
state |G’) with the remaining unmeasured vertices.

Measuring vertex v in the Z basis: Removes the qubit v, up to a local Z rotation.

Measuring vertex v in the Y basis: Applies a local complementation 7, and
removes the qubit v, up to a LC-unitary.

Measuring vertex v in the X basis: Chooses any vertex v € N, applies a local
complementation 7,, applies the rule for measuring in Y and applying 7, again, up
to a LC-unitary.

The following notation P“* is used to describe projective measurements where, the sub-
index v denotes on which qubit the measurement is performed on, and i = X,Y, 7
indicates the basis of the measurement and the super-index 4 denotes the outcome of
such measurement, that can be £1.

Now, considering LC-unitarity, a projective measurement of X, Y or Z on the qubit
associated with a vertex v in a graph G yields up to local unitaries, U%*, a new graph



2. Background 22

state |G’) on the remaining vertices. The resulting graph G’ is:

1

PZE|G) = 5 1Z,4), @ U |G — v, (2.38)
1

PYE|G) = 5 Y, +), @ UYE |7,(G) —v), (2.39)
1

Pl;>(7:|: |G> = é |Xv :l:>y ® sz(’i |TU(TV o Tu(G) - V)> ) (2'40)

for any choice of some u € N,. The local unitaries U%* are:

UZt =1, U2~ = @uenin 2" (2.41)
U = @uen, (—iYa)?, U™ = @uen, (iYu)? (242)
USH = (i)? Queny-Nu—(u) Zus U™ = (=iYa)? @ueny no-t) Zo (243)
The local unitary for the measurement of X depends on the choice of u, but the different
choices result in graph states that ate equivalent via an LC-unitary. In Figure 2.3 some

examples with a graphical representation of the measurements in the different basis is
illustrated.

O O O O O O
Q @, Q O Q
O O O O O O

(a) Central qubit measured in the Z basis.

(b) Central qubit measured in the Y basis.

O & O o——=0

(c) Central qubit measured in the X basis.

Figure 2.3: Graphical representation of measuring in the different basis a qubit in a graph.
(a) in the Z basis, (b) in the Y basis and (c) in the X basis. At the left, the initial graph
G is represented and at the right the final graph G’ after the Pauli measurement is
represented. All the final graphs are up to a LC-unitary, as described in equation 2.38.
Additionally, in (b) an intermediate step has been drawn for clarity.
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Cluster states

A cluster state is a particular instance of a graph state, where the underlying graph
is a connected subset of a d-dimensional lattice. But in the framework of quantum
computation, only cluster states of dimension two and higher are useful as stated in
[17]. In the next part of this section, a more deep description of an example of a two-
dimensional cluster state, the tree state, is presented.

2.4.2 Tree states

The specific structure of a tree state can be characterized by a branching vector ¢ =
[bo, b1, . .., bg], which explicitly denotes the connectivity of the tree starting at the top
node, which from now on it will be referred to as the root qubit, through the d levels of
the tree.

Since the tree state is a simple graph state, its generation and stabilizers are analogous
to the general description for a graph state. To be able to refer to each one of the qubits
in the tree unequivocally, one should label the qubits as follows in Table 2.5.

Labels
Root qubit — 0
1st level qubits — 1,...,0g
2nd level qubits —  il1,...,1b1“
3rd level qubits —  ij1,...,ijby"

dth level qubits — i...k1, ... i... kb

% =1,...,bg, i denotes the label of the 1st level
qubit they are linked to.

bj =1,...,by, j denotes the label of the 2nd level
qubit they are linked to.

¢k =1,...,bs_1, k denotes the label of the d — 1th
level qubit they are linked to.

Table 2.5: Labels of the vertices/qubits in a tree code of branching vector ¢ =
[bo, b1, b2, . . ., ba]

A visualization of an example of such tree states with the proposed labelling of the qubits
can be seen in Figure 2.4.

Redundancy of the tree state

As seen for the general simple graph states, the outcomes of the measurements in a
stabilizer are constrained and this is used to perform indirect measurements. Now a
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Root qubit

Figure 2.4: Tree of depth 3 with branching vector [by, by, bs] = [2,2,2].

detailed look at indirect measurements on tree states is presented, as this is one of the
crucial features of these tree clusters.

In general, any given qubit within the tree state can be removed indirectly by performing
measurements on a subset of qubits below it in the tree. Now, consider that a Z mea-
surement in qubit 7, a first-level qubit, is to be performed. To do so, one has to pick one
of the branches under qubit ¢ and measure the 2nd level qubit, ij, in the X basis and 3rd
level qubits, ijk for k = 1,...bs, in Z basis. Therefore, the performed measurement is

Xij QmeN(ij)—i Lm; (2.44)

where the sub-indices in the Pauli matrices denote in which qubit they are applied to. This
expression is almost exactly the stabilizer for qubit 75, only Z on one of the neighbours
is missing. The latter is exactly the first-level qubit ¢, the one where an indirect Z
measurement is to be performed on. Then, the stabilizer for qubit ij is as follows,

Kij = Xij Qmen(ij) Zm- (2.45)

Measuring K;; would have outcome +1, since it is a stabilizer of the tree state, then the
outcomes of measuring X;; ®men(ij)—i Zm and Z;, will be both either &1, but they need
to be the same. This is how an indirect Z measurement is applied to a first-level qubit
in a tree state. An analogous procedure can be applied to any qubit in any level of the
tree, changing the levels of all the implied qubits in the indirect measurement. From this,
one can clearly see that the tree state has some redundancy to it making the tree state a
good candidate to deal with losses and errors given that a same outcome can be obtained
in a variety of ways.

2.4.3 Tree code

Now that the tree state has been introduced, one can use it to encode and protect
information, thus generating the tree code, which has been used previously in [30], [1¥]
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and in [15]. As previously stated, the tree state can be defined only with its stabilizers and
its branching vector, therefore, one can easily see that the tree code belongs to the family
of QECC of the stabilizer codes. Particularly, the tree code takes one qubit and encodes
it in a tree with branching vector ¢ = [bo, by, ..., ba], so that n = by + -+ + boby ... bg =
Z?:o [[j—ob; and k = 1. On the following parts of this section a detailed explanation of
the tree code is presented.

Encoding procedure

Consider an initial state «|0) + 8]1) and a tree state of branching vector ¢. A Bell
state measurement between the qubit with the initial state and root qubit needs to be
performed in order to encode the initial state into the tree code. In Figure 2.5 the
encoding procedure is drawn.

al0) + 81) 0 7

m, = *+1

—

Root qubit —4

A

Figure 2.5: Quantum circuit for the encoding procedure of the tree code.

The Bell state measurement has four possible outcomes (m; = +1 and m,, = +1), and the
encoded state or tree code will depend on them. In general, any measurement in the tree
with outcomes +1 is such that the state after such measurement will depend on them.
The post-measurement state with outcome +1 will be considered the correct state. Thus,
throughout the following sections the concept of correction will be used after any kind
of measurement in the tree with outcome —1, where the correction will be some kind of
logical operator on the tree.

The corrections for the encoding procedure to get the post-measurement state with out-
comes m; = +1 and m, = +1 are: if m; = —1 a logical Z needs to be applied to the tree
and if m, = —1 a logical X needs to be applied to the tree.

Stabilizers of the encoded tree

It is important to note that after performing the encoding, the tree “loses” the root qubit
and therefore, some of the stabilizers of the tree state are no longer possible to measure,
those are Ky < Xo, K; «x Zy for any i = [1, bo].

In general, the tree state before encoding is,
(W) o< [0)g [74) + [1)g |7-) - (2.46)

where the sub-index 0 denotes the root qubit and |71) refers to the states of other qubits
of the tree, which are also known as the sub-trees of the tree. These sub-trees have as a
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root qubit each of the first-level qubits. After the encoding procedure is done, that state
is,

W) o ¢ |74) +co|T-), (2.47)

where ¢; and ¢, are two complex numbers that depend on the encoded state and the
outcomes of the Bell state measurement. The states |7.) can also be interpreted as the
logical states of the tree code. If the state to be encoded was |0), the logical state would
be |1y ), therefore, it will be considered the logical 0 and same follows for |7_), which will
be considered the logical 1.

Now, consider T} to be an operator such that T; = ZyK; = X; H?1:1 Zij, then K; = ZyT;.
Since, K; |¥) = |¥), then Z, |V) = T; | V),

Zo|9) o< [0)g [74) — [1)g[7-) (2.48)

thus it follows that T; |71) = £ |73.). Therefore, the operator S;; = T;T} for i,j = [1, bo] is
such that T;7; | V) = |U), not that for i = j, S;; = I. Moreover, since T; does not affect
the root qubit, then the operators S;; are the stabilizers for the first-level qubits after
the encoding procedure. It is important to note that these stabilizers enforce correlations
between sub-trees in a same tree. In contrast, the already known stabilizers from the tree
state are only internal to each sub-tree.

Logical operations of the encoded tree

As said before, logical operations of the encoded tree will be used often as corrections that
need to be applied to the tree after any qubit measurement. The main logical operations
that will be used are the logical Pauli-X and the logical Pauli-Z. Generically and by
construction, operations on the tree code can be done either directly or indirectly, the
intuition for an indirect operation arises from the stabilizers of the tree.

e Logical Pauli-X: The operation can be done directly by applying Z to each of
the first-level qubits of the tree.

Lx =]z (2.49)

As any operator acting on a tree, this logical operator is not uniquely defined and
hence it can be performed indirectly on the qubits below the first level. If one
recalls the stabilizer Z;X;; HZ; Zijk, the effect of Z to the first-level qubit, Z; is
the same as Xj; HZ"’Zl Zijr on the qubits below 7. From this we learn that the
direct one is easier or “cheaper” since only requires a single operation per sub-tree,
while the indirect one requires more than one for trees of depth three or more.
Regardless of the choice, the effect of such logical operation on the logical states
defined previously, needs to be as follows,

LX |1y) = |74). (2.50)
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e Logical Pauli-Z: This operation can be performed directly in a single sub-tree by
applying X on the first-level and Z on the second-level and it is given by,

by
LZ = X; || Z;, (2.51)
j=1

where i € {1,b}. In this case one can perform Z on one of the second-level qubits
indirectly. This is analogous to the indirect Z measurement in logical X, but one
level below, X H?i 1 Ziji- Note that to do this one needs to have deep trees. Any
way, the effect of such logical operation on the logical states defined previously,
needs to be as follows,

LZ |T:|:> ==+ |T:t> . (252)

Note that the direct operation is the same as the operators 7.

Decoding procedure

To recover the state that was encoded in a tree one can make use of the properties of the
graph states. The decoding procedure consists on detaching all the qubits from the tree
but one of the first-level qubits which will be left with the same state as the qubit that
was encoded.

First, one needs to pick one of the first-level qubits to be the final qubit. Then, for all
the other first-level qubits and their corresponding sub-trees the recipe in Table 2.6 is
followed.

Detach a sub-tree
1st level qubit ~— measured in Z basis
2nd level qubits — measured in X basis
3rd level qubits — measured in Z basis

Table 2.6: Measurements to perform in a sub-tree to detach it from the tree.

This choice of measurements is motivated by the properties of those measurements on
the graph state. Recall that measuring a qubit in Z basis is equivalent to removing that
qubit and losing any connectivity from the rest of the graph. Thus, makes sense that
the remaining first-level qubits are measured in Z so that each sub-tree is detached from
the graph. Moreover, one can use the redundancy of the measurements of the tree to
also perform this Z on the first-level qubit in a sub-tree indirectly many times using all
the sub-sub-trees from the sub-tree. Since the outcomes of all the Z measurements, both
direct and indirect, in a sub-tree are correlated they can be majority voted®. In a scenario
where no errors are considered this is not necessary, but this is almost never the case so
that performing this majority voting also ensures some redundancy against errors.

5 A majority vote consist on deciding an outcome from a set of options. The final outcome corresponds
to the most repeated option in the set.
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After this, one is left with one entire sub-tree where the qubits on the second level or
below need to be detached. Once again, one can think about the leaves of this first-level
qubit as sub-trees to be detached. Therefore, the recipe presented in Table 2.7 is followed.

Detach a second-level sub-tree
2nd level qubits — measured in Z basis
3rd level qubits — measured in X basis
4th level qubits —  measured in Z basis

Table 2.7: Measurements to perform in a sub-tree in the second level to detach it from
the tree.

By doing this one recovers a single qubit state, which depends on the outcomes of the
measurements performed in the decoding. Those measurements are direct and indirect Z
measurements and thus those leave the state up to a Pauli-Z correction as seen in part
2.4.1, in particular in equation 2.41. Therefore, if the product of all the outcomes in the
decoding is -1, the single qubit state needs a correction of a Pauli-Z. When dealing with
losses one needs to take into account that in the first set of measurements, at least one
Z measurement per sub-tree, either direct or indirect, needs to be successful in order to
be able to know the right correction. Moreover, in the last step the Z measurements on
the second-level qubits need to be successful either directly or indirectly also to be able
to retrieve the right correction. Finally, to recover the information in the computational
basis an H gate needs to be applied. From this procedure its easy to get an intuition on
the recursion property inherent to the tree code.

Example: [3, 2] tree code

To show all the properties of the tree code a simple example is presented. Consider the
branching vector [3, 2], then the tree state for the 10 qubits is,

1

|‘1’>:W

(0)(J0) [+, +) + [1)|=, =N + 1) ([0) |+, +) = [D)]—,=)NF),  (2.53)

where this color represents the root qubit, this the first-level qubits and this the second-
level qubits. This state is generated by preparing all the qubits in the plus state and
performing a CPHASE between all the connected qubits. Also, |7+) can be identified,

me) = (10) [+, +) £ 1) |, =) (2.54)

Now, consider a qubit with state «|0) + 3 |1) that is encoded into the [3, 2] tree state by
means of a Bell state measurement, the resulting state is,

gy = Lot Q=m)f o (1= mat (L+m)B

442 42

where m,., m; = £1 are the outcomes of the Bell state measurement of the root qubit and
the information qubit respectively.

) (2.55)
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Now that the state of the tree code is explicitly presented for the [3, 2| case, its stabilizers
can be studied. In this case the T} operators are,

T = X212, Ty =XoZnZa, 1T3= X3Z3175. (2.56)

Each T; has the same effect on a different sub-tree, but that results on the same effect in
the tree, which is as follows,

Tilre) = (D)1= =) £[0)[+, +)(0) [+, +) = [1)]=, =))*, (2.57)

such that,
T |re) = & |74) (2.58)

for any 7 € {1,2,3} and this holds for any outcome of the Bell state measurement. As
stated previously, the new stabilizers are, 1175, 1573 and T1T3. Note that (T115)(T213) =
T1T3, and so only 11Ty and T5T3 are necessary. To prove that those are stabilizers, one
only needs to apply them to the state in equation 2.55. Now, there are eight generators
for the [3, 2] code, that has 9 qubits, are given in Table 2.8.

qn Z1 X1
g2 Z1X12
g3 Zo X9
94 Z2 X9
g5 Z3X31
g6 Z3X39
g7 | X1211212X9Z91 29
g8 | XoZo1Zoa X331 L3y

Table 2.8: Generators of the [3, 2] tree code.

This code’s generators are rather similar to Shor’s ones, in Table 2.3. Here are the steps
to make the similarities between these two codes more apparent. First, note that the
generators are not unique, for example, g, can be redefined to g5 = g19o = X11X12, and
similarly for g4 and g¢. Then, consider an H gate is applied to each of the second-level
qubits, so that now the stabilizers are the ones presented in Table 2.9.

Generators [3, 2] tree code Shor’s code
91 AVAR AV
g2 Z1Z12 ZoZ3
g3 Lo Ly YAV
g4 Zo1Zo) Zs5 g
gs 2323 ZrZg
Je 731232 Zg Zy
g7 X1 X 11 X120 X9 X1 X | X1 X X3 Xy X5X6
g8 X X1 Xoo X3 X31 X3n | Xy X5X6X7 XX

Table 2.9: Comparison of the generators of the [3, 2] tree code and Shor’s code.

Here one can identify the relation between the indices of the two codes. Remember that
the Shor’s code is obtained through code concatenation of the bit flip code and the phase
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flip code. This is such that qubits 1, 4 and 7 are encoded into a phase flip code and then
each of those qubits is encoded into a bit flip code, such that (1, 2, 3), (4, 5, 6) and (7,
8, 9) form three blocks of bit flip code and all together form a phase flip code.

By looking at the 'modified’ generators of the [3, 2] tree code and of the Shor’s code, one
can see that the three qubits of each sub-tree form a bit flip block and then these three
form a phase flip block. Or analogously, the first-level qubits are encoded in a phase flip
code and then each of those qubits is encoded in a bit flip code with their second-level
qubits. Therefore, one can say that the [3, 2] code and the Shor’s code are LC-equivalent.

Moreover, one can see how a tree code is a concatenated code, since the structure and
the entanglement relation between the root qubit and the first-level qubits is the same as
the one for a first-level qubit with its leaves or second-level qubits, and so on depending
on the depth of the tree.

Next, from 2.55 consider the outcomes m,., m; = +1, that correspond to the correct state,

1
v = ——(a|m) + B |12)). 2.59
| >correct 2\/5( | +> B| >) ( )
If instead, the outcomes were m,, = —1 and m; = +1, the state would look as follows,
1
v, . =—=(0|m) +alT)). 2.60
W) s = 575 1m) +alm) (2:60)
To correct this state an unitary operation such that U |7) = |75) needs to be applied.

This operation is the logical Pauli-X, U = LX and in this case this can be performed in
two ways for each sub-tree. The state of a sub-tree is,

0)]-+,+) £ [1)]—, —) (2.61)
and the operation needs to be such that the result is
0+, +) F [1)|—, —)- (2.62)

This can be done by either applying Z on the first-level qubit, or applying X to both
of the second-level qubits. Next, consider the state with outcomes m, = +1 and
m; = —1,

1
W) a1 = m(a 74) = Blm=). (2.63)
To correct this state an unitary operation such that U |7) = =+ |74) needs to be applied.
As seen before, the logical Pauli-Z has this effect, therefore U = LZ, which in this case is
done by applying an X to the first-level qubit and Z to the second-level qubit on one of
the sub-trees, which is essentially applying the operator 7T; in the ¢th sub-tree, as shown
in equations 2.57 and 2.58. Finally, if the outcomes are m, = —1 and m; = —1,

[¥) Blr) —alr)). (2.64)

_ 1 (
me,m;=—1 "~ 2\/5
The operations that need to be applied are both LX and LZ.

Lastly, the decoding procedure is presented in detail for this example. First, two of the
sub-trees need to be detached following the sequence in Table 2.6. Consider the state
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of a single sub-tree 2.61, then the first-level qubit is measured in Z basis and the
second-level qubits in the X basis. There are two possible outcomes, if the product
of the outcomes is +1, the post-measurement state is |0)|+,+) and if its -1, the post-
measurement state is £[1)|—, —). After doing this for both sub-trees, the state of the
tree is®,
%(&(WI#H + [1)]=, =) £ B0) |+, +) — [1)]=, =), (2.65)
2

where the + indicates the sign of the product of all outcomes. Next, the second-level
qubits are to be measured in the Z basis to detach them. Then a single qubit is left in
the tree whose state depends on the product of all measurements, including the ones on
the second-level qubits,

ol +) + B-), (2.66)

where the + indicates the sign of the product of all outcomes. Then if that value is
negative Z needs to be applied to the qubit and finally H to recover the state in the
computational basis, this way one recovers the initial state that was encoded in a tree
al0) + B|1) in one of the first-level qubits in the tree. In this example with the [3, 2]
tree code, the corrections applied throughout the different procedures have been explicitly
presented. These corrections are the same for any other tree code with different branching
vector.

2.5 Omne-way quantum repeater protocol with tree
code

In this section, the one-way quantum repeater protocol with the tree code is presented.
Both the one-way quantum repeater and the tree code have been previously introduced
in 2.1.2 and 2.4.3 correspondingly. The explained protocol is based on the one proposed
by Johannes Borregaard et al. in [15], based on photonic tree states.

One-way quantum repeaters do not require long-lived quantum memories nor two-way
quantum communication, so that in comparison with the other types of quantum repeater
their distribution rates are only limited by the slowest component enabling very high
communication rates. As the name suggest, the repeater chain only needs communication
in one direction in order to send or share a quantum state. These repeater require photonic
encodings and quantum error-correcting codes to protect the information against losses
and errors. Additionally, the tree code is used as the photonic encoding, a choice which
relies on the loss tolerance that this encoding shows due to its highly entangled and
redundant state.

The structure of an one-way quantum repeater chain with the tree code is formed by a
sending station, where the quantum information is encoded and sent to the first repeater
node. Then, at each of the repeater nodes a re-encoding procedure is done, until the end
node of the chain is reached and the information is retrieved. All of this is presented
considering that the photons are sent through a fiber and thus, are subjected to losses.
Finally, an analysis of the behaviour of such repeater chain under errors is explored.

60n the following equation, the measured qubits are discarded from the state.
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2.5.1 Encoding

At the first station, which can be called the sending station, a tree state is generated.
In [15] it is claimed that a photonic tree of depth d required for the repeater station can
be generated with d — 1 memory qubits (spin qubits) and one single photon emitter per
repeater station using repeated photon emissions. Moreover, one must be able to perform
CPHASE gates between neighbouring spins, where the spins are in a linear configuration.
This generation is done such that the root qubit of the tree is in one of the memory qubits
available in the repeater and the rest of the qubits in the tree are represented by photons.

After generating the tree, quantum information needs to be encoded in it by means of a
Bell state measurement as seen in 2.4.3. In particular, a message qubit, « |0), + 3 |1),,
is prepared in another of the memory qubits available. Then a Bell state measurement
between the root qubit and the message qubit, both in memory qubits, is performed
such that the tree code has been encoded and only the photons are left. Note that as
said in 2.4.3, corrections must be applied depending on the outcomes of the Bell state
measurement. Then the photons of the encoded tree are sent or transmitted through
fiber to the next repeater station, a process that may be subjected to photon losses.

In particular, the tree code or any other loss tolerant code can fundamentally never
tolerate more than 50% losses per elementary link. This corresponds to a distance of
approximately 15 km for a telecom fiber, which has an attenuation length L, ~ 22
km [23]. Thus, any one-way quantum-repeater chain could have at most this spacing.
However, in reality the spacing needed is probably smaller, as the code is probably not
near-deterministic all the way until 50% losses.

2.5.2 Re-encoding

The goal of an intermediate repeater station in the one-way quantum repeater is to re-
encode the retrieved qubit after the decoding in a new tree generated in that repeater
station. This procedure is somewhat similar to the procedure of encoding the message
qubit at the sending station. In broad terms, the re-encoding procedure consists in
generating a new tree of photons with a spin qubit as the root qubit, followed by a Bell
state measurement between the message qubit and the root qubit. So one can understand
that this re-encoding “refreshes” or “repairs” the encoded tree in order to be able to go
to longer distances.

As seen in the decoding procedure of the tree code in 2.4.3, the message qubit is recovered
in a photonic qubit of the first level of the tree. In order to do this, all the first-level
photons that are not used to retrieve the information are measured directly and indirectly
in Z, thus, detaching them from the tree up to a Z correction as seen in 2.4.1. This
(in)direct Z measurement is also applied to the second-level photons below the targeted
first-level photon

Then in order to “refresh” the tree, the re-encoding procedure requires a Bell state
measurement between one of the first-level photons of the encoded tree that arrives at the
repeater station and the root qubit of a new generated tree, along with the measurement
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of all the remaining qubits in the encoded tree as specified in the decoding procedure.

Note that the measurements in the decoding procedure do not need to follow any specific
order due to the fact that they are all on different sub-spaces. This allows for the re-
encoding procedure at each repeater station to be performed without prior knowledge of
which photons are lost. Specifically, one could first attempt a Bell state measurement
between one of the first-level photons and the root qubit of the new tree. While always
keeping in mind that the success of this measurement depends on if the selected first-level
photon is lost or not.

Therefore, the first approach that comes to one mind is a trial-and-error procedure to
perform a successful Bell state measurement. But this approach may damage or perturb
the root qubit of the new tree. Inevitably, every time the Bell state measurement is
unsuccessful, due to a lost first-level photon, one would have to generate a new tree. A
better approach would be to consider a re-encoding procedure that operates in a loss
tolerant manner. This is such that if the Bell state measurement is attempted on a lost
first-level photon, the measurement is aborted without perturbing the root qubit of the
new tree.

To avoid having to generate a new tree-cluster state every time there are losses, in [17]
the following procedure was proposed. A heralded storage of the message qubit in an
auxiliary spin qubit is performed first. This is obtained with a spin-photon controlled-
phase gate with a first-level photon of the encoded tree. Afterwards the success of the
storage is determined by the detection of the photon in the X basis. Depending on the
success one should proceed as follows,

e If the storage is unsuccessful due to photon loss, the auxiliary spin is reinitial-
ized and a new attempt is made with another first-level photon. Also, one wants
to detach the sub-tree that the lost first-level photon belonged to, following the
sequence in Table 2.6. This is such that the root qubit of the new tree-cluster is
unaffected.

e If the storage is successful, the auxiliary spin qubit can be referred to as storage
qubit. Then, a deterministic Bell state measurement is performed between the
storage qubit and the root qubit of the new tree. To teleport the encoded quantum
information into the new tree we need to leave the tree initially received in the
repeater station with no photons, this is done as specified in the decoding procedure
where now the selected first-level qubit has become the storage qubit. This is done
by means of (in)direct Z measurements on all first-level photons and second-level
photons under the targeted first-level photon. Finally, the re-encoding procedure is
complete.

The last step in the repeater station is to send the new encoded tree to the next repeater
station, where again the transmission may cause losses.
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2.5.3 Repetition and end node

This procedure of re-encoding and transmission is repeated until one reaches the end node
of the repeater chain. There the message qubit can either be transferred to an auxiliary
spin qubit as before, or directly measured without being transferred. The latter is done
by performing a sequence of measurements on the photons of the encoded tree which
consist on (in)direct Z measurements on all first-level photons and second-level photons
under the targeted first-level photon.

Note that at all repeater stations at least two memory qubits are needed in order to
perform the initial encoding and the re-encodings. Moreover, at each repeater station a
tree needs to be generated a processor with d — 1 memory qubits (spin qubits) and one
single photon emitter is needed. Therefore, in order to be able to perform this repeater
chain one must have two memory qubits, thus one is able to generate at least trees of
depth 3.

2.5.4 Errors

The simplicity of the presented protocol for the one-way quantum repeater is nothing
but an advantage. Yet one can still find downsides to it, such as the fact that this
specific encoding is not a fault tolerant encoding, meaning that is not able to correct
arbitrary errors. In particular, if an error happens on the qubits that take part into the
re-encoding Bell state measurement it will map into an error on the new logical qubit,
which is impossible to detect, track or correct. Thus, one can say that this encoding suffers
from a non-fault tolerant Bell state measurement. Therefore, this can be considered to
be the main bottleneck in terms of error tolerance of the one-way quantum repeater with
the tree code.

However, as seen in the decoding procedure of the tree code in 2.4.3, the tree code is not
fault tolerant but has a certain redundancy against errors. This comes from the fact that
in the decoding procedure the Z measurements in a sub-tree can be performed indirectly
and directly and the outcomes of those are correlated in such a way that they can be
majority voted in the scenario where errors are considered.

In this particular encoding one can think of the possible error sources, which include
but are not limited to the tree generation, which includes the emission of photons and
the controlled-phase gates between neighbouring qubits, the measurements performed on
the photons of the tree in order to decode it, the Bell state measurement itself and the
transmission of photons through fibers.

Moreover, from the tree generation procedure one can see that the errors between photons
in different levels in a same sub-tree should be correlated from a realistic point of view.
Specifically, the correlations in the tree code are created by the CPHASE gates between
a qubit in a certain level with its leaves, which are the qubits attached to it in a level
below, in such a way that if an error occurs in the higher-level qubit before this operation,
correlated errors are created in the leaves. This is true for trees and sub-trees.
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In the numerical optimization in [15] a single-qubit depolarizing noise, as defined in 2.2.1,
is considered. Moreover, they looked into how single qubit depolarizing errors add to a
total re-encoding error, €,.. Additionally, they considered that all the qubits that are
transmitted are subject to the same depolarizing rate €. For not very high €, these errors
can be mostly corrected making use of the redundancy of the tree code by majority
voting. However, if an error happens on the first-level qubit in the sub-tree were the
heralded storage succeeds there is no way of detecting or correcting it. The lower-level
qubits in that sub-tree are protected against errors if the depth is larger than 2, due
to the ability of performing indirect Z measurements. In general, by making the tree
deeper the redundancy of the measurements in the decoding increases, but one also has
to keep in mind that if many qubits are lost, there may not be much redundancy left in
the measurement results, making them more prone to errors.






CHAPTER

Code concatenation in the one-way
quantum repeater

Code concatenation has been presented as a tool used to make larger codes out of small
codes as it has been presented in 2.3.3 [35, 13]. Briefly, the idea behind code concatenation
is “double encoding” mainly because the physical qubits that form the logical qubit of
the outer code are in turn the logical qubits of the inner code. Then the physical qubits
of the inner code correspond to the “real” physical qubits which are subjected to this
double encoding.

As stated in 2.5.4, the main bottleneck in terms of error tolerance of the one-way quantum
repeater based on the tree code is that the re-encoding at each repeater station relies on a
single message qubit which is non-error-proof. This entails that at each repeater station
we must re-encode the quantum information in such a way that we are left with a single
message qubit which is encoded in a new tree-cluster state by means of a Bell state
measurement. If any error would happen in that qubit there is no way to either detect
nor correct that error, making the repeater chain very susceptible to errors.

Therefore, we propose to take advantage of the idea of code concatenation to avoid
depending on a single qubit in the re-encoding. The goal is to keep using the tree code
as inner code and use a stabilizer code as outer code.

In this chapter, first a discussion about the choice of the codes used in the encoding is
presented, followed by a preliminary protocol for the code concatenated one-way quantum
repeater. Afterwards, the method to measure stabilizers of the outer code on the inner
code is explained and the necessary characteristics of a suitable specific outer code are
discussed. Finally, two protocols for the code concatenated one-way quantum repeater
using the 5-qubit code as outer code are presented in detail.

37
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3.1 Choice of concatenated codes

In this section we want to discuss the main reasons of choosing code concatenation of a
stabilizer code, as an outer code, and the tree code, as inner code.

First of all, the tree code is used as the inner code as it presents an important loss
tolerance due to the redundancy inherent in its structure and inner entanglement [19].
In this code, a single qubit is encoded in a tree, the latter being a simple graph state
that can be characterized by a branching vector, which denotes the connectivity of the
different levels of the tree. The properties of graph states, tree states and the tree code
have been studied in Section 2.4.

Additionally, the choice of using a stabilizer code as the ones presented in 2.3.2, as
outer code is based on the fact that we want to perform stabilizer measurements in the
repeater chain, so that the errors that affect the outer code can be corrected. In order to
perform these stabilizer measurements on the outer code, the qubits in the inner code,
the tree code, will be used and discarded after each measurement. Moreover, this is
also motivated by the fact that the photons that form the trees have been discarded up
to now in the measurements to decode the tree. The usefulness of these photons can
be further expanded for stabilizer measurements. In this particular encoding the qubits
in the trees will be divided between the ones used for decoding and the ones used for
stabilizer measurements.

3.2 Preliminary protocol for the code concatenated
one-way quantum repeater

In this section we present a preliminary protocol on how the one-way quantum repeater
works with a code concatenated encoding. Importantly, this protocol is introduced as a
starting point for the later protocols. The main difference is that the present protocol
does not consider the stabilizer measurements and the protocols that will be presented
next will consider them. The reason why these measurements have not yet been added
into the protocol is because before making any specific choices we need to get more detail
on how they work and what they entail.

The preliminary protocol starts at the initial sending station, where a “double” encoding
needs to be performed. First the message qubit is encoded in a [[n, 1, d]] stabilizer code
and then each of the n qubits resulting of the first encoding are encoded into photonic
trees of a certain branching vector, which does not necessarily need to be the same for all
n trees. Then those n trees are sent to the first repeater station through a fiber. In the
repeater station each tree is re-encoded by means of a Bell state measurement between
one first-level photon and the root qubit of a new tree. Therefore, at each repeater station
n Bell state measurements are performed. Then, the re-encoded n trees are sent to the
next repeater station and so on until the end node of the repeater chain is reached. At
this last step, the n trees are decoded returning n qubits which are next decoded from
the stabilizer code, so that a single qubit can be retrieved.
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Figure 3.1: Code concatenated one-way quantum repeater with n repeater stations, using
the 5-qubit code, [[5, 1, 3]], as outer code and the tree code as inner code. The five edges
connecting the different repeater stations denote the five trees being transmitted.

In Figure 3.1 this protocol is sketched for the 5-qubit code as outer code, so that one
can grasp the main scheme of the one-way quantum repeater with code concatenation.
Previously, the protocol for the one-way quantum repeater based on an all-photonic tree
encoding has been presented in Section 2.5, where we have seen that this protocol requires
a processor with d — 1 spin systems and one quantum emitter per repeater station for a
tree code of branching vector ¢ = [by, ..., b4]. Following this structure, at each repeater
station of the code concatenated one-way quantum repeater n processors with d; — 1 spin
systems and one quantum emitter each are needed, where d; with i € {1,...,n} denotes
the depth of the tree code where qubit ¢ from the outer code is encoded in. Each of this
processors is required to perform the re-encoding procedure for every tree of depth d; per
repeater station. Thus, the encoding into trees at the sending station and the re-encoding
of each of the n trees at a repeater station is performed completely analogously to the
tree-code-based re-encoding.

Next, in order to include stabilizer measurements of the outer code in our repeater chain
we describe the procedure to perform such measurements in code concatenation.

3.3 Stabilizer measurements in trees

The goal of performing stabilizer measurements in code concatenation is to be able to
detect and correct errors on the outer code with their outcomes. Nevertheless, the focus
in this section is to understand how the stabilizers are measured instead of the correction
of errors. The latter is specified in the last two sections of this chapter.

In order to do this, we need to learn how a stabilizer operator on the outer code can be
implemented on the inner code. To do so, let us consider again the example of Shor’s
code as concatenated code, as seen in 2.3.3, which uses the phase flip code, seen in 2.3.2,
as outer code and the bit flip code, seen in 2.3.2, as inner code. The stabilizers of the
phase flip code are, X, X, and X, X,., where here a, b and ¢ denote the three qubits that
form the code. Then each of those qubits is encoded into a 3-qubit bit flip code, such that
a is encoded into three qubits labeled 1, 2, and 3, b in qubits labeled 4, 5 and 6 and ¢ in
qubits labeled 7, 8 and 9. All these nine qubits form Shor’s code. To “translate” X,X,
and XX, where the line over the operator denotes that is the operator that corresponds
to the outer code in code concatenation, into the bit flip code or to know which form
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these stabilizers take once the two codes have been concatenated, one needs to look at
ﬁleiogical operators of the inner_ cgie. Logical X on the bit flip code is X; X5 X3, so that
XaXb = X1X2X3X4X5X6 and Xch = X4X5X6X7X8X9.

Following the same idea, one can “translate” the stabilizer operators of a given outer
code to the ones of the inner code, now represented by a tree code. For this reason it is
important to consider the logical operators of the tree code, which have been previously
introduced in 2.4.3.

In what follows the different kinds of stabilizers measurements are presented, depending
on which Pauli operations compose the operators. First stabilizers with only Pauli-Z are
considered. Later stabilizers that only include Pauli-X are introduced. Finally, codes
with both kinds of stabilizers and “mixed” stabilizers are presented. Note that in this
section neither losses nor errors in the qubits in the trees are considered.

3.3.1 Z...7Z stabilizer measurement

To begin with, we will consider as outer codes n-qubit stabilizer codes whose generators,
as defined 2.3.2, are only formed by Pauli-Zs and identities. Now, the bit flip code, as a
simple example of this kind of codes will be examined. This code, as presented in 2.3.2,
is composed by three qubits, which each of them will be encoded in a tree of a certain
branching vector #;, I € {1,2,3}. Now, the outer code stabilizers are Z,Z, and ZyZs,
where Z; corresponds to the logical Pauli-Z in tree [, which was presented in equation
2.51, such that,

by by
ZnZn=|X"]] 25 | @ | X0 ] 22 (3.1)
j=1

j'=1

for m # n and where the super-indices indicate the tree where the operation needs to be
performed and the branching vectors are ; = [b}, b},...,b}], so that i € {1,...,b} and
i' € {1,...,b0}. In general, an operator O! stands for an operator O applied on qubit i,
which denotes a first-level qubit in tree [. Similarly, Oﬁj stands for an operator O applied
on qubit ¢j in tree [, which denotes the leaf or second-level qubit j of the first-level qubit
1. The procedure for performing a measurement of these stabilizers goes as follows:

1. At first, two first-level qubits from the two involved trees, qubit 7 in tree m and
qubit 7 in qubit n, are picked. Then a non-destructive stabilizer measurement is
performed between those two qubits, X" X/} and the outcome of it is saved.

2. After this, the second-level qubits are measured in Z in both sub-trees from the
two trees. The outcomes of these measurements are saved, and the product of
them with the outcome of the previous measurement gives the result of the Z,,7,
stabilizer.

3. Moreover, the outcomes of these Z measurements will affect the total state as seen
previously in 2.4.1. For example, the product of these measurements in tree m is
—1, such that a correction needs to be applied. The correction can be done on the
first-level qubit picked for the stabilizer measurement in tree m. Same procedure
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is done for the other tree. These Z measurements have an additional role, they are
also used to remove the qubits from the tree, as seen in 2.4.1.

4. If the depth of the tree is larger than 2, the qubits on the third level and below are
also used to measure an indirect Z on the second-level qubits on them, as described
in 2.4.2. This way the Z outcomes on the second-level are protected against losses,
due to the redundancy of the tree state, and errors, due to the fact that a majority
voting between the direct and indirect Z measurements can be performed.

5. Lastly, the used first-level qubits are detached from the tree by measuring them in
Z and later on applying the corrections due to the outcomes at the corresponding
tree.

Here an example involving only two trees has been presented. For a stabilizer of Z on n
qubits, the step 1 would be a X ... X stabilizer measurement between all the n first-level
qubits. The other steps are done in the same way as in the aforementioned method but
for all the n sub-trees. From this first approach to the stabilizer measurements in trees
one can see that in a repeater chain, these should take place at the repeater stations
before each of the trees are decoded for the teleportation into a new tree, since we first
want to use the photons to potentially measure a stabilizer. Otherwise, these photons
would just be measured out in the decoding.

3.3.2 X...X stabilizer measurement

The reason why the stabilizers containing X are treated differently lies on the differences
between the logical operations on a tree, as seen in 2.4.3. Their main difference is their
cost, where the cost of a logical operation in this text refers to the number of physical
operations that need to be applied in order to perform a certain logical operation. In
particular, to apply a logical Pauli-X in a tree at least one operation on every sub-tree
needs to be applied. In contrast, to apply logical Pauli-Z in a tree a set of operations,
which at least consists of three of them, needs to be applied on a single sub-tree. Consider
now the measurement procedure for a stabilizer with Zs, if one wants to apply a similar
procedure for Xs, then at least one qubit per sub-tree per tree will be measured. This
is inconvenient, since a lot of qubits would be involved in the stabilizer measurement
making it more difficult to succeed against losses. Hence, here the reason why stabilizers
containing X's need to be treated differently.

Consider as an outer code a n-qubit stabilizer code whose generators, as defined 2.3.2,
are only formed by Pauli-X's and identities. A simple example of such outer code would
be the phase flip code, presented in 2.3.2. This outer code is composed by three qubits
where each of them will be encoded in a tree of a certain branching vector #;, [ € {1, 2, 3}.
The stabilizers are X1 X, and X, X3, where X corresponds to the logical Pauli-X in tree
[, which is presented in equation 2.49, such that,

b b
XoXo=]I2" | (]]2 (3.2)
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where the super-indices indicate the tree where the operation needs to be performed,
and the branching vectors are ¢, = [b},b},...,b}]. Note that performing all these Z
measurements is impossible because all first-level qubits are being used. Importantly,
these measurements can also be performed indirectly on the qubits on the lower levels.
Nevertheless, this still does not prevent us from performing at least one operation per
sub-tree in each tree, thus having a higher cost than the Z ... Z stabilizers. Additionally,
the probability of failure of performing this operation due to loss is very high, since a lot
of qubits are involved. To overcome this potential problem the following procedure has
been developed.

Consider a three-qubit state to be the state of the encoded phase flip code |¥), with
stabilizers g; = X; X5 and g5 = X, X3. Before encoding these three qubits into trees, we
can bring those qubits to the X basis by applying a Hadamard to them, |¥') = U |V)
where U = H;HyH;. By doing this the stabilizers are also transformed following ¢; =
Ug;UT, such that ¢} = Z1Z, and gj = Z,Z3, this property has already been studied in
2.3.2. Note that the transformed stabilizers are the same as the ones for the bit flip
code. The next step is to encode these three qubits into trees and send them to the
next repeater station. The rest of the method follows along the lines of the ZZ stabilizer
measurement method. Once the stabilizers are measured, and the trees are decoded, thus
having again three qubits, these are returned to the computational basis making use of
Hadamard gates on all qubits, applying the same U = HHyH3.

In conclusion, when the stabilizers of the outer code are composed only of Pauli-X,
before encoding the outer code qubits into trees, H gates are applied to all of them, then
stabilizers are measured following the procedure for a Z...Z stabilizer. Finally after
decoding the trees, H gates are again applied to the qubits of the outer code.

3.3.3 General X and Z stabilizer measurement

Now that stabilizer codes with stabilizers containing only Z or only X have been dis-
cussed, the case where stabilizers are formed by both X and Z can be considered. In the
examples below no losses nor errors are considered and also a sufficiently large branching
vector is assumed in order to be able to perform all the stabilizer measurements.

First, consider the 9-qubit Shor’s code, that has eight generators as presented in Table
2.3. There are six of them which are only composed by Zs and the other two are composed
by Xs. One can see that to be able to measure all these stabilizers at least two repeater
stations are needed. Let us present a detailed structure on when and how this stabilizer
measurements would take place in a repeater chain.

e Sending station: First, at the sending station a single qubit is encoded into 9
qubits of the Shor’s code and those are encoded into trees. These trees are sent to
the first repeater station.

e First repeater station: At the first repeater station, before the decoding in the
re-encoding procedure, the stabilizer measurements are to be performed. On a
first instance the heralded storage of a first-level qubit is performed to ensure the
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possibility of a later successful re-encoding and then the stabilizers are measured.
In this repeater station, only the six Z-type stabilizers can be measured, due to the
fact that prior to the encoding the trees no Hadamard gates were applied. After
performing the stabilizer measurements and decoding the trees, a H gate is applied
to all the 9 qubits, which have been heralded-stored. Then those qubits are encoded
into trees and sent to the next repeater station.

e Second repeater station: As in the first repeater station, before the decoding,
the stabilizer measurements are to be performed. In this case, only the two X-
type stabilizers can be measured, due to the fact that before encoding the trees
Hadamard gates where applied to all 9 qubits. After performing the stabilizer
measurements and decoding the trees, a H gate is applied to all 9 qubits. Then
those qubits are encoded into trees and sent to the next repeater station.

e Other repeater stations: Now all the following pairs of repeater stations can
follow the same structure as the first and second repeater stations, until the last
one that will send the trees to the end node.

e End node: Finally, both the tree code and the 9-qubit code are decoded in order
to recover a single qubit.

Here one can see clearly the reason why at least two repeater stations are needed. At
least one where trees are sent into with the computational basis and another where the
trees are sent into with the X basis, so all the sets of stabilizers can be measured.

Moreover, stabilizers that are composed both by Xs and Zs can also be measured using
this basis switching. Specifically, one only switches the basis of the qubits that have an
X on the stabilizer. Consider a stabilizer X; 75, then only qubit 1 will be switched to the
X basis, so that needs the unitary U = H;. To portray this property in a stabilizer code
with “mixed” stabilizers we present an example with the 5-qubit code as an outer code.
This code has four stabilizers as presented in Table 2.4, which are formed by X and Z,
but none of them have a similar structure, in such a way that it is impossible to create
subsets of them based on the basis that each qubit needs. To explicitly state this take
g1 = X1 257, X5, before encoding the five qubits into trees to measure this stabilizer at the
next repeater station, one needs to apply U; = HyHs, but none of the other generators
need the same unitary operation to be in the right basis to measure the stabilizer. The
other generators are go = X1 X9Z375, g3 = Z1X2X374 and g4 = Z5X3X475, and the
respective unitary operations that they need are Uy = H1Hs, U3 = HyHz and Uy = H3Hy,
such that U; # U; if i # j. Therefore, in the case of the 5-qubit code, a repeater chain
that is able to measure all stabilizers needs at least four repeater stations. If we consider
a repeater chain with five links, the procedure to measure all stabilizers of the 5-qubit
code would be,

e Sending station: First, at the sending station a single qubit is encoded into the
5-qubit code, Uy = Hy Hj; is applied to them and they are encoded into trees. These
trees are sent to the first repeater station.

e First repeater station: At the first repeater station, before the decoding in
the re-encoding procedure, the stabilizer measurements are to be performed. On
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a first instance the heralded storage of a first-level qubit is performed to ensure
the possibility of a later successful re-encoding, then the stabilizers are measured.
In this repeater station, only the g;-type stabilizers can be measured, due to the
fact that before encoding the trees U; was applied. After performing the stabilizer
measurement and decoding the trees, UyUs = (H1Hs)(Hy Hs) = HoHs is applied to
all the 5 qubits, which have been heralded-stored. U; is applied to return qubits 1
and 5 to the computational basis and U, to bring qubits 1 and 2 to the X basis to
perform the next stabilizer. Then those qubits are encoded into trees and sent to
the next repeater station.

e Second repeater station: As in the first repeater station, before the decod-
ing, the stabilizer measurements are to be performed. In this case, only the
go-type stabilizers can be measured, due to the fact that before encoding the
trees Us. After performing the stabilizer measurements and decoding the trees,
UyUs = (HH2)(HyH3) = HiHj is applied. Then those qubits are encoded into
trees and sent to the next repeater station.

e Third repeater station: Asin the previous repeater stations, before the decoding,
the stabilizer measurements are to be performed. In this case, only the gz-type
stabilizers can be measured. After performing the stabilizer measurements and
decoding the trees, UsUy = (HyHs)(HsHy) = HyHy is applied. Then those qubits
are encoded into trees and sent to the next repeater station.

e Fourth repeater station: As previously, before the decoding, the stabilizer mea-
surements are to be performed. In this case, only the g4-type stabilizers can be
measured. After performing the stabilizer measurements and decoding the trees,
U, = HsH, is applied in order to bring all the state to the computational basis.
Then those qubits are encoded into trees and sent to the end node.

e End node: Finally, both the tree code and the 5-qubit code are decoded in order
to recover a single qubit.

This scheme clarifies the fact that for the 5-qubit code at least four repeater stations
are needed. In general, in this section we have been how different kinds of stabilizers are
measured, such that we are able to measure Z-type, X-type and “mixed”-type stabilizers.

3.4 Possible outer codes

After seeing the main idea behind the code concatenation in the one-way quantum re-
peater many questions arise, for example, what is the trade-off of qubits in the tree used
to decode and used for the stabilizer measurement, what size should the branching vec-
tor be, how does these encoding and stabilizer measurements behave and perform under
losses and errors and many more. To answer these q