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Abstract

Quantum communication can enable new features that are provably impossible with
classical communication alone. However, the optical fibers used to send the quantum
information are inherently lossy. To overcome the exponential losses over distance so-
called quantum repeaters are needed to amplify the signal. As opposed to memory-based
approaches, the third generation of quantum repeaters, also called one-way quantum
repeaters do not require two-way communication thus enabling very high communication
rates. In particular, the one-way quantum repeater based on photonic tree states proposed
by Borregaard et al. (2019) realizes this task with a very modest amount of resources.
Nevertheless, the method considered is susceptible to operational errors. In this work,
we propose the use of code concatenation of a stabilizer code and the tree code, so that
by measuring stabilizers of the stabilizer code and applying the syndrome corrections we
can achieve a fault-tolerant one-way quantum repeater. In order to do so, we present a
detailed protocol that uses the 5-qubit code. Moreover, we develop the first fully general
simulation framework for studying the performance of tree-code based one-way quantum-
repeater chains, which in this thesis is used to perform an analysis of the proposed
protocol. We find that the code-concatenation protocol under consideration has a similar
tolerance against operational errors to the protocol proposed by Borregaard et al. (2019).
Unfortunately, we are not able to draw a distinction between the tolerance of the two
approaches. We do however suggest modified protocols that may provide fault tolerance.
Studying these is beyond the scope of this thesis.
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CHAPTER 1
Introduction

Over the last several years, the word quantum has been used increasingly due to advances
in the field of Quantum Information Technology, such as Google’s quantum advantage
experiment [1]. Moreover, the European Union has announced that “the future is Quan-
tum” along with the investment of one billion euro embodied in the Quantum Flagship
programme [2] as part of Horizon 2020 [3]. One of the many projects that form the
Quantum Flagship is the Quantum Internet Alliance (QIA) [4], whose goal is “to develop
a Blueprint for a pan-European entanglement-based Quantum Internet, by developing,
integrating and demonstrating all the functional hardware and software subsystems” [5].
The proposed Quantum Internet [6] would make use of properties inherent to quantum
mechanics such as entanglement and superposition in order to bring extra features to
the already known and used classical Internet, which range from Quantum Key Distribu-
tion [7] as a provably secure communication, clock synchronization [8] or blind quantum
computing [9] to a global 4-dimensional quantum positioning system [10].

Common to all the aforementioned applications is distributing an entangled state or
sending a single-qubit state over long distances. Long distance communication is also
a common feature of the classical Internet, which needs signal amplification at some
midpoints. However, in the quantum realm amplification is not allowed due to the fact
that quantum information can not be copied [11]. Nevertheless, quantum repeaters [12]
were introduced as a more sophisticated and adequate method. The study of quantum
repeaters has evolved considerably since its first appearance in 1998. Nowadays, they
can be classified in three generations differentiated by the tools that they use to share
entanglement or send information and overcome possible losses and operational errors.
In particular, the third generation [13, 14], uses quantum error correcting codes as the
main mechanism to protect the information being sent.

Under the guidance of Prof. Wehner, a team of theoretical physicists, mathematicians,
and software engineers, the NLBlueprint Team, is working on simulating a Quantum
Internet for the Netherlands. The simulation allows us to investigate the requirements
for a reliable quantum communication and thus enable us to define further design and
research goals with the final goal to develop a realistic blueprint for a large-scale Quan-
tum Internet. This thesis has been realized in the framework of the NLBlueprint Team
contributing to the simulations of the all-photonic one-way quantum repeaters based on

1



1. Introduction 2

the tree code, a promising candidate of the third generation of quantum repeaters. In
particular, we highlight the approach taken by Borregaard et al. in [15] which requires a
very modest amount of resources in order to successfully perform quantum communica-
tion. Despite the efficiency in terms of losses, the method considered does not perform
fault tolerantly against operational errors.

In this thesis we direct our efforts towards a fault-tolerant one-way quantum repeater.
The main contributions of this thesis are:

We propose a protocol that uses code concatenation in order to achieve fault-
tolerance in the one-way quantum repeater with minimal resources. The code
concatenation is composed of the tree code and a stabilizer code, which is used to
detect and correct the errors that the previous encoding [15] is unable to.

We develop the first fully general simulation framework for studying the perfor-
mance of tree-code based one-way quantum-repeater chains.

We compare the behaviour of this protocol to the previous non-fault-tolerant
protocol in [15] in order to assess a potential improvement of the error tolerance
using the framework of the developed simulation.

OUTLINE AND CONTRIBUTIONS. The structure of this thesis is the following:

• In Chapter 2 we introduce the concepts and definitions that are used throughout
this thesis. We start by a short introduction on quantum repeaters, channels, and
codes in order to build the intuition for the subsequent chapters. Special attention
is given to the tree code and an application of it in the one-way quantum repeater
as they are the main ingredients of this thesis.

• In Chapter 3 we present the core of our contributions. We start with a discussion
on the choice of the codes to be used in a code concatenated one-way quantum
repeater. Next, we present a preliminary protocol and a general method to measure
the stabilizers in the proposed code concatenation. This leads to an examination of
the required characteristics for a specific outer code. Finally, two protocols for the
code concatenated one-way quantum repeater using the 5-qubit code as outer code
are defined, where the first one is used as a stepping stone for the second one.

• Chapter 4 contains the results of the analysis of the behaviour of the protocol
presented in the previous chapter and its comparison to the one-way quantum
repeater with the tree code, introduced in Section 2.5. First, we motivate the
simulation of the code concatenated one-way quantum repeater. Next, the tools
used to develop it are introduced. Later, a detailed explanation on the choice of the
branching vector and loss probability for the simulation is presented, together with
a verification of the simulation. Finally, the results of a first approach are presented
and lead us to propose a better strategy, from which we give an analytical study
and some preliminary results.



CHAPTER 2
Background

The goal of this chapter is to introduce a solid theoretical background information needed
to understand the work presented in this thesis. As a first step in 2.1, quantum commu-
nication and its main problems are introduced in order to motivate quantum repeaters,
which are explained with a focus on the one-way quantum repeater. Next, in 2.2 an
explanation to understand how the noise of quantum channels works and how to quan-
tify it is presented. Following, in 2.3 an overview of Quantum Error Correction is given
targeting a more detailed explanation of stabilizer codes. Then in 2.4, graph states, the
tree state and tree code, which belongs to the family of stabilizer codes, are carefully
detailed. Finally, in 2.5 an application of the one-way quantum repeater using the tree
code is introduced.

2.1 Quantum communication and quantum

repeaters

Quantum communication [16] relies on the principles of quantum mechanics to transmit
quantum signals over distances. This communication can be used as means for large-scale
distributed quantum computers [17] or a secure communication using cryptography [18],
by means of the widely known Quantum Key Distribution (QKD) protocol, amongst
many others. One realization of this field is the Quantum Internet [6, 19], which has the
goal to enable quantum communication between any two points on Earth, thus requiring
transmission and distribution of quantum signals over long distances. In order to do so,
the signals need to be sent through a quantum channel such as an optical fiber or free
space [20]. Currently photons are used as means to carry quantum information or as the
so-called “flying qubits” [20]. Moreover, the sent photons through fiber or free space are
subject to losses, which increase with the channel distance.

Unfortunately, the average distances involved in telecommunication networks are typically
of the order of hundreds or thousands of kilometers. This implies a severe constraint when
it comes to channel losses, thus, limiting the transmission of such signals. In classical
communication this issue is also present, and it is overcome by signal amplification at
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2. Background 4

intermediate points of the channel. However, in the quantum world this is not possible
due to the no-cloning theorem [11], which deprives a quantum signal of such operation.
Therefore, quantum repeaters were proposed as an alternative approach. Those were first
described in 1998 by Briegel et al. [12] as intermediate connection points, which are a tool
used in each node of a segmented long link. A few years later, the first quantum repeater
architecture was proposed by Duan-Lukin-Cirac-Zoller (DLCZ) using atomic ensembles
and linear optics [21].

2.1.1 Overview on quantum repeaters

Before going any further, it is important to mention that quantum states have a property
known as entanglement, which is strictly inherent to the quantum world and its quantum
non-locality [22]. It is at the very core of quantum communication protocols to send
or share quantum information. The latter is done by generating an entangled quantum
state and distributing it. This can be achieved in a variety of approaches depending
on the physical implementation of choice. In particular, the probability of success for
generating a single entangled link through a fiber using photons scales exponentially
with the distance of the link L, such that e−L/L0 [23], where L0 is the attenuation length,
which is a parameter that characterizes the loss of the fiber. Overall, the idea of using
quantum repeaters is to break one long segment or link into several smaller ones, called
elementary links in order to increase the success probability of entanglement distribution.

A memory-based quantum repeater extends this entanglement between all the elementary
links so that entanglement between the initial and end node is achieved. Therefore, a
quantum repeater relies on:

• Entanglement distribution: a process that allows the generation of entangle-
ment over elementary links. This is typically performed by means of heralded
entanglement, which requires a two-way classical message between the sender and
the receiver to be able to know if the entanglement was successful or not.

• Entanglement purification: a process that create a more highly entangled state
from lower quality entangled states. The original scheme was presented by Bennett
et al. [24] and many more have been proposed ever since.

• Entanglement swapping: a process where by means of a Bell state measurement
a longer entangled link between adjacent repeater nodes is achieved [25, 26].

So far only conventional quantum repeaters have been considered, this is because there
are different families of quantum repeaters that depend on the requirements or tools that
they use to deal with losses, errors and waiting times. The conventionally presented
ones in introductory literature correspond to the first generation of quantum repeaters.
There is a second generation of quantum repeaters, where instead of using entanglement
purification, quantum error correcting codes are used to perform the same task. Finally,
there is a last third generation that uses quantum error correcting codes to both create
and distribute entanglement and to purify it, which avoid communication delays. The
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focus of this thesis is on this last generation, which is explained in more detail in the
following subsection.

In this thesis the other generations will not be explored in further depth, for the interested
reader the following sources are given and are the ones mainly used [23] and [27].

2.1.2 One-way quantum repeater

The first and second generation quantum repeaters use heralded entanglement to perform
entanglement distribution. This procedure requires a classical message to herald the
successful entanglement distribution. Before this message is received at the end node,
the qubits in the nodes where the distribution is being performed are not available or in
other words, they need to “wait”. In order to avoid the need of sending classical messages
when sending a quantum signal between repeater nodes, the signal needs to be encoded
in a loss tolerant manner [23].

Therefore, the goal of the third generation quantum repeaters is to use loss tolerant codes
in order to avoid waiting times. In particular, photonic loss tolerant codes are widely
used, these aim to initially send a matter qubit with encoded information, a message
qubit, by encoding it in a multi-photonic loss-tolerant code and send those photons to
the next repeater node. This first node is called the sending node or station. Then, at
the next repeater node the information is transferred back to matter qubits so that one
can know if the state was lost on the transmission between nodes. Finally, these retrieved
matter qubits act as the new message qubits, which are then again encoded into photons
and sent to the next node. This procedure of receiving photons and retrieving the encoded
information in matter qubits and then use those to encode again the information and send
it is called the re-encoding procedure. This is repeated at each intermediate node of the
repeater chain until the end node is reached, where the information is finally retrieved.
This approach also allows generating entanglement over long distances by sending an
entangled qubit along the chain of repeaters.

Thus, the intermediate nodes are used for “refreshing” the loss-tolerant code so that the
matter qubits in the nodes do not require long-lived quantum memories as in the heralded
entanglement approach. In this generation the system sends information along the links
in one direction, from sender to receiver, making the transmission rate of the chain to be
determined by the slowest component.

The use of quantum error correcting codes requires that the memories are able to reliably
store the state during the process of error correction, making it completely independent
of the communication time between nodes. The use of error correcting codes for both
operational errors and losses requires more advanced operations than in the previous
generations in turn requiring higher gate fidelities.

In short, the third generation quantum repeaters do not need long-lived quantum memo-
ries nor two-way communication between sender and receiver. These quantum repeaters
are also called one-way quantum repeater since they send only information in one direction
without the need of pre-established entangled links. In order to protect the quantum infor-
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mation from losses and errors they use photonic encodings and quantum error-correcting
codes. Consequently, the distribution rate in one-way quantum repeaters is significantly
boosted [23]. Finally, note that the one-way loss tolerant codes can only tolerate losses
up to 50% [28]. Intuitively one can see that re-encoding when there is a 50% of losses
or more is impossible due to the fact that the no-cloning theorem [11] would be violated
[29]. This restriction leads to shorter distances between nodes, which for a conventional
telecom fiber, which has L0 ≈ 22 km, the inter-node distance is approximately 15 km.

Many approaches to the one-way all-photonic quantum repeaters have been proposed as
in [13], [15], [30], and [31] amongst many more. A general challenge for this family of
quantum repeaters is how to physically implement an effective generation of multi-qubit
error-correcting codes and perform error correction.

2.2 Quantum noise and secret-key rate

Noise in a quantum system can be understood as the interaction of the quantum system
with some other environment system. This quantum system and its interaction form an
open quantum system, in which one wishes to neglect or average over the dynamics of
the environment. To model this interaction the formalism of quantum operations is used
as it describes generic state changes without explicit reference to the passage of time.
Consider some initial state of the quantum system ρ, and a final state ρ′ (in the density
matrix representation) are related by a quantum operation E , such that ρ′ = E(ρ). This
operation captures the dynamic change to a state which occurs as the result of some
physical process. The behaviour of an open quantum system can be modeled making use
of the operator-sum representation [32]

E(ρ) =
∑
k

EkρE
†
k, (2.1)

where Ek are the operation elements for E known as Kraus operators, satisfying
∑

k E
†
kEk =

I if the quantum operation is trace-preserving, which is the case that will be considered
throughout the text.

From a quantum communication point of view, one must assume that the exchange of
quantum information through a quantum channel is subject to noise, just like in classical
communication. In the classical case, the noise can only flip or erase a bit. Whereas the
noise introduced in a quantum channel can be a continuum of errors on a single qubit.

Definition 2.2.1. A quantum channel is a linear, completely positive, and trace-
preserving (CPTP) map, that maps density matrices to density matrices preserving both
their trace (Tr(ρ) = 1) and positiveness (ρ ≥ 0). So that in the operation-sum represen-
tation a noisy quantum channel can be represented by equation 2.1 and

∑
k E
†
kEk = I.

On a system of qubits, the noise of a quantum channel can be modeled and categorized
into two main groups: independent or correlated noise models. On the one hand, inde-
pendent noise happens for each of the qubits in a system independently in an uncorrelated
fashion. Such models are useful to describe the evolution of non-interacting qubits. On
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the other hand, a correlated system of qubits is more suitably described by an appropriate
correlated noise model given by the underlying interactions.

On this text the main focus will be on independent noise models on qubit systems.
These are a stepping stone that allows a simple single qubit analysis. At the same time
independent noise models fall into two categories, erasure/loss and arbitrary errors.

2.2.1 Independent noise models

Arbitrary errors correspond to probabilistic rotations of the qubit in the Bloch sphere.
As stated previously, the arbitrary errors are continuous. At the same time, the Pauli
matrices form an orthogonal basis for a two-dimensional Hilbert space [32] and therefore
the operators Ek of a quantum channel can be written as,

Ek = eIkI + eXk X + eYk Y + eZkZ, (2.2)

where eik belonging to complexes are constants and the identity, I, and Pauli matrices
are defined as

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. (2.3)

Throughout the text the eigenstates of X and Z will be denoted as |0〉, |1〉, |+〉 and |−〉.
Moreover, this shows that quantum errors despite being continuous can be corrected using
a discrete set of operations. Note that Y ∝ XZ, so that one only need to apply X and
Z gates to correct an arbitrary error.

In what follows, some examples of arbitrary errors and their quantum operations that
are going to be used throughout the text are presented.

Definition 2.2.2. A single qubit bit flip channel is a quantum channel that flips the
state of a qubit from |0〉 to |1〉 and vice versa with probability ε. Its operation elements
are

E0 =
√

1− εI, E1 =
√
εX. (2.4)

Definition 2.2.3. A single qubit phase flip channel is a quantum channel that adds
a phase of π to the state |1〉 with probability ε. Its operation elements are

E0 =
√

1− εI, E1 =
√
εZ. (2.5)

Definition 2.2.4. A single qubit depolarizing channel is a quantum channel that
depolarizes a qubit with probability ε. This means that with probability ε/4 a qubit will
have a X (bit-flip), Z (phase-flip) or Y (bit-flip and phase-flip). Its operation elements
are

E0 =

√
1− 3ε

4
I, E1 =

√
ε

4
X, E2 =

√
ε

4
Y, E3 =

√
ε

4
Z. (2.6)

Previously also erasure or loss were mentioned, which behave analogously to the classic
case. The qubit is lost and a classical flag is generated, indicating that the qubit has been
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erased. Given that there is no way of predicting where a loss has happened, measurements
are used to reveal that information and this is why a classical flag is needed. In general
this can be analyzed by the erasure channel.

Definition 2.2.5. A single qubit erasure channel is a quantum channel that erases a
qubit with a probability µ. After such quantum channel an initial state ρ, a 2×2 density
matrix, is

Eerasure(ρ) = µ |⊥〉 〈⊥|+ (1− µ)ρ, (2.7)

where 〈⊥| ρ |⊥〉 = 0.

This channel is used as a simple model for physical setups in which the quantum infor-
mation can be lost, like optical fibers for single-photon communication [20].

2.2.2 Determine the impact of noisy quantum channels

After a quantum system has undergone errors, one is interested in comparing the initial
and final states in order to quantify the errors. For that purpose, the concept of secret-
key rate is introduced in this text. As previously seen, when information is sent through
a quantum channel it is subjected to both losses and errors. Consider now two parties
that will take place in the exchange of information, Alice and Bob. The secret-key rate is
a parameter that takes into account both the quantity and the quality of the information
that Alice sends to Bob through a noisy channel.

The origin of this parameter is in the realm of quantum cryptography, since it is derived
from the Quantum Key Distribution (QKD) protocol, which allows for secure communi-
cation. This protocol enables two parties, Alice and Bob, to produce a shared random
secret key that only they know, which allows the secure communication, since it is used
by the two parties to encrypt and decrypt the information they want to share. In this
text the focus is on the first quantum cryptography protocol, presented in 1984 by C. H.
Bennett and G. Brassard, hence the name BB84 protocol [7].

The highlight of this protocol is that only requires preparation and measurement of single
qubit quantum states. The BB84 can be described in five steps [33, 34, 35]:

1. Preparation: Alice prepares a quantum state based on the
choices at random of two parameters, θA = {0, 1} and xA =
{0, 1}. θA determines the basis of the state, where 0 corresponds
to the Z and 1 to the X basis and xA determines the bit that will
be prepared. Following this, the possible states are determined
by HθA |xA〉, where H denotes the unitary Hadamard gatea, such
that the possible states are |0〉, |1〉, |+〉 and |−〉, which in this
context are known as the BB84 states.

2. Distribution and measurement: Alice sends N qubits , all
chosen at random from the BB84 states to Bob. Then Bob mea-
sures the N states he receives using a basis chosen uniformly at
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random θB = {0, 1} for each qubit. The outcomes of the mea-
surements are labeled xB = {0, 1} for each qubit.

3. Sifting: Alice and Bob share the basis they have used θA and
θB for each of the N qubits and discard all the rounds where the
basis do not agree.

4. Parameter estimation: Alice chooses n rounds from the re-
maining ones to test and communicates to Bob which ones she
has chosen. For those rounds, they share the bits xA and xB.
From those values they compute an error rate, which if it exceeds
a threshold the protocol is aborted. If the protocol is not aborted
the m remaining bits constitute the raw key.

5. Information reconciliation and privacy amplification: In
this step, Alice and Bob implement an information reconciliation
protocol such that Bob can correct his xBs from errors that may
have occurred during the communication. Lastly, a privacy am-
plification protocol, is applied to transform the m bits of the raw
key, which are partially secure, to a secure key of l < m bits.

aThe single qubit Hadamard gate is

H =
1√
2

(
1 1
1 −1

)
.

From step 4, Alice and Bob need to estimate the values of the quantum bit error rates
(QBERs) in the X and Z basis, QX and QZ . The QBER in a particular basis corresponds
to the probability that the outcomes that Alice and Bob get when they both measure their
systems in the corresponding basis are different. To quantify the quality and quantity of
this secret secure key, the secret-key rate is defined as the number of key bits generated
per channel use [35]. For the presented BB84 protocol, the secret-key rate is computed
as follows [33],

RBB84 = 1− h(QX)− h(QZ), (2.8)

where h(x) = −x log x− (1−x) log(1−x) is the binary entropy. Since the secret-key rate
is related to the QBERs one can see from equation 2.8 that it will decrease with increasing
the error in the channel, and it will become zero for a certain bound, called maximum
tolerated channel noise. For example, if the depolarizing noise channel is considered, the
BB84 protocol it is agreed that it can tolerate up to a 11% of QBER, so that for higher
QBERs the secret-key rate is zero [33]. The main quantum channel we want to focus on
is the the one-way quantum repeater chain for which we need the insights of Quantum
Error Correction.
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2.3 Quantum Error Correction

In the previous section, the main independent quantum channels have been presented.
As a continuation, in this section the focus will be on understanding Quantum Error-
Correcting Codes (QECC).

Quantum Error Correction (QEC) is strongly inspired by classical error-correcting codes,
however, there are three main problems that the quantum realm adds to the classical
error-correcting perspective. As stated before, quantum channels introduce a continuum
of different errors in a qubit. Moreover, one has to overcome two additional problems,
the no-cloning theorem [11], which states that the creation of back-up copies of quantum
states is not possible; and the loss of information due to the destructive measurement
or collapse of the wave function. Notwithstanding these difficulties, QEC is still possible
[32].

In what follows the focus will be on stabilizer codes, which have an analogous classical
version, the classical linear codes.

2.3.1 Classical linear codes

Before understanding QEC, it is instructive to take a look at the classical realm. By
doing this one can see that some of the techniques used in classical error correction can
be useful in the quantum case, specifically, the theory of classical linear codes has been
used to develop many widely used QECC.

Definition 2.3.1. A classical error-correcting code C over a finite alphabet Σ is a
subset of Σn. Where Σn is the set of all strings of length n generated by combinations of
elements from Σ. [36]

The elements of a code are called the codewords. Also, a code has an encoding map asso-
ciated, which is used to map the possible messages to a different codewords. Therefore,
the code must be of the same size as the set of all possible messages. In general the al-
phabet is Σ = Zq, where Zq is the set of integers modulo q. Throughout this text we will
only consider classical codes over Z2 = {0, 1}. Then, the codewords will be composed of
n-strings of zeros and ones. Moreover, to determine and characterize the error-correcting
power of a code one shall talk about the code distance.

Definition 2.3.2. The distance d of a code is the minimum Hamming distance between
any two codewords, i.e.,

d = min
x,y∈C
x 6=y

dH(x, y) (2.9)

where the Hamming distance dH(x, y) between two distinct codewords, x and y, is the
number of symbols in which they differ.

Definition 2.3.3. A classical linear code C is a classical error-correcting code that
encodes k bits into a n bit code. This can be specified by an n× k generator matrix G,
with entries from Z2.
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The matrix G maps messages into their encoded equivalent. So that, a k bit message x is
encoded as Gx, where the message is treated as a column vector. It is important to note
that throughout this section all the operations are done modulo 2. To characterize and
“name” any classical linear code the following notation is used. A code C is a [n, k, d]
code, where n is the number of bits used to encode a k bit string and d refers to the
distance of the code.

Another equivalent formulation for these codes can be introduced in terms of the parity
check matrix H. All the n-element vectors x of a [n, k, d] code are such that, Hx = 0,
where H is an (n − k) × n matrix, with entries from Z2. Importantly, the distance d of
a linear code equals the minimum number of columns of H that are linearly dependent.
So a classical linear code can be compactly represented by either its generator matrix or
parity check matrix. If one is interested in reading further and how one can move from
one description to the other can check Chapter 10 Section 4 in [32].

2.3.2 Stabilizer codes

Stabilizer codes, also known as additive quantum codes, are a class of quantum codes
whose construction is analogous to classical linear codes. To understand stabilizer codes,
the stabilizer formalism will be now introduced as a powerful and compact tool with
which to describe an important class of entangled states, the stabilizer states.

Stabilizer Formalism

The stabilizer formalism is a more compact way of describing a quantum state.

Definition 2.3.4. The n-qubit Pauli group Pn [37], is defined as

Pn = {±1,±i} × {I,X, Y, Z}⊗n. (2.10)

An element of the Pauli group is called a Pauli product.

Definition 2.3.5. An n-qubit stabilizer group S [37] can be defined as an Abelian
(commutative) subgroup of the n-qubit Pauli group,

S = {Si} s.t.− I /∈ S and ∀Si, Sj ∈ S, [Si, Sj] = 0. (2.11)

An element from S is called a stabilizer operator, and the elements in the maximally
independent subset Sg of the stabilizer group are called the stabilizer generators. Inde-
pendence in this framework means that any stabilizer generator cannot be expressed as
a product of other generators. Then, any of the elements in S can be generated by the
product of the stabilizer generators. Thus, a stabilizer group S can be expressed on terms
of its stabilizer generators Sg and it is denoted by S = 〈Sg〉.

Definition 2.3.6. The stabilizer state |ψ〉, for a given stabilizer group S, can be defined
as a simultaneous eigenstate with eigenvalue +1 of all the stabilizer operators in S,

∀Si ∈ S, Si |ψ〉 = |ψ〉 . (2.12)
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It is sufficient if the state is an eigenstate with eigenvalue +1 of the stabilizer generators,

∀gi ∈ Sg, gi |ψ〉 = |ψ〉 . (2.13)

In general, when talking about a certain stabilizer state |ψ〉 one can say that it is stabilized,
or invariant under the action of the operators in S. Then, all the possible states that are
stabilized by the subgroup S form VS, the vector space stabilized by S, and S is said to be
the stabilizer of the space VS. Let l be the number of elements in the stabilizer generator
group Sg. If the number of qubits of the system, n, is equal to l one can uniquely define
a quantum state, meaning that VS is spanned by a single state. If l < n, the degrees of
freedom can be addressed by using logical operators, which commute with all stabilizer
generators and are independent from them.

To clearly see how the stabilizer formalism works consider the following two-qubit stabi-
lizer group

SBell = {I1I2, X1X2, Z1Z2,−Y1Y2}. (2.14)

Since all Pauli matrices anti-commute with each other and with the identity matrix it is
easy to see that all elements of SBell commute with each other. The stabilizer group is
generated by {X1X2, Z1Z2}, since −Y1Y2 can be expressed as a product of those two and
(X1X2)(X1X2) = (Z1Z2)(Z1Z2) = I1I2. Therefore, SBell = 〈{X1X2, Z1Z2}〉. In this case
the number of stabilizer generators and qubits of the system is the same, so the stabilizer
state of SBell can be uniquely defined, and it is

|Φ+〉 =
|00〉+ |11〉√

2
. (2.15)

At the same time, this state is also an eigenvector with eigenvalue +1 of the other
stabilizer operators like −Y1Y2. Now, consider that X1X2 is removed from the stabilizer
generators group, then the states that are stabilized by SBell are |00〉 and |11〉. By choosing
logical operators LX = X1X2 and LZ = Z1I2 one can specify the state in the subspace.
For example, if LX is chosen, then the eigenstate with eigenvalue +1 is |Φ+〉.

To relate this formalism to the previous classical linear codes, the stabilizer generators
can be expressed using the parity check matrix. This is a l × 2n matrix, H, whose rows
correspond to the stabilizer generators. The matrix is divided into two parts, the left-
hand side, HX is a l × n binary matrix, which contains 1s to indicate which generators
contain Xs; and the right-hand side, HZ is a l × n binary matrix, which contains 1s to
indicate which generators contain Zs. If there are 1s in both side, this indicates a Y
generator. To make this more explicit, consider again SBell, its parity check matrix is as
follows,

H = (HX |HZ) =

(
1 1 0 0
0 0 1 1

)
. (2.16)

More explicitly, consider the ith row of the matrix that corresponds to a stabilizer gen-
erator gi,

• If gi contains I on the jth qubit → jth and n+ jth column elements are 0.

• If gi contains X on the jth qubit → jth column element is 1 and n+ jth is 0.
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• If gi contains Y on the jth qubit → jth and n+ jth column elements are 1.

• If gi contains Z on the jth qubit → jth column element is 0 and n+ jth is 1.

The matrix H is analogous to the parity check matrix of the classical linear codes, so
that one can also define a generator matrix for the stabilizer codes G = (GX |GZ). Then
all the properties that are present in the classical linear codes also apply to the stabilizer
codes, a detailed view on this analogy is presented in [38].

Clifford Operations

The stabilizer formalism can also be used to describe the dynamics of the stabilizer states
under a variety of quantum operations. This will be useful to later on describe quantum
error-correcting codes using the stabilizer formalism, and understand the effects of noise
and other dynamical processes on those codes.

The subset of all unitary quantum operations that map stabilizer states to stabilizer states
are the so-called (local) Clifford operations [39]. The Clifford operation can be defined
as an operation that transforms a Pauli product into another Pauli product under its
conjugation [37]. Consider a Clifford operation U on a stabilizer state |ψ〉, defined by the
stabilizer group S = 〈{gi}〉,

U |ψ〉 = Ugi |ψ〉 = UgiU
†U |ψ〉 = g′iU |ψ〉 , (2.17)

where g′i = UgiU
†. This equality indicates that the state U |ψ〉 is stabilized by all g′i.

Due to the fact that U is a unitary Clifford operation, the group {g′i} is also an Abelian
subgroup of the Pauli group. Therefore, the state U |ψ〉 is stabilized by the stabilizer group
{g′i}. So one can understand the action of U on the stabilizer state as a transformation
of the stabilizer group under the conjugation of U . In plain words, to understand how U
will affect the state one can only compute how it affects the generators of the stabilizer
group.

It can also be the case of an unitary U that takes elements from {gi} to elements of {gi},
then this U is said to be a normalizer of {gi}.

This property can be taken advantage of for certain special unitary operations U . Sup-
pose, for example, that U = H, where H denotes the unitary Hadamard gate that acts
on a single qubit,

H =
1√
2

(
1 1
1 −1

)
. (2.18)

Note that,
HXH† = Z; HYH† = −Y ; HZH† = X. (2.19)

This leads to the fact that after a Hadamard gate is applied to a quantum state stabilized
by Z, |0〉, the resulting state will be stabilized by X, |+〉 = H |0〉. Similarly, consider
a n-qubit state whose stabilizer is 〈Z1, Z2, . . . , Zn〉, that is the state |0〉⊗n. Applying
a Hadamard gate to each of the n qubits, leads to a final state which is stabilized by
〈X1, X2, . . . , Xn〉, which is easy to see that is |+〉⊗n. In the usual description of the
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dynamics of a quantum system (state vector) the final state requires to specify 2n ampli-
tudes, meanwhile in the stabilizer formalism the dynamic transformation can be described
by 〈X1, X2, . . . , Xn〉, which is linear in n. Many other unitary transformations or gates
can be studied like this example with the Hadamard gate, and it is precisely the possi-
bility of studying dynamic state transformations by an exponentially smaller amount of
memory is what constitutes the main advantage of the stabilizer formalism.

Errors in stabilizer formalism

So far, the basics of the stabilizer codes have been presented. The next step is to see how
this formalism can detect and correct errors in a quantum state.

Definition 2.3.7. A [[n, k]] stabilizer code, denoted by C(S), is the vector space VS
stabilized by a subgroup S of Pn and S has n − k independent commuting generators,
S = 〈g1, . . . , gn−k〉.

Suppose a stabilizer code C(S) is corrupted by an error E ∈ Pn,

• If E anti-commutes with an element from S, say that element is g, then {g, E} = 0
and if |ψ〉 ∈ VS, then

gE |ψ〉 = −Eg |ψ〉 = −E |ψ〉 . (2.20)

Thus E |ψ〉 is an eigenvector of g with eigenvalue -1 instead of +1, then the error
can be detected by measuring g.

• In the case that E ∈ S, the error does not corrupt the space.

• Finally, if E /∈ S but commutes with all the elements of S, Eg = gE for all
g ∈ S, the error is neither detectable nor correctable. In this case, E is known as a
centralizer of S, and we will restrict to the case where the centralized are the same
as the normalizers, N(S).

Therefore, consider that {Ej} is a set of operators in Pn, such that E†jEk /∈ N(S)−S for
all j and k. Then {Ej} is a correctable set of errors for the code C(S).

The detection of the presented errors is performed by measuring the generators, g1, . . . , gn−k
of the stabilizer group to obtain the error syndrome. The syndromes are given by the
outcomes of the measurement, m1, . . .mn−k. Suppose the error Ej occurred, then the

error syndrome is given by mq, such that EjgqE
†
j = mqgq. This syndrome can either

correspond to a unique error operator Ej or to many different error operators. In the

first case the error is corrected by applying E†j . However, if two distinct errors, Ej and

Ej′ , have the same syndrome, applying E†j returns the state into the code space but not
necessarily corrects the error [32].

An error E its said to have a weight determined by the number of terms in the tensor
product which are not equal to the identity. For example, the weight of X1Y4Z9 is three.
Similarly to classical codes, the distance d for stabilizer codes can be presented as the
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minimum weight of an element of N(S) − S. Then a [[n, k]] code with distance d, is an
[[n, k, d]] stabilizer code. An important property is that a code is able to detect arbitrary
errors on any t qubits if its distance is at least 2t+ 1 [32].

Examples

Here the main stabilizer codes that will be used in the text are presented. In all the
examples an initial general state |Ψ〉 = α |0〉 + β |1〉, with |α|2 + |β|2 = 1, is considered,
so that k = 1. Then this state is encoded in what is called a logical qubit, such that
|Ψ〉L = α |0〉L+β |1〉L, where |0〉L is the logical zero state and |1〉L is the logical one state.
The logical states are different for each code and they are defined by the stabilizers of
the code.

• The 3-qubit repetition code, or also known as 3-qubit bit flip code which was
introduced by Asher Peres in 1985 [40], has generators g1 = Z1Z2 and g2 = Z2Z3,
such that the logical state is,

|Ψ〉L = α |000〉123 + β |111〉123 , (2.21)

and

|0〉L = |000〉123 , |1〉L = |111〉123 . (2.22)

This code only has stabilizers composed by Pauli-Z, therefore, it will be only able to
detect Pauli-X errors, which are commonly known as bit flips, and here the reason
of the code’s name. To understand how the syndromes work, suppose an error X1,
then the outcomes of the stabilizer should be m1 = −1 and m2 = +1, because
the error anti-commutes with g1 but commutes with g2. To prove it, first take the
corrupted state,

X1 |Ψ〉L = |Ψ′〉L = α |100〉123 + β |011〉123 (2.23)

which, by applying the generators and following the commutation relations of the
Pauli matrices1,

g1 |Ψ′〉L = Z1Z2 |Ψ′〉L
= Z1Z2X1 |Ψ〉L
= −X1Z1Z2 |Ψ〉L (2.24)

= −X1 |Ψ〉L
= − |Ψ′〉L

so that m1 = −1 as predicted. Similarly for g2, m2 = +1. Now, all the possible
error syndromes and its corrections are presented in the following table:
Also, the logical operators of the logical qubit are,

X = X1X2X3, Z = Z1. (2.25)

1[a, b] = 2iεabcc, where a, b and c can be any of the Pauli matrices, and εabc is the Levi-Civita symbol.
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Z1Z2 Z2Z3 Syndrome Correction
+1 +1 No error None
+1 -1 X error on qubit 3 X3

-1 +1 X error on qubit 1 X1

-1 -1 X error on qubit 2 X2

Table 2.1: Error syndrome and correction table for the three qubit bit flip code.

• The 3-qubit “rotated” repetition code or 3-qubit phase flip code is analogous
to the one above but in the X basis. Therefore, the generators are g1 = X1X2 and
g2 = X2X3, such that the logical state is,

α |+ + +〉123 + β |− − −〉123 . (2.26)

Now all stabilizers are composed by Pauli-Xs, so only Pauli-Z errors or phase flips
will be detected. The logical operators are also analogous to the bit flip code,

Z = Z1Z2Z3, X = X1. (2.27)

X1X2 X2X3 Syndrome Correction
+1 +1 No error None
+1 -1 Z error on qubit 3 Z3

-1 +1 Z error on qubit 1 Z1

-1 -1 Z error on qubit 2 Z2

Table 2.2: Error syndrome and correction table for the three qubit phase flip code.

• The 9-qubit Shor’s code was introduced by Peter Shor, [41], in 1995. It is a
[[9, 1, 3]] code that has distance 3 and therefore, is able to correct an arbitrary sin-
gle qubit error. This code has the following eight generators presented in Table 2.3.

g1 Z1Z2

g2 Z2Z3

g3 Z4Z5

g4 Z5Z6

g5 Z7Z8

g6 Z8Z9

g7 X1X2X3X4X5X6

g8 X4X5X6X7X8X8

X Z1Z2Z3Z4Z5Z6Z7Z8Z9

Z X1X2X3X4X5X6X7X8X9

Table 2.3: Generators and non-unique logical Pauli X and Z operators of the 9-qubit
Shor’s code.
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• The 5-qubit code or perfect code introduced by Laflamme et al. in 1996 [42] is
the smallest stabilizer code able to correct an arbitrary single qubit error. It can
be referred to as the [[5, 1, 3]] code and has the following generators and logical
operators presented in 2.4.

g1 X1Z2Z4X5

g2 X1X2Z3Z5

g3 Z1X2X3Z4

g4 Z2X3X4Z5

X X1X2X3X4X5

Z Z1Z2Z3Z4Z5

Table 2.4: Generators and logical Pauli X and Z operators of the 5-qubit code. One
can note that these generators have a cyclic property and therefore, is rather easy to
find other subsets that create four independent generators. This is why in the literature
different sets of generators are presented for this stabilizer code. In this text the presented
set will be used.

For the last two examples neither syndrome table nor logical state is presented, this is due
to the fact that the stabilizer formalism already includes that information by construction.

Quantum circuits for correction

In order to detect an error it is necessary that the generators of the stabilizer are measured.
As mentioned at the beginning of this section, one of the main limitations that QEC
presents is the destructiveness of quantum measurements. To overcome this problem and
be able to measure stabilizers, non-destructive measurements circuits were introduced
[32]. For a general single qubit operator M , with eigenvalues ±1, this circuit looks as
in Figure 2.1. Moreover, the structure in Figure 2.1 is used X and Z in the stabilizer
measurements.

|0〉 H H

M

Figure 2.1: Quantum circuit for measuring a single qubit operator M with eigenvalues
±1. The top qubit is an ancilla qubit used for the measurement, and the bottom qubit
is the one being measured.

2.3.3 Code concatenation

We have seen how it is crucial that for quantum error correcting codes to be able to encode
several physical qubits into a logical one. Code concatenation, as briefly presented in [43]
and [38], exploits this idea by recursively encoding the qubits. So that, starting with one
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qubit, this is encoded in several more and all them together for a logical qubit. This first
code used is called inner code or encoding. Next, this logical qubit is treated as an initial
physical qubit and is encoded in another code using more qubits, this code is called the
outer code or encoding.

From another perspective, the qubits of the codewords of a code C are replaced by
encoded qubits of a new code C ′. In this case the code C would correspond to the outer
code, and C ′ to the inner code.

Example: 9-qubit Shor’s code

A clear example of this procedure is the previously introduced 9-qubit code Shor’s code
[41], as it concatenates the bit-flip code and the phase-flip code [43].

First, consider an initial physical qubit in state |Ψ〉 = α |0〉 + β |1〉 encoded in an outer
code C, the phase-flip code, |Ψ〉C = α |+ + +〉 + β |− − −〉. Next, assume the bit-flip
code as the inner code C ′, so that each of the physical qubits in the phase flip are now
encoded in a bit-flip code. Therefore, each |±〉 becomes 1√

2
(|000〉 ± |111〉), so the state

finally is,

|Ψ〉CC′ = α |0〉CC′ + β |1〉CC′ (2.28)

where,

|0〉CC′ =
1

2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉) (2.29)

|1〉CC′ =
1

2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉).

Note that now three blocks of bit-flip encoding are present, which have the following sta-
bilizers, (Z1Z2, Z2Z3), (Z4Z5, Z5Z6) and (Z7Z8, Z8Z9). At the same time this three block
form a single phase-flip block that has stabilizers X1X2X3X4X5X6 and X4X5X6X7X8X9,
these correspond to X1X2 and X2X3 from the phase-flip code, and where X is the logi-
cal operator from the bit-flip code. The non-unique logical operators in Shor’s code are
ZCC′ = Z1Z4Z7 and XCC′ = Z1Z2Z3.

2.4 Graph states, tree state and tree code

In this section a detailed explanation of the tree code is presented. The tree code is a
quantum error correcting code based on a graph-like structure that enjoys many properties
of a set of states a known as the cluster states. The introduction on graph states is rather
superficial and focused on the ingredients needed to understand the concepts of the tree
code. For a more detailed and extensive approach one can look at [44].
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2.4.1 Graph states

A graph is a collection of vertices and a description of which vertices are connected by
an edge. Each graph can be represented by a diagram where a vertex is represented by
a point and the edges by arcs joining two vertices, which do not need to be distinct. In
the context of this text, vertices will denote qubits and the edges or bonds between them
will denote a certain entangling operation between them.

Formally, a graph is a pair
G = (V,E) (2.30)

of a finite set V = {1, . . . , n} and a set E ⊂ [V ]2, whose elements are subsets of V with
two elements each [44]. The elements of V are called vertices and the elements of E
edges. In the case of simple graphs, which is a graph that contains neither loops (edges
connecting vertices with itself) nor multiple edges, the definition of graph states can be
presented in terms of their stabilizers.

Definition 2.4.1. Let G = (V,E) be a graph [44]. A graph state vector |G〉 is the
unique common eigenvector to the set of independent commuting observables:

Kν = Xν

⊗
w∈Nν

Zw

where Nν denotes the neighbours of qubit ν, which are the qubits directly linked to qubit
ν. The stabilizer states correspond to the eigenstates with eigenvalue +1 of all the Kν for
all ν ∈ V . The stabilizer subgroup S of the graph state is generated by the set S = 〈{Kν

| ν ∈ V }〉.

In general to generate a simple graph state |G〉 with stabilizers S = 〈{Kν | ν ∈ V }〉, one
should prepare each of the qubits in V in the |+〉 state, by applying a Hadamard gate
to an initial state |0〉. Then the edges E correspond to an entangling operation between
the pairs of connected qubits, which operation corresponds to a CPHASE gate. The
CPHASE or controlled phase-flip gate is a unitary gate that acts on a 2-qubit system,
and is able to create entanglement when applied to a product state,

CPHASE =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.31)

An important property of graph states comes from the definition of their generators.
Consider measuring a graph state vector |G〉 following the pattern given by Kν , i.e.
measuring the qubit at vertex ν in the X-basis and the vertices w in Nν in the Z-basis.
The outcomes of such measurements, mX

ν = ±1 and mZ
w = ±1, are constrained by Kν ,

namely,

mX
ν

∏
w∈Nν

mZ
w = 1. (2.32)

These constraints can be used as a tool to deal with losses in a graph state. To illustrate
this, consider a simple graph of only two qubits. The two qubits in the graph state will
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have labels 0 and 1. First, to generate the graph state the circuit in Figure 2.2 will take
place.

|00〉 H
Graph state
generation|01〉 H

Figure 2.2: Quantum circuit for the two-qubit simple graph generation.

So that the final state is,

|ψ01〉 =
1√
2

(|00〉 |+1〉+ |10〉 |−1〉) (2.33)

=
1√
2

(|+0〉 |01〉+ |−0〉 |11〉).

Now is easy to identify the stabilizers of this simple example. Those are X0Z1 and Z0X1,
such that,

X0Z1 |ψ01〉 = |ψ01〉 , (2.34)

Z0X1 |ψ01〉 = |ψ01〉 . (2.35)

Take the first one, if the observable X0 is measured then the outcome of Z1 is known with
certainty. Therefore, from now on we can say that X0 is an indirect measurement of the
observable Z1. Thus, if qubit 1 undergoes a loss error and so it is no longer available, Z1

can still be measured indirectly. Performing indirect measurements is a helpful tool that
will be used recurrently in this text.

Each graph state vector |G〉 corresponds uniquely to a graph G, meaning that two different
graphs, G = (V,E) and G′ = (V,E ′), cannot describe the same graph state2, |G〉 6= |G′〉.
However, two different graphs might have graph states that are equal up to some local
unitary (LU) operation. Two graphs G = (V,E) and G′ = (V,E ′) are LU-equivalent, if
there exists a local3 unitary U such that,

|G′〉 = U |G〉 . (2.36)

Now,
Σ′ := USU † = {UsU †|s ∈ S} (2.37)

where S is the stabilizer of |G〉, then s′ |G′〉 = |G′〉 for every s′ ∈ Σ′. Now, one would
say that Σ′ is a stabilizing subgroup of |G′〉. However, in general Σ′ is not equal to the
stabilizer of |G′〉, since in general Σ′ is not a subgroup of a Pauli subgroup. For Σ′ to
be the stabilizer group of |G′〉 one needs to consider U to be in the local Clifford group
of n qubits4 [39], as seen in 2.3.2. So, from now on two graph states |G〉 and |G′〉 are

2See proof in [44]
3Locality refers to the systems associated with vertices of G and G′
4The local Clifford group on n qubits is C1n := {U ∈ U(2)V |UPnU

† = Pn}, which is the n-fold tensor
product of the one-qubit Clifford group C1 := {U ∈ U(2)|UPU† = P}
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said to be LC-equivalent if and only if they are related by some local Clifford unitary
U , |G′〉 = U |G〉. As stated in proposition 4 in [44], any stabilizer state is LC-equivalent
to some graph state, the proof of such statement can be found in [45]. Similarly to this
statement, more generally for all stabilizer codes, any stabilizer code is LC-equivalent to
some graph code, quantum codes where an underlying graph determines them [46].

The action of local Clifford operations in graph state can be generally described by the
local complementation, which is a rule for graph transformation.

Definition 2.4.2. A local complementation τν acts on a vertex ν of a graph G by
inverting the edges connecting the neighbours of ν [44]. After such action, the graph is
G′ = τν(G).

Then, by local complementation of a graph G at some vertex ν ∈ V , one obtains an LC-
equivalent graph state |G′〉 = |τν(G)〉 = U τ

ν (G) |G〉, where U τ
ν (G) = e−i

π
4
Xνei

π
4
⊗w∈NZw is a

local Clifford unitary, . Therefore, two graph states are LC-equivalent if the corresponding
graphs are related by a sequence of local complementations, i.e. G′ = τν1 ◦ · · · ◦ τνn(G)
for some ν1, . . . , νn ∈ V . This is usually referred to as the LC-rule and this equivalence
is proofed in. [44].

Local Pauli measurements

The measurement of some Pauli operator X, Y or Z at a single vertex ν in a graph state
is a useful trick used throughout the text. In general, it consists on a sequence of local
complementations together with the deletion of vertex ν, together with some LC-unitaries
at vertex ν.

Generically, a Pauli measurement of the graph state |G〉 at a vertex ν results in a graph
state |G′〉 with the remaining unmeasured vertices.

Measuring vertex ν in the Z basis: Removes the qubit ν, up to a local Z rotation.

Measuring vertex ν in the Y basis: Applies a local complementation τν and
removes the qubit ν, up to a LC-unitary.

Measuring vertex ν in the X basis: Chooses any vertex u ∈ Nν , applies a local
complementation τu, applies the rule for measuring in Y and applying τu again, up
to a LC-unitary.

The following notation P i,±
ν is used to describe projective measurements where, the sub-

index ν denotes on which qubit the measurement is performed on, and i = X, Y, Z
indicates the basis of the measurement and the super-index ± denotes the outcome of
such measurement, that can be ±1.

Now, considering LC-unitarity, a projective measurement of X, Y or Z on the qubit
associated with a vertex ν in a graph G yields up to local unitaries, U i,±

ν , a new graph
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state |G′〉 on the remaining vertices. The resulting graph G′ is:

PZ,±
ν |G〉 =

1

2
|Z,±〉ν ⊗ U

Z,±
ν |G− ν〉 , (2.38)

P Y,±
ν |G〉 =

1

2
|Y,±〉ν ⊗ U

Y,±
ν |τν(G)− ν〉 , (2.39)

PX,±
ν |G〉 =

1

2
|X,±〉ν ⊗ U

X,±
ν |τu(τν ◦ τu(G)− ν)〉 , (2.40)

for any choice of some u ∈ Nν . The local unitaries U i,±
ν are:

UZ,+
ν = 1, UZ,−

ν = ⊗w∈N (ν)Z
w (2.41)

UY,+
ν = ⊗w∈Nν (−iYw)

1
2 , UY,−

ν = ⊗w∈Nν (iYw)
1
2 (2.42)

UX,+
ν = (iYu)

1
2 ⊗w∈Nν−Nu−{u} Zw, UX,−

ν = (−iYu)
1
2 ⊗w∈Nu−Nν−{ν} Zw. (2.43)

The local unitary for the measurement of X depends on the choice of u, but the different
choices result in graph states that ate equivalent via an LC-unitary. In Figure 2.3 some
examples with a graphical representation of the measurements in the different basis is
illustrated.

(a) Central qubit measured in the Z basis.

(b) Central qubit measured in the Y basis.

(c) Central qubit measured in the X basis.

Figure 2.3: Graphical representation of measuring in the different basis a qubit in a graph.
(a) in the Z basis, (b) in the Y basis and (c) in the X basis. At the left, the initial graph
G is represented and at the right the final graph G′ after the Pauli measurement is
represented. All the final graphs are up to a LC-unitary, as described in equation 2.38.
Additionally, in (b) an intermediate step has been drawn for clarity.
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Cluster states

A cluster state is a particular instance of a graph state, where the underlying graph
is a connected subset of a d-dimensional lattice. But in the framework of quantum
computation, only cluster states of dimension two and higher are useful as stated in
[47]. In the next part of this section, a more deep description of an example of a two-
dimensional cluster state, the tree state, is presented.

2.4.2 Tree states

The specific structure of a tree state can be characterized by a branching vector t̄ =
[b0, b1, . . . , bd], which explicitly denotes the connectivity of the tree starting at the top
node, which from now on it will be referred to as the root qubit, through the d levels of
the tree.

Since the tree state is a simple graph state, its generation and stabilizers are analogous
to the general description for a graph state. To be able to refer to each one of the qubits
in the tree unequivocally, one should label the qubits as follows in Table 2.5.

Labels
Root qubit → 0

1st level qubits → 1, . . . , b0
2nd level qubits → i1, . . . , ib1

a

3rd level qubits → ij1, . . . , ijb2
b

...
dth level qubits → i . . . k1, . . . , i . . . kbd

c

ai = 1, . . . , b0, i denotes the label of the 1st level
qubit they are linked to.

bj = 1, . . . , b1, j denotes the label of the 2nd level
qubit they are linked to.

ck = 1, . . . , bd−1, k denotes the label of the d− 1th
level qubit they are linked to.

Table 2.5: Labels of the vertices/qubits in a tree code of branching vector t =
[b0, b1, b2, . . . , bd]

A visualization of an example of such tree states with the proposed labelling of the qubits
can be seen in Figure 2.4.

Redundancy of the tree state

As seen for the general simple graph states, the outcomes of the measurements in a
stabilizer are constrained and this is used to perform indirect measurements. Now a
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Figure 2.4: Tree of depth 3 with branching vector [b0, b1, b2] = [2, 2, 2].

detailed look at indirect measurements on tree states is presented, as this is one of the
crucial features of these tree clusters.

In general, any given qubit within the tree state can be removed indirectly by performing
measurements on a subset of qubits below it in the tree. Now, consider that a Z mea-
surement in qubit i, a first-level qubit, is to be performed. To do so, one has to pick one
of the branches under qubit i and measure the 2nd level qubit, ij, in the X basis and 3rd
level qubits, ijk for k = 1, . . . b2, in Z basis. Therefore, the performed measurement is

Xij ⊗m∈N (ij)−i Zm, (2.44)

where the sub-indices in the Pauli matrices denote in which qubit they are applied to. This
expression is almost exactly the stabilizer for qubit ij, only Z on one of the neighbours
is missing. The latter is exactly the first-level qubit i, the one where an indirect Z
measurement is to be performed on. Then, the stabilizer for qubit ij is as follows,

Kij = Xij ⊗m∈N (ij) Zm. (2.45)

Measuring Kij would have outcome +1, since it is a stabilizer of the tree state, then the
outcomes of measuring Xij ⊗m∈N (ij)−i Zm and Zi, will be both either ±1, but they need
to be the same. This is how an indirect Z measurement is applied to a first-level qubit
in a tree state. An analogous procedure can be applied to any qubit in any level of the
tree, changing the levels of all the implied qubits in the indirect measurement. From this,
one can clearly see that the tree state has some redundancy to it making the tree state a
good candidate to deal with losses and errors given that a same outcome can be obtained
in a variety of ways.

2.4.3 Tree code

Now that the tree state has been introduced, one can use it to encode and protect
information, thus generating the tree code, which has been used previously in [30], [48]
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and in [15]. As previously stated, the tree state can be defined only with its stabilizers and
its branching vector, therefore, one can easily see that the tree code belongs to the family
of QECC of the stabilizer codes. Particularly, the tree code takes one qubit and encodes
it in a tree with branching vector t = [b0, b1, . . . , bd], so that n = b0 + · · · + b0b1 . . . bd =∑d

i=0

∏i
j=0 bj and k = 1. On the following parts of this section a detailed explanation of

the tree code is presented.

Encoding procedure

Consider an initial state α |0〉 + β |1〉 and a tree state of branching vector t. A Bell
state measurement between the qubit with the initial state and root qubit needs to be
performed in order to encode the initial state into the tree code. In Figure 2.5 the
encoding procedure is drawn.

mi = ±1

mr = ±1

α |0〉+ β |1〉 H

Root qubit

Figure 2.5: Quantum circuit for the encoding procedure of the tree code.

The Bell state measurement has four possible outcomes (mi = ±1 and mr = ±1), and the
encoded state or tree code will depend on them. In general, any measurement in the tree
with outcomes ±1 is such that the state after such measurement will depend on them.
The post-measurement state with outcome +1 will be considered the correct state. Thus,
throughout the following sections the concept of correction will be used after any kind
of measurement in the tree with outcome −1, where the correction will be some kind of
logical operator on the tree.

The corrections for the encoding procedure to get the post-measurement state with out-
comes mi = +1 and mr = +1 are: if mi = −1 a logical Z needs to be applied to the tree
and if mr = −1 a logical X needs to be applied to the tree.

Stabilizers of the encoded tree

It is important to note that after performing the encoding, the tree “loses” the root qubit
and therefore, some of the stabilizers of the tree state are no longer possible to measure,
those are K0 ∝ X0, Ki ∝ Z0 for any i = [1, b0].

In general, the tree state before encoding is,

|Ψ〉 ∝ |0〉0 |τ+〉+ |1〉0 |τ−〉 . (2.46)

where the sub-index 0 denotes the root qubit and |τ±〉 refers to the states of other qubits
of the tree, which are also known as the sub-trees of the tree. These sub-trees have as a
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root qubit each of the first-level qubits. After the encoding procedure is done, that state
is,

|Ψ〉 ∝ c1 |τ+〉+ c2 |τ−〉 , (2.47)

where c1 and c2 are two complex numbers that depend on the encoded state and the
outcomes of the Bell state measurement. The states |τ±〉 can also be interpreted as the
logical states of the tree code. If the state to be encoded was |0〉, the logical state would
be |τ+〉, therefore, it will be considered the logical 0 and same follows for |τ−〉, which will
be considered the logical 1.

Now, consider Ti to be an operator such that Ti = Z0Ki = Xi

∏b1
j=1 Zij, then Ki = Z0Ti.

Since, Ki |Ψ〉 = |Ψ〉, then Z0 |Ψ〉 = Ti |Ψ〉,

Z0 |Ψ〉 ∝ |0〉0 |τ+〉 − |1〉0 |τ−〉 , (2.48)

thus it follows that Ti |τ±〉 = ± |τ±〉. Therefore, the operator Sij = TiTj for i, j = [1, b0] is
such that TiTj |Ψ〉 = |Ψ〉, not that for i = j, Sij = I. Moreover, since Ti does not affect
the root qubit, then the operators Sij are the stabilizers for the first-level qubits after
the encoding procedure. It is important to note that these stabilizers enforce correlations
between sub-trees in a same tree. In contrast, the already known stabilizers from the tree
state are only internal to each sub-tree.

Logical operations of the encoded tree

As said before, logical operations of the encoded tree will be used often as corrections that
need to be applied to the tree after any qubit measurement. The main logical operations
that will be used are the logical Pauli-X and the logical Pauli-Z. Generically and by
construction, operations on the tree code can be done either directly or indirectly, the
intuition for an indirect operation arises from the stabilizers of the tree.

• Logical Pauli-X: The operation can be done directly by applying Z to each of
the first-level qubits of the tree.

LX =

b0∏
i=1

Zi. (2.49)

As any operator acting on a tree, this logical operator is not uniquely defined and
hence it can be performed indirectly on the qubits below the first level. If one
recalls the stabilizer ZiXij

∏b2
k=1 Zijk, the effect of Z to the first-level qubit, Zi is

the same as Xij

∏b2
k=1 Zijk on the qubits below i. From this we learn that the

direct one is easier or “cheaper” since only requires a single operation per sub-tree,
while the indirect one requires more than one for trees of depth three or more.
Regardless of the choice, the effect of such logical operation on the logical states
defined previously, needs to be as follows,

LX |τ±〉 = |τ∓〉 . (2.50)
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• Logical Pauli-Z: This operation can be performed directly in a single sub-tree by
applying X on the first-level and Z on the second-level and it is given by,

LZ = Xi

b1∏
j=1

Zij, (2.51)

where i ∈ {1, b0}. In this case one can perform Z on one of the second-level qubits
indirectly. This is analogous to the indirect Z measurement in logical X, but one
level below, Xijk

∏b3
l=1 Zijkl. Note that to do this one needs to have deep trees. Any

way, the effect of such logical operation on the logical states defined previously,
needs to be as follows,

LZ |τ±〉 = ± |τ±〉 . (2.52)

Note that the direct operation is the same as the operators Ti.

Decoding procedure

To recover the state that was encoded in a tree one can make use of the properties of the
graph states. The decoding procedure consists on detaching all the qubits from the tree
but one of the first-level qubits which will be left with the same state as the qubit that
was encoded.

First, one needs to pick one of the first-level qubits to be the final qubit. Then, for all
the other first-level qubits and their corresponding sub-trees the recipe in Table 2.6 is
followed.

Detach a sub-tree
1st level qubit → measured in Z basis

2nd level qubits → measured in X basis
3rd level qubits → measured in Z basis

. . .

Table 2.6: Measurements to perform in a sub-tree to detach it from the tree.

This choice of measurements is motivated by the properties of those measurements on
the graph state. Recall that measuring a qubit in Z basis is equivalent to removing that
qubit and losing any connectivity from the rest of the graph. Thus, makes sense that
the remaining first-level qubits are measured in Z so that each sub-tree is detached from
the graph. Moreover, one can use the redundancy of the measurements of the tree to
also perform this Z on the first-level qubit in a sub-tree indirectly many times using all
the sub-sub-trees from the sub-tree. Since the outcomes of all the Z measurements, both
direct and indirect, in a sub-tree are correlated they can be majority voted5. In a scenario
where no errors are considered this is not necessary, but this is almost never the case so
that performing this majority voting also ensures some redundancy against errors.

5A majority vote consist on deciding an outcome from a set of options. The final outcome corresponds
to the most repeated option in the set.
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After this, one is left with one entire sub-tree where the qubits on the second level or
below need to be detached. Once again, one can think about the leaves of this first-level
qubit as sub-trees to be detached. Therefore, the recipe presented in Table 2.7 is followed.

Detach a second-level sub-tree
2nd level qubits → measured in Z basis
3rd level qubits → measured in X basis
4th level qubits → measured in Z basis

. . .

Table 2.7: Measurements to perform in a sub-tree in the second level to detach it from
the tree.

By doing this one recovers a single qubit state, which depends on the outcomes of the
measurements performed in the decoding. Those measurements are direct and indirect Z
measurements and thus those leave the state up to a Pauli-Z correction as seen in part
2.4.1, in particular in equation 2.41. Therefore, if the product of all the outcomes in the
decoding is -1, the single qubit state needs a correction of a Pauli-Z. When dealing with
losses one needs to take into account that in the first set of measurements, at least one
Z measurement per sub-tree, either direct or indirect, needs to be successful in order to
be able to know the right correction. Moreover, in the last step the Z measurements on
the second-level qubits need to be successful either directly or indirectly also to be able
to retrieve the right correction. Finally, to recover the information in the computational
basis an H gate needs to be applied. From this procedure its easy to get an intuition on
the recursion property inherent to the tree code.

Example: [3, 2] tree code

To show all the properties of the tree code a simple example is presented. Consider the
branching vector [3, 2], then the tree state for the 10 qubits is,

|Ψ〉 =
1

24/2

(
|0〉(|0〉|+,+〉+ |1〉|−,−〉)⊗3 + |1〉(|0〉|+,+〉 − |1〉|−,−〉)⊗3

)
, (2.53)

where this color represents the root qubit, this the first-level qubits and this the second-
level qubits. This state is generated by preparing all the qubits in the plus state and
performing a CPHASE between all the connected qubits. Also, |τ±〉 can be identified,

|τ±〉 = (|0〉|+,+〉 ± |1〉|−,−〉)⊗3. (2.54)

Now, consider a qubit with state α |0〉+ β |1〉 that is encoded into the [3, 2] tree state by
means of a Bell state measurement, the resulting state is,

|Ψ〉 =
(1 +mr)α + (1−mr)β

4
√

2
|τ+〉+mi

(1−mr)α + (1 +mr)β

4
√

2
|τ−〉 , (2.55)

where mr,mi = ±1 are the outcomes of the Bell state measurement of the root qubit and
the information qubit respectively.
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Now that the state of the tree code is explicitly presented for the [3, 2] case, its stabilizers
can be studied. In this case the Ti operators are,

T1 = X1Z11Z12, T2 = X2Z21Z22, T3 = X3Z31Z32. (2.56)

Each Ti has the same effect on a different sub-tree, but that results on the same effect in
the tree, which is as follows,

Ti |τ±〉 = (|1〉|−,−〉 ± |0〉|+,+〉)(|0〉|+,+〉 ± |1〉|−,−〉)⊗2, (2.57)

such that,
Ti |τ±〉 = ± |τ±〉 (2.58)

for any i ∈ {1, 2, 3} and this holds for any outcome of the Bell state measurement. As
stated previously, the new stabilizers are, T1T2, T2T3 and T1T3. Note that (T1T2)(T2T3) =
T1T3, and so only T1T2 and T2T3 are necessary. To prove that those are stabilizers, one
only needs to apply them to the state in equation 2.55. Now, there are eight generators
for the [3, 2] code, that has 9 qubits, are given in Table 2.8.

g1 Z1X11

g2 Z1X12

g3 Z2X21

g4 Z2X22

g5 Z3X31

g6 Z3X32

g7 X1Z11Z12X2Z21Z22

g8 X2Z21Z22X3Z31Z32

Table 2.8: Generators of the [3, 2] tree code.

This code’s generators are rather similar to Shor’s ones, in Table 2.3. Here are the steps
to make the similarities between these two codes more apparent. First, note that the
generators are not unique, for example, g2 can be redefined to g′2 = g1g2 = X11X12, and
similarly for g4 and g6. Then, consider an H gate is applied to each of the second-level
qubits, so that now the stabilizers are the ones presented in Table 2.9.

Generators [3, 2] tree code Shor’s code
g1 Z1Z11 Z1Z2

g2 Z11Z12 Z2Z3

g3 Z2Z21 Z4Z5

g4 Z21Z22 Z5Z6

g5 Z3Z31 Z7Z8

g6 Z31Z32 Z8Z9

g7 X1X11X12X2X21X22 X1X2X3X4X5X6

g8 X2X21X22X3X31X32 X4X5X6X7X8X9

Table 2.9: Comparison of the generators of the [3, 2] tree code and Shor’s code.

Here one can identify the relation between the indices of the two codes. Remember that
the Shor’s code is obtained through code concatenation of the bit flip code and the phase
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flip code. This is such that qubits 1, 4 and 7 are encoded into a phase flip code and then
each of those qubits is encoded into a bit flip code, such that (1, 2, 3), (4, 5, 6) and (7,
8, 9) form three blocks of bit flip code and all together form a phase flip code.

By looking at the ’modified’ generators of the [3, 2] tree code and of the Shor’s code, one
can see that the three qubits of each sub-tree form a bit flip block and then these three
form a phase flip block. Or analogously, the first-level qubits are encoded in a phase flip
code and then each of those qubits is encoded in a bit flip code with their second-level
qubits. Therefore, one can say that the [3, 2] code and the Shor’s code are LC-equivalent.

Moreover, one can see how a tree code is a concatenated code, since the structure and
the entanglement relation between the root qubit and the first-level qubits is the same as
the one for a first-level qubit with its leaves or second-level qubits, and so on depending
on the depth of the tree.

Next, from 2.55 consider the outcomes mr,mi = +1, that correspond to the correct state,

|Ψ〉correct =
1

2
√

2
(α |τ+〉+ β |τ−〉). (2.59)

If instead, the outcomes were mr = −1 and mi = +1, the state would look as follows,

|Ψ〉mr=−1 =
1

2
√

2
(β |τ+〉+ α |τ−〉). (2.60)

To correct this state an unitary operation such that U |τ±〉 = |τ∓〉 needs to be applied.
This operation is the logical Pauli-X, U = LX and in this case this can be performed in
two ways for each sub-tree. The state of a sub-tree is,

|0〉|+,+〉 ± |1〉|−,−〉 (2.61)

and the operation needs to be such that the result is

|0〉|+,+〉 ∓ |1〉|−,−〉. (2.62)

This can be done by either applying Z on the first-level qubit, or applying X to both
of the second-level qubits. Next, consider the state with outcomes mr = +1 and
mi = −1,

|Ψ〉mi=−1 =
1

2
√

2
(α |τ+〉 − β |τ−〉). (2.63)

To correct this state an unitary operation such that U |τ±〉 = ± |τ±〉 needs to be applied.
As seen before, the logical Pauli-Z has this effect, therefore U = LZ, which in this case is
done by applying an X to the first-level qubit and Z to the second-level qubit on one of
the sub-trees, which is essentially applying the operator Ti in the ith sub-tree, as shown
in equations 2.57 and 2.58. Finally, if the outcomes are mr = −1 and mi = −1,

|Ψ〉mr,mi=−1 =
1

2
√

2
(β |τ+〉 − α |τ−〉). (2.64)

The operations that need to be applied are both LX and LZ.

Lastly, the decoding procedure is presented in detail for this example. First, two of the
sub-trees need to be detached following the sequence in Table 2.6. Consider the state
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of a single sub-tree 2.61, then the first-level qubit is measured in Z basis and the
second-level qubits in the X basis. There are two possible outcomes, if the product
of the outcomes is +1, the post-measurement state is |0〉|+,+〉 and if its -1, the post-
measurement state is ±|1〉|−,−〉. After doing this for both sub-trees, the state of the
tree is6,

1√
2

(α(|0〉|+,+〉+ |1〉|−,−〉)± β(|0〉|+,+〉 − |1〉|−,−〉)), (2.65)

where the ± indicates the sign of the product of all outcomes. Next, the second-level
qubits are to be measured in the Z basis to detach them. Then a single qubit is left in
the tree whose state depends on the product of all measurements, including the ones on
the second-level qubits,

α|+〉 ± β|−〉, (2.66)

where the ± indicates the sign of the product of all outcomes. Then if that value is
negative Z needs to be applied to the qubit and finally H to recover the state in the
computational basis, this way one recovers the initial state that was encoded in a tree
α|0〉 + β|1〉 in one of the first-level qubits in the tree. In this example with the [3, 2]
tree code, the corrections applied throughout the different procedures have been explicitly
presented. These corrections are the same for any other tree code with different branching
vector.

2.5 One-way quantum repeater protocol with tree

code

In this section, the one-way quantum repeater protocol with the tree code is presented.
Both the one-way quantum repeater and the tree code have been previously introduced
in 2.1.2 and 2.4.3 correspondingly. The explained protocol is based on the one proposed
by Johannes Borregaard et al. in [15], based on photonic tree states.

One-way quantum repeaters do not require long-lived quantum memories nor two-way
quantum communication, so that in comparison with the other types of quantum repeater
their distribution rates are only limited by the slowest component enabling very high
communication rates. As the name suggest, the repeater chain only needs communication
in one direction in order to send or share a quantum state. These repeater require photonic
encodings and quantum error-correcting codes to protect the information against losses
and errors. Additionally, the tree code is used as the photonic encoding, a choice which
relies on the loss tolerance that this encoding shows due to its highly entangled and
redundant state.

The structure of an one-way quantum repeater chain with the tree code is formed by a
sending station, where the quantum information is encoded and sent to the first repeater
node. Then, at each of the repeater nodes a re-encoding procedure is done, until the end
node of the chain is reached and the information is retrieved. All of this is presented
considering that the photons are sent through a fiber and thus, are subjected to losses.
Finally, an analysis of the behaviour of such repeater chain under errors is explored.

6On the following equation, the measured qubits are discarded from the state.
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2.5.1 Encoding

At the first station, which can be called the sending station, a tree state is generated.
In [15] it is claimed that a photonic tree of depth d required for the repeater station can
be generated with d− 1 memory qubits (spin qubits) and one single photon emitter per
repeater station using repeated photon emissions. Moreover, one must be able to perform
CPHASE gates between neighbouring spins, where the spins are in a linear configuration.
This generation is done such that the root qubit of the tree is in one of the memory qubits
available in the repeater and the rest of the qubits in the tree are represented by photons.

After generating the tree, quantum information needs to be encoded in it by means of a
Bell state measurement as seen in 2.4.3. In particular, a message qubit, α |0〉s + β |1〉s,
is prepared in another of the memory qubits available. Then a Bell state measurement
between the root qubit and the message qubit, both in memory qubits, is performed
such that the tree code has been encoded and only the photons are left. Note that as
said in 2.4.3, corrections must be applied depending on the outcomes of the Bell state
measurement. Then the photons of the encoded tree are sent or transmitted through
fiber to the next repeater station, a process that may be subjected to photon losses.

In particular, the tree code or any other loss tolerant code can fundamentally never
tolerate more than 50% losses per elementary link. This corresponds to a distance of
approximately 15 km for a telecom fiber, which has an attenuation length L0 ≈ 22
km [23]. Thus, any one-way quantum-repeater chain could have at most this spacing.
However, in reality the spacing needed is probably smaller, as the code is probably not
near-deterministic all the way until 50% losses.

2.5.2 Re-encoding

The goal of an intermediate repeater station in the one-way quantum repeater is to re-
encode the retrieved qubit after the decoding in a new tree generated in that repeater
station. This procedure is somewhat similar to the procedure of encoding the message
qubit at the sending station. In broad terms, the re-encoding procedure consists in
generating a new tree of photons with a spin qubit as the root qubit, followed by a Bell
state measurement between the message qubit and the root qubit. So one can understand
that this re-encoding “refreshes” or “repairs” the encoded tree in order to be able to go
to longer distances.

As seen in the decoding procedure of the tree code in 2.4.3, the message qubit is recovered
in a photonic qubit of the first level of the tree. In order to do this, all the first-level
photons that are not used to retrieve the information are measured directly and indirectly
in Z, thus, detaching them from the tree up to a Z correction as seen in 2.4.1. This
(in)direct Z measurement is also applied to the second-level photons below the targeted
first-level photon

Then in order to “refresh” the tree, the re-encoding procedure requires a Bell state
measurement between one of the first-level photons of the encoded tree that arrives at the
repeater station and the root qubit of a new generated tree, along with the measurement
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of all the remaining qubits in the encoded tree as specified in the decoding procedure.

Note that the measurements in the decoding procedure do not need to follow any specific
order due to the fact that they are all on different sub-spaces. This allows for the re-
encoding procedure at each repeater station to be performed without prior knowledge of
which photons are lost. Specifically, one could first attempt a Bell state measurement
between one of the first-level photons and the root qubit of the new tree. While always
keeping in mind that the success of this measurement depends on if the selected first-level
photon is lost or not.

Therefore, the first approach that comes to one mind is a trial-and-error procedure to
perform a successful Bell state measurement. But this approach may damage or perturb
the root qubit of the new tree. Inevitably, every time the Bell state measurement is
unsuccessful, due to a lost first-level photon, one would have to generate a new tree. A
better approach would be to consider a re-encoding procedure that operates in a loss
tolerant manner. This is such that if the Bell state measurement is attempted on a lost
first-level photon, the measurement is aborted without perturbing the root qubit of the
new tree.

To avoid having to generate a new tree-cluster state every time there are losses, in [15]
the following procedure was proposed. A heralded storage of the message qubit in an
auxiliary spin qubit is performed first. This is obtained with a spin-photon controlled-
phase gate with a first-level photon of the encoded tree. Afterwards the success of the
storage is determined by the detection of the photon in the X basis. Depending on the
success one should proceed as follows,

• If the storage is unsuccessful due to photon loss, the auxiliary spin is reinitial-
ized and a new attempt is made with another first-level photon. Also, one wants
to detach the sub-tree that the lost first-level photon belonged to, following the
sequence in Table 2.6. This is such that the root qubit of the new tree-cluster is
unaffected.

• If the storage is successful, the auxiliary spin qubit can be referred to as storage
qubit. Then, a deterministic Bell state measurement is performed between the
storage qubit and the root qubit of the new tree. To teleport the encoded quantum
information into the new tree we need to leave the tree initially received in the
repeater station with no photons, this is done as specified in the decoding procedure
where now the selected first-level qubit has become the storage qubit. This is done
by means of (in)direct Z measurements on all first-level photons and second-level
photons under the targeted first-level photon. Finally, the re-encoding procedure is
complete.

The last step in the repeater station is to send the new encoded tree to the next repeater
station, where again the transmission may cause losses.
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2.5.3 Repetition and end node

This procedure of re-encoding and transmission is repeated until one reaches the end node
of the repeater chain. There the message qubit can either be transferred to an auxiliary
spin qubit as before, or directly measured without being transferred. The latter is done
by performing a sequence of measurements on the photons of the encoded tree which
consist on (in)direct Z measurements on all first-level photons and second-level photons
under the targeted first-level photon.

Note that at all repeater stations at least two memory qubits are needed in order to
perform the initial encoding and the re-encodings. Moreover, at each repeater station a
tree needs to be generated a processor with d − 1 memory qubits (spin qubits) and one
single photon emitter is needed. Therefore, in order to be able to perform this repeater
chain one must have two memory qubits, thus one is able to generate at least trees of
depth 3.

2.5.4 Errors

The simplicity of the presented protocol for the one-way quantum repeater is nothing
but an advantage. Yet one can still find downsides to it, such as the fact that this
specific encoding is not a fault tolerant encoding, meaning that is not able to correct
arbitrary errors. In particular, if an error happens on the qubits that take part into the
re-encoding Bell state measurement it will map into an error on the new logical qubit,
which is impossible to detect, track or correct. Thus, one can say that this encoding suffers
from a non-fault tolerant Bell state measurement. Therefore, this can be considered to
be the main bottleneck in terms of error tolerance of the one-way quantum repeater with
the tree code.

However, as seen in the decoding procedure of the tree code in 2.4.3, the tree code is not
fault tolerant but has a certain redundancy against errors. This comes from the fact that
in the decoding procedure the Z measurements in a sub-tree can be performed indirectly
and directly and the outcomes of those are correlated in such a way that they can be
majority voted in the scenario where errors are considered.

In this particular encoding one can think of the possible error sources, which include
but are not limited to the tree generation, which includes the emission of photons and
the controlled-phase gates between neighbouring qubits, the measurements performed on
the photons of the tree in order to decode it, the Bell state measurement itself and the
transmission of photons through fibers.

Moreover, from the tree generation procedure one can see that the errors between photons
in different levels in a same sub-tree should be correlated from a realistic point of view.
Specifically, the correlations in the tree code are created by the CPHASE gates between
a qubit in a certain level with its leaves, which are the qubits attached to it in a level
below, in such a way that if an error occurs in the higher-level qubit before this operation,
correlated errors are created in the leaves. This is true for trees and sub-trees.
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In the numerical optimization in [15] a single-qubit depolarizing noise, as defined in 2.2.1,
is considered. Moreover, they looked into how single qubit depolarizing errors add to a
total re-encoding error, εr. Additionally, they considered that all the qubits that are
transmitted are subject to the same depolarizing rate ε. For not very high ε, these errors
can be mostly corrected making use of the redundancy of the tree code by majority
voting. However, if an error happens on the first-level qubit in the sub-tree were the
heralded storage succeeds there is no way of detecting or correcting it. The lower-level
qubits in that sub-tree are protected against errors if the depth is larger than 2, due
to the ability of performing indirect Z measurements. In general, by making the tree
deeper the redundancy of the measurements in the decoding increases, but one also has
to keep in mind that if many qubits are lost, there may not be much redundancy left in
the measurement results, making them more prone to errors.





CHAPTER 3
Code concatenation in the one-way

quantum repeater

Code concatenation has been presented as a tool used to make larger codes out of small
codes as it has been presented in 2.3.3 [38, 43]. Briefly, the idea behind code concatenation
is “double encoding” mainly because the physical qubits that form the logical qubit of
the outer code are in turn the logical qubits of the inner code. Then the physical qubits
of the inner code correspond to the “real” physical qubits which are subjected to this
double encoding.

As stated in 2.5.4, the main bottleneck in terms of error tolerance of the one-way quantum
repeater based on the tree code is that the re-encoding at each repeater station relies on a
single message qubit which is non-error-proof. This entails that at each repeater station
we must re-encode the quantum information in such a way that we are left with a single
message qubit which is encoded in a new tree-cluster state by means of a Bell state
measurement. If any error would happen in that qubit there is no way to either detect
nor correct that error, making the repeater chain very susceptible to errors.

Therefore, we propose to take advantage of the idea of code concatenation to avoid
depending on a single qubit in the re-encoding. The goal is to keep using the tree code
as inner code and use a stabilizer code as outer code.

In this chapter, first a discussion about the choice of the codes used in the encoding is
presented, followed by a preliminary protocol for the code concatenated one-way quantum
repeater. Afterwards, the method to measure stabilizers of the outer code on the inner
code is explained and the necessary characteristics of a suitable specific outer code are
discussed. Finally, two protocols for the code concatenated one-way quantum repeater
using the 5-qubit code as outer code are presented in detail.

37
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3.1 Choice of concatenated codes

In this section we want to discuss the main reasons of choosing code concatenation of a
stabilizer code, as an outer code, and the tree code, as inner code.

First of all, the tree code is used as the inner code as it presents an important loss
tolerance due to the redundancy inherent in its structure and inner entanglement [49].
In this code, a single qubit is encoded in a tree, the latter being a simple graph state
that can be characterized by a branching vector, which denotes the connectivity of the
different levels of the tree. The properties of graph states, tree states and the tree code
have been studied in Section 2.4.

Additionally, the choice of using a stabilizer code as the ones presented in 2.3.2, as
outer code is based on the fact that we want to perform stabilizer measurements in the
repeater chain, so that the errors that affect the outer code can be corrected. In order to
perform these stabilizer measurements on the outer code, the qubits in the inner code,
the tree code, will be used and discarded after each measurement. Moreover, this is
also motivated by the fact that the photons that form the trees have been discarded up
to now in the measurements to decode the tree. The usefulness of these photons can
be further expanded for stabilizer measurements. In this particular encoding the qubits
in the trees will be divided between the ones used for decoding and the ones used for
stabilizer measurements.

3.2 Preliminary protocol for the code concatenated

one-way quantum repeater

In this section we present a preliminary protocol on how the one-way quantum repeater
works with a code concatenated encoding. Importantly, this protocol is introduced as a
starting point for the later protocols. The main difference is that the present protocol
does not consider the stabilizer measurements and the protocols that will be presented
next will consider them. The reason why these measurements have not yet been added
into the protocol is because before making any specific choices we need to get more detail
on how they work and what they entail.

The preliminary protocol starts at the initial sending station, where a “double” encoding
needs to be performed. First the message qubit is encoded in a [[n, 1, d]] stabilizer code
and then each of the n qubits resulting of the first encoding are encoded into photonic
trees of a certain branching vector, which does not necessarily need to be the same for all
n trees. Then those n trees are sent to the first repeater station through a fiber. In the
repeater station each tree is re-encoded by means of a Bell state measurement between
one first-level photon and the root qubit of a new tree. Therefore, at each repeater station
n Bell state measurements are performed. Then, the re-encoded n trees are sent to the
next repeater station and so on until the end node of the repeater chain is reached. At
this last step, the n trees are decoded returning n qubits which are next decoded from
the stabilizer code, so that a single qubit can be retrieved.



39 3.3. Stabilizer measurements in trees

Figure 3.1: Code concatenated one-way quantum repeater with n repeater stations, using
the 5-qubit code, [[5, 1, 3]], as outer code and the tree code as inner code. The five edges
connecting the different repeater stations denote the five trees being transmitted.

In Figure 3.1 this protocol is sketched for the 5-qubit code as outer code, so that one
can grasp the main scheme of the one-way quantum repeater with code concatenation.
Previously, the protocol for the one-way quantum repeater based on an all-photonic tree
encoding has been presented in Section 2.5, where we have seen that this protocol requires
a processor with d− 1 spin systems and one quantum emitter per repeater station for a
tree code of branching vector t = [b0, . . . , bd]. Following this structure, at each repeater
station of the code concatenated one-way quantum repeater n processors with di−1 spin
systems and one quantum emitter each are needed, where di with i ∈ {1, . . . , n} denotes
the depth of the tree code where qubit i from the outer code is encoded in. Each of this
processors is required to perform the re-encoding procedure for every tree of depth di per
repeater station. Thus, the encoding into trees at the sending station and the re-encoding
of each of the n trees at a repeater station is performed completely analogously to the
tree-code-based re-encoding.

Next, in order to include stabilizer measurements of the outer code in our repeater chain
we describe the procedure to perform such measurements in code concatenation.

3.3 Stabilizer measurements in trees

The goal of performing stabilizer measurements in code concatenation is to be able to
detect and correct errors on the outer code with their outcomes. Nevertheless, the focus
in this section is to understand how the stabilizers are measured instead of the correction
of errors. The latter is specified in the last two sections of this chapter.

In order to do this, we need to learn how a stabilizer operator on the outer code can be
implemented on the inner code. To do so, let us consider again the example of Shor’s
code as concatenated code, as seen in 2.3.3, which uses the phase flip code, seen in 2.3.2,
as outer code and the bit flip code, seen in 2.3.2, as inner code. The stabilizers of the
phase flip code are, XaXb and XbXc, where here a, b and c denote the three qubits that
form the code. Then each of those qubits is encoded into a 3-qubit bit flip code, such that
a is encoded into three qubits labeled 1, 2, and 3, b in qubits labeled 4, 5 and 6 and c in
qubits labeled 7, 8 and 9. All these nine qubits form Shor’s code. To “translate” XaXb

and XbXc, where the line over the operator denotes that is the operator that corresponds
to the outer code in code concatenation, into the bit flip code or to know which form
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these stabilizers take once the two codes have been concatenated, one needs to look at
the logical operators of the inner code. Logical X on the bit flip code is X1X2X3, so that
XaXb = X1X2X3X4X5X6 and XbXc = X4X5X6X7X8X9.

Following the same idea, one can “translate” the stabilizer operators of a given outer
code to the ones of the inner code, now represented by a tree code. For this reason it is
important to consider the logical operators of the tree code, which have been previously
introduced in 2.4.3.

In what follows the different kinds of stabilizers measurements are presented, depending
on which Pauli operations compose the operators. First stabilizers with only Pauli-Z are
considered. Later stabilizers that only include Pauli-X are introduced. Finally, codes
with both kinds of stabilizers and “mixed” stabilizers are presented. Note that in this
section neither losses nor errors in the qubits in the trees are considered.

3.3.1 Z. . . Z stabilizer measurement

To begin with, we will consider as outer codes n-qubit stabilizer codes whose generators,
as defined 2.3.2, are only formed by Pauli-Zs and identities. Now, the bit flip code, as a
simple example of this kind of codes will be examined. This code, as presented in 2.3.2,
is composed by three qubits, which each of them will be encoded in a tree of a certain
branching vector tl, l ∈ {1, 2, 3}. Now, the outer code stabilizers are Z1Z2 and Z2Z3,
where Z l corresponds to the logical Pauli-Z in tree l, which was presented in equation
2.51, such that,

ZmZn =
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for m 6= n and where the super-indices indicate the tree where the operation needs to be
performed and the branching vectors are tl = [bl0, b

l
1, . . . , b

l
d], so that i ∈ {1, . . . , bm0 } and

i′ ∈ {1, . . . , bn0}. In general, an operator Ol
i stands for an operator O applied on qubit i,

which denotes a first-level qubit in tree l. Similarly, Ol
ij stands for an operator O applied

on qubit ij in tree l, which denotes the leaf or second-level qubit j of the first-level qubit
i. The procedure for performing a measurement of these stabilizers goes as follows:

1. At first, two first-level qubits from the two involved trees, qubit i in tree m and
qubit i′ in qubit n, are picked. Then a non-destructive stabilizer measurement is
performed between those two qubits, Xm

i X
n
i′ and the outcome of it is saved.

2. After this, the second-level qubits are measured in Z in both sub-trees from the
two trees. The outcomes of these measurements are saved, and the product of
them with the outcome of the previous measurement gives the result of the ZmZn

stabilizer.

3. Moreover, the outcomes of these Z measurements will affect the total state as seen
previously in 2.4.1. For example, the product of these measurements in tree m is
−1, such that a correction needs to be applied. The correction can be done on the
first-level qubit picked for the stabilizer measurement in tree m. Same procedure
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is done for the other tree. These Z measurements have an additional role, they are
also used to remove the qubits from the tree, as seen in 2.4.1.

4. If the depth of the tree is larger than 2, the qubits on the third level and below are
also used to measure an indirect Z on the second-level qubits on them, as described
in 2.4.2. This way the Z outcomes on the second-level are protected against losses,
due to the redundancy of the tree state, and errors, due to the fact that a majority
voting between the direct and indirect Z measurements can be performed.

5. Lastly, the used first-level qubits are detached from the tree by measuring them in
Z and later on applying the corrections due to the outcomes at the corresponding
tree.

Here an example involving only two trees has been presented. For a stabilizer of Z on n
qubits, the step 1 would be a X . . .X stabilizer measurement between all the n first-level
qubits. The other steps are done in the same way as in the aforementioned method but
for all the n sub-trees. From this first approach to the stabilizer measurements in trees
one can see that in a repeater chain, these should take place at the repeater stations
before each of the trees are decoded for the teleportation into a new tree, since we first
want to use the photons to potentially measure a stabilizer. Otherwise, these photons
would just be measured out in the decoding.

3.3.2 X. . . X stabilizer measurement

The reason why the stabilizers containing X are treated differently lies on the differences
between the logical operations on a tree, as seen in 2.4.3. Their main difference is their
cost, where the cost of a logical operation in this text refers to the number of physical
operations that need to be applied in order to perform a certain logical operation. In
particular, to apply a logical Pauli-X in a tree at least one operation on every sub-tree
needs to be applied. In contrast, to apply logical Pauli-Z in a tree a set of operations,
which at least consists of three of them, needs to be applied on a single sub-tree. Consider
now the measurement procedure for a stabilizer with Zs, if one wants to apply a similar
procedure for Xs, then at least one qubit per sub-tree per tree will be measured. This
is inconvenient, since a lot of qubits would be involved in the stabilizer measurement
making it more difficult to succeed against losses. Hence, here the reason why stabilizers
containing Xs need to be treated differently.

Consider as an outer code a n-qubit stabilizer code whose generators, as defined 2.3.2,
are only formed by Pauli-Xs and identities. A simple example of such outer code would
be the phase flip code, presented in 2.3.2. This outer code is composed by three qubits
where each of them will be encoded in a tree of a certain branching vector tl, l ∈ {1, 2, 3}.
The stabilizers are X1X2 and X2X3, where X l corresponds to the logical Pauli-X in tree
l, which is presented in equation 2.49, such that,
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where the super-indices indicate the tree where the operation needs to be performed,
and the branching vectors are tl = [bl0, b

l
1, . . . , b

l
d]. Note that performing all these Z

measurements is impossible because all first-level qubits are being used. Importantly,
these measurements can also be performed indirectly on the qubits on the lower levels.
Nevertheless, this still does not prevent us from performing at least one operation per
sub-tree in each tree, thus having a higher cost than the Z . . . Z stabilizers. Additionally,
the probability of failure of performing this operation due to loss is very high, since a lot
of qubits are involved. To overcome this potential problem the following procedure has
been developed.

Consider a three-qubit state to be the state of the encoded phase flip code |Ψ〉, with
stabilizers g1 = X1X2 and g2 = X2X3. Before encoding these three qubits into trees, we
can bring those qubits to the X basis by applying a Hadamard to them, |Ψ′〉 = U |Ψ〉
where U = H1H2H3. By doing this the stabilizers are also transformed following g′i =
UgiU

†, such that g′1 = Z1Z2 and g′2 = Z2Z3, this property has already been studied in
2.3.2. Note that the transformed stabilizers are the same as the ones for the bit flip
code. The next step is to encode these three qubits into trees and send them to the
next repeater station. The rest of the method follows along the lines of the ZZ stabilizer
measurement method. Once the stabilizers are measured, and the trees are decoded, thus
having again three qubits, these are returned to the computational basis making use of
Hadamard gates on all qubits, applying the same U = H1H2H3.

In conclusion, when the stabilizers of the outer code are composed only of Pauli-X,
before encoding the outer code qubits into trees, H gates are applied to all of them, then
stabilizers are measured following the procedure for a Z . . . Z stabilizer. Finally after
decoding the trees, H gates are again applied to the qubits of the outer code.

3.3.3 General X and Z stabilizer measurement

Now that stabilizer codes with stabilizers containing only Z or only X have been dis-
cussed, the case where stabilizers are formed by both X and Z can be considered. In the
examples below no losses nor errors are considered and also a sufficiently large branching
vector is assumed in order to be able to perform all the stabilizer measurements.

First, consider the 9-qubit Shor’s code, that has eight generators as presented in Table
2.3. There are six of them which are only composed by Zs and the other two are composed
by Xs. One can see that to be able to measure all these stabilizers at least two repeater
stations are needed. Let us present a detailed structure on when and how this stabilizer
measurements would take place in a repeater chain.

• Sending station: First, at the sending station a single qubit is encoded into 9
qubits of the Shor’s code and those are encoded into trees. These trees are sent to
the first repeater station.

• First repeater station: At the first repeater station, before the decoding in the
re-encoding procedure, the stabilizer measurements are to be performed. On a
first instance the heralded storage of a first-level qubit is performed to ensure the
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possibility of a later successful re-encoding and then the stabilizers are measured.
In this repeater station, only the six Z-type stabilizers can be measured, due to the
fact that prior to the encoding the trees no Hadamard gates were applied. After
performing the stabilizer measurements and decoding the trees, a H gate is applied
to all the 9 qubits, which have been heralded-stored. Then those qubits are encoded
into trees and sent to the next repeater station.

• Second repeater station: As in the first repeater station, before the decoding,
the stabilizer measurements are to be performed. In this case, only the two X-
type stabilizers can be measured, due to the fact that before encoding the trees
Hadamard gates where applied to all 9 qubits. After performing the stabilizer
measurements and decoding the trees, a H gate is applied to all 9 qubits. Then
those qubits are encoded into trees and sent to the next repeater station.

• Other repeater stations: Now all the following pairs of repeater stations can
follow the same structure as the first and second repeater stations, until the last
one that will send the trees to the end node.

• End node: Finally, both the tree code and the 9-qubit code are decoded in order
to recover a single qubit.

Here one can see clearly the reason why at least two repeater stations are needed. At
least one where trees are sent into with the computational basis and another where the
trees are sent into with the X basis, so all the sets of stabilizers can be measured.

Moreover, stabilizers that are composed both by Xs and Zs can also be measured using
this basis switching. Specifically, one only switches the basis of the qubits that have an
X on the stabilizer. Consider a stabilizer X1Z2, then only qubit 1 will be switched to the
X basis, so that needs the unitary U = H1. To portray this property in a stabilizer code
with “mixed” stabilizers we present an example with the 5-qubit code as an outer code.
This code has four stabilizers as presented in Table 2.4, which are formed by X and Z,
but none of them have a similar structure, in such a way that it is impossible to create
subsets of them based on the basis that each qubit needs. To explicitly state this take
g1 = X1Z2Z4X5, before encoding the five qubits into trees to measure this stabilizer at the
next repeater station, one needs to apply U1 = H1H5, but none of the other generators
need the same unitary operation to be in the right basis to measure the stabilizer. The
other generators are g2 = X1X2Z3Z5, g3 = Z1X2X3Z4 and g4 = Z2X3X4Z5, and the
respective unitary operations that they need are U2 = H1H2, U3 = H2H3 and U4 = H3H4,
such that Ui 6= Uj if i 6= j. Therefore, in the case of the 5-qubit code, a repeater chain
that is able to measure all stabilizers needs at least four repeater stations. If we consider
a repeater chain with five links, the procedure to measure all stabilizers of the 5-qubit
code would be,

• Sending station: First, at the sending station a single qubit is encoded into the
5-qubit code, U1 = H1H5 is applied to them and they are encoded into trees. These
trees are sent to the first repeater station.

• First repeater station: At the first repeater station, before the decoding in
the re-encoding procedure, the stabilizer measurements are to be performed. On
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a first instance the heralded storage of a first-level qubit is performed to ensure
the possibility of a later successful re-encoding, then the stabilizers are measured.
In this repeater station, only the g1-type stabilizers can be measured, due to the
fact that before encoding the trees U1 was applied. After performing the stabilizer
measurement and decoding the trees, U1U2 = (H1H5)(H1H2) = H2H5 is applied to
all the 5 qubits, which have been heralded-stored. U1 is applied to return qubits 1
and 5 to the computational basis and U2 to bring qubits 1 and 2 to the X basis to
perform the next stabilizer. Then those qubits are encoded into trees and sent to
the next repeater station.

• Second repeater station: As in the first repeater station, before the decod-
ing, the stabilizer measurements are to be performed. In this case, only the
g2-type stabilizers can be measured, due to the fact that before encoding the
trees U2. After performing the stabilizer measurements and decoding the trees,
U2U3 = (H1H2)(H2H3) = H1H3 is applied. Then those qubits are encoded into
trees and sent to the next repeater station.

• Third repeater station: As in the previous repeater stations, before the decoding,
the stabilizer measurements are to be performed. In this case, only the g3-type
stabilizers can be measured. After performing the stabilizer measurements and
decoding the trees, U3U4 = (H2H3)(H3H4) = H2H4 is applied. Then those qubits
are encoded into trees and sent to the next repeater station.

• Fourth repeater station: As previously, before the decoding, the stabilizer mea-
surements are to be performed. In this case, only the g4-type stabilizers can be
measured. After performing the stabilizer measurements and decoding the trees,
U4 = H3H4 is applied in order to bring all the state to the computational basis.
Then those qubits are encoded into trees and sent to the end node.

• End node: Finally, both the tree code and the 5-qubit code are decoded in order
to recover a single qubit.

This scheme clarifies the fact that for the 5-qubit code at least four repeater stations
are needed. In general, in this section we have been how different kinds of stabilizers are
measured, such that we are able to measure Z-type, X-type and “mixed”-type stabilizers.

3.4 Possible outer codes

After seeing the main idea behind the code concatenation in the one-way quantum re-
peater many questions arise, for example, what is the trade-off of qubits in the tree used
to decode and used for the stabilizer measurement, what size should the branching vec-
tor be, how does these encoding and stabilizer measurements behave and perform under
losses and errors and many more. To answer these questions and later on have a more
determined protocol, first we need to fix one of the many variables that this encoding
presents, the outer code, which needs to be a stabilizer code, some examples can be seen
in 2.3.2.
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From the stabilizer measurement procedure we can draw two conclusions on which condi-
tions the stabilizer code should fulfil. First, the stabilizers to be measured in one repeater
station need to involve each tree a similar amount of times. The reason lies in the cost
of the stabilizers, which is a sub-tree per involved tree. If in a single repeater station
many stabilizers are measured and those involve a certain tree considerably more times
than the other trees, then this tree needs to have more sub-trees than the other ones to
have a similar success probability when dealing with losses. Therefore, one would not
have a uniform branching vector for all the trees and for all the repeater stations or sets
of stabilizers. Moreover, if the branching vectors are different in depth then the number
of memory qubits needed in a repeater station would also vary between trees. Thus,
having different branching vectors for different trees would would make the analysis of
this encoding more challenging. Since in this thesis we aim for a simpler investigation,
a stabilizer code that allows for a uniform branching vector will be considered. Second,
the stabilizers need to have small weight. The larger the weight of a stabilizer is, the
larger the number of first-level qubits required to perform said stabilizer. This fact may
come as a challenge when dealing with losses, as the probability that one of the selected
first-level qubits is lost increases and thus the probability that the stabilizer measurement
is not performed successfully also increases. So, one should look for stabilizer codes with
stabilizers with the smallest weight possible.

Moreover, it makes sense to look for a stabilizer code able to at least correct arbitrary
single-qubit errors, so that it is a code of distance d = 3, as seen in 2.3.2. Additionally, it
is also important to consider outer codes that will not imply a huge number of repeater
stations to measure a single set of stabilizers. Finally, in this thesis we aim for an initial
simpler analysis of this code-concatenated encoding, therefore, small stabilizer codes are
considered.

From all these constraints we believe that the 5-qubit code [42] is the best option to
explore in this thesis. Following, a detailed protocol considering losses and errors within
the code concatenated one-way quantum repeater with the 5-qubit code. In particular,
at the sending station, to encode the chosen outer code, the 5-qubit code, one can follow
the circuit drawn in Figure 3.2. The same circuit should be followed in order to decode
the outer code at the end node, but in the opposite direction, from right to left.

α |0〉+ β |1〉 Z H Z H H H

α |0〉L + β |1〉L

|0〉 H H

|0〉 H

|0〉 H

|0〉

Figure 3.2: Quantum circuit for the encoding procedure of the 5-qubit code, where the
state α |0〉 + β |1〉 represents the state of the message qubit being encoded. The final
logical state corresponds to α |0〉L + β |1〉L, where the sub-index L indicates that is the
logical state.
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3.5 Protocol 1 for the code concatenated one-way

quantum repeater

In this section, we want to give the necessary tools to answer many questions regarding
the one-way quantum repeater with code concatenation of a 5-qubit code, as the outer
code, and a tree code, as the inner code. Particularly, the main focus is on the proposed
loss and noise channels that the photons in the trees will be subject to when they are
sent to a repeater station and how both losses and errors are analyzed and treated in this
particular encoding. Although this protocol is presented for the 5-qubit code as outer
code it can be easily generalized for any other outer code.

The approaches considered in this section define the protocol 1 of the one-way quantum
repeater with code concatenation with the 5-qubit code. This protocol uses as a basis
the preliminary protocol presented in 3.2 and adds the constraints and methods on how
and when to perform stabilizer measurements, how to deal with losses and errors in the
photons in the trees and how and when to perform corrections on the outer code due to
the stabilizer outcomes. Finally the proposed protocol in this section is a stepping stone
for the next and final protocol, which will be presented in the next section.

3.5.1 Protocol 1: Structure of the repeater chain

Previously we have seen that for the 5-qubit code each stabilizer needs a different repeater
station to be measured. Therefore, a repeater chain of at least four links is necessary in
order to measure all the stabilizers. However, there are three questions that arise from
this. First, how many times will a stabilizer be measured on a given repeater station.
Second, which should be the frequency with which the stabilizers will be measured in the
repeater chain stabilizer. Third, when are the corrections on the outer code performed. In
this protocol the answers to these questions are presented and they are stated as follows:

Stabilizers in a repeater station: In protocol 1 we will consider that at each
repeater station one stabilizer is measured. Therefore, to have at least a set of
stabilizer measurements outcomes, the chain needs to be composed of at least four
links.

Frequency of stabilizers in a repeater chain: In protocol 1 we will consider
that there are n initial links in which no stabilizers are measured. Therefore, these
links have the structure described in the preliminary protocol in 3.2, we will refer
to these as the free evolution links. After these, there are four links in which the
stabilizers are measured, which will be referred to as the stabilizer links. Now we
have a set of n + 4 links in the repeater chain. Finally, a full repeater chain will
be formed by k sets, such that the total number of links is k(n+ 4).
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Corrections on the 5-qubit code: In protocol 1 we will consider that after the
four stabilizer links in each of the sets of n + 4 links the corrections due to the
syndrome outcomes on the 5-qubit code are applied. Specifically, in each of the
last links of each set after measuring the stabilizer and decoding the trees, when
there are five qubits is the moment where the corrections will be applied.

These answers are motivated and explained in the following sections. The first one in
3.5.2 and the other two in 3.5.3.

3.5.2 Protocol 1: Losses

First we want to shed some light upon how this protocol operates against losses. We will
consider that all the photons in the trees are subject to an erasure channel, defined in
2.2.1, which considers the loss of a qubit with probability µ when they are sent to a next
station.

Losses in free evolution links

In general one can view a free evolution link as five independent simultaneous links
of the one-way quantum repeater based on the tree code, as basically the re-encoding
procedure is done five times instead of one. Then in terms of losses the five trees and
re-encodings behave just as in the protocol for the one-way quantum repeater with the
tree code presented in 2.5. To be able to study the loss tolerance of these links, an
analytical expression for the success probability of a free evolution link of the 5-qubit
code concatenated with a tree code with branching vector t = [b0, b1, . . . , bd] for all trees
can be determined. To obtain it, we depart from an expression for the tree code that can
be found in (1) in [49], as well as (5) in [15]. From [49], the expression for the probability
of having a successful indirect Z measurement on a qubit in the kth level is defined for
k ≤ d, as

Rk = 1−
(
1− (1− µ)(1− µ+ µRk+2)

bk+1
)bk (3.3)

where Rd+1 = 0, bd+1 = 0. Then, the probability of a successful Z measurement in a
qubit in the kth level directly is 1 − µ and indirectly is µRk. Next the probability for a
tree to have a successful heralded storage first-level qubit, the second-level qubits of that
sub-tree (in)directly measured in Z and the rest of first-level qubits (in)directly measured
in Z is also defined in [49] and [15], and is,

η1 =
(
(1− µ+ µR1)

b0 − (µR1)
b0
)

(1− µ+ µR2)
b1 , (3.4)

where the first term, (1 − µ + µR1)
b0 − (µR1)

b0 , is the probability of having one first-
level qubit and the other ones measured in Z and the second term is the probability of
measuring in Z all the second-level qubits of one sub-tree. Given that a free evolution
link is five concurrent tree-code-based links the success probability for one free evolution
link is η51 and for n links is (η51)

n
.
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Losses in stabilizer links

In a stabilizer measurement, the Z measurements on the second-level qubits that are
performed directly and indirectly are rather protected against losses. However, for the
X . . .X stabilizer measurement between first-level qubits, if any of the involved photons
is lost, the measurement becomes impossible. Thus, the losses affect the probability of
success of measuring the stabilizers.

Stabilizers in a repeater station: In protocol 1 we consider that at each
repeater station one stabilizer is measured. If this measurement is unsuccessful
due to losses in a repeater chain the protocol is aborted making the whole repeater
chain fail. The chain needs to be composed of at least four links, such that at
least a set of stabilizer measurements can be performed.

The choice of measuring one stabilizer per repeater station is motivated by the fact that
the success probability of a stabilizer link is lower as more stabilizers are considered to be
measured. To overcome the losses and be able to perform successfully a stabilizer mea-
surement per repeater station, this protocol assumes a trial-and-error approach. This is
such that if the Xm

i X
n
i′ stabilizer measurement fails due to losses, the sub-trees involved

in those measurements are detached from the tree as detailed in Table 2.6 and the corre-
sponding corrections are applied. Then one tries again selecting other first-level qubits.
The proposed approach has limited attempts, since the number of first-level qubits in a
tree is finite and defined by b0 in the branching vector. Additionally, as we said before, we
will consider that the first-level qubit that is initially used to perform a heralded storage
for the re-encoding procedure can not be used to perform the stabilizer.

Losses in stabilizers: In protocol 1 the considered approach to deal with losses
in terms of measuring stabilizers is the trial-and-error approach. Such that the
used unsuccessfully sub-trees are detached from the trees. This is limited to the
number of available first-level qubits.

In terms of resources, this protocol needs five processors with d − 1 spin qubits and a
quantum emitter per repeater station just as in the preliminary protocol. Thus, the
stabilizer measurements in protocol 1 do not require additional resources.

3.5.3 Protocol 1: Errors

Moreover, in this protocol we will also consider that the photons in the trees are exposed
when they are sent to a depolarizing channel, defined in 2.2.1, with a probability ε. Again,
the effect of these errors can be mostly overcome by applying the majority voting in the
redundant measurements.

Majority voting: In protocol 1 when doing a majority voting for a measurement,
if no conclusion can be retrieved, that specific measurement will be considered as
failed.
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Errors in free evolution links

As seen in the preliminary protocol a free evolution link has the same behaviour than
five simultaneous tree-based links, defined in 2.5. Therefore, the errors are corrected
exclusively by majority voting at the re-encoding procedure. Moreover, each of the five
trees may have an error on the first-level qubit used for the re-encoding that leads to a
logical error on the next new tree, which will cause an error on the outer code. For these
links, there is neither detection nor correction of errors on the outer code but instead
there is the possibility of leading to an error on the outer code. Therefore, one can say
that the free evolution links let the error on the outer code build up and that is why we
have given them that particular name.

Errors in stabilizer links

In the case of the stabilizer links the errors are corrected by majority voting as much as
possible. However, in these links there is the addition of stabilizer measurements, which
are made to detect and correct errors on the outer code and not for errors in the inner
code. Nevertheless, the last two are connected since a certain sequence on certain qubits
in a tree leads to an error on the logical state of the tree. In this case these depolarizing
errors can trigger a faulty stabilizer outcome. To clarify this statement, let us present an
example, consider the stabilizer g1 = X1Z2Z4X5 and a tree of depth 2, then the stabilizer
measurement after applying U1 = H1H5 and encoding into trees is g1 = Z1Z2Z4Z5, so
that

g1 =

(
X1
i

b1∏
j=1

Z1
ij

)
⊗

(
X2
i′

b1∏
j=1

Z2
i′j

)
⊗

(
X4
i′′

b1∏
j=1

Z4
i′′j

)
⊗

(
X5
i′′′

b1∏
j=1

Z5
i′′′j

)
. (3.5)

Then, consider that qubit i′j in tree 2 has an X error, this error will give a wrong
outcome when measuring Z2

i′j and thus, the outcome of g1 will be -1. This outcome
denotes an error on the outer code, when in reality is just an error in one of the trees
that has no logical error in the state of the tree. Importantly, this error in the case of
the unconcatenated one-way quantum repeater would be detected and corrected thanks
to the majority voting.

Of course is important to note that an error like the one in the example can be avoided by
adding a third level so that when measuring Z2

i′j the qubits below can also be measured
in X and then apply a majority vote and if there is no final agreement the measurement
is aborted. In the case of having an error on one of the first-level qubits in the stabilizer
measurement there is no solution.

The reason why there are some initial n free evolution stations is precisely to build up
an initial error on the outer code which can probably be corrected with the stabilizer
measurements in the four stabilizer links. In the case where n = 0, the errors on the
photons in the trees need to correspond exactly to the combinations of operations on the
trees to give a logical error on the outer code otherwise they could either trigger a faulty
stabilizer outcome or be corrected by majority voting.
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Following this train of thought, the most logical option to perform the corrections due to
the stabilizer outcomes is to correct right after the set of stabilizers has been successfully
measured so a syndrome can be determined. This way we can correct the errors that
have been probably built up in the n free evolution links, with the restriction that the
5-qubit code is only able to correct arbitrary single-qubit error, so only a single error on
one of the five qubits. The specific correction to be applied after a set of stabilizer is
measured is presented in Table 3.1.

g1 g2 g3 g4 Syndrome Correction
+ + + + No error None
- + + + Z error on qubit 5 Z5

+ - + + X error on qubit 3 X3

+ + - + X error on qubit 1 X1

+ + + - Z error on qubit 4 Z4

- - + + Z error on qubit 1 Z1

- + - + X error on qubit 4 X4

- + + - X error on qubit 2 X2

+ - - + Z error on qubit 2 Z2

+ - + - X error on qubit 5 X5

+ + - - Z error on qubit 3 Z3

- - - + Y error on qubit 1 Y1
- - + - Y error on qubit 5 Y5
- + - - Y error on qubit 4 Y4
+ - - - Y error on qubit 3 Y3
- - - - Y error on qubit 2 Y2

Table 3.1: Error syndrome and correction table for the 5-qubit code, where the generators
are g1 = X1Z2Z4X5, g2 = X1X2Z3Z5, g3 = Z1X2X3Z4 and g4 = Z2X3X4Z5, as in Table
2.4. The ± signs represent the ±1 outcomes of the stabilizer measurements.

3.6 Protocol 2 for the code concatenated one-way

quantum repeater

In this section, we develop an alternative protocol for the code concatenated one-way
quantum repeater with the 5-qubit code and the tree code, which will be called protocol
2. Although this is presented for the 5-qubit code as outer code it can be easily gen-
eralized for any other outer code. Protocol 2 uses as a basis protocol 1 and improves
it in terms of the error-less success probability. Therefore, for protocol 2 the structure
and the constraints and considerations for the errors and corrections due to syndrome
measurements are the same than for protocol 1, presented in 3.5.1 and 3.5.3. Therefore,
the answer to the three questions asked in protocol 1 are the same. Here we highlight
the main features shared between the two protocols:
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Stabilizers in a repeater station: In protocol 1 and 2 we will consider that at
each repeater station one stabilizer is measured. Therefore, to have at least a set
of stabilizer measurements outcomes, the chain needs to be composed of at least
four links.

Frequency of stabilizers in a repeater chain: In protocol 1 and 2 we will
consider that there are n initial links in which no stabilizers are measured. There-
fore, these links have the structure described in the preliminary protocol in 3.2,
we will refer to these as the free evolution links. After these, there are four links in
which the stabilizers are measured, which will be referred to as the stabilizer links.
Now we have a set of n + 4 links in the repeater chain. Finally, a full repeater
chain will be formed by k sets, such that the total number of links is k(n+ 4).

Majority voting: In protocol 1 and 2 when doing a majority voting for a mea-
surement, if no conclusion can be retrieved, that specific measurement will be
considered as failed.

Corrections on the 5-qubit code: In protocol 1 and 2 we will consider that
after the four stabilizer links in each of the sets of n+ 4 links the corrections due
to the syndrome outcomes on the 5-qubit code are applied. Specifically, in each
of the last links of each set after measuring the stabilizer and decoding the trees,
when there are five qubits is the moment where the corrections will be applied.

These statements answers were motivated and explained in previous sections in protocol
1. The first one in 3.5.2 but is also motivated in this protocol with the same argument
in 3.6.1 and the other three in 3.5.3. As we will see in this section the only difference
between the two protocols is the approach that protocol 2 has for improving the success
probability in the stabilizer links.

3.6.1 Protocol 2: Losses

As in the previous protocol, we will consider that all the qubits in the trees are subject to
an erasure channel with probability µ when they are sent to a next station. As explained
in the previous section, these losses will affect both the success probability of the free
evolution links and the stabilizer links. The losses on the former are treated as presented
in protocol 1 and the losses on the latter are treated differently. Here we give a detailed
explanation on how the stabilizer links deal with losses in protocol 2.

Stabilizers in a repeater station: As in protocol 1, in protocol 2 we will
also consider that at each stabilizer links one stabilizer is measured. If this mea-
surement is unsuccessful due to losses in a repeater chain the protocol is aborted
making the whole repeater chain fail. The chain needs to be composed of at least
four links, such that at least a set of stabilizer measurements can be performed.
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The choice of measuring one stabilizer per repeater station is motivated by the fact that
the success probability of a stabilizer link is lower as more stabilizers are considered to
be measured. The simplistic approach to deal with losses in the stabilizer links presented
in protocol 1 is not ideal in terms of the success probability. Therefore, another scheme
for tackling the losses and measuring stabilizers is proposed. Instead of using a trial-and-
error approach we will make sure that the involved first-level qubits are not lost without
perturbing the tree.

This is done in a similar way as for the re-encoding procedure by means of the method
of heralded storage. By using the 5-qubit code as an outer code in each repeater station
only one of the four stabilizers can be measured. Moreover, the stabilizers of this code
have weight 4, hence we will need four first-level qubits per repeater station to measure
a stabilizer. Then, a second heralded storage procedure will be performed in all the four
involved trees in the stabilizer measurement, so that if it is successful we have four no-
lost first-level qubits from each of the involved trees. Then the success of the stabilizer
measurement will depend on the measurements second-level qubits, but if the depth of
the tree is three or more these measurements are quite redundant and loss-proof.

To perform this extra heralded storage also an extra processor is needed. This heralded
storage procedure for the stabilizer measurements is better in terms of success probability
but worse on terms of resources, since it requires an extra processor. For this extra chip,
two approaches are proposed, both of them are presented next. Following an analytical
expression for the success probability for both approaches is derived.

Losses in stabilizers: In protocol 2 the considered approach to deal with losses
in terms of measuring stabilizers is the heralded storage approach, which means
that before measuring the stabilizers, a heralded storage of the needed first-level
qubits is performed to ensure the success of the stabilizer. If the heralded storage
fails, it means that there is no available first-level qubits to measure the stabi-
lizer. Moreover, the stabilizer can also fail if the (in)direct Z measurements on
the involved second-level qubits are unsuccessful due to losses or failed majority
voting.

Protocol 2: parallel stabilizer measurement

First the most straightforward method would be to consider that at the repeater station
where the a stabilizer is to be measured an extra processor with five spin systems is
needed. From these five, four would be the first-level qubits and the fifth one would act
as an ancilla qubit. The latter is required in order to perform the XXXX stabilizer
between the first-level qubits. A diagram of the measurement protocol of this stabilizer
measurement is presented in Figure 3.3. The circuit presented is derived from the general
case of an indirect measurement of an M operator presented in 2.3.2.
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|0〉ancilla

First-level
qubits

H H

H H

H H

H H

Figure 3.3: Quantum circuit for the XXXX stabilizer measurement of four first-level
qubits in the extra processor with five spin qubits.

Protocol 2: sequential stabilizer measurements

A more “cheap” approach on terms of the resources is instead of having five spin qubits
in the extra processor we can have only two, one for the ancilla qubit and the other for
one of the first-level qubits. The process to measure the stabilizer is the same as for the
previous approach, but now the method is sequential, so not all the X measurements will
be done at the same time. To start with, for one first-level qubit the circuit in Figure 3.4
is followed.

|0〉ancilla

First-level qubit H H

Figure 3.4: Quantum circuit for the indirect X for one of the four first-level qubits.

Then this first-level qubit is discarded and another first-level qubit is sent to the spin
qubit and the circuit in Figure 3.4 is done again, and so on for all the four first-level
qubits. After this indirect X is performed for all four the ancilla qubit is measured
giving the result of the XXXX stabilizer measurement. For any of the two approaches
the number of needed first-level qubits to be able to decode and measure the stabilizer
successfully are the same.

Protocol 2: analytical success probability

To be able to study the loss tolerance of the stabilizer links, an analytical expression
for the success probability of one of them for the 5-qubit code concatenated with a tree
code with branching vector t = [b0, b1, . . . , bd] for all trees can be determined. In this
expression we will consider the success of the stabilizer measurement and the success
of the decoding of all the trees. To get this analytical expression, we depart from the
one for the tree code, this expression has already been used in the previous protocol for
the success probability of a free evolution link, that is η1 as presented in equation 3.4,
as mentioned it can also be found in [49] and [15]. The expression for the probability
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of having a successful indirect Z measurement on a qubit in the kth level was given in
equation 3.3 and denoted Rk. Then, the probability of a tree to have two successful
heralded stored first-level qubits, whose second-level qubits are measured in Z and that
the other first-level qubits are measured (in)directly in Z is,

η2 =
(
(1− µ+ µR1)

b0 − (µR1)
b0 − b0(µR1)

b0−1(1− µ)
) (

(1− µ+ µR2)
b1
)2
. (3.6)

This equation can be broken into several terms to clarify its meaning. The first term,
which we will rename as γ = (1 − µ + µR1)

b0 − (µR1)
b0 − b0(µR1)

b0−1(1 − µ) is the
probability of having at least two non-lost first-level qubits and that all the others are
directly or indirectly measured in Z. This is the same as the sum of the probabilities of
having i non-lost first-level qubits and the rest b0 − i first-level qubits being measured
(in)directly in Z for i = 2, . . . , b0. This is the same as considering the probability of having
all non-lost first-level qubits measured directly and indirectly, defined as γall, minus the
probability of having all-lost first-level qubits measured in Z indirectly, which is γ0, and
minus the probability of having one non-lost first-level qubit measured directly and that
all the others are indirectly measured in Z, which will be γ1. So that γ is,

γ = γall − γ0 − γ1. (3.7)

Then, the probability of a non-lost first-level qubit is the same as the probability of being
able to measure it directly, so 1−µ. Next, the probability of measuring a first-level qubit
both directly and indirectly is the sum of them (1− µ) + µR1. Then,

γall = (1− µ+ µR1)
b0 , (3.8)

so that γall is the probability that all the first-level qubits are not lost and can be measured
directly and indirectly. Next,

γ0 = (µR1)
b0 , (3.9)

which is the probability of the outcome where all the first-level qubits are lost and they
can only be measured indirectly. Finally,

γ1 = b0(1− µ)(µR1)
b0−1, (3.10)

where we consider all the possible combinations, b0, where a first-level qubit is not lost
with probability 1−µ, and all the rest are lost and they can only be Z measured indirectly
with probability (µR1)

b0−1. Then the second term of η2 is just the probability of the
successful (in)direct Z measurements on the second-level qubits of two sub-trees. For one
sub-tree the probability of making an (in)direct Z measurement of all the second-level

qubits is (1− µ+ µR2)
b1 , then for two is only its square power, so

(
(1− µ+ µR2)

b1
)2

.

We also wish to know the success probability of a stabilizer link, this is such that four
trees will need two heralded storage qubits and one tree only one, so that the probability
of success in one stabilizer link is η1η

4
2. Next, since we have four stabilizer links the

probability is given by (η1η
4
2)

4
. If we now consider a set of (n+ 4) where n is the number

of free evolution links, which each of them has a success probability of η51, the success
probability is η = (η51)

n
(η1η

4
2)

4
. Finally, if we have k sets, so k(n + 4) links, the success

probability is ηk.
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Measuring stabilizers: In protocol 2 the considered approach to deal with
losses in terms of measuring stabilizers is the heralded storage approach. This
can be performed in parallel or sequentially. Both ways have the same success
probability ηk and same number of required processors, five to generate the trees
and one to measure the stabilizer per repeater station. They differ in the number
of spin qubits in the extra processor, the parallel requiring five spin qubits and
the sequential only two.





CHAPTER 4
Numerical investigation of the

5-qubit code

In the previous chapter we have analyzed the code concatenation of the 5-qubit code
and the tree code as the encoding of the one-way quantum repeater. Moreover, two
specific protocols, 1 and 2, for this particular encoding and its corresponding stabilizer
measurements have been presented, such that to measure all four generators of the 5-qubit
code at least four repeaters are needed, one per generator.

In this chapter the goal is to investigate the behaviour of this encoding presented in
protocol 2, as explained in Section 3.6, and compare it to the one-way quantum repeater
with the tree code, previously seen in Section 2.5. The two compared one-way quantum
repeaters will be referred to as concatenated and unconcatenated correspondingly. The
comparison is done in terms of error tolerance, meaning that we want to know whether
using code concatenation as in protocol 2 the one-way quantum repeater is more resilient
against errors. The reason why losses are not so deeply considered in this study is because
both the concatenated and the unconcatenated one-way quantum repeaters are found to
protect well against losses in the space parameter considered. Therefore, the emphasis
of the investigation will be on error tolerance, which we hope to improve using code
concatenation.

In this chapter, the following content is presented. First, in Section 4.1 we motivate
and constrain the simulation of the code concatenated one-way quantum repeater. Next,
in Section 4.2 we introduce the tools that are used in order to develop the simulation.
Later in Section 4.3, a detailed explanation on the choice of the branching vector and loss
probability for the simulation is presented. As a continuation, in Section 4.4 a verification
of the simulation is presented followed by the results of a first approach in Section 4.5.
Finally, an analysis of a better strategy, its analytical study and some preliminary results
are given in Section 4.6.

57
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4.1 Motivation and constraints for the simulation

To study the error tolerance of the concatenated and the unconcatenated one-way quan-
tum repeaters one must acknowledge that the two systems have many variables that
influence their behaviour. Moreover, the considered systems are composed by a large
number of qubits with probabilistic errors and losses. Importantly the interplay between
losses and errors and all the constrains of the protocol makes an analytical study a rather
complicated path to follow. This interplay is clearly seen in the success probability of
the repeater chain, since on the one hand it depends on the depolarizing errors of the
photons due to the assumption that a majority voting of a Z measurement fails and
no conclusion can be drawn making the measurement fail too. On the other hand, the
success probability is also affected by losses, as it has been studied in 3.6.1. However,
the complex relation between those two is unclear and it is the main motivation for de-
veloping a simulation for these systems. Moreover, a simulation can also help to study
the optimization of certain variables and interpret the results of the protocol. Finally, a
simulation is also useful to get an intuition on how the two systems behave under similar
scenarios.

Here, we present, to the best of our knowledge, the first fully general simulation framework
for studying the performance of tree-code based one-way quantum-repeater chains. In
this thesis, we use this framework to perform an analysis of the potential of concatenating
the tree code with a stabilizer code. However, the framework can potentially be used to
investigate a number of questions about tree-code based architectures. These questions
include, but are not limited to,

• How well does the tree-code based one-way quantum repeater perform in the pres-
ence of realistic (correlated) noise?

• Which is the interplay of losses and errors for the tree-code based one-way quantum
repeater?

Before being able to prepare the simulation one needs to think about which are the
variables that protocol 2 and the unconcatenated one-way quantum repeater have. From
all these variables one has to decide which ones should be fixed to a certain value or range
and which ones should be left as independent variables of the system. The variables still
undetermined by protocol 2 are the branching vector of the used tree code, which as
stated in 3.4 we consider it to be the same for all the trees and all repeater stations in
the concatenated case, the loss probability µ and the depolarizing rate ε that the photons
in the trees are subjected to when they are sent and the number of links in the repeater
chain.

The branching vector is a parameter that in principle can be chosen freely, although
there is some resource trade-off between the number of qubits and the simulation time.
The loss probability is a function of the inter-node spacing and thus we would like it to
mimic realistic settings. Finally, in this thesis we have chosen a depolarizing channel with
the same probability for all the photons in the trees, which is not a realistic approach
since, for example, from the tree generation procedure one can see that a correlated error
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model for the photons in trees would be more appropriate. Nevertheless, the depolarizing
channel is also chosen in [15] as a convenient noise model to draw some initial conclusions
on the tree-code based one-way quantum repeaters.

Note that these variables are independent from one another and all together define the
success probability of the concatenated repeater chain. For example, as seen in the
expression for the analytical success probability of a k(n + 4)-linked repeater chain, ηk

in 3.6.1, takes the values of the branching vector, the loss probability and the number of
links into account. Also, the depolarizing rate has an impact on the success probability
due to the fact that the majority vote of Z indirect and direct measurements fails in
case of disagreement. Thus, it may be that some Z measurements fail resulting in an
unsuccessful repeater chain.

As a first step we will consider the simplest repeater chain in protocol 2, the repeater chain
with four links, so that k = 1 and n = 0. This approach is considered as a first stepping
stone towards seeing the effects of the stabilizer measurements and their corrections.

Since the goal of this chapter is to study the behaviour of the system under the depolar-
izing channel, it makes sense to fix the value of the loss probability and the branching
vector and leave the depolarizing noise probability as an independent variable. The de-
polarizing noise considered has the same depolarizing rate for all the qubits in the trees,
ε. To be able to choose these values the simplest method would be to make use of a
simulation of the system with the presented constraints.

Additionally, in order to determine the impact that a message qubit sent through a
repeater chain as the one described is subjected to, we want to look at the secret-key rate
and the QBERs. We want to use the secret-key rate to characterize the results because, as
explained, the interplay of errors and losses in the code-concatenated one-way quantum
repeaters is unclear and this parameter combines both the rate, which relates to the loss
tolerance, and the QBER, which relates to the error tolerance, into a single metric. In
particular, the widely used BB84 protocol, as presented in 2.2.2, is considered, so that
the message qubits will be the BB84 states, |0〉, |1〉, |+〉 and |−〉. For this purpose,
considering a simulation of the studied system appears to be the most adequate choice.

4.2 The NetSquid Simulator

For our simulations we use NetSquid, which stands for Network Simulator for Quantum
Information using Discrete events [50, 51]. This is a simulator for quantum networks
developed at QuTech freely available for non-commercial users. NetSquid stands out as a
software tool able to model the effects of time on the performance of quantum networks
and quantum computing systems. Moreover, its modular approach is an essential step
for large scale quantum systems. Additionally, the front end is entirely written in Python
which makes it very easy to use.

NetSquid has a lot of powerful features and functions, however, on our simulations only
the more general and simple components and models are used. Moreover, this tool allows
to use different formalisms, including the stabilizer one. In our simulations we will use a
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formalism named GSLC that represents a quantum state using a graph state with local
Cliffords as described in [52]. We choose to use this one because we empirically found it
to be the most efficient one.

Importantly, the simulation framework we have developed for studying the performance of
tree-code based one-way quantum-repeater chains is an add-on to the NetSquid Simulator
and has been entirely created for the purpose of this thesis. It allows to track the full
quantum state and supports arbitrary noise and loss models, which makes it a tool to be
used straightforwardly in the future for the study of physically realistic noise models in
the one-way quantum repeater.

Finally, to process the data and plot the processed data from the simulations and be able
to study our systems in terms of their secret-key rate and QBERs of the BB84 protocol,
concepts which have been previously defined in 2.2.2, the snippets of NetSquid provide
us with the tools to do so. These snippets are extensions for NetSquid created by users
and developers. The specific snippet used to process and plot data of the simulation is
the NetSquid Snippet NetSquid-SimulationTools [53, 54].

4.3 Choice of branching vector and loss probability

The goal of this section is to describe the procedure followed to determine the branch-
ing vector, assumed to be the same for all trees at all repeater stations, and the loss
probability, µ, which are used on the following sections of this chapter. We aim for a
branching vector and a loss probability such that the success probability without consid-
ering errors is almost deterministic in the code concatenation approach. The reason why
we want such a combination of branching vector and loss probability is because we want
to perform simulations relatively fast, so that the repeater chain almost always succeeds.
This means that we would be looking into a regime where both the concatenated and
unconcatenated one-way quantum repeaters protect well against losses, given that the
focus of the investigation is on the error tolerance.

In order to find the proper combination of those two parameters, one can look at the
analytic expression for the success probability derived in 3.6.1. The expression ηk denotes
the success probability for k(n + 4) links in the code concatenated one-way quantum
repeater with the 5-qubit code and a tree code with branching vector t = [b0, . . . , bd], so
that there are k sets of n free evolution links and 4 stabilizer links where one stabilizer
is performed successfully.

Another thing to take into account is that in the unconcatenated approach, presented in
[15], they show that a tree of depth 3, is sufficient for transmission distances up to 1000
km assuming telecom frequencies. Since in the scope of this thesis we will be looking at
four links we will also consider a tree code of depth 3, so that the branching vector has
three numbers, t = [b0, b1, b2].

Finally, it is important to note that increasing any of the numbers of the branching vector
makes the number of qubits in a tree grow. For a single encoded tree the number of qubits
is
∑d

i=0

∏i
j=0 bj, so for our case where we have five trees of depth 3 the number of qubits
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is 5(b0 + b0b1 + b0b1b2). Using the GSLC formalism in the simulation makes the memory
scale as O(nd + n), where n is the number of qubits in the quantum state and d is the
average amount of edges per vertex in the graph state [51] and for large quantum states
is the best formalism to use in terms of memory. Nevertheless, from our simulations we
have empirically seen that increasing the number of qubits does not have a drastic impact
on the simulation time. Therefore the number of qubits will also be considered in the
decision for a branching vector for the simulation.

Figure 4.1: Analytical success probability (3.6.1) for a 5-qubit code concatenated one-
way quantum repeater with four stabilizer links, η, in the in terms of the loss probability,
µ, for different number of first-level qubits, b0, for an error-less protocol 2. The vertical
black line denotes µ = 0.15, around this value a zoom is presented.

Considering all the presented values and with a first scan of parameter space we decided
to explore branching vectors t = [b0, b1, b2] such that b0, b1 and b2 take values from 3 to
18. Moreover, we will look for which of those values the success probability is higher for
a value of loss probability of µ = 0.15. This value has been chosen taking into account all
the previous considerations. Specifically, if we fix a higher µ the branching vector needed
to have a success probability close to one would be bigger. Additionally, we consider
that a considerably lower loss probability would be too close to zero in order to see the
interplay of losses and errors.

Several plots for the value of the success probability η in terms of the loss probability
for different values of the branching vector can be seen in Figures 4.1, 4.2 and 4.3. In
particular, we analyze each of the three values of the branching vector separately. So that,
the two values that are not being scanned are set to a tentatively final branching vector. In
Figure 4.1 we see that for b0 ≥ 6 the success probability for µ = 0.15 is very similar. Since
we want to provide a scheme that works with minimal required resources and also taking
into account the simulation time we have chosen the smallest option, so b0 = 6. Next,
in the Figure 4.2, one can observe that increasing b1 the success probability increases,
although once again taking into consideration minimal resources and the simulation time
we opt for b1 = 14. However, if we increased even more b1 we could target for a higher loss
probability, but for as argued before that would increase too much the simulation time.
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Figure 4.2: Analytical success probability (3.6.1) for a 5-qubit code concatenated one-way
quantum repeater with four stabilizer links, η, in the in terms of the loss probability, µ,
for different number of second-level qubits, b1, for an error-less protocol 2. The vertical
black line denotes µ = 0.15, around this value a zoom is presented.

Figure 4.3: Analytical success probability (3.6.1) for a 5-qubit code concatenated one-way
quantum repeater with four stabilizer links, η, in the in terms of the loss probability, µ,
for different number of third-level qubits, b2, for an error-less protocol 2. The vertical
black line denotes µ = 0.15, around this value a zoom is presented.

Finally, in Figure 4.3, strangely the best behaviour corresponds to b2 = 4 and not to
larger values. The reason why the third level shows this behaviour is because the qubits
on that level, for example, in the decoding procedure, are measured in Z when performing
an indirect Z measurement on a first-level qubit, but these direct Z measurements on the
third level are not protected against losses, they would only be protected if there was a
fourth level. Then we see that there is a trade-off between loss protection of the qubits in
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different levels and it seems like the optimum value for the third-level qubits when they
are not protected against losses is b2 = 4.

Considering all the presented factors we have chosen the branching vector t = [6, 14, 4]
with loss probability µ = 0.15, such that the system will have 2130 qubits and an error-less
success probability of η ≈ 0.95.

4.4 Verification of the simulation

Until now we have seen the tools and the parameters that will be used in the simulation.
In this section, the goal is to present specific scenarios in order to contrast the data
generated by the developed simulation and the analytical expressions that we know from
the system. In particular, we consider two scenarios from which we know what should
be the outcome, such that the simulation can be verified. For both scenarios a branching
vector of [6, 14, 4] is considered.

First, we take a code concatenated one-way quantum repeater as defined in 3.6, which
is formed by four stabilizer links. From this we study the probability of success for the
error-less case, ε = 0, which has been analytically studied in 3.6.1. With this information
we hope to compare the average number of attempts per success, which is the inverse of
the success probability 1/η, in terms of the loss probability, µ, given by the simulation
and given by the analytical function, 1/η(µ).

Figure 4.4: Average number of attempts per success in terms of the loss probability
µ. This corresponds to four stabilizer links of a code concatenated one-way quantum
repeater that follows protocol 2. The branching vector considered is [6, 14, 4] and the
depolarizing rate of the system is ε = 0. The green points represent the data obtained
from the simulation and the blue line represents the data obtained from the analytical
expression 1/η(µ). The number of samples taken per simulation data point is 600.
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In Figure 4.4 we can clearly see that both the simulation points and the analytic line
agree, therefore we consider that the simulation is verified in terms of losses.

Next, we also consider a code concatenated one-way quantum repeater as defined in 3.6,
which is formed by four stabilizer links. To verify that the stabilizer measurements and
the corresponding corrections work as intended, we assume that in the sending station
before encoding the five qubits into trees only one of them is subjected to a depolarizing
channel with probability 1. Meaning that I, X, Y or Z with same probability is applied
to one of the five qubits that are encoded into trees. We consider this because in our
case the outer code, the 5-qubit code, is able to correct arbitrary errors on a single qubit.
Moreover, to verify the simulation results we consider that the four stabilizer links are
free of error, meaning that ε = 0. Therefore, forcing an error on one of the outer code
qubits and assuming no errors on the photons in the trees must result in a final state with
no errors, since the stabilizers measurements and the corresponding corrections must be
able to correct the single-qubit error on the outer code.

Figure 4.5: Starting from left to right, plot the secret-key rate, QBERs and averaged
number of attempts per success in terms of the loss probability µ that the photons in the
trees are subjected to. This corresponds to four stabilizer links of a code concatenated
one-way quantum repeater that follows protocol 2. The depolarizing rate of the system
is ε = 0 and the branching vector is [6, 14, 4]. There is a depolarizing channel on one of
the five qubits on the outer code with probability 1. The number of samples taken per
data point is 140.

In Figure 4.5 we can see that the expected behaviour is obtained by the simulation, since
both the QBER in the Z and in the X basis are zero always, meaning that the final state
does not contain any error. Note that the X basis QBER is overlaid by the Z basis
QBER, and hence is not seen in Figure 4.5. This verifies the proper behaviour of the
stabilizer measurements and their corrections.

4.5 Protocol 2 with four links

In this section we present the results for the one-way quantum repeater using code con-
catenation of the 5-qubit code and the [6, 14, 4] tree code considering protocol 2, seen in
Section 3.6. The qubits in the trees when sent are subject to an erasure channel with loss
probability µ = 0.15 and to a depolarizing channel with probability ε, note that the de-
polarizing rate is the same for all the qubits. The considered repeater chain is formed by
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four links where all four stabilizers are measured once and if any of them fails the whole
chain is said to fail. In the end node before decoding the 5-qubit code the syndrome
corrections due to the stabilizer outcomes are applied. This is such that the number of
sets is k = 1 and the number of free evolution links is n = 0, as defined in protocol 2.

To get an idea on whether this particular scenario behaves better than an unconcatenated
one-way quantum repeater, we will also present the results for the unconcatenated one-
way quantum repeater using the [6, 14, 4] tree code. Again, the qubits in the tree when
sent they are subject to an erasure channel with loss probability µ = 0.15 and to a
depolarizing channel with probability ε, note the depolarizing rate is the same for all the
qubits. The considered unconcatenated repeater chain also consists in four links.

Both results have been generated using the simulation using NetSquid and the data has
been processed and plotted using the NetSquid-SimulationTools Snippet.

(a) Concatenated one-way quantum repeater with four links

(b) Unconcatenated one-way quantum repeater with four links.

Figure 4.6: Both figures starting from left to right, plot the secret-key rate, QBERs
and averaged number of attempts per success in terms of the depolarizing noise ε that
the photons in the trees are subjected to. The number of samples taken per data point
ranges from 200 to 600 in (a) and it is 600 in (b). (a) and (b) correspond to an one-way
quantum repeaters of four links with fixed loss probability µ = 0.15. (a) denotes a code
concatenated one with a [6, 14, 4] tree code and the 5-qubit code that has the constraints
described in protocol 2, seen in Section 3.6. (b) represents the unconcatenated one with
a [6, 14, 4] tree code as studied in Section 2.5.

From Figure 4.6 one can see that the behaviour for the unconcatenated one-way quantum
repeater, (b) in Figure 4.6, is better than the concatenated one, (a) in Figure 4.6. First,
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in the rightmost plots in both (a) and (b), one can see that the concatenated has a higher
average number of attempts per success than the unconcatenated one for large values
of ε. Remember that we have considered a majority vote of the Z indirect and direct
measurements that fails if there is no agreement, which affects in general the performance
of the repeater chain as ε increases. In particular, it disturbs more the concatenated
approach than the unconcatenated one, since in the former, which is defined by protocol 2,
there is an additional constraint compared to the latter of having to measure successfully
a stabilizer per repeater station. Moreover, another factor that explains this behaviour
is that the concatenated one considers five trees being sent from a repeater station to
another, where they need to be decoded besides measuring the stabilizer, so that the
probability of all trees being successfully decoded taking into account the restrained
majority vote must be less compared to the one tree being decoded in (b) for a high
enough value of ε.

On another note, let us focus on the plot for the QBER for the unconcatenated case in
the middle plot in Figure 4.6(b). One can see that in general the QBER in the X basis
is higher than the one in the Z basis. This is an expected result, because if we recall the
decoding procedure of the tree code is such that after every Z (in)direct measurement a
correction needs to be applied on the final state. These corrections are Z operations on
the first-level qubit that will be used to either re-encode or in the end node retrieve the
information. Therefore, as ε increases the probability of making the wrong corrections
due to this depolarizing noise on the photons on the tree increases too. Of course, this
effect is slightly mitigated by the fact that we are majority voting the direct and indirect
Z measurements on a qubit before performing the correction and also by the fact that
an inconclusive majority voting will make the measurement fail thus preventing faulty
corrections.

If now we look at the two plots on the left and middle in (a) and (b) in Figure 4.6, we
can see that in (b) for all the range of ε, the secret-key rate is higher and the QBERs are
smaller than the concatenated one, (a). Both of them share two sources of errors, the
first one being the error that the first-level qubit used for the re-encoding may have and
the second one being the error that is also caused by the depolarizing noise on the rest
of the qubits. As explained previously in 2.4.2 this error is mostly overcome by making
use of the redundant Z measurements on qubits and their majority vote. Nevertheless,
it may happen that this is not enough and the wrong outcome from the Z measurements
is given, leading to a wrong correction to the remaining state.

However, the concatenated repeater chain has an extra source of error, the stabilizer
outcomes. These can be faulty and lead to a wrong correction on the 5-qubit code state
before this is decoded in the end node. This faultiness of the stabilizer was presented in
3.5.3. Then, the noticeable difference between the two encoding clearly points out that
the stabilizer outcomes are faulty very often and that this faultiness increases with ε.
Although this result may not be encouraging it makes sense and reveals that using the
code concatenation in longer repeater chains would be a better approach. Specifically,
we would need to consider a number of free evolution links higher than zero, so n > 0, in
order to have an error build up which can maybe corrected with the stabilizer outcomes
and thus maybe improve the error tolerance of a set of n + 4 links. This preexisting or
build-up error needs to be larger than the probability that your stabilizer measurement
is faulty reducing the QBER of the resulting state after the correction is applied.
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4.6 Improving the strategy

As seen in the previous section, the strategy of only having four stabilizer links in the
code concatenated one-way quantum repeater with the 5-qubit code needs to be improved.
Following the intuition that we have gained throughout the project, we have proposed
that targeting longer repeater chains with n > 0 free evolution links may benefit a set of
n+ 4 links. The goal of this section is precisely to investigate again protocol 2, presented
in Section 3.6, considering n > 0.

First we look into how to mimic the free evolution links in the simulation. Next, we
consider perfect stabilizers to properly define a regime for the number of free evolution
links and get an intuition on the behaviour of the system. Afterwards, an analytical
study of k sets of n+ 4 links is performed. Finally, a first look into imperfect stabilizers
is presented.

4.6.1 Error build-up for the free evolution links

The previously prepared simulation does not allow to perform long repeater chains in a
relatively short period of time, therefore we have come up with an alternative to mimic
the effect of a long repeater chain. To start with, let us consider a single set of n + 4
links in the repeater chain, only needing to imitate the effect of the error built up after
n free evolution links. To get an intuition how the error is built up in the free evolution
links we can look at the evolution of the unconcatenated one-way quantum repeater in
Figure 4.6(b). As stated in 3.5.3, the behaviour of a free evolution link is the same as
five simultaneous unconcatenated links. One can see a free evolution per tree as a single
quantum channel on a single qubit, as a qubit is encoded at the beginning and then
decoded at the end. Therefore, we can say that each of the qubits sent in a free evolution
link will end with the same QBER as an unconcatenated link.

From Figure 4.6(b) we can see that the QBER in the X and Z basis are not the same.
The difference between them can not be appreciated for small values of ε due to the
large error bars caused by the inclusion of zero. However, for values close to ε = 10−1,
the difference between QX and QZ is about 0.1. More precisely the X basis QBER
tends to be higher than the Z one. Thus, this shows that the error after four non-
simultaneous unconcatenated links does not correspond to a depolarizing channel, which
would have equal X and Z QBERs, QX = QZ . Nevertheless, the difference between them
is not drastic, thus we consider the approximation where these four unconcatenated links
behave as a depolarizing channel on the message qubit in order to simulate the n free
evolution links.

Taking the assumption that four unconcatenated links behave as a depolarizing channel,
we can say that an unconcatenated link with depolarizing noise on the photons in the
tree behaves like a depolarizing channel on the message qubit with depolarizing rate εI .
Then, since a free evolution link corresponds to five simultaneous unconcatenated links
we will consider a free evolution link to be five simultaneous depolarizing channels on
each of the five qubits of the outer code all with depolarizing rate εI .
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To be able to move forward we need to present a property from depolarizing channels.
This is that if there is a depolarizing channel concatenated n times with depolarizing rate
εI this corresponds to a single depolarizing channel with depolarizing rate ε′I , such that,

ε′I = 1− (1− εI)n. (4.1)

This property can be easily derived, by considering n = 2, where after the first depo-
larizing channel one is left with a state which will not have a depolarizing error with
probability 1 − εI . If we now go through the second one, the probability that the final
state does not have an error is the product of the probability of not having an error on
the first channel and of not having an error on the second channel, so (1− εI)2. Therefore
the depolarizing rate of the two depolarizing channels together is 1 − (1 − εI)

2. This
procedure can be generalized for n depolarizing channels easily such that you get the
stated property.

In our case, we are considering exactly what is proposed on this property. Each of five
unconcatenated simultaneous links that form a free evolution link will be a depolarizing
channel with depolarizing rate εI . Then for n free evolution links we will consider to
have five simultaneous depolarizing channels with depolarizing rate ε′I , such that the two
depolarizing rates are related by equation 4.1.

Now, the question is how to relate εI with ε from the depolarizing rate that the photons
in the trees are subjected to. In order to answer this we will look at the results of the
simulation for four unconcatenated links in Figure 4.6(b). For a certain value of ε we
look at the corresponding QBERs and take the one with higher value, since we want
to overestimate error rates in order to get a lower bound on performance, usually the
higher QBER will be the one in the X basis. Then since a depolarizing channel is such
that the QBER in both bases are the same, QX = QZ and ε′I = QX + QZ , we multiply
the higher QBER by two to obtain ε′I for four links, which we will denote as ε′4, so that
ε′4 = 2QX(ε, µ), where QX(ε, µ) denotes the QBER in X basis as a function of ε and µ.
Then, the depolarizing rate for a single link, εI , is,

εI = 1− (1− ε′4)1/4 = 1− (1− 2QX(ε, µ))1/4. (4.2)

Unfortunately, there is no analytical function to relate QX with ε and µ, but the sim-
ulation yields to this information. Finally, we can conclude that n free evolution links
behave like a depolarizing channel with depolarizing rate ε′I , such that it is a function of
the number of free evolution links n, the depolarizing rate of the photons in the trees ε
and the loss probability µ, so that,

ε′I = ε′I(n, ε, µ). (4.3)

We have presented all this to explain how we are going to mimic the n free evolution
links in a set of n+ 4 links in the simulation. The way that we are going to do this is by
applying a depolarizing channel with depolarizing rate ε′I to each of the five qubits of the
5-qubit code in the sending station before they are encoded into trees and sent through
4 stabilizer links, where the qubits in the trees will be subjected to an erasure channel
with loss probability µ = 0.15 and a depolarizing channel with probability ε.
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4.6.2 Perfect stabilizer measurements

Consider again one set of n+ 4 links, first, it is important to build an intuition on which
regimes of ε′I as the final depolarizing rate of n free evolution links can be beneficial for
the entire repeater chain. In order for the concatenated one to be “better” or beneficial
in any sense compared to the unconcatenated one, the QBER of the former must be lower
than the QBER of the latter. This requirement is due to the fact that the rate of the
concatenated one will never be “better” than the rate of the unconcatenated one. Thus
in order to have a higher secret-key rate, the QBER must be lower as stated. Therefore,
we say we have benefit when the QBER of the final state of the n+ 4 links from protocol
2 is smaller than the QBER of the unconcatenated repeater chain with also n+ 4 links.

In order to get this intuition we will assume a case with perfect stabilizers. This case is
such that we consider the depolarizing rate in the last four links, where the stabilizers are
measured in the concatenated case, to be zero. Therefore, the stabilizers are not subject
to any errors so that not only can we ensure they will be non-faulty, but perfect. We
want to compare once again the concatenated and the unconcatenated cases to be able
to determine if the stabilizers are beneficial for the system.

For this specific case we do not need to use the simulation, since we can derive an analyt-
ical expression for the QBER for both the concatenated and the unconcatenated cases.
In the concatenated case, we are assuming that the five qubits will have depolarizing
noise, and since there is no error in the 4 stabilizer stations we can only focus on the
5-qubit code and ignore the tree code. Therefore, since the 5-qubit code is able to correct
arbitrary errors on a single qubit, meaning that if we have more than one qubit with
an error we will not be able to correct it. When the 5-qubit code is able to correct, the
quantum state after the four error-less stabilizer links has QX = QZ = 0. In the case
where the 5-qubit code is not able to correct, we will approximate the quantum channel
to a depolarizing channel with probability κ, thus having QX = QZ = κ/2, where κ is the
probability that the 5-qubit code cannot correct. Then, the probability that the 5-qubit
code can correct, (1 − κ), is the sum of the probability that there is no error, which is
(1− ε′I)5, and the probability that there is one qubit with an error, which is 5ε′I(1− ε′I)4.
Therefore,

κ = 1− (1− ε′I)5 − 5ε′I(1− ε′I)4. (4.4)

For the unconcatenated case, since we have assumed that the last four unconcatenated
links have no error, the final error of the state will be the same as the initial, therefore
QX = QZ = ε′I/2.

In Figure 4.7 we have plotted the QBER in terms for ε′I of both analytical functions.
This plot helps us analyze which is the regime for which ε′I can be beneficial. One can
clearly see that this regime ranges from ε′I = 0 to approximately 0.13.

4.6.3 Behaviour of a long chain

As we have just seen, in the very ideal case of perfect stabilizers we can benefit from code
concatenation as presented in protocol 2 for a single set of n + 4 links when ε′I is from
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Figure 4.7: Plot for the QBER as a function of ε′I . The orange line corresponds to the
unconcatenated one-way quantum repeater with n+ 4 links where the n initial ones are
modeled to have an error build-up of ε′I and the next 4 links are error-less. In this case
QBER = ε′I/2. The blue line represents the concatenated one-way quantum repeater
with protocol 2 with n + 4 links where the n free evolution links have an error build-up
of ε′I and the next 4 stabilizer links are error-less. In this case, QBER = κ/2, where κ is
the probability that the 5-qubit code cannot correct.

0 to approximately 0.13. If we consider this regime, this means that after a set of n + 4
links we “bring down” the QBER of the outer code state.

Consider a longer repeater chain with k(n+ 4) links where a single set of n+ 4 links can
be characterized so that all the sets can be treated independently. Then if the behaviour
of a single set is better than the same number of unconcatenated links, then a protocol
2 chain of k(n+ 4) links also should behave better than k(n+ 4) unconcatenated links.

In order to characterize a set, we can interpret n+ 4 links as a depolarizing channel with
probability ε′′I = 2QBER, where QBER is κ/2, so ε′′I = κ and κ is defined in equation 4.4.
If we consider a larger number of sets, such that k > 1, then we can understand the whole
repeater chain as a concatenation of k depolarizing channels formed by n+ 4 links each.
Next, by following the property of depolarizing channels, the depolarizing rate after all
the k(n+ 4) links is

ε′′′I = 1− (1− ε′′I )k = 1− (1− κ)k, (4.5)

so that the QBER of the final state will be ε′′′I /2. Moreover in protocol 2 we have derived
an analytical expression for the error-less success probability of a set of n+ 4 links, η as
presented in 3.6.1, and the total success probability of k(n+ 4) links can be specified in
terms of η, such that the final success probability is ηk.

Finally, we have seen that both the error probability and the success probability of k sets
can be studied as separated k sets, therefore we can conclude that for a beneficial regime
of ε′I for a single link, the repeater chain is also beneficial and can be studied in terms of
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the different sets of n+ 4 links.

4.6.4 Imperfect stabilizer measurements

So far we have studied the n+4 links for the perfect stabilizers, but this is a non-realistic
situation. Therefore, in this subsection we want to analyze the imperfect stabilizers,
meaning that ε > 0 in the last 4 stabilizer links of one set of protocol 2. We want
to investigate the regime for which the error build-up of the free evolution links, ε′I , is
beneficial1 for the system with imperfect stabilizers.

In this case, to get results we will make use of the simulation to be able to see if noisy
stabilizers can correct the initial error build-up. In order to know if the system is beneficial
we also present the unconcatenated one-way quantum repeater for the same scenario.
The following simulations are for four links which in the case of the concatenated one
are stabilizer links. For the code concatenated one-way quantum repeater, just before
encoding the 5-qubit code in the sending station a depolarizing noise with probability ε′I
is applied to all five qubits imitating the build-up error of the free evolution links before
we simulate the 4 stabilizer links. For the unconcatenated one, the same structure is
applied such that a depolarizing noise with probability ε′I is applied to the message qubit
before being encoded into a tree in the sending station, once again imitating the initial
build-up error. For the following simulations the branching vector [6, 14, 4] and the loss
probability µ = 0.15 are again considered, since we are again looking effectively at only
four links. Now, the problem has become two-dimensional, since the values or range for
ε and ε′I need to be explored. Remember, that these two parameters are not independent
from each other as seen in 4.6.1.

In order to find which regimes of ε′I may be beneficial for a certain ε, we restrict the
study to the regime of ε′I where the perfect stabilizer are beneficial, as seen in 4.6.1 this
is approximately 0 < ε′I < 0.13. It is important to note that if ε′I is very close to zero
then in terms of the simulation we need to succeed at many attempts to actually see
the impact of ε′I , since the probability that we get an error on the initial qubits is very
low. Moreover, we are also interested in relatively high values of ε′I , such that the error
build-up is larger than ε, because as seen in Section 4.5 if we consider n = 0 where there
is no error build-up the faultiness of the stabilizer dominates the system and it is not
beneficial at all.

In order for the concatenated approach to have a lower QBER than the unconcatenated
and thus have a beneficial behaviour, there should be an optimal range for ε′I for each ε,
meaning an optimal range of n free evolution links in a set with a certain ε, µ and t. On
the one hand, if n is too low then the error build-up is too low in order for the stabilizer
links to benefit the result, meaning that the faultiness of the stabilizer links results in a
higher QBER. On the other hand, if n is too large the error build-up may be too large
for the stabilizers of the 5-qubit code to correct it, since the 5-qubit code can only correct

1The benefit is defined such that if a set of protocol 2 is beneficial when the QBER of the final state
of the n+ 4 links from protocol 2 is smaller than the QBER of the unconcatenated repeater chain with
also n+ 4 links, for the same error build-up and loss probability.



4. Numerical investigation of the 5-qubit code 72

(a) Concatenated one-way quantum repeater with four links and n free evolution links.

(b) Unconcatenated one-way quantum repeater with four links and n free evolution links.

Figure 4.8: Both figures starting from left to right, plot the secret-key rate, and QBERs
in terms of the n free evolution links. (a) and (b) correspond to an one-way quantum
repeaters of four links with fixed loss probability µ = 0.15 and depolarizing rate ε = 10−3

that the photons in the trees are subjected to. The number of samples taken per data
point is 400 (a) and 800 in (b).(a) denotes a code concatenated one with a [6, 14, 4] tree
code and the 5-qubit code that has the constraints described in protocol 2 in Section 3.6
with 4 stabilizer links. (b) represents the unconcatenated one with a [6, 14, 4] tree code
as studied in Section 2.5 with four links.

single-qubit arbitrary errors. Thus, this optimal regime is the area where n + 4 links of
protocol 2 result in a lower QBER than n+ 4 unconcatenated links.

First, the simulation for ε = 10−3 has been performed for a regime of 10−2 ≤ ε′I ≤ 2 ·10−1.
This regime for fixed ε = 10−3 corresponds to the number of number of free evolution
links n, which can be obtained from equation 4.1, that is,

n =
ln(1− ε′I)
ln(1− εI)

, (4.6)

where εI corresponds to the depolarizing rate of a single link and can be retrieved as
in equation 4.2. Moreover, since ε′I is a continuous function, the values for n are also
continuous, meaning that the value satisfying this equation is not always an integer.
From the simulation done in Section 4.5 we can get the value of QX for ε = 10−3 in the
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unconcatenated one-way quantum repeater with four links, and that is QX ≈ 0.0033.
Then the regime for n is from 5 to 200 free evolution links.

The result of this simulation can be seen in Figure 4.8, where we can observe that the
behaviours of secret-key rate and QBER of the concatenated (a) and unconcatenated (b)
one-way quantum repeaters are very similar for the studied regime of ε′I or n. The size of
the error bars in the QBER vs. n plot does not allow us to get an exact idea if the code
concatenation is beneficial like in the case of perfect stabilizers.

Unfortunately, the results of this simulation do not tell us if the code concatenation
as presented in protocol 2 is beneficial or not. However, the differences between the
concatenated and the unconcatenated approaches in Figure 4.6, where n = 0, are more
drastic that the differences in Figure 4.8, where n > 0, as we had initially guessed. This
approach opens the door to further simulations to try to find this optimal n for a certain
ε, µ and t. In order to draw a conclusion a further investigation with simulations for a
variety of values of ε with more data points should be done.





CHAPTER 5
Conclusions and outlook

Here we conclude the thesis with a discussion of the results of this work and practical
considerations. We additionally discuss the prospect of future work that may extend
upon what has been presented.

5.1 Summary and conclusions

Throughout this thesis we have explored methods aimed towards achieving fault tolerance
tree-code based one-way quantum repeater making use of code concatenation. Moreover,
we did this keeping minimal the required resources and trying to maintain a fast trans-
mission rate of the quantum repeater. For this reason, the core of our work has been
focused on establishing a protocol for the code concatenated one-way quantum repeater
using the 5-qubit code and the tree code. However, this may not be the optimal protocol
for achieving fault-tolerance but a first step towards it regardless.

In Chapter 3, we have discussed and developed the specific constraints of our protocol in
order to deal with an erasure channel with probability µ and a depolarizing channel with
probability ε on photons sent between nodes. In order to have a fault-tolerant one-way
quantum repeater chain we propose to measure the stabilizers of the 5-qubit code using
the photons in the trees that in [15] were only used for the redundant decoding of tree.
The proposed structure requires 5 processors with two memory qubits and a quantum
emitter per repeater station and an extra processor with at least two memory qubits in
each repeater station where stabilizers are measured.

Lastly, in Chapter 4 we focus on the error tolerance of protocol 2, presented in Section
3.6, in comparison to the unconcatenated protocol, seen in Section 2.5. From the results
of protocol 2 with only four links, we conclude that the stabilizer links by themselves
lead to a higher error on the final state than the unconcatenated links under same the
circumstances. This introduces a search for an optimal number of free evolution links,
n > 0, for which there is an error build-up that can be corrected by the stabilizer links.
In order to mimic the free evolution links, we assume that each of them behaves like five
simultaneous depolarizing channels. Under this assumption we consider perfect stabilizers
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which shows an improvement to the error tolerance of the one-way quantum repeater
and thus allows for individual treatment of the different k sets in a k(n + 4)-linked
repeater chain. Finally, we consider imperfect stabilizers with n > 0, which lead to
an improvement compared to the imperfect stabilizers with n = 0, since the results for
n > 0 of the concatenated and unconcatenated with same n, µ, t and ε show almost
the same behaviour. In order to draw a stronger conclusion, a further investigation with
simulations for a variety of values of ε with more data points should be done. Moreover,
we consider this last investigation to open the door to further and improved simulations
to get a very precise distinction between the concatenated and unconcatenated one-way
quantum-repeater chains.

5.2 Future outlook

Many different approaches to several distinct problems have been explored, yet not all of
them were possible to be studied deeply enough in the framework of this thesis. Never-
theless, we present them in the following paragraphs as ideas for a future work towards
a fault-tolerant one-way quantum repeater using code concatenation of a stabilizer code
and the tree code.

First, in our protocols we have always considered a structure where stabilizers are not
always measured, but instead there are free evolution links. We have shown that they
are necessary if we want to correct after successfully measuring a set of stabilizers, thus,
having the possibility of treating the long repeater chain as k segments with a studied
error and loss tolerance. However, if one did not correct every time the stabilizers are
measured but after some or all sets are measured, one can see that the outcomes of the
same stabilizer in different points of the repeater chain must be correlated between them
and with the error build-up. Therefore, one should consider a smarter way of correcting.
For example, we take as a base the presented structure for correcting errors in the surface
code [55] using recurrent neural networks in the context of machine learning in [56], where
they outperform the widely used minimum weight perfect matching [57] decoder. It is
argued that this outperformance is due to the fact that using recurrent neural networks
[58] for decoding can track correlated errors, something that with the common minimum
weight perfect matching decoder is impossible to do. Thus, we can argue that in our case
if we consider a final or smaller number of intermediate corrections, a decoding scheme
for the outer code using recurrent neural networks would be a perfect fit.

However, always having stabilizer links can greatly affect the success probability, since
the presented approach gives another purpose to the photons in the trees by using them
to measure stabilizers. Therefore, one can also come up with alternative methods to
measure the stabilizers making use of the sub-tree that is used in the heralded storage
for the re-encoding at each repeater station. An example on how to do this would be to
create a GHZ state (|0 . . . 0〉+ |1 . . . 1〉) between the quantum emitters in each processor
in a repeater station. Then in order to perform the X . . .X stabilizer between first-level
qubits that have been heralded stored for re-encoding, one would only need to perform
a CNOT between the first-level qubit and one of the qubits that forms the GHZ state.
Later the GHZ-qubits should be measured in order to perform a parity check and detect
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if an error has happened and where. This approach has the advantage that no extra
processors are needed at each repeater station and tentatively the success probability
when measuring stabilizers would not decrease, since no extra qubits from the tree are
required to not be lost. However, this approach does not allow measuring more than
one stabilizer once per repeater station, whereas using the other photons in the tree to
measure stabilizer allows measuring a stabilizer or multiple more than once per repeater
station.

One of the main encountered challenges in order to simulate long repeater chains is the
simulation time required. In order to avoid it, a smart approach would be to study a
single link in detail so that a model of one link could be derived. Then, to study a long
repeater chain the full simulation would not be necessary but one could simply take the
derived model for a single link as many times as links in the chain. This approach would
variate on the specific protocol on the links, since different kinds of links would require
different models. This suggests that a protocol where all links behave the same would be
the best problem to tackle in this fashion.

Moreover, if one considers a long repeater chain formed by stabilizer links in order to
not perturb the success probability that much, one can relax the constraint of having to
successfully measure a stabilizer per stabilizer link. Instead one can always try to measure
a stabilizer once or multiple times per repeater station so that in the end of the chain one
can have as many outcomes as possible without decreasing a lot the success probability of
the chain. Additionally, if in one repeater station a single stabilizer is measured multiple
times, then those outcomes can be majority voted and ensure a non-faulty stabilizer
outcome. Nevertheless, the decoding in this strategy would not be as straightforward
as the one presented as there are more outcomes to be considered, one would need to
carefully study the correction step for this case. Moreover, this strategy may lead to a
larger error rate compared to the presented one, where we require successful stabilizer
measurements.

Note that due to the fact that in the presented protocol the 5-qubit code is used, we
have restrained to a single stabilizer measured on a link, so that at least four links are
necessary to measure a set of stabilizers. But if one desired to look at bigger outer codes
one may need to measure multiple stabilizers in a link. For example, the surface code
[55] has suitable stabilizers of the form XXXX and ZZZZ for the structure considered.
So that in this case at least two links would be necessary, but many more stabilizers
would need to be measured in a single link, rendering the strategy proposed in this thesis
as potentially not adequate for this outer code. Moreover, the 5-qubit code was chosen
mainly due to the fact that is small and easy to study. Then, looking at bigger codes could
also improve the performance of the correction on the outer code, since some bigger codes
protect against more than a single-qubit arbitrary error. The built simulation framework
could be used as a tool to investigate this larger codes.

On another note, so far depolarizing channels have been considered on the photons, which
are not a very physically realistic approach. Another branch related to this topic would
be to derive a physically motivated error model based, for example, on the tree generation
structure, which clearly points out to a correlated error model. One could go even further
and try to find a fault-tolerant tree-cluster generation. From a correlated error model,
one would expect that the re-encoding procedure would be more prone to map to logical
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errors, while the stabilizer measurements would be no more affected than they are with
a simple error model as the depolarizing noise.

All in all, we hope that this thesis will help with laying the groundwork for the fault-
tolerant one-way quantum repeater using code concatenation, including a simulation
framework to further help with analyzing the behaviour of tree-code based quantum-
repeater chains.
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[8] Peter Kómár et al. “A quantum network of clocks”. In: Nature Physics 10.8 (Aug.
2014). arXiv: 1310.6045, pp. 582–587. issn: 1745-2473, 1745-2481. doi: 10.1038/
nphys3000. url: http://arxiv.org/abs/1310.6045.

[9] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. “Universal blind quantum
computation”. In: 2009 50th Annual IEEE Symposium on Foundations of Computer
Science (Oct. 2009). arXiv: 0807.4154, pp. 517–526. doi: 10.1109/FOCS.2009.36.
url: http://arxiv.org/abs/0807.4154.

[10] Thomas B. Bahder. “Quantum Positioning System”. In: arXiv:quant-ph/0406126
(June 2004). arXiv: quant-ph/0406126. url: http://arxiv.org/abs/quant-

ph/0406126.

[11] W. K. Wootters and W. H. Zurek. “A single quantum cannot be cloned”. en. In:
Nature 299.5886 (Oct. 1982). Number: 5886 Publisher: Nature Publishing Group,
pp. 802–803. issn: 1476-4687. doi: 10.1038/299802a0. url: http://www.nature.
com/articles/299802a0.

79

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
http://www.nature.com/articles/s41586-019-1666-5
https://qt.eu/
https://ec.europa.eu/programmes/horizon2020//en/what-horizon-2020
https://ec.europa.eu/programmes/horizon2020//en/what-horizon-2020
https://quantum-internet.team/
https://qt.eu/about-quantum-flagship/projects/european-quantum-internet-alliance/
https://qt.eu/about-quantum-flagship/projects/european-quantum-internet-alliance/
https://doi.org/10.1126/science.aam9288
https://science-sciencemag-org.tudelft.idm.oclc.org/content/362/6412/eaam9288
https://science-sciencemag-org.tudelft.idm.oclc.org/content/362/6412/eaam9288
https://doi.org/10.1016/j.tcs.2014.05.025
http://arxiv.org/abs/2003.06557
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
http://arxiv.org/abs/1310.6045
https://doi.org/10.1109/FOCS.2009.36
http://arxiv.org/abs/0807.4154
http://arxiv.org/abs/quant-ph/0406126
http://arxiv.org/abs/quant-ph/0406126
https://doi.org/10.1038/299802a0
http://www.nature.com/articles/299802a0
http://www.nature.com/articles/299802a0


REFERENCES 80

[12] H.-J. Briegel et al. “Quantum Repeaters: The Role of Imperfect Local Operations
in Quantum Communication”. In: Physical Review Letters 81.26 (Dec. 1998). Pub-
lisher: American Physical Society, pp. 5932–5935. doi: 10.1103/PhysRevLett.81.
5932. url: https://link.aps.org/doi/10.1103/PhysRevLett.81.5932.

[13] W. J. Munro et al. “Quantum communication without the necessity of quantum
memories”. en. In: Nature Photonics 6.11 (Nov. 2012). Number: 11 Publisher: Na-
ture Publishing Group, pp. 777–781. issn: 1749-4893. doi: 10.1038/nphoton.

2012.243. url: http://www.nature.com/articles/nphoton.2012.243.

[14] Sreraman Muralidharan et al. “Ultrafast and Fault-Tolerant Quantum Commu-
nication across Long Distances”. In: Physical Review Letters 112.25 (June 2014).
Publisher: American Physical Society, p. 250501. doi: 10.1103/PhysRevLett.112.
250501. url: https://link.aps.org/doi/10.1103/PhysRevLett.112.250501.

[15] Johannes Borregaard et al. “One-way quantum repeater based on near-deterministic
photon-emitter interfaces”. In: Physical Review X 10.2 (June 2020). arXiv: 1907.05101,
p. 021071. issn: 2160-3308. doi: 10.1103/PhysRevX.10.021071. url: http:

//arxiv.org/abs/1907.05101.

[16] Nicolas Gisin and Rob Thew. “Quantum Communication”. In: Nature Photonics
1.3 (Mar. 2007). arXiv: quant-ph/0703255, pp. 165–171. issn: 1749-4885, 1749-
4893. doi: 10.1038/nphoton.2007.22. url: http://arxiv.org/abs/quant-
ph/0703255.

[17] T. D. Ladd et al. “Quantum computers”. en. In: Nature 464.7285 (Mar. 2010).
Number: 7285 Publisher: Nature Publishing Group, pp. 45–53. issn: 1476-4687. doi:
10.1038/nature08812. url: http://www.nature.com/articles/nature08812.

[18] Nicolas Gisin et al. “Quantum cryptography”. In: Reviews of Modern Physics 74.1
(Mar. 2002). Publisher: American Physical Society, pp. 145–195. doi: 10.1103/
RevModPhys.74.145. url: https://link.aps.org/doi/10.1103/RevModPhys.
74.145.

[19] H. J. Kimble. “The quantum internet”. en. In: Nature 453.7198 (June 2008). Num-
ber: 7198 Publisher: Nature Publishing Group, pp. 1023–1030. issn: 1476-4687. doi:
10.1038/nature07127. url: http://www.nature.com/articles/nature07127.

[20] Zhen-Sheng Yuan et al. “Entangled photons and quantum communication”. en.
In: Physics Reports 497.1 (Dec. 2010), pp. 1–40. issn: 0370-1573. doi: 10.1016/
j.physrep.2010.07.004. url: https://www.sciencedirect.com/science/
article/pii/S0370157310001833.

[21] L.-M. Duan et al. “Long-distance quantum communication with atomic ensembles
and linear optics”. en. In: Nature 414.6862 (Nov. 2001). Number: 6862 Publisher:
Nature Publishing Group, pp. 413–418. issn: 1476-4687. doi: 10.1038/35106500.
url: http://www.nature.com/articles/35106500.

[22] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Physics Physique Fizika
1.3 (Nov. 1964). Publisher: American Physical Society, pp. 195–200. doi: 10.1103/
PhysicsPhysiqueFizika.1.195. url: https://link.aps.org/doi/10.1103/
PhysicsPhysiqueFizika.1.195.

https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://link.aps.org/doi/10.1103/PhysRevLett.81.5932
https://doi.org/10.1038/nphoton.2012.243
https://doi.org/10.1038/nphoton.2012.243
http://www.nature.com/articles/nphoton.2012.243
https://doi.org/10.1103/PhysRevLett.112.250501
https://doi.org/10.1103/PhysRevLett.112.250501
https://link.aps.org/doi/10.1103/PhysRevLett.112.250501
https://doi.org/10.1103/PhysRevX.10.021071
http://arxiv.org/abs/1907.05101
http://arxiv.org/abs/1907.05101
https://doi.org/10.1038/nphoton.2007.22
http://arxiv.org/abs/quant-ph/0703255
http://arxiv.org/abs/quant-ph/0703255
https://doi.org/10.1038/nature08812
http://www.nature.com/articles/nature08812
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://link.aps.org/doi/10.1103/RevModPhys.74.145
https://link.aps.org/doi/10.1103/RevModPhys.74.145
https://doi.org/10.1038/nature07127
http://www.nature.com/articles/nature07127
https://doi.org/10.1016/j.physrep.2010.07.004
https://doi.org/10.1016/j.physrep.2010.07.004
https://www.sciencedirect.com/science/article/pii/S0370157310001833
https://www.sciencedirect.com/science/article/pii/S0370157310001833
https://doi.org/10.1038/35106500
http://www.nature.com/articles/35106500
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195


81 References

[23] W. J. Munro et al. “Inside Quantum Repeaters”. In: IEEE Journal of Selected
Topics in Quantum Electronics 21.3 (May 2015). Conference Name: IEEE Journal
of Selected Topics in Quantum Electronics, pp. 78–90. issn: 1558-4542. doi: 10.
1109/JSTQE.2015.2392076.

[24] Charles H. Bennett et al. “Purification of Noisy Entanglement and Faithful Tele-
portation via Noisy Channels”. In: Physical Review Letters 76.5 (Jan. 1996). arXiv:
quant-ph/9511027, pp. 722–725. issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.
76.722. url: http://arxiv.org/abs/quant-ph/9511027.
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[33] Gláucia Murta et al. “Key rates for quantum key distribution protocols with asym-
metric noise”. In: Physical Review A 101.6 (June 2020). arXiv: 2002.07305, p. 062321.
issn: 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.101.062321. url: http:
//arxiv.org/abs/2002.07305.

[34] S. Pirandola et al. “Advances in Quantum Cryptography”. In: Advances in Optics
and Photonics 12.4 (Dec. 2020). arXiv: 1906.01645, p. 1012. issn: 1943-8206. doi:
10.1364/AOP.361502. url: http://arxiv.org/abs/1906.01645.

https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
http://arxiv.org/abs/quant-ph/9511027
https://doi.org/10.1103/PhysRevLett.71.4287
https://link.aps.org/doi/10.1103/PhysRevLett.71.4287
https://link.aps.org/doi/10.1103/PhysRevLett.71.4287
https://doi.org/10.1103/PhysRevLett.101.080403
http://arxiv.org/abs/0808.2972
http://arxiv.org/abs/0808.2972
https://doi.org/10.1103/PhysRevLett.98.130501
https://link.aps.org/doi/10.1103/PhysRevLett.98.130501
https://doi.org/10.1103/PhysRevLett.78.3217
https://doi.org/10.1103/PhysRevLett.78.3217
http://arxiv.org/abs/quant-ph/9701015
https://doi.org/10.1038/ncomms7787
http://www.nature.com/articles/ncomms7787
https://doi.org/10.1103/PhysRevLett.104.180503
https://link.aps.org/doi/10.1103/PhysRevLett.104.180503
https://link.aps.org/doi/10.1103/PhysRevLett.104.180503
https://doi.org/10.1103/PhysRevA.101.062321
http://arxiv.org/abs/2002.07305
http://arxiv.org/abs/2002.07305
https://doi.org/10.1364/AOP.361502
http://arxiv.org/abs/1906.01645


REFERENCES 82

[35] Renato Renner. “Security of Quantum Key Distribution”. In: arXiv:quant-ph/0512258
(Jan. 2006). arXiv: quant-ph/0512258. url: http://arxiv.org/abs/quant-

ph/0512258.

[36] Venkatesan Guruswami. “Notes 1: Introduction, linear codes”. en. In: (), p. 11.

[37] Keisuke Fujii. “Stabilizer Formalism and Its Applications”. en. In: Quantum Com-
putation with Topological Codes: From Qubit to Topological Fault-Tolerance. Ed. by
Keisuke Fujii. SpringerBriefs in Mathematical Physics. Singapore: Springer, 2015,
pp. 24–55. isbn: 978-981-287-996-7. doi: 10.1007/978-981-287-996-7_2. url:
https://doi.org/10.1007/978-981-287-996-7_2.

[38] Andrew M Steane. “A Tutorial on Quantum Error Correction”. en. In: (), p. 24.

[39] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. “The invariants of
the local Clifford group”. In: Physical Review A 71.2 (Feb. 2005). arXiv: quant-
ph/0410035, p. 022310. issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.71.
022310. url: http://arxiv.org/abs/quant-ph/0410035.

[40] Asher Peres. “Reversible logic and quantum computers”. In: Physical Review A 32.6
(Dec. 1985). Publisher: American Physical Society, pp. 3266–3276. doi: 10.1103/
PhysRevA.32.3266. url: https://link.aps.org/doi/10.1103/PhysRevA.32.
3266.

[41] Peter W. Shor. “Scheme for reducing decoherence in quantum computer mem-
ory”. In: Physical Review A 52.4 (Oct. 1995). Publisher: American Physical Society,
R2493–R2496. doi: 10.1103/PhysRevA.52.R2493. url: https://link.aps.org/
doi/10.1103/PhysRevA.52.R2493.

[42] Raymond Laflamme et al. “Perfect Quantum Error Correction Code”. In: arXiv:quant-
ph/9602019 (Feb. 1996). arXiv: quant-ph/9602019. url: http://arxiv.org/abs/
quant-ph/9602019.

[43] Barbara M. Terhal. “Quantum Error Correction for Quantum Memories”. In: Re-
views of Modern Physics 87.2 (Apr. 2015). arXiv: 1302.3428, pp. 307–346. issn:
0034-6861, 1539-0756. doi: 10.1103/RevModPhys.87.307. url: http://arxiv.
org/abs/1302.3428.

[44] M. Hein et al. “Entanglement in Graph States and its Applications”. In: arXiv:quant-
ph/0602096 (Feb. 2006). arXiv: quant-ph/0602096. url: http://arxiv.org/abs/
quant-ph/0602096.

[45] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. “Graphical description
of the action of local Clifford transformations on graph states”. en. In: Physical
Review A 69.2 (Feb. 2004), p. 022316. issn: 1050-2947, 1094-1622. doi: 10.1103/
PhysRevA.69.022316. url: https://link.aps.org/doi/10.1103/PhysRevA.
69.022316.

[46] D. Schlingemann and R. F. Werner. “Quantum error-correcting codes associated
with graphs”. en. In: Physical Review A 65.1 (Dec. 2001), p. 012308. issn: 1050-
2947, 1094-1622. doi: 10.1103/PhysRevA.65.012308. url: https://link.aps.
org/doi/10.1103/PhysRevA.65.012308.

[47] Michael A. Nielsen. “Cluster-state quantum computation”. In: Reports on Math-
ematical Physics 57.1 (Feb. 2006). arXiv: quant-ph/0504097, pp. 147–161. issn:
00344877. doi: 10.1016/S0034-4877(06)80014-5. url: http://arxiv.org/abs/
quant-ph/0504097.

http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/quant-ph/0512258
https://doi.org/10.1007/978-981-287-996-7_2
https://doi.org/10.1007/978-981-287-996-7_2
https://doi.org/10.1103/PhysRevA.71.022310
https://doi.org/10.1103/PhysRevA.71.022310
http://arxiv.org/abs/quant-ph/0410035
https://doi.org/10.1103/PhysRevA.32.3266
https://doi.org/10.1103/PhysRevA.32.3266
https://link.aps.org/doi/10.1103/PhysRevA.32.3266
https://link.aps.org/doi/10.1103/PhysRevA.32.3266
https://doi.org/10.1103/PhysRevA.52.R2493
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
http://arxiv.org/abs/quant-ph/9602019
http://arxiv.org/abs/quant-ph/9602019
https://doi.org/10.1103/RevModPhys.87.307
http://arxiv.org/abs/1302.3428
http://arxiv.org/abs/1302.3428
http://arxiv.org/abs/quant-ph/0602096
http://arxiv.org/abs/quant-ph/0602096
https://doi.org/10.1103/PhysRevA.69.022316
https://doi.org/10.1103/PhysRevA.69.022316
https://link.aps.org/doi/10.1103/PhysRevA.69.022316
https://link.aps.org/doi/10.1103/PhysRevA.69.022316
https://doi.org/10.1103/PhysRevA.65.012308
https://link.aps.org/doi/10.1103/PhysRevA.65.012308
https://link.aps.org/doi/10.1103/PhysRevA.65.012308
https://doi.org/10.1016/S0034-4877(06)80014-5
http://arxiv.org/abs/quant-ph/0504097
http://arxiv.org/abs/quant-ph/0504097


83 References

[48] Mihir Pant et al. “Rate-distance tradeoff and resource costs for all-optical quantum
repeaters”. en. In: Physical Review A 95.1 (Jan. 2017), p. 012304. issn: 2469-9926,
2469-9934. doi: 10.1103/PhysRevA.95.012304. url: https://link.aps.org/
doi/10.1103/PhysRevA.95.012304.

[49] Michael Varnava, Daniel E. Browne, and Terry Rudolph. “Loss Tolerance in One-
Way Quantum Computation via Counterfactual Error Correction”. In: Physical
Review Letters 97.12 (Sept. 2006). Publisher: American Physical Society, p. 120501.
doi: 10.1103/PhysRevLett.97.120501. url: https://link.aps.org/doi/10.
1103/PhysRevLett.97.120501.

[50] NetSquid – The Network Simulator for Quantum Information using Discrete events.
en-US. url: https://netsquid.org/.

[51] Tim Coopmans et al. “NetSquid, a discrete-event simulation platform for quantum
networks”. In: arXiv:2010.12535 [quant-ph] (Jan. 2021). arXiv: 2010.12535. url:
http://arxiv.org/abs/2010.12535.

[52] Simon Anders and Hans J. Briegel. “Fast simulation of stabilizer circuits using a
graph state representation”. In: Physical Review A 73.2 (Feb. 2006). arXiv: quant-
ph/0504117, p. 022334. issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.73.
022334. url: http://arxiv.org/abs/quant-ph/0504117.

[53] QINC Wehner / NetSquid Snippets / NetSquid-SimulationTools. en. url: https://
gitlab.tudelft.nl/qinc-wehner/netsquid-snippets/netsquid-simulationtools.

[54] Snippets – NetSquid. en-US. url: https://netsquid.org/snippets/.

[55] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum com-
putation”. In: Physical Review A 86.3 (Sept. 2012). arXiv: 1208.0928, p. 032324.
issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.86.032324. url: http:

//arxiv.org/abs/1208.0928.

[56] P. Baireuther et al. “Machine-learning-assisted correction of correlated qubit errors
in a topological code”. In: Quantum 2 (Jan. 2018). arXiv: 1705.07855, p. 48. issn:
2521-327X. doi: 10.22331/q-2018-01-29-48. url: http://arxiv.org/abs/
1705.07855.

[57] Jack Edmonds. “Paths, Trees, and Flowers”. en. In: Canadian Journal of Mathe-
matics 17 (1965). Publisher: Cambridge University Press, pp. 449–467. issn: 0008-
414X, 1496-4279. doi: 10.4153/CJM-1965-045-4. url: http://www.cambridge.
org/core/journals/canadian- journal- of- mathematics/article/paths-

trees-and-flowers/08B492B72322C4130AE800C0610E0E21.

[58] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent Neural Network
Regularization”. In: arXiv:1409.2329 [cs] (Feb. 2015). arXiv: 1409.2329. url: http:
//arxiv.org/abs/1409.2329.

https://doi.org/10.1103/PhysRevA.95.012304
https://link.aps.org/doi/10.1103/PhysRevA.95.012304
https://link.aps.org/doi/10.1103/PhysRevA.95.012304
https://doi.org/10.1103/PhysRevLett.97.120501
https://link.aps.org/doi/10.1103/PhysRevLett.97.120501
https://link.aps.org/doi/10.1103/PhysRevLett.97.120501
https://netsquid.org/
http://arxiv.org/abs/2010.12535
https://doi.org/10.1103/PhysRevA.73.022334
https://doi.org/10.1103/PhysRevA.73.022334
http://arxiv.org/abs/quant-ph/0504117
https://gitlab.tudelft.nl/qinc-wehner/netsquid-snippets/netsquid-simulationtools
https://gitlab.tudelft.nl/qinc-wehner/netsquid-snippets/netsquid-simulationtools
https://netsquid.org/snippets/
https://doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1208.0928
http://arxiv.org/abs/1208.0928
https://doi.org/10.22331/q-2018-01-29-48
http://arxiv.org/abs/1705.07855
http://arxiv.org/abs/1705.07855
https://doi.org/10.4153/CJM-1965-045-4
http://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
http://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
http://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329

	Abstract
	Acknowledgements
	Introduction
	Background
	Quantum communication and quantum repeaters
	Overview on quantum repeaters
	One-way quantum repeater

	Quantum noise and secret-key rate
	Independent noise models
	Determine the impact of noisy quantum channels

	Quantum Error Correction
	Classical linear codes
	Stabilizer codes
	Code concatenation

	Graph states, tree state and tree code
	Graph states
	Tree states
	Tree code

	One-way quantum repeater protocol with tree code
	Encoding
	Re-encoding
	Repetition and end node
	Errors


	Code concatenation in the one-way quantum repeater
	Choice of concatenated codes
	Preliminary protocol for the code concatenated one-way quantum repeater
	Stabilizer measurements in trees
	Z…Z stabilizer measurement
	X…X stabilizer measurement
	General X and Z stabilizer measurement

	Possible outer codes
	Protocol 1 for the code concatenated one-way quantum repeater
	Protocol 1: Structure of the repeater chain
	Protocol 1: Losses
	Protocol 1: Errors

	Protocol 2 for the code concatenated one-way quantum repeater
	Protocol 2: Losses


	Numerical investigation of the 5-qubit code
	Motivation and constraints for the simulation
	The NetSquid Simulator
	Choice of branching vector and loss probability
	Verification of the simulation
	Protocol 2 with four links
	Improving the strategy
	Error build-up for the free evolution links
	Perfect stabilizer measurements
	Behaviour of a long chain
	Imperfect stabilizer measurements


	Conclusions and outlook
	Summary and conclusions
	Future outlook

	References

