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A B S T R A C T

The Dutch government aims to eliminate natural gas for residential heating in 1.5 million homes by 2030. One 
strategy is connecting existing dwellings to lower-temperature district heating (DH) systems, although these 
dwellings might require energy renovations. The heterogeneous dwelling stock causes varying renovation needs 
that complicate the energy transition. The present study addresses this issue by assessing the building-level 
parameters affecting the readiness of the Dutch terraced-intermediate and apartment types for lower- 
temperature heating (LTH) supplied by DH systems. A sampling-based approach was employed to capture 
variability within these dwelling types, addressing the limitations of archetype-based methods. The findings 
suggest a sample size of 1300 to represent the variations in these dwelling types. Parametric simulations and 
machine learning methods were used to identify significant building-level parameters for medium-temperature 
(MT: 70/50 ◦C) and low-temperature (LT: 55/35 ◦C) supply levels. These include heating setpoints (desired 
indoor temperature) and ventilation-related parameters (ventilation system type and air infiltration rate), fol-
lowed by fabric-related parameters (roof, glazing, wall, ground, and door insulation) and geometric properties 
(orientation, compactness ratio, and window-to-wall ratio). Additionally, radiator oversizing also impacts LTH 
readiness. These results broadly apply to the studied dwelling types, although feature importance varies by 
supply temperature and dwelling type. The findings can guide stakeholders in assessing current conditions and 
prioritising renovation measures, aiding the development of targeted renovation solutions. Encompassing the 
representative variations within studied dwelling types enhances the robustness of the results. However, 
incorporating more refined data could improve the accuracy of the findings, better supporting the energy 
transition of these dwellings.

1. Introduction

The built environment is currently responsible for 30 % of global 
energy consumption [1], with 15 % of this energy being used for space 
heating and hot water [2]. In 2022, fossil fuels accounted for 60 % of the 
heating energy demand, resulting in direct CO2 emissions of 2400 
megatonnes [2]. Therefore, it is imperative to explore fossil-free ap-
proaches for decarbonising the building heating sector. The Dutch 
government has set an ambitious target to eliminate the use of natural 
gas for domestic heating in 1.5 million existing homes by 2030 [3]. For 
this transition, lower-temperature district heating (DH) systems are 
emerging as a viable solution to provide sustainable heat to densely 
populated areas [4–6]. Unlike traditional DH systems, these operate 

with supply temperatures below 75 ◦C, allowing for the integration of 
various sustainable heat sources, such as geothermal, aqua thermal, 
residual heat from industry, data centres, supermarkets, and solar 
thermal plants, as alternatives to natural gas [7,8]. Additionally, lower 
supply temperatures improve the efficiency of heat distribution net-
works [8,9] and enhance thermal comfort at the building level [10,11]. 
Currently, only 6.4 % of Dutch homes are connected to DH systems 
[12,13], although it is estimated that by 2050, nearly 50 % of sustain-
able heat will be supplied through them [14]. In due course, many 
existing dwellings will be connected to lower-temperature DH systems.

The transition of existing dwellings to these lower-temperature DH 
systems often requires energy renovations [7,15,16], which involves 
complex decision-making due to the involvement of multiple stake-
holders with conflicting objectives [17–19]. This complexity is further 
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compounded by the heterogeneity of the dwelling stock, resulting in 
varying renovation needs that require individual assessments and cus-
tomised solutions [20–22]. Nevertheless, developing assessment models 
for the entire stock at the individual dwelling level is challenging due to 
the limited data availability and the computational resources required to 
analyse them [23–27]. Consequently, studies typically employ reference 
or archetype buildings to represent the national stock [25,28,29]. These 
archetypes are developed through statistical analyses and the clustering 
of common building features such as construction period, type, size, 
HVAC systems and occupant profiles within specific building categories 
[25,28,30,31]. While these archetypes are beneficial for estimating 
energy-saving potential and assessing the cost-effectiveness of renova-
tion measures at a policy level [25,32], they introduce uncertainties due 
to the averaging of variations within dwelling types [21,31]. As a 
consequence, these uncertainties may result in a performance gap be-
tween the expected outcomes, based on archetypes, and the actual 
performance of individual dwellings [21,33].

A systematic review conducted by the authors [34] found that cur-
rent scientific literature relies on archetypes, or specific cases, for 
evaluating the renovation measures needed for lower-temperature 
heating (LTH) in residential buildings. As a result, analysis of varia-
tions due to building characteristics within the dwelling types is not 
taken into account when assessing the readiness of the dwelling stock for 
LTH, highlighting a significant knowledge gap. This gap is particularly 
crucial for stakeholders such as municipalities and housing corporations 
who manage diverse portfolios and require insights to determine which 
dwellings are prepared for LTH, those which necessitate renovations for 
LTH implementation, and where priorities should be established. These 
challenges correspond to the information barrier impeding energy 
renovation projects [35,36].

In this context, recent studies have conducted extensive measure-
ment campaigns encompassing the diversity of the dwelling stock. For 
instance, the study conducted by Østergaard et al. [37] analysed survey 
data from 1,645 single-family houses (SFH) and apartments in Denmark 
to evaluate the oversizing of radiators and their suitability with low- 
temperature supply from DH systems. Similarly, Pothof et al. [38]
measured 220 existing dwellings that were representative of the Dutch 
dwelling stock with natural gas heating systems. These dwellings were 
examined to determine the minimum supply temperature required 
without any renovations under design conditions, as well as to assess 
their suitability for lower supply temperatures. While these studies 
provide valuable insights, they encounter limitations due to un-
certainties from manual data entry and measurement errors. Moreover, 
such comprehensive approaches, though ideal, are expensive and time- 

intensive [39]. To address this, several researchers propose a statistical 
sampling-based approach [32,40–42]. Compared to the traditional 
archetype-based method, representative samples that reflect the varia-
tions in the dwelling types can be generated and facilitate quicker 
evaluations than extensive measurements or surveys of dwellings.

1.1. Research gap and aim of the study

Existing dwellings in the Netherlands require energy renovations to 
use LTH from DH systems. However, the heterogeneous nature of the 
dwelling stock complicates the decision-making process concerning the 
selection of the appropriate renovation solutions. Current research re-
veals specific gaps in understanding the requirements for transitioning 
these dwellings to LTH. Firstly, most studies rely on archetype-based 
approaches, which are inadequate for addressing the variations within 
dwelling types. Consequently, these approaches create information 
barriers for stakeholders, as they are limited in providing detailed in-
sights into diverse dwellings. Secondly, while direct measurement and 
surveying of buildings offer detailed information, they are resource- 
intensive and time-consuming, making them impractical for large- 
scale assessments.

Given these challenges and gaps identified in the existing knowledge 
base, the primary objective of this study is to evaluate how the diversity 
within the dwelling stock can be incorporated into the assessment of 
LTH readiness in the Netherlands. By acknowledging the heterogeneity 
of dwellings, this study aims to provide a nuanced analysis of building- 
level parameters that influence LTH readiness. To achieve this, the study 
employed the sampling-based approach. This approach offers a robust 
framework to strategise suitable energy renovations for preparing Dutch 
dwellings for LTH supplied by DH systems.

1.2. Related studies on sampling-based approach

Previous applications of the sampling-based approach have demon-
strated its utility in energy renovation research. For instance, according 
to Liang and Shen [40], surveying and measuring energy consumption is 
not always feasible for all the buildings in an area. Therefore, they 
proposed a sampling-based approach to generate representative data 
and concluded that simulations based on such data could yield valuable 
insights, provided that an appropriate sample size is used. Further, 
Brown et al. [41] utilised statistically representative samples derived 
from comprehensive survey data collected across Sweden’s building 
stock. A sample of 1400 multi-family homes (MFH) and single-family 
homes (SFH) were analysed to assess the embodied global warming 

Nomenclature

DH District Heating
GSA Global Sensitivity Analysis
HBjson HoneyBee Json
HT High-Temperature
LHS Latin Hypercube Sampling
LT Low Temperature
LTH Lower Temperature Heating
MFH Multi-Family House
MT Medium Temperature
PDFs Probability Density Functions
RF Random Forest
SFH Single-Family House
SRRC Standardised Rank Regression Coefficient
TRY Test Reference Year
UBEM Urban Building Energy Modelling
Als External Heat Loss Area [m2]

Ag Total Usable Heated Area [m2]
Qv10 Air infiltration rate at 10 PA [dm3/s.m2]
Qv10;spec Specific air infilteration rate for a building type at 10PA 

[dm3/s.m2]
ftype Dimensionless correction factor for building type
fy Dimensionless correction factor for construction year
Ø Radiator heating power at new temperature set [W]
Ø0 Radiator heating power at original design temperature set 

[W]
ΔT Logarithmic mean temperature difference at new 

temperature set [℃]
ΔT0 Logarithmic mean temperature difference at original 

design temperature set [◦C]
n Radiator exponent [-]
Ts Radiator supply temperature [◦C]
Tr Radiator return temperature [◦C]
Ti Design indoor temperature [◦C]
R2 Coefficient of Determination
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potential of renovation measures that reduce operational energy 
consumption.

Furthermore, an approach for investigating the cost-optimality of 
energy renovations in the presence of variations within a building 
category is proposed by Mauro et al. [32]. The authors introduced a 
methodological framework called SLABE that leveraged statistical and 
probabilistic methods for generating representative samples of a 
dwelling type (referred to as reference building samples) instead of the 
single archetype (referred to as a reference building). Moreover, a 
comprehensive review by Mastrucci et al. [26] on the lifecycle assess-
ment of building stock identified the convenience of modelling repre-
sentative samples, compared to a building-by-building approach, in 
capturing the broad variability of the building stock. Additionally, Bal-
dini et al. [21] assessed building samples to investigate energy-efficient 
and cost-effective renovation measures for a DH area in Denmark, which 
were tailored to diverse building characteristics instead of archetypes. 
Their study ascertained that the heterogeneous approach could provide 
valuable insights that might have been overlooked in an archetype- 
based approach.

Further, Jaeger et al. [42] discussed the limitations of the archetype- 
based approach for Urban building energy modelling (UBEM). They 
proposed an approach to characterise the buildings in a UBEM through 
probability density functions (PDFs) defined for key parameters. As per 
the authors, the PDFs can be statistically defined, including the reno-
vation probability for estimating the possible building values, thus 
generating realistic variations for existing dwelling stock. In recent 
studies [27,43], the authors utilised sample-based approaches to 
generate represented data and train machine learning models to predict 
energy consumption and identify the essential features that can assist in 
prioritising renovation strategies.

1.3. Methodology and outline

While the literature suggests that sampling-based approaches could 
provide a more feasible solution to address heterogeneity, these ap-
proaches have not yet been applied to assess the diversity of dwellings in 
the Netherlands concerning their readiness for LTH. Therefore, to 
address the research aim, the methodology employed consists of two 
components: 1) determining the appropriate sample size to adequately 
represent the variations in dwelling type, and 2) identifying the signif-
icance of building-level parameters in assessing the readiness of a 
dwelling for LTH, while accounting for the variations. This approach 
will be applied to terraced-intermediate and apartment dwelling types, 
which constitute a substantial portion of SFH and MFH in the 
Netherlands. Section 2 presents these selected dwelling types and dis-
cusses their representation in the national building stock. Following this, 
Section 3 outlines the methodological framework, detailing the para-
metric simulation workflow, the generation and identification of 
appropriate sample size, dataset labelling and the application of super-
vised machine learning in predicting a dwelling’s readiness for LTH. In 
this study, the LTH refers to heat supplied at Medium Temperature (MT: 
70/50 ◦C) and Low Temperature (LT: 55/35 ◦C) levels compared to the 
High Temperature (HT: 90/70 ◦C) supply. Sections 4 and 5 describe the 
results and provide insights into the appropriate sample size required to 
represent variations in dwelling types. They also discuss the relative 
importance of the input features extracted from the machine learning 
model. Finally, Section 6 summarises the study’s findings and 
limitations.

The novelty of this study lies in two main aspects: 1) a sampling- 
based approach in generating a dataset representing the variations 
found in SFH and MFH in the Netherlands. Such datasets can be utilised 
in future research endeavours aiming to explore solutions for the energy 
transition of existing residential stock, 2) the identification of the pa-
rameters that significantly influence a dwelling’s readiness for LTH 
while accounting for the variations within the dwelling type. The study 
argues that incorporating these variations ensures robustness in 

assessing the implications of these parameters. Moreover, these pa-
rameters can serve as a guide for strategising renovations aimed at 
preparing dwellings for LTH. Consequently, they can assist stakeholders 
with diverse portfolios in effectively selecting renovation strategies to 
decarbonise their portfolio by transitioning to LTH supplied by DH 
systems fuelled by sustainable heat sources.

2. Overview of dwelling types

The Dutch dwelling stock comprises a variety of typologies influ-
enced by different construction years and distinctive architectural fea-
tures. This stock is categorised into 16 types, segmented by four 
construction periods and four dwelling types, as depicted in Fig. 1. The 
dwelling types are clustered into two main categories: SFH, which in-
cludes terraced-intermediate, corner and detached houses, and MFH, 
encompassing various apartment typologies [44]. The term ‘intermedi-
ate’ refers to a dwelling situated between two others, whereas the 
‘corner house’ category comprises terraced houses located at the end of 
row houses and the semi-detached typology, commonly known in Dutch 
as “twee onder een kap” (two under one roof). The apartment category 
broadly includes maisonettes, walk-ups or porches, gallery and flats 
types. A more detailed sub-type of apartments, based on their position 
within the residential block, is provided in [45].

The categorisation of construction periods reflects the diverse 
constructional practices and building regulations over the periods 
considered. For instance, dwellings built before the 1970s have poor 
energy performance, having been constructed prior to the adoption of 
thermal regulations [34,38]. In contrast, stricter building regulations to 
improve energy performance in the Netherlands were introduced in 
1991 [46]. A recent housing survey in the Netherlands revealed that 
dwellings constructed before the 1980s typically have energy labels C or 
worse, indicating higher energy demands for such houses [47]. These 
dwellings may present challenges when connecting to DH systems with 
lower temperature supply [7].

In addition, Fig. 1 illustrates the distribution of dwelling types across 
each construction period and within the existing dwelling stock. 
Comprising 66 %, SFHs constitute the majority of the stock, while MFHs 
make up the remainder. Due to time constraints, this study focuses 
explicitly on terraced intermediate houses, which represent 26.6 % of 
the stock, and apartments, which account for 33.4 %. By focusing on 
these two types, the study aims to examine a substantial portion of the 
dwelling stock, characterised by a diverse range of building character-
istics, to identify the significant features that determine their suitability 
for LTH.

3. Materials and methods

This section outlines the methodological steps for analysing varia-
tions within a specific dwelling type in the Netherlands, when aiming to 
assess the influence of building characteristics on the readiness of the 
dwellings to operate at lower temperature supplies from DH systems. 
The study first identified key building-level parameters, referred to as 
interest parameters, which affect both the variations within dwelling 
type and their readiness for LTH. A sampling procedure was employed to 
generate diverse samples in order to systematically assess these interest 
parameters, thus capturing the variations within the dwelling type. 
These samples were subsequently examined through a parametric 
workflow to simulate annual space heating demand and underheated 
hours when the dwellings were occupied. Notably, these output pa-
rameters are central to the LTH-readiness definition established in our 
previous work [16].

Identifying an appropriate sample size to represent these variations 
within the dwelling type is essential to this study. To accomplish this, 
the sample size was incrementally increased until the effects of the in-
terest parameters on the two output parameters converged. The Stand-
ardised Rank Regression Coefficient (SRRC), a global sensitivity analysis 
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(GSA) method, was used for this purpose. Subsequently, the identified 
sample size was used to generate representative samples, which were 
subjected to simulations at HT (90/70 ◦C), MT (70/50 ◦C) and LT (55/ 
35 ◦C) supply temperatures. Using the LTH-readiness definition, these 
samples were classified as either “ready” or “not ready” for both MT and 
LT supply temperatures.

In addition, the representative sample datasets with binary classifi-
cations, for MT and LT supply, were used to train the ensemble-based 
Random Forest (RF) classifier model. The RF models facilitated the 
extraction of the relative importance of the interest parameters for each 
dwelling type. This analysis underscores the significance of the building- 
level parameters in determining the readiness of the dwelling type for 
both MT and LT supply while also accounting for variations due to these 
parameters. Fig. 2 visually describes the methodological steps applied to 
both terraced intermediate and apartment dwelling types, with corre-
sponding sub-sections providing further explanation. Conversely, 
Figure A.1 in the Appendix presents a detailed process workflow used in 
this study.

3.1. Interest parameters

This section describes the identified dwelling characteristics that 
introduce variability within dwellings as well as affect their readiness 

for LTH. These variations, resulting from specific interest parameters, 
contribute to the heterogeneity of the dwelling stock. The parameters 
that characterise a dwelling can broadly be categorised into geometry, 
fabric, system and occupancy controls [32,48]. Geometrical properties 
encompass the physical attributes of a dwelling, such as shape, orien-
tation, floor area, window-to-wall ratio and position (particularly in 
apartment settings) [49]. Fabric properties refer to the thermo-physical 
characteristics of both the opaque and transparent components of the 
building envelope [27]. System parameters are concerned with the 
heating, ventilation and air-conditioning (HVAC) systems and their 
operational management. Lastly, the occupancy parameters focus on the 
presence of occupants and their behavioural actions [48].

The systematic literature review in our recent study [34] identified 
the essential building characteristics that influence the potential for 
implementing LTH and the necessity for renovations. These character-
istics include the compactness ratio, which represents the geometrical 
relationship between dwelling shape, position and surface area; thermal 
insulation of the building envelope; ventilation system and airtightness; 
and the capacity of the existing space heating system as per the supply 
temperature level. Additionally, indoor heating setpoints were indicated 
as a parameter reflecting the occupant’s preference for indoor comfort. 
As a result, combining these studies, Table 1 illustrates the interest pa-
rameters that characterise a dwelling as well as impact its LTH readiness. 

Fig. 1. Categorisation of housing stock. The Figure illustrates the categorisation of housing stock based on four dwelling types and their respective share in each 
construction year and in the total existing housing stock [44,45].

Fig. 2. Methodological steps applied to terraced intermediate and apartment dwelling types, with the corresponding sub-section providing further explanation.
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These parameters are utilised to develop the simulation workflow, as 
described in the subsequent section, and the sampling procedure is used 
to generate samples by varying them, as detailed in Section 3.3.

3.2. Parametric simulation

The interest parameters outlined in the previous section informed the 
development of the parametric simulation workflow, which is designed 
to process batches of samples produced by the sampling procedure 
(described in Section 3.3). The workflow was developed within the 
Rhino-Grashopper v7 environment with Ladybug Honeybee tools v1.6, 
which facilitated the translation of Rhino geometry into a multi-zone 
building energy model. In addition, the samples from the sampling 
procedure in an Excel file were imported into the grasshopper 

environment, where an iterator using the Colibri plugin v2.0 was used to 
run through each sample. Each interest parameter interacted with a seed 
model that represented a typical geometry and internal layout of the 
dwelling type. Depending on the values of each interest parameter, the 
seed model was altered to represent a dwelling case, based on the 
sample. After generating all the samples, they were simulated in the 
cloud, and the results were recorded in an Excel output file. This section 
discusses the development of the seed model, model validation, and 
cloud computing integration, as shown in Fig. 3. The Grasshopper and 
Python scripts developed are open-source and can be accessed through 
the open-source repository [50].

3.2.1. Generating seed model

3.2.1.1. Geometry. The seed models illustrate the typical geometry and 
internal layout of terraced and apartment dwellings, as described in 
Section 2. Further, the geometric model for the terraced dwelling was 
developed using typical plans obtained from [51,52]. These studies 
indicate that despite representing newer construction, existing dwell-
ings generally share the same layout. Conversely, a typical layout of 
walk-up apartments (referred to as “portiekwoning” in Dutch) was used 
for the apartment typology. Such apartment types were widespread 
during the post-war period [53–55]. The layouts used to generate these 
geometries can be found in Figure B.1 in the Appendix.

Even though these models represent the standard geometry and 
layout of the dwellings, variations in dwelling size exist. These varia-
tions were incorporated using the compactness ratio parameter. Ac-
cording to the Dutch Technical Agreement (NTA8800) [56], the 
compactness ratio is defined as the ratio between the heat loss envelope 
surface area (Als) and the total usable heated area (Ag). This ratio serves 
as a metric for assessing the impact of dwelling size on heat losses and 
heating demands. Within Dutch regulations, the compactness ratio (Als/ 

Table 1 
Interest parameters that characterise a dwelling and have an impact on LTH 
readiness [32,34,48,49].

Category Input Parameter Units

Geometrical Orientation ◦

Compactness-Ratio −

Window-to-Wall Ratio −

Position of Apartment* −

Fabric Ground Insulation, R m2⋅K/W
External Wall Insulation, R m2⋅K/W
Roof Insulation, R m2⋅K/W
Glazing Insulation, U W/m2⋅K
External Door Insulation, U W/m2⋅K
Infiltration dm3/s.m2

HVAC Ventilation system −

Heating Capacity W
Occupant and Control Heating setpoint ◦C

*Only for apartment typology.

Fig. 3. The parametric simulation workflow to simulate the batch of samples.
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Ag) plays an essential role in establishing benchmarks for new con-
struction to achieve nearly zero energy standards [52,57] and in 
defining the insulation standards for existing dwellings [58].

In the parametric workflow, the sampled compactness ratio is uti-
lised to proportionally adjust the length of the seed model to reflect the 
variation in the dwelling size. For both dwelling types, a geometric 
relationship was formulated between the compactness ratio and the 
length of the seed model while keeping the width and height fixed. 
Compared to a terraced house, this relationship for apartment typology 
also reflects its possible positions within the apartment block itself. 
Nevertheless, it should be noted that in some instances, the sampled 
compactness ratio may result in unrealistic lengths. Therefore, limits 
were imposed on the calculated length to mitigate this issue and prevent 
such samples. Appendix C describes the geometric relationship and the 
corresponding calculations.

3.2.1.2. Fabric. Once the geometry of the seed model is adjusted to 
represent the sample, thermal insulation values are assigned to the 
ground floor, external wall, roof, glazing, and doors. Additionally, the 
airtightness of the building envelope is assigned as the infiltration rate. 
In the absence of measured values, the NTA8800 [56] provides a 
calculation method to estimate the infiltration rate, taking into account 
different building types. The calculation method is illustrated in Equa-
tion (1), where Qv10 represents the calculated air infiltration rate, and 
qv10;spec represents the specific infiltration rate for a building type at a 
uniform pressure of 10 Pa. The dimensionless correction factor due to 
building type and position is denoted by ftype, while the correction factor 
due to construction year is represented by fy. 

Qv10 = ftype × fy × qv10;spec

[
dm3

s.m2

]

(1) 

3.2.1.3. HVAC and occupant control. Ventilation system
In the Netherlands, the three prevalent ventilation systems are A, C 

and D [45]. System A utilises a natural ventilation system through 
openings, whereas System C integrates mechanical extract with natural 
intake [59]. System D, also referred to as a balanced ventilation system, 
features mechanical intake and extraction and is often combined with a 
heat recovery (HRV) system [59]. Variants within systems C and D, such 
as demand-driven or CO2-controlled, can also be found for specific 
ventilation needs.

The simulation workflow involves maintaining a minimum ventila-
tion rate for each space as mandated by the Dutch building decree [60]. 
System A regulates this rate by operable apertures, with the control 
operation as per ISSO 32 [61] guidelines. In contrast, the demand-driven 
variant of system C adjusts the ventilation based on the occupancy 
schedule. For modelling system D, the study adopts the approach sug-
gested by Alavirad et al. [52], where a reduced ventilation rate serves as 
a proxy for a balanced ventilation system equipped with HRV. This 
adjustment rate is based on the HRV system’s typical efficiency of 90 %. 
However, this study adopts a conservative estimate by reducing the 
ventilation rate to be maintained by 50 %. Consequently, only half the 
fresh air requires treatment, while the HRV system recovers the other 
half. This simplification aids in modelling the ventilation systems 
without complex calculations, focusing primarily on the impact on space 
heating energy. Nevertheless, it does not account for the operational 
energy of the system itself and might lead to oversimplification.

Modelling lower supply temperatures from DH systems
When the supply temperature is lowered, the heating capacity of 

existing space heating systems, such as radiators, is also reduced 
[16,62,63]. In dwellings with a high heating demand due to heat losses, 
the reduced capacity of the space heating system may be insufficient to 
offset these losses, potentially causing thermal discomfort to the occu-
pants. Therefore, in this study, design heating capacities are used as a 
proxy to simulate the effect of supply temperature. Thus, the heating 

capacities for heated zones are calculated based on steady-state heat loss 
from ventilation and transmission under design conditions of − 10 ◦C 
outside and 20 ◦C inside, excluding solar and internal heat gains [64]. At 
this stage, the design heating capacity is considered the same as the 
theoretical heat loss without oversizing. The calculated heating capacity 
represents the design capacity of the individual zones in the HT supply, 
and can be reduced further depending on the lower supply temperature 
levels, which in this study are MT(70/50 ◦C) and LT(55/35 ◦C). This 
reduction is calculated using Equations (2) and (3) [65] to evaluate the 
LTH readiness. 

∅ = ∅0 ×

(
ΔT
ΔT0

)n

(2) 

ΔT = (Ts − Tr)

[

ln
(

Ts − Ti

Tr − Ti

)]− 1

(3) 

In these equations, Ø and Ø0 are the radiator heating capacity in 
watts and ΔT and ΔT0 are the logarithmic mean temperature differences 
at the new and original temperature sets, respectively. The radiator 
exponent ‘n’ is fixed at 1.33. In addition, ΔT is calculated using the 
supply and return temperature (Ts and Tr, respectively) in ◦C and the 
indoor design temperature (Ti) is set to 20 ◦C.

Heating setpoints and occupant schedule
According to the study by Guerra-Santin and Silvester [66] on Dutch 

household occupancy and heating profiles for building simulations, a 
consistent heating schedule for the entire week can simplify the simu-
lation process. Consequently, this study applies a constant heating set-
point temperature to the living room and kitchen, while a two-degree 
heating setback is used in bedroom spaces. Cooling systems are not yet 
standard in Dutch dwellings, although a setpoint of 24 ◦C is used for 
cooling [52,61]. This study also assumes an average occupancy of three 
people, representing a typical nuclear family, with a combined equip-
ment and lighting load of 4 W/m2 [52].

3.2.1.4. Simulation outputs. The simulation models generated for each 
sample were simulated annually using the test reference year (TRY) 
recommended by NEN 5060 [67]. Building on the LTH-ready criteria 
defined in our previous research [16], a sample qualifies as LTH-ready if 
it maintains or improves the space heating demand and reduces thermal 
discomfort at lower temperatures relative to the original HT supply. As a 
result, annual space heating energy normalised for the total heated area 
(kWh/m2), serves as a key performance indicator (KPI) to assess space 
heating demand. Additionally, the study evaluates thermal discomfort 
by calculating the occupied cold hours below the 20 % predicted per-
centage dissatisfied threshold, defined here as underheated hours, and 
based on the method proposed by Peeters et al. [68].

While the space heating demand is calculated for the entire dwelling, 
underheated hours are evaluated specifically for the living room. Given 
that occupants spend the majority of their time in the living room, it can 
act as a proxy for assessing the thermal comfort of the entire dwelling in 
the presence of lower temperatures. This approach is supported by 
findings from our previous research [16]. For determining occupied 
underheated hours, it is assumed that the living room is occupied for 
5840 h annually from 8:00 to 23:00.

3.2.2. Model validation
The models developed from the described workflow are contingent 

on the accuracy of the outcomes. Therefore, validating the outcome 
from the simulation workflow is essential. For this purpose, this study 
utilised the average properties of terraced and apartment dwellings from 
four construction periods, as provided by the study done by Cornelisse 
et al. [44] on insulation standards for Dutch existing dwellings. In 
addition, the same study details the average space heating demand of 
these dwelling categories across different construction years. Since there 
is a lack of reference data for underheated hours, this study will use the 
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average space heating demand for validation from [44]. A deviation of 
up to 20 % is considered acceptable for validation, accounting for dif-
ferences in assumptions and calculation methods. Further, Table 2
outlines the data used as input to validate the simulation workflow.

3.2.3. Cloud computation
One essential aspect of developing the workflow was accelerating the 

simulation process, allowing for rapid testing of various sample sizes. To 
achieve this, the study leveraged the Pollination cloud computing ser-
vice for faster simulation [69]. The multi-zone model of every sample 
incorporating the geometrical details, fabric, systems and controls was 
exported into a honeybee Json (HBjson) file format (Fig. 3). These files 
were uploaded to the cloud server using the Pollination API and pro-
cessed using the validated recipe “custom-energy-sim” v0.3.19. Upon 
completion of the simulations, the EnergyPlus outputs were retrieved as 
SQL files and parsed within the Grasshopper environment to compute 
normalised space heating energy demand and underheated hours.

3.3. Generating representative samples

As previously discussed, the heterogeneity of the dwelling stock in-
troduces uncertainties regarding their readiness for LTH and the need 
for appropriate renovation options. Compared to the standard arche-
type, these uncertainties arise due to the inherent variations within each 
dwelling type [42,70]. To capture this diversity, samples that reflect 
these variations within specific dwelling types are generated. This sec-
tion describes the systematic approach for creating these samples based 
on the interest parameters, as detailed in section 3.1. Additionally, it 
details the method used to determine the appropriate sample size 
required to represent the variability within the dwelling types.

3.3.1. Systematic sampling approach
Probabilistic sampling is a standard practice in conducting uncer-

tainty and sensitivity analyses, as documented in the literature [71–73]. 
The uncertainties due to input parameters are typically characterised 
using ranges and PDFs defined at the individual building level. These 
uncertainties are incorporated through sample generation to evaluate 
their impact on the model outputs [49,73,74]. In contrast, this study 
extends the application of ranges and PDFs for interest parameters to 
cover the full spectrum of dwellings within the same type. Further, this 
approach allows the incorporation of inherent diversity among the same 
residential type, providing a broader analysis of variations within the 
dwelling stock.

A notable challenge in developing representative samples within a 

dwelling type is the potential creation of unrealistic combinations. For 
instance, samples might be configured with a balanced ventilation and 
heat recovery system alongside minimal insulation, combinations that 
are unlikely to exist in practice. To address this issue, the present study 
adopted a group sampling procedure with unequal proportion sampling, 
as discussed by Liang and Shen [40]. This approach involves classifying 
samples prior to actual sampling in order to enhance their representa-
tiveness. Consequently, a systematic multi-level sampling scheme was 
developed, where the sampling method initially selects the construction 
year category based on its discrete probability distribution. Further, this 
distribution is derived from the unequal proportion of the dwelling type 
across each construction year category. The PDFs and ranges of each 
interest parameter are subsequently varied according to the construction 
year class. After selecting the construction period, the sampling method 
employs the specific ranges and PDFs associated with that period to 
generate realistic samples.

Nevertheless, it is essential to note that the construction year cate-
gory does not determine whether a house is ready to utilise LTH from DH 
systems [34,38]. Many dwellings, particularly those built before the 
Second World War, are likely to have undergone renovations or periodic 
maintenance [45]. Therefore, the ranges and PDFs developed for each 
interest parameter of terraced and apartment dwelling types across the 
four construction categories represent the current condition of the 
dwellings. Fig. 4 illustrates the multi-level sampling approach. The 
distribution and ranges of interest parameters for four construction year 
categories are based on data from the 2018 National Housing Survey 
(Woon database) [44,45]. The data is organised separately in Tables D.1 
to D.10 for terraced-intermediate and apartment dwellings in Appendix 
D.

Furthermore, the multi-level sampling approach utilises the Latin 
Hypercube Sampling (LHS) method to generate samples. The LHS 
method is widely used in building energy analysis as it can produce 
uniform and converging results with fewer samples [32,49,73]. In this 
study, the multi-level sampling framework was implemented using Py-
thon v3.8.8 with libraries such as Pandas v2.0.3 [75] and SciPy v1.10.1 
[76]. The corresponding Python code is available in the open-source 
repository [50]. This code was used to generate a batch of samples, 
which were then exported as an Excel file. The exported samples were 
subsequently used in the simulation workflow to parametrically simu-
late each sample and report the outputs described in the previous 
section.

3.3.2. Identifying appropriate sample size
The reliability of samples to represent the variations depends on 

Table 2 
Input data used for validating simulation workflow for terraced intermediate and apartment dwelling types [44].

Input parameter Terraced Intermediate Apartments Units

<1945 1945–1975 1975–1995 >1995 <1945 1945–1975 1975–1995 >1995

Orientation1 0 0 ◦

Compactness-Ratio1 1.2 1.6 1.0 0.6 1.7 −

Window-to-Wall Ratio1 0.385 0.417 −

Position of Apartment2 − I-R C-I I-I C-G −

Heated Floor Area1 142 64 m2

Ground Insulation, R 0.77 0.57 1.16 2.68 0.56 0.48 1.16 2 m2⋅K/W
External Wall Insulation, R 0.7 0.84 1.53 2.68 0.58 0.67 1.66 2.61 m2⋅K/W
Roof Insulation, R 0.46 1.22 1.5 2.75 1 0.96 1.66 2.67 m2⋅K/W
Glazing Insulation, U 2.96 2.73 2.82 2.1 3.11 2.87 2.91 2.16 W/m2⋅K
External Door Insulation, U 3.36 3.31 3.33 3.27 3.32 3.30 3.32 3.28 W/m2⋅K
Infiltration3 3 3 2.5 1.5 1.8 1.95 1.3 0.75 dm3/s.m2

Ventilation system A C A C −

Heating setpoint4 20/16 20/18 20/16 20/18 ◦C
Space heating demand 170 145 110 80 180 150 100 75 kWh/m2

1From the seed model.
2I-R: Intermediate-Roof, C-I: Corner-Intermediate, I-I: Intermediate-Intermediate and C-G: Corner-Ground.
3Calculated using equation (1).
4Living room and kitchen with 20 ◦C, bedrooms with 16 ◦C for dwellings built before 1975 and 18 ◦C for built after 1975.
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selecting an appropriate sample size [32]. A comprehensive review by 
Pang et al. [49] on sensitivity analysis in building performance studies 
emphasises the importance of determining the right sample size to 
ensure reliable results while minimising computational costs. This re-
view advocated assessing robustness and convergence over prior selec-
tion in order to determine sample size. Consequently, the present study 
employed GSA methods to identify the optimal sample size. The GSA 
approach allows for a thorough exploration of the entire input space by 
examining all possible combinations of input parameters, their in-
teractions, and impacts on output parameters [71,77]. Additionally, 
these methods are categorised into screening-based, regression-based, 
variance decomposition and metamodel-based approaches 
[49,72,77,78]. This study utilised the SRRC method, a regression-based 
GSA technique. Compared to variance decomposition methods such as 
Sobol, SRRC can identify similar first-order interactions with fewer 
model evaluations, thus offering a computationally efficient alternative 
[72,79].

Further, the SRRC method was implemented as a post-processing 
step where it calculated the ranked regression coefficients for the two 
output parameters: space heating demand and underheated hours. The 
magnitude of the SRRC reveals the sensitivity of each parameter, while 
the sign indicates its positive or negative relationship with the output. 
Absolute coefficient values were used to rank the interest parameters for 
both outputs separately. In this study, the sample size was incrementally 
increased until the ranks and absolute SRRC values stabilised. At this 
point, it was indicated that the sample size was sufficiently represen-
tative of the possible variations within the dwelling type, and further 
increases would not significantly affect parameter sensitivities.

Additionally, the coefficient of determination (R2) was used to gauge 
how well the interest parameters explained the variance in the output 
parameters within the regression model, while also serving as a measure 
of the model’s linearity [49]. According to Saltelli, an R2 value of 0.75 is 
considered acceptable for applying regression-based methods. If the R2 

is less than 0.75, rank-transformed methods such as SRRC are recom-
mended [79]. Furthermore, SRRC and R2 values were calculated using 
the Open TURNS v1.21 [80] library in Python.

3.4. Data processing and feature importance

3.4.1. Radiator oversizing
Once the appropriate sample size has been determined, a new batch 

of samples is generated and simulated for the three supply temperatures: 
HT(90/70 ◦C), MT(70/50 ◦C) and LT(55/35 ◦C), following the proced-
ures described in Sections 3.3 and 3.2, respectively. As outlined in 
Section 3.2.1.3, heating capacities are utilised to study the effects of 
different supply temperatures. This assumes that the design heat losses, 
calculated for the HT supply without any overcapacity, represent the 
design heating capacity of each zone. However, in practice, installed 
radiator capacity often exceeds these design capacities, commonly 
referred to as radiator oversizing. Radiators are frequently oversized due 
to safety margins applied by practitioners and assumptions made during 
the design stage. This oversizing might also result from renovations that 

reduce heat losses or from selecting a larger radiator size than is needed 
from what is available in the market [81–83]. A survey of 515 UK homes 
revealed that radiators are, on average, oversized by a factor of 1.46, 
although the degree of oversizing varies widely, impacting the adoption 
of LTH [82]. In the Netherlands, Pothof et al. [38] established a rela-
tionship between the design supply temperature and the inverse of the 
oversizing factor (defined in their study as dimensionless design heat 
output) based on a survey of 220 Dutch dwellings. Given an oversizing 
factor, this relationship can help determine the extent to which supply 
temperatures can be lowered without compromising occupant comfort.

Further, oversized radiators can affect the thermal comfort of a 
dwelling at lower temperatures. Therefore, it is crucial to consider 
oversizing when assessing the LTH readiness of the representative 
samples. Accordingly, this study assumes an additional heating capacity, 
often considered by practitioners as a safety margin, to heat the dwelling 
from cold temperatures after a period without heating. This extra ca-
pacity is calculated as 20 times the heated floor area of the thermal zone 
and added to its design heat losses (due to transmission and ventilation) 
to determine the installed heating capacity of the specific thermal zone 
[84]. It is important to note that while this assumption is applied 
generically across all samples, installed radiator capacity can be higher 
than this estimate due to the factors described above. The heating ca-
pacities calculated with this approach are applied at the HT level and 
adjusted for MT or LT, as outlined in Section 3.2.1.3.

3.4.2. Labelling samples for LTH readiness
The simulated samples with assumed oversized heating capacity 

were evaluated using the LTH-ready definition described in Section 
3.2.1.4. This evaluation aimed to label the samples as either “ready” or 
“not ready” for MT and LT supply. Fig. 5 illustrates this labelling process. 
Subsequently, the labelled datasets were analysed using a supervised 
machine learning technique, the Random Forest (RF) classification 
algorithm.

3.4.3. Random forest classification
The RF algorithm is an ensemble-based machine-learning technique 

that addresses classification and regression problems by generating 
multiple decision trees during the training phase. Each tree is trained 
independently using different random samples generated through 
bootstrapping of the training data [39,85,86]. This algorithm is widely 
used in building performance studies due to its ability to handle high- 
dimensional data and various input types, such as categorical and 
continuous parameters [87]. Compared to other algorithms, RF models 
can provide good results without extensive hyperparameter tuning [88], 
and they allow for the extraction of feature importance, offering insights 
into the parameters that most influence the model’s predictions [39].

Feature importance extraction from RF models has been utilised 
previously in studies focusing on energy performance and renovation for 
dwellings. For instance, Cheng and Ma [89] used the RF regression 
model to identify parameters influencing the energy performance of 
residential buildings in New York City. Their study investigated 171 
features related to energy use intensity and identified the 20 most 

Fig. 4. Multi-level sampling scheme for generating representative samples for terraced-intermediate and apartment dwelling types.
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influential parameters. Further, Olu-Ajayi et al. [90] employed an RF 
classifier model for feature selection from 23 input parameters. They 
selected the ten most impactful features for developing a machine 
learning regression model to forecast annual energy consumption in a 
large dataset of residential buildings. Additionally, Borragán et al. [91]
utilised classification algorithms to identify renovation plans and their 
associated costs for different residential types in the Flemish region of 
Herentals. Through RF classification, their study extracted the relative 
importance of building features that are significant in predicting the 
type of renovation.

In this study, an RF classification model was trained on the labelled 
dataset for the terraced and apartment dwelling types (outlined in 
Section 3.4.2). Each dwelling type has two labelled datasets for MT and 
LT supply, resulting in a total of four RF classifier models. For model 
training, the features included interest parameters that caused varia-
tions within the dwelling type as well as affected their LTH readiness, 
with the readiness label serving as the target variable. A typical train- 
test split of 80:20 was used, where 80 % of the data was used for 
training the RF model, and the remaining 20 % was used for evaluating 
performance. The performance of the RF model was assessed using 
standard classification metrics such as accuracy, precision, recall and F1 
scores [39,43,91,92]. These metrics provide various measures of model 
performance concerning correct predictions (True Positives and True 
Negatives) and classification errors (False Positives and False 
Negatives).

In the context of this study, True Positives and True Negatives 
represent the number of samples correctly predicted as “ready” or “not 
ready”, respectively, for a particular lower supply temperature. False 
Positives are samples incorrectly predicted as “ready” when they are not, 
while False Negatives are samples predicted as “not ready” when they 
actually are. Accuracy measures the overall correctness of the model in 
predicting LTH readiness. Meanwhile, precision measures the propor-
tion of samples predicted as “ready” that were actually “ready,” with 
high precision indicating that the model’s “ready” predictions are usu-
ally correct. Recall measures the model’s ability to identify actual 
“ready” samples among all the ready samples, with high recall indi-
cating that the model effectively captures most “ready” instances. Lastly, 
F1 scores provide a single metric that balances precision and recall.

After evaluating model performances, the feature importances for 
each dwelling type at both supply temperature levels were extracted. 
The relative importance of each parameter was examined to understand 
its contribution to the model’s predictions. This analysis provided a clear 
understanding of which building-level parameters are most influential 
in determining the readiness of each dwelling type for both MT and LT 
supply. Additionally, the analysis accounted for variations due to these 
parameters, offering a comprehensive view of their effects.

4. Results

4.1. Validation of the parametric simulation workflow

The parametric workflow was validated by generating and simu-
lating models using the input data described in Table 2, derived from 
[44]. For validation, the model generation adhered to the assumption in 
[44] that the design heating capacities are equivalent to the design heat 
losses without oversizing. These calculated heating capacities for the 
thermal zones were considered for the HT supply. Fig. 6 illustrates the 
validation results, comparing the benchmark and simulated space 
heating demand for terraced-intermediate houses and apartments across 
each construction category. Additionally, the position of the apartment 
indicates the effect of location. The graph demonstrates that, given the 
input data from Table 2, the models generated through the workflow can 
simulate within a 20 % deviation from the benchmark performance. 
However, variations exist where the models either overestimate or un-
derestimate the performance. These discrepancies are attributed to dif-
ferences in assumptions and calculation methods. For instance, the 
benchmarks provided by [44] were calculated using NTA8800, which 
employs steady-state calculation with correction factors, whereas this 
study utilised dynamic simulation.

4.2. Determining the appropriate sample size

The validated simulation workflow was used to determine the 
appropriate sample size for both dwelling types. The simulated data 
from each sample size iteration was post-processed using the SRRC 
method to assess the sensitivity of the input parameters to the output 
parameters, specifically space heating demand and underheated hours. 
Additionally, the sample size was iteratively increased in multiples of 
100 until the ranks and SRRC values stabilised, representing the 
appropriate sample size to capture variations in the dwelling type. This 
process was conducted separately for each dwelling type and the two 
supply temperatures (MT and LT).

Figs. 7 and 8 illustrate the parameter ranking, absolute SRRC, and 
the R2 values for the two output parameters for terraced-intermediate 
and apartment dwellings, respectively, under the MT supply of 70/ 
50 ◦C. The SRRC ranks and absolute values were analysed together, as 
the ranks are sensitive to slight changes in the absolute SRRC values. For 
the terraced dwellings (Fig. 7), the SRRC ranks for many parameters 
stabilised at 1000 samples for space heating demand. In contrast, for 
underheated hours, the ranks stabilised after 1200 samples. The sample 
size with comparatively higher R2 for both outputs was chosen as it can 
better explain the variance in them. Therefore, a sample size of 1300 was 
selected.

A similar process was applied to the apartment dwelling type. Fig. 8
shows that stabilisation of the ranks and SRRC values for many pa-
rameters were achieved at 1000 samples for space heating demand and 
700 for underheated hours. Compared to the terraced-intermediate type, 
the apartment dwelling type exhibited a lower R2 value, indicating 

Fig. 5. Labelling process by applying LTH-ready criteria on MT and LT supply datasets. The labelled datasets were then used to train an RF classifier model.
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higher non-linear effects, thereby justifying the use of the SRRC method. 
Nevertheless, the sample size with the highest R2 again corresponded to 
1300 samples. The same experiment was repeated with the LT supply, 
varying the sample size between 1000 and 1400, as shown in Figures E.1 
and E.2 in Appendix E. It was found that for LT supply, the ranking, 
absolute SRRC, and R2 values also converged at a sample size of 1300. 
Thus, it was concluded that a sample size of 1300 for terraced- 
intermediate and apartment types is appropriate for representing the 
variations due to the interest parameters within the dwelling types.

4.3. Labelling for LTH-Readiness of dwelling types

A new batch of 1300 samples was generated and subjected to annual 
simulations under HT, MT and LT supply. The generic assumption of 
radiator oversizing (outlined in Section 3.4.1) was considered when 
calculating the design heating capacities under HT supply. The dataset 
with simulated outputs was labelled for LTH-readiness as described in 
Section 3.4.2. Further, Fig. 9 illustrates the distribution of terrace- 
intermediate and apartment types being LTH-ready under MT and LT 
supply.

The graph illustrates that, in the current state, approximately 14 % of 
terraced-intermediate samples are ready to be heated with DH systems 
under MT supply. In contrast, 71 % of apartment dwellings are suitable 
for MT supply. However, neither the apartment nor terraced- 
intermediate type is prepared for LT supply from DH systems. Specif-
ically, only one terraced-intermediate sample was ready for LT supply, 
compared to 18 apartment samples. This indicates that the majority of 
terraced-intermediate dwelling types are not yet suitable for either MT 
or LT supply and would require energy renovations before being con-
nected to DH systems under these temperature supply conditions. While 
apartment dwellings show significant readiness for MT supply, they 
nevertheless need adjustments to be suitable for LT supply from DH 
systems.

The LTH-readiness assessment was conducted on samples generated 
from various combinations of interest parameters, reflecting the di-
versity within each dwelling type. Given these findings, it is essential to 
identify the significance of interest parameters in determining the 
readiness of the dwelling types for MT and LT supply. The study argues 
that understanding the importance of these parameters could provide 
robust insights. In addition, such insights can subsequently inform and 
help prioritise renovation measures to prepare dwellings for LTH when 
supplied by DH systems.

4.4. Classification models and feature importance

4.4.1. Data processing for model training
The RF classifier was utilised to train the models on the labelled 

datasets to predict the readiness of samples for both dwelling types for 
MT and LT supply. From these classification models, the relative 
importance of the features (interest parameters) used to predict the 
target variable (LTH-readiness label) was extracted. This ranking of 
feature importance aids in identifying the parameters that influence the 
readiness of the dwellings. However, as shown in Fig. 9, the labelled 
dataset exhibits a significant class imbalance problem.

Class imbalance refers to datasets with an unequal proportion of 
positive and negative classes [93,94]. This issue is commonly observed 
in scenarios such as fraud detection or medical diagnosis, where most of 
the instances correspond to the negative class (referred to as the ma-
jority class) compared to the positive class (referred to as the minority 
class) [93,95]. The class imbalance problem impacts classification ac-
curacy and can introduce bias into the trained model. Therefore, it is 
essential to address the imbalance in the dataset prior to using it for 
model training. One approach suggested in the literature is cost- 
sensitive learning, which assigns a higher cost to misclassifying the 
minority class during training [94,95]. This study implemented the class 
weighting using the built-in functionality of the RF classifier available in 
the Scikit-learn v1.4.2 Python library [96].

Moreover, the RF models for terrace-intermediate and apartment 
dwelling types were trained for MT supply by assigning weights to the 
respective minority and majority classes. In contrast, for both dwelling 
types, very few samples are ready under LT supply; thus, the data is 
deemed insufficient for training the models for it. As per the LTH ready 
criteria, a sample is considered ready if the space heating demand and 
underheated hours in the lower temperature supply are less than or 
equal to those in the HT supply. Specifically, for underheated hours, this 
means that a sample under LTH with even one more underheated hour 
than that of HT supply would be considered not ready for the lower 
supply temperature. This strict criterion might be too rigid in reality and 
requires an experimental investigation of the acceptable range of 
discomfort hours for a dwelling to be ready for LTH. Consequently, a 
necessary assumption was made to relax the underheated hours criterion 
by 15 h for both dwelling types under LT supply conditions. These hours 
represent one occupied day in the living room between 8:00–23:00. The 
relaxed criteria resulted in 8 % of terraced-intermediate and 33 % of the 
apartment samples being ready for LT supply, which can now be used for 
training RF models with class-weighting.

Fig. 6. Validation of the parametric simulation workflow by comparing benchmark data from [44] with simulated model performance.
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4.4.2. Evaluation of trained models
Two training scenarios were employed to compare model perfor-

mance: one using the original imbalanced dataset and the other using 
the cost-sensitive approach. The trained models were then evaluated 
using the test dataset, which was kept aside during the training phase. 
Despite the different training methods, the class distribution remained 
imbalanced. Therefore, balanced accuracy, which measures the average 
accuracy of the model for both minority and majority classes, was used. 
Additionally, precision, recall, and F1 scores were considered to eval-
uate the models’ performance. Table 3 shows the performance of the 
trained models on the test dataset for two supply temperatures for 
terraced-intermediate and apartment dwelling types. The Table also 
compares the models trained for each supply temperature using the 
original imbalanced dataset and the cost-sensitive approach.

The RF model is preferred for terraced-intermediate dwellings under 

MT supply due to its higher balanced accuracy and recall score, despite 
the RF_weighted model exhibiting slightly better precision. This implies 
that the RF model is more effective at correctly identifying both “ready” 
and “not ready” cases, thus providing a robust assessment of readiness. 
However, it may generate a few false positives when compared to the 
RF_weighted model due to its slightly lower precision. The higher recall 
ensures that most dwellings that are actually ready for MT supply are 
correctly identified. Conversely, the RF_weighted model is favoured 
under LT supply due to its better balance between Precision and Recall, 
resulting in a higher F1 Score. This suggests that the RF_weighted model 
can more accurately identify actual ready cases while minimising false 
positives, leading to more reliable readiness predictions.

Further, for apartments, the RF_weighted model consistently out-
performs the RF model. Under MT supply, the RF_weighted model shows 
higher balanced accuracy and precision. It is important to note that the 

Fig. 7. Parameter ranking, SRRC absolute and R2 values of terraced-intermediate dwelling type for the two output parameters under MT supply of 70/50 ◦C.
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minority class in this model is the negative class. Therefore, the preci-
sion and recall scores reflect the model’s performance in predicting the 
“not ready” class. Even though the RF_weighted model surpasses the RF 
model in these metrics, its overall performance is lower than other 
models, suggesting the need for further hyperparameter tuning. Lastly, 
the RF_weighted model performs better across all metrics for apartments 
under LT supply, effectively identifying both “ready” and “not ready” 
cases.

4.4.3. Extracted feature importance
The relative importance of the features is presented in Table 4 in 

descending order of their contribution to the model’s predictions for MT 
and LT supply in terraced-intermediate and apartment dwelling types, 
respectively. The Table highlights that building-level features affect the 

readiness differently for each dwelling type. Regarding specific supply 
temperatures, the parameters influencing readiness for MT and LT in 
terraced-intermediate types are similar, with some fluctuations. In 
contrast, feature importance rankings for apartments show variations, as 
detailed in Table 4. However, some general trends can be observed for 
the parameters affecting readiness for LTH in both dwelling types.

For instance, the heating setpoint is among the most influential pa-
rameters for both dwelling types, contributing 20–50 % in the prediction 
of a sample’s readiness for LTH. A lower heating setpoint could reduce 
space heating energy, although it might increase the number of under-
heated hours. Even though a higher temperature setpoint for heating 
could reduce uncomfortable hours due to underheating, it could in-
crease space heating energy consumption. This highlights the crucial 
role of occupants and their heating preferences in dictating the readiness 

Fig. 8. Parameter ranking, SRRC absolute and R2 values of apartment dwelling type for the two output parameters under MT supply of 70/50 ◦C.
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of the dwelling.
Following the heating setpoint, the parameters related to the venti-

lation heat losses significantly influence LTH readiness. Overall, it can 
be seen that ventilation systems are more impactful for terraced- 
intermediate dwellings, whereas, for apartments, infiltration is more 
influential. These findings align with other studies exploring the influ-
ential features affecting the prediction of heating demand from machine 
learning models. Ali et al. [43] trained a machine learning model to 
predict the energy performance of the Irish building stock and found 
that the most influential characteristics for heating demand are air 
change rate and temperature setpoints for heating, followed by fabric- 
related parameters. Similarly, Álvarez-Sanz et al. [27] identified infilt-
eration as an influential parameter in space heating demand using 

machine learning algorithms. These results indicate the importance of 
curbing ventilation heat losses with efficient ventilation systems and 
reducing the infiltration rate to prepare the dwelling types for heating 
with lower supply temperatures.

In terms of building envelope insulation, except for apartments in MT 
supply, the dwelling types follow a similar pattern of influence. Roof and 
window insulations are the most influential, followed by wall insulation, 
with ground insulation and door insulation being consistently less 
influential. This aligns with the study by Borragán et al. [91], who 
trained a random forest classifier model to predict renovation measures 
for different dwellings in the Flemish region of Herentals, Belgium. They 
also found that roof insulation had the highest influence, followed by 
window, wall, and ground-floor insulation.

Fig. 9. Distribution of LTH-readiness of terraced-intermediate and apartment dwelling types for MT and LT supply.

Table 3 
Evaluation of the trained classification models on the test set. The models were trained using the original imbalanced dataset (RF) and cost-sensitive approach 
(RF_weighted) for MT and LT supply for both dwelling types.

Evaluation metrics Terraced-Intermediate Apartment

MT supply LT supply* MT supply LT supply*

RF RF_weighted RF RF_weighted RF RF_weighted RF RF_weighted

Balanced Accuracy 0.892 0.851 0.962 0.951 0.774 0.782 0.922 0.928
Precision 0.902 0.916 0.741 0.880 0.800 0.842 0.897 0.898
Recall 0.804 0.717 0.958 0.916 0.615 0.615 0.897 0.909
F1 Score 0.850 0.804 0.836 0.897 0.695 0.711 0.897 0.903

*Model trained on relaxed underheated hours criteria.

Table 4 
Importance Ranking for terraced-intermediate and apartment dwelling type for readiness in MT and LT supply. The numbers represent the contribution of features in 
predicting LTH readiness.

Rank Terraced-Intermediate Apartment

MT LT MT LT

1 Heating Setpoint 0.326 Heating Setpoint 0.558 Infiltration 0.238 Heating Setpoint 0.465
2 Ventilation System 0.217 Ventilation System 0.228 Compactness-Ratio 0.174 Infiltration 0.250
3 Roof Insulation 0.062 Roof Insulation 0.035 Heating Setpoint 0.119 Roof Insulation 0.048
4 Glazing Insulation 0.059 Infiltration 0.032 External Wall Insulation 0.087 Compactness-Ratio 0.043
5 Infiltration 0.057 Glazing Insulation 0.031 Glazing Insulation 0.081 Ventilation System 0.040
6 Orientation 0.055 Orientation 0.028 Roof Insulation 0.075 Glazing Insulation 0.040
7 External Wall Insulation 0.053 External Wall Insulation 0.023 Ground Insulation 0.070 External Wall Insulation 0.034
8 Compactness-Ratio 0.051 External Door Insulation 0.019 External Door Insulation 0.058 Ground Insulation 0.029
9 Ground Insulation 0.050 Ground Insulation 0.018 Ventilation System 0.045 External Door Insulation 0.025
10 External Door Insulation 0.042 Compactness-Ratio 0.013 Orientation 0.032 Orientation 0.011
11 Window-to-Wall Ratio 0.022 Window-to-Wall Ratio 0.011 Window-to-Wall Ratio 0.016 Window-to-Wall Ratio 0.010
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Regarding geometric properties, the window-to-wall ratio does not 
significantly influence LTH readiness for either dwelling type. A possible 
reason could be the lack of variations during the sampling process. The 
window-to-wall ratio variable was fixed with the average ratio for each 
construction year and for both dwelling types, as per [45]. Compared to 
the terraced-intermediate type, the compactness ratio has a more sub-
stantial influence on apartments, as it also considers the dwelling’s po-
sition, which determines the heat loss area and affects LTH readiness. 
Lastly, orientation is shown to have some effect on terraced dwellings 
but a minimal influence on apartments.

4.5. Effect of radiator oversizing on LTH readiness

As described in Section 3.4.1, radiator oversizing might influence the 
readiness of dwellings for LTH. To investigate this, a separate analysis 
was conducted. The oversizing factor is calculated as the ratio of 
installed heating capacity to design heating output. In this study, the 
design heating output is determined by the steady-state heat loss under 
design conditions. However, the installed heating capacity can vary for 
each dwelling, making it difficult to determine without an on-site in-
spection. Nevertheless, a recent study by Pothof et al. [38] provides 
insight into oversizing factors based on surveying and monitoring 220 
dwellings representative of existing Dutch homes. Their study found that 
the oversizing factor ranges between 1.25 and 5 for the sample studied, 
varying with the dwelling types.

To assess the impact of the radiator oversizing on LTH suitability, 
four oversizing factors (1.25, 1.66, 2.5, 5) were used. The results were 
compared with the generic oversizing assumption described in Section 
3.4.1. A batch of 1300 samples was simulated under HT, MT, and LT 
supply conditions, incorporating these four oversizing factors. Further, 
these samples were evaluated using the LTH readiness definition to 
determine the increase in readiness for different oversizing factors.

Furthermore, Fig. 10 illustrates the effect of oversizing factors on the 
readiness of terraced-intermediate and apartment dwelling types for 
LTH. The Figure shows that a higher oversizing factor generally corre-
sponds to a higher level of readiness for lower temperature supply. 
Additionally, different oversizing factors indicate varying degrees of 
readiness, with apartments typically being more prepared for MT and LT 
supply. For terraced-intermediate dwellings, an oversizing factor in the 
range of 2.5 to 5 is required for over 50 % of the samples to be ready for 
MT or LT supply. In contrast, apartments require a lower oversizing 
factor, between 1.25 and 2.5, to be prepared for LT supply, as they are 
already ready for MT supply. These results complement the findings by 
Pothof et al. [38], suggesting that the oversizing factor is a significant 
parameter influencing LTH readiness. However, it is essential to 

investigate the uncertainties associated with the oversizing factor by 
incorporating data on installed heating capacity in national housing 
surveys.

5. Discussion

5.1. Sampling-based approach

This study identified the most influential factors affecting the LTH 
readiness of terraced-intermediate and apartment dwelling types. Unlike 
the traditional archetype-based approach, a sampling-based method was 
adopted to incorporate the possible variations in dwelling types due to 
parameters that not only characterise a dwelling but may also affect LTH 
readiness. Further, the study determined that a sample size of 1300 for 
both dwelling types could represent the possible variations due to 
building-level interest parameters. While a larger sample size can reduce 
uncertainties caused by variations in dwelling types, the determination 
of the sample size depends on the study’s context, interest parameters, 
and available computational resources. Therefore, this determination 
must be made for each specific study and should not be generalised.

Currently, the study was limited to terraced-intermediate and 
apartment dwelling types, although the sampling-based method can be 
scaled to include other dwelling types, such as detached and semi- 
detached. Additionally, the multi-level sampling framework can be 
adjusted to sample through the entire building stock, thus providing 
opportunities to adapt the approach from the building to the dwelling 
stock level. However, a potential bottleneck in the methodology corre-
sponds to the iterative generation of HBjson models from the parametric 
simulation workflow in the Grasshopper environment. The time taken to 
generate the Hbjson depends on the processing capacity of the local 
system, which directly affects the number of samples that could be 
studied. A possible solution would be to develop the simulation work-
flow through custom scripts on Python. This can be achieved by 
exploiting libraries such as Geomeppy to alter the geometrical aspects of 
the samples and Eppy for EnergyPlus simulations.

5.2. Implications of feature importance

Extracting feature importances from the trained models offers valu-
able insights into the factors influencing the model’s predictions. These 
insights help to create an understanding of the key parameters deter-
mining the readiness of dwellings for LTH. According to Table 4, both 
dwelling types have different parameters affecting their readiness. 
However, there are some commonalities across both types.

In general, the findings of this study suggest that parameters related 

Fig. 10. The effect of different oversizing factors on the LTH readiness of the dwelling types.
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to occupancy have the most significant influence on a dwelling’s read-
iness for LTH. This is followed by the impact of HVAC systems, building 
envelope insulation, and geometric properties. While these findings can 
be generalised to some extent at the dwelling stock level, they also 
reveal the specific impacts of different building-level parameters for 
each dwelling type. Therefore, to accurately assess a dwelling’s readi-
ness for LTH, it is essential to consider the relative importance identified 
for the particular dwelling type. However, it should be noted that these 
results are based on the specific data and variables studied. Incorpo-
rating additional variables and improvements in the data generation 
method can refine the importance rankings and enhance the overall 
analysis. In addition to these parameter influences, radiator oversizing 
has a significant impact on the readiness of the dwelling. Future studies 
should include this factor, along with associated uncertainties, for a 
more comprehensive analysis of LTH readiness in the Netherlands.

Regarding the practical implications, the influence of building-level 
parameters can guide the prioritisation of renovation measures to make 
dwellings LTH-ready. The selection of appropriate renovation measures 
would be based on additional decision-making criteria, such as carbon 
emissions, initial investment, life cycle cost, payback period, and hassle 
for the occupants. Nevertheless, the feature importance can be used to 
prioritise renovation strategies in order to develop targeted measures to 
make the dwelling LTH-ready. This can significantly help stakeholders 
to reduce decision-making struggles by alleviating the decision paralysis 
that occurs when selecting appropriate solutions from various available 
renovation options.

6. Conclusions

Transitioning existing dwellings in the Netherlands to lower- 
temperature heating (LTH) supplied by district heating (DH) is essen-
tial for achieving the Dutch decarbonisation goals. Consequently, energy 
renovations might be required to prepare them to be heated with LTH. 
However, the heterogeneity of the housing stock poses significant 
challenges in determining the necessary energy renovations and 
selecting appropriate strategies. To address these challenges, this study 
provides a comprehensive assessment of building-level parameters that 
affect the readiness of Dutch dwellings, particularly terrace- 
intermediate and apartment dwelling types, for LTH from the DH sys-
tem. By employing a sampling-based approach, representative samples 
were generated to capture the inherent variability within these dwelling 
types. This method addresses the limitations of traditional archetype- 
based approaches by incorporating a broader range of building-level 
parameters and variations, thereby offering a more robust framework 
for evaluating LTH readiness.

The findings revealed that a sample size of 1300 is adequate to 
incorporate the variations within the terraced-intermediate and apart-
ment dwelling types. These samples were assessed for LTH readiness by 
comparing them to high-temperature (HT: 90/70 ◦C) supply bench-
marks and evaluating their suitability for medium-temperature (MT: 70/ 
50 ◦C) and low-temperature (LT: 55/35 ◦C) supply. The results indicate 
significant differences in the readiness of these dwelling types for lower 
temperature supply conditions. Specifically, terraced-intermediate 
dwellings show limited readiness for both MT and LT supply. 
Conversely, while a considerable proportion of apartment dwellings are 
ready for MT supply, very few are suitable for LT supply, highlighting 
the varying levels of LTH readiness.

Moreover, the feature importance analysis from the Random Forest 
(RF) classification models underscores the critical influence of building- 
level parameters. Key factors influencing LTH readiness include (in this 
order of importance) temperature setpoints for heating, ventilation- 
related parameters (ventilation system and infiltration), fabric-related 
parameters (roof, glazing, wall, ground, and door insulation), and 

geometric properties (orientation, compactness ratio, and window-to- 
wall ratio). To accurately assess a dwelling’s readiness for LTH, it is 
crucial to consider the relative importance of these factors specific to the 
dwelling type. Additionally, radiator oversizing significantly impacts 
LTH readiness, suggesting that future studies should incorporate this 
factor and its associated uncertainties for a more comprehensive anal-
ysis of LTH readiness in the Netherlands.

These insights can guide stakeholders in inspecting the existing 
condition of the dwellings within their portfolio and prioritising reno-
vation measures to make them LTH-ready. Understanding the influence 
of these parameters can help stakeholders develop targeted renovation 
measures, thereby reducing decision paralysis when selecting the 
appropriate renovation solutions. These findings are robust as they were 
derived by incorporating the representative variations within the stud-
ied dwelling types and can aid in preparing dwellings for LTH. However, 
it is essential to note that the results are based on the available data. 
Including more refined data could further improve the accuracy and 
nuance of the results, thereby better supporting the energy transition of 
the dwelling stock in the Netherlands.
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Appendix A:. Detailed process workflow

Figure A.1 illustrates the detailed process followed in this study.

Fig. A1. Detailed process steps and sub-steps followed in this study.
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‘ B:. Typical dwelling layouts

Figure B.1 presents the typical layouts for terraced-intermediate [51,52] and apartment dwelling types [55]. For terraced-intermediate dwellings, 
an overall height of 10.6 m and a floor-to-floor height of 2.7 m are considered. In contrast, a floor-to-floor height of 2.8 m is used for apartment 
dwellings.

Fig. B1. Typical dwelling layouts for terraced-intermediate and apartments [51,52,55].

Appendix C:. Geometrical relationship between length and compactness ratio

Terraced-Intermediate
The sampling procedure developed utilises the probabilities specified in Tables D.2–D.5 to sample the compactness ratio (CR) for terraced- 

intermediate dwelling types. To represent the sampled CR, the seed model is scaled along its length while maintaining a fixed width of 5.4 m and 
a height of 10.6 m. Consequently, a geometrical relationship is established to calculate the new length (L) for the sampled CR, described in Equation 
(C.1). 

CR =

3.89*L + 61.56 + 10.8

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

24.01 +

(
L
2

)2
√

14.58*L
(C1) 

According to Kafaei [97] and Esposito et al. [98], the length of a terraced dwelling typically ranges from 5 to 15 m. Applying this range in Equation 
(C.1) results in a compactness ratio between 0.99 and 1.9. These values align with the probabilities of the compactness ratio found in Tables D.2–D.5, 
where higher probabilities correspond to a range of 1.0 to 2.0. However, houses built before 1975 may exhibit a compactness ratio exceeding 2.0. For 
the purposes of this study, a length range of 5 to 15 m is used as a constraint. This constraint is applied during the sampling process, where the sampler 
first determines the compactness ratio and then calculates the length using Equation (C.1). If the length falls within the 5 to 15 m range, the sample is 
retained in the batch for further evaluation. This approach ensures that only relevant samples are included in the analysis.

Apartments
The sampling procedure for apartments also utilises the probabilities outlined in Tables D.7–D.10 for different construction years. Similar to the 

terraced-intermediate type, a relationship is established between the compactness ratio (CR) and the length (L) of the apartment, with a fixed width of 
6.74 m and a height of 2.8 m. However, individual apartments differ in their position within the apartment block, which impacts their external heat 
loss area. Consequently, the compactness ratio is calculated for six typical positions. Table C.1 illustrates the geometrical relationship between CR and 
L for each position, with conditions to avoid division by zero. For apartment types, to ensure realistic sampling, length limits were derived based on the 
average floor area for MFH types from the reference home study [45]. According to this study, the usable heated area for MFHs ranges from 25 to 150 
m2. Given the fixed width of 6.74 m for the apartments, this corresponds to a length limit ranging from 3.7 to 22 m.

Table C1 
Specific geometric relationship between compactness ratio and length of the apartment for each position. The 
conditions ensure avoiding division by zero.

Position Description Relationship Condition

1 Intermediate-Intermediate L =
5.6
CR

CR > 0

2 Corner–Intermediate L =
5.6

CR − 0.415
CR > 0.415

3 Intermediate − Ground L =
5.6

CR − 0.7
CR > 0.7

4 Intermediate − Roof L =
5.6

CR − 1
CR > 1

5 Corner − Ground L =
5.6

CR1.15
CR > 1.15

6 Corner − Roof L =
5.6

CR − 1.415
CR > 1.415
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Appendix D:. Multi-Level sampling

Terraced-Intermediate
Table D.1 shows the discrete probabilities for terraced-intermediate dwelling types across different construction year categories. These proba-

bilities represent unequal proportions and are derived from [44]. The sampler first selects a construction year category based on these probabilities, 
which determines the probability density functions (PDFs) and ranges for the interest parameters. Tables D.2–D.5 illustrate the PDFs and parameter 
ranges for each construction year category.

Table D1 
Discrete probabilities for construction year category for terraced-intermediate dwelling type [44].

Parameter Type Distribution Range Probabilities

Construction Year Discrete Categorical Until 1945 0.172
1945–1975 0.309
1975–1995 0.338
After 1995 0.181

Table D2 
PDFs and Ranges for the interest parameters for the construction year category “until1945” for terraced-intermediate type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 270, 
315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.000 Uniform [0.0, 
0.5)

−

0.5–1.0 0.000 [0.5, 
1.0)

1.0–1.5 0.412 [1.0, 
1.5)

1.5–2.0 0.451 [1.5, 
2.0)

2.0–2.5 0.113 [2.0, 
2.5)

2.5–3.0 0.017 [2.5, 
3.0)

3.0–3.5 0.008 [3.0, 
3.5)

3.5–4.0 0.000 [3.5, 
4.0)

Window–wall Ratio2 Discrete Fixed 31 − − − %
Fabric Ground Insulation2, R Continuous Triangle [0.15, 5.04, 0.77] Triangle PDF3 − − m2⋅K/W

External Wall 
Insulation2, R

Continuous Triangle [0.19, 2.53, 0.7] Triangle PDF3 − − m2⋅K/W

Roof Insulation2, R Continuous Triangle [0.22, 2.53, 1.24] Triangle PDF3 − − m2⋅K/W
Window Insulaiton2, U Continous Triangle [1.4, 5.1, 2.96] Triangle PDF3 − − W/m2⋅K
External Door 
Insulation2, U

Continuous Triangle [2, 3.4, 3.36] Triangle PDF3 − − W/m2⋅K

Infilteration2 Continuous Triangle [0.15, 5.04, 0.77] Triangle PDF3,4 − − dm3/s. 
m2

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.866, 0.129, 
0.005]

− − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.

Table D3 
PDFs and Ranges for the interest parameters for the construction year category “1945-1975″ terraced-intermediate type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 270, 
315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.000 Uniform [0.0, 
0.5)

−

0.5–1.0 0.000 [0.5, 
1.0)

1.0–1.5 0.582 [1.0, 
1.5)

1.5–2.0 0.374 [1.5, 
2.0)

(continued on next page)
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Table D3 (continued )

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

2.0–2.5 0.042 [2.0, 
2.5)

2.5–3.0 0.001 [2.5, 
3.0)

3.0–3.5 0.001 [3.0, 
3.5)

3.5–4.0 0.000 [3.5, 
4.0)

Window–wall Ratio2 Discrete Fixed 36 − − − %
Fabric Ground Insulation2, R Continuous Triangle [0.15, 5.48, 0.57] Triangle PDF3 − − m2⋅K/W

External Wall 
Insulation2, R

Continuous Triangle [0.19, 3.5, 0.84] Triangle PDF3 − − m2⋅K/W

Roof Insulation2, R Continuous Triangle [0.22, 3.78, 1.22] Triangle PDF3 − − m2⋅K/W
Window Insulaiton2, U Continous Triangle [1.56, 5.59, 2.73] Triangle PDF3 − − W/m2⋅K
External Door 
Insulation2, U

Continuous Triangle [2, 3.4, 3.31] Triangle PDF3 − − W/m2⋅K

Infilteration2 Continuous Triangle [0.7, 3,3] Triangle PDF3,4 − − dm3/s. 
m2

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.791, 0.207, 
0.002]

− − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.

Table D4 
PDFs and Ranges for the interest parameters for the construction year category “1975-1995” terraced-intermediate type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 270, 
315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.000 Uniform [0.0, 
0.5)

−

0.5–1.0 0.007 [0.5, 
1.0)

1.0–1.5 0.697 [1.0, 
1.5)

1.5–2.0 0.268 [1.5, 
2.0)

2.0–2.5 0.028 [2.0, 
2.5)

2.5–3.0 0.000 [2.5, 
3.0)

3.0–3.5 0.000 [3.0, 
3.5)

3.5–4.0 0.000 [3.5, 
4.0)

Window–wall Ratio2 Discrete Fixed 31 − − − %
Fabric Ground Insulation2, R Continuous Triangle [0.52, 5.38, 1.16] Triangle PDF3 − − m2⋅K/W

External Wall 
Insulation2, R

Continuous Triangle [0.8, 2.71, 1.53] Triangle PDF3 − − m2⋅K/W

Roof Insulation2, R Continuous Triangle [0.44, 3.78, 1.5] Triangle PDF3 − − m2⋅K/W
Window Insulaiton2, U Continous Triangle [1.8, 5.62, 2.82] Triangle PDF3 − − W/m2⋅K
External Door 
Insulation2, U

Continuous Triangle [2, 3.4, 3.33] Triangle PDF3 − − W/m2⋅K

Infilteration2 Continuous Triangle [0.7, 2.5, 2] Triangle PDF3,4 − − dm3/s. 
m2

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.364, 0.621, 
0.015]

− − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.
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Table D5 
PDFs and Ranges for the interest parameters for the construction year category “after 1995” terraced-intermediate type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 270, 
315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.000 Uniform [0.0, 
0.5)

−

0.5–1.0 0.000 [0.5, 
1.0)

1.0–1.5 0.658 [1.0, 
1.5)

1.5–2.0 0.303 [1.5, 
2.0)

2.0–2.5 0.032 [2.0, 
2.5)

2.5–3.0 0.007 [2.5, 
3.0)

3.0–3.5 0.000 [3.0, 
3.5)

3.5–4.0 0.000 [3.5, 
4.0)

Window–wall Ratio2 Discrete Fixed 29 − − − %
Fabric Ground Insulation2, R Continuous Triangle [1.7, 6, 2.68] Triangle PDF3 − − m2⋅K/W

External Wall 
Insulation2, R

Continuous Triangle [1.51, 7, 2.68] Triangle PDF3 − − m2⋅K/W

Roof Insulation2, R Continuous Triangle [2, 9, 2.75] Triangle PDF3 − − m2⋅K/W
Window Insulaiton2, U Continous Triangle [1, 3.31, 2.1] Triangle PDF3 − − W/m2⋅K
External Door 
Insulation2, U

Continuous Triangle [1, 3.4, 3.27] Triangle PDF3 − − W/m2⋅K

Infilteration2 Continuous Triangle [0.7, 1.5, 1] Triangle PDF3,4 − − dm3/s. 
m2

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.005, 0.832, 
0.163]

− − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.

Apartments
Table D.6 shows the discrete probabilities for apartment dwelling types across different construction year categories. These probabilities represent 

unequal proportions and are derived from [44]. The sampler first selects a construction year category based on these probabilities, which determines 
the probability density functions (PDFs) and ranges for the interest parameters. Tables D.7–D.10 illustrate the PDFs and parameter ranges for each 
construction year category.

Table D6 
Discrete probabilities for construction year category for apartment dwelling type [44].

Parameter Type Distribution Range Probabilities

Construction Year Discrete Categorical Until 1945 0.1870
1945–1975 0.3004
1975–1995 0.2464
After 1995 0.2662

Table D7 
PDFs and Ranges for the interest parameters for the construction year category “until 1945″ apartment type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 
270, 315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.029 Uniform [0.0, 0.5) −

0.5–1.0 0.273 [0.5, 1.0)
1.0–1.5 0.270 [1.0, 1.5)
1.5–2.0 0.322 [1.5, 2.0)
2.0–2.5 0.089 [2.0, 2.5)
2.5–3.0 0.011 [2.5, 3.0)
3.0–3.5 0.005 [3.0, 3.5)
3.5–4.0 0.000 [3.5, 4.0)

Position of 
Apartment

Discrete Uniform [1–6] − − − −

Window–wall Ratio2 Discrete Fixed 32 − − − %
Fabric Ground Insulation2, 

R
Continuous Triangle [0.15, 3.50, 0.56] Triangle PDF3 − − m2⋅K/ 

W

(continued on next page)
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Table D7 (continued )

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

External Wall 
Insulation2, R

Continuous Triangle [0.19, 3.50, 0.58] Triangle PDF3 − − m2⋅K/ 
W

Roof Insulation2, R Continuous Triangle [0.22, 3.78, 1] Triangle PDF3 − − m2⋅K/ 
W

Window Insulaiton2, 
U

Continous Triangle [1.63, 6.2, 3.11] Triangle PDF3 − − W/ 
m2⋅K

External Door 
Insulation2, U

Continuous Triangle [2.29, 3.4, 3.32] Triangle PDF3 − − W/ 
m2⋅K

Infilteration3 Discrete − 1: Intermediate- 
Intermediate

Based on the sampled 
position of the apartment

Triangle 
PDF3,4

[0.35, 1.5, 
1.5]

dm3/s. 
m2

2: Corner-Intermediate [0.455, 
1.95, 1.95]

3: Intermediate −
Ground

[0.35, 1.5, 
1.5]

4: Intermediate-Roof [0.42, 1.8, 
1.8]

5: Corner-Ground [0.455, 
1.95, 1.95]

6: Corner − Roof [0.49, 2.1, 
2.1]

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.758, 0.227, 0.015] − − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin. For infiltration, 
the position of the apartment is selected first, followed by the corresponding infiltration range from which a value is then sampled.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.

Table D8 
PDFs and Ranges for the interest parameters for the construction year category “1945-1975″ apartment type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 
270, 315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.068 Uniform [0.0, 0.5) −

0.5–1.0 0.367 [0.5, 1.0)
1.0–1.5 0.214 [1.0, 1.5)
1.5–2.0 0.274 [1.5, 2.0)
2.0–2.5 0.063 [2.0, 2.5)
2.5–3.0 0.008 [2.5, 3.0)
3.0–3.5 0.007 [3.0, 3.5)
3.5–4.0 0.000 [3.5, 4.0)

Position of 
Apartment

Discrete Uniform [1–6] − − − −

Window–wall Ratio2 Discrete Fixed 40 − − − %
Fabric Ground Insulation2, 

R
Continuous Triangle [0.15, 4.15, 0.48] Triangle PDF3 − − m2⋅K/ 

W
External Wall 
Insulation2, R

Continuous Triangle [0.19,4.18, 0.67] Triangle PDF3 − − m2⋅K/ 
W

Roof Insulation2, R Continuous Triangle [0.22, 2, 0.96] Triangle PDF3 − − m2⋅K/ 
W

Window Insulaiton2, 
U

Continous Triangle [1.4, 5.96, 2.87] Triangle PDF3 − − W/ 
m2⋅K

External Door 
Insulation2, U

Continuous Triangle [2, 3.4, 3.3] Triangle PDF3 − − W/ 
m2⋅K

Infilteration3 Discrete − 1: Intermediate- 
Intermediate

Based on the sampled 
position of the apartment

Triangle 
PDF3,4

[0.35, 1.5, 
1.5]

dm3/s. 
m2

2: Corner-Intermediate [0.455, 
1.95, 1.95]

3: Intermediate −
Ground

[0.35, 1.5, 
1.5]

4: Intermediate-Roof [0.42, 1.8, 
1.8]

5: Corner-Ground [0.455, 
1.95, 1.95]

6: Corner − Roof [0.42, 2.1, 
2.1]

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.528, 0.460, 0.012] − − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin. For infiltration, 
the position of the apartment is selected first, followed by the corresponding infiltration range from which a value is then sampled.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.
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Table D9 
PDFs and Ranges for the interest parameters for the construction year category “1975− 1995” apartment type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 
270, 315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.088 Uniform [0.0, 0.5) −

0.5–1.0 0.246 [0.5, 1.0)
1.0–1.5 0.311 [1.0, 1.5)
1.5–2.0 0.253 [1.5, 2.0)
2.0–2.5 0.085 [2.0, 2.5)
2.5–3.0 0.015 [2.5, 3.0)
3.0–3.5 0.004 [3.0, 3.5)
3.5–4.0 0.000 [3.5, 4.0)

Position of 
Apartment

Discrete Uniform [1–6] − − − −

Window–wall 
Ratio2

Discrete Fixed 33 − − − %

Fabric Ground Insulation2, 
R

Continuous Triangle [0.52, 3.50, 1.16] Triangle PDF3 − − m2⋅K/ 
W

External Wall 
Insulation2, R

Continuous Triangle [0.8, 3.5, 1.66] Triangle PDF3 − − m2⋅K/ 
W

Roof Insulation2, R Continuous Triangle [1.3, 3.78, 1.66] Triangle PDF3 − − m2⋅K/ 
W

Window Insulaiton2, 
U

Continous Triangle [1.73, 5.4, 2.91] Triangle PDF3 − − W/ 
m2⋅K

External Door 
Insulation2, U

Continuous Triangle [2, 3.4, 3.32] Triangle PDF3 − − W/ 
m2⋅K

Infilteration3 Discrete − 1: Intermediate- 
Intermediate

Based on the sampled 
position of the apartment

Triangle 
PDF3,4

[0.35, 1.25, 
1]

dm3/s. 
m2

2: Corner-Intermediate [0.455, 1.63, 
1.30]

3: Intermediate −
Ground

[0.35, 1.25, 
1]

4: Intermediate-Roof [0.42, 1.5, 
1.2]

5: Corner-Ground [0.455, 
1.625, 1.30]

6: Corner − Roof [0.49, 1.75, 
1.4]

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.206, 0.781, 0.013] − − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin. For infiltration, 
the position of the apartment is selected first, followed by the corresponding infiltration range from which a value is then sampled.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.
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Table D10 
PDFs and Ranges for the interest parameters for the construction year category “after 1995” apartment type.

Category Parameter Type Distribution Range Probabilities Distribution* Range* Unit

Geometrical Orientation Discrete Uniform [0,45,90,135,180, 225, 
270, 315]

− − − ◦

Compactness Ratio1 Discrete Categorical 0.0–0.5 0.154 Uniform [0.0, 0.5) −

0.5–1.0 0.355 [0.5, 1.0)
1.0–1.5 0.175 [1.0, 1.5)
1.5–2.0 0.231 [1.5, 2.0)
2.0–2.5 0.043 [2.0, 2.5)
2.5–3.0 0.041 [2.5, 3.0)
3.0–3.5 0.000 [3.0, 3.5)
3.5–4.0 0.000 [3.5, 4.0)

Position of 
Apartment

Discrete Uniform [1–6] − − − −

Window–wall 
Ratio2

Discrete Fixed 38 − − − %

Fabric Ground Insulation2, 
R

Continuous Triangle [0.82, 4.59, 2] Triangle PDF3 − − m2⋅K/ 
W

External Wall 
Insulation2, R

Continuous Triangle [1.69, 5.69, 2.61] Triangle PDF3 − − m2⋅K/ 
W

Roof Insulation2, R Continuous Triangle [2.5, 3.5, 2.67] Triangle PDF3 − − m2⋅K/ 
W

Window Insulaiton2, 
U

Continous Triangle [1., 4.1, 2.16] Triangle PDF3 − − W/ 
m2⋅K

External Door 
Insulation2, U

Continuous Triangle [2, 3.4, 3.28] Triangle PDF3 − − W/ 
m2⋅K

Infilteration3 Discrete − 1: Intermediate- 
Intermediate

Based on the sampled 
position of the apartment

Triangle 
PDF3,4

[0.35, 0.75, 
0.50]

dm3/s. 
m2

2: Corner-Intermediate [0.455, 0.98, 
0.65]

3: Intermediate −
Ground

[0.35, 0.75, 
0.50]

4: Intermediate-Roof [0.42, 0.9, 
0.6]

5: Corner-Ground [0.455, 
0.975, 0.65]

6: Corner − Roof [0.49, 1.05, 
0.7]

HVAC Ventilation system2 Discrete Categorical [A, C, D] [0.014, 0.781, 0.196] − − −

Occupant and 
Control

Heating setpoint Discrete Uniform [18–21] − − − ◦C

* Sub-level data: After selecting a bin for the compactness ratio based on its probabilities, a value is sampled uniformly from the range of the chosen bin. For infiltration, 
the position of the apartment is selected first, followed by the corresponding infiltration range from which a value is then sampled.
1Sourced from [45], 2 Sourced from [44], 3 Triangle distribution with [lower limit, upper limit, mode], 4 Calculated using equation (1) [56] in section 3.2.1.2.
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Appendix E:. Appropriate sampling size in LT (55/35 ◦C) supply

Figures E.1 and E.2 illustrate the parameter ranking, absolute SRRC, and R2 values for the two output parameters for terraced-intermediate and 
apartment dwellings, respectively, under an LT supply of 55/35 ◦C. From both graphs, it can be observed that convergence reached around 1300 
samples, with the R2 value being the highest.

Fig. E1. Parameter ranking, SRRC absolute and R2 values of terraced-intermediate dwelling type for the two output parameters under LT supply of 55/35 ◦C.

P. Wahi et al.                                                                                                                                                                                                                                    Energy & Buildings 322 (2024) 114703 

24 



Fig. E2. Parameter ranking, SRRC absolute and R2 values of apartment dwelling type for the two output parameters under LT supply of 55/35 ◦C.
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[83] H.İ. Tol, Improved space-heating radiator model: focus on set-back operation, 
radiator over-dimensioning, and add-on fans, Build. Simul. 13 (2020) 317–334, 
https://doi.org/10.1007/s12273-019-0574-9.

[84] T.A.J. Schalkoort, P. van den Engel, Afgifte–verwarming - handberekeningen, 
2014.

[85] A. Hussien, W. Khan, A. Hussain, P. Liatsis, A. Al-Shamma’a, D. Al-Jumeily, 
Predicting energy performances of buildings’ envelope wall materials via the 
random forest algorithm, J. Build. Eng. 69 (2023), https://doi.org/10.1016/j. 
jobe.2023.106263.

[86] P. Yao, Z. Yu, Y. Zhang, T. Xu, Application of machine learning in carbon capture 
and storage: an in-depth insight from the perspective of geoscience, Fuel 333 
(2023), https://doi.org/10.1016/j.fuel.2022.126296.

[87] M. Jaxa-Rozen, J. Kwakkel, Tree-based ensemble methods for sensitivity analysis 
of environmental models: a performance comparison with Sobol and Morris 
techniques, Environ. Model. Softw. 107 (2018) 245–266, https://doi.org/10.1016/ 
j.envsoft.2018.06.011.

[88] M.W. Ahmad, M. Mourshed, Y. Rezgui, Trees vs Neurons: comparison between 
random forest and ANN for high-resolution prediction of building energy 
consumption, Energy Build. 147 (2017) 77–89, https://doi.org/10.1016/j. 
enbuild.2017.04.038.

[89] J. Ma, J.C.P. Cheng, Identifying the influential features on the regional energy use 
intensity of residential buildings based on Random Forests, Appl. Energy 183 
(2016) 193–201, https://doi.org/10.1016/j.apenergy.2016.08.096.

[90] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, S. Ajayi, Building energy 
consumption prediction for residential buildings using deep learning and other 
machine learning techniques, J. Build. Eng. 45 (2022), https://doi.org/10.1016/j. 
jobe.2021.103406.

[91] G. Borragán, D. Aerts, G. Reynders, Y. Ma, L. Engelen, S. Verbeke. Renovating 
Herentals: a building classification approach to assess large-scale renovation costs, 
in: Building Simulation Conference Proceedings, International Building 
Performance Simulation Association, 2022: pp. 334–341. https://doi.org/ 
10.26868/25222708.2021.30603.

[92] L. Mosley. A balanced approach to the multi-class imbalance problem, Iowa State 
University, Digital Repository, 2013. https://doi.org/10.31274/etd-180810-3375.

[93] A. Kulkarni, D. Chong, F.A. Batarseh. Foundations of data imbalance and solutions 
for a data democracy, in: Data Democracy: At the Nexus of Artificial Intelligence, 
Software Development, and Knowledge Engineering, Elsevier, 2020: pp. 83–106. 
https://doi.org/10.1016/B978-0-12-818366-3.00005-8.

[94] J.S. Akosa, Predictive Accuracy : A Misleading Performance Measure for Highly 
Imbalanced Data, in: 2017. https://api.semanticscholar.org/CorpusID:43504747.

[95] C. Chen, A. Liaw. Using Random Forest to Learn Imbalanced Data, Berkeley, 2004.
[96] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 
D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: machine 
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