

Delft University of Technology

Efficient Decomposition of Unitary Matrices in Quantum Circuit Compilers

Krol, Anna M.; Sarkar, Aritra; Ashraf, Imran; Al-Ars, Zaid; Bertels, Koen

DOI
10.3390/app12020759
Publication date
2022
Document Version
Final published version
Published in
Applied Sciences

Citation (APA)
Krol, A. M., Sarkar, A., Ashraf, I., Al-Ars, Z., & Bertels, K. (2022). Efficient Decomposition of Unitary Matrices
in Quantum Circuit Compilers. Applied Sciences, 12(2), 1-20. Article 759.
https://doi.org/10.3390/app12020759

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/app12020759
https://doi.org/10.3390/app12020759

����������
�������

Citation: Krol, A.M.; Sarkar, A.;

Ashraf, I.; Al-Ars, Z.; Bertels, K.

Efficient Decomposition of Unitary

Matrices in Quantum Circuit

Compilers. Appl. Sci. 2022, 12, 759.

https://doi.org/10.3390/app

12020759

Academic Editor: Mario Piattini

Received: 29 November 2021

Accepted: 7 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Efficient Decomposition of Unitary Matrices in Quantum
Circuit Compilers
Anna M. Krol 1,* , Aritra Sarkar 1 , Imran Ashraf 2, Zaid Al-Ars 1 and Koen Bertels 3,4

1 Quantum & Computer Engineering Department, Delft University of Technology, Mekelweg 4,
2628 CD Delft, The Netherlands; A.Sarkar-3@tudelft.nl (A.S.); Z.Al-Ars@tudelft.nl (Z.A.-A.)

2 Computer Engineering Department, HITEC University, Taxila 47080, Pakistan; imran.ashraf@hitecuni.edu.pk
3 Department of Electrical Engineering, University of Leuven, Oude Markt 13, 3000 Leuven, Belgium;

koen.bertels@qbee.eu
4 Department of Informatics Engineering, Faculty of Engineering, University of Porto, Praça de Gomes Teixeira,

4099-002 Porto, Portugal
* Correspondence: a.m.krol@tudelft.nl

Abstract: Unitary decomposition is a widely used method to map quantum algorithms to an arbitrary
set of quantum gates. Efficient implementation of this decomposition allows for the translation of
bigger unitary gates into elementary quantum operations, which is key to executing these algorithms
on existing quantum computers. The decomposition can be used as an aggressive optimization
method for the whole circuit, as well as to test part of an algorithm on a quantum accelerator. For
the selection and implementation of the decomposition algorithm, perfect qubits are assumed. We
base our decomposition technique on Quantum Shannon Decomposition, which generates O(3

4 4n)

controlled-not gates for an n-qubit input gate. In addition, we implement optimizations to take
advantage of the potential underlying structure in the input or intermediate matrices, as well as to
minimize the execution time of the decomposition. Comparing our implementation to Qubiter and
the UniversalQCompiler (UQC), we show that our implementation generates circuits that are much
shorter than those of Qubiter and not much longer than the UQC. At the same time, it is also up to
10 times as fast as Qubiter and about 500 times as fast as the UQC.

Keywords: unitary decomposition; Quantum Shannon Decomposition; quantum compiler; quantum
computing; quantum circuit optimization

1. Introduction

Quantum computing is promising to provide the next phase of performance im-
provement for large-scale computing. To this end, many different algorithms have been
developed in the theoretical domain, such as Shor’s algorithm for prime factorization in
polynomial time [1], or Grover’s algorithm for finding a specific input corresponding to
some output in

√
N time [2].

Recent years have seen some great strides in the field of physical implementations
of quantum computers as well. However, these still have some big limitations on the
number of qubits, the error rates and the length of the circuits that can be executed on them.
Although quantum computers with as many as 128 qubits already exist [3], error rates are
of the order 10−2–10−3 per gate [4]. Therefore, executing a circuit on a physical quantum
chip requires significant error correction, as well as mapping, scheduling and other such
measures [5].

These algorithms are executed on simulators, which come with their own set of
restrictions. Some simulators require the use of specific qubit topology and limit possible
qubit states or the number of qubits, and all of them are bound by the classical resources
of the system the simulation is run on. The main resource limit is the memory necessary
to store the quantum circuit and the total qubit state, which is dependent on the length

Appl. Sci. 2022, 12, 759. https://doi.org/10.3390/app12020759 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12020759
https://doi.org/10.3390/app12020759
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0066-4299
https://orcid.org/0000-0002-3026-6892
https://doi.org/10.3390/app12020759
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12020759?type=check_update&version=2

Appl. Sci. 2022, 12, 759 2 of 20

of the circuit, the number of qubits and the degree of superposition. These also influence
the processing time necessary to simulate the full circuit, which is generally done by some
form of matrix multiplications of the qubit state and each gate in the circuit.

Unitary decomposition is the process of translating an arbitrary unitary gate (a unitary
matrix U is a square, complex matrix, of which the inverse (U−1) and the conjugate
transpose (U†) are the same; i.e., U† = U−1 and UU† = I [6]) into a specific (universal)
set of single and two-qubit gates. Unitary decomposition is necessary because it is not
otherwise possible to execute an arbitrary quantum gate on either a simulator or quantum
accelerator. This makes it a required feature for algorithms that use any type of gate that
is not supported by the target platform or just produce an arbitrary unitary gate that will
need to be translated. In this paper, only exact decomposition algorithms will be considered
for application on gate-based quantum computing.

This paper proposes a highly-efficient method to implement unitary decomposition
for quantum algorithms using Quantum Shannon Decomposition. The paper shows that
our approach is up to 10×more efficient in terms of the number of gates generated for a
given unitary matrix size and requires up to 100 times less wall-clock execution time than
other implementations. The contributions of this paper are as follows:

• Implementation of Quantum Shannon Decomposition for the unitary decomposition
of quantum algorithms;

• Decomposition optimizations that take advantage of the underlying matrix structure;
• The integration and evaluation of our method in the OpenQL quantum programming

framework;
• The optimization of the implementation of a quantum genome analysis use-case using

our method

This paper is structured as follows. In Section 2, applications for unitary decompo-
sition are discussed. Then, in Section 3, some background is given on qubits, gate-based
computation and the special qubit gates that are used. The specific decomposition method
for multi-controlled gates is given in Section 4. In Section 5, several decomposition algo-
rithms are compared based on their resulting CNOT-count. The implementation of the
selected algorithm, Quantum Shannon Decomposition, is outlined in Section 6. Optimiza-
tions to this implementation can be found in Section 7. Experimental results are shown in
Section 8 and compared to other implementations in Section 10. Finally, the conclusion and
future work can be found in Section 11.

2. Motivation for Unitary Decomposition

Unitary decomposition is useful in several contexts. The first is the broad class of
algorithms that generate arbitrary unitary gates that need to be translated into a quantum
circuit, but it is also used to enable the more modular design of quantum algorithms or as
an aggressive optimization method.

We will use two quantum algorithms that we have developed in the context of genome
sequencing as an example of a possible application for unitary decomposition. With
genome sequencing, a genome sequence is first read as many short pieces which then need
to be combined to get the full DNA sequence. This is currently done using many different
algorithms, which are executed using (classical) high-performance computing systems [7].

For genome sequencing using quantum accelerators, the DNA sequences can be stored
in superposition. The two algorithms that will be discussed both use a unitary matrix in
the process of finding the position of a short read (sequence of a small piece of DNA) on a
reference genome. That matrix needs to be decomposed before the algorithm can be run on
a quantum accelerator or simulator [8].

The first quantum genome sequencing algorithm we will use is Quantum Indexed Bidi-
rectional Associative Memory (QiBAM) [8]. QiBAM uses a unitary oracle U(2n) = I(2n)−
2 |bp〉 〈bp| assembled from a binomial distribution as |bx

p〉 =
√

γh(p,x)(1− γ)n−h(p,x). Here,
γ is a factor that influences the width of the distribution, h(p, x) is the Hamming distance

Appl. Sci. 2022, 12, 759 3 of 20

between the query pattern p and all memory states x, and n is the number of qubits required
to store the memory states. n is also the size of the vector and resulting matrix.

ŜSp p = CRy(2sin−1(−1/√p) =

1 0 0 0
0 1 0 0

0 0
√

p−1
p

−s√
p

0 0 s√
p

√
p−1

p

 (1)

The second genome sequencing algorithm is Quantum Associative Memory (QAM).
This uses a Hadamard-like transformation to store the patterns, assembled using
Equation (1) [9].

In order to apply either gate from these two algorithms to qubits, they need to be
translated into some combination of (elementary) quantum gates that can be executed on a
quantum accelerator, and the same is true for other such algorithms.

Besides that, unitary decomposition also facilitates short-cuts in the design of new
algorithms. With unitary decomposition, a developer can keep part of an algorithm as
a unitary gate/matrix while working on some other part and test this. Otherwise, the
algorithm can only be executed in full when all of it is made out of known quantum gates.
Unitary decomposition allows the full algorithm to be tested and checked much earlier in
the development process on the target quantum chip or simulator.

Furthermore, unitary decomposition can be used as an aggressive optimization
method, because the maximum number of gates resulting from a decomposition can
be calculated easily beforehand. The maximum length of the circuit resulting from the
decomposition is only dependent on the number of qubits affected by the gate. For circuits
longer than this maximum, and thus consisting of more gates, the assembly of all gates into
a unitary matrix and then decomposing that matrix will always result in a shorter circuit.

Someone programming in OpenQL might, for example, specify a circuit with three
qubits with 180 gates—this might be because of application semantics, code-readability or
because they did not consider the optimal way to program their quantum algorithm. The
total of 180 gates is more than the number of gates that would result from decomposing
an arbitrary three-qubit gate. Thus, if the circuit is combined into a single unitary matrix
and then that matrix is decomposed using Shannon Decomposition, for example, then
the length of the circuit will be reduced from 180 gates to only 120 (84 rotation gates and
36 CNOT gates).

Something to consider, however, is that the circuit resulting from the decomposition of
a unitary matrix is longer than the theoretical minimum, and even the theoretical minimum
number of gates for a general n-qubit unitary gate becomes quite large very quickly, since it
scales with 4n−1 in the leading term. Thus, in most cases, a hand-optimized and application-
specific circuit will be shorter than the one resulting from universal unitary decomposi-
tion. However, these hand-optimized circuits are labor-intensive and require a significant
amount of time to develop, while unitary decomposition can be done automatically.

3. Background

In this section, the background and notations are given for qubits, quantum gates,
unitary matrices, the universal set of gates that are used, quantum multiplexers and multi-
controlled gates.

3.1. Qubit Notation

A qubit state is represented in bracket notation as

|φ〉 = α |0〉+ β |1〉 (2)

Appl. Sci. 2022, 12, 759 4 of 20

Besides the |_〉 notation, quantum states can also be represented as complex vectors:
α |0〉+ β |1〉 =

[
α β

]T . This is especially useful for the combined state of multiple qubits,
where the first row of the vector corresponds to the binary number “0” in as many bits as
there are qubits. The second row corresponds to the number “1”, etc. As an example, for a
three-qubit state, the first row corresponds to |000〉, and the second to |001〉. This continues
to the final row, which is |111〉. The state vector has 2n rows for the state of n qubits.

3.2. Quantum Gates

Qubits are manipulated using gates, which are matrices that operate on the qubit
state vector. To calculate the effect of gates on the combined qubit state, the state vector is
multiplied by the matrix representations of the gates in reverse order.

In the circuit notation, each line going into or out of a gate represents one qubit. To
represent n-qubit gates—gates that affect an unspecified number of qubits—a line with a
backslash through it is used.

(n + 1)-qubit gate =
1 qubit

Un qubit \

3.3. Unitary Matrices

A reversible quantum gate acting on n perfect qubits can be fully described as unitary
matrix [10]. The set of unitary matrices of size 2n by 2n is written as U(2n) and has the
following properties [6]:

• U† = U−1;
• U is diagonalizable;
• U(2n) has a set of 2n orthogonal eigenvectors;

• For a 2× 2 unitary matrix U =

[
A B
C D

]
,
√

A2 + B2 = 1.

The Special Unitary group, SU, is a subgroup of unitary matrices where

• |det(U)| = 1 for U in SU [11].

When a measurement is performed, the global phase (Φ) of the qubits does not
influence the measurement probabilities. This means that all quantum gate operations can
be represented by a matrix in SU(2n) [12]. These properties are used to decompose the
matrix, using one of the algorithms described in Section 5.

3.4. Universal Set of Gates

In order to decompose all possible unitary matrices into quantum gates, a universal
gate set is selected as CNOT, the Rz(θ) and Ry(θ) gates. These three were selected because
they are used in most decomposition methods.

3.5. Quantum Multiplexers

Besides these conventional gates, there are several gates used in this paper as in-
termediate results for the various decomposition algorithms. The first is the quantum
multiplexer, which corresponds to a unitary matrix corresponding to the following struc-
ture Equation (3).

U(2n) =

[
U0(2n−1) 0

0 U1(2n−1)

]
(3)

where U(2n) denotes a unitary gate over n qubits, which is a unitary matrix of 2n rows and
2n columns. U0(2n−1) and U1(2n−1) are both (n− 1)-qubit gates. The rest of the matrix of
U is zero. The gate is uniformly controlled, which means that when the control is 0, the
upper left (U0) of the matrix affects the qubits. However, when the control is 1, the lower
right gate (U1) is applied. The circuit for this is shown in Figure 1.

Appl. Sci. 2022, 12, 759 5 of 20

1
U(2n)

�

n− 1 \
=
\ U0 or U1

Figure 1. A quantum multiplexer.

The first line is the controlling qubit, and the lower line is the rest (n− 1) of the qubits.
The box with the line to the lower gate means that it is uniformly controlled.

3.6. Multi-Controlled (Rotation) Gates

Another common intermediate gate is the multi-controlled (rotation) gate. This is a
one-qubit gate with k control bits. Rather than just applying a gate when all control bits are
zero, the applied operation to the target qubit can be different for each of the 2k possible
classical values of the control qubits.

This is written as Fk
m(U(2)), which is a fully or multi-controlled U(2) gate with k

control qubits, with the target qubit at position m. The circuit representation of this gate is
shown in Figure 2. To indicate that an operation is applied for either state of the control
bits, a square control box is used.

1, . . . , m-1 \

U(2k+1)

�

m = U(2) = Fk
m(U(2))

m+1, . . . , n \ �

Figure 2. A multi-controlled U(2) gate.

These multi-controlled gates correspond to a (block) diagonal unitary matrix, which is
why they show up frequently in decomposition schemes. This is shown in Equation (4).

Fk
m(U(2)) = diagj

(
U(2)j

)
=

U(2)0
. . .

U(2)2k

 (4)

A multi-controlled rotation gate around axis a corresponds to the matrix shown in
Equation (5). This can be any axis, but in the paper, the multi-controlled Ry and Rz axes are
mainly used.

Fk
m(Ra) = diagj

(
Ra(θj)

)
=

Ra(θ0)
. . .

Ra(θ2k)

 (5)

4. Decomposing Multi-Controlled Rotation Gates

The multi-controlled rotation gates from Section 3.6 can be decomposed into a combi-
nation of CNOTs and regular rotation gates. This can be done using the method from [13],
which results in 2k CNOTs gates and 2k 1-qubit rotation gates for a controlled rotation gate
with k control bits. To move from an Fm

k (Ra)-gate to an Fm
k−1(Ra)-gate, a circuit such as

Figure 3 can be used.

� • •
\ � = \ � �

Ra Ra Ra

Figure 3. Partial decomposition of an Fm
k (Ra)-gate.

Appl. Sci. 2022, 12, 759 6 of 20

This can be extended until only CNOT gates and one-qubit rotation gates are left,
which leads to an example decomposition of a rotation gate with three control bits as shown
in Figure 4.

� • •
� • •
�

=
• • • •

Ra R1
a R1

a R1
a R1

a R1
a R1

a R1
a R1

a

bit 1
bit 2
bit 3

g0 g1 g2 g3 g4 g5 g6 g7

Figure 4. Decomposition of an F3
4 (Ra)-gate.

To directly calculate which qubit is the control bit for each CNOT, this can be deter-
mined using Gray code. This is shown in the table below the circuit. The number of the bit
that is changed in the Gray code is the number of the qubit that will be the control bit.

For each control bit of the multi-controlled gate, a one-qubit rotation gate and a single
CNOT is used, so the total decomposition of an Fk

m-gate requires 2k rotation gates and
CNOTs [13]. This is the least-known number of gates for decomposing such a matrix and
is therefore used in almost all decomposition methods for (block) diagonal matrices of
this form.

5. Comparison of Different Decomposition Methods

In this section, first, the selection criteria for the various decomposition methods is
outlined in Section 5.1. Then, the theoretical lower bounds for the number of gates resulting
from decomposition are given in Section 5.2, with implementations for a one and two-
qubit gate in Sections 5.3 and 5.4. This is followed by an examination of various general
decomposition methods from the literature in Sections 5.5–5.7 and finally the selection in
Section 5.8.

5.1. Selection Criteria

Quantum computers are currently limited by the error rates and decoherence of
qubits [4], and the longer the circuit, the higher the chance of errors will become. Therefore,
the selection is based on circuit length, although the decomposition algorithm is only tested
with perfect qubits on a simulator for now. In accordance with the motivations laid out in
Section 2, only exact decomposition algorithms are considered.

For all decomposition methods, the number of gates resulting from the decomposition
is only dependent on the number of qubits affected by the unitary gate. Thus, for generic
n-qubit unitary gates, the resulting circuit length can be calculated from the size of the
input matrix.

To measure the length of the resulting circuit, the number of CNOT gates will be
used. There are several reasons for that. The first is that not all papers distinguish between
generic one-qubit gates and rotation gates. The decomposition of a generic one-qubit gate
takes three rotation gates (see Section 5.3), so the comparison might be a factor of three
off if one-qubit gates are used to judge circuit length. The CNOT gate is used as the result
for all decomposition methods and always has the same definition. This makes it a good
metric for the total circuit length.

Secondly, each CNOT can generate entangled states between qubits [14], and for exe-
cution of the circuit on (near-term) quantum devices, each CNOT between non-neighboring
qubits might introduce additional mapping operations [5]. Thus, to reduce mapping in the
future, a circuit with as few CNOTs as possible is desired.

Thirdly, the error-rates for two-qubit gates are currently considerably higher than
for one-qubit gates [4]. Thus, the chance that an error occurs in a circuit becomes much

Appl. Sci. 2022, 12, 759 7 of 20

bigger with more CNOTs. Thus, to make the decomposition feasible for near-term quantum
applications, it is not only important to keep the circuit-length low but especially the
CNOT count.

5.2. Theoretical Lower Bounds

There is a theoretical lower bound for the number of CNOTs resulting from the
decomposition of an n-qubit gate, and it is mathematically proven to be 1

4 (4
n − 3n− 1) [15].

There are implementations that reach this number for one and two-qubit gates [15], as
outlined in the next sections. This lower limit is included in the comparison, because it
is useful to keep in mind what is and is not possible in terms of algorithms for unitary
decomposition.

5.3. ZYZ Decomposition

For a one-qubit gate, no CNOT gates are necessary, and if rotation gates around any
axis are possible, only one such gate is needed to apply any one-qubit operation. However,
when using standard elementary gates, such as rotations around the Pauli X, Y or Z-axis,
the decomposition of an arbitrary one-qubit gate results in three rotation gates using ZYZ
decomposition [15].

One way to do this is with two rotation-z gates and one rotation-y gate. For this
decomposition, the angles Φ, α, β, γ can be found so that the following equation is satisfied:

U(2) = e−iΦ
[

A B
C D

]
= e−iΦRz(α)Ry(β)Rz(γ) (6)

SU(2) =
[

A B
C D

]
= Rz(α)Ry(β)Rz(γ) (7)

These angles can be calculated using the eigenvalues of the matrix and are used in the
circuit shown in Figure 5. This is a universal decomposition for a one-qubit SU(2) gate [15].

U = Rz(θ0) Ry(θ1) Rz(θ2)

Figure 5. Minimal universal quantum circuit for a one-qubit gate [15].

5.4. Minimal Decomposition of Two-Qubit Gates

From the theoretical lower bounds, we know that at least 2.25 CNOT gates are needed
for a two-qubit gate. This rounds up to three CNOTs, and a circuit that achieves that
number is shown in Figure 6 [15].

U
c Rz • a

=
d • Ry Ry • b

Figure 6. Minimal universal quantum circuit for a two-qubit gate using 18 elementary gates [15].

To obtain the values for the gates of this circuit, first angles α, β and δ are found
as in the ZYZ decomposition (Section 5.3). These are used to make circuit v so that the
following holds:

(a⊕ b)v(c⊕ d) = U(4) (8)

The circuit v is shown in Figure 7.

Appl. Sci. 2022, 12, 759 8 of 20

v
Rz(δ) •

=
• Ry(β) Ry(α) •

Figure 7. The circuit v used to construct a universal two-qubit gate [15].

Then, to get the one-qubit gates, first matrix A ∈ SO(4) can be found so that AUUT A†

is diagonal (SO(n) is the special orthogonal group, which means that the inverse of a matrix
Q is equal to its transpose: Q−1 = QT and det(Q) = 1). Through more diagonalization,
B ∈ SO(4) can be found so AUUT AT = BvvT BT and matrix C as C = v†BT AU ∈ SO(4).
This leads to AT BvC = U, and because A, B and C are in the special orthogonal group,
they can be implemented by two unitary gates. After combining AT and B, the four gates
can be found as [15]

AT B = a⊕ b (9)

C = c⊕ d (10)

which gives the circuit in Figure 6. The four one-qubit gates can be implemented by three
rotation gates each, through ZYZ decomposition, so that the total rotation count is 4× 3+ 3
and the total CNOT count is just the ones for the circuit v, and thus three. This matches the
theoretical lower bounds for an arbitrary two-qubit gate.

5.5. Decomposition with Givens Rotations

In [16] a method of decomposition is described that uses the Givens rotation matrices
to perform the QR factorization of a unitary matrix. Each Givens rotation nullifies the
element on the ith column and jth row of a U(2n) matrix, as

1Gn,n−1U =

u1,1 u1,2 · · · u1,n...
...

. . .
...

un−2,1 un−2,2 · · · un−2,n

ũn−1,1 ũn−1,2 · · · ũn−1,n

0 ũn,2 · · · ũn,n

 (11)

The modified elements of U are indicated with a tilde, and the element on the lower
left un,1 is nullified by the Givens rotation. Each Givens rotation matrix is equal to the
identity matrix except for c = cos(θ) and s = sin(θ) for the elements at positions (i, i), (i, j),
(j, i) and (j, j), with θ the angle of the Givens rotation. These are to nullify elements until
all elements below the diagonal are zero, at which point the following equality holds [16]:(

2n−1

∏
i=1

2n

∏
j=i+1

iGj,j−1

)
U = I (12)

By reordering the base vectors according to Gray code (see Section 3.6), the cosine and
sine elements will all be adjacent. This is convenient for quantum computation, because
that means that each Givens rotation matrix can be implemented by a controlled one-qubit
gate, Ck

i , with k control bits. For one specific combined state of the control qubits, the Γ
gate is applied to qubit i, while for all other states, the target qubit is left unaffected. This
means that

2n−1

∏
i=1

2n

∏
j=i+1

Cn−1
γ(i) (Γ

†
(j,k)) = SU(2n) (13)

iΓj,k :=
[igk,k

igk,j
igj,k

igj,j

]
(14)

Appl. Sci. 2022, 12, 759 9 of 20

where γ(i) denotes the ith number of the Gray code, and the gates iΓj,k are formed from
the matrix for the Givens rotations. This results in the circuit shown in Figure 8 for the
decomposition of a twp-qubit gate.

U

2Γ†
4,2 • 1Γ†

4,2

=
3Γ†

3,4
2Γ†

3,4
1Γ†

2,1
1Γ†

3,4

Figure 8. Decomposition into the Givens rotations [16].

The numbers of elementary gates and CNOTs were calculated using [17], which are
the numbers included in the table. Generally, this decomposition requires approximately
8.4 × 4n controlled gates, which follows from a recursive relation of gn(k) = g0

n(k) +
gn−1(k) + gn−1(k− 1) [16].

5.6. Recursive Cosine Sine Decomposition

With the circuit presented in [18], an n-qubit gate is decomposed into multi-controlled
rotation gates. Cosine sine decomposition (CSD) is applied recursively until all the matrices
are diagonal.

With CSD, any even-dimensional unitary matrix U can be decomposed into real
diagonal matrices C and S and smaller unitary matrices L0, L1, R0 and R1 as shown in
Equation (15) [19].

U =

[
U00 U01

U10 U11

]
=

[
R0 0
0 R1

][
C −S
S C

][
L0 0
0 L1

]
(15)

The left and right matrices are uniformly controlled gates; see Section 3.5. C and S
are diagonal matrices with the cosines and sines of angles θj as the diagonal elements,
respectively, between the subspaces, as shown in Equations (16) and (17).

C = diag(cos(θ0), . . . , cos(θn)) (16)

S = diag(sin(θ0), . . . , sin(θn)) (17)

where the values θ are ordered from large to small and are between 1
2 π and 0.

The central matrices from each recursive step correspond to multi-controlled Ry gates
which are decomposed as in Section 3.6. The other diagonal gates can be decomposed into
a circuit consisting of 1/2 · n · 4n − 1/2 · 2n CNOTs and 3/2 · 4n − 1/2 · 2n one-qubit rotation
gates [20].

This is significantly improved upon in [21], which stops the recursion at uniformly
controlled one-qubit gates.

Furthermore, this proves that any uniformly controlled two-qubit gate (Fn−1
n (U(2)))

can be decomposed into a specific sequence of 2n−1 − 1 CNOT gates, 2n−1 one-qubit gates
and one total global phase gate expressed as ∆n.

Furthermore, this proves that each multi-controlled two-qubit gate can be decomposed
into a diagonal gate (∆) and a Gray code sequence of CNOTs and one-qubit gates. The
diagonal gates are folded into the central matrix from the CSD, so the total decomposition is

U = ∆n F̃n−1
n (U(2))

2n−1−1

∏
i=1

F̃n−1
n−γ(i)(U(2))F̃n−1

n (U(2)) (18)

Each F̃n−1
n (U(2)) is decomposed with 2n−1 − 1 CNOTs, and the ∆n gate is imple-

mented with multi-controlled RZ gates. This results in 2n − 2 CNOTs, which makes the
total CNOT count 1/2 · 4n − 1/2 · 2n − 2. The resulting circuit is shown in Figure 9.

Appl. Sci. 2022, 12, 759 10 of 20

U
� Ũ � � Rz

=
Ũ � Ũ Rz

Figure 9. Recursive CSD decomposition [21].

5.7. Quantum Shannon Decomposition

In [22], another way of using the CSD from Section 5.6, called Quantum Shannon
Decomposition (QSD), is introduced. The decomposition of a two-qubit gate is shown in
Figure 10.

U
Rz Ry Rz

=
G1 � G2 � G3 � G4

Figure 10. Quantum Shannon Decomposition [22].

The start of the decomposition is the same as in Section 5.6, but the L and R matrices
are decomposed using eigenvalue decomposition. This is shown in Figure 11. The resulting
matrices are unitary gates applied to one less qubit than the starting unitary. This leads to
the circuit in Figure 10, where the D-matrix is implemented as a multi-controlled Rz gate.

L
� Rz(θ)

=
L0 or L1

=
W � V

Figure 11. Decomposition of the L matrix in QSD [22].

Quantum Shannon Decomposition is applied recursively until the final one-qubit gates
can be implemented with ZYZ decomposition. This means that only the multi-controlled
rotation gates contribute to the number of CNOTs, each of which requires 2n−1 CNOT gates
for a single step of the recursion of an n-qubit gate. This leads to a total CNOT count of
3/4 · 4n − 3/2 · 2n for this decomposition method.

There are two optimizations that can be implemented on top of this implementation of
Quantum Shannon Decomposition. The first is to stop the recursion at two-qubit gates and
translate those as in Section 5.4. The second optimization is to implement the central multi-
controlled Rz gate using CZ gates rather than CNOTs, of which one can be absorbed into the
neighboring multiplexer. This results in one fewer CNOT gate at each level of the recursion.
With these two implementations, the CNOT count comes to 23/48 · 4n − 3/2 · 2n + 4/3 [22] .

5.8. Selection of the Algorithm

For each decomposition method, the CNOT gate counts are compiled in Table 1 and
plotted in Figure 12. As an indication, the number of CNOT gates resulting from the
decomposition of a one to five-qubit unitary gate is given, along with the general formulas
for the number of CNOT gates resulting from the decomposition of an n-qubit gate, if such
a formula were available.

As can be seen in Table 1, the optimized version of QSD results in the fewest CNOT
gates. The choice was therefore made to implement this decomposition, although not
the optimized version. The optimizations from [16] can be implemented without any
modifications to a base implementation of the algorithm.

Appl. Sci. 2022, 12, 759 11 of 20

Table 1. CNOT counts for different implementations of unitary decomposition for one through
five-qubit gates, as well as an n-qubit unitary gate.

Number of Qubits 1 2 3 4 5 n Section

Theoretical lower bounds [15] 0 3 14 61 252 1
4 · (4

n − 3n− 1) Sections 5.2–5.4
Givens rotations [16] 0 4 64 536 4156 ≈8.4 · 4n Section 5.5
Recursive CSD [18] 0 14 92 504 2544 1

2 · n · 4n − 1
2 · 2n Section 5.6

Recursive CSD (optimized) [21] 0 4 26 118 494 1
2 · 4n − 1

2 · 2n − 2 Section 5.6
QSD [22] 0 6 36 168 720 3

4 · 4
n − 3

2 · 2n Section 5.7
QSD (optimized) [22] 0 3 20 100 444 23

48 · 4
n − 3

2 · 2n + 4
3 Section 5.7

Figure 12. CNOT counts for different implementations of unitary decomposition for one through
five-qubit gates. The chosen algorithm is shown in bold.

Besides that, QSD has several other advantages. The recursion is performed at general
n-qubit gates rather than multi-controlled one-qubit gates, which makes it relatively simple
to implement. If algorithmic implementations for three-qubit, four-qubit or five-qubit
or bigger general gates are found, they can be easily implemented. The same goes for
other specific optimizations. In addition, because the mathematical decompositions are
done separately for each step in the recursion, rather than all at once at the beginning, any
underlying structure in the beginning or intermediate matrices can be taken advantage of
immediately, therefore potentially skipping many computational steps as well as decreasing
the size of the resulting circuit.

For these reasons, the choice was made to go with Quantum Shannon Decomposition
for the implementation of unitary decomposition in OpenQL.

6. Implementation

The implementation of the decomposition in OpenQL is split into two parts: the
calculation of all of the rotation angles, and the generation of the circuit. This is done so
that the implementation is independent from OpenQL.

An example of unitary decomposition in OpenQL can be found in Code Listing 1.
For unitary decomposition in OpenQl, first a Unitary object is defined, which is then

decomposed to calculate all the angles for all the rotation gates. The Unitary is then added
to a kernel as any other gate. The kernel is added to a program, which is compiled with
a compiler. The implementation is thus split between the Unitary class and the call to
kernel.gate().

Appl. Sci. 2022, 12, 759 12 of 20

Listing 1. Using unitary decomposition in OpenQL.

import os
from openql import openql as ql
import numpy as np
import sys

nqubits = i n t (sys . argv [1])

q l . se t_ opt ion (’ output_dir ’ , os . path . j o i n (curdir , ’ output ’))
q l . se t_ opt ion (’ l o g _ l e v e l ’ , ’LOG_ERROR’) ;

p l a t f = ql . Platform (" starmon " , os . path . j o i n (curdir , ’ conf ig . json ’))
program = ql . Program (’ example ’ , p l a t f , nqubits)
kernel = ql . Kernel (" newKernel ")

compiler = ql . Compiler (’ compiler1 ’)

matrix = np . load (’ data/out_ ’ + s t r (nqubits) + " . npy ")
u1 = ql . Unitary (" testname " , matrix)
u1 . decompose ()
kernel . gate (u1 , range (0 , nqubits))
program . add_kernel (kernel)

compiler . compile (program)

6.1. The Unitary Class

The Unitary is instantiated with a string and an array. The content of this array is the
unitary matrix, which is of size 2n× 2n for an n-qubit gate. The complete Quantum Shannon
Decomposition is computed only when “decompose()” is called, and the calculated angles
for the resulting rotation gates are added to a list. This is done so that the Unitary can be
used multiple times in a program without the recalculation of the whole decomposition.

However, before the decomposition is started, it is first checked whether the input
matrix is unitary. If this is the case, all of the intermediate matrices will also be unitary [19],
so this check is only necessary once. Furthermore, all of the Gray code matrices needed for
the multi-controlled rotation gates are added to a lookup table so they do not need to be
calculated anew at each decomposition step.

To make certain that the decomposition is correct, each single intermediate decom-
position is checked. For each step, only three matrices need to be multiplied, and this
saves any calculations that might be performed on an incorrect matrix. If any step of the
decomposition is not correct, an exception is thrown and the decomposition is stopped.

The Eigen [23] library is used to perform singular value decomposition (SVD), eigen-
value decomposition and matrix multiplication. The recursion is centered on a main
function, which takes as parameters a unitary matrix and the number of qubits. The latter
is to keep track of the level of recursion.

Computation of the CSD is done using the method from [19], which uses SVD. The
demultiplexing function uses Schur matrix decomposition for (sub)matrices smaller than
26 × 26 and eigenvalue decomposition for bigger matrices. This is done because Schur
matrix decomposition is faster for small matrices [23].

The algorithm is recursive, and the demultiplexing step calls on the main function
again for the decomposition of the smaller unitary matrices. If the matrices are of size 2× 2,
the rotation angles for the one-qubit rotation gates are calculated using ZYZ decomposition
as in Section 5.3.

Because the Unitary does not have access to the qubit numbers of the circuit, only the
angles for the multi-controlled Ry and Rz are calculated at this point. This is done as in
Section 3.6 by solving the following matrix equalities:

Appl. Sci. 2022, 12, 759 13 of 20

Mk

 θ1
...

θ2k

 =

 α1
...

α2k

 (19)

where Mk is a square matrix where all the entries are either “+1” or “−1”, which are
calculated using Gray code using Equation (20).

Mk
ij = (−1)b(i−1)·γ(j−1) (20)

where the exponent is the bit-wise inner product of two binary vectors: bi and γj. bi is the
integer i, and γj is the jth value of the Gray code.

For the multi-controlled Ry gate, the values of αi are calculated by taking the arc sine
of the diagonal entries of the S-matrix from the CSD. α1

...
α2k

 = 2 · arcsin(Si,i) (21)

For the multi-controlled Rz gates, the values of αi is calculated by taking the natural
logarithm of the D-matrix from the demultiplexing. α1

...
α2k

 = −2 ·
√

-1 · ln
(

D(i,i)

)
(22)

All the angles for all rotation gates are added to a list, which is used to generate the
correct gates when the Unitary is added to a circuit.

6.2. Circuit Assembly

At the kernel level, when the (decomposed) Unitary object is added to the circuit, the
gates and CNOTs are assembled and added to the circuit list. At this point, it is checked
whether the Unitary is decomposed and if it is applied to the correct number of qubits. The
first is checked from a flag that is set to “true” at the end of the decomposition. The latter is
calculated from the size of the unitary matrix, which should be 2n × 2n for an n-qubit gate.

Because the kernel only has the qubit numbers and the list of rotation angles, it does
not have insight into whether any optimizations have happened. Therefore, the gates are
added purely sequentially to the circuit, and each recursive call to the main function returns
the total number of rotation angles used up until that point. If gates have been removed by
an optimization, a specific angle is added to the circuit which signals how many gates have
been removed, and these gates are skipped during circuit generation.

It is expected that the decomposition will take the most time to compute, as well as
the most memory, since it contains the mathematical algorithms and matrix multiplications.
Comparatively, using the calculated angles to make the circuit will not require much time
or memory. Thus, adding the circuit sequentially is not expected to have much of an impact
on the total resources required by the circuit, while it allows for a much more modular
implementation of unitary decomposition.

6.3. Compilation of the OpenQL Program

After all gates have been added to the circuit, the kernel is added to a program which is
compiled in OpenQL. From this point, the gates from the decomposition are handled in
the same way as any manually added gates. Thus, the features and optimizations from the
lower levels of the programming language can be fully used for the circuit [5]. Afterwards,
the circuit is transformed into quantum assembly language and written to an output file as
usual, or directly passed on to the simulator.

Appl. Sci. 2022, 12, 759 14 of 20

7. Implementation Optimization

For the execution of the resulting circuit, it is important that it is as short as possible
for the reasons mentioned in Section 5. To this end, the algorithm itself was selected to
generate as few gates as possible. Combining and removing individual gates is performed
in a later compile step by the OpenQL compiler [5], but more structural optimizations can
be performed during the decomposition. For example, QAM, one of the algorithms from
Section 2, generates a unitary matrix that has an internal structure that can be used to skip
many steps in the recursion (see Section 2). The implemented optimizations take advantage
of the matrix structure through the early detection of multiplexers and the detection of
unaffected qubits.

7.1. Detection of Multiplexers

Before the CSD is started, it is checked whether the upper right and lower left quarters
of the matrix are already zero-matrices. If that is the case, the matrix already has the
structure of a multiplexer and is directly passed to the demultiplexing step. This is signaled
to the kernel by adding a specific gate angle to the list of rotation angles. This operation
halves the number of resulting gates for this step of the decomposition.

7.2. Unaffected Qubits

If a decomposition step leaves a qubit unaffected, then it is not necessary to apply
any gates to that qubit, and an n-qubit gate can be handled as an (n− 1)-qubit gate. This
reduces the resulting number of gates for this step by more than 3/4. Thus, before the main
decomposition is called, it is checked if the matrix is of the form A⊕ I or I ⊕ A. Each step
of the QSD evaluates unitary gates on one less qubit, so any unaffected qubits become the
first or last qubit at some point in the decomposition. If an unaffected qubit is detected,
this is also signaled to the kernel. The unitary matrix of size (n− 1) is then assembled and
passed back to the main function of the decomposition.

7.3. Execution Time Optimizations

There are also some optimizations to reduce the execution time and memory use of
the decomposition.

One of the things done to reduce the total execution time and memory use is the
fitting of “.noalias()” flags to all places where the product of multiple matrices is assigned
to a different matrix. The Eigen library assumes aliasing for all such operations, and
without this flag it evaluates the result of a matrix product into a temporary matrix that is
then copied [23]. Another optimization is that all matrices are passed as references where
possible to prevent any unnecessary copying of data.

The execution time and memory use of the decomposition after these and other
optimizations can be found in Section 8. Circuit generation and its associated steps scale
with approximately 22n, which is as expected since that implies a linear relation with the
number of matrix elements and the length of the circuit. The decomposition itself scales as
23n [24].

8. Results

The execution time of different parts of the decomposition is measured as the elapsed
wall-clock time, with measurements in between function calls to determine the relative time
consumption. The final execution times are shown in Figure 13. These tests were executed
using a Dell Latitude 7400 with an 8th Generation Intel® Core™ i7-8665U Processor and
2× 4GiB DDR4 RAM.

Appl. Sci. 2022, 12, 759 15 of 20

Figure 13. Execution time for the timed intervals, for different sizes of unitary matrices.

The program in Code Listing 1 has been used to determine the execution time and
memory used by the decomposition. Unitary matrices of sizes U(21) to U(210) were
randomly generated first, using QiBAM as outlined in Section 2. The matrices were stored
as binary files and loaded as required for the decompositions. The decomposition was
repeated 1000 times for the smaller gates and 100 times for the decomposition of the 10-
qubit gate in OpenQL, with varying numbers for the intermediate sizes. The execution
time and memory use as reported in this paper are the averages of these runs.

To measure execution time, the Python “time” package was used to determine the
time difference between the start and various points of the program. The time for each part
of the code, as well as the resulting aggregated execution time, can be found in Figure 13
and Table 2.

As expected, the decomposition itself took the most time—more than 10 times that
of any other part. This is because of the considerable mathematical decompositions and
the number of matrix operations. One of the algorithms used in the decomposition is
eigenvalue decomposition, which is an iterative algorithm that requires O(6n) operations
for an 2n × 2n matrix [25]. The data also show that the generation of the rotation gates and
CNOTs does not contribute much to the total execution time of the algorithm, as expected.
In addition, since the complete decomposition is calculated at design time, it does not
influence the run-time of the final circuit when it is executed on a quantum accelerator.

Table 2. Total execution time at each line of Listing 1 for the decomposition of matrices of different
sizes, in seconds.

Line No Dec. 1-Qubit 2-Qubit 3-Qubit 4-Qubit 5-Qubit 6-Qubit 7-Qubit 8-Qubit 9-Qubit 10-Qubit

Preamble 2.43 × 10−3 2.46 × 10−3 2.45 × 10−3 2.24 × 10−3 2.18 × 10−3 2.50 × 10−3 2.32 × 10−3 2.35 × 10−3 2.32 × 10−3 2.75 × 10−3 1.34 × 10−2

matrix =
np.load(. . .) 2.43 × 10−3 7.96 × 10−3 8.04 × 10−3 7.87 × 10−3 8.49 × 10−3 8.20 × 10−3 8.45 × 10−3 7.84 × 10−3 8.79 × 10−3 8.75 × 10−3 2.70 × 10−2

u1 =
ql.Unitary(. . .) 2.43 × 10−3 7.99 × 10−3 8.07 × 10−3 7.91 × 10−3 8.57 × 10−3 8.46 × 10−3 9.40 × 10−3 1.13 × 10−2 2.13 × 10−2 4.86 × 10−2 1.66 × 10−1

u1.decompose() 2.43 × 10−3 8.15 × 10−3 8.33 × 10−3 8.30 × 10−3 9.71 × 10−3 1.61 × 10−2 3.49 × 10−2 1.29 × 10−1 7.82 × 10−1 4.60 × 100 3.98 × 101

k.gate(. . .) 2.56 × 10−3 8.20 × 10−3 8.39 × 10−3 8.39 × 10−3 9.95 × 10−3 1.70 × 10−2 3.63 × 10−2 1.35 × 10−1 8.09 × 10−1 4.70 × 100 4.02 × 101

p.add_kernel(k) 2.56 × 10−3 8.21 × 10−3 8.39 × 10−3 8.40 × 10−3 9.97 × 10−3 1.71 × 10−2 3.63 × 10−2 1.36 × 10−1 8.11 × 10−1 4.71 × 100 4.03 × 101

compiler.compile(p) 8.49 × 10−3 8.41 × 10−3 8.60 × 10−3 8.69 × 10−3 1.05 × 10−2 1.87 × 10−2 4.00 × 10−2 1.49 × 10−1 8.71 × 10−1 4.95 × 100 4.13 × 101

The same program has also been used to determine the memory allocation. This
has been measured using the Python memory_profiler package. The results of this are
shown in Table 3 and Figure 14. After an initial allocation of about 40 MiB, noteworthy
additional allocation of memory occurs only when k.gate(. . .) is called. This means that the
complete unitary decomposition requires much less memory than generating and storing
the resulting circuit in OpenQL.

Appl. Sci. 2022, 12, 759 16 of 20

Table 3. Additional memory allocated at each line of Listing 1 for the decomposition of unitary
matrices of different sizes, in MiB.

Line 1-Qubit 2-Qubit 3-Qubit 4-Qubit 5-Qubit 6-Qubit 7-Qubit 8-Qubit 9-Qubit 10-Qubit

Initial 43.078 43.117 42.973 43.172 43.102 42.914 42.906 43.180 43.063 43.082

matrix =
np.load(. . .) 0 0 0 0 0 0 0 0.734 1.375 4.570

u1 = ql.Unitary(..) 0 0 0 0 0 0.766 1.855 3.258 12.160 48.141

u1.decompose() 0 0 0 0 0.820 0.867 1.945 5.750 12.156 46.184

k.gate(. . .) 0 0 0 1.230 0.660 1.711 6.441 27.582 120.65 483.65

p.add_kernel(k) 0 0 0 0 0 0 0.316 1.344 4.441 18.105

compiler.compile(p) 0 0 0 0 0.313 0.328 1.535 6.039 24.141 16.137

Figure 14. Additional memory allocated per line, for different sizes of unitary matrices

9. Other Implementations

We compare our OpenQL implementation to Qubiter and UniversalQCompiler. These
two are the only other quantum programming languages that, at the time of writing, also
offer unitary decomposition.

9.1. Qubiter

Qubiter [18] is a quantum compiler/programming language that aims to provide a set
of tools for designing and simulating quantum circuits. As part of that, they offer unitary
decomposition based on the recursive CSD from Section 5.6. Qubiter is written in Python
and uses numpy for the mathematics, as well as the LAPACK cuncsd function for the
CSD [20].

9.2. UniversalQCompiler

UniversalQCompiler (UQC) is a software package written in the Mathematica lan-
guage that can be used to decompose various quantum operations into CNOT gates and
single qubit rotation gates. The resulting circuits can be displayed graphically or translated
to OpenQASM, a quantum assembly language used by IBMQ, among others [26].

One of the types of decomposition they have implemented is unitary decomposition
using QSD from [27]. This method produces 23/48 · 4n − 3/2 · 2n + 4/3 CNOTs, which is the
same number as in [22].

10. Comparison to Other Implementations

We compare the execution time and the number of gates our implementation generates
against Qubiter and UQC.

To obtain the total gate count, we use the number of lines in the output quantum
assembly, which also includes rotation gates and not just CNOTs. The results for OpenQL,
Qubiter and UQC are plotted in Figure 15. All of the implementations use an exact

Appl. Sci. 2022, 12, 759 17 of 20

decomposition algorithm and therefore generate a constant number of gates for each size
of the (non-sparse) input matrix.

Figure 15. Number of generated CNOTs and total gates for OpenQL, UQC and Qubiter from the
decomposition of different sizes of unitary matrices.

It is clear that OpenQL always generates fewer gates than Qubiter, and almost all of the
difference is in the number of CNOTs. This is because we use QSD in our implementation
of unitary decomposition in OpenQL. For a 10-qubit gate, unitary decomposition with
OpenQL generates half as many CNOTs as Qubiter, and produces a total circuit that is
almost 3 times as short.

When compared to UQC, our OpenQL implementation generates about 50% more of
any type of gate. This difference is because UQC uses an optimal circuit at the two-qubit
gate level, where OpenQL uses another iteration of QSD and then ZYZ-decomposition,
which results in more gates.

The implementations are also compared on the time used to compute the unitary
decompositions. The total wall-clock execution time for the decomposition and circuit
generation of 2 to 10-qubit unitary gates can be found in Figure 16. The total execution
time of all decompositions scales approximately linearly with the input matrix size (4n

for an n-qubit gate) for the decomposition of small matrices due to matrix loading and
circuit generation operations and then becomes 8n when the decomposition of bigger
matrices begins to take more time than the other steps. This is around the decomposition
of seven-qubit unitary gates.

Figure 16. Execution time of the decomposition and circuit generation for OpenQL, Qubiter and
UQC for different sizes of unitary matrices.

Appl. Sci. 2022, 12, 759 18 of 20

As can be seen in the figure, OpenQL is considerably faster than Qubiter and UQC.
When comparing the total execution times, it becomes clear that the OpenQL implementa-
tion takes more time per input matrix element (8n) due to the use of CSD. Qubiter does not
have that issue, but using unitary decomposition in OpenQL is about 10 to 100 times faster
for the decomposition of 1 to 10-qubit unitary gates. This can most likely be attributed to
the languages the compilers are programmed in and how well the implementation takes ad-
vantage of the programming language. Qubiter is written in Python and the UQC is written
in Mathematica, both of which are considerably slower than C++, used for OpenQL [28].

In addition to being faster, unitary decomposition in OpenQL generates a much
shorter circuit for all sizes of unitary matrices compared to Qubiter. For UQC, the tests were
stopped at the decomposition of an eight-qubit unitary gate, which took approximately
450 s. Decomposing a nine-qubit gate was stopped after an hour, when it had still not
produced results. As a result, although the decomposition in UQC does result in fewer
gates, it also takes about 500 times as long as decomposition in OpenQL.

11. Conclusions and Future Work

With the implementation of unitary decomposition, OpenQL can now be used for any
quantum algorithm that uses arbitrary unitary gates. One such algorithm is QiBAM [8],
which cannot be implemented without unitary decomposition.

The decomposition generates more gates than the theoretical minimum, but the struc-
ture of the decomposition means that further optimizations can be easily integrated with
the current implementation. The decomposition is performed using Quantum Shannon
Decomposition, which is up to 10 times more efficient in the number of generated gates than
Qubiter and only 50% less efficient than the implementation of UQC. Two optimizations
were implemented to take advantage of the internal structure of the input or intermediate
unitary matrices, which can drastically reduce the length of the resulting circuit. With these
optimizations, the final resulting gate count can be much lower than the illustrated worst
case numbers.

The decomposition results in O(3
4 4n) CNOT gates and O(9

4 4n) total gates. Although
the execution time of the decomposition is O(8n) for matrices of size 2n × 2n, for the
decomposition of up to 10-qubit gates, our implementation is 10–100 times faster than
Qubiter and about 500 times faster than the implementation in UQC.

There are several avenues that can further bring down the number of gates the decom-
position generates, which are as follows:

• The implementation of a minimum two-qubit circuit, such as the one described in [22]
using the method from [29], if applicable;

• Additionally, the implementation of a universal three-qubit gate, such as the one
in [30];

• Implementing the multiplexed Rz gate with a CZ gate, as expressed in [22];
• Reworking the QSD so that the intermediate matrices cancel out, as the input matrix

has fewer degrees of freedom than the matrices resulting from the QSD. Therefore, it
might be possible to choose some of these intermediate matrices in such a way that
they can be decomposed using fewer elementary gates;

• The implementation of other specific efficient decompositions, such as controlled
unitary gates (as opposed to uniformly controlled gates), quantum multiplexers or
specialized multi-controlled rotation gates.

Author Contributions: Methodology, A.M.K. and A.S.; software, A.M.K. and I.A.; supervision, Z.A.-
A. and K.B.; writing—original draft, A.M.K.; writing—review and editing, Z.A.-A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 759 19 of 20

Data Availability Statement: The OpenQL source code, including the implementation of unitary de-
composition presented in this paper, is available at https://github.com/QE-Lab/OpenQL (accessed
on 6 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.

Comput. 1997, 26, 1484–1509. [CrossRef]
2. Grover, L.K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325–328.
3. Almudever, C.G.; Lao, L.; Wille, R.; Guerreschi, G.G. Realizing Quantum Algorithms on Real Quantum Computing Devices. In

Proceedings of the 2020 Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 9–13 March 2020;
pp. 864–872.

4. Tannu, S.S.; Qureshi, M.K. Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Com-
puters. In Proceedings of the ASPLOS ’19: Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, Providence, RI, USA, 13–17 April 2019; Association for Computing Machinery: New York,
NY, USA, 2019; pp. 987–999.

5. Khammassi, N.; Ashraf, I.; Someren, J.V.; Nane, R.; Krol, A.M.; Rol, M.A.; Lao, L.; Bertels, K.; Almudever, C.G. OpenQL: A
Portable Quantum Programming Framework for Quantum Accelerators. ACM J. Emerg. Technol. Comput. Syst. 2022, 18, 1–24.

6. Allen, G.D. Unitary Matrices. In Lectures on Linear Algebra and Matrices; Texas A&M University: College Station, TX, USA, 2003;
Chapter 4, pp. 157–180.

7. Houtgast, E.J.; Sima, V.M.; Bertels, K.; Al-Ars, Z. Hardware acceleration of BWA-MEM genomic short read mapping for longer
read lengths. Comput. Biol. Chem. 2018, 75, 54–64. doi:10.1016/j.compbiolchem.2018.03.024. [CrossRef] [PubMed]

8. Sarkar, A.; Al-Ars, Z.; Almudever, C.G.; Bertels, K.L.M. QiBAM: Approximate Sub-String Index Search on Quantum Accelerators
Applied to DNA Read Alignment. Electronics 2021, 10, 2433. [CrossRef]

9. Ventura, D.; Martinez, T. Quantum associative memory. Inf. Sci. 2000, 124, 273–296. [CrossRef]
10. Deutsch, D.E.; Penrose, R. Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 1989, 425, 73–90. [CrossRef]
11. Savage, A. Introduction to Lie Groups. In Course Notes of MAT 1411/MAT 5158; University of Ottawa: Ottawa, ON, Canada, 2015.
12. Bullock, S.S.; Markov, I.L. Arbitrary two-qubit computation in 23 elementary gates. Phys. Rev. A 2003, 68, 012318. [CrossRef]
13. Möttönen, M.; Vartiainen, J.J.; Bergholm, V.; Salomaa, M.M. Quantum Circuits for General Multiqubit Gates. Phys. Rev. Lett. 2004,

93, 130502.
14. Mooney, G.J.; Hill, C.D.; Hollenberg, L.C.L. Entanglement in a 20-Qubit Superconducting Quantum Computer. Sci. Rep. 2019, 9,

1–8. [CrossRef]
15. Shende, V.V.; Markov, I.L.; Bullock, S.S. Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 2004, 69, 062321.

[CrossRef]
16. Vartiainen, J.; Möttönen, M.; Salomaa, M. Efficient Decomposition of Quantum Gates. Phys. Rev. Lett. 2004, 92, 177902.
17. Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.; Weinfurter, H. Elementary

gates for quantum computation. Phys. Rev. A 1995, 52, 3457. [PubMed]
18. Tucci, R.R. A Rudimentary Quantum Compiler. arXiv 1999, arXiv:9902062.
19. Paige, C.; Wei, M. History and generality of the CS decomposition. Linear Algebra Its Appl. 1994, 208, 303–326. [CrossRef]
20. Dekant, H.; Tregillus, H.; Tucci, R.; Yin, T. Qubiter at GitHub. 2020. Available online: github.com/artiste-qb-net/qubiter

(accessed on 6 January 2022).
21. Möttönen, M.; Vartiainen, J. Trends in Quantum Computing Research; Decompositions of General Quantum Gates; Nova Science

Publishers, Inc.: Hauppauge, NY, USA, 2006; pp. 149–170.
22. Shende, V.; Bullock, S.; Markov, I. Synthesis of Quantum Logic Circuits. Comput.-Aided Des. Integr. Circuits Syst. IEEE Trans. 2006,

25, 1000–1010. [CrossRef]
23. Guennebaud, G.; Jacob, B. The Eigen Documentation v3. 2019. Available online: http://eigen.tuxfamily.org (accessed on 20 July

2020).
24. Sutton, B.D. Computing the complete CS decomposition. Numer. Algor. 2009 50, 33–65. [CrossRef]
25. Blackford, S.; Moore, R.; Drakos, N. LAPACK Users’ Guide. Available online: https://www.netlib.org/lapack/lug/ (accessed on

23 October 2020).
26. Iten, R.; Reardon-Smith, O.; Malvetti, E.; Mondada, L.; Pauvert, G.; Redmond, E.; Kohli, R.S.; Colbeck, R. Introduction to

UniversalQCompiler. arXiv 2021, arXiv:1904.01072.
27. Iten, R.; Colbeck, R.; Kukuljan, I.; Home, J.; Christandl, M. Quantum circuits for isometries. Phys. Rev. A 2016, 93, 032318.

[CrossRef]
28. Aruoba, S.B.; Fernández-Villaverde, J. A comparison of programming languages in macroeconomics. J. Econ. Dyn. Control 2015,

58, 265–273. [CrossRef]
29. de Guise, H.; Di Matteo, O.; Sánchez-Soto, L.L. Simple factorization of unitary transformations. Phys. Rev. A 2018, 97, 022328.

[CrossRef]

https://github.com/QE-Lab/OpenQL
http://doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1016/j.compbiolchem.2018.03.024
http://www.ncbi.nlm.nih.gov/pubmed/29747076
http://dx.doi.org/10.3390/electronics10192433
http://dx.doi.org/10.1016/S0020-0255(99)00101-2
http://dx.doi.org/10.1098/rspa.1989.0099
http://dx.doi.org/10.1103/physreva. 68.012318
http://dx.doi.org/10.1038/s41598-019-49805-7
http://dx.doi.org/10.1103/physreva.69.062321
http://www.ncbi.nlm.nih.gov/pubmed/9912645
http://dx.doi.org/10.1016/0024-3795(94)90446-4
github.com/artiste-qb-net/qubiter
http://dx.doi.org/10.1109/TCAD.2005.855930
http://eigen.tuxfamily.org
http://dx.doi.org/10.1007/s11075-008-9215-6
https://www.netlib.org/lapack/lug/
http://dx.doi.org/10.1103/physreva.93.032318
http://dx.doi.org/10.1016/j.jedc.2015.05.009
http://dx.doi.org/10.1103/physreva.97.022328

Appl. Sci. 2022, 12, 759 20 of 20

30. Vatan, F.; Williams, C.P. Realization of a General Three-Qubit Quantum Gate. arXiv 2004, arXiv:0401178.

	Introduction
	Motivation for Unitary Decomposition
	Background
	Qubit Notation
	Quantum Gates
	Unitary Matrices
	Universal Set of Gates
	Quantum Multiplexers
	Multi-Controlled (Rotation) Gates

	Decomposing Multi-Controlled Rotation Gates
	Comparison of Different Decomposition Methods
	Selection Criteria
	Theoretical Lower Bounds
	ZYZ Decomposition
	Minimal Decomposition of Two-Qubit Gates
	Decomposition with Givens Rotations
	Recursive Cosine Sine Decomposition
	Quantum Shannon Decomposition
	Selection of the Algorithm

	Implementation
	The Unitary Class
	Circuit Assembly
	Compilation of the OpenQL Program

	Implementation Optimization
	Detection of Multiplexers
	Unaffected Qubits
	Execution Time Optimizations

	Results
	Other Implementations
	Qubiter
	UniversalQCompiler

	Comparison to Other Implementations
	Conclusions and Future Work
	References

