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Predictive machine learning in earth pressure balanced tunnelling for main 
drive torque estimation of tunnel boring machines 
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A B S T R A C T   

Designing the main drive motor capacity of Earth Pressure Balanced Tunnel Boring Machines (EPB TBMs) is a 
crucial task for every EPB tunnelling project. The machine needs to be equipped with sufficient power to master 
the geotechnical conditions of the respective project. On the other hand, overpowering the machine should be 
avoided for economic and sustainability reasons. Main drive torque estimation for EPB TBMs is challenging due 
to a multitude of impact factors and reciprocal mechanisms between the geotechnical conditions and the 
tunnelling process. In EPB TBM tunnelling active tunnel face support is achieved in soft and mixed ground or 
weak and unstable rock by generating a pressurized earth paste in the tool gap and excavation chamber of the 
machine. Complexity arises due to tribological and rheological effects of the active tunnel face support. These 
elements of uncertainty, the expected main drive torque is frequently overestimated to prevent a jamming of the 
machine in the ground. Mean main drive torque values often lie below 50 % of the installed nominal main drive 
torque capacity. In scope of this research machine learning algorithms, such as regressions, decision trees, tree 
ensembles, support vector machines and gaussian process regressions, have been used to predict the main drive 
torque. Models have been trained and tested on data collected from 9 different reference projects and validated 
on the data of 3 additional reference projects to test the transferability of the model. TBM diameters of the 
reference projects vary between 6,5 and 15,9 m and TBMs have been operating in a wide range of geotechnical 
boundary conditions. Different feature selection algorithms have been used and prediction results have been 
compared to models trained on manually selected features. Models using tree ensembles and manually selected 
features showed best prediction results and model performance. The machine learning approach returned a 
smaller and more accurate torque estimation range than traditional estimation approaches and prediction ac
curacy has been improved. Transparent and robust tree ensembles proofed to be suitable tools for TBM torque 
estimation.   

1. Introduction 

At present EPB TBMs are the predominant TBM type used in unstable 
mixed ground conditions, where an active face support is required to 
stabilize the ground. The tunnel face is supported by the excavated soil 
or rock material, which is transformed into an earth paste and pressur
ized to counterbalance earth and water pressures. The machine is 
pressed forward into the ground and the extraction of the earth paste 
from the excavation chamber is controlled at the same time. Turning the 
cutting wheel during ground excavation and TBM advance causes fric
tion between the steel structure of the cutting wheel, the ground, and the 

earth paste. The turning cutting wheel needs to overcome the inner 
shear strength of the earth paste at the openings of the cutting wheel and 
the torque to remove the undisturbed ground with the excavation tools. 
Hence, the TBM layout must consider sufficient main drive motor ca
pacity including an appropriate safety margin to handle these loads. 
Several factors are influencing these loads. TBM design related impact 
factors are e.g., TBM diameter, opening ratio of the cutting wheel, type, 
number, and position of cutting tools. Geotechnical impact factors 
comprise ground strength, mineralogy, grain sizes, content of fines, 
Atterberg limits, ground structure and texture, overburden, and ground 
water. Tribological factors are influencing the main drive torque due to 
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friction between ground or earth paste and cutting wheel, lubrication by 
foam, water or additives, adhesion, wear, and thermal energy loss. 
Further reciprocal effects between TBM operation and ground are 
related to the rheology of the earth paste, the impact of the TBM oper
ation mode and advance rate of the machine. 

First estimation models for the main drive of tunnel boring machines 
have been published in the 1970s for tunnel projects in hard rock. Mellor 
& Hawkes (Mellor and Hawkes, 1972) and Roxborough & Phillips 
(Roxborough and Phillips, 1975) were among the first to examine the 
main drive torque and related forces acting between rock, cutting tools 
and cutterhead. Further approaches have been published e.g. by 
(Snowdon et al., 1982; Sanio, 1985; Barton, 2000; Gong and Zhao, 
2009). Two most common approaches today for torque estimation in 
hard rock were published by (Ozdemir, 1977) and (Bruland, 2000) 
calculating torque components using empirically determined co
efficients. In stable sections of the tunnel alignment, EPB TBMs can be 
operated in open mode without providing active face support. For these 
sections, the approaches for hard rock TBMs can be applied also for EPB 
TBMs. For EPB tunnelling in soft and mixed ground these approaches are 
not suitable since they do not account for soft ground conditions, such as 
friction forces between earth paste and steel structure of the cutting 
wheel, inner shear forces of the earth paste at the openings of the cutting 
wheel or the influence of soil conditioning, clogging of the ground, etc. 

Consequently, a new approach was required to estimate the main 
drive torque for this type of TBM and an empirical approach has been 
published by (Krause, 1987) based on experiences with small size TBMs 
up to 8 m diameter. 

MT = α*D3 (1)  

where the main drive torque MT is calculated in kNm using the TBM 
diameter D in m and an empirical factor α to account for all impact 
factors influencing the main drive torque (1). The recommendations for 
selection of the empirical factor have been adapted later by (JSCE, Japan 
Society of Civil Engineers, 2007) based on extended experience with 
larger EPB TBMs and a wider range of project boundary conditions using 
values ranging between 10 and 25 kN/m2. 

With increasing tunnel dimensions and continuously increasing TBM 
diameters this approach showed some limitations, because the torque 
estimation range widened. Numerous theoretical approaches have been 
published, where torque components are calculated to improve the load 
prediction, e.g. by (Wittke, 2007; Song et al., 2010; Wang et al., 2012; 
Zhang et al., 2014; González et al., 2016; Avunduk and Copur, 2018) or 
(Zhou and Zhai, 2018). One of the most cited approaches has been 
published by (Shi et al., 2011), who identified eight torque components 
(2): 

MT = T1 + T2 +T3 + T45+ T5 +T6 + T7 +T8 (2)  

with T1 the friction between the front of the cutting wheel and the muck, 
T2 the friction between the circumference of the cutting wheel and the 
muck, T3 the friction between the back of the cutting wheel and the 
muck, T4 the ground cutting and excavating process component, T5 the 
shearing of muck at cutting wheel openings, T6 the friction between 
mixing bars and muck, T7 the friction generated by the bearing system 
and finally T8 to account for sealing losses. Theoretical approaches 
differ by project boundaries and impact factors. Most theoretical ap
proaches use the friction coefficient μ to describe the friction between 
the earth paste and the cutting wheel. Recommendations for the friction 
coefficient μ range from 0,25 (Gehring, 2009) to 0,73 (Song et al., 2010). 

Both parameters, α and μ, have a substantial impact on the main 
drive torque prediction while showing uncertainties and limitations 
(Godinez et al., 2015) and (Ates et al., 2014). The existing state-of-the- 
art prediction models are based on input parameters, which are often 
difficult to determine during the design phase of a project and prone to 
uncertainty. 

A machine learning (ML) approach has been selected to reduce 

uncertainties and improve prediction accuracy based on the experience 
gained on comparable projects by using the data to train, test and 
validate ML models. Data analysis and machine learning applications in 
TBM tunnelling are not new and several approaches have been pub
lished in recent years, mainly to predict TBM performance using a range 
of algorithms. (Acaroglu, 2011) used a fuzzy logic approach for hard 
rock TBMs, (Maji and Theja, 2017) used a regression model for TBM 
performance prediction. (Salimi et al., 2015; Salimi et al., 2018) used 
various algorithms for projects in hard rock and mixed ground condi
tions, whereas (Armaghani et al., 2018) selected a gene expression 
programming model for hard rock and mixed ground conditions. 
(Mokhtari and Mooney, 2019) used a Monte Carlo approach to account 
for uncertainties, (Gao et al., 2019) and (Cachim and Bezuijen, 2019) 
generated neural networks to predict TBM operating parameters, (Hong 
et al., 2021) used regression analysis and long short- term memory 
(LSTM) networks and (Ucar et al., 2022) used statistical modelling to 
predict the cutterhead torque for EPB TBMs. 

All these authors based their research on data of one project at a time 
to predict target values for the same project or projects from the same 
area. These predictive models are suitable to optimize TBM operation 
during an EPB project, but they show limited transferability to new 
projects with different boundary conditions. Especially for large scale 
EPB projects a precise load estimation is crucial for a proper TBM layout. 
Therefore, the aim of this study is to provide a transferable machine 
learning approach suitable to be applied on new projects during the 
design phase of a TBM, which returns a more precise range of the main 
drive torque to optimize the TBM layout. 

2. Methodology 

2.1. Reference projects 

In scope of this study, data from 12 different reference projects has 
been collected, whereas 9 projects were used for training and testing the 
ML models, and 3 projects were used for model validation. The following 
table (Table 1) gives an overview over the reference projects, including 
TBM diameter, main type of geology as well as installed nominal torque 
and monitored mean torque per ring. 

Torque values are measured using sensors installed on the TBM and 
monitored via the programmable logic controller (PLC) of the machine. 

Table 1 
Reference projects with validation projects marked in grey.  

project diameter 
[m] 

geology nominal 
torque, 
installed 
[MNm] 

mean 
torque / 
ring, 
monitored 
[MNm] 

max 
torque / 
ring, 
monitored 
[MNm] 

A 6,5 clay, sand 4,5 2,47 3,79 
B 7,1 limestone 4,8 2,36 7,44 
C 7,1 clay 9,3 3,46 3,72 
D 8,1 clay 7,0 4,32 5,01 
E 9,8 marl, 

limestone 
17,9 6,23 14,06 

F 11,1 marl, 
sandstone 

19,4 9,60 15,03 

G 12,1 siltstone, 
clay, gravel 

38,0 7,13 16,68 

H 12,6 sandstone, 
clay 

16,5 12,68 17,31 

I 14,4 sandstone 68,2 19,00 39,29 
J 15,2 claystone, 

gypsum 
95,9 23,41 48,35 

K 15,5 claystone, 
sandstone, 
marl, breccia 

94,8 32,82 65,7 

L 15,9 marl, 
limestone, 
sandstone 

72,4 25,59 41,5  
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Maximum torque values are the maximum registered values per segment 
ring. In scope of this analysis, only TBM data during advance mode of 
the machine is considered. Null values during ring building and down 
times of the machine are not included in the calculation of mean values. 

2.2. Machine learning approach 

To improve the prediction accuracy of the main drive torque and 
prevent future overpowering of EPB TBMs a supervised machine 
learning model has been set up, based on the following iterative work
flow (Fig. 1): 

Data collection and set up of the data base included selection of the 
reference projects. Main goal was to select projects in the diameter range 
between 6 and 16 m, which is representative for most metro, rail and 
road tunnelling projects. The reference projects should cover various 
geotechnical and project related boundary conditions. Finally, the pro
jects were selected after evaluation of quality and quantity of monitored 
and collected data and project information. Data preparation and en
gineering comprised cleaning, noise reduction, outlier evaluation, 
standardization and normalization, dimensionality reduction (principal 
component analysis PCA) and modification of frequency distribution 
(log transformation). Unsupervised methods such as pattern recognition 
and clustering (hierarchical clustering, k-means clustering, neural net
works) have been applied. Feature selection algorithms (FSA) such as 
Pearson’s and Spearman’s coefficient with limited threshold of co
efficients and neighborhood component analysis NCA using gradient 
ascent (Goldberg et al., 2005) and a regularization parameter λ as input 
variable (Yang and Laaksonen, 2007; Yang et al., 2012) have been 
applied. The RreliefF algorithm, established by (Kira and Rendell, 1992) 
and further developed by (Robnik Sikoja and Kononenko, 2003), has 
been applied. Prediction results of these data sets have been compared to 
prediction results of manually selected features. The following 13 
impact factors were manually selected as input features, comprising 
project and TBM operation related data as well as geotechnical data:  

- TBM diameter [m]  
- cutting wheel opening ratio [%]  
- cohesion [kN/m2]  
- inner friction angle [◦]  
- unconfined compressive strength [MN/m2]  
- plasticity index [%]  

- consistency index [-]  
- rotation speed [rpm]  
- penetration [mm/rot]  
- thrust force [MN]  
- mean earth pressure [bar]  
- apparent muck density crown [kN/m3]  
- apparent muck density invert [kN/m3] 

In total, 19 algorithms have been used to generate torque prediction 
models (see Table 4), ranging from regression models, CART algorithms, 
tree ensembles, support vector machines to Gaussian process regressions 
(Inc, 2020). The models have been trained and tested using cross vali
dation. The results of the model predictions have been evaluated not 
only based on the prediction accuracy. The following aspects have been 
considered:  

- accuracy, metrics: coefficient of determination R2, root mean square 
error RSME; for FSA additionally: MSE mean squared error and mean 
absolute error MAE  

- transferability, metrics: total error of model validation (comparing 
prediction versus monitored values on 3 validation projects) 

- prediction reliability: residual evaluation, evaluating trends of pre
diction error  

- interpretability, transparency of learning process  
- robustness, impact of noise, missing values, outliers  
- availability and reliability of crucial input features (problem with 

selection of a-value or friction coefficient m) 

For the manually selected data set a sensitivity analysis has been 
performed. Variation of the features using minimum and maximum 
values and comparing prediction results showed the impact of these 
features. Finally, the models have been validated by making predictions 
for 3 reference projects using the monitored and collected project data as 
input features and compare the result with monitored torque values. The 
data of these 3 validation projects has not been used for training and 
testing of the models. 

Fig. 1. Iterative workflow of machine learning approach.  
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3. Results & discussion 

3.1. State-of-the-art approaches vs monitored main drive torque 

In general, the nominal torque capacity installed on EPB TBMs is 
designed for normal operation. Exceptional and breakout torque ca
pacity of the main drive is installed to handle maximum torque spikes, 
occurring e.g., after down times when restarting the machine. The 
following table (Table 2) shows back calculated empirical α values based 
on Equation (1). Utilization is calculated comparing nominal torque 
capacity with mean values of the monitored main drive torque. 

The following graph (Fig. 2) shows prediction results using the 
empirical approach marked with triangular shapes and the theoretical 
approach marked with diamond shapes compared to the monitored 
values marked with circular shapes in six different homogenous sections 
of reference project I. Furthermore, the influence of the recommended α- 
and μ-range is visualized in the width of the respective main drive torque 
predictions for each section, which shows the difference between the 
prediction using an α of 10 and α of 25 and a μ of 0,1 and a μ of 0,7. 

The graph in Fig. 2 shows that the range of empirical and theoretical 
approaches exceeds the monitored torque values by far, depending on 
the selected α- and μ-values. Hence, for the design of EPB TBMs, the 
application of those approaches is limited since the prediction models 
are sensitive and responsive to the selected α- and μ-values and return a 
wide range of possible torque requirements. 

3.2. Feature selection and sensitivity analysis 

Ground strength is a decisive impact factor for the main drive torque. 
No FSA method selected any geotechnical impact features except NCA, 
selecting inner friction angle, plastic limit and undrained shear strength. 
Operational parameters such as thrust force and rotation speed of the 
cutting wheel are influencing the torque. Rotation speed was only 
identified as influential by Spearmans correlation. RreliefF selected ony 
5 TBM operational parameters, no geotechnical features, virtual sensors 
or TBM design features. TBM diameter was only identified as important 
impact factor by Peasons and Spearmans correlation. 

Table 3 shows the results of the FSA methods, comparing the pre
diction accuracy of the best performing ML algorithms using the data set 
selected by the respective FSA method. It is demonstrated that the 

manually selected data set returns best results. 

3.3. Machine learning approach 

Prediction results are summarized in Table 4, showing R2 and RMSE 
values to assess model accuracy as well as prediction results and total 
prediction error for all three validation projects. With R2 values > 0,83 
and RMSE in the range of 2–4 MNm, accuracy metrics returned very 
good results for all algorithms with manually selected input features. 
Transferability of the prediction model was demonstrated using the data 
of the three validation projects with TBM diameters from 6,5 m to 15,9 
m in soft- and mixed ground conditions. Total validation errors vary in a 
wide range between 2 and 63 MNm, depending on the algorithm used. 
However, both tree ensembles, bagged and boosted, show very good 
results regarding R2 and RMSE as well as total validation error. The 
bagged tree ensemble shows best results with R2 of 0,96, RSME of 
1,9277 MNm and a total validation error of 2,39 MNm, all three values 
closest to the respective optimum value. Especially the large diameter 
validation project has been estimated with very good accuracy, where 
the state-of-the-art approaches fail. Furthermore, tree ensembles are 
transparent regarding the decision-making process, and robust 
regarding noise, missing values, or outliers. 

Both parameters, advance speed, and conditioning (injected liquids 
to the front, FIR, FER) have been included in the database. The database 
consists of 64 features (TBM data, geotechnical data, project data and 
virtual sensors) and 16,209 samples (mean values per segment ring). 
Prediction results of machine learning models with different sets of input 
features including advance speed and conditioning have been compared, 
showing best results for the model with the 13 selected input features 
referred to in this paper. For machine learning approaches statistical 
methods are potentially biased. Machine learning models are commonly 
evaluated using resampling methods rather than statistical methods. In 
this case, a 5-fold cross-validation has been used to avoid overfitting of 
the models. 

Table 2 
Back calculated a values and utilization of reference projects.  

project diameter 
[m] 

geology back calculated α utilization 
[%] 

α 
installed 

α 
mean 

α 
max 

A 6,5 clay, sand 16,3 9,0 13,8 55 % 
B 7,1 limestone 19,6 12,1 20,8 62 % 
C 7,1 clay 13,3 6,6 10,4 49 % 
D 8,1 clay 17,4 6,5 9,4 37 % 
E 9,8 marl, 

limestone 
19,1 6,6 14,9 35 % 

F 11,1 marl, 
sandstone 

14,1 7,0 11,0 50 % 

G 12,1 siltstone, 
clay, gravel 

21,5 4,8 9,4 22 % 

H 12,6 sandstone, 
clay 

8,3 6,3 8,7 77 % 

I 14,4 sandstone 22,8 6,4 13,2 28 % 
J 15,2 claystone, 

gypsum 
27,3 6,7 13,8 24 % 

K 15,5 claystone, 
sandstone, 
marl, 
breccia 

25,5 8,8 17,6 35 % 

L 15,9 marl, 
limestone, 
sandstone 

18,0 6,4 10,3 35 %  

Fig. 2. Comparison of empirical and theoretical approach versus moni
tored torque. 

Table 3 
Results fsa – comparison of model performance.  

FSA best performing 
ML algorithm 

R2 RMSE MSE MAE 

Pearson’s Coefficient 
of Correlation 

Gaussian Process, 
Exponential 

0,93 0,28 0,08 0,15 

Spearman’s 
Coefficient of 
Correlation 

Gaussian Process, 
Rational Quadratic 

0,94 0,27 0,07 0,16 

RreliefF Gaussian Process, 
Rational Quadratic 

0,93 0,22 0,05 0,11 

NCA Gaussian Process, 
Rational Quadratic 

0,95 0,23 0,05 0,13 

Manual Selection Gaussian Process, 
Exponential 

0,96 0,19 0,04 0,11  
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The presented machine learning model considers the advance speed 
[mm/min] by using penetration [mm/rot] and rotation speed of the 
cutting wheel [rpm]. In machine learning the use of correlated features 
can lead to biased results. Using the advance speed as additional input 
factor would cause such bias by overestimating the impact of these three 
parameters. Ground conditioning has been considered by using the sum 
of injected liquids to the front for an additional machine learning model 
(not included in this paper). The following 14 input features have been 
selected for this additional model: diameter, degree of cutting wheel 

opening, cohesion, inner friction angle, UCS, plasticity index, consis
tency index, rotation speed, penetration, thrust force, mean earth pres
sure, sum of injected liquids, apparent muck density crown and apparent 
muck density invert. However, the prediction accuracy decreased when 
comparing the model with the results of the model without sum of 
injected liquids (Table 5).Table 6 

It has been assumed that the total amount of injected liquid adds a 
certain amount of uncertainty to the prediction. Hence, the models have 
been trained, tested, and validated using 13 features, neglecting the 
injected liquids, and using only the apparent muck density in the invert 
and crown as indicator for the muck consistency. Further research is 
required to study the impact of the conditioning on the torque in more 
detail e.g., by improving the monitoring of the conditioning system and 
using the data for further machine learning projects. This question has 
not been in the focus of the present research. 

So far, the study investigated normal TBM operation and compared 
mean torque values with the nominal installed torque. The more critical 
part regarding jamming of a machine are the maximum torque values. 
Table 1 shows mean and maximum torque values recorded throughout 
the respective projects and only in two cases, the maximum recorded 
torque exceeds the nominal installed torque, for project B and H. In 
those cases, the exceptional or breakout torque reserve can be used to 
prevent jamming of the machine, but only for a limited period of time. 
To estimate the maximum torque values to be expected for e.g., startup 
operation after down times, throughout a project, all monitored mean 
and maximum values per ring have been compared, showing very good 
correlation. Hence, maximum torque values for startup operation have 
been estimated based on the 95 % confidence interval of the correlation 
between mean and maximum torque values per ring of all reference 
projects: 

MLmax, 95% confidence = 6+ 1, 35* MLmean 

For small diameter projects with mean main drive torque < 5 MNm 
the estimation based on the linear fit of the correlation between mean 
and maximum torque values per ring of all reference projects returns 
more accurate results: 

MLmax, linear fit = 1, 35* MLmean 

Purpose of this research was to improve torque prediction for the 
nominal torque capacity during normal operation. The torque reserve 
has been accounted for by analyzing maximum torque values, which are 
mainly monitored during startup operation after downtimes. However, 
exceptional boundary conditions, such as squeezing ground, improper 
conditioning, excessive tool wear, etc. are not accounted for in this 
research. Further research is required to estimate torque reserves under 
these circumstances. 

Prediction results of large diameter project L are shown in Fig. 3 and 
compared to monitored values as well as installed nominal, exceptional 
and breakout main drive torque. 

Fig. 3 shows that the installed torque matches the prediction range of 
the empirical approach, but that the monitored torque shows smaller 
values. The lines of maximum torque in Fig. 3 relate to: 

breakout installed: maximum motor capacity installed for instant use 
only (impulse) 

exceptional installed: maximum motor capacity installed, only for 
timely limited use (temporary) 

nominal torque: motor capacity for normal operation (perpetual) 
ML mean: torque prediction using machine learning model 
ML max: maximum torque value using correlation 
The ML approach results in a more accurate torque estimation range 

than the empirical approach. The following table shows the estimation 
accuracy for all three validation projects with a prediction improvement 
of up to 166 %, which is the difference between the delta of ML approach 
and empirical approach compared to the monitored torque. 

It is important to mention that the main drive torque is depending on 

Table 4 
Results of machine learning models using manually selected input features.  

ML algorithms R2 RMSE 
[MNm] 

prediction [MNm] 

project 
L 

project 
G 

project 
A 

total 
error 

optimum 
value 

1 0 25,93 6,86 2,49 0 

Linear 
Regression 

0,86 3,9018 28,02 16,06 1,64 12,15 

Linear 
Regression, 
Interactions 

0,93 2,722 39,97 9,09 0,48 18,28 

Linear 
Regression, 
Robust 

0,83 4,1891 30,80 19,75 2,91 18,17 

Linear 
Regression, 
Stepwise 

0,93 2,7267 40,79 8,99 0,45 19,03 

Fine Decision 
Tree 

0,95 2,2846 26,30 8,91 2,64 2,55 

Medium 
Decision 
Tree 

0,95 2,2285 26,51 8,73 2,82 2,77 

Coarse 
Decision 
Tree 

0,95 2,3547 25,03 8,88 2,97 3,39 

Support Vector 
Machine, 
Linear 

0,85 3,9803 29,91 17,29 2,61 14,52 

Support Vector 
Machine, 
Quadratic 

0,93 2,6829 39,63 9,88 − 3,56 22,77 

Support Vector 
Machine, 
Cubic 

0,94 2,469 9,12 17,09 38,12 62,67 

Support Vector 
Machine, 
Fine 
Gaussian 

0,94 2,5432 16,23 13,38 10,65 24,39 

Support Vector 
Machine, 
Medium 
Gaussian 

0,95 2,3008 19,16 10,02 5,90 13,34 

Support Vector 
Machine, 
Coarse 
Gaussian 

0,89 3,3921 29,13 12,10 4,19 10,13 

Boosted Tree 
Ensemble 

0,94 2,4475 23,97 8,16 2,74 3,51 

Bagged Tree 
Ensemble 

0,96 1,9277 26,10 8,77 2,81 2,39 

Gaussian 
Process, 
Squared 
Exponential 

0,96 2,0439 18,92 8,66 5,81 12,13 

Gaussian 
Process, 
Matern 5/2 

0,96 1,9988 19,34 10,54 6,14 13,91 

Gaussian 
Process, 
Exponential 

0,96 1,9818 24,83 11,75 3,29 6,79 

Gaussian 
Process, 
Rational 
Quadratic 

0,96 2,1171 23,56 12,29 4,56 9,88  
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numerous boundary conditions. The reference projects do not comprise 
exceptional boundary conditions, such as e.g., excessive tool wear or 
insufficient ground conditioning, unusual operational factors, such as 
exceeding rotation speed or thrust force as well as ground conditions, 
such as swelling or sticky ground. Hence, the presented ML approach 
and maximum torque correlations do not cover exceptional boundary 
conditions. Further research is required to improve prediction accuracy, 
especially for projects in such exceptional conditions. 

4. Conclusions 

In this study, the data of 9 reference projects has been used to train 
and test several machine learning algorithms for main drive torque 
prediction and the models have been validated using the data of 3 
additional reference projects. The main conclusions and findings are 
summarized in the following: 

(1) State-of-the art approaches return a wide range of torque esti
mations due to uncertainties regarding the empirical factor α for 
the empirical approach and the friction coefficient μ for the 
theoretical approach.  

(2) Back calculated α values based on monitored mean and maximum 
torque per ring of the reference projects range between 4,8 and 
12,1 for mean torque values and between 8,7 and 20,8 for 
maximum torque values.  

(3) Tunneling data is prone to significant variance in data quality and 
the work with EPB tunnelling data revealed that the data is often 
unreliable and messy. Sensors might be soiled, blocked or un
calibrated and additional, unmonitored equipment might be 
installed on site misguiding and disorienting machine learning 
algorithms. Intense data engineering is required before using the 
data.  

(4) In this context, robust machine learning models such as the 
boosted or bagged tree ensembles demonstrated to be suitable 
algorithms for TBM tunneling applications, while showing 
excellent model performance and prediction results. Another 
advantage is the transparent decision-making process of these 
algorithms. The bagged tree model returned best results for the 
manually selected input features with an R2 of 0,96 and an RMSE 
of 1,9277. Prediction accuracy and utilization improved up to 
166 %.  

(5) Feature Selection Algorithms resulted in less accurate prediction 
results than manually selected input parameters known to have a 
causal relation to the target value. 

(6) The results of this research showed that in cases where the ma
chine learning model is trained and tested using data from 
various projects with comparable features (e.g., EPB TBM type in 
mixed ground), also cross-project predictions are possible, and 
the prediction models are transferable to future projects with 
comparable boundary conditions. 

To further improve estimation results using machine learning ap
proaches the focus should be improving the quality and quantity of the 
data base as well as the monitoring system of the influencing parameters 
before further optimizing the algorithms. It is essential to fortify statis
tics, data science and machine learning with real world causal nexus. 
Adding reference projects to enlarge the data base and range of training 
data could improve transferability and accuracy of the predictive model. 
Logic checks and redundant sensor systems could help to automatically 

Table 5 
Model evaluation using 13 input features compared to 14 input features (including sum of injected liquids).  

no. of input features best performing 
ML algorithm 

R2 RMSE [MNm] torque prediction [MNm] 

project L project G project A total error 

optimum values 1 0 25,93 6,86 2,49 0 
13 features Bagged Tree Ensemble 0,96 1,93 26,10 8,77 2,81 2,39 
14 features Boosted Tree Ensemble 0,91 2,66 26,60 8,85 2,74 2,91  

Table 6 
Prediction improvement comparing monitored torque, ML approach and empirical approach.  

project, 
diameter 

approach monitored torque 
[MNm] 

ML 
approach 
[MNm] 

Δ[%] empirical 
approach 
[MNm] 

Δ[%] prediction improvement 
[%] 

A:6,5 m mean torque: a = 10 2,47 2,74 11 % 2,84 15 % 4 % 
maximum torque: a = 25, linear 
fit 

4,99 4,07 − 18 % 7,09 42 % 24 % 

G:12,1 m mean torque: a = 10 6,86 8,85 29 % 17,69 158 % 129 % 
maximum torque: a = 25, 95 % 
conf. 

15,67 18,15 16 % 44,23 182 % 166 % 

L:15,9 m mean torque: a = 10 25,58 26,6 4 % 40,50 58 % 54 % 
maximum torque: a = 25, 95 % 
conf. 

58,80 62,2 6 % 101,25 72 % 66 %  

Fig. 3. Machine learning model validation for EPB reference project L with 
15,9 m diameter. 
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check calibration of sensors and monitoring of important boundary 
conditions such as the characteristics of the ground can help to further 
improve predictions and the overall tunnelling process optimization. 
Further research is required to study the impact of certain factors such as 
e.g., the ground conditioning by improving the monitoring of the con
ditioning and using the data for further machine learning projects. 
Furthermore, exceptional boundary conditions, such as squeezing 
ground, excessive tool wear, etc. should be subject for further research. 
Increasing the database by adding the data of further comparable 
reference projects using EPB TBMs would be beneficial for the prediction 
accuracy as well as for the transferability of the model. 
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